X-Git-Url: https://gapil.gnulinux.it/gitweb/?p=gapil.git;a=blobdiff_plain;f=socket.tex;h=98a79a64db1b825aa40d988653b1140129f2fa95;hp=cd90c28dba33851595db849b23c5187cec109d15;hb=5af27a7a0ed59f8684593f0c2b300b81576351b0;hpb=3e5c39bbc24981125adb422a672fcd3d54493bb6 diff --git a/socket.tex b/socket.tex index cd90c28..98a79a6 100644 --- a/socket.tex +++ b/socket.tex @@ -8,7 +8,7 @@ operativi. Dopo una breve panoramica sulle caratteristiche di questa interfaccia vedremo come creare un socket e come collegarlo allo specifico protocollo di rete che -utilizzerà per la comunicazione. Per evitare una introduzione puramente teorica +utilizzerà per la comunicazione. Per evitare un'introduzione puramente teorica concluderemo il capitolo con un primo esempio di applicazione. \section{Una panoramica} @@ -22,23 +22,24 @@ con essi. \label{sec:sock_socket_def} Il \textit{socket}\footnote{una traduzione letterale potrebbe essere - \textsl{manicotto}, ma essendo universalmente noti come socket utilizzeremo - sempre la parola inglese} è uno dei principali meccanismi di comunicazione -fra programmi utilizzato in ambito unix. Il socket costituisce in sostanza un + \textsl{presa}, ma essendo universalmente noti come socket utilizzeremo + sempre la parola inglese.} è uno dei principali meccanismi di comunicazione +fra programmi utilizzato in ambito Unix. Il socket costituisce in sostanza un canale di comunicazione fra due processi su cui si possono leggere e scrivere -dati analogo a quello di una pipe ma a differenza di questa e degli altri -meccanismi esaminati nel capitolo \capref{cha:IPC} i socket non sono limitati -alla comunicazione fra processi che girano sulla stessa macchina ma possono -effettuare la comunicazione anche attraverso la rete. +dati analogo a quello di una pipe (vedi \secref{sec:ipc_pipes}) ma a +differenza di questa e degli altri meccanismi esaminati nel capitolo +\capref{cha:IPC} i socket non sono limitati alla comunicazione fra processi +che girano sulla stessa macchina ma possono effettuare la comunicazione anche +attraverso la rete. Quella dei socket costituisce infatti la principale API (\textit{Application Program Interface}) usata nella programmazione di rete. La loro origine risale al 1983, quando furono introdotti nel BSD 4.2; l'interfaccia è rimasta sostanzialmente la stessa con piccole modifiche negli anni successivi. Benché -siano state sviluppate interfacce alternative, originate dai sistemi SYSV, +siano state sviluppate interfacce alternative, originate dai sistemi SVr4, come la XTI (\textit{X/Open Transport Interface}) nessuna ha mai raggiunto la -diffusione e la popolarità di quella dei socket (né tantomeno usabilità e -flessibilità). +diffusione e la popolarità di quella dei socket (né tantomeno la stessa +usabilità e flessibilità). La flessibilità e la genericità dell'interfaccia inoltre ha consentito di utilizzare i socket con i più disparati meccanismi di comunicazione, e non @@ -57,15 +58,15 @@ usato, le funzioni da usare restano le stesse. Per questo motivo una semplice descrizione dell'interfaccia è assolutamente inutile, in quanto il comportamento di quest'ultima e le problematiche da -affrontare cambiano radicalmente a seconda dello ``stile'' di comunicazione -usato. La scelta di questo stile va infatti ad incidere sulla semantica che -verrà utilizzata a livello utente per gestire la comunicazione (su come -inviare e ricevere i dati) e sul comportamento effettivo delle funzioni -utilizzate. +affrontare cambiano radicalmente a seconda dello \textsl{stile} di +comunicazione usato. La scelta di questo stile va infatti ad incidere sulla +semantica che verrà utilizzata a livello utente per gestire la comunicazione +(su come inviare e ricevere i dati) e sul comportamento effettivo delle +funzioni utilizzate. La scelta di uno stile dipende sia dai meccanismi disponibili, sia dal tipo di comunicazione che si vuole effettuare. Ad esempio alcuni stili di -comunicazione considerano i dati come una sequenza continua di bytes, altri +comunicazione considerano i dati come una sequenza continua di byte, altri invece li raggruppano in blocchi (i pacchetti). Un'altro esempio di stile concerne la possibilità che la comunicazione possa o @@ -111,23 +112,25 @@ protocollo; in genere quest'ultimo socket, per cui viene messo a zero (con l'eccezione dei \textit{raw socket}). \begin{prototype}{sys/socket.h}{int socket(int domain, int type, int protocol)} + + Apre un socket. - La funzione restituisce un intero positivo se riesce, e -1 se fallisce, in - quest'ultimo caso la variabile \var{errno} è settata con i seguenti - codici di errore: + \bodydesc{La funzione restituisce un intero positivo se riesce, e -1 se + fallisce, in quest'ultimo caso la variabile \var{errno} è impostata con i + seguenti codici di errore: \begin{errlist} - \item \macro{EPROTONOSUPPORT} Il tipo di socket o il protocollo scelto non + \item[\macro{EPROTONOSUPPORT}] Il tipo di socket o il protocollo scelto non sono supportati nel dominio. - \item \macro{ENFILE} Il kernel non ha memoria sufficiente a creare una + \item[\macro{ENFILE}] Il kernel non ha memoria sufficiente a creare una nuova struttura per il socket. - \item \macro{EMFILE} Si è ecceduta la tabella dei file. - \item \macro{EACCES} Non si hanno privilegi per creare un socket nel + \item[\macro{EMFILE}] Si è ecceduta la tabella dei file. + \item[\macro{EACCES}] Non si hanno privilegi per creare un socket nel dominio o con il protocollo specificato. - \item \macro{EINVAL} Protocollo sconosciuto o dominio non disponibile. - \item \macro{ENOBUFS} o \macro{ENOMEM} Non c'è sufficiente memoria per - creare il socket. - \end{errlist} + \item[\macro{EINVAL}] Protocollo sconosciuto o dominio non disponibile. + \item[\macro{ENOBUFS}] Non c'è sufficiente memoria per creare il socket (può + essere anche \macro{ENOMEM}). + \end{errlist}} \end{prototype} Si noti che la creazione del socket non comporta nulla riguardo @@ -146,9 +149,10 @@ altro nome con cui si indicano i domini. A ciascun tipo di dominio corrisponde un analogo nome simbolico che inizia per \texttt{AF\_} da \textit{address family}, e che identifica il formato degli -indirizzi usati in quel dominio; le man pages di Linux si riferiscono a questi -anche come \textit{name space}, (nome che però il manuale della glibc riserva -ai domini) e che identifica il formato degli indirizzi usati in quel dominio. +indirizzi usati in quel dominio; le pagine di manuale di Linux si riferiscono +a questi anche come \textit{name space}, (nome che però il manuale delle +\acr{glibc} riserva ai domini) e che identifica il formato degli indirizzi +usati in quel dominio. L'idea alla base della distinzione era che una famiglia di protocolli potesse supportare vari tipi di indirizzi, per cui il prefisso \texttt{PF\_} si @@ -160,26 +164,27 @@ nomi sono equivalenti e corrispondono agli stessi valori. I domini (e i relativi nomi simbolici), così come i nomi delle famiglie di indirizzi sono definiti dall'header \textit{socket.h}. In Linux le famiglie di -protocolli disponibili sono riportate in \ntab. +protocolli disponibili sono riportate in \tabref{tab:net_pf_names}. \begin{table}[htb] \footnotesize \centering - \begin{tabular}[c]{lll} + \begin{tabular}[c]{|l|l|l|} \hline - \textsl{Nome} & \textsl{Utilizzo} &\textsl{Man page} \\ + \textbf{Nome} & \textbf{Utilizzo} &\textbf{Man page} \\ \hline \hline - PF\_UNIX,PF\_LOCAL & Local communication & unix(7) \\ - PF\_INET & IPv4 Internet protocols & ip(7) \\ - PF\_INET6 & IPv6 Internet protocols & \\ - PF\_IPX & IPX - Novell protocols & \\ - PF\_NETLINK & Kernel user interface device & netlink(7) \\ - PF\_X25 & ITU-T X.25 / ISO-8208 protocol & x25(7) \\ - PF\_AX25 & Amateur radio AX.25 protocol & \\ - PF\_ATMPVC & Access to raw ATM PVCs & \\ - PF\_APPLETALK & Appletalk & ddp(7) \\ - PF\_PACKET & Low level packet interface & packet(7) \\ + \macro{PF\_UNIX}, + \macro{PF\_LOCAL} & Local communication & unix(7) \\ + \macro{PF\_INET} & IPv4 Internet protocols & ip(7) \\ + \macro{PF\_INET6} & IPv6 Internet protocols & ipv6(7) \\ + \macro{PF\_IPX} & IPX - Novell protocols & \\ + \macro{PF\_NETLINK}& Kernel user interface device & netlink(7) \\ + \macro{PF\_X25} & ITU-T X.25 / ISO-8208 protocol & x25(7) \\ + \macro{PF\_AX25} & Amateur radio AX.25 protocol & \\ + \macro{PF\_ATMPVC} & Access to raw ATM PVCs & \\ + \macro{PF\_APPLETALK}& Appletalk & ddp(7) \\ + \macro{PF\_PACKET} & Low level packet interface & packet(7) \\ \hline \end{tabular} \caption{Famiglie di protocolli definiti in Linux} @@ -188,8 +193,8 @@ protocolli disponibili sono riportate in \ntab. Non tutte le famiglie di protocolli sono accessibili dall'utente generico, ad esempio in generale tutti i socket di tipo \macro{SOCK\_RAW} possono essere -creati solo da processi che hanno i privilegi di root (cioè effective uid -uguale a zero) o la capability \macro{CAP\_NET\_RAW}. +creati solo da processi che hanno i privilegi di root (cioè con userid +effettivo uguale a zero) o con la capability \macro{CAP\_NET\_RAW}. \subsection{Il tipo, o stile} @@ -199,8 +204,9 @@ La scelta di un dominio non comporta per comunicazione, questo infatti viene a dipendere dal protocollo che si andrà ad utilizzare fra quelli disponibili nella famiglia scelta. Le API permettono di scegliere lo stile di comunicazione indicando il tipo di socket; Linux e le -glibc mettono a disposizione i seguenti tipi di socket (che il manuale della -glibc chiama \textit{styles}) definiti come \type{int} in \file{socket.h}: +\acr{glibc} mettono a disposizione i seguenti tipi di socket (che il manuale +della \acr{glibc} chiama \textit{styles}) definiti come \ctyp{int} in +\file{socket.h}: \begin{list}{}{} \item \macro{SOCK\_STREAM} Provvede un canale di trasmissione dati @@ -222,10 +228,10 @@ glibc chiama \textit{styles}) definiti come \type{int} in \file{socket.h}: \item \macro{SOCK\_PACKET} Obsoleto, non deve essere usato. \end{list} -Si tenga presente che non tutte le combinazioni di famiglia di protocolli e -tipo di socket sono valide, in quanto non è detto che nella famiglia esista un -protocollo per tutti gli stili di comunicazione indicati qui sopra. Una -tabella che mostra le combinazioni valide è la seguente: +Si tenga presente che non tutte le combinazioni fra una famiglia di protocolli +e un tipo di socket sono valide, in quanto non è detto che in una famiglia +esista un protocollo per ciascuno dei diversi stili di comunicazione appena +elencati. \begin{table}[htb] \footnotesize @@ -263,9 +269,11 @@ tabella che mostra le combinazioni valide \label{tab:sock_sock_valid_combinations} \end{table} -Dove per ogni combinazione valida si è indicato il tipo di protocollo, o la -parola \textsl{si} qualora non il protocollo non abbia un nome definito, -mentre si sono lasciate vuote le caselle per le combinazioni non supportate. +In \secref{tab:sock_sock_valid_combinations} sono mostrate le combinazioni +valide possibili per le varie famiglie di protocolli. Per ogni combinazione +valida si è indicato il tipo di protocollo, o la parola \textsl{si} qualora +non il protocollo non abbia un nome definito, mentre si sono lasciate vuote le +caselle per le combinazioni non supportate. @@ -297,10 +305,10 @@ attraverso puntatori (cio maneggiare puntatori a strutture relative a tutti gli indirizzi possibili nelle varie famiglie di protocolli; questo pone il problema di come passare questi puntatori, il C ANSI risolve questo problema coi i puntatori generici -(i \type{void *}), ma l'interfaccia dei socket è antecendente alla -definizione dello standard ANSI, e per questo nel 1982 fu scelto di definire -una struttura generica \type{sockaddr} per gli indirizzi dei socket mostrata -in \nfig: +(i \ctyp{void *}), ma l'interfaccia dei socket è antecedente alla definizione +dello standard ANSI, e per questo nel 1982 fu scelto di definire una struttura +generica per gli indirizzi dei socket, \type{sockaddr}, che si è riportata in +\figref{fig:sock_sa_gen_struct}. \begin{figure}[!htb] \footnotesize @@ -320,37 +328,38 @@ invocano dette funzioni passando l'indirizzo di un protocollo specifico occorrerà eseguire un casting del relativo puntatore. I tipi di dati che compongono la struttura sono stabiliti dallo standard -POSIX.1g, riassunti in \ntab\ con i rispettivi file di include in cui sono -definiti; la struttura è invece definita nell'include file -\file{sys/socket.h} +POSIX.1g, riassunti in \tabref{tab:sock_data_types} con i rispettivi file di +include in cui sono definiti; la struttura è invece definita nell'include file +\file{sys/socket.h}. \begin{table}[!htb] \centering \begin{tabular}{|l|l|l|} \hline - \multicolumn{1}{|c|}{Tipo}& \multicolumn{1}{|c|}{Descrizione}& - \multicolumn{1}{|c|}{Header} \\ + \multicolumn{1}{|c|}{\textbf{Tipo}}& + \multicolumn{1}{|c|}{\textbf{Descrizione}}& + \multicolumn{1}{|c|}{\textbf{Header}} \\ \hline \hline - \texttt{int8\_t} & intero a 8 bit con segno & \texttt{sys/types.h}\\ - \texttt{uint8\_t} & intero a 8 bit senza segno & \texttt{sys/types.h}\\ - \texttt{int16\_t} & intero a 16 bit con segno & \texttt{sys/types.h}\\ - \texttt{uint16\_t} & intero a 16 bit senza segno& \texttt{sys/types.h}\\ - \texttt{int32\_t} & intero a 32 bit con segno & \texttt{sys/types.h}\\ - \texttt{uint32\_t} & intero a 32 bit senza segno& \texttt{sys/types.h}\\ + \type{int8\_t} & intero a 8 bit con segno & \file{sys/types.h}\\ + \type{uint8\_t} & intero a 8 bit senza segno & \file{sys/types.h}\\ + \type{int16\_t} & intero a 16 bit con segno & \file{sys/types.h}\\ + \type{uint16\_t} & intero a 16 bit senza segno& \file{sys/types.h}\\ + \type{int32\_t} & intero a 32 bit con segno & \file{sys/types.h}\\ + \type{uint32\_t} & intero a 32 bit senza segno& \file{sys/types.h}\\ \hline - \texttt{sa\_family\_t} & famiglia degli indirizzi& \texttt{sys/socket.h}\\ - \texttt{socklen\_t} & lunghezza (\texttt{uint32\_t}) dell'indirizzo di - un socket& \texttt{sys/socket.h}\\ + \type{sa\_family\_t} & famiglia degli indirizzi& \file{sys/socket.h}\\ + \type{socklen\_t} & lunghezza (\type{uint32\_t}) dell'indirizzo di + un socket& \file{sys/socket.h}\\ \hline - \texttt{in\_addr\_t} & indirizzo IPv4 (\texttt{uint32\_t}) & - \texttt{netinet/in.h}\\ - \texttt{in\_port\_t} & porta TCP o UDP (\texttt{uint16\_t})& - \texttt{netinet/in.h}\\ + \type{in\_addr\_t} & indirizzo IPv4 (\type{uint32\_t}) & + \file{netinet/in.h}\\ + \type{in\_port\_t} & porta TCP o UDP (\type{uint16\_t})& + \file{netinet/in.h}\\ \hline \end{tabular} \caption{Tipi di dati usati nelle strutture degli indirizzi, secondo quanto - stabilito dallo standard POSIX.1g} + stabilito dallo standard POSIX.1g.} \label{tab:sock_data_types} \end{table} @@ -358,13 +367,13 @@ In alcuni sistemi la struttura aggiuntivo \var{uint8\_t sin\_len} (come riportato da R. Stevens nei suoi libri). Questo campo non verrebbe usato direttamente dal programmatore e non è richiesto dallo standard POSIX.1g, in Linux pertanto non esiste. Il campo -\type{sa\_family\_t} era storicamente un \type{unsigned short}. +\type{sa\_family\_t} era storicamente un \ctyp{unsigned short}. Dal punto di vista del programmatore l'unico uso di questa struttura è quello di fare da riferimento per il casting, per il kernel le cose sono un po' diverse, in quanto esso usa il puntatore per recuperare il campo \var{sa\_family} con cui determinare il tipo di indirizzo; per questo -motivo, anche se l'uso di un puntatore \type{void *} sarebbe più immediato +motivo, anche se l'uso di un puntatore \ctyp{void *} sarebbe più immediato per l'utente (che non dovrebbe più eseguire il casting), è stato mantenuto l'uso di questa struttura. @@ -375,8 +384,8 @@ l'uso di questa struttura. I socket di tipo \macro{PF\_INET} vengono usati per la comunicazione attraverso internet; la struttura per gli indirizzi per un socket internet (IPv4) è definita come \type{sockaddr\_in} nell'header file -\file{netinet/in.h} e secondo le man page ha la forma mostrata in \nfig, -conforme allo standard POSIX.1g. +\file{netinet/in.h} e secondo le pagine di manuale ha la forma mostrata in +\figref{fig:sock_sa_ipv4_struct}, conforme allo standard POSIX.1g. \begin{figure}[!htb] \footnotesize @@ -401,14 +410,14 @@ internet di un'interfaccia pi prevede numeri di porta, che sono utilizzati solo dai protocolli di livello superiore come TCP e UDP. Questa struttura però viene usata anche per i socket RAW che accedono direttamente al livello di IP, nel qual caso il numero della -porta viene settato al numero di protocollo. +porta viene impostato al numero di protocollo. -Il membro \var{sin\_family} deve essere sempre settato; \var{sin\_port} +Il membro \var{sin\_family} deve essere sempre impostato; \var{sin\_port} specifica il numero di porta (vedi \secref{sec:TCPel_port_num}; i numeri di porta sotto il 1024 sono chiamati \textsl{riservati} in quanto utilizzati da -servizi standard. Soltanto processi con i privilegi di root (effective uid -uguale a zero) o con la capability \macro{CAP\_NET\_BIND\_SERVICE} possono -usare la funzione \func{bind} su queste porte. +servizi standard. Soltanto processi con i privilegi di root (con userid +effettivo uguale a zero) o con la capability \macro{CAP\_NET\_BIND\_SERVICE} +possono usare la funzione \func{bind} su queste porte. Il membro \var{sin\_addr} contiene l'indirizzo internet dell'altro capo della comunicazione, e viene acceduto sia come struttura (un resto di una @@ -426,7 +435,7 @@ problema e le relative soluzioni). \subsection{La struttura degli indirizzi IPv6} \label{sec:sock_sa_ipv6} -Essendo IPv6 una estensione di IPv4 i socket di tipo \macro{PF\_INET6} sono +Essendo IPv6 un'estensione di IPv4 i socket di tipo \macro{PF\_INET6} sono sostanzialmente identici ai precedenti; la parte in cui si trovano praticamente tutte le differenze è quella della struttura degli indirizzi. La struttura degli indirizzi è definita ancora in \file{netinet/in.h}. @@ -451,7 +460,7 @@ struct in6_addr { \label{fig:sock_sa_ipv6_struct} \end{figure} -Il campo \var{sin6\_family} deve essere sempre settato ad +Il campo \var{sin6\_family} deve essere sempre impostato ad \macro{AF\_INET6}, il campo \var{sin6\_port} è analogo a quello di IPv4 e segue le stesse regole; il campo \var{sin6\_flowinfo} è a sua volta diviso in tre parti di cui i 24 bit inferiori indicano l'etichetta di flusso, i @@ -471,12 +480,13 @@ possibilit \subsection{La struttura degli indirizzi locali} \label{sec:sock_sa_local} -I socket di tipo \macro{PF\_UNIX} vengono usati per una comunicazione -efficiente fra processi che stanno sulla stessa macchina; essi rispetto ai +I socket di tipo \macro{PF\_UNIX} o \macro{PF\_LOCAL} vengono usati per una +comunicazione fra processi che stanno sulla stessa macchina (per vengono +chiamati \textit{local domain} o anche \textit{Unix domain}); essi rispetto ai precedenti possono essere anche creati in maniera anonima attraverso la -funzione \func{socketpair}. Quando però si vuole fare riferimento esplicito -ad uno di questi socket si deve usare la seguente struttura di indirizzi -definita nel file di header \file{sys/un.h}. +funzione \func{socketpair} (vedi \secref{sec:ipc_socketpair}). Quando però si +vuole fare riferimento esplicito ad uno di questi socket si deve usare la +seguente struttura di indirizzi definita nel file di header \file{sys/un.h}. \begin{figure}[!htb] \footnotesize @@ -498,7 +508,7 @@ due forme un file (di tipo socket) nel filesystem o una stringa univoca (tenuta in uno spazio di nomi astratto). Nel primo caso l'indirizzo viene specificato come una stringa (terminata da uno zero) corrispondente al pathname del file; nel secondo invece \var{sun\_path} inizia con uno zero -vengono usati i restanti bytes come stringa (senza terminazione). +vengono usati i restanti byte come stringa (senza terminazione). % \subsection{Il passaggio delle strutture} @@ -570,7 +580,7 @@ questi cambiamenti. Il problema connesso all'endianess è che quando si passano dei dati da un tipo di architettura all'altra i dati vengono interpretati in maniera diversa, e ad -esempio nel caso dell'intero a 16 bit ci si ritroverà con i due bytes in cui è +esempio nel caso dell'intero a 16 bit ci si ritroverà con i due byte in cui è suddiviso scambiati di posto, e ne sarà quindi invertito l'ordine di lettura per cui, per riavere il valore originale dovranno essere rovesciati. @@ -598,11 +608,12 @@ funzioni sono: Converte l'intero a 16 bit \var{netshort} dal formato della rete a quello della macchina. \end{prototype} -I nomi sono assegnati usando la lettera \func{n} come mnemonico per indicare +I nomi sono assegnati usando la lettera \texttt{n} come mnemonico per indicare l'ordinamento usato sulla rete (da \textit{network order}) e la lettera -\func{h} come mnemonico per l'ordinamento usato sulla macchina locale (da -\textit{host order}), mentre le lettere \func{s} e \func{l} stanno ad indicare -i tipi di dato (\type{long} o \type{short}, riportati anche dai prototipi). +\texttt{h} come mnemonico per l'ordinamento usato sulla macchina locale (da +\textit{host order}), mentre le lettere \texttt{s} e \texttt{l} stanno ad +indicare i tipi di dato (\ctyp{long} o \ctyp{short}, riportati anche dai +prototipi). Usando queste funzioni si ha la conversione automatica: nel caso in cui la macchina che si sta usando abbia una architettura \textit{big endian} queste @@ -623,7 +634,7 @@ Le prime tre funzioni di manipolazione riguardano la conversione degli indirizzi IPv4 da una stringa in cui il numero di IP è espresso secondo la cosiddetta notazione \textit{dotted-decimal}, (cioè nella forma \texttt{192.160.0.1}) al formato binario (direttamente in \textit{network - order}) e viceversa; in questo caso si usa la lettera \func{a} come + order}) e viceversa; in questo caso si usa la lettera \texttt{a} come mnemonico per indicare la stringa. Dette funzioni sono: \begin{prototype}{arpa/inet.h} {int inet\_aton(const char *src, struct in\_addr *dest)} @@ -656,9 +667,9 @@ mnemonico per indicare la stringa. Dette funzioni sono: Le tre funzioni precedenti sono limitate solo ad indirizzi IPv4, per questo motivo è preferibile usare le due nuove funzioni \func{inet\_pton} e \func{inet\_ntop} che possono convertire anche gli indirizzi IPv6. Anche in -questo caso le lettere \func{n} e \func{p} sono degli mnemonici per ricordare -il tipo di conversione effettuata e stanno per \textit{presentation} e -\textit{numeric}. +questo caso le lettere \texttt{n} e \texttt{p} sono degli mnemonici per +ricordare il tipo di conversione effettuata e stanno per \textit{presentation} +e \textit{numeric}. % \begin{figure}[htb] % \centering @@ -669,10 +680,10 @@ il tipo di conversione effettuata e stanno per \textit{presentation} e % \end{figure} -Entrambe le funzioni accettano l'argomento \texttt{af} che indica il tipo di -indirizzo e può essere \texttt{AF\_INET} o \texttt{AF\_INET6}. Se la famiglia -indicata non è valida entrambe le funzioni settano la variabile \texttt{errno} -al valore \texttt{EAFNOSUPPORT}. I prototipi delle suddette funzioni sono i +Entrambe le funzioni accettano l'argomento \param{af} che indica il tipo di +indirizzo e può essere \macro{AF\_INET} o \macro{AF\_INET6}. Se la famiglia +indicata non è valida entrambe le funzioni impostano la variabile \var{errno} +al valore \macro{EAFNOSUPPORT}. I prototipi delle suddette funzioni sono i seguenti: \begin{prototype}{sys/socket.h} {int inet\_pton(int af, const char *src, void *addr\_ptr)} Converte la @@ -682,7 +693,6 @@ seguenti: indirizzo valido, e negativo se \var{af} specifica una famiglia di indirizzi non valida. \end{prototype} - \begin{prototype}{sys/socket.h} {char *inet\_ntop(int af, const void *addr\_ptr, char *dest, size\_t len)} Converte la struttura dell'indirizzo puntata da \var{addr\_ptr} in una @@ -692,15 +702,15 @@ seguenti: \macro{INET6\_ADDRSTRLEN} per indirizzi IPv6; la lunghezza del buffer deve comunque venire specificata attraverso il parametro \var{len}. - La funzione restituisce un puntatore non nullo a \var{dest} in caso di - successo e un puntatore nullo in caso di fallimento, in quest'ultimo caso - viene settata la variabile \var{errno} con il valore \macro{ENOSPC} in - caso le dimensioni dell'indirizzo eccedano la lunghezza specificata da - \var{len} o \macro{ENOAFSUPPORT} in caso \var{af} non sia una famiglia di - indirizzi valida. + \bodydesc{La funzione restituisce un puntatore non nullo a \var{dest} in + caso di successo e un puntatore nullo in caso di fallimento, in + quest'ultimo caso viene impostata la variabile \var{errno} con il valore + \macro{ENOSPC} in caso le dimensioni dell'indirizzo eccedano la lunghezza + specificata da \var{len} o \macro{ENOAFSUPPORT} in caso \var{af} non sia + una famiglia di indirizzi valida.} \end{prototype} -Gli indirizzi vengono cnovertiti da/alle rispettive strutture di indirizzo +Gli indirizzi vengono convertiti da/alle rispettive strutture di indirizzo (\var{struct in\_addr} per IPv4, e \var{struct in6\_addr} per IPv6), che devono essere precedentemente allocate e passate attraverso il puntatore \var{addr\_ptr}; il parametro \var{dest} di \func{inet\_ntop} non può essere @@ -711,12 +721,13 @@ Il formato usato per gli indirizzi in formato di presentazione \secref{sec:IP_ipv6_notation} per IPv6. + \section{Un esempio di applicazione} \label{sec:sock_appplication} Per evitare di rendere questa introduzione ai socket puramente teorica iniziamo con il mostrare un esempio di un client TCP elementare. Prima di -passare agli esempi del client e del server, esamimeremo una caratteristica +passare agli esempi del client e del server, esamineremo una caratteristica delle funzioni di I/O sui socket che ci tornerà utile anche in seguito. @@ -728,15 +739,15 @@ socket comportamento che avrebbero con i normali files (in particolare questo accade per i socket di tipo stream). -Infatti con i socket può accadere che funzioni come \func{read} o -\func{write} possano restituire in input o scrivere in output un numero di -bytes minore di quello richiesto. Questo è un comportamento normale e non un -errore, e succede perché si eccede in lettura o scrittura il limite di buffer -del kernel. +Infatti con i socket è comune che funzioni come \func{read} o \func{write} +possano restituire in input o scrivere in output un numero di byte minore di +quello richiesto. Come già accennato in \secref{sec:file_read} questo è un +comportamento normale anche per l'I/O su file, e succede +perché si eccede in lettura o scrittura il limite di buffer del kernel. In questo caso tutto quello che il programma chiamante deve fare è di ripetere -la lettura (o scrittura) per la quantità di bytes rimanenti (lo stesso può -avvenire scrivendo più di 4096 bytes in una pipe, dato che quello è il limite +la lettura (o scrittura) per la quantità di byte rimanenti (lo stesso può +avvenire scrivendo più di 4096 byte in una pipe, dato che quello è il limite di solito adottato per il buffer di trasmissione del kernel). \begin{figure}[htb] @@ -767,14 +778,14 @@ ssize_t SockRead(int fd, void *buf, size_t count) return (count - nleft); } \end{lstlisting} - \caption{Funzione \func{SockRead}, legge \var{count} bytes da un socket } + \caption{Funzione \func{SockRead}, legge \var{count} byte da un socket } \label{fig:sock_SockRead_code} \end{figure} Per questo motivo seguendo l'esempio di W. R. Stevens si sono definite due funzioni \func{SockRead} e \func{SockWrite} che eseguono la lettura da un socket tenendo conto di questa caratteristica, ed in grado di ritornare dopo -avere letto o scritto esattamente il numero di bytes specificato; il sorgente +avere letto o scritto esattamente il numero di byte specificato; il sorgente è riportato in \curfig\ e \nfig\ ed è disponibile fra i sorgenti allegati alla guida nei files \file{SockRead.c} e \file{SockWrite.c}. @@ -804,19 +815,19 @@ ssize_t SockWrite(int fd, const void *buf, size_t count) return (count); } \end{lstlisting} - \caption{Funzione \func{SockWrite}, scrive \var{count} bytes su un socket } + \caption{Funzione \func{SockWrite}, scrive \var{count} byte su un socket } \label{fig:sock_SockWrite_code} \end{figure} Come si può notare le funzioni ripetono la lettura/scrittura in un ciclo fino -all'esaurimento del numero di bytes richiesti, in caso di errore viene +all'esaurimento del numero di byte richiesti, in caso di errore viene controllato se questo è \macro{EINTR} (cioè un'interruzione della system call dovuta ad un segnale), nel qual caso l'accesso viene ripetuto, altrimenti l'errore viene ritornato interrompendo il ciclo. -Nel caso della lettura, se il numero di bytes letti è zero, significa che si è +Nel caso della lettura, se il numero di byte letti è zero, significa che si è arrivati alla fine del file e pertanto si ritorna senza aver concluso la -lettura di tutti i bytes richiesti. +lettura di tutti i byte richiesti. @@ -830,16 +841,17 @@ successivo; qui ci limiteremo a introdurre la nomenclatura senza fornire definizioni precise e dettagli di funzionamento che saranno trattati estensivamente più avanti. -In \nfig\ è riportata la sezione principale del codice del nostro client -elementare per il servizio \textit{daytime}, un servizio standard che -restituisce l'ora locale della macchina a cui si effettua la richiesta. +In \figref{fig:net_cli_code} è riportata la sezione principale del codice del +nostro client elementare per il servizio \textit{daytime}, un servizio +standard che restituisce l'ora locale della macchina a cui si effettua la +richiesta. \begin{figure}[!htb] \footnotesize \begin{lstlisting}{} #include /* predefined types */ #include /* include unix standard library */ -#include /* IP addresses conversion utiliites */ +#include /* IP addresses conversion utilities */ #include /* socket library */ #include /* include standard I/O library */ @@ -898,7 +910,7 @@ pu Il programma anzitutto include gli header necessari (\texttt{\small 1--5}); dopo la dichiarazione delle variabili (\texttt{\small 9--12}) si è omessa tutta la parte relativa al trattamento degli argomenti passati dalla linea di -comando (effettuata con le apposite routines illustrate in +comando (effettuata con le apposite routine illustrate in \capref{sec:proc_opt_handling}). Il primo passo (\texttt{\small 14--18}) è creare un \textit{socket} IPv4 @@ -907,7 +919,7 @@ Il primo passo (\texttt{\small 14--18}) socket in tutte le chiamate successive. Nel caso la chiamata fallisca si stampa un errore con la relativa routine e si esce. -Il passo seguente (\texttt{\small 19--27}) è quello di costruire una apposita +Il passo seguente (\texttt{\small 19--27}) è quello di costruire un'apposita struttura \type{sockaddr\_in} in cui sarà inserito l'indirizzo del server ed il numero della porta del servizio. Il primo passo è inizializzare tutto a zero, per poi inserire il tipo di protocollo e la porta (usando per @@ -952,7 +964,7 @@ necessario deve provvedere il programma stesso. Dopo aver illustrato il client daremo anche un esempio di un server elementare, in grado di rispondere al precedente client. Il listato è -nuovamente mostrato in \nfig, il sorgente completo +nuovamente mostrato in \figref{fig:net_serv_code}, il sorgente completo (\file{ElemDaytimeTCPServer.c}) è allegato insieme agli altri file nella directory \file{sources}. @@ -961,7 +973,7 @@ directory \file{sources}. \begin{lstlisting}{} #include /* predefined types */ #include /* include unix standard library */ -#include /* IP addresses conversion utiliites */ +#include /* IP addresses conversion utilities */ #include /* socket library */ #include /* include standard I/O library */ #include @@ -1064,3 +1076,8 @@ scritto per essere lanciato da linea di comando, se lo si volesse utilizzare come demone di sistema (che è in esecuzione anche quando non c'è nessuna shell attiva e il terminale da cui lo si è lanciato è stato sconnesso), occorrerebbero delle opportune modifiche. + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "gapil" +%%% End: