Modifiche varie in ordine alla gestione dei segnali e di SIGCHLD
[gapil.git] / system.tex
index aa60c2a187e9655ab62c068b09cda910deaba1a5..b2a7b3c3975329c95643dc8925619dab8de8adbf 100644 (file)
@@ -35,7 +35,7 @@ Quando si devono determinare le le caratteristiche generali del sistema ci si
 trova di fronte a diverse possibilità; alcune di queste infatti possono
 dipendere dall'architettura dell'hardware (come le dimensioni dei tipi
 interi), o dal sistema operativo (come la presenza o meno dei \textit{saved
-  id}) , altre invece possono dipendere dalle opzioni con cui si è costruito
+  id}), altre invece possono dipendere dalle opzioni con cui si è costruito
 il sistema (ad esempio da come si è compilato il kernel), o dalla
 configurazione del medesimo; per questo motivo in generale sono necessari due
 tipi diversi di funzionalità:
@@ -45,15 +45,17 @@ tipi diversi di funzionalit
 \item la possibilità di determinare limiti ed opzioni durante l'esecuzione.
 \end{itemize*}
 
-La prima funzionalità si può ottenere includendo gli opportuni header file,
-mentre per la seconda sono ovviamente necessarie delle funzioni; la situazione
-è complicata dal fatto che ci sono molti casi in cui alcuni di questi limiti
-sono fissi in una implementazione mentre possono variare in un altra. Tutto
+La prima funzionalità si può ottenere includendo gli opportuni header file che
+contengono le costanti necessarie definite come macro di preprocessore, per la
+seconda invece sono ovviamente necessarie delle funzioni. La situazione è
+complicata dal fatto che ci sono molti casi in cui alcuni di questi limiti
+sono fissi in un'implementazione mentre possono variare in un altra. Tutto
 questo crea una ambiguità che non è sempre possibile risolvere in maniera
 chiara; in generale quello che succede è che quando i limiti del sistema sono
-fissi essi vengono definiti come macro nel file \file{limits.h}, se invece
-possono variare, il loro valore sarà ottenibile tramite la funzione
-\func{sysconf} (che esamineremo in \secref{sec:sys_sysconf}).
+fissi essi vengono definiti come macro di preprocessore nel file
+\file{limits.h}, se invece possono variare, il loro valore sarà ottenibile
+tramite la funzione \func{sysconf} (che esamineremo in
+\secref{sec:sys_sysconf}).
 
 Lo standard ANSI C definisce dei limiti che sono tutti fissi, pertanto questo
 saranno sempre disponibili al momento della compilazione; un elenco, ripreso
@@ -75,7 +77,7 @@ avere un valore minimo di 8.
     \hline
     \hline
     \macro{MB\_LEN\_MAX}&       16  & massima dimensione di un 
-                                      carattere multibyte\\
+                                      carattere esteso\\
     \macro{CHAR\_BIT} &          8  & bit di \type{char}\\
     \macro{UCHAR\_MAX}&        255  & massimo di \type{unsigned char}\\
     \macro{SCHAR\_MIN}&       -128  & minimo di \type{signed char}\\
@@ -93,7 +95,7 @@ avere un valore minimo di 8.
     \macro{ULONG\_MAX}& 4294967295  & massimo di \type{unsigned long}\\
     \hline                
   \end{tabular}
-  \caption{Macro definite in \file{limits.h} in conformità allo standard
+  \caption{Costanti definite in \file{limits.h} in conformità allo standard
     ANSI C.}
   \label{tab:sys_ansic_macro}
 \end{table}
@@ -129,16 +131,17 @@ A questi valori lo standard ISO C90 ne aggiunge altri tre, relativi al tipo
 
 Ovviamente le dimensioni dei vari tipi di dati sono solo una piccola parte
 delle caratteristiche del sistema; mancano completamente tutte quelle che
-dipendono dalla implementazione dello stesso; questo per i sistemi unix-like è
-stato definito in gran parte dallo standard POSIX.1, che tratta anche i limiti
-delle caratteristiche dei file che vedremo in \secref{sec:sys_file_limits}.
+dipendono dalla implementazione dello stesso. Queste, per i sistemi unix-like,
+sono state definite in gran parte dallo standard POSIX.1, che tratta anche i
+limiti relativi alle caratteristiche dei file che vedremo in
+\secref{sec:sys_file_limits}.
 
 Purtroppo la sezione dello standard che tratta questi argomenti è una delle
 meno chiare\footnote{tanto che Stevens, in \cite{APUE}, la porta come esempio
-  di ``standardese''.}, ad esempio lo standard prevede che ci siano 13 macro
-che descrivono le caratteristiche del sistema (7 per le caratteristiche
-generiche, riportate in \tabref{tab:sys_generic_macro}, e 6 per le
-caratteristiche dei file, riportate in \tabref{tab:sys_file_macro}).
+  di ``standardese''.}. Lo standard prevede che ci siano 13 macro che
+descrivono le caratteristiche del sistema (7 per le caratteristiche generiche,
+riportate in \tabref{tab:sys_generic_macro}, e 6 per le caratteristiche dei
+file, riportate in \tabref{tab:sys_file_macro}).
 
 \begin{table}[htb]
   \centering
@@ -165,20 +168,21 @@ caratteristiche dei file, riportate in \tabref{tab:sys_file_macro}).
     \hline
     \hline
   \end{tabular}
-  \caption{Macro .}
+  \caption{Costanti per i limiti del sistema.}
   \label{tab:sys_generic_macro}
 \end{table}
 
-Lo standard prevede che queste macro devono essere definite in \file{limits.h}
+Lo standard dice che queste macro devono essere definite in \file{limits.h}
 quando i valori a cui fanno riferimento sono fissi, e altrimenti devono essere
 lasciate indefinite, ed i loro valori dei limiti devono essere accessibili
-solo attraverso \func{sysconf}.  Si tenga presente poi che alcuni di questi
-limiti possono assumere valori molto elevati (come \macro{CHILD\_MAX}), e non
-è pertanto il caso di utilizzarli per allocare staticamente della memoria.
+solo attraverso \func{sysconf}.  In realtà queste vengono sempre definite ad
+un valore generico. Si tenga presente poi che alcuni di questi limiti possono
+assumere valori molto elevati (come \macro{CHILD\_MAX}), e non è pertanto il
+caso di utilizzarli per allocare staticamente della memoria.
 
 A complicare la faccenda si aggiunge il fatto che POSIX.1 prevede una serie di
-altre macro (che iniziano sempre con \code{\_POSIX\_}) che definiscono i
-valori minimi le stesse caratteristiche devono avere, perché una
+altre costanti (il cui nome inizia sempre con \code{\_POSIX\_}) che
+definiscono i valori minimi le stesse caratteristiche devono avere, perché una
 implementazione possa dichiararsi conforme allo standard; detti valori sono
 riportati in \tabref{tab:sys_posix1_general}.
 
@@ -252,14 +256,14 @@ Oltre ai precedenti valori (e a quelli relativi ai file elencati in
 \tabref{tab:sys_posix1_file}), che devono essere obbligatoriamente definiti,
 lo standard POSIX.1 ne prevede parecchi altri.  La lista completa si trova
 dall'header file \file{bits/posix1\_lim.h} (da non usare mai direttamente, è
-incluso automaticamente all'interno di \file{limits.h}); di questi vale la
-pena menzionare quelli di uso più comune, riportati in
-\tabref{tab:sys_posix1_other}, che permettono di ricavare alcune
-caratteristiche del sistema (come il supporto del \textit{job control} o dei
-\textit{saved id}).
+incluso automaticamente all'interno di \file{limits.h}). Di questi vale la
+pena menzionare alcune macro di uso comune, (riportate in
+\tabref{tab:sys_posix1_other}), che non indicano un valore specifico, ma
+denotano la presenza di alcune funzionalità nel sistema (come il supporto del
+\textit{job control} o dei \textit{saved id}).
 
 Oltre allo standard POSIX.1, anche lo standard POSIX.2 definisce una serie di
-altre macro. Siccome queste sono principalmente attinenti a limiti relativi
+altre costanti. Siccome queste sono principalmente attinenti a limiti relativi
 alle applicazioni di sistema presenti (come quelli su alcuni parametri delle
 espressioni regolari o del comando \cmd{bc}), non li tratteremo
 esplicitamente, se ne trova una menzione completa nell'header file
@@ -274,8 +278,8 @@ Come accennato in \secref{sec:sys_limits} quando uno dei limiti o delle
 caratteristiche del sistema può variare, è necessario ottenerne il valore
 attraverso la funzione \func{sysconf}, per non dover essere costretti a
 ricompilare un programma tutte le volte che si cambiano le opzioni con cui è
-compilato il kernel, o alcuni dei parametri modificabili a run time. Il suo
-prototipo è:
+compilato il kernel, o alcuni dei parametri modificabili a run time. Il
+prototipo di questa funzione è:
 \begin{prototype}{unistd.h}{long sysconf(int name)}
   Restituisce il valore del parametro di sistema \param{name}.
   
@@ -287,8 +291,8 @@ prototipo 
 La funzione prende come argomento un intero che specifica quale dei limiti si
 vuole conoscere; uno specchietto contenente i principali valori disponibili in
 Linux è riportato in \tabref{tab:sys_sysconf_par}; l'elenco completo è
-contenuto in \file{bits/confname}, ed una lista più esaustiva, con le relative
-spiegazioni, si può trovare nel manuale delle \acr{glibc}. 
+contenuto in \file{bits/confname.h}, ed una lista più esaustiva, con le
+relative spiegazioni, si può trovare nel manuale delle \acr{glibc}.
 
 \begin{table}[htb]
   \centering
@@ -340,12 +344,13 @@ spiegazioni, si pu
 In generale ogni limite o caratteristica del sistema per cui è definita una
 macro, sia dagli standard ANSI C e ISO C90, che da POSIX.1 e POSIX.2, può
 essere ottenuto attraverso una chiamata a \func{sysconf}. Il valore si otterrà
-speficando come valore del parametro \param{name} il nome ottenuto aggiungendo
-\code{\_SC\_} ai nomi delle macro definite dai primi due, o sostituendolo a
-\code{\_POSIX\_} per le macro definite dagli gli altri due.
+specificando come valore del parametro \param{name} il nome ottenuto
+aggiungendo \code{\_SC\_} ai nomi delle macro definite dai primi due, o
+sostituendolo a \code{\_POSIX\_} per le macro definite dagli gli altri due.
 
 In generale si dovrebbe fare uso di \func{sysconf} solo quando la relativa
 macro non è definita, quindi con un codice analogo al seguente:
+\footnotesize
 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
 get_child_max(void)
 {
@@ -360,6 +365,7 @@ get_child_max(void)
     return val;
 }
 \end{lstlisting}
+\normalsize 
 ma in realtà in Linux queste macro sono comunque definite e indicando un
 limite generico, per cui è sempre meglio usare i valori restituiti da
 quest'ultima.
@@ -420,10 +426,10 @@ e per esse vale lo stesso discorso fatto per le analoghe di
     \macro{\_POSIX\_PATH\_MAX}& 256  & lunghezza in byte di pathname.\\
     \macro{\_POSIX\_PIPE\_BUF}& 512  & byte scrivibili atomicamente in una
                                        pipe\\
-    \macro{\_POSIX\_MQ\_OPEN\_MAX}&  8& \\
-    \macro{\_POSIX\_MQ\_PRIO\_MAX}& 32& \\
-    \macro{\_POSIX\_FD\_SETSIZE}& 16 & \\
-    \macro{\_POSIX\_DELAYTIMER\_MAX}& 32 & \\
+%    \macro{\_POSIX\_MQ\_OPEN\_MAX}&  8& \\
+%    \macro{\_POSIX\_MQ\_PRIO\_MAX}& 32& \\
+%    \macro{\_POSIX\_FD\_SETSIZE}& 16 & \\
+%    \macro{\_POSIX\_DELAYTIMER\_MAX}& 32 & \\
     \hline
   \end{tabular}
   \caption{Macro dei valori minimi delle caratteristiche dei file per la
@@ -464,13 +470,13 @@ suo prototipo 
     invece di un pathname; pertanto gli errori restituiti cambiano di
     conseguenza.}
 \end{prototype}
-\noindent ed il suo comportamento è identico a quello di \func{fpathconf}.
+\noindent ed il suo comportamento è identico a quello di \func{pathconf}.
 
 
 \subsection{La funzione \func{uname}}
 \label{sec:sys_uname}
 
-Unaltra funzione che si può utilizzare per raccogliere informazioni sia
+Un'altra funzione che si può utilizzare per raccogliere informazioni sia
 riguardo al sistema che al computer su cui esso sta girando è \func{uname}, il
 suo prototipo è:
 \begin{prototype}{sys/utsname.h}{int uname(struct utsname *info)}
@@ -480,24 +486,24 @@ suo prototipo 
   fallimento, nel qual caso \var{errno} viene settata a \macro{EFAULT}.}
 \end{prototype}
 
-La funzione, che viene usata dal comando \cmd{umane}, restituisce le
-informazioni richieste nella struttura \param{info}, anche questa struttura è
+La funzione, che viene usata dal comando \cmd{uname}, restituisce le
+informazioni richieste nella struttura \param{info}; anche questa struttura è
 definita in \file{sys/utsname.h} come:
 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-    struct utsname {
-        char sysname[_UTSNAME_LENGTH];
-        char nodename[_UTSNAME_LENGTH];
-        char release[_UTSNAME_LENGTH];
-        char version[_UTSNAME_LENGTH];
-        char machine[_UTSNAME_LENGTH];
+struct utsname {
+    char sysname[_UTSNAME_LENGTH];
+    char nodename[_UTSNAME_LENGTH];
+    char release[_UTSNAME_LENGTH];
+    char version[_UTSNAME_LENGTH];
+    char machine[_UTSNAME_LENGTH];
 #ifdef _GNU_SOURCE
-        char domainname[_UTSNAME_DOMAIN_LENGTH];
+    char domainname[_UTSNAME_DOMAIN_LENGTH];
 #endif
-    };
+};
 \end{lstlisting}
 e le informazioni memorizzate nei suoi membri indicano rispettivamente:
 \begin{itemize*}
-\item il nome del systema operativo;
+\item il nome del sistema operativo;
 \item il nome della release del kernel;
 \item il nome della versione del kernel;
 \item il tipo di macchina in uso;
@@ -519,19 +525,21 @@ l'esecuzione del sistema, di modificarli.
 
 Inoltre, al di la di quelli che possono essere limiti caratteristici previsti
 da uno standard, ogni sistema può avere una sua serie di altri parametri di
-configurazione, che non essendo mai fissi, non sono stati inclusi nella
-standardizzazione della sezione precedente, e per i quali occorre, oltre al
-meccanismo di settaggio, pure un meccanismo di lettura.
+configurazione, che, non essendo mai fissi e variando da sistema a sistema,
+non sono stati inclusi nella standardizzazione della sezione precedente. Per
+questi occorre, oltre al meccanismo di settaggio, pure un meccanismo di
+lettura.
 
 Affronteremo questi argomenti in questa sezione, insieme alle funzioni che si
-usano per la gestione ed il controllo dei filesystem. 
+usano per il controllo di altre caratteristiche generali del sistema, come
+quelle per la gestione dei filesystem e di utenti e gruppi.
 
 
 \subsection{La funzione \func{sysctl} ed il filesystem \file{/proc}}
 \label{sec:sys_sysctl}
 
-La funzione che permette la lettura ed il settaggio dei parametri del kernel è
-\func{sysctl}, è una funzione derivata da BSD4.4, ma l'implementazione è
+La funzione che permette la lettura ed il settaggio dei parametri del sistema
+è \func{sysctl}; è una funzione derivata da BSD4.4, ma l'implementazione è
 specifica di Linux; il suo prototipo è:
 \begin{functions}
 \headdecl{unistd.h}
@@ -540,6 +548,7 @@ specifica di Linux; il suo prototipo 
 \funcdecl{int sysctl(int *name, int nlen, void *oldval, size\_t *oldlenp, void
   *newval, size\_t newlen)}
 
+Legge o scrive uno dei parametri di sistema.
 
 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
   errore, nel qual caso \var{errno} viene settato ai valori:
@@ -562,33 +571,35 @@ specifica di Linux; il suo prototipo 
 \end{functions}
 
 I parametri a cui la funzione permettere di accedere sono organizzati in
-maniera gerarchica ad albero, e per accedere ad uno di essi occorre
+maniera gerarchica all'interno un albero; per accedere ad uno di essi occorre
 specificare un cammino attraverso i vari nodi dell'albero, in maniera analoga
-a come si specifica un pathname (da cui l'uso alternativo del filesystem
-\file{/proc} che vedremo dopo).
-
-Ciascun nodo è identificato da un valore intero, ed il cammino che arriva ad
-identificare un parametro specifico è passato attraverso l'array \param{name},
-di lunghezza \param{nlen}, che contiene la sequenza dei vari nodi da
-attraversare. Il formato del valore di un parametro dipende dallo stesso e può
-essere un intero, una stringa o anche una struttura complessa. 
-
-L'indirizzo a cui il valore deve essere letto è specificato da
-\param{oldvalue}, e lo spazio ivi disponibile è specificato da \param{oldlenp}
-(passato come puntatore per avere indietro la dimensione effettiva di quanto
-letto); il valore che si vuole scrivere è passato in \param{newval} e la sua
-dimensione in \param{newlen}.
+a come avviene per la risoluzione di un pathname (da cui l'uso alternativo del
+filesystem \file{/proc} che vedremo dopo).
+
+Ciascun nodo dell'albero è identificato da un valore intero, ed il cammino che
+arriva ad identificare un parametro specifico è passato alla funzione
+attraverso l'array \param{name}, di lunghezza \param{nlen}, che contiene la
+sequenza dei vari nodi da attraversare. Ogni parametro ha un valore in un
+formato specifico chee può essere un intero, una stringa o anche una struttura
+complessa, per questo motivo il valori vengono passati come puntatori
+\type{void}.
+
+L'indirizzo a cui il valore corrente del parametro deve essere letto è
+specificato da \param{oldvalue}, e lo spazio ivi disponibile è specificato da
+\param{oldlenp} (passato come puntatore per avere indietro la dimensione
+effettiva di quanto letto); il valore che si vuole settare nel sistema è
+passato in \param{newval} e la sua dimensione in \param{newlen}.
 
 Si può effettuare anche una lettura e scrittura simultanea, nel qual caso il
-valore letto è quello precedente alla scrittura.
+valore letto restituito dalla funzione è quello precedente alla scrittura.
 
 I parametri accessibili attraverso questa funzione sono moltissimi, e possono
 essere trovati in \file{sysctl.h}, essi inoltre dipendono anche dallo stato
 corrente del kernel (ad esempio dai moduli che sono stati caricati nel
 sistema) e in genere i loro nomi possono variare da una versione di kernel
 all'altra; per questo è sempre il caso di evitare l'uso di \func{sysctl}
-quando esistono modalità alternative per ottenere le stesse informazioni,
-alcuni esempi di parametri ottenibili sono:
+quando esistono modalità alternative per ottenere le stesse informazioni.
+Alcuni esempi di parametri ottenibili sono:
 \begin{itemize*}
 \item il nome di dominio
 \item i parametri del meccanismo di \textit{paging}.
@@ -599,14 +610,14 @@ alcuni esempi di parametri ottenibili sono:
 \end{itemize*}
 
 Come accennato in Linux si ha una modalità alternativa per accedere alle
-stesse informazioni di \func{sysctl} attaverso l'uso del filesystem
+stesse informazioni di \func{sysctl} attraverso l'uso del filesystem
 \file{/proc}. Questo è un filesystem virtuale, generato direttamente dal
 kernel, che non fa riferimento a nessun dispositivo fisico, ma presenta in
 forma di file alcune delle strutture interne del kernel stesso.
 
 In particolare l'albero dei valori di \func{sysctl} viene presentato in forma
 di file nella directory \file{/proc/sys}, cosicché è possibile accedervi
-speficando un pathname e leggendo e scrivendo sul file corrispondente al
+specificando un pathname e leggendo e scrivendo sul file corrispondente al
 parametro scelto.  Il kernel si occupa di generare al volo il contenuto ed i
 nomi dei file corrispondenti, e questo ha il grande vantaggio di rendere
 accessibili i vari parametri a qualunque comando di shell e di permettere la
@@ -618,14 +629,14 @@ commenti in \file{linux/sysctl.h}, la informazione disponibile in
 del kernel, nella directory \file{Documentation/sysctl}.
 
 
-\subsection{La configurazione dei filesystem}
+\subsection{La gestione delle proprietà dei filesystem}
 \label{sec:sys_file_config}
 
 Come accennato in \secref{sec:file_organization} per poter accedere ai file
 occorre prima rendere disponibile al sistema il filesystem su cui essi sono
 memorizzati; l'operazione di attivazione del filesystem è chiamata
 \textsl{montaggio}, per far questo in Linux\footnote{la funzione è specifica
-  di Linux e non è portabile} si usa la funzione \func{mount} il cui prototipo
+  di Linux e non è portabile.} si usa la funzione \func{mount} il cui prototipo
 è:
 \begin{prototype}{sys/mount.h}
 {mount(const char *source, const char *target, const char *filesystemtype, 
@@ -635,9 +646,10 @@ Monta il filesystem di tipo \param{filesystemtype} contenuto in \param{source}
 sulla directory \param{target}.
   
   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
-  fallimento, nel qual caso \var{errno} viene settata a:
+  fallimento, nel qual caso gli errori comuni a tutti i filesystem che possono
+  essere restituiti in \var{errno} sono:
   \begin{errlist}
-  \item[\macro{EPERM}] il processo non ha i provilegi di amministratore.
+  \item[\macro{EPERM}] il processo non ha i privilegi di amministratore.
   \item[\macro{ENODEV}] \param{filesystemtype} non esiste o non è configurato
     nel kernel.
   \item[\macro{ENOTBLK}] non si è usato un \textit{block device} per
@@ -662,24 +674,155 @@ sulla directory \param{target}.
   \macro{ENAMETOOLONG}, \macro{ENOENT} o \macro{ELOOP}.}
 \end{prototype}
 
-La funzione monta sulla directory \param{target} il filesystem contenuto in
-\param{source}, di norma questo è un file di dispositivo, ma può anche essere
-un file normale che contiene un filesystem, (che può essere montato \textit{in
-  loopback}).
+La funzione monta sulla directory \param{target}, detta \textit{mount point},
+il filesystem contenuto in \param{source}. In generale un filesystem è
+contenuto su un disco, e l'operazione di montaggio corrisponde a rendere
+visibile al sistema il contenuto del suddetto disco, identificato attraverso
+il file di dispositivo ad esso associato.
+
+Ma la struttura del virtual filesystem vista in \secref{sec:file_vfs} è molto
+più flessibile e può essere usata anche per oggetti diversi da un disco. Ad
+esempio usando il \textit{loop device} si può montare un file qualunque (come
+l'immagine di un CD-ROM o di un floppy) che contiene un filesystem, inoltre
+alcuni filesystem, come \file{proc} o \file{devfs} sono del tutto virtuali, i
+loro dati sono generati al volo ad ogni lettura, e passati al kernel ad ogni
+scrittura. 
+
+Il tipo di filesystem è specificato da \param{filesystemtype}, che deve essere
+una delle stringhe riportate in \file{/proc/filesystems}, che contiene
+l'elenco dei filesystem supportati dal kernel; nel caso si sia indicato uno
+dei filesystem virtuali, il contenuto di \param{source} viene ignorato.
+
+Dopo l'esecuzione della funzione il contenuto del filesystem viene resto
+disponibile nella directory specificata come \textit{mount point}, il
+precedente contenuto di detta directory viene mascherato dal contenuto della
+directory radice del filesystem montato.
+
+Dal kernel 2.4.x inoltre è divenuto possibile sia spostare atomicamente un
+\textit{mount point} da una directory ad un'altra, che montare in diversi
+\textit{mount point} lo stesso filesystem, che montare più filesystem sullo
+stesso \textit{mount point} (nel qual caso vale quanto appena detto, e solo il
+contenuto dell'ultimo filesystem montato sarà visibile).
+
+Ciascun filesystem è dotato di caratteristiche specifiche che possono essere
+attivate o meno, alcune di queste sono generali (anche se non è detto siano
+disponibili in ogni filesystem), e vengono specificate come opzioni di
+montaggio con l'argomento \param{mountflags}.  
+
+In Linux \param{mountflags} deve essere un intero a 32 bit i cui 16 più
+significativi sono un \textit{magic number}\footnote{cioè un numero speciale
+  usato come identificativo, che nel caso è \code{0xC0ED}; si può usare la
+  costante \macro{MS\_MGC\_MSK} per ottenere la parte di \param{mountflags}
+  riservata al \textit{magic number}.} mentre i 16 meno significativi sono
+usati per specificare le opzioni; essi sono usati come maschera binaria e
+vanno settati con un OR aritmetico della costante \macro{MS\_MGC\_VAL} con i
+valori riportati in \ntab.
 
+\begin{table}[htb]
+  \centering
+  \begin{tabular}[c]{|l|r|l|}
+    \hline
+    \textbf{Parametro} & \textbf{Valore}&\textbf{Significato}\\
+    \hline
+    \hline
+    \macro{MS\_RDONLY}     &  1 & monta in sola lettura\\
+    \macro{MS\_NOSUID}     &  2 & ignora i bit \acr{suid} e \acr{sgid}\\
+    \macro{MS\_NODEV}      &  4 & impedisce l'accesso ai file di dispositivo\\
+    \macro{MS\_NOEXEC}     &  8 & impedisce di eseguire programmi \\
+    \macro{MS\_SYNCHRONOUS}& 16 & abilita la scrittura sincrona \\
+    \macro{MS\_REMOUNT}    & 32 & rimonta il filesystem cambiando i flag\\
+    \macro{MS\_MANDLOCK}   & 64 & consente il \textit{mandatory locking} (vedi
+                                  \secref{sec:file_mand_locking})\\
+    \macro{S\_WRITE}      & 128 & scrive normalmente \\
+    \macro{S\_APPEND}     & 256 & consente la scrittura solo in \textit{append
+                                  mode} (vedi \secref{sec:file_sharing})\\
+    \macro{S\_IMMUTABLE}  & 512 & impedisce che si possano modificare i file \\
+    \macro{MS\_NOATIME}   &1024 & non aggiorna gli \textit{access time} (vedi
+                                  \secref{sec:file_file_times})\\
+    \macro{MS\_NODIRATIME}&2048 & non aggiorna gli \textit{access time} delle
+                                  directory\\
+    \macro{MS\_BIND}      &4096 & monta il filesystem altrove\\
+    \macro{MS\_MOVE}      &8192 & sposta atomicamente il punto di montaggio \\
+    \hline
+  \end{tabular}
+  \caption{Tabella dei codici dei flag di montaggio di un filesystem.}
+  \label{tab:sys_mount_flags}
+\end{table}
+
+Per il settaggio delle caratteristiche particolari di ciascun filesystem si
+usa invece l'argomento \param{data} che serve per passare le ulteriori
+informazioni necessarie, che ovviamente variano da filesystem a filesystem.
+
+La funzione \func{mount} può essere utilizzata anche per effettuare il
+\textsl{rimontaggio} di un filesystem, cosa che permette di cambiarne al volo
+alcune delle caratteristiche di funzionamento (ad esempio passare da sola
+lettura a lettura/scrittura). Questa operazione è attivata attraverso uno dei
+bit di \param{mountflags}, \macro{MS\_REMOUNT}, che se settato specifica che
+deve essere effettuato il rimontaggio del filesystem (con le opzioni
+specificate dagli altri bit), anche in questo caso il valore di \param{source}
+viene ignorato.
 
 
-Due funzioni, utili per ottenere in maniera diretta informazioni riguardo al
-filesystem su cui si trova un certo file, sono \func{statfs} e \func{fstatfs},
-i cui prototipi sono:
+Una volta che non si voglia più utilizzare un certo filesystem è possibile
+\textsl{smontarlo} usando la funzione \func{umount}, il cui prototipo è:
+\begin{prototype}{sys/mount.h}{umount(const char *target)}
+  
+  Smonta il filesystem montato sulla directory \param{target}.
+  
+  \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
+    fallimento, nel qual caso \var{errno} viene settata a:
+  \begin{errlist}
+  \item[\macro{EPERM}] il processo non ha i privilegi di amministratore.
+  \item[\macro{EBUSY}]  \param{target} è la directory di lavoro di qualche
+  processo, o contiene dei file aperti, o un altro mount point.
+  \end{errlist}
+  ed inoltre \macro{ENOTDIR}, \macro{EFAULT}, \macro{ENOMEM},
+  \macro{ENAMETOOLONG}, \macro{ENOENT} o \macro{ELOOP}.}
+\end{prototype}
+\noindent la funzione prende il nome della directory su cui il filesystem è
+montato e non il file o il dispositivo che è stato montato,\footnote{questo è
+  vero a partire dal kernel 2.3.99-pre7, prima esistevano due chiamate
+  separate e la funzione poteva essere usata anche specificando il file di
+  dispositivo.} in quanto con il kernel 2.4.x è possibile montare lo stesso
+dispositivo in più punti. Nel caso più di un filesystem sia stato montato
+sullo stesso \textit{mount point} viene smontato quello che è stato montato
+per ultimo.
+
+Si tenga presente che la funzione fallisce quando il filesystem è
+\textsl{occupato}, questo avviene quando ci sono ancora file aperti sul
+filesystem, se questo contiene la directory di lavoro corrente di un qualunque
+processo o il mount point di un altro filesystem; in questo caso l'errore
+restituito è \macro{EBUSY}.
+
+Linux provvede inoltre una seconda funzione, \func{umount2}, che in alcuni
+casi permette di forzare lo smontaggio di un filesystem, anche quando questo
+risulti occupato; il suo prototipo è:
+\begin{prototype}{sys/mount.h}{umount2(const char *target, int flags)}
+  
+  La funzione è identica a \func{umount} per comportamento e codici di errore,
+  ma con \param{flags} si può specificare se forzare lo smontaggio.
+\end{prototype}
+
+Il valore di \param{flags} è una maschera binaria, e al momento l'unico valore
+definito è il bit \macro{MNT\_FORCE}; gli altri bit devono essere nulli.
+Specificando \macro{MNT\_FORCE} la funzione cercherà di liberare il filesystem
+anche se è occupato per via di una delle condizioni descritte in precedenza. A
+seconda del tipo di filesystem alcune (o tutte) possono essere superate,
+evitando l'errore di \macro{EBUSY}.  In tutti i casi prima dello smontaggio
+viene eseguita una sincronizzazione dei dati. 
+
+Altre due funzioni specifiche di Linux,\footnote{esse si trovano anche su BSD,
+  ma con una struttura diversa.} utili per ottenere in maniera diretta
+informazioni riguardo al filesystem su cui si trova un certo file, sono
+\func{statfs} e \func{fstatfs}, i cui prototipi sono:
 \begin{functions}
   \headdecl{sys/vfs.h} \funcdecl{int statfs(const char *path, struct statfs
     *buf)} \funcdecl{int fstatfs(int fd, struct statfs *buf)} Restituisce in
   \param{buf} le informazioni relative al filesystem su cui è posto il file
   specificato.
-
-\bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
-  errore, nel qual caso \var{errno} viene settato ai valori:
+  
+  \bodydesc{Li funzioni restituiscono 0 in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} viene settato ai valori:
   \begin{errlist}
   \item[\macro{ENOSYS}] il filesystem su cui si trova il file specificato non
   supporta la funzione.
@@ -689,11 +832,61 @@ i cui prototipi sono:
   \macro{EACCES}, \macro{ELOOP} per \func{statfs}.}
 \end{functions}
 
+Queste funzioni permettono di ottenere una serie di informazioni generali
+riguardo al filesystem su cui si trova il file specificato; queste vengono
+restituite una struttura \param{buf} definita come:
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+    struct statfs {
+       long    f_type;     /* tipo di filesystem */
+       long    f_bsize;    /* dimensione ottimale dei blocchi di I/O */
+       long    f_blocks;   /* blocchi totali nel filesystem */
+       long    f_bfree;    /* blocchi liberi nel filesystem */
+       long    f_bavail;   /* blocchi liberi agli utenti normali */
+       long    f_files;    /* inodes totali nel filesystem */
+       long    f_ffree;    /* inodes liberi nel filesystem */
+       fsid_t  f_fsid;     /* filesystem id */
+       long    f_namelen;  /* lunghezza massima dei nomi dei file */
+       long    f_spare[6]; /* riservati per uso futuro */
+    };
+\end{lstlisting}
+ed i campi che sono indefiniti per il filesystem in esame sono settati a zero.
+I valori del campo \var{f\_type} sono definiti per i vari filesystem nei
+relativi file di header dei sorgenti del kernel da costanti del tipo
+\macro{XXX\_SUPER\_MAGIC}, dove \macro{XXX} in genere è il nome del filesystem
+stesso.
+
+Le \acr{glibc} provvedono infine una serie di funzioni per la gestione dei due
+file standard \file{/etc/fstab} e \file{/etc/mtab}, che convenzionalmente sono
+usati in quasi tutti i sistemi unix per mantenere rispettivamente le
+informazioni riguardo ai filesystem da montare e a quelli correntemente
+montati. Le funzioni servono a leggere il contenuto di questi file in
+opportune strutture \var{struct fstab} e \var{struct mntent}, e, per
+\file{/etc/mtab} per inserire e rimuovere le voci presenti nel file.  
+
+In generale si dovrebbero usare queste funzioni (in particolar modo quelle
+relative a \file{/etc/mtab}), quando si debba scrivere un programma che
+effettua il montaggio di un filesystem; in realtà in questi casi è molto più
+semplice invocare direttamente il programma \cmd{mount}, per cui ne
+tralasceremo la trattazione, rimandando al manuale delle \acr{glibc}
+\cite{glibc} per la documentazione completa.
 
 
 \subsection{La gestione di utenti e gruppi}
 \label{sec:sys_user_group}
 
+L'ultimo argomento di questa sezione è quello che riguarda le funzioni
+utilizzate per gestire utenti e gruppi all'interno del sistema.
+Tradizionalmente l'informazione per la gestione di utenti e gruppi veniva
+tenuta tutta nei due file di testo \file{/etc/passwd} ed \file{/etc/group};
+oggi la maggior parte delle distribuzioni di Linux usa la libreria PAM (sigla
+che sta \textit{Pluggable Authentication Method}) che permette di separare
+completamente i meccanismi di gestione degli utenti (autenticazione,
+riconoscimeto, ecc.) dal
+
+
+
+Lo standard POSIX.1 definisce una serie di funzioni
+
 
 
 \section{Limitazione ed uso delle risorse}
@@ -771,13 +964,13 @@ date e del tempo in un sistema unix-like, e quelle per convertire i vari
 tempi nelle differenti rappresentazioni che vengono utilizzate.
 
 
-\subsection{La misura del tempo in unix}
+\subsection{La misura del tempo in Unix}
 \label{sec:sys_unix_time}
 
-Storicamente i sistemi unix-like hanno sempre mantenuto due distinti
-valori per i tempi all'interno del sistema, essi sono rispettivamente
-chiamati \textit{calendar time} e \textit{process time}, secondo le
-definizioni:
+Storicamente i sistemi unix-like hanno sempre mantenuto due distinti tipi di
+dati per la misure dei tempi all'interno del sistema: essi sono
+rispettivamente chiamati \textit{calendar time} e \textit{process time},
+secondo le definizioni:
 \begin{itemize}
 \item \textit{calendar time}: è il numero di secondi dalla mezzanotte del
   primo gennaio 1970, in tempo universale coordinato (o UTC), data che viene
@@ -787,11 +980,11 @@ definizioni:
   viene mantenuto l'orologio del calcolatore, e viene usato ad esempio per
   indicare le date di modifica dei file o quelle di avvio dei processi. Per
   memorizzare questo tempo è stato riservato il tipo primitivo \type{time\_t}.
-\item \textit{process time}: talvolta anche detto tempo di CPU. Viene misurato
+\item \textit{process time}: detto anche tempo di processore. Viene misurato
   in \textit{clock tick}, corrispondenti al numero di interruzioni effettuate
   dal timer di sistema, e che per Linux avvengono ogni centesimo di
-  secondo\footnote{eccetto per la piattaforma alpha dove avvengono ogni
-    millesimo di secondo}. Il dato primitivo usato per questo tempo è
+  secondo.\footnote{eccetto per la piattaforma alpha dove avvengono ogni
+    millesimo di secondo.} Il dato primitivo usato per questo tempo è
   \type{clock\_t}, inoltre la costante \macro{HZ} restituisce la frequenza di
   operazione del timer, e corrisponde dunque al numero di tick al secondo.  Lo
   standard POSIX definisce allo stesso modo la costante \macro{CLK\_TCK});
@@ -799,32 +992,35 @@ definizioni:
   \secref{sec:sys_limits}).
 \end{itemize}
 
-In genere si usa il \textit{calendar time} per tenere le date dei file e le
-informazioni analoghe che riguardano i tempi di ``orologio'', usati ad esempio
-per i demoni che compiono lavori amministrativi ad ore definite, come
-\cmd{cron}. Di solito questo vene convertito automaticamente dal valore in UTC
-al tempo locale, utilizzando le opportune informazioni di localizzazione
+In genere si usa il \textit{calendar time} per esprimere le date dei file e le
+informazioni analoghe che riguardano i cosiddetti \textsl{tempi di orologio},
+che vengono usati ad esempio per i demoni che compiono lavori amministrativi
+ad ore definite, come \cmd{cron}. 
+
+Di solito questo tempo viene convertito automaticamente dal valore in UTC al
+tempo locale, utilizzando le opportune informazioni di localizzazione
 (specificate in \file{/etc/timezone}). E da tenere presente che questo tempo è
-mantenuto dal sistema e non corrisponde all'orologio hardware del calcolatore.
+mantenuto dal sistema e non è detto che corrisponda al tempo tenuto
+dall'orologio hardware del calcolatore.
 
-Il \textit{process time} di solito si esprime in secondi e viene usato appunto
-per tenere conto dei tempi di esecuzione dei processi. Per ciascun processo il
-kernel tiene tre di questi tempi: 
-\begin{itemize*}
-\item \textit{clock time}
-\item \textit{user time}
-\item \textit{system time}
-\end{itemize*}
-il primo è il tempo ``reale'' (viene anche chiamato \textit{wall clock time})
-dall'avvio del processo, e misura il tempo trascorso fino alla sua
-conclusione; chiaramente un tale tempo dipende anche dal carico del sistema e
-da quanti altri processi stavano girando nello stesso periodo. Il secondo
-tempo è quello che la CPU ha speso nell'esecuzione delle istruzioni del
-processo in user space. Il terzo è il tempo impiegato dal kernel per eseguire
-delle system call per conto del processo medesimo (tipo quello usato per
-eseguire una \func{write} su un file). In genere la somma di user e system
-time viene chiamato \textit{CPU time}. 
+Anche il \textit{process time} di solito si esprime in secondi, ma provvede una
+precisione ovviamente superiore al \textit{calendar time} (la cui granularità
+minima è il secondo) e viene usato per tenere conto dei tempi di esecuzione
+dei processi. Per ciascun processo il kernel calcola tre tempi diversi:
+\begin{description*}
+\item[\textit{clock time}]: il tempo \textsl{reale} (viene chiamato anche
+  \textit{wall clock time}) passato dall'avvio del processo. Chiaramente tale
+  tempo dipende anche dal carico del sistema e da quanti altri processi
+  stavano girando nello stesso periodo.
+\item[\textit{user time}]: il tempo che la CPU ha impiegato nell'esecuzione
+  delle istruzioni del processo in user space.
+\item[\textit{system time}]: il tempo che la CPU ha impiegato nel kernel per
+  eseguire delle system call per conto del processo.
+\end{description*}
 
+In genere la somma di \textit{user time} e \textit{system time} indica il
+tempo di processore totale in cui il sistema è stato effettivamente impegnato
+nell'eseguire un certo processo e viene chiamato \textit{CPU time}.
 
 
 
@@ -851,16 +1047,17 @@ costante \macro{EOF} (a seconda della funzione); ma questo valore segnala solo
 che c'è stato un errore, non il tipo di errore. 
 
 Per riportare il tipo di errore il sistema usa la variabile globale
-\var{errno}\footnote{L'uso di una variabile globale può comportare alcuni
+\var{errno},\footnote{L'uso di una variabile globale può comportare alcuni
   problemi (ad esempio nel caso dei thread) ma lo standard ISO C consente
   anche di definire \var{errno} come un \textit{modifiable lvalue}, quindi si
   può anche usare una macro, e questo è infatti il modo usato da Linux per
-  renderla locale ai singoli thread.}, definita nell'header \file{errno.h}; la
+  renderla locale ai singoli thread.} definita nell'header \file{errno.h}; la
 variabile è in genere definita come \type{volatile} dato che può essere
-cambiata in modo asincrono da un segnale (per una descrizione dei segnali si
-veda \secref{cha:signals}), ma dato che un manipolatore di segnale scritto
-bene salva e ripristina il valore della variabile, di questo non è necessario
-preoccuparsi nella programmazione normale.
+cambiata in modo asincrono da un segnale (si veda \ref{sec:sig_sigchld} per un
+esempio, ricordando quanto trattato in \ref{sec:proc_race_cond}), ma dato che
+un manipolatore di segnale scritto bene salva e ripristina il valore della
+variabile, di questo non è necessario preoccuparsi nella programmazione
+normale.
 
 I valori che può assumere \var{errno} sono riportati in \capref{cha:errors},
 nell'header \file{errno.h} sono anche definiti i nomi simbolici per le
@@ -902,7 +1099,7 @@ errore sconosciuto. La funzione utilizza una stringa statica che non deve
 essere modificata dal programma e che è utilizzabile solo fino ad una chiamata
 successiva a \func{strerror}; nel caso si usino i thread è
 provvista\footnote{questa funzione è una estensione GNU, non fa parte dello
-  standard POSIX} una versione apposita:
+  standard POSIX.} una versione apposita:
 \begin{prototype}{string.h}
 {char *strerror\_r(int errnum, char *buff, size\_t size)} 
   Analoga a \func{strerror} ma ritorna il messaggio in un buffer
@@ -913,7 +1110,7 @@ provvista\footnote{questa funzione 
 che utilizza un buffer che il singolo thread deve allocare, per evitare i
 problemi connessi alla condivisione del buffer statico. Infine, per completare
 la caratterizzazione dell'errore, si può usare anche la variabile
-globale\footnote{anche questa è una estensione GNU}
+globale\footnote{anche questa è un'estensione GNU.}
 \var{program\_invocation\_short\_name} che riporta il nome del programma
 attualmente in esecuzione.