X-Git-Url: https://gapil.gnulinux.it/gitweb/?p=gapil.git;a=blobdiff_plain;f=prochand.tex;h=f8c99f2f6fee9b6263852139c93ceebd10845c34;hp=23dd77cf8d769b1368609cb2eab6f557b4ce6da3;hb=5eb6fc6e2d60069d3a723309b7b490d0dd56113a;hpb=3d317acde1491cb7fb6f77ef415e010b1c0e6d56 diff --git a/prochand.tex b/prochand.tex index 23dd77c..f8c99f2 100644 --- a/prochand.tex +++ b/prochand.tex @@ -27,42 +27,85 @@ generazione di nuovi processi caratteristiche di unix (che esamineremo in dettaglio più avanti) è che qualunque processo può a sua volta generarne altri, detti processi figli (\textit{child process}). Ogni processo è identificato presso il sistema da un -numero unico, il \acr{pid} (da \textit{process identifier}). +numero unico, il cosiddetto \textit{process identifier} o, più brevemente, +\acr{pid}. Una seconda caratteristica è che la generazione di un processo è una operazione separata rispetto al lancio di un programma. In genere la sequenza -è sempre quella di creare un nuovo processo, il quale si eseguirà, in un passo +è sempre quella di creare un nuovo processo, il quale eseguirà, in un passo successivo, il programma voluto: questo è ad esempio quello che fa la shell quando mette in esecuzione il programma che gli indichiamo nella linea di comando. Una terza caratteristica è che ogni processo viene sempre generato da un altro -che viene chiamato processo genitore (\textit{parent process}). Questo vale -per tutti i processi, con una eccezione (dato che ci deve essere un punto di -partenza), esiste sempre infatti un processo speciale, che normalmente è -\cmd{/sbin/init}, che viene lanciato dal kernel quando questo ha finito la -fase di avvio, esso essendo il primo processo lanciato ha sempre il \acr{pid} -uguale a 1 e non è figlio di nessuno. - -Questo è ovviamente un processo speciale, che in genere si occupa di far -partire tutti gli processi altri necessari al funzionamento del sistema, +che viene chiamato processo padre (\textit{parent process}). Questo vale per +tutti i processi, con una sola eccezione: dato che ci deve essere un punto di +partenza esiste sempre un processo speciale (che normalmente è +\cmd{/sbin/init}), che viene lanciato dal kernel alla conclusione della fase +di avvio, essendo questo il primo processo lanciato dal sistema ha sempre il +\acr{pid} uguale a 1 e non è figlio di nessun altro processo. + +Ovviamente \cmd{init} è un processo speciale che in genere si occupa di far +partire tutti gli altri processi necessari al funzionamento del sistema, inoltre \cmd{init} è essenziale per svolgere una serie di compiti amministrativi nelle operazioni ordinarie del sistema (torneremo si alcuni di -essi in \secref{}) e non può mai essere terminato. La struttura del sistema -comunque consente di lanciare al posto di \cmd{init} qualunque altro programma -(e in casi di emergenza, ad esempio se il file di \cmd{init} si fosse -corrotto, è possibile farlo ad esempio passando la riga \cmd{init=/bin/sh} -all'avvio). - -Dato che tutti i processi successivi sono comunque generati da \cmd{init} o da -suoi figli tutto ciò comporta che, i processi sono organizzati gerarchicamente -dalla relazione fra genitori e figli, in maniera analoga a come i file sono -organizzati in un albero di directory con alla base \file{/} (si veda -\secref{sec:file_file_struct}); in questo caso alla base dell'albero c'è il -processo \cmd{init} che è progenitore di ogni altro processo\footnote{in - realtà questo non è del tutto vero, in Linux ci sono alcuni processi che pur - comparendo come figli di init (ad esempio in \cmd{pstree}) sono generati - direttamente dal kernel, come \cmd{keventd}, \cmd{kswapd}, etc.}. +essi in \secref{sec:proc_termination}) e non può mai essere terminato. La +struttura del sistema comunque consente di lanciare al posto di \cmd{init} +qualunque altro programma (e in casi di emergenza, ad esempio se il file di +\cmd{init} si fosse corrotto, è ad esempio possibile lanciare una shell al suo +posto, passando la riga \cmd{init=/bin/sh} come parametro di avvio). + +\begin{figure}[!htb] + \footnotesize +\begin{verbatim} +[piccardi@selidor piccardi]$ pstree -n +init-+-keventd + |-kapm-idled + |-kreiserfsd + |-portmap + |-syslogd + |-klogd + |-named + |-rpc.statd + |-gpm + |-inetd + |-junkbuster + |-master-+-qmgr + | `-pickup + |-sshd + |-xfs + |-cron + |-bash---startx---xinit-+-XFree86 + | `-WindowMaker-+-ssh-agent + | |-wmtime + | |-wmmon + | |-wmmount + | |-wmppp + | |-wmcube + | |-wmmixer + | |-wmgtemp + | |-wterm---bash---pstree + | `-wterm---bash-+-emacs + | `-man---pager + |-5*[getty] + |-snort + `-wwwoffled +\end{verbatim} %$ + \caption{L'albero dei processi, così come riportato dal comando + \cmd{pstree}.} + \label{fig:proc_tree} +\end{figure} + +Dato che tutti i processi attivi nel sistema sono comunque generati da +\cmd{init} o da uno dei suoi figli\footnote{in realtà questo non è del tutto + vero, in Linux ci sono alcuni processi che pur comparendo come figli di + init, o con \acr{pid} successivi, sono in realtà generati direttamente dal + kernel, (come \cmd{keventd}, \cmd{kswapd}, etc.)} si possono classificare i +processi con la relazione padre/figlio in una organizzazione gerarchica ad +albero, in maniera analoga a come i file sono organizzati in un albero di +directory (si veda \secref{sec:file_file_struct}); in \nfig\ si è mostrato il +risultato del comando \cmd{pstree} che permette di mostrare questa struttura, +alla cui base c'è \cmd{init} che è progenitore di tutti gli altri processi. \subsection{Una panoramica sulle funzioni di gestione} @@ -85,7 +128,7 @@ del processo. Quando un processo ha concluso il suo compito o ha incontrato un errore non risolvibile esso può essere terminato con la funzione \func{exit} (si veda -quanto discusso in \secref{sec:proc_termination}). La vita del processo però +quanto discusso in \secref{sec:proc_conclusion}). La vita del processo però termina solo quando la notifica della sua conclusione viene ricevuta dal processo padre, a quel punto tutte le risorse allocate nel sistema ad esso associate vengono rilasciate. @@ -138,9 +181,8 @@ Per questo motivo processo il processo di avvio (\cmd{init}) ha sempre il Tutti i processi inoltre memorizzano anche il \acr{pid} del genitore da cui sono stati creati, questo viene chiamato in genere \acr{ppid} (da -\textit{parent process id}) ed è normalmente utilizzato per il controllo di -sessione. Questi due identificativi possono essere ottenuti da programma -usando le funzioni: +\textit{parent process id}). Questi due identificativi possono essere +ottenuti da programma usando le funzioni: \begin{functions} \headdecl{sys/types.h} \headdecl{unistd.h} @@ -160,11 +202,12 @@ generare un pathname univoco, che non potr processo che usi la stessa funzione. Tutti i processi figli dello stesso processo padre sono detti -\textit{sibling}, questa è un'altra delle relazioni usate nel controllo di -sessione, in cui si raggruppano tutti i processi creati su uno stesso -terminale una volta che si è effettuato il login. Torneremo su questo -argomento in \secref{cap:terminal}, dove esamineremo tutti gli altri -identificativi associati ad un processo relativi al controllo di sessione. +\textit{sibling}, questa è una delle relazioni usate nel \textsl{controllo di + sessione}, in cui si raggruppano i processi creati su uno stesso terminale, +o relativi allo stesso login. Torneremo su questo argomento in dettaglio in +\secref{cap:session}, dove esamineremo i vari identificativi associati ad un +processo e le varie relazioni fra processi utilizzate per definire una +sessione. \subsection{La funzione \func{fork}} @@ -327,7 +370,7 @@ Se eseguiamo il comando senza specificare attese (come si pu otterremo come output sul terminale: \begin{verbatim} [piccardi@selidor sources]$ ./forktest 3 -Test for forking 3 child +Process 1963: forking 3 child Spawned 1 child, pid 1964 Child 1 successfully executing Child 1, parent 1963, exiting @@ -382,7 +425,7 @@ che otterremo \begin{verbatim} [piccardi@selidor sources]$ ./forktest 3 > output [piccardi@selidor sources]$ cat output -Test for forking 3 child +Process 1967: forking 3 child Child 1 successfully executing Child 1, parent 1967, exiting Test for forking 3 child @@ -604,12 +647,12 @@ termina il kernel controlla se caso positivo allora il \acr{ppid} di tutti questi processi viene sostituito con il \acr{pid} di \cmd{init} (e cioè con 1); in questo modo ogni processo avrà sempre un padre (nel caso \textsl{adottivo}) cui riportare il suo stato -di terminazione. Come verifica di questo comportamento eseguiamo il comando -\cmd{forktest -c2 3}, in questo modo ciascun figlio attenderà due secondi -prima di uscire, il risultato è: +di terminazione. Come verifica di questo comportamento possiamo eseguire il +comando \cmd{forktest} imponendo a ciascun processo figlio due +secondi di attesa prima di uscire, il risultato è: \begin{verbatim} [piccardi@selidor sources]$ ./forktest -c2 3 -Test for forking 3 child +Process 1972: forking 3 child Spawned 1 child, pid 1973 Child 1 successfully executing Go to next child @@ -630,27 +673,28 @@ terminano, e come si pu in precedenza, essi riportano 1 come \acr{ppid}. Altrettanto rilevante è il caso in cui il figlio termina prima del padre, -questo perché non è detto che il padre possa ricevere immediatamente lo stato -di terminazione, quindi il kernel deve comunque conservare una certa quantità -di informazioni riguardo ai processi che sta terminando. +perché non è detto che il padre possa ricevere immediatamente lo stato di +terminazione, quindi il kernel deve comunque conservare una certa quantità di +informazioni riguardo ai processi che sta terminando. Questo viene fatto mantenendo attiva la voce nella tabella dei processi, e memorizzando alcuni dati essenziali, come il \acr{pid}, i tempi di CPU usati dal processo (vedi \secref{sec:intro_unix_time}) e lo stato di terminazione -(NdA verificare esattamente cosa c'è!), mentre la memoria in uso ed i file -aperti vengono rilasciati immediatamente. I processi che sono terminati, ma il -cui stato di terminazione non è stato ancora ricevuto dal padre sono chiamati -\textit{zombie}, essi restano presenti nella tabella dei processi ed in genere -possono essere identificati dall'output di \cmd{ps} per la presenza di una -\cmd{Z} nella colonna che ne indica lo stato. Quando il padre effettuarà la -lettura dello stato di uscita anche questa informazione, non più necessaria, -verrà scartata e la terminazione potrà dirsi completamente conclusa. +\footnote{NdA verificare esattamente cosa c'è!}, mentre la memoria in uso ed i +file aperti vengono rilasciati immediatamente. I processi che sono terminati, +ma il cui stato di terminazione non è stato ancora ricevuto dal padre sono +chiamati \textit{zombie}, essi restano presenti nella tabella dei processi ed +in genere possono essere identificati dall'output di \cmd{ps} per la presenza +di una \cmd{Z} nella colonna che ne indica lo stato. Quando il padre +effettuarà la lettura dello stato di uscita anche questa informazione, non più +necessaria, verrà scartata e la terminazione potrà dirsi completamente +conclusa. Possiamo utilizzare il nostro programma di prova per analizzare anche questa -condizione: lanciamo il comando \cmd{forktest -e10 3 \&} in background, -indicando al processo padre di aspettare 10 secondi prima di uscire; in questo -caso, usando \cmd{ps} sullo stesso terminale (prima dello scadere dei 10 -secondi) otterremo: +condizione: lanciamo il comando \cmd{forktest} in background, indicando al +processo padre di aspettare 10 secondi prima di uscire; in questo caso, usando +\cmd{ps} sullo stesso terminale (prima dello scadere dei 10 secondi) +otterremo: \begin{verbatim} [piccardi@selidor sources]$ ps T PID TTY STAT TIME COMMAND @@ -693,13 +737,15 @@ possa adottarli e provvedere a concludere la terminazione. \subsection{Le funzioni \texttt{wait} e \texttt{waitpid}} \label{sec:proc_wait} -Abbiamo già visto in precedenza come uno degli usi possibili delle capacità -multitasking di un sistema unix-like consiste nella creazione di programmi di -tipo server, in cui un processo principale attende le richieste che vengono -poi soddisfatte creando una serie di processi figli. Si è gia sottolineato -come in questo caso diventi necessario gestire esplicitamente la conclusione -dei vari processi figli; le funzioni deputate a questo sono sostanzialmente -due, \func{wait} e \func{waitpid}. La prima, il cui prototipo è: +Abbiamo già accennato come uno degli usi possibili delle capacità multitasking +di un sistema unix-like consista nella creazione di programmi di tipo server, +in cui un processo principale attende le richieste che vengono poi soddisfatte +creando una serie di processi figli. Si è già sottolineato al paragrafo +precedente come in questo caso diventi necessario gestire esplicitamente la +conclusione dei vari processi figli onde evitare di riempire di +\textit{zombie} la tabella dei processi; le funzioni deputate a questo compito +sono sostanzialmente due, \func{wait} e \func{waitpid}. La prima, il cui +prototipo è: \begin{functions} \headdecl{sys/types.h} \headdecl{sys/wait.h} @@ -719,40 +765,42 @@ caso di errore; \var{errno} pu \end{errlist} \end{functions} è presente fin dalle prime versioni di unix; la funzione ritorna alla -conclusione del primo figlio (o immediatamente se un figlio è già uscito), nel +conclusione del primo figlio (o immediatamente se un figlio è già uscito). Nel caso un processo abbia più figli il valore di ritorno permette di identificare qual'è quello che è uscito. Questa funzione però ha il difetto di essere poco flessibile, in quanto -ritorna all'uscita di un figlio qualunque, per cui se si vuole attendere la -conclusione di un processo specifico occorre predisporre un meccanismo che -tenga conto dei processi già terminati, e ripeta la chiamata alla funzione nel -caso il processo cercato sia ancora attivo. - -Per questo motivo lo standard Posix.1 ha introdotto \func{waitpid} che -effettua lo stesso servizio, ma dispone di una serie di funzionalità più -ampie; il suo prototipo è: +ritorna all'uscita di un figlio qualunque. Nelle occasioni in cui è necessario +attendere la conclusione di un processo specifico occorre predisporre un +meccanismo che tenga conto dei processi già terminati, e ripeta la chiamata +alla funzione nel caso il processo cercato sia ancora attivo. + +Per questo motivo lo standard POSIX.1 ha introdotto la funzione \func{waitpid} +che effettua lo stesso servizio, ma dispone di una serie di funzionalità più +ampie, legate anche al controllo di sessione. Dato che è possibile ottenere +lo stesso comportamento di \func{wait} si consiglia di utilizzare sempre +questa funzione; il suo prototipo è: \begin{functions} \headdecl{sys/types.h} \headdecl{sys/wait.h} \funcdecl{pid\_t waitpid(pid\_t pid, int * status, int options)} -La funzione restituisce il \acr{pid} del figlio che è uscito, 0 se è stata -specificata l'opzione \macro{WNOHANG} e il figlio non è uscito e -1 per un +La funzione restituisce il \acr{pid} del processo che è uscito, 0 se è stata +specificata l'opzione \macro{WNOHANG} e il processo non è uscito e -1 per un errore, nel qual caso \var{errno} assumerà i valori: \begin{errlist} - \item \macro{EINTR} non è stata specificata l'opzione \macro{WNOHANG} e la - funzione è stata interrotta da un segnale. + \item \macro{EINTR} se non è stata specificata l'opzione \macro{WNOHANG} e + la funzione è stata interrotta da un segnale. \item \macro{ECHILD} il processo specificato da \var{pid} non esiste o non è figlio del processo chiamante. \end{errlist} \end{functions} Le differenze principali fra le due funzioni sono che \func{wait} si blocca -sempre fino a che un figlio non termina, mentre \func{waitpid} ha la -possibilità si specificare un'opzione, \macro{WNOHANG} che ne previene il -blocco, inoltre \func{waitpid} può specificare quale figlio attendere sulla -base del valore soecificato tramite la variabile \var{pid} secondo lo +sempre fino a che un processo figlio non termina, mentre \func{waitpid} ha la +possibilità si specificare un'opzione \macro{WNOHANG} che ne previene il +blocco; inoltre \func{waitpid} può specificare quale processo attendere sulla +base del valore specificato tramite la variabile \var{pid}, secondo lo specchietto riportato in \ntab: \begin{table}[!htb] \centering @@ -761,26 +809,231 @@ specchietto riportato in \ntab: \textbf{Valore} & \textbf{Significato}\\ \hline \hline - -1 & attende per un figlio qualsiasi, equivalente a \func{wait}\\ - > 0 & \\ - 0 & \\ - < -1& \\ + $<-1$& attende per un figlio il cui \textit{process group} è uguale al + valore assoluto di \var{pid}. \\ + $-1$ & attende per un figlio qualsiasi, usata in questa maniera è + equivalente a \func{wait}.\\ + $0$ & attende per un figlio il cui \textit{process group} è uguale a + quello del processo chiamante. \\ + $>0$ & attende per un figlio il cui \acr{pid} è uguale al + valore di \var{pid}.\\ \hline \end{tabular} - \caption{Significato del parametro \var{pid} della funzione \func{waitpid}.} + \caption{Significato dei valori del parametro \var{pid} della funzione + \func{waitpid}.} \label{tab:proc_waidpid_pid} \end{table} +Il comportamento di \func{waitpid} può essere modificato passando delle +opportune opzioni tramite la variabile \var{option}. I valori possibili sono +il già citato \macro{WNOHANG}, che previene il blocco della funzione quando il +processo figlio non è terminato, e \macro{WUNTRACED} (usata per il controllo +di sessione, trattato in \capref{cha:session}) che fa ritornare la funzione +anche per i processi figli che sono bloccati ed il cui stato non è stato +ancora riportato al padre. Il valore dell'opzione deve essere specificato come +mashera binaria ottenuta con l'OR delle suddette costanti con zero. + +La terminazione di un processo figlio è chiaramente un evento asincrono +rispetto all'esecuzione di un programma e può avvenire in un qualunque +momento, per questo motivo, come si è visto nella sezione precedente, una +delle azioni prese dal kernel alla conclusione di un processo è quella di +mandare un segnale di \macro{SIGCHLD} al padre. Questo segnale viene ignorato +di default, ma costituisce il meccanismo di comunicazione asincrona con cui il +kernel avverte un processo padre che uno dei suoi figli è terminato. + +In genere in un programma non si vuole essere forzati ad attendere la +conclusione di un processo per proseguire, specie se tutto questo serve solo +per leggerne lo stato di chiusura (ed evitare la presenza di \textit{zombie}), +per questo la modalità più usata per chiamare queste funzioni è quella di +utilizzarle all'interno di un \textit{signal handler} (torneremo sui segnali e +su come gestire \macro{SIGCHLD} in \secref{sec:sig_sigwait_xxx}) nel qual +caso, dato che il segnale è generato dalla terminazione un figlio, avremo la +certezza che la chiamata a \func{wait} non si bloccherà. + +\begin{table}[!htb] + \centering + \begin{tabular}[c]{|c|p{10cm}|} + \hline + \textbf{Macro} & \textbf{Descrizione}\\ + \hline + \hline + \macro{WIFEXITED(s)} & Condizione vera (valore non nullo) per un processo + figlio che sia terminato normalmente. \\ + \macro{WEXITSTATUS(s)} & Restituisce gli otto bit meno significativi dello + stato di uscita del processo (passato attraverso \func{\_exit}, \func{exit} + o come valore di ritorno di \func{main}). Può essere valutata solo se + \macro{WIFEXITED} ha restitituito un valore non nullo.\\ + \macro{WIFSIGNALED(s)} & Vera se il processo figlio è terminato + in maniera anomala a causa di un segnale che non è stato catturato (vedi + \secref{sec:sig_notification}).\\ + \macro{WTERMSIG(s)} & restituisce il numero del segnale che ha causato + la terminazione anomala del processo. Può essere valutata solo se + \macro{WIFSIGNALED} ha restitituito un valore non nullo.\\ + \macro{WCOREDUMP(s)} & Vera se il processo terminato ha generato un + file si \textit{core dump}. Può essere valutata solo se + \macro{WIFSIGNALED} ha restitituito un valore non nullo\footnote{questa + macro non è definita dallo standard POSIX.1, ma è presente come estensione + sia in Linux che in altri unix}.\\ + \macro{WIFSTOPPED(s)} & Vera se il processo che ha causato il ritorno di + \func{waitpid} è bloccato. L'uso è possibile solo avendo specificato + l'opzione \macro{WUNTRACED}. \\ + \macro{WSTOPSIG(s)} & restituisce il numero del segnale che ha bloccato + il processo, Può essere valutata solo se \macro{WIFSTOPPED} ha + restitituito un valore non nullo. \\ + \hline + \end{tabular} + \caption{Descrizione delle varie macro di preprocessore utilizzabili per + verificare lo stato di terminazione \var{s} di un processo.} + \label{tab:proc_status_macro} +\end{table} + + +Entrambe le funzioni restituiscono lo stato di terminazione del processo +tramite il puntatore \var{status} (se non interessa memorizzare lo stato si +può passare un puntatore nullo). Il valore restituito da entrambe le funzioni +dipende dall'implementazione, e tradizionalmente alcuni bit sono riservati per +memorizzare lo stato di uscita (in genere 8) altri per indicare il segnale che +ha causato la terminazione (in caso di conclusione anomala), uno per indicare +se è stato generato un core file, etc.\footnote{le definizioni esatte si + possono trovare in \file{}}. Lo standard POSIX.1 definisce una serie di macro di +preprocessore da usare per analizzare lo stato di uscita; esse sono definite +sempre in \file{} ed elencate in \curtab\ (si tenga presente che +queste macro prendono come parametro la variabile di tipo \type{int} puntata +da \var{status}). + +Si tenga conto che nel caso di conclusione anomala il valore restituito da +\macro{WTERMSIG} può essere controllato contro le costanti definite in +\file{signal.h}, e stampato usando le funzioni definite in +\secref{sec:sig_strsignal}. + +Linux, seguendo una estensione di BSD, supporta altre due funzioni per la +lettura dello stato di terminazione di un processo, analoghe a \func{wait} e +\func{waitpid}, ma che prevedono un ulteriore parametro attraverso il quale il +kernel può restituire al processo padre ulteriori informazioni sulle risorse +usate dal processo terminato e dai vari figli. +Queste funzioni diventano accessibili definendo la costante \macro{\_USE\_BSD} +sono: + +\begin{functions} + \headdecl{sys/times.h} + \headdecl{sys/types.h} + \headdecl{sys/wait.h} + \headdecl{sys/resource.h} + \funcdecl{pid\_t wait4(pid\_t pid, int * status, int options, struct rusage + * rusage)} + La funzione è identica a \func{waitpid} sia per comportamento che per i + valori dei parametri, ma restituisce in \var{rusage} un sommario delle + risorse usate dal processo (per i dettagli vedi \secref{sec:xxx_limit_res}) + \funcdecl{pid\_t wait3(int *status, int options, struct rusage *rusage)} + Prima versione, equivalente a \func{wait4(-1, \&status, opt, rusage)} ormai + deprecata in favore di \func{wait4}. +\end{functions} +la struttura \type{rusage} è definita in \file{sys/resource.h}, e viene +utilizzata anche dalla funzione \func{getrusage} per ottenere le risorse di +sistema usate dal processo; in Linux è definita come: +\begin{figure}[!htb] + \footnotesize + \centering + \begin{minipage}[c]{15cm} + \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{} +struct rusage { + struct timeval ru_utime; /* user time used */ + struct timeval ru_stime; /* system time used */ + long ru_maxrss; /* maximum resident set size */ + long ru_ixrss; /* integral shared memory size */ + long ru_idrss; /* integral unshared data size */ + long ru_isrss; /* integral unshared stack size */ + long ru_minflt; /* page reclaims */ + long ru_majflt; /* page faults */ + long ru_nswap; /* swaps */ + long ru_inblock; /* block input operations */ + long ru_oublock; /* block output operations */ + long ru_msgsnd; /* messages sent */ + long ru_msgrcv; /* messages received */ + long ru_nsignals; ; /* signals received */ + long ru_nvcsw; /* voluntary context switches */ + long ru_nivcsw; /* involuntary context switches */ +}; + \end{lstlisting} + \end{minipage} + \normalsize + \caption{La struttura \texttt{rusage} per la lettura delle informazioni dei + delle risorse usate da un processo.} + \label{fig:proc_rusage_struct} +\end{figure} +In genere includere esplicitamente \file{} non è più necessario, +ma aumenta la portabiltà, e serve in caso si debba accedere ai campi di +\var{rusage} definiti come \type{struct timeval}. La struttura è ripresa dalla +versione 4.3 Reno di BSD, attualmente (con il kernel 2.4.x) i soli campi che +sono mantenuti sono: \var{ru\_utime}, \var{ru\_stime}, \var{ru\_minflt}, +\var{ru\_majflt}, e \var{ru\_nswap}. +\subsection{Le \textit{race condition}} +\label{sec:proc_race_cond} -Come abbiamo appena visto una delle azioni prese dal kernel alla terminazione -di un processo è quella di salvarne lo stato e mandare un segnale di -\macro{SIGCHLD} al padre (torneremo su questa parte in \secref{sec:sig_xxx}). +Si definisce una \textit{race condition} il caso in cui diversi processi +stanno cercando di fare qualcosa con una risorsa comune ed il risultato finale +viene a dipendere dall'ordine di esecuzione dei medesimi. Ovviamente dato che +l'ordine di esecuzione di un processo, senza appositi meccanismi di +sincronizzazione, non è assolutamente prevedibile, queste situazioni sono +fonti di errori molto subdoli, che possono verificarsi solo in condizioni +particolari e quindi difficilmente riproducibili. \subsection{Le funzioni \texttt{exec}} \label{sec:proc_exec} +Abbiamo già detto che una delle modalità principali con cui si utilizzano i +processi in unix è quella di usarli per lanciare nuovi programmi: questo viene +fatto attraverso una delle funzioni della famiglia \func{exec}. Quando un +processo chiama una di queste funzioni esso viene completamente sostituito dal +nuovo programma; il \acr{pid} del processo non cambia, dato che non viene +creato un nuovo processo, la funzione semplicemente rimpiazza lo stack, o +heap, i dati ed il testo del processo corrente con un nuovo programma letto da +disco. + +Con \func{exec} si chiude il cerchio delle funzioni su cui si basa il +controllo dei processi in unix: con \func{fork} si crea un nuovo processo, con +\func{exec} si avvia un nuovo programma, con \func{exit} e\func{wait} si +effettua e si gestisce la conclusione dei programmi. + +Ci sono sei diverse versioni di \func{exec} (per questo la si è chiamata +famiglia di funzioni) che possono essere usate per questo compito, che in +realtà (come mostrato in \figref{fig:proc_exec_relat}), costituiscono un +front-end a \func{execve}. Il suo prototipo è: + +\begin{prototype}{unistd.h} +{int execve(const char * filename, char * const argv [], char * const envp[])} + + La funzione esegue il file o lo script indicato da \var{filename}, + passandogli la lista di argomenti indicata da \var{argv} e come ambiente la + lista di stringhe indicata da \var{envp}; entrambe le liste devono essere + terminate da un puntatore nullo. I vettori degli argomenti e dell'ambiente + possono essere acceduti dal nuovo programma quando la sua funzione + \func{main} è dichiarata nella forma \func{main(int argc, char *argv[], char + *envp[])}. + + La funzione ritorna -1 solo in caso di errore, nel qual caso caso la + variabile \texttt{errno} è settata come: + \begin{errlist} + \item \macro{EACCES} il file non è eseguibile, oppure il filesystem è + montato in \cmd{noexec}, oppure non è un file normale o un interprete. + \item \macro{EPERM} il file ha i bit \acr{suid} o \acr{sgid} ma l'utente non + è root o il filesystem è montato con \cmd{nosuid}, oppure + \item \macro{ENOEXEC} + \item \macro{ENOENT} + \item \macro{ENOTDIR} + \item \macro{ETXTBSY} + \item \macro{ENFILE} + \item \macro{EMFILE} + \item \macro{EINVAL} + \item \macro{EISDIR} + \item \macro{ELIBBAD} + \end{errlist} + ed inoltre anche \macro{EFAULT}, \macro{ENOMEM}, \macro{EIO}, \macro{ENAMETOOLONG}, \macro{E2BIG}, \macro{ELOOP}. +\end{prototype} @@ -809,9 +1062,9 @@ dall'utente che ha lanciato il processo (attraverso i valori di \acr{uid} e gestione dei privilegi associati ai processi stessi. \begin{table}[htb] \centering - \begin{tabular}[c]{|c|l|l|} + \begin{tabular}[c]{|c|l|p{8cm}|} \hline - Sigla & Significato & Utilizzo \\ + \textbf{Sigla} & \textbf{Significato} & \textbf{Utilizzo} \\ \hline \hline \acr{ruid} & \textit{real user id} & indica l'utente reale che ha lanciato