Rinominati app_a e app_b
[gapil.git] / socket.tex
index b379719cf38d3c63289c30fc4694cdf9ed28e649..e20c38800ce3e087de70946678e1a2854d80be31 100644 (file)
@@ -117,7 +117,7 @@ altro nome con cui si indicano i domini.
 
 A ciascun tipo di dominio corrisponde un analogo nome simbolico che inizia per
 \texttt{AF\_} da \textit{address family}, e che identifica il formato degli
-indirizzi usati in quel dominio; le man pages di linux si riferiscono a questi
+indirizzi usati in quel dominio; le man pages di Linux si riferiscono a questi
 anche come \textit{name space}, (nome che però il manuale della glibc riserva
 ai domini) e che identifica il formato degli indirizzi usati in quel dominio.
 
@@ -130,7 +130,7 @@ supportino diverse strutture di indirizzi, per cui nella pratica questi due
 nomi sono equivalenti e corrispondono agli stessi valori.
 
 I domini (e i relativi nomi simbolici), così come i nomi delle famiglie di
-indirizzi sono definiti dall'header \textit{socket.h}. In linux le famiglie di
+indirizzi sono definiti dall'header \textit{socket.h}. In Linux le famiglie di
 protocolli disponibili sono riportate in \ntab.
 
 \begin{table}[htb]
@@ -150,13 +150,13 @@ protocolli disponibili sono riportate in \ntab.
        PF\_APPLETALK      & Appletalk                      & ddp(7)     \\
        PF\_PACKET         & Low level packet interface     & packet(7)  \\    
   \end{tabular}
-  \caption{Famiglie di protocolli definiti in linux}
+  \caption{Famiglie di protocolli definiti in Linux}
   \label{tab:net_pf_names}
 \end{table}
 
 Non tutte le famiglie di protocolli sono accessibili dall'utente generico, ad
 esempio in generale tutti i socket di tipo \texttt{SOCK\_RAW} possono essere
-creati solo da processi che hanno i provilegi di root (cioè effective uid
+creati solo da processi che hanno i privilegi di root (cioè effective uid
 uguale a zero) o la capability \texttt{CAP\_NET\_RAW}.
 
 
@@ -166,7 +166,7 @@ uguale a zero) o la capability \texttt{CAP\_NET\_RAW}.
 La scelta di un dominio non comporta però la scelta dello stile di
 comunicazione, questo infatti viene a dipendere dal protocollo che si andrà ad
 utilizzare fra quelli disponibili nella famiglia scelta. Le API permettono di
-scegliere lo stile di comunicazione indicando il tipo di socket; linux e le
+scegliere lo stile di comunicazione indicando il tipo di socket; Linux e le
 glibc mettono a disposizione i seguenti tipi di socket (che il manuale della
 glibc chiama \textit{styles}) definiti come \texttt{int} in \texttt{socket.h}:
 
@@ -268,7 +268,7 @@ in \nfig:
 
 \begin{figure}[!htbp]
   \footnotesize
-  \begin{lstlisting}{}
+  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
 struct sockaddr {
     sa_family_t  sa_family;     /* address family: AF_xxx */
     char         sa_data[14];   /* address (protocol-specific) */
@@ -284,7 +284,7 @@ invocano dette funzioni passando l'indirizzo di un protocollo specifico
 occorrerà eseguire un casting del relativo puntatore.
 
 I tipi di dati che compongono la struttura sono stabiliti dallo standard
-Posix.1g, riassunti in \ntab\ con i rispettivi file di include in cui sono
+POSIX.1g, riassunti in \ntab\ con i rispettivi file di include in cui sono
 definiti; la struttura è invece definita nell'include file
 \texttt{sys/socket.h}
 
@@ -314,14 +314,14 @@ definiti; la struttura 
     \hline
   \end{tabular}
   \caption{Tipi di dati usati nelle strutture degli indirizzi, secondo quanto 
-    stabilito dallo standard Posix.1g}
+    stabilito dallo standard POSIX.1g}
   \label{tab:sock_data_types}
 \end{table}
 
 In alcuni sistemi la struttura è leggermente diversa e prevede un primo membro
 aggiuntivo \texttt{uint8\_t sin\_len} (come riportato da R. Stevens nei suoi
 libri). Questo campo non verrebbe usato direttamente dal programmatore e non è
-richiesto dallo standard Posix.1g, in linux pertanto non sussiste. Il campo
+richiesto dallo standard POSIX.1g, in Linux pertanto non sussiste. Il campo
 \texttt{sa\_family\_t} era storicamente un \texttt{unsigned short}.
 
 Dal punto di vista del programmatore l'unico uso di questa struttura è quello
@@ -340,12 +340,12 @@ I socket di tipo \texttt{PF\_INET} vengono usati per la comunicazione
 attraverso internet; la struttura per gli indirizzi per un socket internet
 (IPv4) è definita come \texttt{sockaddr\_in} nell'header file
 \texttt{netinet/in.h} e secondo le man page ha la forma mostrata in \nfig,
-conforme allo standard Posix.1g.
+conforme allo standard POSIX.1g.
 
 
 \begin{figure}[!htbp]
   \footnotesize
-  \begin{lstlisting}{}
+  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
 struct sockaddr_in {
     sa_family_t     sin_family; /* address family: AF_INET */
     u_int16_t       sin_port;   /* port in network byte order */
@@ -377,7 +377,7 @@ usare la funzione \texttt{bind} su queste porte.
 
 Il membro \texttt{sin\_addr} contiene l'indirizzo internet dell'altro capo
 della comunicazione, e viene acceduto sia come struttura (un resto di una
-implementazione precedente in cui questa era una union usata per accedere alle
+implementazione precedente in cui questa era una \texttt{union} usata per accedere alle
 diverse classi di indirizzi) che come intero. 
 
 Infine è da sottolineare che sia gli indirizzi che i numeri di porta devono
@@ -390,14 +390,14 @@ problema e le relative soluzioni).
 \subsection{La struttura degli indirizzi IPv6}
 \label{sec:sock_sa_ipv6}
 
-Essendo IPv6 una estenzione di IPv4 i socket di tipo \texttt{PF\_INET6} sono
+Essendo IPv6 una estensione di IPv4 i socket di tipo \texttt{PF\_INET6} sono
 sostanzialmente identici ai precedenti; la parte in cui si trovano
 praticamente tutte le differenze è quella della struttura degli indirizzi. La
 struttura degli indirizzi è definita ancora in \texttt{netinet/in.h}.
 
 \begin{figure}[!htbp]
   \footnotesize
-  \begin{lstlisting}{}
+  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
 struct sockaddr_in6 {
     u_int16_t       sin6_family;   /* AF_INET6 */
     u_int16_t       sin6_port;     /* port number */
@@ -417,11 +417,11 @@ struct in6_addr {
 
 Il campo \texttt{sin6\_family} deve essere sempre settato ad
 \texttt{AF\_INET6}, il campo \texttt{sin6\_port} è analogo a quello di IPv4 e
-segue le stesse regole; il campo \texttt{sin6\_flowinfo} è a dua volta diviso
+segue le stesse regole; il campo \texttt{sin6\_flowinfo} è a sua volta diviso
 in tre parti di cui i 24 bit inferiori indicano l'etichetta di flusso, i
 successivi 4 bit la priorità e gli ultimi 4 sono riservati; questi valori
 fanno riferimento ad alcuni campi specifici dell'header dei pacchetti IPv6
-(vedi \secref{sec:appA_ipv6}) ed il loro uso è sperimentale.
+(vedi \secref{sec:IP_ipv6head}) ed il loro uso è sperimentale.
 
 Il campo \texttt{sin6\_addr} contiene l'indirizzo a 128 bit usato da IPv6,
 infine il campo \texttt{sin6\_scope\_id} è un campo introdotto con il kernel
@@ -444,7 +444,7 @@ definita nel file di header \texttt{sys/un.h}.
 
 \begin{figure}[!htbp]
   \footnotesize
-  \begin{lstlisting}{}
+  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
 #define UNIX_PATH_MAX    108
 struct sockaddr_un {
     sa_family_t  sun_family;              /* AF_UNIX */
@@ -498,7 +498,7 @@ utile anche in seguito.
 \subsection{La \textit{endianess}}
 \label{sec:sock_endianess}
 
-La rappresentazione di un numbero binario in un computer può essere fatta in
+La rappresentazione di un numero binario in un computer può essere fatta in
 due modi, chiamati rispettivamente \textit{big endian} e \textit{little
   endian} a seconda di come i singoli bit vengono aggregati per formare le
 variabili intere (in diretta corrispondenza a come sono poi in realtà cablati
@@ -515,14 +515,16 @@ numero. Il caso opposto, in cui si parte dal bit meno significativo 
 per lo stesso motivo \textit{big endian}.
 
 La \textit{endianess} di un computer dipende essenzialmente dalla architettura
-hardware usata; intel e digital usano il little endian, motorola, ibm, sun
+hardware usata; Intel e Digital usano il little endian, Motorola, IBM, Sun
 (sostanzialmente tutti gli altri) usano il big endian. Il formato della rete è
-anch'esso big endian. Esistono poi anche dei processori che possono scegliere
-il tipo di formato all'avvio e alcuni, come il PowerPC o l'intel i860, possono
-pure passare da un tipo all'altro con una specifica istruzione; in ogni caso
-in linux l'ordinamanento è definito dall'archiettura e anche se questi
-cambiamenti sono possibili anche dopo che il sistema è avviato, non vengono
-mai eseguiti.
+anch'esso big endian, quello del bus PCI è little endian, quello del bus VME è
+big endian. 
+
+Esistono poi anche dei processori che possono scegliere il tipo di formato
+all'avvio e alcuni, come il PowerPC o l'Intel i860, possono pure passare da un
+tipo di ordinamento all'altro con una specifica istruzione; in ogni caso in
+Linux l'ordinamento è definito dall'architettura e anche se questi cambiamenti
+sono possibili anche dopo che il sistema è avviato, non vengono mai eseguiti.
 
 \subsection{Le funzioni per il riordinamento}
 \label{sec:sock_func_ord}
@@ -531,7 +533,7 @@ Il problema connesso all'endianess 
 di architettura all'altra i dati vengono interpretati in maniera diversa, e ad
 esempio nel caso dell'intero a 16 bit ci si ritroverà con i due bytes in cui è
 suddiviso scambiati di posto, e ne sarà quindi invertito l'ordine di lettura
-per cui, per riavere il valore originale dovrenno essere rovesciati.
+per cui, per riavere il valore originale dovranno essere rovesciati.
 
 Per questo motivo si usano le seguenti funzioni di conversione che servono a
 tener conto automaticamente della possibile differenza fra l'ordinamento usato
@@ -543,7 +545,7 @@ funzioni sono:
   quello della rete.
 \end{prototype}
 \begin{prototype}{netinet/in.h}
-{unsigned sort int htons(unsigned short int hostshort)}
+{unsigned short int htons(unsigned short int hostshort)}
   Converte l'intero a 16 bit \texttt{hostshort} dal formato della macchina a
   quello della rete.
 \end{prototype}
@@ -575,7 +577,7 @@ codice su tutte le architetture.
 
 Un secondo insieme di funzioni di manipolazione serve per passare dal formato
 binario usato nelle strutture degli indirizzi alla rappresentazione dei numeri
-IP che si usa normalente.
+IP che si usa normalmente.
 
 Le prime tre funzioni di manipolazione riguardano la conversione degli
 indirizzi IPv4 da una stringa in cui il numero di IP è espresso secondo la
@@ -613,48 +615,59 @@ indicare la stringa. Dette funzioni sono:
 
 Le tre funzioni precedenti sono limitate solo ad indirizzi IPv4, per questo
 motivo è preferibile usare le due nuove funzioni \texttt{inet\_pton} e
-\texttt{inet\_ntop} che possono convertire anche gli indirizzi IPv6 (secondo
-lo schema in \nfig). Anche in questo caso le lettere $n$ e $p$ sono degli
-mnemonici per ricordare il tipo di conversione effettuata e stanno per
-\textit{presentation} e \textit{numeric}.
+\texttt{inet\_ntop} che possono convertire anche gli indirizzi IPv6. Anche in
+questo caso le lettere $n$ e $p$ sono degli mnemonici per ricordare il tipo di
+conversione effettuata e stanno per \textit{presentation} e \textit{numeric}.
 
-\begin{figure}[htb]
-  \centering  
+\begin{figure}[htb]
+  \centering  
 
-  \caption{Schema della rappresentazioni utilizzate dalle funzioni di 
-    conversione \texttt{inet\_pton} e \texttt{inet\_ntop} }
-  \label{fig:sock_inet_conv_func}
+  \caption{Schema della rappresentazioni utilizzate dalle funzioni di 
+    conversione \texttt{inet\_pton} e \texttt{inet\_ntop} }
+  \label{fig:sock_inet_conv_func}
 
-\end{figure}
+\end{figure}
 
-Entrambe le funzioni accettano l'argomento \texttt{family} che indica il tipo
-di indirizzo e può essere \texttt{AF\_INET} o \texttt{AF\_INET6}. Se la
-famiglia indicata non è valida entrambe le funzioni ritornano un valore
-negativo e settano la variabile \texttt{errno} al valore
-\texttt{EAFNOSUPPORT}. I prototipi delle suddette funzioni sono i seguenti:
+Entrambe le funzioni accettano l'argomento \texttt{af} che indica il tipo di
+indirizzo e può essere \texttt{AF\_INET} o \texttt{AF\_INET6}. Se la famiglia
+indicata non è valida entrambe le funzioni settano la variabile \texttt{errno}
+al valore \texttt{EAFNOSUPPORT}. I prototipi delle suddette funzioni sono i
+seguenti:
 \begin{prototype}{sys/socket.h}
-{int inet\_pton(int family, const char *src, void *dest)}   
-  Converte la stringa puntata da \texttt{src} nell'indirizzo binario da
-  memorizzare all'indirizzo puntato da \texttt{dest}, restituendo 0 in caso di
-  successo e 1 in caso di fallimento. 
+  {int inet\_pton(int af, const char *src, void *addr\_ptr)} Converte la
+  stringa puntata da \texttt{src} nell'indirizzo IP da memorizzare
+  all'indirizzo puntato da \texttt{addr\_ptr}, la funzione restituisce un
+  valore positivo in caso di successo, e zero se la stringa non rappresenta un
+  indirizzo valido, e negativo se \var{af} specifica una famiglia di indirizzi
+  non valida.
 \end{prototype}
 
 \begin{prototype}{sys/socket.h}
-{char *inet\_ntop(int family, const void *src, char *dest, size\_t len)}
-  Converte la struttura dell'indirizzo puntata da \texttt{src} in una stringa
-  che viene copiata nel buffer puntato dall'indirizzo \texttt{dest}; questo
-  deve essere preallocato dall'utente e la lunghezza deve essere almeno
+  {char *inet\_ntop(int af, const void *addr\_ptr, char *dest, size\_t len)}
+  Converte la struttura dell'indirizzo puntata da \texttt{addr\_ptr} in una
+  stringa che viene copiata nel buffer puntato dall'indirizzo \texttt{dest};
+  questo deve essere preallocato dall'utente e la lunghezza deve essere almeno
   \texttt{INET\_ADDRSTRLEN} in caso di indirizzi IPv4 e
   \texttt{INET6\_ADDRSTRLEN} per indirizzi IPv6; la lunghezza del buffer deve
   comunque venire specificata attraverso il parametro \texttt{len}.
-  
   La funzione restituisce un puntatore non nullo a \texttt{dest} in caso di
   successo e un puntatore nullo in caso di fallimento, in quest'ultimo caso
   viene settata la variabile \texttt{errno} con il valore \texttt{ENOSPC} in
   caso le dimensioni dell'indirizzo eccedano la lunghezza specificata da
-  \texttt{len}.
+  \texttt{len} o \macro{ENOAFSUPPORT} in caso \var{af} non sia una famiglia di
+  indirizzi valida.
 \end{prototype}
 
+Gli indirizzi vengono cnovertiti da/alle rispettive strutture di indirizzo
+(\var{struct  in\_addr} per IPv4, e \var{struct  in6\_addr} per IPv6), che
+devono essere precedentemente allocate e passate attraverso il puntatore
+\var{addr\_ptr}; il parametro \var{dest} di \func{inet\_ntop} non può essere
+nullo e deve essere allocato precedentemente.
+
+Il formato usato per gli indirizzi in formato di presentazione è la notazione
+\textit{dotted decimal} per IPv4 e quella descritta in
+\secref{sec:IP_ipv6_notation} per IPv6.
 
 \section{Il comportamento delle funzioni di I/O}
 \label{sec:sock_io_behav}