X-Git-Url: https://gapil.gnulinux.it/gitweb/?p=gapil.git;a=blobdiff_plain;f=filedir.tex;h=1f0edcd66b40e82a0c62684b45025bd8aeb4170a;hp=8f64ac0fa656e4ab8e49d2a4cfc241ec00724d5e;hb=429f6e0da8fc282eb6611b6fe83fdf58ae8da611;hpb=66765a9be9a61085dd00abd92d99a24b23dc844b diff --git a/filedir.tex b/filedir.tex index 8f64ac0..1f0edcd 100644 --- a/filedir.tex +++ b/filedir.tex @@ -1,190 +1,1044 @@ -\chapter{Files e directories} +\chapter{File e directory} \label{cha:files_and_dirs} -In questo capitolo tratteremo in dettaglio le varie caratteristiche di files e -directories, ed in particolare approfondiremo i dettagli su come è organizzata -la struttura dei files in un sistema unix; esamineremo poi come è strutturato -il sistema base di protezioni e controllo di accesso ai files, e tutta -l'interfaccia che permette la manipolazione dei vari attributi di files e -directories. Tutto quello che riguarda invece la manipolazione dei contenuti è -lasciato ai capitoli successivi. - -Le funzioni che esamineremo in questo capitolo pertanto sono quelle che -permettono di creare e cancellare o leggere le directories, rinominare o -cancellare i files ed esaminare o cambiare i loro attributi. - - -\section{L'organizzazione di files e directories} -\label{sec:filedir_org} - -L'organizzazione dei nomi dei file deriva direttamente dall'organizzazione dei -medesimi nell'albero descritto brevemente in \secref{sec:fileintr_overview}; -una directory comunque, come già specificato in \secref{sec:fileintr_vfs}, è -solo un particolare tipo di file che contiene le informazioni che associano un -nome al contenuto. Per questo, anche se è usuale parlare di ``file in una -directory'' in realtà una directory contiene solo delle etichette per fare -riferimento ai file stessi. - -I manuale delle librerie del C chiama i nomi contenuti nelle directory -\textsl{componenti} (in inglese \textit{file name components}), noi li -chiameremo più semplicemente nomi. Un file può essere indicato rispetto alla -directory corrente semplicemente specificando il nome da essa contenuto. Una -directory contiene semplicemente un elenco di questi nomi, che possono -corrispondere a un qualunque oggetto del filesystem, compresa un'altra -directory; l'albero viene appunto creato inserendo directory in altre -directory. +In questo capitolo tratteremo in dettaglio le modalità con cui si gestiscono +file e directory, ed in particolare esamineremo come è strutturato il sistema +base di protezioni e controllo di accesso ai file, e tutta l'interfaccia che +permette la manipolazione dei vari attributi di file e directory. Tutto quello +che riguarda invece la manipolazione del contenuto dei file è lasciato ai +capitoli successivi. -Il nome completo di file generico è composto da una serie di questi -\textsl{componenti} separati da una \texttt{/} (in Linux più \texttt{/} -consecutive sono considerate equivalenti ad una sola). Il nome completo di un -file viene usualmente chiamato \textit{pathname}, e anche se il manuale della -glibc depreca questo nome (poiché genererebbe confusione, dato che con -\textit{path} si indica anche un insieme di directory su cui effettuare una -ricerca, come quello in cui si cercano i comandi) l'uso è ormai così comune -che è senz'altro più chiaro dell'alternativa proposta. - -Il processo con cui si associa ad un pathname uno specifico file è chiamato -risoluzione del nome (\textit{file name resolution} o \textit{pathname - resolution}). La risoluzione viene fatta esaminando il pathname da destra a -sinistra e localizzando ogni nome nella directory indicata dal nome -precedente: ovviamente perché il procedimento funzioni occorre che i nomi -indicati come directory esistano e siano effettivamente directory, inoltre i -permessi devono consentire l'accesso. - -Se il pathname comincia per \texttt{/} la ricerca parte dalla directory radice -del processo; questa, a meno di un \textit{chroot} (su cui torneremo in -seguito, vedi \secref{sec:xxx_chroot}) è la stessa per tutti i processi ed -equivale alla directory radice dell'albero (come descritto in -\secref{sec:fileintr_overview}): in questo caso si parla di un pathname -\textsl{assoluto}. Altrimenti la ricerca parte dalla directory corrente (su -cui torneremo più avanti in \secref{sec:filedir_work_dir}) ed il pathname è -detto \textsl{relativo}. - -I nomi \texttt{.} e \texttt{..} hanno un significato speciale e vengono -inseriti in ogni directory, il primo fa riferimento alla directory corrente e -il secondo alla directory \textsl{genitore} (\textit{parent directory}) cioè -la directory che contiene il riferimento alla directory corrente; nel caso -questa sia la directory radice allora il riferimento è a se stessa. - - -\section{L'architettura di gestione dei file} -\label{sec:filedir_file_handling} - -Per capire fino in fondo le proprietà di files e directories in un sistema -unix ed il funzionamento delle relative funzioni di manipolazione occorre una -breve introduzione sulla gestione dei medesimo e sugli oggetti su cui è basato -un filesystem unix; in particolare si riprenderà, approfondendolo sul piano -dell'uso nelle funzioni di libreria, il concetto di \textit{inode} di cui -abbiamo brevemente accennato le caratteristiche (dal lato dell'implementazione -nel kernel) in \secref{sec:fileintr_vfs}. - - -\subsection{Il funzionamento di un filesystem unix} -\label{sec:filedir_filesystem} - -Come già accennato in \secref{sec:fileintr_overview} Linux (ed ogni unix in -generale) organizza i dati che tiene su disco attraverso l'uso di un -filesystem. Una delle caratteristiche di Linux rispetto agli altri unix è -quella di poter supportare grazie al VFS una enorme quantità di filesystem -diversi, ognuno dei quali ha una sua particolare struttura e funzionalità -proprie; per questo non entreremo nei dettagli di un filesystem specifico, ma -daremo una descrizione a grandi linee che si adatta alle caratteristiche -comuni di un qualunque filesystem standard unix. - -Dato un disco lo spazio fisico viene usualmente diviso in partizioni; ogni -partizione può contenere un filesystem; quest'ultimo è in genere strutturato -secondo \nfig, con una lista di inodes all'inizio e il resto dello spazio a -disposizione per i dati e le directory. -\begin{figure}[htb] + +\section{Il controllo di accesso ai file} +\label{sec:file_access_control} + +Una delle caratteristiche fondamentali di tutti i sistemi unix-like è quella +del controllo di accesso ai file, che viene implementato per qualunque +filesystem standard. In questa sezione ne esamineremo i concetti essenziali e +le funzioni usate per gestirne i vari aspetti. + + +\subsection{I permessi per l'accesso ai file} +\label{sec:file_perm_overview} + +Il controllo di accesso ai file in unix segue un modello abbastanza semplice +(ma adatto alla gran parte delle esigenze) in cui si dividono i permessi su +tre livelli. Si tenga conto poi che quanto diremo è vero solo per filesystem +di tipo unix, e non è detto che sia applicabile a un filesystem +qualunque\footnote{ed infatti non è vero per il filesystem vfat di Windows, + per il quale i permessi vengono assegnati in maniera fissa con un opzione in + fase di montaggio}. Esistono inoltre estensioni che permettono di +implementare le ACL (\textit{Access Control List}) che sono un meccanismo di +controllo di accesso molto più sofisticato. + +Ad ogni file unix associa sempre l'utente che ne è proprietario (il cosiddetto +\textit{owner}) e il gruppo di appartenenza, secondo il meccanismo degli +identificatori di utenti e gruppi (\acr{uid} e \acr{gid}). Questi valori +sono accessibili da programma tramite i campi \var{st\_uid} e \var{st\_gid} +della struttura \var{stat} (si veda \secref{sec:file_stat}). Ad ogni file +viene inoltre associato un insieme di permessi che sono divisi in tre classi, +e cioè attribuiti rispettivamente all'utente proprietario del file, a un +qualunque utente faccia parte del gruppo cui appartiene il file, e a tutti gli +altri utenti. + +I permessi, così come vengono presi dai comandi e dalle routine di sistema, +sono espressi da un numero di 12 bit; di questi i nove meno significativi sono +usati a gruppi di tre per indicare i permessi base di lettura, scrittura ed +esecuzione (indicati nei comandi di sistema con le lettere \cmd{w}, \cmd{r} e +\cmd{x}) ed applicabili rispettivamente al proprietario, al gruppo, a tutti +gli altri. I restanti tre bit (\acr{suid}, \acr{sgid}, e +\textsl{sticky}) sono usati per indicare alcune caratteristiche più complesse +su cui torneremo in seguito (vedi \secref{sec:file_suid_sgid} e +\secref{sec:file_sticky}). + +Anche i permessi, come tutte le altre informazioni generali, sono tenuti per +ciascun file nell'inode; in particolare essi sono contenuti in alcuni bit +del campo \var{st\_mode} della struttura letta da \func{stat} (di nuovo si veda +\secref{sec:file_stat} per i dettagli). + +In genere ci si riferisce a questo raggruppamento dei permessi usando le +lettere \cmd{u} (per \textit{user}), \cmd{g} (per \textit{group}) e \cmd{o} +(per \textit{other}), inoltre se si vuole indicare tutti i raggruppamenti +insieme si usa la lettera \cmd{a} (per \textit{all}). Si tenga ben presente +questa distinzione dato che in certi casi, mutuando la terminologia in uso nel +VMS, si parla dei permessi base come di permessi per \textit{owner}, +\textit{group} ed \textit{all}, le cui iniziali possono dar luogo a confusione. +Le costanti che permettono di accedere al valore numerico di questi bit nel +campo \var{st\_mode} sono riportate in \ntab. + +\begin{table}[htb] \centering + \footnotesize + \begin{tabular}[c]{|c|l|} + \hline + \var{st\_mode} bit & Significato \\ + \hline + \hline + \macro{S\_IRUSR} & \textit{user-read}, l'utente può leggere \\ + \macro{S\_IWUSR} & \textit{user-write}, l'utente può scrivere \\ + \macro{S\_IXUSR} & \textit{user-execute}, l'utente può eseguire \\ + \hline + \macro{S\_IRGRP} & \textit{group-read}, il gruppo può leggere \\ + \macro{S\_IWGRP} & \textit{group-write}, il gruppo può scrivere \\ + \macro{S\_IXGRP} & \textit{group-execute}, il gruppo può eseguire\\ + \hline + \macro{S\_IROTH} & \textit{other-read}, tutti possono leggere \\ + \macro{S\_IWOTH} & \textit{other-write}, tutti possono scrivere \\ + \macro{S\_IXOTH} & \textit{other-execute}, tutti possono eseguire\\ + \hline + \end{tabular} + \caption{I bit dei permessi di accesso ai file, come definiti in + \texttt{}} + \label{tab:file_bit_perm} +\end{table} + +Questi permessi vengono usati in maniera diversa dalle varie funzioni, e a +seconda che si riferiscano a file, link simbolici o directory, qui ci +limiteremo ad un riassunto delle regole generali, entrando nei +dettagli più avanti. + +La prima regola è che per poter accedere ad un file attraverso il suo pathname +occorre il permesso di esecuzione in ciascuna delle directory che compongono +il pathname, e lo stesso vale per aprire un file nella directory corrente (per +la quale appunto serve il diritto di esecuzione). + +Per una directory infatti il permesso di esecuzione ha il significato +specifico che essa può essere attraversata nella risoluzione del pathname, ed +è distinto dal permesso di lettura che invece implica che si può leggere il +contenuto della directory. Questo significa che se si ha il permesso di +esecuzione senza permesso di lettura si potrà lo stesso aprire un file in una +directory (se si hanno i permessi opportuni per il medesimo) ma non si potrà +vederlo con \cmd{ls} (per crearlo occorrerà anche il permesso di scrittura per +la directory). + +Avere il permesso di lettura per un file consente di aprirlo con le opzioni di +sola lettura (\macro{O\_RDONLY}) o di lettura-scrittura (\macro{O\_RDWR}) e +leggerne il contenuto. Avere il permesso di scrittura consente di aprire un +file in sola scrittura (\macro{O\_WRONLY}) o lettura-scrittura +(\macro{O\_RDWR}) e modificarne il contenuto, lo stesso permesso è necessario +per poter troncare il file con l'opzione \macro{O\_TRUNC}. + +Non si può creare un file fintanto che non si disponga del permesso di +esecuzione e di quello di scrittura per la directory di destinazione; gli +stessi permessi occorrono per cancellare un file da una directory (si ricordi +che questo non implica necessariamente la rimozione del contenuto del file dal +disco), non è necessario nessun tipo di permesso per il file stesso (infatti +esso non viene toccato, viene solo modificato il contenuto della directory, +rimuovendo la voce che ad esso fa rifermento). + +Per poter eseguire un file (che sia un programma compilato od uno script di +shell, od un altro tipo di file eseguibile riconosciuto dal kernel), occorre +avere il permesso di esecuzione, inoltre solo i file regolari possono essere +eseguiti. + +I permessi per un link simbolico sono ignorati, contano quelli del file a cui +fa riferimento; per questo in genere \cmd{ls} per un link simbolico riporta +tutti i permessi come concessi; utente e gruppo a cui esso appartiene vengono +ignorati quando il link viene risolto, vengono controllati solo quando viene +richiesta la rimozione del link e quest'ultimo è in una directory con lo +\textsl{sticky bit} settato (si veda \secref{sec:file_sticky}). + +La procedura con cui il kernel stabilisce se un processo possiede un certo +permesso (di lettura, scrittura o esecuzione) si basa sul confronto fra +l'utente e il gruppo a cui il file appartiene (i valori di \var{st\_uid} e +\var{st\_gid} accennati in precedenza) e l'\textit{effective user id}, +l'\textit{effective group id} e gli eventuali \textit{supplementary group id} +del processo. + +Per una spiegazione dettagliata degli identificatori associati ai processi si +veda \secref{sec:proc_perms}; normalmente, a parte quanto vedremo in +\secref{sec:file_suid_sgid}, l'\textit{effective user id} e +l'\textit{effective group id} corrispondono a \acr{uid} e \acr{gid} +dell'utente che ha lanciato il processo, mentre i \textit{supplementary group + id} sono quelli dei gruppi cui l'utente appartiene. + +I passi attraverso i quali viene stabilito se il processo possiede il diritto +di accesso sono i seguenti: +\begin{itemize} +\item Se l'\textit{effective user id} del processo è zero (corrispondente + all'amministratore) l'accesso è sempre garantito senza nessun ulteriore + controllo. Per questo motivo \textsl{root} ha piena libertà di accesso a + tutti i file. +\item Se l'\textit{effective user id} del processo è uguale all'uid del + proprietario del file (nel qual caso si dice che il processo è proprietario + del file) allora: + \begin{itemize} + \item se il relativo\footnote{per relativo si intende il bit di user-read se + il processo vuole accedere in scrittura, quello di user-write per + l'accesso in scrittura, etc.} bit dei permessi d'accesso dell'utente è + settato, l'accesso è consentito + \item altrimenti l'accesso è negato + \end{itemize} +\item Se l'\textit{effective group id} del processo o uno dei + \textit{supplementary group id} dei processi corrispondono al \acr{gid} del + file allora: + \begin{itemize} + \item se il bit dei permessi d'accesso del gruppo è settato, l'accesso è + consentito, + \item altrimenti l'accesso è negato + \end{itemize} +\item se il bit dei permessi d'accesso per tutti gli altri è settato, + l'accesso è consentito, altrimenti l'accesso è negato. +\end{itemize} + +Si tenga presente che questi passi vengono eseguiti esattamente in +quest'ordine. Questo vuol dire che se un processo è il proprietario di un file +l'accesso è consentito o negato solo sulla base dei permessi per l'utente; i +permessi per il gruppo non vengono neanche controllati; lo stesso vale se il +processo appartiene ad un gruppo appropriato, in questo caso i permessi per +tutti gli altri non vengono controllati. + + +\subsection{I bit \acr{suid} e \acr{sgid}} +\label{sec:file_suid_sgid} + +Come si è accennato (in \secref{sec:file_perm_overview}) nei dodici bit del +campo \var{st\_mode} usati per il controllo di accesso oltre ai bit dei +permessi veri e propri, ci sono altri tre bit che vengono usati per indicare +alcune proprietà speciali dei file. Due di questi sono i bit detti +\acr{suid} (o \textit{set-user-ID bit}) e \acr{sgid} (o +\textit{set-group-ID bit}) che sono identificati dalle constanti +\macro{S\_ISUID} e \macro{S\_ISGID}. + +Come spiegato in dettaglio in \secref{sec:proc_exec}, quando si lancia un +programma il comportamendo normale del kernel è quello di settare +l'\textit{effective user id} e l'\textit{effective group id} del nuovo +processo all'\acr{uid} e al \acr{gid} del processo corrente, che normalmente +corrispondono dell'utente con cui si è entrati nel sistema. + +Se però il file del programma\footnote{per motivi di sicurezza il kernel + ignora i bit \acr{suid} e \acr{sgid} per gli script eseguibili} (che +ovviamente deve essere eseguibile) ha il bit \acr{suid} settato, il kernel +assegnerà come \textit{effective user id} al nuovo processo l'uid del +proprietario del file al posto dell'uid del processo originario. Avere il bit +\acr{sgid} settato ha lo stesso effetto sull'\textit{effective group id} del +processo. + +I bit \textsl{suid} e \textsl{sgid} vengono usati per permettere agli utenti +normali di usare programmi che abbisognano di privilegi speciali; l'esempio +classico è il comando \cmd{passwd} che ha la necessità di modificare il file +delle password, quest'ultimo ovviamente può essere scritto solo +dall'amministratore, ma non è necessario chiamare l'amministratore per +cambiare la propria password. Infatti il comando \cmd{passwd} appartiene a +root ma ha il bit suid settato per cui quando viene lanciato da un utente +normale parte con i privilegi di root. + +Chiaramente avere un processo che ha privilegi superiori a quelli che avrebbe +normalmente l'utente che lo ha lanciato comporta vari rischi, e questo tipo di +programmi devono essere scritti accuratamente per evitare che possano essere +usati per guadagnare privilegi non consentiti (torneremo sull'argomento in +\secref{sec:proc_perms}). + +La presenza dei bit \acr{suid} e \acr{sgid} su un file può essere +rilevata con il comando \cmd{ls -l}, in tal caso comparirà la lettera \cmd{s} +al posto della \cmd{x} in corrispondenza dei permessi di utente o gruppo. La +stessa lettera \cmd{s} può essere usata nel comando \cmd{chmod} per settare +questi bit. Infine questi bit possono essere controllati all'interno di +\var{st\_mode} con l'uso delle due costanti \macro{S\_ISUID} e +\macro{S\_IGID}, i cui valori sono riportati in +\tabref{tab:file_mode_flags}. + +Gli stessi bit vengono ad assumere in significato completamente diverso per le +directory, normalmente infatti Linux usa la convenzione di SVR4 per indicare +con questi bit l'uso della semantica BSD nella creazione di nuovi file (si +veda \secref{sec:file_ownership} per una spiegazione dettagliata al +proposito). + +Infine Linux utilizza il bit \acr{sgid} per una ulteriore estensione +mutuata da SVR4. Il caso in cui il file abbia il bit \acr{sgid} settato ma +non il corrispondente bit di esecuzione viene utilizzato per attivare per +quel file il \textit{mandatory locking} (argomento che affronteremo nei +dettagli in \secref{sec:xxx_mandatory_lock}). + + +\subsection{Il bit \textsl{sticky}} +\label{sec:file_sticky} + +L'ultimo dei bit rimanenti, identificato dalla costante \macro{S\_ISVTX}, è in +parte un rimasuglio delle origini dei sistemi unix. A quell'epoca infatti la +memoria virtuale e l'accesso ai files erano molto meno sofisticati e per +ottenere la massima velocità possibile per i programmi usati più comunemente +si poteva settare questo bit. + +L'effetto di questo bit era che il segmento di testo del programma (si veda +\secref{sec:proc_mem_layout} per i dettagli) veniva scritto nella swap la +prima volta che questo veniva lanciato, e vi permaneva fino al riavvio della +mecchina (da questo il nome di \textsl{sticky bit}); essendo la swap un file +continuo indicizzato direttamente in questo modo si poteva risparmiare in +tempo di caricamento rispetto alla ricerca del file su disco. Lo +\textsl{sticky bit} è indicato usando la lettera \cmd{t} al posto della +\cmd{x} nei permessi per gli altri. + +Ovviamente per evitare che gli utenti potessero intasare la swap solo +l'amministratore era in grado di settare questo bit, che venne chiamato anche +con il nome di \textit{saved text bit}, da cui deriva quello della costante. +Le attuali implementazioni di memoria virtuale e filesystem rendono +sostanzialmente inutile questo procedimento. + +Benché ormai non venga più utilizzato per i file, lo \textsl{sticky bit} ha +assunto un uso corrente per le directory\footnote{lo \textsl{sticky bit} per + le directory è una estensione non definita nello standard POSIX, Linux però + la supporta, così come BSD e SVR4}, in questo caso se il bit è settato un +file potrà essere rimosso dalla directory soltanto se l'utente ha il permesso +di scrittura ed inoltre è vera una delle seguenti condizioni: +\begin{itemize} +\item l'utente è proprietario del file +\item l'utente è proprietario della directory +\item l'utente è l'amministratore +\end{itemize} +un classico esempio di directory che ha questo bit settato è \file{/tmp}, i +permessi infatti di solito sono settati come: +\begin{verbatim} +$ ls -ld /tmp +drwxrwxrwt 6 root root 1024 Aug 10 01:03 /tmp +\end{verbatim}%$ +in questo modo chiunque può leggere, scrivere ed eseguire i file temporanei +ivi memorizzati, sia crearne di nuovi, ma solo l'utente che ha creato un file +nella directory potrà cancellarlo o rinominarlo, così si può evitare che un +utente possa, più o meno consapevolemnte, cancellare i file degli altri. + + +\subsection{La titolarità di nuovi file e directory} +\label{sec:file_ownership} + +Vedremo in \secref{sec:file_base_func} come creare nuovi file, ma se è +possibile specificare in sede di creazione quali permessi applicare ad un +file, non si può indicare a quale utente e gruppo esso deve appartenere. Lo +stesso problema di presenta per la creazione di nuove directory (procedimento +descritto in \secref{sec:file_dir_creat_rem}). + +Lo standard POSIX prescrive che l'uid del nuovo file corrisponda +all'\textit{effective user id} del processo che lo crea; per il \acr{gid} +invece prevede due diverse possibilità: +\begin{itemize} +\item il \acr{gid} del file corrisponde all'\textit{effective group id} del + processo. +\item il \acr{gid} del file corrisponde al gid della directory in cui esso è + creato. +\end{itemize} +in genere BSD usa sempre la seconda possibilità, che viene per questo chiamata +semantica BSD. Linux invece segue quella che viene chiamata semantica SVR4; di +norma cioè il nuovo file viene creato, seguendo la prima opzione, con il +\acr{gid} del processo, se però la directory in cui viene creato il file ha il +bit \acr{sgid} settato allora viene usata la seconda opzione.. + +Usare la semantica BSD ha il vantaggio che il \acr{gid} viene sempre +automaticamente propagato, restando coerente a quello della directory di +partenza, in tutte le sottodirectory. La semantica SVR4 offre una maggiore +possibilità di scelta, ma per ottenere lo stesso risultato necessita che per +le nuove directory venga anche propagato anche il bit \acr{sgid}. Questo è +comunque il comportamento di default di \func{mkdir}, ed é in questo modo ad +esempio che Debian assicura che le sottodirectory create nelle home di un +utente restino sempre con il \acr{gid} del gruppo primario dello stesso. + + +\subsection{La funzione \texttt{access}} +\label{sec:file_access} + +Come detto in \secref{sec:file_access_control} il controllo di accesso ad +un file viene fatto usando \textit{effective user id} e \textit{effective + group id} del processo, ma ci sono casi in cui si può voler effettuare il +controllo usando il \textit{real user id} e il \textit{real group id} (cioè +l'uid dell'utente che ha lanciato il programma, che, come accennato in +\secref{sec:file_suid_sgid} e spiegato in \secref{sec:proc_perms} non è +detto sia uguale all'\textit{effective user id}). Per far questo si può usare +la funzione \func{access}, il cui prototipo è: + +\begin{prototype}{unistd.h} +{int access(const char *pathname, int mode)} + + La funzione verifica i permessi di accesso, indicati da \var{mode}, per il + file indicato da \var{pathname}. - \caption{Organizzazione dello spazio su un disco in partizioni e filesystem} - \label{fig:filedir_disk_filesys} -\end{figure} + La funzione ritorna 0 se l'accesso è consentito, -1 altrimenti; in + quest'ultimo caso la variabile \texttt{errno} viene settata secondo i codici + di errore: \macro{EACCES}, \macro{EROFS}, \macro{EFAULT}, \macro{EINVAL}, + \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOTDIR}, \macro{ELOOP}, + \macro{EIO}. +\end{prototype} -Se si va ad esaminare come è strutturata l'informazione all'interno di un -singolo filesystem (tralasciando le parti connesse alla strutturazione e al -funzionamento del filesystem stesso come il super-block) avremo una situazione -del tipo di quella esposta in \nfig. -\begin{figure}[htb] +I valori possibili per il parametro \var{mode} sono esprimibili come +combinazione delle costanti numeriche riportate in \ntab\ (attraverso un OR +binario). I primi tre valori implicano anche la verifica dell'esistenza del +file, se si vuole verificare solo quest'ultimaa si può usare \macro{F\_OK}, o +anche direttamente \func{stat}. In caso \var{pathname} si riferisca ad un link +simbolico il controllo è fatto sul file a cui esso fa riferimento. + +La funzione controlla solo i bit dei permessi di accesso, si ricordi che il +fatto che una directory abbia permesso di scrittura non significa che ci si +possa scrivere come in un file, e il fatto che un file abbia permesso di +esecuzione non comporta che contenga un programma eseguibile. La funzione +ritorna zero solo se tutte i permessi controllati sono disponibili, in caso +contrario (o di errore) ritorna -1. + +\begin{table}[htb] \centering + \begin{tabular}{|c|l|} + \hline + \var{mode} & Significato \\ + \hline + \hline + \macro{R\_OK} & verifica il permesso di lettura \\ + \macro{W\_OK} & verifica il permesso di scritture \\ + \macro{X\_OK} & verifica il permesso di esecuzione \\ + \macro{F\_OK} & verifica l'esistenza del file \\ + \hline + \end{tabular} + \caption{Valori possibile per il parametro \var{mode} della funzione + \func{access}} + \label{tab:file_access_mode_val} +\end{table} + +Un esempio tipico per l'uso di questa funzione è quello di un processo che sta +eseguendo un programma coi privilegi di un altro utente (attraverso l'uso del +suid bit) che vuole controllare se l'utente originale ha i permessi per +accedere ad un certo file. + + +\subsection{Le funzioni \texttt{chmod} e \texttt{fchmod}} +\label{sec:file_chmod} + +Per cambiare i permessi di un file il sistema mette ad disposizione due +funzioni, che operano rispettivamente su un filename e su un file descriptor, +i cui prototipi sono: + +\begin{functions} + \headdecl{sys/types.h} + \headdecl{sys/stat.h} - \caption{Organizzazione di un filesystem} - \label{fig:filedir_filesys_detail} -\end{figure} -da questa figura si evidenziano alcune caratteristiche su cui è bene porre -attenzione in quanto sono fondamentali per capire il funzionamento delle -funzioni che manipolano i file e le directory su cui torneremo fra poco; in -particolare è opportuno ricordare sempre che: + \funcdecl{int chmod(const char *path, mode\_t mode)} Cambia i permessi del + file indicato da \var{path} al valore indicato da \var{mode}. + + \funcdecl{int fchmod(int fd, mode\_t mode)} Analoga alla precedente, ma usa + il file descriptor \var{fd} per indicare il file. + + Le funzioni restituiscono zero in caso di successo e -1 per un errore, in + caso di errore \texttt{errno} può assumere i valori: + \begin{errlist} + \item \macro{EPERM} L'\textit{effective user id} non corrisponde a quello + del proprietario del file o non è zero. + \end{errlist} + ed inoltre \macro{EROFS} e \macro{EIO}; \func{chmod} restituisce anche + \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOMEM}, + \macro{ENOTDIR}, \macro{EACCES}, \macro{ELOOP}; \func{fchmod} anche + \macro{EBADF}. +\end{functions} + +I valori possibili per \var{mode} sono indicati in \ntab. I valori possono +esser combinati con l'OR binario delle relative macro, o specificati +direttamente, come per l'analogo comando di shell, con il valore ottale. Ad +esempio i permessi standard assegnati ai nuovi file (lettura e scrittura per +il proprietario, sola lettura per il gruppo e gli altri) sono corrispondenti +al valore ottale $0644$, un programma invece avrebbe anche il bit di +esecuzione attivo, con un valore di $0755$, se si volesse attivare il bit suid +il valore da fornire sarebbe $4755$. + +\begin{table}[!htb] + \centering + \begin{tabular}[c]{|c|c|l|} + \hline + \var{mode} & Valore & Significato \\ + + \hline + \hline + \macro{S\_ISUID} & 04000 & set user ID \\ + \macro{S\_ISGID} & 02000 & set group ID \\ + \macro{S\_ISVTX} & 01000 & sticky bit \\ + \hline + \macro{S\_IRWXU} & 00700 & l'utente ha tutti i permessi \\ + \macro{S\_IRUSR} & 00400 & l'utente ha il permesso di lettura \\ + \macro{S\_IWUSR} & 00200 & l'utente ha il permesso di scrittura \\ + \macro{S\_IXUSR} & 00100 & l'utente ha il permesso di esecuzione \\ + \hline + \macro{S\_IRWXG} & 00070 & il gruppo ha tutti i permessi \\ + \macro{S\_IRGRP} & 00040 & il gruppo ha il permesso di lettura \\ + \macro{S\_IWGRP} & 00020 & il gruppo ha il permesso di scrittura \\ + \macro{S\_IXGRP} & 00010 & il gruppo ha il permesso di esecuzione \\ + \hline + \macro{S\_IRWXO} & 00007 & gli altri hanno tutti i permessi \\ + \macro{S\_IROTH} & 00004 & gli altri hanno il permesso di lettura \\ + \macro{S\_IWOTH} & 00002 & gli altri hanno il permesso di scrittura \\ + \macro{S\_IXOTH} & 00001 & gli altri hanno il permesso di esecuzione \\ + \hline + \end{tabular} + \caption{I valori delle costanti usate per indicare i permessi dei file.} + \label{tab:file_permission_const} +\end{table} + +Il cambiamento dei permessi di un file attraverso queste funzioni ha comunque +alcune limitazioni, provviste per motivi di sicurezza. Questo significa che +anche se si è proprietari del file non tutte le operazioni sono permesse, in +particolare: +\begin{itemize} +\item siccome solo l'amministratore può settare lo \textit{sticky bit} se se + l'\textit{effective user id} del processo non è zero esso viene + automaticamente cancellato (senza notifica di errore) qualora sia stato + indicato in \var{mode}. +\item per via della semantica SVR4 nella creazione dei nuovi file, si può + avere il caso in cui il file creato da un processo è assegnato a un gruppo + per il quale il processo non ha privilegi. Per evitare che si possa + assegnare il bit \acr{sgid} ad un file appartenente a un gruppo per cui + non si hanno diritti, questo viene automaticamente cancellato (senza + notifica di errore) da \var{mode} qualora il gruppo del file non corrisponda + a quelli associati al processo (la cosa non avviene quando + l'\textit{effective user id} del processo è zero). +\end{itemize} + +Per alcuni filesystem\footnote{il filesystem \textsl{ext2} supporta questa + caratteristica, che è mutuata da BSD.} è inoltre prevista una ulteriore +misura di sicurezza, volta ad scongiurare l'abuso dei bit \acr{suid} e +\acr{sgid}; essa consiste nel cancellare automaticamente questi bit qualora un +processo che non appartenga all'amministratore scriva su un file. In questo +modo anche se un utente malizioso scopre un file \acr{suid} su cui può +scrivere, un eventuale modifica comporterà la perdita di ogni ulteriore +privilegio. + + +\subsection{La funzione \texttt{umask}} +\label{sec:file_umask} -\begin{enumerate} +Oltre che dai valori indicati in sede di creazione, i permessi assegnati ai +nuovi file sono controllati anche da una maschera di bit settata con la +funzione \func{umask}, il cui prototipo è: + +\begin{prototype}{stat.h} +{mode\_t umask(mode\_t mask)} + + Setta la maschera dei permessi dei bit al valore specificato da \var{mask} + (di cui vengono presi solo i 9 bit meno significativi). -\item L'\textit{inode} contiene tutte le informazioni riguardanti il file: il - tipo di file, i permessi di accesso, le dimensioni, i puntatori ai blocchi - fisici che contengono i dati e così via; le informazioni che la funzione - \texttt{stat} fornisce provengono dall'\textit{inode}; dentro una directory - si troverà solo il nome del file e il numero dell'\textit{inode} ad esso - associato, cioè quella che da qui in poi chiameremo una \textsl{voce} - (traduzione approssimata dell'inglese \textit{directory entry}, che non - useremo anche per evitare confusione con le \textit{dentries} del kernel di - cui si parlava in \secref{sec:fileintr_vfs}). + La funzione ritorna il precedente valore della maschera. È una delle poche + funzioni che non restituisce codici di errore. +\end{prototype} + +Questa maschera è una caratteristica di ogni processo e viene utilizzata per +impedire che alcuni permessi possano essere assegnati ai nuovi file in sede di +creazione, i bit indicati nella maschera vengono infatti esclusi quando un +nuovo file viene creato. + +In genere questa maschera serve per impostare un default che escluda alcuni +permessi (usualmente quello di scrittura per il gruppo e gli altri, +corrispondente ad un valore di $022$). Essa è utile perché le routine +dell'interfaccia ANSI C degli stream non prevedono l'esistenza dei permessi, e +pertanto tutti i nuovi file vengono sempre creati con un default di $666$ +(cioè permessi di lettura e scrittura per tutti, si veda +\tabref{tab:file_permission_const} per un confronto); in questo modo è +possibile cancellare automaticamente i permessi non voluti, senza doverlo fare +esplicitamente. + +In genere il valore di \func{umask} viene stabilito una volta per tutte al +login a $022$, e di norma gli utenti non hanno motivi per modificarlo. Se però +si vuole che un processo possa creare un file che chiunque possa leggere +allora occorrerà cambiare il valore di \func{umask}. + +\subsection{Le funzioni \texttt{chown}, \texttt{fchown} e \texttt{lchown}} +\label{sec:file_chown} + +Come per i permessi, il sistema fornisce anche delle funzioni che permettano +di cambiare utente e gruppo cui il file appartiene; le funzioni in questione +sono tre e i loro prototipi sono i seguenti: + +\begin{functions} + \headdecl{sys/types.h} + \headdecl{sys/stat.h} -\item Come mostrato in \curfig si possono avere più voci che puntano allo - stesso \textit{inode}. Ogni \textit{inode} ha un contatore che contiene il - numero di riferimenti (\textit{link count}) che sono stati fatti ad esso; - solo quando questo contatore si annulla i dati del file vengono - effettivamente rimossi dal disco. Per questo la funzione per cancellare un - file si chiama \texttt{unlink}, ed in realtà non cancella affatto i dati del - file, ma si limita a eliminare la relativa voce da una directory e - decrementare il numero di riferimenti nell'\textit{inode}. + \funcdecl{int chown(const char *path, uid\_t owner, gid\_t group)} + \funcdecl{int fchown(int fd, uid\_t owner, gid\_t group)} + \funcdecl{int lchown(const char *path, uid\_t owner, gid\_t group)} + + Le funzioni cambiano utente e gruppo di appartenenza di un file ai valori + specificati dalle variabili \var{owner} e \var{group}. + + Le funzioni restituiscono zero in caso di successo e -1 per un errore, in + caso di errore \texttt{errno} viene settato ai valori: + \begin{errlist} + \item \macro{EPERM} L'\textit{effective user id} non corrisponde a quello + del proprietario del file o non è zero, o utente e gruppo non sono validi + \end{errlist} + Oltre a questi entrambe restituiscono gli errori \macro{EROFS} e + \macro{EIO}; \func{chown} restituisce anche \macro{EFAULT}, + \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOMEM}, \macro{ENOTDIR}, + \macro{EACCES}, \macro{ELOOP}; \func{fchown} anche \macro{EBADF}. +\end{functions} + +In Linux soltanto l'amministratore può cambiare il proprietario di un file, +seguendo la semantica di BSD che non consente agli utenti di assegnare i loro +file ad altri (per evitare eventuali aggiramenti delle quote). +L'amministratore può cambiare il gruppo di un file, il proprietario può +cambiare il gruppo dei file che gli appartengono solo se il nuovo gruppo è il +suo gruppo primario o uno dei gruppi a cui appartiene. + +La funzione \func{chown} segue i link simbolici, per operare direttamente su +in link simbolico si deve usare la funzione \func{lchown}\footnote{fino alla + versione 2.1.81 in Linux \func{chown} non seguiva i link simbolici, da + allora questo comportamento è stato assegnato alla funzione \func{lchown}, + introdotta per l'occazione, ed è stata creata una nuova system call per + \func{chown} che seguisse i link simbolici}. La funzione \func{fchown} opera +su un file aperto, essa è mututata da BSD, ma non è nello standard POSIX. +Un'altra estensione rispetto allo standard POSIX è che specificando -1 come +valore per \var{owner} e \var{group} i valori restano immutati. + +Quando queste funzioni sono chiamate con successo da un processo senza i +privilegi di root entrambi i bit \acr{suid} e \acr{sgid} vengono +cancellati. Questo non avviene per il bit \acr{sgid} nel caso in cui esso +sia usato (in assenza del corrispondente permesso di esecuzione) per indicare +che per il file è attivo il \textit{mandatory locking}. + +%La struttura fondamentale che contiene i dati essenziali relativi ai file è il +%cosiddetto \textit{inode}; questo conterrà informazioni come il +%tipo di file (file di dispositivo, directory, file di dati, per un elenco +%completo vedi \ntab), i permessi (vedi \secref{sec:file_perms}), le date (vedi +%\secref{sec:file_times}). + + + +\section{La manipolazione delle caratteristiche dei files} +\label{sec:file_infos} + +Come spiegato in \secref{sec:file_filesystem} tutte le informazioni +generali relative alle caratteristiche di ciascun file, a partire dalle +informazioni relative al controllo di accesso, sono mantenute nell'inode. + +Vedremo in questa sezione come sia possibile leggere tutte queste informazioni +usando la funzione \texttt{stat}, che permette l'accesso a tutti i dati +memorizzati nell'inode; esamineremo poi le varie funzioni usate per manipolare +tutte queste informazioni (eccetto quelle che riguardano la gestione del +controllo di accesso, già trattate in in \secref{sec:file_access_control}). + + +\subsection{Le funzioni \texttt{stat}, \texttt{fstat} e \texttt{lstat}} +\label{sec:file_stat} + +La lettura delle informazioni relative ai file è fatta attraverso la famiglia +delle funzioni \func{stat}; questa è la funzione che il comando \cmd{ls} usa +per poter ottenere e mostrare tutti i dati dei files. I prototipi di queste +funzioni sono i seguenti: +\begin{functions} + \headdecl{sys/types.h} + \headdecl{sys/stat.h} + \headdecl{unistd.h} + + \funcdecl{int stat(const char *file\_name, struct stat *buf)} Legge le + informazione del file specificato da \var{file\_name} e le inserisce in + \var{buf}. -\item Il numero di \textit{inode} nella voce si riferisce ad un \textit{inode} - nello stesso filesystem e non ci può essere una directory che contiene - riferimenti ad \textit{inodes} relativi ad altri filesystem. Questo limita - l'uso del comando \texttt{ln} (che crea una nuova voce per un file - esistente, con la funzione \texttt{link}) al filesystem corrente. + \funcdecl{int lstat(const char *file\_name, struct stat *buf)} Identica a + \func{stat} eccetto che se il \var{file\_name} è un link simbolico vengono + lette le informazioni relativa ad esso e non al file a cui fa riferimento. -\item Quando si cambia nome ad un file senza cambiare filesystem il contenuto - del file non deve essere spostato, viene semplicemente creata una nuova voce - per l'\textit{inode} in questione e rimossa la vecchia (questa è la modalità - in cui opera normalmente il comando \texttt{mv} attraverso la funzione - \texttt{rename}). + \funcdecl{int fstat(int filedes, struct stat *buf)} Identica a \func{stat} + eccetto che si usa con un file aperto, specificato tramite il suo file + descriptor \var{filedes}. + + Le funzioni restituiscono zero in caso di successo e -1 per un errore, in + caso di errore \texttt{errno} può assumere uno dei valori: \macro{EBADF}, + \macro{ENOENT}, \macro{ENOTDIR}, \macro{ELOOP}, \macro{EFAULT}, + \macro{EACCESS}, \macro{ENOMEM}, \macro{ENAMETOOLONG}. +\end{functions} + +La struttura \texttt{stat} è definita nell'header \texttt{sys/stat.h} e in +generale dipende dall'implementazione, la versione usata da Linux è mostrata +in \nfig, così come riportata dalla man page (in realtà la definizione +effettivamente usata nel kernel dipende dall'architettura e ha altri campi +riservati per estensioni come tempi più precisi, o per il padding dei campi). + +\begin{figure}[!htb] + \footnotesize + \centering + \begin{minipage}[c]{15cm} + \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{} +struct stat { + dev_t st_dev; /* device */ + ino_t st_ino; /* inode */ + mode_t st_mode; /* protection */ + nlink_t st_nlink; /* number of hard links */ + uid_t st_uid; /* user ID of owner */ + gid_t st_gid; /* group ID of owner */ + dev_t st_rdev; /* device type (if inode device) */ + off_t st_size; /* total size, in bytes */ + unsigned long st_blksize; /* blocksize for filesystem I/O */ + unsigned long st_blocks; /* number of blocks allocated */ + time_t st_atime; /* time of last access */ + time_t st_mtime; /* time of last modification */ + time_t st_ctime; /* time of last change */ +}; + \end{lstlisting} + \end{minipage} + \normalsize + \caption{La struttura \texttt{stat} per la lettura delle informazioni dei + file} + \label{fig:file_stat_struct} +\end{figure} + +Si noti come i vari membri della struttura siano specificati come tipi nativi +del sistema (di quelli definiti in \tabref{tab:xxx_sys_types}, e dichiarati in +\texttt{sys/types.h}). + + +\subsection{I tipi di file} +\label{sec:file_types} + +Come riportato in \tabref{tab:file_file_types} in Linux oltre ai file e +alle directory esistono vari altri oggetti che possono stare su un filesystem; +il tipo di file è ritornato dalla \texttt{stat} nel campo \texttt{st\_mode} +(che è quello che contiene anche le informazioni relative ai permessi). + +Dato che il valore numerico può variare a seconda delle implementazioni, lo +standard POSIX definisce un insieme di macro per verificare il tipo di files, +queste vengono usate anche da Linux che supporta pure le estensioni per link +simbolici e socket definite da BSD, l'elenco completo di tutte le macro +definite in GNU/Linux è riportato in \ntab. +\begin{table}[htb] + \centering + \footnotesize + \begin{tabular}[c]{|l|l|} + \hline + Macro & Tipo del file \\ + \hline + \hline + \macro{S\_ISREG(m)} & file regolare \\ + \macro{S\_ISDIR(m)} & directory \\ + \macro{S\_ISCHR(m)} & device a caraetteri \\ + \macro{S\_ISBLK(m)} & device a blocchi\\ + \macro{S\_ISFIFO(m)} & fifo \\ + \macro{S\_ISLNK(m)} & link simbolico \\ + \macro{S\_ISSOCK(m)} & socket \\ + \hline + \end{tabular} + \caption{Macro per i tipi di file (definite in \texttt{sys/stat.h})} + \label{tab:file_type_macro} +\end{table} + +Oltre a queste macro è possibile usare direttamente il valore di +\var{st\_mode} per ricavare il significato dei vari bit in esso memorizzati, +per questo sempre in \texttt{sys/stat.h} sono definiti i flag riportati in +\ntab: +\begin{table}[htb] + \centering + \footnotesize + \begin{tabular}[c]{|l|c|l|} + \hline + Flag & Valore & Significato \\ + \hline + \hline + \macro{S\_IFMT} & 0170000 & bitmask per i bit del tipo di file \\ + \macro{S\_IFSOCK} & 0140000 & socket \\ + \macro{S\_IFLNK} & 0120000 & link simbolico \\ + \macro{S\_IFREG} & 0100000 & file regolare \\ + \macro{S\_IFBLK} & 0060000 & device a blocchi \\ + \macro{S\_IFDIR} & 0040000 & directory \\ + \macro{S\_IFCHR} & 0020000 & device a caratteri \\ + \macro{S\_IFIFO} & 0010000 & fifo \\ + \hline + \macro{S\_ISUID} & 0004000 & set UID bit \\ + \macro{S\_ISGID} & 0002000 & set GID bit \\ + \macro{S\_ISVTX} & 0001000 & sticky bit \\ + \hline +% \macro{S\_IRWXU} & 00700 & bitmask per i permessi del proprietario \\ + \macro{S\_IRUSR} & 00400 & il proprietario ha permesso di lettura \\ + \macro{S\_IWUSR} & 00200 & il proprietario ha permesso di scrittura \\ + \macro{S\_IXUSR} & 00100 & il proprietario ha permesso di esecuzione\\ + \hline +% \macro{S\_IRWXG} & 00070 & bitmask per i permessi del gruppo \\ + \macro{S\_IRGRP} & 00040 & il gruppo ha permesso di lettura \\ + \macro{S\_IWGRP} & 00020 & il gruppo ha permesso di scrittura \\ + \macro{S\_IXGRP} & 00010 & il gruppo ha permesso di esecuzione \\ + \hline +% \macro{S\_IRWXO} & 00007 & bitmask per i permessi di tutti gli altri\\ + \macro{S\_IROTH} & 00004 & gli altri hanno permesso di lettura \\ + \macro{S\_IWOTH} & 00002 & gli altri hanno permesso di esecuzione \\ + \macro{S\_IXOTH} & 00001 & gli altri hanno permesso di esecuzione \\ + \hline + \end{tabular} + \caption{Costanti per l'identificazione dei vari bit che compongono il campo + \var{st\_mode} (definite in \texttt{sys/stat.h})} + \label{tab:file_mode_flags} +\end{table} + +Il primo valore definisce la maschera dei bit usati nei quali viene +memorizzato il tipo di files, mentre gli altri possono essere usati per +effettuare delle selezioni sul tipo di file voluto, combinando opportunamente +i vari flag; ad esempio se si volesse controllare se un file è una directory o +un file ordinario si potrebbe definire la condizione: +\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{} +#define IS_FILE_DIR(x) (((x) & S_IFMT) & (S_IFDIR | S_IFREG)) +\end{lstlisting} +in cui prima si estraggono da \var{st\_mode} i bit relativi al tipo di file e +poi si effettua il confronto con la combinazione di tipi scelta. -\end{enumerate} -Infine è bene avere presente che essendo file pure loro, esiste un numero di -riferimenti anche per le directories; per cui se ad esempio a partire dalla -situazione mostrata in \curfig\ creiamo una nuova directory \texttt{textdir} -nella directory corrente avremo una situazione come quella in \nfig, dove per -chiarezza abbiamo aggiunto dei numeri di inode. +\subsection{La dimensione dei file} +\label{sec:file_file_size} + +Il membro \var{st\_size} contiene la dimensione del file in byte (se il file +è un file normale, nel caso di un link simbolico al dimensione è quella del +pathname che contiene). + +Il campo \var{st\_blocks} definisce la lunghezza del file in blocchi di 512 +bytes. Il campo \var{st\_blksize} infine definisce la dimensione preferita per +i trasferimenti sui file (che è la dimensione usata anche dalle librerie del C +per l'interfaccia degli stream); scrivere sul file a blocchi di dati di +dimensione inferiore sarebbe inefficiente. + +Si tenga conto che lunghezza del file riportata in \var{st\_size} non è detto +che corrisponda all'occupazione dello spazio su disco per via della possibile +esistenza dei cosiddetti \textsl{buchi} (detti normalmente \textit{holes}) che +si formano tutte le volte che si va a scrivere su un file dopo aver eseguito +una \func{seek} (vedi \secref{sec:file_lseek}) oltre la sua conclusione +corrente. + +In tal caso si avranno differenti risultati a seconda del modi in cui si +calcola la lunghezza del file, ad esempio il comando \cmd{du}, (che riporta il +numero di blocchi occupati) potrà dare una dimensione inferiore, mentre se si +legge dal file (ad esempio usando \cmd{wc -c}), dato che in tal caso per le +parti non scritte vengono restituiti degli zeri, si avrà lo stesso risultato +di \cmd{ls}. + +Se è sempre possibile allargare un file scrivendoci sopra od usando la +funzione \func{seek} per spostarsi oltre la sua fine. Esistono però anche casi +in cui si può avere bisogno di effettuare un troncamento scartando i dati al +di là della dimensione scelta come nuova fine del file. + +Un file può essere troncato a zero aprendolo con il flag \macro{O\_TRUNC}, ma +questo è un caso particolare; per qualunque altra dimensione si possono usare +le due funzioni: +\begin{functions} + \headdecl{unistd.h} \funcdecl{int truncate(const char *file\_name, off\_t + length)} Fa si che la dimensione del file \var{file\_name} sia troncata ad + un valore massimo specificato da \var{lenght}. + + \funcdecl{int ftruncate(int fd, off\_t length))} Identica a \func{truncate} + eccetto che si usa con un file aperto, specificato tramite il suo file + descriptor \var{fd}. + + Le funzioni restituiscono zero in caso di successo e -1 per un errore, in + caso di errore \texttt{errno} viene settato opportunamente; per + \func{ftruncate} si hanno i valori: + \begin{errlist} + \item \macro{EBADF} \var{fd} non è un file descriptor. + \item \texttt{EINVAL} \var{fd} è un riferimento ad un socket, non a un file + o non è aperto in scrittura. + \end{errlist} + per \func{truncate} si hanno: + \begin{errlist} + \item \texttt{EACCES} il file non ha permesso di scrittura o non si ha il + permesso di esecuzione una delle directory del pathname. + \item \texttt{ETXTBSY} Il file è un programma in esecuzione. + \end{errlist} + ed anche \macro{ENOTDIR}, \macro{ENAMETOOLONG}, \macro{ENOENT}, + \macro{EROFS}, \macro{EIO}, \macro{EFAULT}, \macro{ELOOP}. +\end{functions} -La nuova directory avrà allora un numero di riferimenti pari a due, in quanto -è referenziata dalla directory da cui si era partiti (in cui è inserita la -nuova voce che fa riferimento a \texttt{textdir}) e dalla voce \texttt{.} -che è sempre inserita in ogni directory; questo vale sempre per ogni directory -che non contenga a sua volta altre directories. Al contempo la directory da -cui si era partiti avrà un numero di riferiementi di almeno tre, in quanto -adesso sarà referenziata anche dalla voce \texttt{..} di \texttt{textdir}. +Se il file è più lungo della lunghezza specificata i dati in eccesso saranno +perduti; il comportamento in caso di lunghezza inferiore non è specificato e +dipende dall'implementazione: il file può essere lasciato invariato o esteso +fino alla lunghezza scelta; in quest'ultimo caso lo spazio viene riempito con +zeri (e in genere si ha la creazione di un hole nel file). + + +\subsection{I tempi dei file} +\label{sec:file_file_times} + +Il sistema mantiene per ciascun file tre tempi. Questi sono registrati +nell'inode insieme agli altri attibuti del file e possono essere letti tramite +la funzione \func{stat}, che li restituisce attraverso tre campi della +struttura in \figref{fig:file_stat_struct}. Il significato di detti tempi e +dei relativi campi è riportato nello schema in \ntab: + +\begin{table}[htb] + \centering + \begin{tabular}[c]{|c|l|l|c|} + \hline + Membro & Significato & Funzione&opzione \\ + \hline + \hline + \var{st\_atime}& ultimo accesso ai dati del file &\func{read}& \cmd{-u}\\ + \var{st\_mtime}& ultima modifica ai dati del file &\func{write}& default\\ + \var{st\_ctime}& ultima modifica ai dati dell'inode&\func{chmod}, + \func{utime} & \cmd{-c} \\ + \hline + \end{tabular} + \caption{I tre tempi associati a ciascun file} + \label{tab:file_file_times} +\end{table} + +Il primo punto da tenere presente è la differenza fra il cosiddetto tempo di +modifica (il \textit{modification time} \var{st\_mtime}) e il tempo di +cambiamento di stato (il \textit{chage time} \var{st\_ctime}). Il primo +infatti fa riferimento ad una modifica del contenuto di un file, mentre il +secondo ad una modifica dell'inode; siccome esistono molte operazioni (come la +funzione \func{link} e molte altre che vedremo in seguito) che modificano solo +le informazioni contenute nell'inode senza toccare il file, diventa necessario +l'utilizzo di un altro tempo. + +Il sistema non tiene conto dell'ultimo accesso all'inode, pertanto funzioni +come \func{access} o \func{stat} non hanno alcuna influenza sui tre tempi. Il +tempo di ultimo accesso viene di solito usato per cancellare i file che non +servono più dopo un certo lasso di tempo (ad esempio \cmd{leafnode} cancella i +vecchi articoli sulla base di questo tempo). + +Il tempo di ultima modifica invece viene usato da \cmd{make} per decidere +quali file necessitano di essere ricompilati o (talvolta insieme anche al +tempo di cambiamento di stato) per decidere quali file devono essere +archiviati per il backup. Il comando \cmd{ls} (quando usato con le opzioni +\cmd{-l} o \cmd{-t}) mostra i tempi dei file secondo lo schema riportato +nell'ultima colonna di \curtab. + +L'effetto delle varie funzioni di manipolazione dei file sui tempi è +illustrato in \ntab. Si sono riportati gli effetti sia per il file a cui si fa +riferimento, sia per la directory che lo contiene; questi ultimi possono +essere capiti se si tiene conto di quanto già detto, e cioè che anche le +directory sono files, che il sistema tratta in maniera del tutto analoga agli +altri. + +Per questo motivo tutte le volte che compiremo una operazione su un file che +comporta una modifica della sua directory entry, andremo anche a scrivere +sulla directory che lo contiene cambiandone il tempo di modifica. Un esempio +di questo può essere la cancellazione di un file, mentre leggere o scrivere o +cambiarne i permessi ha effetti solo sui tempi del file. + +\begin{table}[htb] + \centering + \footnotesize + \begin{tabular}[c]{|l|c|c|c|c|c|c|l|} + \hline + \multicolumn{1}{|c|}{Funzione} + &\multicolumn{3}{p{2cm}}{File o directory di riferimento} + &\multicolumn{3}{p{2cm}}{Directory genitrice del riferimento} + &\multicolumn{1}{|c|}{Note} \\ + \cline{2-7} + & \textsl{(a)} & \textsl{(m)}& \textsl{(c)} + & \textsl{(a)} & \textsl{(m)}& \textsl{(c)}& \\ + \hline + \hline + \func{chmod}, \func{fchmod} + & & &$\bullet$& & & & \\ + \func{chown}, \func{fchown} + & & &$\bullet$& & & & \\ + \func{creat} + &$\bullet$&$\bullet$&$\bullet$& &$\bullet$&$\bullet$& con + \macro{O\_CREATE} \\ \func{creat} + & &$\bullet$&$\bullet$& &$\bullet$&$\bullet$& + con \macro{O\_TRUNC} \\ \func{exec} + &$\bullet$& & & & & & \\ + \func{lchown} + & & &$\bullet$& & & & \\ + \func{link} + & & &$\bullet$& &$\bullet$&$\bullet$& \\ + \func{mkdir} + &$\bullet$&$\bullet$&$\bullet$& &$\bullet$&$\bullet$& \\ + \func{mkfifo} + &$\bullet$&$\bullet$&$\bullet$& &$\bullet$&$\bullet$& \\ + \func{open} + &$\bullet$&$\bullet$&$\bullet$& &$\bullet$&$\bullet$& con + \macro{O\_CREATE} \\ \func{open} + & &$\bullet$&$\bullet$& & & & con + \macro{O\_TRUNC} \\ \func{pipe} + &$\bullet$&$\bullet$&$\bullet$& & & & \\ + \func{read} + &$\bullet$& & & & & & \\ + \func{remove} + & & &$\bullet$& &$\bullet$&$\bullet$& using + \func{unlink}\\ \func{remove} + & & & & &$\bullet$&$\bullet$& using + \func{rmdir}\\ \func{rename} + & & &$\bullet$& &$\bullet$&$\bullet$& per entrambi + gli argomenti\\ \func{rmdir} + & & & & &$\bullet$&$\bullet$& \\ + \func{truncate}, \func{ftruncate} + & &$\bullet$&$\bullet$& & & & \\ + \func{unlink} + & & &$\bullet$& &$\bullet$&$\bullet$& \\ + \func{utime} + &$\bullet$&$\bullet$&$\bullet$& & & & \\ + \func{write} + & &$\bullet$&$\bullet$& & & & \\ + \hline + \end{tabular} + \caption{Effetti delle varie funzioni su tempi di ultimo accesso + \textsl{(a)}, ultima modifica \textsl{(m)} e ultimo cambiamento + \textsl{(c)}} + \label{tab:file_times_effects} +\end{table} + +Si noti infine come \var{st\_ctime} non abbia nulla a che fare con il tempo di +creazione del file, usato da molti altri sistemi operativi, che in unix non +esiste. + + +\subsection{La funzione \texttt{utime}} +\label{sec:file_utime} + +I tempi di ultimo accesso e modifica possono essere cambiati usando la +funzione \func{utime}, il cui prototipo è: + +\begin{prototype}{utime.h} +{int utime(const char * filename, struct utimbuf *times)} + +Cambia i tempi di ultimo accesso e modifica dell'inode specificato da +\var{filename} secondo i campi \var{actime} e \var{modtime} di \var{times}. Se +questa è \macro{NULL} allora viene usato il tempo corrente. + +La funzione restituisce zero in caso di successo e -1 in caso di errore, nel +qual caso \var{errno} è settata opportunamente. +\begin{errlist} +\item \texttt{EACCESS} non si ha il permesso di scrittura sul file. +\item \texttt{ENOENT} \var{filename} non esiste. +\end{errlist} +\end{prototype} + +La struttura \var{utimebuf} usata da \func{utime} è definita come: +\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{} +struct utimbuf { + time_t actime; /* access time */ + time_t modtime; /* modification time */ +}; +\end{lstlisting} + +L'effetto della funzione e i privilegi necessari per eseguirla dipendono da +cosa è l'argomento \var{times}; se è \textit{NULL} la funzione setta il tempo +corrente ed è sufficiente avere accesso in scrittura al file; se invece si è +specificato un valore la funzione avrà successo solo se si è proprietari del +file (o si hanno i privilegi di amministratore). + +Si tenga presente che non è comunque possibile specificare il tempo di +cambiamento di stato del file, che viene comunque cambiato dal kernel tutte le +volte che si modifica l'inode (quindi anche alla chiamata di \func{utime}). +Questo serve anche come misura di sicurezza per evitare che si possa +modificare un file nascondendo completamente le proprie tracce. In realtà la +cosa resta possibile, se si è in grado di accedere al device, scrivendo +direttamente sul disco senza passare attraverso il filesystem, ma ovviamente è +molto più complicato da realizzare. + + + +\section{La manipolazione di file e directory} + +Come già accennato in \secref{sec:file_filesystem} in un sistema unix-like +i file hanno delle caratteristiche specifiche dipendenti dall'architettura del +sistema, esamineremo qui allora le funzioni usate per la creazione di link +simbolici e diretti e per la gestione delle directory, approfondendo quanto +già accennato in precedenza. \subsection{Le funzioni \texttt{link} e \texttt{unlink}} -\label{sec:filedir_link} +\label{sec:file_link} -Una delle caratteristiche usate quando si opera con i file è quella di poter +Una delle caratteristiche comuni a vari sistemi operativi è quella di poter creare dei nomi fittizi (alias o collegamenti) per potersi riferire allo stesso file accedendovi da directory diverse. Questo è possibile anche in ambiente unix, dove tali collegamenti sono usualmente chiamati \textit{link}, ma data la struttura del sistema ci sono due metodi sostanzialmente diversi per fare questa operazione. -Come si è appena detto l'accesso al contenuto di un file su disco avviene -attraverso il suo inode, e il nome che si trova in una directory è solo una -etichetta associata ad un puntatore a detto inode. Questo significa che la -realizzazione di un link è immediata in quanto uno stesso file può avere tanti -nomi diversi allo stesso tempo, dati da altrettante diverse associazioni allo -stesso inode; si noti poi che nessuno di questi nomi viene ad assumere una -particolare preferenza rispetto agli altri. +Come spiegato in \secref{sec:file_architecture} l'accesso al contenuto di +un file su disco avviene attraverso il suo inode, e il nome che si trova in +una directory è solo una etichetta associata ad un puntatore a detto inode. +Questo significa che la realizzazione di un link è immediata in quanto uno +stesso file può avere tanti nomi diversi allo stesso tempo, dati da +altrettante diverse associazioni allo stesso inode; si noti poi che nessuno di +questi nomi viene ad assumere una particolare preferenza rispetto agli altri. Per aggiungere un nome ad un inode si utilizza la funzione \texttt{link}; si suole chiamare questo tipo di associazione un collegamento diretto (o @@ -195,61 +1049,43 @@ principali, come risultano dalla man page, sono le seguenti: Crea un nuovo collegamento diretto al file indicato da \texttt{oldpath} dandogli nome \texttt{newpath}. - La funzione restituisce zero in caso di successo e -1 per un errore, in caso - di errore. La variabile \texttt{errno} viene settata secondo i seguenti - codici di errore: + La funzione restituisce zero in caso di successo e -1 in caso di errore. La + variabile \texttt{errno} viene settata opportunamente, i principali codici + di errore sono: \begin{errlist} \item \texttt{EXDEV} \texttt{oldpath} e \texttt{newpath} non sono sullo stesso filesystem. \item \texttt{EPERM} il filesystem che contiene \texttt{oldpath} e - \texttt{newpath} non supporta i link diretti, oppure \texttt{oldpath} è - una directory. - \item \texttt{EFAULT} una delle stringhe passate come parametri è fuori - dello spazio di indirizzi del processo. - \item \texttt{EACCESS} errore di accesso (mancano i permessi per scrivere o - per attraversare le directories), vedi \secref{sec:filedir_access_control} - per i dettagli. - \item \texttt{ENAMETOOLONG} una dei due pathname è troppo lungo. - \item \texttt{ENOENT} un componente di \texttt{oldpath} o \texttt{newpath} - non esiste o è un link simbolico spezzato. - \item \texttt{ENOTDIR} un componente di \texttt{oldpath} o \texttt{newpath} - non è una directory. - \item \texttt{ENOMEM} il kernel non ha a disposizione memoria sufficiente a - completare l'operazione. - \item \texttt{EROFS} la directory su cui si vuole inserire il nuovo link è - su un filesystem montato readonly. + \texttt{newpath} non supporta i link diretti o è una directory. \item \texttt{EEXIST} un file (o una directory) con quel nome esiste di già. \item \texttt{EMLINK} ci sono troppi link al file \texttt{oldpath} (il numero massimo è specificato dalla variabile \texttt{LINK\_MAX}, vedi \secref{sec:xxx_limits}). - \item \texttt{ELOOP} si incontrati troppi link simbolici nella risoluzione - di \texttt{oldpath} o \texttt{newpath}. - \item \texttt{ENOSPC} la directory in cui si vuole creare il link non ha - spazio per ulteriori voci. - \item \texttt{EIO} c'è stato un errore di input/output. \end{errlist} + \end{prototype} La creazione di un nuovo collegamento diretto non copia il contenuto del file, -ma si limita ad aumentare di uno il numero di referenze al file aggiungendo il -nuovo nome ai precedenti. Si noti che uno stesso file può essere così -richiamato in diverse directory. +ma si limita ad aumentare di uno il numero di referenze al file (come si può +controllare con il campo \var{st\_nlink} di \var{stat}) aggiungendo il nuovo +nome ai precedenti. Si noti che uno stesso file può essere così richiamato in +diverse directory. -Per quanto dicevamo in \secref{sec:filedir_filesystem} la creazione del +Per quanto dicevamo in \secref{sec:file_filesystem} la creazione del collegamento diretto è possibile solo se entrambi i pathname sono nello stesso filesystem; inoltre il filesystem deve supportare i collegamenti diretti (non è il caso ad esempio del filesystem \texttt{vfat} di windows). La funzione opera sui file ordinari, come sugli altri oggetti del filesystem, -ma solo l'amministratore è in grado di creare un collegamento diretto ad -un'altra directory, questo lo si fa perché in questo caso è possibile creare -dei circoli nel filesystem (vedi \secref{sec:filedir_symlink}) che molti -programmi non sono in grado di gestire e la cui rimozione diventa estremamente -complicata (in genere occorre far girare il programma \texttt{fsck} per -riparare il filesystem); data la sua pericolosità in Linux questa -caratteristica è stata disabilitata, e la funzione restituisce l'errore -\texttt{EPERM}. +in alcuni filesystem solo l'amministratore è in grado di creare un +collegamento diretto ad un'altra directory, questo lo si fa perché in questo +caso è possibile creare dei circoli nel filesystem (vedi +\secref{sec:file_symlink}) che molti programmi non sono in grado di +gestire e la cui rimozione diventa estremamente complicata (in genere occorre +far girare il programma \texttt{fsck} per riparare il filesystem); data la sua +pericolosità in generale nei filesystem usati in Linux questa caratteristica è +stata disabilitata, e la funzione restituisce l'errore \texttt{EPERM}. La rimozione di un file (o più precisamente della voce che lo referenzia) si effettua con la funzione \texttt{unlink}; il suo prototipo è il seguente: @@ -265,25 +1101,14 @@ effettua con la funzione \texttt{unlink}; il suo prototipo qual caso il file non viene toccato. La variabile \texttt{errno} viene settata secondo i seguenti codici di errore: \begin{errlist} - \item \texttt{EACCESS} errore di accesso (mancano i permessi per scrivere o - per attraversare le directories), vedi \secref{sec:filedir_access_control} - per i dettagli. - \item \texttt{EPERM} il filesystem che contiene \texttt{pathname} non - consente l'operazione. - \item \texttt{EFAULT} la stringa passata come parametro è fuori dello spazio - di indirizzi del processo. - \item \texttt{ENAMETOOLONG} il pathname troppo lungo. - \item \texttt{ENOENT} uno dei componenti del pathname non esiste o è un link - simbolico spezzato. - \item \texttt{ENOTDIR} uno dei componenti del pathname non è una directory. - \item \texttt{EISDIR} \texttt{pathname} fa riferimento a una directory. - \item \texttt{ENOMEM} il kernel non ha a disposizione memoria sufficiente a - completare l'operazione. - \item \texttt{EROFS} \texttt{pathname} è su un filesystem montato in sola - lettura. - \item \texttt{ELOOP} ci sono troppi link simbolici nella risoluzione del - pathname. - \item \texttt{EIO} errore di input/output. + \item \texttt{EISDIR} \var{pathname} si riferisce ad una directory + (valore specifico ritornato da linux che non consente l'uso di + \texttt{unlink} con le directory, e non conforme allo standard POSIX, che + prescrive invece l'uso di \texttt{EPERM} in caso l'operazione non sia + consentita o il processo non abbia privilegi sufficienti). + \item \texttt{EROFS} \var{pathname} è su un filesystem montato in sola + lettura. + \item \texttt{EISDIR} \var{pathname} fa riferimento a una directory. \end{errlist} \end{prototype} @@ -311,11 +1136,11 @@ crash dei programmi; la tecnica \texttt{unlink} subito dopo. \subsection{Le funzioni \texttt{remove} e \texttt{rename}} -\label{sec:filedir_cre_canc} +\label{sec:file_remove} Al contrario di quanto avviene con altri unix in Linux non è possibile usare \texttt{unlink} sulle directory, per cancellare una directory si può usare la -funzione \texttt{rmdir} (vedi \secref{sec:filedir_dir_creat_rem}), oppure la +funzione \texttt{rmdir} (vedi \secref{sec:file_dir_creat_rem}), oppure la funzione \texttt{remove}. Questa è la funzione prevista dallo standard ANSI C per cancellare un file o una directory (e funziona anche per i sistemi che non supportano i link diretti), che per i file è identica alla \texttt{unlink} e @@ -344,34 +1169,38 @@ nuovo nome dopo che il vecchio qual caso il file non viene toccato. La variabile \texttt{errno} viene settata secondo i seguenti codici di errore: \begin{errlist} - \item \texttt{EFAULT} la stringa \texttt{filename} è fuori dello spazio di - indirizzi del processo. + \item \texttt{EISDIR} \texttt{newpath} è una directory già esistente mentre + \texttt{oldpath} non è una directory. + \item \texttt{EXDEV} \texttt{oldpath} e \texttt{newpath} non sono sullo + stesso filesystem. + \item \texttt{ENOTEMPTY} \texttt{newpath} è una directory già esistente e + non vuota. + \item \texttt{EBUSY} o \texttt{oldpath} o \texttt{newpath} sono in uso da + parte di qualche processo (come directory di lavoro o come root) o del + sistema (come mount point). + \item \texttt{EINVAL} \texttt{newpath} contiene un prefisso di + \texttt{oldpath} o più in generale si è cercato di creare una directory + come sottodirectory di se stessa. + \item \texttt{EMLINK} \texttt{oldpath} ha già il massimo numero di link + consentiti o è una directory e la directory che contiene \texttt{newpath} + ha già il massimo numero di link. + \item \texttt{ENOTDIR} Uno dei componenti dei pathname non è una directory + o\texttt{oldpath} è una directory e \texttt{newpath} esiste e non è una + directory. \item \texttt{EACCESS} Non c'è il permesso di scrittura per la directory in cui si vuole creare il nuovo link o una delle directory del pathname non consente la ricerca (permesso di esecuzione). - \item \texttt{EPERM} il pathname indica una directory o il filesystem che - contiene \texttt{filename} non consente l'operazione. - \item \texttt{EROFS} I file sono su un filesystem montato in sola lettura. - \item \texttt{ENAMETOOLONG} il pathname è troppo lungo. - \item \texttt{ENOENT} Uno dei componenti del pathname non esiste o è un link - simbolico spezzato. - \item \texttt{ENOTDIR} Uno dei componenti del pathname non è una directory. - \item \texttt{ENOMEM} Memoria insufficiente nel kernel. - \item \texttt{ELOOP} Ci sono troppi link simbolici nella risoluzione del - pathname. - \item \texttt{EISDIR} - \item \texttt{EXDEV} - \item \texttt{ENOTEMPTY} - \item \texttt{EBUSY} - \item \texttt{EINVAL} - \item \texttt{EMLINK} - \item \texttt{ENOSPC} - + \item \texttt{EPERM} le directory contenenti \texttt{oldpath} o + \texttt{newpath} hanno lo sticky bit attivo e i permessi del processo non + consentono rispettivamente la cancellazione e la creazione del file, o il + filesystem non supporta i link. + \item \texttt{ENOSPC} Il device di destinazione non ha più spazio per la + nuova voce. \end{errlist} \end{prototype} \subsection{I link simbolici} -\label{sec:filedir_sym_link} +\label{sec:file_symlink} Siccome la funzione \texttt{link} crea riferimenti agli inodes, essa può funzionare soltanto per file che risiedono sullo stesso filesystem, dato che @@ -391,10 +1220,10 @@ al kernel (analogamente a quanto avviene per le directory) per cui la chiamata ad una \texttt{open} o una \texttt{stat} su un link simbolico comporta la lettura del contenuto del medesimo e l'applicazione della funzione al file specificato da quest'ultimo. Invece altre funzioni come quelle per cancellare -o rinominare i file operano direttamente sul link simbolico. Inoltre esistono -funzioni apposite, come la \texttt{readlink} e la \texttt{lstat} per accedere -alle informazioni del link invece che a quelle del file a cui esso fa -riferimento. +o rinominare i file operano direttamente sul link simbolico (per l'elenco vedi +\ntab). Inoltre esistono funzioni apposite, come la \texttt{readlink} e la +\texttt{lstat} per accedere alle informazioni del link invece che a quelle del +file a cui esso fa riferimento. Le funzioni per operare sui link simbolici sono le seguenti, esse sono tutte dichiarate nell'header file \texttt{unistd.h}. @@ -406,8 +1235,8 @@ dichiarate nell'header file \texttt{unistd.h}. La funzione restituisce zero in caso di successo e -1 per un errore, in caso di errore. La variabile \texttt{errno} viene settata secondo i codici di - errore standard di accesso ai files (trattati in dettaglio in - \secref{sec:filedir_access_control}) ai quali si aggiungono i seguenti: + errore standard di accesso ai file (trattati in dettaglio in + \secref{sec:file_access_control}) ai quali si aggiungono i seguenti: \begin{errlist} \item \texttt{EEXIST} Un file (o una directory) con quel nome esiste di già. @@ -430,7 +1259,6 @@ questa funzione \texttt{buff} di dimensione \texttt{size}. Non chiude la stringa con un carattere nullo e la tronca a \texttt{size} nel caso il buffer sia troppo piccolo per contenerla. - La funzione restituisce il numero di caratteri letti dentro \texttt{buff} o -1 per un errore, in caso di errore. La variabile \texttt{errno} viene @@ -442,44 +1270,96 @@ questa funzione su un filesystem montato readonly. \item \texttt{ENOSPC} La directory o il filesystem in cui si vuole creare il link è piena e non c'è ulteriore spazio disponibile. - \item \texttt{ELOOP} Ci sono troppi link simbolici nella risoluzione di - \texttt{oldname} o di \texttt{newname}. \end{errlist} \end{prototype} +In \ntab\ si è riportato un elenco dei comportamenti delle varie funzioni che +operano sui file rispetto ai link simbolici; specificando quali seguono il +link simbolico e quali possono operare direttamente sul suo contenuto. +\begin{table}[htb] + \centering + \footnotesize + \begin{tabular}[c]{|l|c|c|} + \hline + Funzione & Segue il link & Non segue il link \\ + \hline + \hline + \func{access} & $\bullet$ & \\ + \func{chdir} & $\bullet$ & \\ + \func{chmod} & $\bullet$ & \\ + \func{chown} & & $\bullet$ \\ + \func{creat} & $\bullet$ & \\ + \func{exec} & $\bullet$ & \\ + \func{lchown} & $\bullet$ & $\bullet$ \\ + \func{link} & & \\ + \func{lstat} & & $\bullet$ \\ + \func{mkdir} & $\bullet$ & \\ + \func{mkfifo} & $\bullet$ & \\ + \func{mknod} & $\bullet$ & \\ + \func{open} & $\bullet$ & \\ + \func{opendir} & $\bullet$ & \\ + \func{pathconf} & $\bullet$ & \\ + \func{readlink} & & $\bullet$ \\ + \func{remove} & & $\bullet$ \\ + \func{rename} & & $\bullet$ \\ + \func{stat} & $\bullet$ & \\ + \func{truncate} & $\bullet$ & \\ + \func{unlink} & & $\bullet$ \\ + \hline + \end{tabular} + \caption{Uso dei link simbolici da parte di alcune funzioni.} + \label{tab:file_symb_effect} +\end{table} +si noti che non si è specificato il comportamento delle funzioni che operano +con i file descriptor, in quanto la gestione del link simbolico viene in +genere effettuata dalla funzione che restituisce il file descriptor +(normalmente la \func{open}). -\section{Il controllo di accesso ai file} -\label{sec:filedir_access_control} - - -\subsection{I flag \texttt{suid} e \texttt{sgid}} -\label{sec:filedir_suid_sgid} - -\subsection{La titolarità di nuovi files e directory} -\label{sec:filedir_ownership} - -\subsection{La funzione \texttt{access}} -\label{sec:filedir_access} - -\subsection{La funzione \texttt{umask}} -\label{sec:filedir_umask} - -\subsection{Le funzioni \texttt{chmod} e \texttt{fchmod}} -\label{sec:filedir_chmod} - -\subsection{Il flag \texttt{sticky}} -\label{sec:filedir_sticky} - -\subsection{Le funzioni \texttt{chown}, \texttt{fchown} e \texttt{lchown}} -\label{sec:filedir_chown} - +\begin{figure}[htb] + \centering + \includegraphics[width=5cm]{img/link_loop.eps} + \caption{Esempio di loop nel filesystem creato con un link simbolico.} + \label{fig:file_link_loop} +\end{figure} +Un caso comune che si può avere con i link simbolici è la creazione dei +cosiddetti \textit{loop}. La situazione è illustrata in \curfig, che riporta +la struttura della directory \file{/boot}. Come si vede si è creato al suo +interno un link simbolico che punta di nuovo a \file{/boot}\footnote{Questo + tipo di loop è stato effettuato per poter permettere a \cmd{grub} (un + bootloader estremamente avanzato in grado di accedere direttamente + attraverso vari filesystem al file da lanciare come sistema operativo) di + vedere i file in questa directory, che è montata su una partizione separata + (e che grub vedrebbe come radice), con lo stesso path con cui verrebbero + visti dal sistema operativo.}. + +Questo può causare problemi per tutti quei programmi che effettuano lo scan di +una directory senza tener conto dei link simbolici, ad esempio se lanciassimo +un comando del tipo \cmd{grep -r linux *}, il loop nella directory porterebbe +il comando ad esaminare \file{/boot}, \file/{boot/boot}, \file/{boot/boot/boot} +e così via, fino a generare un errore (che poi è \macro{ELOOP}) quando viene +superato il numero massimo di link simbolici consentiti (uno dei limiti del +sistema, posto proprio per poter uscire da questo tipo di situazione). + +Un secondo punto da tenere presente è che un link simbolico può essere fatto +anche ad un file che non esiste; ad esempio possiamo creare un file temporaneo +nella nostra directory con un link del tipo: +\begin{verbatim} +$ ln -s /tmp/tmp_file temporaneo +\end{verbatim}%$ +ma anche se \file{/tmp/tmp\_file} non esiste. Aprendo in scrittura +\file{temporaneo} questo verrà scritto; ma se cercassimo di accederlo in sola +lettura (ad esempio con \cmd{cat}) otterremmo: +\begin{verbatim} +$ cat prova +cat: prova: No such file or directory +\end{verbatim}%$ +con un errore che sembra sbagliato, dato \cmd{ls} ci mostrerebbe l'esistenza +di \file{temporaneo}. -\section{La manipolazione delle directories} -\label{sec:filedir_dir_handling} \subsection{Le funzioni \texttt{mkdir} e \texttt{rmdir}} -\label{sec:filedir_dir_creat_rem} +\label{sec:file_dir_creat_rem} Per creare una nuova directory si può usare la seguente funzione, omonima dell'analogo comando di shell \texttt{mkdir}; per accedere ai tipi usati @@ -488,13 +1368,13 @@ programma deve includere il file \texttt{sys/types.h}. \begin{prototype}{sys/stat.h} {int mkdir (const char * dirname, mode\_t mode)} Questa funzione crea una nuova directory vuota con il nome indicato da - \texttt{dirname}, assegnandole i permessi indicati da \texttt{mode}. Il nome + \var{dirname}, assegnandole i permessi indicati da \var{mode}. Il nome può essere indicato con il pathname assoluto o relativo. La funzione restituisce zero in caso di successo e -1 per un errore, in caso di errore \texttt{errno} viene settata secondo i codici di errore standard - di accesso ai files (trattati in dettaglio in - \secref{sec:filedir_access_control}) ai quali si aggiungono i seguenti: + di accesso ai file (trattati in dettaglio in + \secref{sec:file_access_control}) ai quali si aggiungono i seguenti: \begin{errlist} \item \texttt{EACCESS} Non c'è il permesso di scrittura per la directory in cui si vuole inserire @@ -514,7 +1394,7 @@ programma deve includere il file \texttt{sys/types.h}. \subsection{Accesso alle directory} -\label{sec:filedir_dir_read} +\label{sec:file_dir_read} Benché le directory siano oggetti del filesystem come tutti gli altri non ha ovviamente senso aprirle come fossero dei file di dati. Può però essere utile @@ -526,12 +1406,15 @@ Per accedere al contenuto delle directory si usano i cosiddetti la funzione \texttt{opendir} apre uno di questi stream e la funzione \texttt{readdir} legge il contenuto della directory, i cui elementi sono le \textit{directory entries} (da distinguersi da quelle della cache di cui -parlavamo in \secref{sec:fileintr_vfs}) in una opportuna struttura +parlavamo in \secref{sec:file_vfs}) in una opportuna struttura \texttt{struct dirent}. +(NdA Il resto va scritto!!! É noioso e lo farò più avanti). + + \subsection{La directory di lavoro} -\label{sec:filedir_work_dir} +\label{sec:file_work_dir} A ciascun processo è associato ad una directory nel filesystem che è chiamata directory corrente o directory di lavoro (\textit{current working directory}) @@ -576,7 +1459,7 @@ Di questa funzione esiste una versione \texttt{char * getwd(char * buffer)} fatta per compatibilità all'indietro con BSD, che non consente di specificare la dimensione del buffer; esso deve essere allocato in precedenza ed avere una dimensione superiore a \texttt{PATH\_MAX} (di solito 256 bytes, vedi -\secref{sec:xxx_limits}; il problema è che in Linux non esiste una dimensione +\secref{sec:xxx_limits}); il problema è che in Linux non esiste una dimensione superiore per un pathname, per cui non è detto che il buffer sia sufficiente a contenere il nome del file, e questa è la ragione principale per cui questa funzione è deprecata. @@ -600,41 +1483,13 @@ per cambiare directory di lavoro. \begin{prototype}{unistd.h}{int fchdir (int filedes)} Analoga alla precedente, ma usa un file descriptor invece del pathname. - + Entrambe le funzioni restituiscono zero in caso di successo e -1 per un errore, in caso di errore \texttt{errno} viene settata secondo i codici di - errore standard di accesso ai files (trattati in dettaglio in - \secref{sec:filedir_access_control}) ai quali si aggiunge il codice + errore standard di accesso ai file (trattati in dettaglio in + \secref{sec:file_access_control}) ai quali si aggiunge il codice \texttt{ENOTDIR} nel caso il \texttt{filename} indichi un file che non sia una directory. \end{prototype} -\section{La manipolazione delle caratteristiche dei files} -\label{sec:filedir_infos} - - -\subsection{Le funzioni \texttt{stat}, \texttt{fstat} e \texttt{lstat}} -\label{sec:filedir_stat} - -\subsection{I tipi di file} -\label{sec:filedir_file_types} - -\subsection{La dimensione dei file} -\label{sec:filedir_file_size} - -\subsection{I tempi dei file} -\label{sec:filedir_file_times} - -\subsection{La funzione \texttt{utime}} -\label{sec:filedir_utime} - - - - -%La struttura fondamentale che contiene i dati essenziali relativi ai file è il -%cosiddetto \textit{inode}; questo conterrà informazioni come il -%tipo di file (file di dispositivo, directory, file di dati, per un elenco -%completo vedi \ntab), i permessi (vedi \secref{sec:file_perms}), le date (vedi -%\secref{sec:file_times}). -