X-Git-Url: https://gapil.gnulinux.it/gitweb/?p=gapil.git;a=blobdiff_plain;f=prochand.tex;h=db517e90d28db138259c6bf95bffbedb2466a792;hp=3b79276dcf2a0fff0513c72eb72fb78ff9bcf3f0;hb=bd18ae03e4b95cf99bec30653520049c75e6d028;hpb=610213043730bb22bd5f00113ce267200dd153a6 diff --git a/prochand.tex b/prochand.tex index 3b79276..db517e9 100644 --- a/prochand.tex +++ b/prochand.tex @@ -8,16 +8,20 @@ base per l'allocazione e l'uso delle risorse del sistema. Nel precedente capitolo abbiamo visto come funziona un singolo processo, in questo capitolo affronteremo i dettagli della creazione e della distruzione dei processi, della gestione dei loro attributi e privilegi, e di tutte le -funzioni a questo connesse. +funzioni a questo connesse. Infine nella sezione finale affronteremo alcune +problematiche generiche della programmazione in ambiente multitasking. + \section{Introduzione} \label{sec:proc_gen} Partiremo con una introduzione generale ai concetti che stanno alla base della -gestione dei processi in unix. Introdurremo in questa sezione l'architettura -della gestione dei processi e le sue principali caratteristiche, e daremo una -panoramica sull'uso delle principali funzioni per la gestione dei processi. +gestione dei processi in un sistema unix-like. Introdurremo in questa sezione +l'architettura della gestione dei processi e le sue principali +caratteristiche, e daremo una panoramica sull'uso delle principali funzioni +per la gestione dei processi. + \subsection{La gerarchia dei processi} \label{sec:proc_hierarchy} @@ -30,35 +34,35 @@ qualunque processo pu numero unico, il cosiddetto \textit{process identifier} o, più brevemente, \acr{pid}. -Una seconda caratteristica è che la generazione di un processo è una -operazione separata rispetto al lancio di un programma. In genere la sequenza -è sempre quella di creare un nuovo processo, il quale eseguirà, in un passo -successivo, il programma voluto: questo è ad esempio quello che fa la shell -quando mette in esecuzione il programma che gli indichiamo nella linea di -comando. - -Una terza caratteristica è che ogni processo viene sempre generato da un altro -che viene chiamato processo padre (\textit{parent process}). Questo vale per -tutti i processi, con una sola eccezione: dato che ci deve essere un punto di -partenza esiste sempre un processo speciale (che normalmente è +Una seconda caratteristica di un sistema unix è che la generazione di un +processo è una operazione separata rispetto al lancio di un programma. In +genere la sequenza è sempre quella di creare un nuovo processo, il quale +eseguirà, in un passo successivo, il programma voluto: questo è ad esempio +quello che fa la shell quando mette in esecuzione il programma che gli +indichiamo nella linea di comando. + +Una terza caratteristica è che ogni processo è sempre stato generato da un +altro, che viene chiamato processo padre (\textit{parent process}). Questo +vale per tutti i processi, con una sola eccezione: dato che ci deve essere un +punto di partenza esiste un processo speciale (che normalmente è \cmd{/sbin/init}), che viene lanciato dal kernel alla conclusione della fase -di avvio, essendo questo il primo processo lanciato dal sistema ha sempre il +di avvio; essendo questo il primo processo lanciato dal sistema ha sempre il \acr{pid} uguale a 1 e non è figlio di nessun altro processo. Ovviamente \cmd{init} è un processo speciale che in genere si occupa di far partire tutti gli altri processi necessari al funzionamento del sistema, inoltre \cmd{init} è essenziale per svolgere una serie di compiti -amministrativi nelle operazioni ordinarie del sistema (torneremo si alcuni di +amministrativi nelle operazioni ordinarie del sistema (torneremo su alcuni di essi in \secref{sec:proc_termination}) e non può mai essere terminato. La struttura del sistema comunque consente di lanciare al posto di \cmd{init} -qualunque altro programma (e in casi di emergenza, ad esempio se il file di -\cmd{init} si fosse corrotto, è ad esempio possibile lanciare una shell al suo -posto, passando la riga \cmd{init=/bin/sh} come parametro di avvio). +qualunque altro programma, e in casi di emergenza (ad esempio se il file di +\cmd{init} si fosse corrotto) è ad esempio possibile lanciare una shell al suo +posto, passando la riga \cmd{init=/bin/sh} come parametro di avvio. \begin{figure}[!htb] \footnotesize \begin{verbatim} -[piccardi@selidor piccardi]$ pstree -n +[piccardi@gont piccardi]$ pstree -n init-+-keventd |-kapm-idled |-kreiserfsd @@ -103,9 +107,9 @@ Dato che tutti i processi attivi nel sistema sono comunque generati da kernel, (come \cmd{keventd}, \cmd{kswapd}, etc.)} si possono classificare i processi con la relazione padre/figlio in una organizzazione gerarchica ad albero, in maniera analoga a come i file sono organizzati in un albero di -directory (si veda \secref{sec:file_file_struct}); in \nfig\ si è mostrato il +directory (si veda \secref{sec:file_file_struct}); in \curfig\ si è mostrato il risultato del comando \cmd{pstree} che permette di mostrare questa struttura, -alla cui base c'è il \cmd{init} che è progenitore di tutti gli altri processi. +alla cui base c'è \cmd{init} che è progenitore di tutti gli altri processi. \subsection{Una panoramica sulle funzioni di gestione} @@ -186,12 +190,13 @@ ottenuti da programma usando le funzioni: \begin{functions} \headdecl{sys/types.h} \headdecl{unistd.h} -\funcdecl{pid\_t getpid(void)} restituisce il pid del processo corrente. -\funcdecl{pid\_t getppid(void)} restituisce il pid del padre del processo +\funcdecl{pid\_t getpid(void)} Restituisce il pid del processo corrente. +\funcdecl{pid\_t getppid(void)} Restituisce il pid del padre del processo corrente. -Entrambe le funzioni non riportano condizioni di errore. + +\bodydesc{Entrambe le funzioni non riportano condizioni di errore.} \end{functions} -esempi dell'uso di queste funzioni sono riportati in +\noindent esempi dell'uso di queste funzioni sono riportati in \figref{fig:proc_fork_code}, nel programma di esempio \file{ForkTest.c}. Il fatto che il \acr{pid} sia un numero univoco per il sistema lo rende il @@ -205,10 +210,17 @@ Tutti i processi figli dello stesso processo padre sono detti \textit{sibling}, questa è una delle relazioni usate nel \textsl{controllo di sessione}, in cui si raggruppano i processi creati su uno stesso terminale, o relativi allo stesso login. Torneremo su questo argomento in dettaglio in -\secref{cap:session}, dove esamineremo i vari identificativi associati ad un -processo e le varie relazioni fra processi utilizzate per definire una +\secref{cha:session}, dove esamineremo gli altri identificativi associati ad +un processo e le varie relazioni fra processi utilizzate per definire una sessione. +Oltre al \acr{pid} e al \acr{ppid}, e a quelli usati per il controllo di +sessione, ad ogni processo sono associati altri identificatori, usati per il +controllo di accesso, che servono per determinare se il processo può o meno +eseguire le operazioni richieste, a seconda dei privilegi e dell'identità di +chi lo ha posto in esecuzione; su questi torneremo in dettagli più avanti in +\secref{sec:proc_perms}. + \subsection{La funzione \func{fork}} \label{sec:proc_fork} @@ -218,21 +230,22 @@ processi: come si attraverso l'uso di questa funzione, essa quindi riveste un ruolo centrale tutte le volte che si devono scrivere programmi che usano il multitasking. Il prototipo della funzione è: - \begin{functions} \headdecl{sys/types.h} \headdecl{unistd.h} \funcdecl{pid\_t fork(void)} - Restituisce zero al padre e il \acr{pid} al figlio in caso di successo, - ritorna -1 al padre (senza creare il figlio) in caso di errore; - \texttt{errno} può assumere i valori: + Crea un nuovo processo. + + \bodydesc{Restituisce zero al padre e il \acr{pid} al figlio in caso di + successo, ritorna -1 al padre (senza creare il figlio) in caso di errore; + \var{errno} può assumere i valori: \begin{errlist} - \item \macro{EAGAIN} non ci sono risorse sufficienti per creare un'altro + \item[\macro{EAGAIN}] non ci sono risorse sufficienti per creare un'altro processo (per allocare la tabella delle pagine e le strutture del task) o si è esaurito il numero di processi disponibili. - \item \macro{ENOMEM} non è stato possibile allocare la memoria per le + \item[\macro{ENOMEM}] non è stato possibile allocare la memoria per le strutture necessarie al kernel per creare il nuovo processo. - \end{errlist} + \end{errlist}} \end{functions} Dopo il successo dell'esecuzione di una \func{fork} sia il processo padre che @@ -368,6 +381,8 @@ periodo di attesa. Se eseguiamo il comando senza specificare attese (come si può notare in \texttt{\small 17--19} i valori di default specificano di non attendere), otterremo come output sul terminale: + +\footnotesize \begin{verbatim} [piccardi@selidor sources]$ ./forktest 3 Process 1963: forking 3 child @@ -384,6 +399,7 @@ Child 3, parent 1963, exiting Spawned 3 child, pid 1966 Go to next child \end{verbatim} %$ +\normalsize Esaminiamo questo risultato: una prima conclusione che si può trarre è non si può dire quale processo fra il padre ed il figlio venga eseguito per @@ -422,6 +438,8 @@ Un secondo aspetto molto importante nella creazione dei processi figli quello dell'interazione dei vari processi con i file; per illustrarlo meglio proviamo a redirigere su un file l'output del nostro programma di test, quello che otterremo è: + +\footnotesize \begin{verbatim} [piccardi@selidor sources]$ ./forktest 3 > output [piccardi@selidor sources]$ cat output @@ -448,6 +466,7 @@ Go to next child Spawned 3 child, pid 1970 Go to next child \end{verbatim} +\normalsize che come si vede è completamente diverso da quanto ottenevamo sul terminale. Il comportamento delle varie funzioni di interfaccia con i file è analizzato @@ -481,10 +500,9 @@ Quello che succede lo stesso avviene anche per tutti i figli; la funzione \func{fork} infatti ha la caratteristica di duplicare (allo stesso modo in cui lo fa la funzione \func{dup}, trattata in \secref{sec:file_dup}) nei figli tutti i file -descriptor aperti nel padre, il che comporta che padre e figli condividono -le stesse voci della file table (per la spiegazione di questi termini si veda -\secref{sec:file_sharing} e referenza a figura da fare) e quindi anche -l'offset corrente nel file. +descriptor aperti nel padre, il che comporta che padre e figli condividono le +stesse voci della file table (per la spiegazione di questi termini si veda +\secref{sec:file_sharing}) e quindi anche l'offset corrente nel file. In questo modo se un processo scrive sul file aggiornerà l'offset sulla file table, e tutti gli altri processi che condividono la file table vedranno il @@ -518,37 +536,41 @@ sequenza impredicibile. Le modalit \end{enumerate} Oltre ai file aperti i processi figli ereditano dal padre una serie di altre -proprietà comuni; in dettaglio avremo che dopo l'esecuzione di una \func{fork} -padre e figlio avranno in comune: -\begin{itemize} -\item i file aperti (e gli eventuali flag di \textit{close-on-exec} se - settati). +proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in +comune dopo l'esecuzione di una \func{fork} è la seguente: +\begin{itemize*} +\item i file aperti e gli eventuali flag di \textit{close-on-exec} (vedi +\secref{sec:proc_exec} e \secref{sec:file_fcntl}) se settati. \item gli identificatori per il controllo di accesso: il \textit{real user id}, il \textit{real group id}, l'\textit{effective user id}, l'\textit{effective group id} e i \textit{supplementary group id} (vedi - \secref{tab:proc_uid_gid}). + \secref{sec:proc_user_group}). \item gli identificatori per il controllo di sessione: il \textit{process - group id} e il \textit{session id} e il terminale di controllo. -\item i flag \acr{suid} e \acr{suid} (vedi \secref{sec:file_suid_sgid}). + group id} e il \textit{session id} e il terminale di controllo (vedi + \secref{sec:sess_xxx} e \secref{sec:sess_xxx}). +\item i flag di \acr{suid} e \acr{sgid} (vedi \secref{sec:file_suid_sgid}). \item la directory di lavoro e la directory radice (vedi \secref{sec:file_work_dir}). \item la maschera dei permessi di creazione (vedi \secref{sec:file_umask}). -\item la maschera dei segnali. -\item i segmenti di memoria condivisa agganciati al processo. -\item i limiti sulle risorse +\item la maschera dei segnali bloccati e le azioni installate (vedi +\secref{sec:sig_xxx}). +\item i segmenti di memoria condivisa agganciati al processo (vedi +\secref{sec:ipc_xxx}). +\item i limiti sulle risorse (vedi \secref{sec:sys_xxx}). \item le variabili di ambiente (vedi \secref{sec:proc_environ}). -\end{itemize} -le differenze invece sono: -\begin{itemize} +\end{itemize*} +le differenze fra padre e figlio dopo la \func{fork} invece sono: +\begin{itemize*} \item il valore di ritorno di \func{fork}. \item il \textit{process id}. \item il \textit{parent process id} (quello del figlio viene settato al \acr{pid} del padre). -\item i valori dei tempi di esecuzione (\var{tms\_utime}, \var{tms\_stime}, - \var{tms\_cutime}, \var{tms\_uetime}) che nel figlio sono posti a zero. -\item i \textit{file lock}, che non vengono ereditati dal figlio. -\item gli allarmi pendenti, che per il figlio vengono cancellati. -\end{itemize} +\item i valori dei tempi di esecuzione (vedi \secref{sec:sys_xxx}) che + nel figlio sono posti a zero. +\item i \textit{file lock} (vedi \secref{sec:file_locking}), che non + vengono ereditati dal figlio. +\item gli allarmi ed i segnali pendenti (vedi \secref{sec:sig_xxx}), che per il figlio vengono cancellati. +\end{itemize*} \subsection{La funzione \func{vfork}} @@ -601,18 +623,20 @@ Qualunque sia la modalit comunque una serie di operazioni: chiude tutti i file aperti, rilascia la memoria che stava usando, e così via; l'elenco completo delle operazioni eseguite alla chiusura di un processo è il seguente: -\begin{itemize} +\begin{itemize*} \item tutti i descrittori dei file sono chiusi. \item viene memorizzato lo stato di terminazione del processo. \item ad ogni processo figlio viene assegnato un nuovo padre. -\item viene inviato il segnale \macro{SIGCHLD} al processo padre. +\item viene inviato il segnale \macro{SIGCHLD} al processo padre (vedi + \secref{sec:sig_xxx}) . \item se il processo è un leader di sessione viene mandato un segnale di - \macro{SIGHUP} a tutti i processi in background e il terminale di controllo - viene disconnesso. -\item se la conclusione di un processe rende orfano un \textit{process group} - ciascun membro del gruppo viene bloccato, e poi gli vengono inviati in - successione i segnali \macro{SIGHUP} e \macro{SIGCONT}. -\end{itemize} + \macro{SIGHUP} a tutti i processi in background e il terminale di + controllo viene disconnesso (vedi \secref{sec:sess_xxx}). +\item se la conclusione di un processo rende orfano un \textit{process + group} ciascun membro del gruppo viene bloccato, e poi gli vengono + inviati in successione i segnali \macro{SIGHUP} e \macro{SIGCONT} + (vedi \secref{sec:sess_xxx}). +\end{itemize*} ma al di la di queste operazioni è necessario poter disporre di un meccanismo ulteriore che consenta di sapere come questa terminazione è avvenuta; dato che in un sistema unix-like tutto viene gestito attraverso i processi il @@ -620,7 +644,7 @@ meccanismo scelto consiste nel riportare lo stato di terminazione (\textit{termination status}) di cui sopra al processo padre. Nel caso di conclusione normale, lo stato di uscita del processo viene -caratterizzato tremite il valore del cosiddetto \textit{exit status}, cioè il +caratterizzato tramite il valore del cosiddetto \textit{exit status}, cioè il valore passato alle funzioni \func{exit} o \func{\_exit} (o dal valore di ritorno per \func{main}). Ma se il processo viene concluso in maniera anomala il programma non può specificare nessun \textit{exit status}, ed è il kernel @@ -637,7 +661,7 @@ secondo. La scelta di riportare al padre lo stato di terminazione dei figli, pur essendo l'unica possibile, comporta comunque alcune complicazioni: infatti se alla sua creazione è scontato che ogni nuovo processo ha un padre, non è detto -che sia così alla sua conclusione, dato che il padre protrebbe essere già +che sia così alla sua conclusione, dato che il padre potrebbe essere già terminato (si potrebbe avere cioè quello che si chiama un processo \textsl{orfano}). @@ -650,6 +674,8 @@ avr di terminazione. Come verifica di questo comportamento possiamo eseguire il comando \cmd{forktest} imponendo a ciascun processo figlio due secondi di attesa prima di uscire, il risultato è: + +\footnotesize \begin{verbatim} [piccardi@selidor sources]$ ./forktest -c2 3 Process 1972: forking 3 child @@ -666,6 +692,7 @@ Go to next child Child 2, parent 1, exiting Child 1, parent 1, exiting \end{verbatim} +\normalsize come si può notare in questo caso il processo padre si conclude prima dei figli, tornando alla shell, che stampa il prompt sul terminale: circa due secondi dopo viene stampato a video anche l'output dei tre figli che @@ -679,14 +706,14 @@ informazioni riguardo ai processi che sta terminando. Questo viene fatto mantenendo attiva la voce nella tabella dei processi, e memorizzando alcuni dati essenziali, come il \acr{pid}, i tempi di CPU usati -dal processo (vedi \secref{sec:intro_unix_time}) e lo stato di terminazione +dal processo (vedi \secref{sec:sys_unix_time}) e lo stato di terminazione \footnote{NdA verificare esattamente cosa c'è!}, mentre la memoria in uso ed i file aperti vengono rilasciati immediatamente. I processi che sono terminati, ma il cui stato di terminazione non è stato ancora ricevuto dal padre sono chiamati \textit{zombie}, essi restano presenti nella tabella dei processi ed in genere possono essere identificati dall'output di \cmd{ps} per la presenza di una \cmd{Z} nella colonna che ne indica lo stato. Quando il padre -effettuarà la lettura dello stato di uscita anche questa informazione, non più +effettuerà la lettura dello stato di uscita anche questa informazione, non più necessaria, verrà scartata e la terminazione potrà dirsi completamente conclusa. @@ -695,6 +722,8 @@ condizione: lanciamo il comando \cmd{forktest} in background, indicando al processo padre di aspettare 10 secondi prima di uscire; in questo caso, usando \cmd{ps} sullo stesso terminale (prima dello scadere dei 10 secondi) otterremo: + +\footnotesize \begin{verbatim} [piccardi@selidor sources]$ ps T PID TTY STAT TIME COMMAND @@ -705,6 +734,7 @@ otterremo: 571 pts/0 Z 0:00 [forktest ] 572 pts/0 R 0:00 ps T \end{verbatim} %$ +\normalsize e come si vede, dato che non si è fatto nulla per riceverne lo stato di terminazione, i tre processi figli sono ancora presenti pur essendosi conclusi, con lo stato di zombie e l'indicazione che sono stati terminati. @@ -728,13 +758,13 @@ dei figli in stato di zombie: alla sua terminazione infatti tutti i suoi figli vengono ereditati (compresi gli zombie) verranno adottati da \cmd{init}, il quale provvederà a completarne la terminazione. -Si tenga presente infine che siccome gli zombie sono processi già terminati, -non c'è modo di eliminarli con il comando \cmd{kill}; l'unica possibilità è -quella di terminare il processo che li ha generati, in modo che \cmd{init} -possa adottarli e provvedere a concludere la terminazione. +Si tenga presente infine che siccome gli zombie sono processi già usciti, non +c'è modo di eliminarli con il comando \cmd{kill}; l'unica possibilità è quella +di terminare il processo che li ha generati, in modo che \cmd{init} possa +adottarli e provvedere a concludere la terminazione. -\subsection{Le funzioni \texttt{wait} e \texttt{waitpid}} +\subsection{Le funzioni \func{wait} e \func{waitpid}} \label{sec:proc_wait} Abbiamo già accennato come uno degli usi possibili delle capacità multitasking @@ -752,28 +782,33 @@ prototipo \funcdecl{pid\_t wait(int * status)} Sospende il processo corrente finché un figlio non è uscito, o finché un -segnale termina il processo o chiama una funzione di gestione. Se un figlio è -già uscito la funzione ritorna immediatamente. Al ritorno lo stato di -termininazione del processo viene salvato nella variabile puntata da -\var{status} e tutte le informazioni relative al processo (vedi -\secref{sec:proc_termination}) vengono rilasciate. +segnale termina il processo o chiama una funzione di gestione. +\bodydesc{ La funzione restituisce il \acr{pid} del figlio in caso di successo e -1 in caso di errore; \var{errno} può assumere i valori: \begin{errlist} - \item \macro{EINTR} la funzione è stata interrotta da un segnale. + \item[\macro{EINTR}] la funzione è stata interrotta da un segnale. \end{errlist} +} \end{functions} +\noindent è presente fin dalle prime versioni di unix; la funzione ritorna alla -conclusione del primo figlio (o immediatamente se un figlio è già uscito). Nel -caso un processo abbia più figli il valore di ritorno permette di identificare -qual'è quello che è uscito. - -Questa funzione però ha il difetto di essere poco flessibile, in quanto -ritorna all'uscita di un figlio qualunque. Nelle occasioni in cui è necessario -attendere la conclusione di un processo specifico occorre predisporre un -meccanismo che tenga conto dei processi già terminati, e ripeta la chiamata -alla funzione nel caso il processo cercato sia ancora attivo. +conclusione del primo figlio (o immediatamente se un figlio è già +uscito). Se un figlio è già uscito la funzione ritorna immediatamente. + +Al ritorno lo stato di termininazione del processo viene salvato nella +variabile puntata da \var{status} e tutte le informazioni relative al +processo (vedi \secref{sec:proc_termination}) vengono rilasciate. Nel +caso un processo abbia più figli il valore di ritorno permette di +identificare qual'è quello che è uscito. + +Questa funzione ha il difetto di essere poco flessibile, in quanto +ritorna all'uscita di un figlio qualunque. Nelle occasioni in cui è +necessario attendere la conclusione di un processo specifico occorre +predisporre un meccanismo che tenga conto dei processi già terminati, e +provveda a ripetere la chiamata alla funzione nel caso il processo +cercato sia ancora attivo. Per questo motivo lo standard POSIX.1 ha introdotto la funzione \func{waitpid} che effettua lo stesso servizio, ma dispone di una serie di funzionalità più @@ -784,16 +819,17 @@ questa funzione; il suo prototipo \headdecl{sys/types.h} \headdecl{sys/wait.h} \funcdecl{pid\_t waitpid(pid\_t pid, int * status, int options)} +Attende la conclusione di un processo figlio. -La funzione restituisce il \acr{pid} del processo che è uscito, 0 se è stata -specificata l'opzione \macro{WNOHANG} e il processo non è uscito e -1 per un -errore, nel qual caso \var{errno} assumerà i valori: +\bodydesc{La funzione restituisce il \acr{pid} del processo che è uscito, 0 se + è stata specificata l'opzione \macro{WNOHANG} e il processo non è uscito e + -1 per un errore, nel qual caso \var{errno} assumerà i valori: \begin{errlist} - \item \macro{EINTR} se non è stata specificata l'opzione \macro{WNOHANG} e + \item[\macro{EINTR}] se non è stata specificata l'opzione \macro{WNOHANG} e la funzione è stata interrotta da un segnale. - \item \macro{ECHILD} il processo specificato da \var{pid} non esiste o non è + \item[\macro{ECHILD}] il processo specificato da \var{pid} non esiste o non è figlio del processo chiamante. - \end{errlist} + \end{errlist}} \end{functions} Le differenze principali fra le due funzioni sono che \func{wait} si blocca @@ -804,6 +840,7 @@ base del valore specificato tramite la variabile \var{pid}, secondo lo specchietto riportato in \ntab: \begin{table}[!htb] \centering + \footnotesize \begin{tabular}[c]{|c|p{10cm}|} \hline \textbf{Valore} & \textbf{Significato}\\ @@ -828,28 +865,31 @@ Il comportamento di \func{waitpid} pu opportune opzioni tramite la variabile \var{option}. I valori possibili sono il già citato \macro{WNOHANG}, che previene il blocco della funzione quando il processo figlio non è terminato, e \macro{WUNTRACED} (usata per il controllo -di sessione) che fa ritornare la funzione anche per i processi figli che sono -bloccati ed il cui stato non è stato ancora riportato al padre. Il valore -dell'opzione deve essere specificato come l'OR binario di zero con le suddette -costanti. - -Entrambe le funzioni restituiscono lo stato di terminazione del processo -tramite il puntatore \var{status} (se non interessa memorizzare lo stato si -può passare un puntatore nullo). Il valore restituito da entrambe le funzioni -dipende dall'implementazione, e tradizionalmente alcuni bit sono riservati per -memorizzare lo stato di uscita (in genere 8) altri per indicare il segnale che -ha causato la terminazione (in caso di conclusione anomala), uno per indicare -se è stato generato un core file, etc.\footnote{le definizioni esatte si - possono trovare in \file{}}. Lo standard -POSIX.1 definisce una serie di macro di preprocessore da usare per analizzare -lo stato di uscita; esse sono definite in \file{} ed elencate in -\ntab\ (si tenga presente che queste macro prendono come parametro la -variabile di tipo \type{int} puntata da \var{status}). - +di sessione, trattato in \capref{cha:session}) che fa ritornare la funzione +anche per i processi figli che sono bloccati ed il cui stato non è stato +ancora riportato al padre. Il valore dell'opzione deve essere specificato come +maschera binaria ottenuta con l'OR delle suddette costanti con zero. + +La terminazione di un processo figlio è chiaramente un evento asincrono +rispetto all'esecuzione di un programma e può avvenire in un qualunque +momento, per questo motivo, come si è visto nella sezione precedente, una +delle azioni prese dal kernel alla conclusione di un processo è quella di +mandare un segnale di \macro{SIGCHLD} al padre. Questo segnale viene ignorato +di default, ma costituisce il meccanismo di comunicazione asincrona con cui il +kernel avverte un processo padre che uno dei suoi figli è terminato. + +In genere in un programma non si vuole essere forzati ad attendere la +conclusione di un processo per proseguire, specie se tutto questo serve solo +per leggerne lo stato di chiusura (ed evitare la presenza di \textit{zombie}), +per questo la modalità più usata per chiamare queste funzioni è quella di +utilizzarle all'interno di un \textit{signal handler} (torneremo sui segnali e +su come gestire \macro{SIGCHLD} in \secref{sec:sig_sigwait_xxx}) nel qual +caso, dato che il segnale è generato dalla terminazione un figlio, avremo la +certezza che la chiamata a \func{wait} non si bloccherà. \begin{table}[!htb] \centering + \footnotesize \begin{tabular}[c]{|c|p{10cm}|} \hline \textbf{Macro} & \textbf{Descrizione}\\ @@ -860,16 +900,16 @@ variabile di tipo \type{int} puntata da \var{status}). \macro{WEXITSTATUS(s)} & Restituisce gli otto bit meno significativi dello stato di uscita del processo (passato attraverso \func{\_exit}, \func{exit} o come valore di ritorno di \func{main}). Può essere valutata solo se - \macro{WIFEXITED} ha restitituito un valore non nullo.\\ + \macro{WIFEXITED} ha restituito un valore non nullo.\\ \macro{WIFSIGNALED(s)} & Vera se il processo figlio è terminato in maniera anomala a causa di un segnale che non è stato catturato (vedi \secref{sec:sig_notification}).\\ \macro{WTERMSIG(s)} & restituisce il numero del segnale che ha causato la terminazione anomala del processo. Può essere valutata solo se - \macro{WIFSIGNALED} ha restitituito un valore non nullo.\\ + \macro{WIFSIGNALED} ha restituito un valore non nullo.\\ \macro{WCOREDUMP(s)} & Vera se il processo terminato ha generato un file si \textit{core dump}. Può essere valutata solo se - \macro{WIFSIGNALED} ha restitituito un valore non nullo\footnote{questa + \macro{WIFSIGNALED} ha restituito un valore non nullo\footnote{questa macro non è definita dallo standard POSIX.1, ma è presente come estensione sia in Linux che in altri unix}.\\ \macro{WIFSTOPPED(s)} & Vera se il processo che ha causato il ritorno di @@ -877,24 +917,325 @@ variabile di tipo \type{int} puntata da \var{status}). l'opzione \macro{WUNTRACED}. \\ \macro{WSTOPSIG(s)} & restituisce il numero del segnale che ha bloccato il processo, Può essere valutata solo se \macro{WIFSTOPPED} ha - restitituito un valore non nullo. \\ + restituito un valore non nullo. \\ \hline \end{tabular} \caption{Descrizione delle varie macro di preprocessore utilizzabili per verificare lo stato di terminazione \var{s} di un processo.} \label{tab:proc_status_macro} \end{table} - +Entrambe le funzioni restituiscono lo stato di terminazione del processo +tramite il puntatore \var{status} (se non interessa memorizzare lo stato si +può passare un puntatore nullo). Il valore restituito da entrambe le funzioni +dipende dall'implementazione, e tradizionalmente alcuni bit sono riservati per +memorizzare lo stato di uscita (in genere 8) altri per indicare il segnale che +ha causato la terminazione (in caso di conclusione anomala), uno per indicare +se è stato generato un core file, etc.\footnote{le definizioni esatte si + possono trovare in \file{}}. Lo standard POSIX.1 definisce una serie di macro di +preprocessore da usare per analizzare lo stato di uscita; esse sono definite +sempre in \file{} ed elencate in \curtab\ (si tenga presente che +queste macro prendono come parametro la variabile di tipo \type{int} puntata +da \var{status}). + +Si tenga conto che nel caso di conclusione anomala il valore restituito da +\macro{WTERMSIG} può essere controllato contro le costanti definite in +\file{signal.h}, e stampato usando le funzioni definite in +\secref{sec:sig_strsignal}. + + +\subsection{Le funzioni \func{wait3} e \func{wait4}} +\label{sec:proc_wait4} + +Linux, seguendo una estensione di BSD, supporta altre due funzioni per la +lettura dello stato di terminazione di un processo, analoghe a \func{wait} e +\func{waitpid}, ma che prevedono un ulteriore parametro attraverso il quale il +kernel può restituire al processo padre ulteriori informazioni sulle risorse +usate dal processo terminato e dai vari figli. Queste funzioni, che diventano +accessibili definendo la costante \macro{\_USE\_BSD}, sono: +\begin{functions} + \headdecl{sys/times.h} + \headdecl{sys/types.h} + \headdecl{sys/wait.h} + \headdecl{sys/resource.h} + \funcdecl{pid\_t wait4(pid\_t pid, int * status, int options, struct rusage + * rusage)} + È identica a \func{waitpid} sia per comportamento che per i + valori dei parametri, ma restituisce in \var{rusage} un sommario delle + risorse usate dal processo (per i dettagli vedi \secref{sec:sys_xxx}) + \funcdecl{pid\_t wait3(int *status, int options, struct rusage *rusage)} + Prima versione, equivalente a \func{wait4(-1, \&status, opt, rusage)} è + ormai deprecata in favore di \func{wait4}. +\end{functions} +\noindent +la struttura \type{rusage} è definita in \file{sys/resource.h}, e viene +utilizzata anche dalla funzione \func{getrusage} per ottenere le risorse di +sistema usate dal processo; la sua definizione è riportata in \nfig. +\begin{figure}[!htb] + \footnotesize + \centering + \begin{minipage}[c]{15cm} + \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{} +struct rusage { + struct timeval ru_utime; /* user time used */ + struct timeval ru_stime; /* system time used */ + long ru_maxrss; /* maximum resident set size */ + long ru_ixrss; /* integral shared memory size */ + long ru_idrss; /* integral unshared data size */ + long ru_isrss; /* integral unshared stack size */ + long ru_minflt; /* page reclaims */ + long ru_majflt; /* page faults */ + long ru_nswap; /* swaps */ + long ru_inblock; /* block input operations */ + long ru_oublock; /* block output operations */ + long ru_msgsnd; /* messages sent */ + long ru_msgrcv; /* messages received */ + long ru_nsignals; ; /* signals received */ + long ru_nvcsw; /* voluntary context switches */ + long ru_nivcsw; /* involuntary context switches */ +}; + \end{lstlisting} + \end{minipage} + \normalsize + \caption{La struttura \var{rusage} per la lettura delle informazioni dei + delle risorse usate da un processo.} + \label{fig:proc_rusage_struct} +\end{figure} -Come abbiamo appena visto una delle azioni prese dal kernel alla terminazione -di un processo è quella di salvarne lo stato e mandare un segnale di -\macro{SIGCHLD} al padre (torneremo su questa parte in \secref{sec:sig_xxx}). +In genere includere esplicitamente \file{} non è più +necessario, ma aumenta la portabilità, e serve in caso si debba accedere +ai campi di \var{rusage} definiti come \type{struct timeval}. La +struttura è ripresa da BSD 4.3, attualmente (con il kernel 2.4.x) i soli +campi che sono mantenuti sono: \var{ru\_utime}, \var{ru\_stime}, +\var{ru\_minflt}, \var{ru\_majflt}, e \var{ru\_nswap}. -\subsection{Le funzioni \texttt{exec}} +\subsection{Le funzioni \func{exec}} \label{sec:proc_exec} +Abbiamo già detto che una delle modalità principali con cui si utilizzano i +processi in unix è quella di usarli per lanciare nuovi programmi: questo viene +fatto attraverso una delle funzioni della famiglia \func{exec}. Quando un +processo chiama una di queste funzioni esso viene completamente sostituito dal +nuovo programma; il \acr{pid} del processo non cambia, dato che non viene +creato un nuovo processo, la funzione semplicemente rimpiazza lo stack, o +heap, i dati ed il testo del processo corrente con un nuovo programma letto da +disco. + +Ci sono sei diverse versioni di \func{exec} (per questo la si è chiamata +famiglia di funzioni) che possono essere usate per questo compito, che in +realtà (come mostrato in \figref{fig:proc_exec_relat}), costituiscono un +front-end a \func{execve}. Il prototipo di quest'ultima è: +\begin{prototype}{unistd.h} +{int execve(const char * filename, char * const argv [], char * const envp[])} + Esegue il programma contenuto nel file \param{filename}. + + \bodydesc{La funzione ritorna -1 solo in caso di errore, nel qual caso + caso la \var{errno} può assumere i valori: + \begin{errlist} + \item[\macro{EACCES}] il file non è eseguibile, oppure il filesystem è + montato in \cmd{noexec}, oppure non è un file normale o un interprete. + \item[\macro{EPERM}] il file ha i bit \acr{suid} o \acr{sgid} ma l'utente non + è root o il filesystem è montato con \cmd{nosuid}, oppure + \item[\macro{ENOEXEC}] il file è in un formato non eseguibile o non + riconosciuto come tale, o compilato per un'altra architettura. + \item[\macro{ENOENT}] il file o una delle librerie dinamiche o l'interprete + necessari per eseguirlo non esistono. + \item[\macro{ETXTBSY}] L'eseguibile è aperto in scrittura da uno o più + processi. + \item[\macro{EINVAL}] L'eseguibile ELF ha più di un segmento + \macro{PF\_INTERP}, cioè chiede di essere eseguito da più di un + interprete. + \item[\macro{ELIBBAD}] Un interprete ELF non è in un formato + riconoscibile. + \end{errlist} + ed inoltre anche \macro{EFAULT}, \macro{ENOMEM}, \macro{EIO}, + \macro{ENAMETOOLONG}, \macro{E2BIG}, \macro{ELOOP}, \macro{ENOTDIR}, + \macro{ENFILE}, \macro{EMFILE}.} +\end{prototype} + +La funzione \func{exec} esegue il file o lo script indicato da +\var{filename}, passandogli la lista di argomenti indicata da \var{argv} +e come ambiente la lista di stringhe indicata da \var{envp}; entrambe le +liste devono essere terminate da un puntatore nullo. I vettori degli +argomenti e dell'ambiente possono essere acceduti dal nuovo programma +quando la sua funzione \func{main} è dichiarata nella forma +\func{main(int argc, char *argv[], char *envp[])}. + +Le altre funzioni della famiglia servono per fornire all'utente una serie +possibile di diverse interfacce per la creazione di un nuovo processo. I loro +prototipi sono: +\begin{functions} +\headdecl{unistd.h} +\funcdecl{int execl(const char *path, const char *arg, ...)} +\funcdecl{int execv(const char *path, char *const argv[])} +\funcdecl{int execle(const char *path, const char *arg, ..., char +* const envp[])} +\funcdecl{int execlp(const char *file, const char *arg, ...)} +\funcdecl{int execvp(const char *file, char *const argv[])} + +Sostituiscono l'immagine corrente del processo con quella indicata nel primo +argomento. I parametri successivi consentono di specificare gli argomenti a +linea di comando e l'ambiente ricevuti dal nuovo processo. + +\bodydesc{Queste funzioni ritornano solo in caso di errore, restituendo + -1; nel qual caso \var{errno} andrà ad assumere i valori visti in + precedenza per \func{execve}.} +\end{functions} + +Per capire meglio le differenze fra le funzioni della famiglia si può fare +riferimento allo specchietto riportato in \ntab. La prima differenza riguarda +le modalità di passaggio dei parametri che poi andranno a costituire gli +argomenti a linea di comando (cioè i valori di \var{argv} e \var{argc} visti +dalla funzione \func{main} del programma chiamato). + +Queste modalità sono due e sono riassunte dagli mnenonici \func{v} e \func{l} +che stanno rispettivamente per \textit{vector} e \textit{list}. Nel primo caso +gli argomenti sono passati tramite il vettore di puntatori \var{argv[]} a +stringhe terminate con zero che costituiranno gli argomenti a riga di comando, +questo vettore \emph{deve} essere terminato da un puntatore nullo. + +Nel secondo caso le stringhe degli argomenti sono passate alla funzione come +lista di puntatori, nella forma: +\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{} + char * arg0, char * arg1, ..., char * argn, NULL +\end{lstlisting} +che deve essere terminata da un puntatore nullo. In entrambi i casi vale la +convenzione che il primo argomento (\var{arg0} o \var{argv[0]}) viene usato +per indicare il nome del file che contiene il programma che verrà eseguito. + +\begin{table}[!htb] + \footnotesize + \centering + \begin{tabular}[c]{|l|c|c|c||c|c|c|} + \hline + \multicolumn{1}{|c|}{\textbf{Caratteristiche}} & + \multicolumn{6}{|c|}{\textbf{Funzioni}} \\ + \hline + &\func{execl\ }&\func{execlp}&\func{execle} + &\func{execv\ }& \func{execvp}& \func{execve} \\ + \hline + \hline + argomenti a lista &$\bullet$&$\bullet$&$\bullet$&&& \\ + argomenti a vettore &&&&$\bullet$&$\bullet$&$\bullet$\\ + \hline + filename completo &&$\bullet$&&&$\bullet$& \\ + ricerca su \var{PATH}&$\bullet$&&$\bullet$&$\bullet$&&$\bullet$ \\ + \hline + ambiente a vettore &&&$\bullet$&&&$\bullet$ \\ + uso di \var{environ} &$\bullet$&$\bullet$&&$\bullet$&$\bullet$& \\ + \hline + \end{tabular} + \caption{Confronto delle caratteristiche delle varie funzioni della + famiglia \func{exec}.} + \label{tab:proc_exec_scheme} +\end{table} + +La seconda differenza fra le funzioni riguarda le modalità con cui si +specifica il programma che si vuole eseguire. Con lo mnemonico \func{p} si +indicano le due funzioni che replicano il comportamento della shell nello +specificare il comando da eseguire; quando il parametro \var{file} non +contiene una \file{/} esso viene considerato come un nome di programma, e +viene eseguita automaticamente una ricerca fra i file presenti nella lista di +directory specificate dalla variabile di ambiente \var{PATH}. Il file che +viene posto in esecuzione è il primo che viene trovato. Se si ha un errore di +permessi negati (cioè l'esecuzione della sottostante \func{execve} ritorna un +\macro{EACCESS}), la ricerca viene proseguita nelle eventuali ulteriori +directory indicate nel \var{PATH}, solo se non viene trovato nessun altro file +viene finalmente restituito \macro{EACCESS}. + +Le altre quattro funzioni si limitano invece a cercare di eseguire il file +indicato dal parametro \var{path}, che viene interpretato come il +\textit{pathname} del programma. + +\begin{figure}[htb] + \centering + \includegraphics[width=13cm]{img/exec_rel} + \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}} + \label{fig:proc_exec_relat} +\end{figure} + +La terza differenza è come viene passata la lista delle variabili di ambiente. +Con lo mnemonico \func{e} vengono indicate quelle funzioni che necessitano di +un vettore di parametri \var{envp[]} analogo a quello usato per gli argomenti +a riga di comando (terminato quindi da un \macro{NULL}), le altre usano il +valore della variabile \var{environ} (vedi \secref{sec:proc_environ}) del +processo di partenza per costruire l'ambiente. + +Oltre a mantenere lo stesso \acr{pid}, il nuovo programma fatto partire da +\func{exec} assume anche una serie di altre proprietà del processo chiamante; +la lista completa è la seguente: +\begin{itemize*} +\item il \textit{process ID} (\acr{pid}) ed il \textit{parent process ID} + (\acr{ppid}). +\item il \textit{real user ID} ed il \textit{real group ID} (vedi + \secref{sec:proc_user_group}). +\item i \textit{supplementary group ID} (vedi \secref{sec:proc_user_group}). +\item il \textit{session ID} ed il \textit{process group ID} (vedi + \secref{sec:sess_xxx}). +\item il terminale di controllo (vedi \secref{sec:sess_xxx}). +\item il tempo restante ad un allarme. +\item la directory radice e la directory di lavoro corrente (vedi + \secref{sec:file_work_dir}). +\item la maschera di creazione dei file (\var{umask}, vedi + \secref{sec:file_umask}) ed i \textit{lock} sui file (vedi + \secref{sec:file_locking}). +\item i segnali sospesi (\textit{pending}) e la maschera dei segnali (si veda + \secref{sec:sig_xxx}). +\item i limiti sulle risorse (vedi \secref{sec:sys_limits}).. +\item i valori delle variabili \var{tms\_utime}, \var{tms\_stime}, + \var{tms\_cutime}, \var{tms\_ustime} (vedi \secref{sec:xxx_xxx}). +\end{itemize*} + +Oltre a questo i segnali che sono stati settati per essere ignorati nel +processo chiamante mantengono lo stesso settaggio pure nel nuovo programma, +tutti gli altri segnali vengono settati alla loro azione di default. Un caso +speciale è il segnale \macro{SIGCHLD} che, quando settato a \macro{SIG\_IGN}, +può anche non essere resettato a \macro{SIG\_DFL} (si veda +\secref{sec:sig_xxx}). + +La gestione dei file aperti dipende dal valore del flag di +\textit{close-on-exec} per ciascun file descriptor (si veda +\secref{sec:file_fcntl}); i file per cui è settato vengono chiusi, tutti gli +altri file restano aperti. Questo significa che il comportamento di default è +che i file restano aperti attraverso una \func{exec}, a meno di una chiamata +esplicita a \func{fcntl} che setti il suddetto flag. + +Per le directory lo standard POSIX.1 richiede che esse vengano chiuse +attraverso una \func{exec}, in genere questo è fatto dalla funzione +\func{opendir} che effettua da sola il settaggio del flag di +\textit{close-on-exec} sulle directory che apre, in maniera trasparente +all'utente. + +Abbiamo detto che il \textit{real user ID} ed il \textit{real group ID} +restano gli stessi all'esecuzione di \func{exec}; lo stesso vale per +l'\textit{effective user ID} ed l'\textit{effective group ID}, tranne il caso +in cui il file che si va ad eseguire ha o il \acr{suid} bit o lo \acr{sgid} +bit settato, nel qual caso \textit{effective user ID} e \textit{effective + group ID} vengono settati rispettivamente all'utente o al gruppo cui il file +appartiene (per i dettagli vedi \secref{sec:proc_perms}). + +Se il file da eseguire è in formato \emph{a.out} e necessita di librerie +condivise, viene lanciato il \textit{linker} dinamico \cmd{ld.so} prima del +programma per caricare le librerie necessarie ed effettuare il link +dell'eseguibile. Se il programma è in formato ELF per caricare le librerie +dinamiche viene usato l'interprete indicato nel segmento \macro{PT\_INTERP}, +in genere questo è \file{/lib/ld-linux.so.1} per programmi linkati con le +\emph{libc5}, e \file{/lib/ld-linux.so.2} per programmi linkati con le +\emph{glibc}. Infine nel caso il file sia uno script esso deve iniziare con +una linea nella forma \cmd{\#!/path/to/interpreter} dove l'interprete indicato +deve esse un valido programma (binario, non un altro script) che verrà +chiamato come se si fosse eseguito il comando \cmd{interpreter [arg] + filename}. + +Con la famiglia delle \func{exec} si chiude il novero delle funzioni su cui è +basata la gestione dei processi in unix: con \func{fork} si crea un nuovo +processo, con \func{exec} si avvia un nuovo programma, con \func{exit} e +\func{wait} si effettua e verifica la conclusione dei programmi. Tutte le +altre funzioni sono ausiliarie e servono la lettura e il settaggio dei vari +parametri connessi ai processi. @@ -902,83 +1243,533 @@ di un processo \label{sec:proc_perms} In questa sezione esamineremo le problematiche relative al controllo di -accesso dal punto di vista del processi; gli identificativi usati, come questi -vengono modificati nella creazione e nel lancio di nuovi processi, e le varie -funzioni per la loro manipolazione diretta. +accesso dal punto di vista del processi; vedremo quali sono gli identificatori +usati, come questi possono essere modificati nella creazione e nel lancio di +nuovi processi, e le varie funzioni per la loro manipolazione diretta e tutte +le problematiche connesse alla gestione accorta dei privilegi. \subsection{Utente e gruppo di un processo} \label{sec:proc_user_group} -Abbiamo già accennato in \secref{sec:intro_multiuser} ad ogni utente ed gruppo -sono associati due identificatori univoci, lo \acr{uid} e il \acr{gid} che li -contraddistinguono nei confronti del kernel. Questi identificatori stanno alla -base del sistema di permessi e protezioni di un sistema unix, e vengono usati -anche nella gestione dei privilegi di accesso dei processi. - -In realtà ad ogni processo è associato un certo numero di identificatori, il -cui elenco è riportato \ntab, in genere questi derivano direttamente -dall'utente che ha lanciato il processo (attraverso i valori di \acr{uid} e -\acr{gid}), e vengono usati sia per il controllo di accesso ai file che per la -gestione dei privilegi associati ai processi stessi. +Come accennato in \secref{sec:intro_multiuser} il modello base\footnote{in + realtà già esistono estensioni di questo modello base, che lo rendono più + flessibile e controllabile, come le \textit{capabilities}, le ACL per i file + o il \textit{Mandatory Access Control} di SELinux} di sicurezza di un +sistema unix-like è fondato sui concetti di utente e gruppo, e sulla +separazione fra l'amministratore (\textsl{root}, detto spesso anche +\textit{superuser}) che non è sottoposto a restrizioni, ed il resto degli +utenti, per i quali invece vengono effettuati i vari controlli di accesso. + +%Benché il sistema sia piuttosto semplice (è basato su un solo livello di +% separazione) il sistema permette una +%notevole flessibilità, + +Abbiamo già accennato come il sistema associ ad ogni utente e gruppo due +identificatori univoci, lo \acr{uid} e il \acr{gid}; questi servono al kernel +per identificare uno specifico utente o un gruppo di utenti, per poi poter +controllare che essi siano autorizzati a compiere le operazioni richieste. Ad +esempio in \secref{sec:file_access_control} vedremo come ad ogni file vengano +associati un utente ed un gruppo (i suoi \textsl{proprietari}, indicati +appunto tramite un \acr{uid} ed un \acr{gid}) che vengono controllati dal +kernel nella gestione dei permessi di accesso. + +Dato che tutte le operazioni del sistema vengono compiute dai processi, è +evidente che per poter implementare un controllo sulle operazioni occorre +anche poter identificare chi è che ha lanciato un certo processo, e pertanto +anche a ciascuno di essi è associato un utente e a un gruppo. + +Un semplice controllo di una corrispondenza fra identificativi però non +garantisce però sufficiente flessibilità per tutti quei casi in cui è +necessario poter disporre di privilegi diversi, o dover impersonare un altro +utente per un limitato insieme di operazioni. Per questo motivo in generale +tutti gli unix prevedono che i processi abbiano almeno due gruppi di +identificatori, chiamati rispettivamente \textit{real} ed \textit{effective}. + \begin{table}[htb] + \footnotesize \centering - \begin{tabular}[c]{|c|l|l|} + \begin{tabular}[c]{|c|l|p{6.5cm}|} \hline - Sigla & Significato & Utilizzo \\ + \textbf{Suffisso} & \textbf{Significato} & \textbf{Utilizzo} \\ \hline \hline - \acr{ruid} & \textit{real user id} & indica l'utente reale che ha lanciato + \acr{uid} & \textit{real user id} & indica l'utente che ha lanciato il programma\\ - \acr{rgid} & \textit{real group id} & indica il gruppo reale dell'utente + \acr{gid} & \textit{real group id} & indica il gruppo dell'utente che ha lanciato il programma \\ - \acr{euid} & \textit{effective user id} & indica l'utente effettivo usato - dal programma \\ - \acr{egid} & \textit{effective group id} & indica il gruppo effettivo usato - dal programma \\ - & \textit{supplementary group id} & indica i gruppi cui + \hline + \acr{euid} & \textit{effective user id} & indica l'utente usato + dal programma nel controllo di accesso \\ + \acr{egid} & \textit{effective group id} & indica il gruppo + usato dal programma nel controllo di accesso \\ + -- & \textit{supplementary group id} & indica i gruppi cui l'utente appartiene \\ - \acr{suid} & \textit{saved user id} & indica l'utente \\ - \acr{sgid} & \textit{daved group id} & indica il gruppo \\ + \hline + -- & \textit{saved user id} & copia dell'\acr{euid} iniziale\\ + -- & \textit{saved group id} & copia dell'\acr{egid} iniziale \\ + \hline \acr{fsuid} & \textit{filesystem user id} & indica l'utente effettivo per il filesystem \\ \acr{fsgid} & \textit{filesystem group id} & indica il gruppo effettivo per il filesystem \\ \hline \end{tabular} - \caption{Identificatori di utente e gruppo associati a ciascun processo.} + \caption{Identificatori di utente e gruppo associati a ciascun processo con + indicazione dei suffissi usate dalle varie funzioni di manipolazione.} \label{tab:proc_uid_gid} \end{table} -Il \textit{real user id} e il \textit{real group id} indicano l'utente che ha -lanciato il processo, e vengono settati al login al valore standard di -\acr{uid} e \acr{gid} dell'utente letti direttamente da \file{/etc/passwd}. -Questi non vengono mai cambiati nella creazione di nuovi processi e restano -sempre gli stessi per tutti i processi avviati in una sessione. In realtà è -possibile modificarli (vedi \secref{sec:proc_setuid}), ma solo per un processo -che abbia i privilegi di amministratore (ed è così infatti che \cmd{login}, -che gira con i privilegi di amministratore, li setta ai valori corrispondenti -all'utente che entra nel sistema). - -L'\textit{effective user id}, l'\textit{effective group id} e gli eventuali -\textit{supplementary group id} sono gli identificativi usati per il controllo -di accesso ai file secondo quanto descritto in dettaglio in -\secref{sec:file_perm_overview}. Normalmente sono uguali al \textit{real user - id} e al \textit{real group id}, a meno che il file posto in esecuzione non -abbia i bit \acr{suid} o \acr{sgid} settati, nel qual caso vengono settati -rispettivamente all'\acr{uid} e \acr{gid} del file. +Al primo gruppo appartengono il \textit{real user ID} e il \textit{real group + ID}: questi vengono settati al login ai valori corrispondenti all'utente con +cui si accede al sistema (e relativo gruppo di default). Servono per +l'identificazione dell'utente e normalmente non vengono mai cambiati. In +realtà vedremo (in \secref{sec:proc_setuid}) che è possibile modificarli, ma +solo ad un processo che abbia i privilegi di amministratore; questa +possibilità è usata ad esempio da \cmd{login} che una volta completata la +procedura di autenticazione lancia una shell per la quale setta questi +identificatori ai valori corrispondenti all'utente che entra nel sistema. + +Al secondo gruppo appartengono l'\textit{effective user ID} e +l'\textit{effective group ID} (a cui si aggiungono gli eventuali +\textit{supplementary group id} dei gruppi dei quale l'utente fa parte). +Questi sono invece gli identificatori usati nella verifiche dei permessi del +processo e per il controllo di accesso ai file (argomento affrontato in +dettaglio in \secref{sec:file_perm_overview}). + +Questi identificatori normalmente sono identici ai corrispondenti del gruppo +\textsl{reale} tranne nel caso in cui, come visto in \secref{sec:proc_exec}, +il programma che si è posto in esecuzione abbia i bit \acr{suid} o \acr{sgid} +settati (il significato di questi bit è affrontato in dettaglio in +\secref{sec:file_suid_sgid}). In questo caso essi saranno settati all'utente e +al gruppo proprietari del file; questo consente, per programmi in cui ci sia +necessità, di dare a qualunque utente normale privilegi o permessi di +un'altro (o dell'amministratore). + +Come nel caso del \acr{pid} e del \acr{ppid} tutti questi identificatori +possono essere letti dal processo attraverso delle opportune funzioni, i cui +prototipi sono i seguenti: +\begin{functions} + \headdecl{unistd.h} + \headdecl{sys/types.h} + \funcdecl{uid\_t getuid(void)} Restituisce il \textit{real user ID} del + processo corrente. + + \funcdecl{uid\_t geteuid(void)} Restituisce l'\textit{effective user ID} del + processo corrente. + + \funcdecl{gid\_t getgid(void)} Restituisce il \textit{real group ID} del + processo corrente. + + \funcdecl{gid\_t getegid(void)} Restituisce l'\textit{effective group ID} del + processo corrente. + + \bodydesc{Queste funzioni non riportano condizioni di errore.} +\end{functions} + +In generale l'uso di privilegi superiori deve essere limitato il più +possibile, per evitare abusi e problemi di sicurezza, per questo occorre anche +un meccanismo che consenta ad un programma di rilasciare gli eventuali +maggiori privilegi necessari, una volta che si siano effettuate le operazioni +per i quali erano richiesti, e a poterli eventualmente recuperare in caso +servano di nuovo. + +Questo in Linux viene fatto usando altri due gruppi di identificatori, il +\textit{saved} ed il \textit{filesystem}, analoghi ai precedenti. Il primo +gruppo è lo stesso usato in SVr4, e previsto dallo standard POSIX quando è +definita la costante \macro{\_POSIX\_SAVED\_IDS}\footnote{in caso si abbia a + cuore la portabilità del programma su altri unix è buona norma controllare + sempre la disponibilità di queste funzioni controllando se questa costante è + definita}, il secondo gruppo è specifico di Linux e viene usato per +migliorare la sicurezza con NFS. Il \textit{saved user id} e il \textit{saved group id} sono copie dell'\textit{effective user id} e dell'\textit{effective group id} del -processo padre, e vengono settati all'avvio del processo, prima che -\textit{effective user id} e \textit{effective group id} vengano modificati -per tener conto di eventuali \acr{suid} o \acr{sgid}. +processo padre, e vengono settati dalla funzione \func{exec} all'avvio del +processo, come copie dell'\textit{effective user id} e dell'\textit{effective + group id} dopo che questo sono stati settati tenendo conto di eventuali +\acr{suid} o \acr{sgid}. Essi quindi consentono di tenere traccia di quale +fossero utente e gruppo effettivi all'inizio dell'esecuzione di un nuovo +programma. + +Il \textit{filesystem user id} e il \textit{filesystem group id} sono una +estensione introdotta in Linux per rendere più sicuro l'uso di NFS (torneremo +sull'argomento in \secref{sec:proc_setfsuid}). Essi sono una replica dei +corrispondenti \textit{effective id}, ai quali si sostituiscono per tutte le +operazioni di verifica dei permessi relativi ai file (trattate in +\secref{sec:file_perm_overview}). Ogni cambiamento effettuato sugli +\textit{effective id} viene automaticamente riportato su di essi, per cui in +condizioni normali se ne può tranquillamente ignorare l'esistenza, in quanto +saranno del tutto equivalenti ai precedenti. + +Uno specchietto riassuntivo, contenente l'elenco completo degli identificatori +di utente e gruppo associati dal kernel ad ogni processo, è riportato in +\tabref{tab:proc_uid_gid}. + + +\subsection{Le funzioni \func{setuid} e \func{setgid}} +\label{sec:proc_setuid} +Le due funzioni che vengono usate per cambiare identità (cioè utente e gruppo +di appartenenza) ad un processo sono rispettivamente \func{setuid} e +\func{setgid}; come accennato in \secref{sec:proc_user_group} in Linux esse +seguono la semantica POSIX che prevede l'esistenza di \textit{saved user id} e +\textit{saved group id}; i loro prototipi sono: +\begin{functions} +\headdecl{unistd.h} +\headdecl{sys/types.h} -\subsection{Le funzioni \texttt{setuid} e \texttt{setgid}} -\label{sec:proc_setuid} +\funcdecl{int setuid(uid\_t uid)} Setta l'\textit{user ID} del processo +corrente. + +\funcdecl{int setgid(gid\_t gid)} Setta il \textit{group ID} del processo +corrente. + +\bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso + di fallimento: l'unico errore possibile è \macro{EPERM}.} +\end{functions} + +Il funzionamento di queste due funzioni è analogo, per cui considereremo solo +la prima; la seconda si comporta esattamente allo stesso modo facendo +riferimento al \textit{group id} invece che all'\textit{user id}. Gli +eventuali \textit{supplementary group id} non vengono modificati da nessuna +delle funzioni che tratteremo in questa sezione. + + +L'effetto della chiamata è diverso a seconda dei privilegi del processo; se +l'\textit{effective user id} è zero (cioè è quello dell'amministratore di +sistema) allora tutti gli identificatori (\textit{real}, \textit{effective} +e \textit{saved}) vengono settati al valore specificato da \var{uid}, +altrimenti viene settato solo l'\textit{effective user id}, e soltanto se il +valore specificato corrisponde o al \textit{real user id} o al \textit{saved + user id}. Negli altri casi viene segnalato un errore (con \macro{EPERM}). + +Come accennato l'uso principale di queste funzioni è quello di poter +consentire ad un programma con i bit \acr{suid} o \acr{sgid} settati di +riportare l'\textit{effective user id} a quello dell'utente che ha lanciato il +programma, effettuare il lavoro che non necessita di privilegi aggiuntivi, ed +eventualmente tornare indietro. + +Come esempio per chiarire dell'uso di queste funzioni prediamo quello con cui +viene gestito l'accesso al file \file{/var/log/utmp}. In questo file viene +registrato chi sta usando il sistema al momento corrente; chiaramente non può +essere lasciato aperto in scrittura a qualunque utente, che potrebbe +falsificare la registrazione. Per questo motivo questo file (e l'analogo +\file{/var/log/wtmp} su cui vengono registrati login e logout) appartengono ad +un gruppo dedicato (\acr{utmp}) ed i programmi che devono accedervi (ad +esempio tutti i programmi di terminale in X, o il programma \cmd{screen} +che crea terminali multipli su una console) appartengono a questo gruppo ed +hanno il bit \acr{sgid} settato. + +Quando uno di questi programmi (ad esempio \cmd{xterm}) viene lanciato la +situazione degli identificatori è la seguente: +\begin{eqnarray*} + \label{eq:1} + \textit{real group id} &=& \textrm{\acr{gid} (del chiamante)} \\ + \textit{effective group id} &=& \textrm{\acr{utmp}} \\ + \textit{saved group id} &=& \textrm{\acr{utmp}} +\end{eqnarray*} +in questo modo, dato che l'\textit{effective group id} è quello giusto, il +programma può accedere a \file{/var/log/utmp} in scrittura ed aggiornarlo, a +questo punto il programma può eseguire una \func{setgid(getgid())} per settare +l'\textit{effective group id} a quello dell'utente (e dato che il \textit{real + group id} corrisponde la funzione avrà successo), in questo modo non sarà +possibile lanciare dal terminale programmi che modificano detto file, in tal +caso infatti la situazione degli identificatori sarebbe: +\begin{eqnarray*} + \label{eq:2} + \textit{real group id} &=& \textrm{\acr{gid} (invariato)} \\ + \textit{effective group id} &=& \textrm{\acr{gid}} \\ + \textit{saved group id} &=& \textrm{\acr{utmp} (invariato)} +\end{eqnarray*} +e ogni processo lanciato dal terminale avrebbe comunque \acr{gid} come +\textit{effective group id}. All'uscita dal terminale, per poter di nuovo +aggiornare lo stato di \file{/var/log/utmp} il programma eseguirà una +\func{setgid(utmp)} (dove \var{utmp} è il valore numerico associato al gruppo +\acr{utmp}, ottenuto ad esempio con una \func{getegid}), dato che in questo +caso il valore richiesto corrisponde al \textit{saved group id} la funzione +avrà successo e riporterà la situazione a: +\begin{eqnarray*} + \label{eq:3} + \textit{real group id} &=& \textrm{\acr{gid} (invariato)} \\ + \textit{effective group id} &=& \textrm{\acr{utmp}} \\ + \textit{saved group id} &=& \textrm{\acr{utmp} (invariato)} +\end{eqnarray*} +consentendo l'accesso a \file{/var/log/utmp}. + +Occorre però tenere conto che tutto questo non è possibile con un processo con +i privilegi di root, in tal caso infatti l'esecuzione una \func{setuid} +comporta il cambiamento di tutti gli identificatori associati al processo, +rendendo impossibile riguadagnare i privilegi di amministratore. Questo +comportamento è corretto per l'uso che ne fa \cmd{login} una volta che crea +una nuova shell per l'utente; ma quando si vuole cambiare soltanto +l'\textit{effective user id} del processo per cedere i privilegi occorre +ricorrere ad altre funzioni (si veda ad esempio \secref{sec:proc_seteuid}). + + +\subsection{Le funzioni \func{setreuid} e \func{setresuid}} +\label{sec:proc_setreuid} + +Queste due funzioni derivano da BSD che non supportando\footnote{almeno fino + alla versione 4.3+BSD TODO, verificare e aggiornare la nota} i \textit{saved + id} le usava per poter scambiare fra di loro effective e real id. I +prototipi sono: +\begin{functions} +\headdecl{unistd.h} +\headdecl{sys/types.h} + +\funcdecl{int setreuid(uid\_t ruid, uid\_t euid)} Setta il \textit{real user + ID} e l'\textit{effective user ID} del processo corrente ai valori +specificati da \var{ruid} e \var{euid}. + +\funcdecl{int setregid(gid\_t rgid, gid\_t egid)} Setta il \textit{real group + ID} e l'\textit{effective group ID} del processo corrente ai valori +specificati da \var{rgid} e \var{egid}. +\bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso + di fallimento: l'unico errore possibile è \macro{EPERM}.} +\end{functions} + +I processi non privilegiati possono settare i \textit{real id} soltanto ai +valori dei loro \textit{effective id} o \textit{real id} e gli +\textit{effective id} ai valori dei loro \textit{real id}, \textit{effective + id} o \textit{saved id}; valori diversi comportano il fallimento della +chiamata; l'amministratore invece può specificare un valore qualunque. +Specificando un valore di -1 l'identificatore corrispondente viene lasciato +inalterato. + +Con queste funzione si possono scambiare fra loro \textit{real id} e +\textit{effective id}, e pertanto è possibile implementare un comportamento +simile a quello visto in precedenza per \func{setgid}, cedendo i privilegi con +un primo scambio, e recuperandoli, eseguito il lavoro non privilegiato, con un +secondo scambio. + +In questo caso però occorre porre molta attenzione quando si creano nuovi +processi nella fase intermedia in cui si sono scambiati gli identificatori, in +questo caso infatti essi avranno un \textit{real id} privilegiato, che dovrà +essere esplicitamente eliminato prima di porre in esecuzione un nuovo +programma (occorrerà cioè eseguire un'altra chiamata dopo la \func{fork}, e +prima della \func{exec} per uniformare i \textit{real id} agli +\textit{effective id}) in caso contrario quest'ultimo potrebbe a sua volta +effettuare uno scambio e riottenere privilegi non previsti. + +Lo stesso problema di propagazione dei privilegi ad eventuali processi figli +si porrebbe per i \textit{saved id}. Queste funzioni derivano da +un'implementazione che non ne prevede la presenza, e quindi non è possibile +usarle per correggere la situazione come nel caso precedente, per questo +motivo tutte le volte che uno degli identificatori viene modificato ad un +valore diverso dal precedente \textit{real id}, il \textit{saved id} viene +sempre settato al valore dell'\textit{effective id}. + + +\subsection{Le funzioni \func{setresuid} e \func{setresgid}} +\label{sec:proc_setresuid} + +Queste due funzioni sono una estensione introdotta in Linux dal kernel 2.1.44, +e permettono un completo controllo su tutti gli identificatori (\textit{real}, +\textit{effective} e \textit{saved}), i prototipi sono: +\begin{functions} +\headdecl{unistd.h} +\headdecl{sys/types.h} + +\funcdecl{int setresuid(uid\_t ruid, uid\_t euid, uid\_t suid)} Setta il +\textit{real user ID}, l'\textit{effective user ID} e il \textit{saved user + ID} del processo corrente ai valori specificati rispettivamente da +\var{ruid}, \var{euid} e \var{suid}. + +\funcdecl{int setresgid(gid\_t rgid, gid\_t egid, gid\_t sgid)} Setta il +\textit{real group ID}, l'\textit{effective group ID} e il \textit{saved group + ID} del processo corrente ai valori specificati rispettivamente da +\var{rgid}, \var{egid} e \var{sgid}. + +\bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso + di fallimento: l'unico errore possibile è \macro{EPERM}.} +\end{functions} + +I processi non privilegiati possono cambiare uno qualunque degli +identificatori usando uno qualunque dei valori correnti di \textit{real id}, +\textit{effective id} o \textit{saved id}, l'amministratore può specificare i +valori che vuole; un valore di -1 per un qualunque parametro lascia inalterato +l'identificatore corrispondente. -\subsection{Le funzioni \texttt{seteuid} e \texttt{setegid}} + + +\subsection{Le funzioni \func{seteuid} e \func{setegid}} \label{sec:proc_seteuid} +Queste funzioni sono un'estensione allo standard POSIX.1 (ma sono comunque +supportate dalla maggior parte degli unix) e usate per cambiare gli +\textit{effective id}; i loro prototipi sono: +\begin{functions} +\headdecl{unistd.h} +\headdecl{sys/types.h} + +\funcdecl{int seteuid(uid\_t uid)} Setta l'\textit{effective user ID} del +processo corrente a \var{uid}. + +\funcdecl{int setegid(gid\_t gid)} Setta l'\textit{effective group ID} del +processo corrente a \var{gid}. + +\bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso + di fallimento: l'unico errore possibile è \macro{EPERM}.} +\end{functions} + +Gli utenti normali possono settare l'\textit{effective id} solo al valore del +\textit{real id} o del \textit{saved id}, l'amministratore può specificare +qualunque valore. Queste funzioni sono usate per permettere a root di settare +solo l'\textit{effective id}, dato che l'uso normale di \func{setuid} comporta +il settaggio di tutti gli identificatori. + + +\subsection{Le funzioni \func{setfsuid} e \func{setfsgid}} +\label{sec:proc_setfsuid} + +Queste funzioni sono usate per settare gli identificatori usati da Linux per +il controllo dell'accesso ai file. Come già accennato in +\secref{sec:proc_user_group} in Linux è definito questo ulteriore gruppo di +identificatori, che di norma sono assolutamente equivalenti agli +\textit{effective id}, dato che ogni cambiamento di questi ultimi viene +immediatamente riportato sui \textit{filesystem id}. + +C'è un solo caso in cui si ha necessità di introdurre una differenza fra +\textit{effective id} e \textit{filesystem id}, ed è per ovviare ad un +problema di sicurezza che si presenta quando si deve implementare un server +NFS. Il server NFS infatti deve poter cambiare l'identificatore con cui accede +ai file per assumere l'identità del singolo utente remoto, ma se questo viene +fatto cambiando l'\textit{effective id} o il \textit{real id} il server si +espone alla ricezione di eventuali segnali ostili da parte dell'utente di cui +ha temporaneamente assunto l'identità. Cambiando solo il \textit{filesystem + id} si ottengono i privilegi necessari per accedere ai file, mantenendo +quelli originari per quanto riguarda tutti gli altri controlli di accesso. + +Le due funzioni usate per cambiare questi identificatori sono \func{setfsuid} +e \func{setfsgid}, ovviamente sono specifiche di Linux e non devono essere +usate se si intendono scrivere programmi portabili; i loro prototipi sono: +\begin{functions} +\headdecl{sys/fsuid.h} + +\funcdecl{int setfsuid(uid\_t fsuid)} Setta il \textit{filesystem user ID} del +processo corrente a \var{fsuid}. + +\funcdecl{int setfsgid(gid\_t fsgid)} Setta l'\textit{filesystem group ID} del +processo corrente a \var{fsgid}. + +\bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso + di fallimento: l'unico errore possibile è \macro{EPERM}.} +\end{functions} + +Queste funzioni hanno successo solo se il processo chiamante ha i privilegi di +amministratore o, per gli altri utenti, se il valore specificato coincide con +uno dei \textit{real}, \textit{effective} o \textit{saved id}. + + +\section{Problematiche di programmazione multitasking} +\label{sec:proc_multi_prog} + +Benché i processi siano strutturati in modo da apparire il più possibile come +indipendenti l'uno dall'altro, nella programmazione in un sistema multiutente +occorre tenere conto di tutta una serie di problematiche che normalmente non +esistono quando si ha a che fare con un sistema in cui viene eseguito un solo +programma alla volta. + +Pur non essendo tutto questo direttamente legato alla modalità specifica in +cui il multitasking è implementato in un sistema unix-like, né al solo +concetto di multitasking (le stesse problematiche si presentano ad esempio +nella gestione degli interrupt hardware), in questa sezione conclusiva del +capitolo in cui abbiamo affrontato la gestione dei processi, introdurremo +sinteticamente queste problematiche, che ritroveremo a più riprese in capitoli +successivi, con una breve definizione della terminologia e delle loro +caratteristiche di fondo. + + +\subsection{Le operazioni atomiche} +\label{sec:proc_atom_oper} + +La nozione di \textsl{operazione atomica} deriva dal significato greco della +parola atomo, cioè indivisibile; si dice infatti che una operazione è atomica +quando si ha la certezza che, qualora essa venga effettuata, tutti i passaggi +che devono essere compiuti per realizzarla verranno eseguiti senza possibilità +di interruzione in una fase intermedia. + +In un ambiente multitasking il concetto è essenziale, dato che un processo può +essere interrotto in qualunque momento dal kernel che mette in esecuzione un +altro processo o dalla ricezione di un segnale; occorre pertanto essere +accorti nei confronti delle possibili \textit{race condition} (vedi +\secref{sec:proc_race_cond}) derivanti da operazioni interrotte in una fase in +cui non erano ancora state completate. + +Nel caso dell'interazione fra processi la situazione è molto più semplice, ed +occorre preoccuparsi della atomicità delle operazioni solo quando si ha a che +fare con meccanismi di intercomunicazione (che esamineremo in dettaglio in +\capref{cha:IPC}) o nella operazioni con i file (vedremo alcuni esempi in +\secref{sec:file_atomic}). In questi casi in genere l'uso delle appropriate +funzioni di libreria per compiere le operazioni necessarie è garanzia +sufficiente di atomicità in quanto le system call con cui esse sono realizzate +non possono essere interrotte (o subire interferenze pericolose) da altri +processi. + +Nel caso dei segnali invece la situazione è molto più delicata, in quanto lo +stesso processo, e pure alcune system call, possono essere interrotti in +qualunque momento, e le operazioni di un eventuale \textit{signal handler} +sono compiute nello stesso spazio di indirizzi del processo. Per questo anche +solo il solo accesso o l'assegnazione di una variabile possono non essere più +operazioni atomiche (torneremo su questi aspetti in \secref{sec:sign_xxx}). + +In questo caso il sistema provvede un tipo di dato, il \type{sig\_atomic\_t}, +il cui accesso è assicurato essere atomico. In pratica comunque si può +assumere che in ogni piattaforma su cui è implementato Linux il tipo +\type{int} (e gli altri interi di dimensione inferiore) ed i puntatori sono +atomici. Non è affatto detto che lo stesso valga per interi di dimensioni +maggiori (in cui l'accesso può comportare più istruzioni in assembler) o per +le strutture. In questi casi è anche opportuno marcare come \type{volatile} le +variabili che possono essere interessate ad accesso condiviso, onde evitare +problemi con le ottimizzazioni del codice. + + +\subsection{Le \textit{race condition} e i \textit{deadlock}} +\label{sec:proc_race_cond} + +Si definisce una \textit{race condition} il caso in cui diversi processi +stanno cercando di fare qualcosa con una risorsa comune ed il risultato finale +viene a dipendere dall'ordine di esecuzione dei medesimi. Ovviamente dato che +l'ordine di esecuzione di un processo rispetto agli altri, senza appositi +meccanismi di sincronizzazione, non è assolutamente prevedibile, queste +situazioni sono fonti di errori molto subdoli, che possono verificarsi solo in +condizioni particolari e quindi difficilmente riproducibili. + +Casi tipici di \textit{race condition} si hanno quando diversi processi +accedono allo stesso file, o nell'accesso a meccanismi di intercomunicazione +come la memoria condivisa. In questi casi, se non si dispone della possibilità +di eseguire atomicamente le operazioni necessarie, occorre che le risorse +condivise siano opportunamente protette da meccanismi di sincronizzazione +(torneremo su queste problematiche di questo tipo in \secref{sec:ipc_semaph}). + +Un caso particolare di \textit{race condition} sono poi i cosiddetti +\textit{deadlock}; l'esempio tipico è quello di un flag di ``occupazione'' che +viene rilasciato da un evento asincrono fra il controllo (in cui viene trovato +occupato) e la successiva messa in attesa, che a questo punto diventerà +perpetua (da cui il nome di \textit{deadlock}) in quanto l'evento di sblocco +del flag è stato perso fra il controllo e la messa in attesa. + + +\subsection{Le funzioni rientranti} +\label{sec:proc_reentrant} + +Si dice rientrante una funzione che può essere interrotta in qualunque momento +ed essere chiamata da capo (da questo il nome) da un altro filone di +esecuzione (thread e manipolatori di segnali sono i casi in cui occorre +prestare attenzione a questa problematica) senza che questo comporti nessun +problema. + +In genere una funzione non è rientrante se opera direttamente su memoria che +non è nello stack. Ad esempio una funzione non è rientrante se usa una +variabile globale o statica od un oggetto allocato dinamicamente che trova da +sola: due chiamate alla stessa funzione interferiranno. Una funzione può non +essere rientrante se usa e modifica un oggetto che le viene fornito dal +chiamante: due chiamate possono interferire se viene passato lo stesso +oggetto. + +Le glibc mettono a disposizione due macro di compilatore \macro{\_REENTRANT} e +\macro{\_THREAD\_SAFE} per assicurare che siano usate delle versioni rientranti +delle funzioni di libreria. +