Aggiunta funzione MurexRead, riscritti Mutex con il file locking
[gapil.git] / simpltcp.tex
index 9f6b9498045c987158ebd4479b923c28c802507b..4d46b1a2deecb3eea0b9d6cae8566d270ed7cd2f 100644 (file)
@@ -1,3 +1,13 @@
+%% simpltcp.tex
+%%
+%% Copyright (C) 2000-2002 Simone Piccardi.  Permission is granted to
+%% copy, distribute and/or modify this document under the terms of the GNU Free
+%% Documentation License, Version 1.1 or any later version published by the
+%% Free Software Foundation; with the Invariant Sections being "Prefazione",
+%% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
+%% license is included in the section entitled "GNU Free Documentation
+%% License".
+%%
 \chapter{Un esempio completo di client/server TCP}
 \label{cha:simple_TCP_sock}
 
@@ -8,16 +18,16 @@ comunicazione in entrambe le direzioni.
 Inoltre prenderemo in esame, oltre al comportamento in condizioni normali,
 anche tutti i possibili scenari particolari (errori, sconnessione della rete,
 crash del client o del server durante la connessione) che possono avere luogo
-durante l'impiego di unapplicazione di rete.
+durante l'impiego di un'applicazione di rete.
 
 
 \section{Il servizio \texttt{echo}}
 \label{sec:TCPsimp_echo}
 
-L'applicazione scelta come esempio sarà unimplementazione elementare, ma
+L'applicazione scelta come esempio sarà un'implementazione elementare, ma
 completa, del servizio \texttt{echo}. Il servizio \texttt{echo} è uno dei
 servizi standard solitamente provvisti direttamente dal superserver
-\texttt{inetd}, ed è definito dall'RFC~862. Come dice il nome il servizio deve
+\cmd{inetd}, ed è definito dall'RFC~862. Come dice il nome il servizio deve
 rimandare indietro sulla connessione i dati che gli vengono inviati; l'RFC
 descrive le specifiche sia per TCP che UDP, e per il primo stabilisce che una
 volta stabilita la connessione ogni dato in ingresso deve essere rimandato in
@@ -29,33 +39,39 @@ caratteri dallo standard input e la scrive sul server, il server legger
 linea dalla connessione e la riscriverà all'indietro; sarà compito del client
 leggere la risposta del server e stamparla sullo standard output.
 
-Si è scelto di usare questo servizio, seguendo lo Stevens, perché costituisce
-il prototipo ideale di una generica applicazione di rete in cui un server
-risponde alle richieste di un client; tutto quello che cambia nel caso si una
-applicazione più complessa è la elaborazione dell'input del client da parte
-del server nel fornire le risposte in uscita. 
+Si è scelto di usare questo servizio, seguendo l'esempio di \cite{UNP1},
+perché costituisce il prototipo ideale di una generica applicazione di rete in
+cui un server risponde alle richieste di un client; tutto quello che cambia
+nel caso si una applicazione più complessa è la elaborazione dell'input del
+client da parte del server nel fornire le risposte in uscita.
+
+Partiremo da un'implementazione elementare che dovrà essere rimaneggiata di
+volta in volta per poter tenere conto di tutte le evenienze che si possono
+manifestare nella vita reale di un'applicazione di rete, fino ad arrivare ad
+un'implementazione completa.
 
 \subsection{La struttura del server}
 \label{sec:TCPsimp_server_main}
 
-Il server si compone di un corpo principale, costituito dalla funzione
-\texttt{main} che si incarica di creare il socket, metterlo in ascolto di
-connessioni in arrivo e creare un processo figlio a cui delegare la gestione
-di ciascuna connessione. Questa parte, riportata in \nfig, è sostanzialmente
-identica a quella vista nell'esempio in \figref{sec:TCPelem_serv_code}.
+La prima versione del server, \file{ElemEchoTCPServer.c}, si compone di un
+corpo principale, costituito dalla funzione \code{main}.  Questa si incarica
+di creare il socket, metterlo in ascolto di connessioni in arrivo e creare un
+processo figlio a cui delegare la gestione di ciascuna connessione.  Questa
+parte, riportata in \figref{fig:TCPsimpl_serv_code}, è analoga a quella vista
+nel precedente esempio esaminato in \secref{sec:TCPel_cunc_serv}.
 
 \begin{figure}[!htb]
   \footnotesize
   \begin{lstlisting}{}
 /* Subroutines declaration */
-void SockEcho(int sockfd);
+void ServEcho(int sockfd);
 /* Program beginning */
 int main(int argc, char *argv[])
 {
     int list_fd, conn_fd;
     pid_t pid;
     struct sockaddr_in serv_add;
-     ....
+     ...
     /* create socket */
     if ( (list_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
         perror("Socket creation error");
@@ -100,21 +116,335 @@ int main(int argc, char *argv[])
     exit(0);
 }
   \end{lstlisting}
-  \caption{Codice della funzione \texttt{main} del server
-    \texttt{SimpleEchoTCPServer.c} per il servizio \texttt{echo}.}
+  \caption{Codice della funzione \code{main} della prima versione del server
+    per il servizio \texttt{echo}.}
   \label{fig:TCPsimpl_serv_code}
 \end{figure}
 
-La struttura del server è sostanzialmente a quella dell'esempio precedente, ed
-ad esso si applicano le considerazioni fatte in
-\secref{sec:TCPel_cunc_daytime}, le uniche differenze rispetto all'esempio in
-\figref{sec:TCPelem_serv_code} è che in questo caso per il socket in ascolto
-viene usata la porta 7 e tutta la gestione della comunicazione è delegata alla
-funzione \texttt{SockEcho}.
+La struttura di questa prima versione del server è sostanzialmente identica a
+quella dell'esempio citato, ed ad esso si applicano le considerazioni fatte in
+\secref{sec:TCPel_cunc_daytime}. Le uniche differenze rispetto all'esempio in
+\figref{fig:TCPel_serv_code} sono che in questo caso per il socket in ascolto
+viene usata la porta 7 e che tutta la gestione della comunicazione è delegata
+alla funzione \code{ServEcho}.
+%  Per ogni connessione viene creato un
+% processo figlio, il quale si incarica di lanciare la funzione
+% \texttt{SockEcho}.
+
+Il codice della funzione \code{ServEcho} è invece mostrata in
+\figref{fig:TCPsimpl_server_elem_sub}, la comunicazione viene gestita
+all'interno del ciclo (linee \texttt{\small 6--8}).  I dati inviati dal client
+vengono letti dal socket con una semplice \func{read} (che ritorna solo in
+presenza di dati in arrivo), la riscrittura viene invece gestita dalla
+funzione \func{SockWrite} (descritta in \figref{fig:sock_SockWrite_code}) che
+si incarica di tenere conto automaticamente della possibilità che non tutti i
+dati di cui è richiesta la scrittura vengano trasmessi con una singola
+\func{write}.
+
+\begin{figure}[!htb]
+  \footnotesize
+  \begin{lstlisting}{}
+void ServEcho(int sockfd) {
+    char buffer[MAXLINE];
+    int nread, nwrite;
+    
+    /* main loop, reading 0 char means client close connection */
+    while ( (nread = read(sockfd, buffer, MAXLINE)) != 0) {
+        nwrite = SockWrite(sockfd, buffer, nread);
+    }
+    return;
+}
+  \end{lstlisting}
+  \caption{Codice della prima versione della funzione \code{ServEcho} per la
+    gestione del servizio \texttt{echo}.}
+  \label{fig:TCPsimpl_server_elem_sub}
+\end{figure}
 
+Quando il client chiude la connessione il ricevimento del FIN fa ritornare la
+\func{read} con un numero di byte letti pari a zero, il che causa l'uscita
+dal ciclo e il ritorno della funzione, che a sua volta causa la terminazione
+del processo figlio.
 
 
 \subsection{Il client}
-\label{sec:TCPsimp_server_main}
+\label{sec:TCPsimp_client_main}
+
+Il codice del client è riportato in \figref{fig:TCPsimpl_client_elem}, anche
+esso ricalca la struttura del precedente client per il servizio
+\texttt{daytime} (vedi \secref{sec:net_cli_sample}) ma, come per il server, lo
+si è diviso in due parti, inserendo la parte relativa alle operazioni
+specifiche previste per il protocollo \texttt{echo} in una funzione a parte.
+\begin{figure}[!htb]
+  \footnotesize
+  \begin{lstlisting}{}
+int main(int argc, char *argv[])
+{
+/* 
+ * Variables definition  
+ */
+    int sock_fd, i;
+    struct sockaddr_in serv_add;
+    ...
+    /* create socket */
+    if ( (sock_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
+        perror("Socket creation error");
+        return -1;
+    }
+    /* initialize address */
+    memset((void *) &serv_add, 0, sizeof(serv_add)); /* clear server address */
+    serv_add.sin_family = AF_INET;                   /* address type is INET */
+    serv_add.sin_port = htons(7);                    /* echo port is 7 */
+    /* build address using inet_pton */
+    if ( (inet_pton(AF_INET, argv[optind], &serv_add.sin_addr)) <= 0) {
+        perror("Address creation error");
+        return -1;
+    }
+    /* extablish connection */
+    if (connect(sock_fd, (struct sockaddr *)&serv_add, sizeof(serv_add)) < 0) {
+        perror("Connection error");
+        return -1;
+    }
+    /* read daytime from server */
+    ClientEcho(stdin, sock_fd);
+    /* normal exit */
+    return 0;
+}
+  \end{lstlisting}
+  \caption{Codice della prima versione del client \texttt{echo}.}
+  \label{fig:TCPsimpl_client_elem}
+\end{figure}
+
+La funzione \code{main} si occupa della creazione del socket e della
+connessione (linee \texttt{\small 10--27}) secondo la stessa modalità spiegata
+in \secref{sec:net_cli_sample}, il client si connette sulla porta 7
+all'indirizzo specificato dalla linea di comando (a cui si è aggiunta una
+elementare gestione delle opzioni non riportata in figura).
+
+Completata la connessione, al ritorno di \func{connect}, la funzione
+\code{ClientEcho}, riportata in \figref{fig:TCPsimpl_client_echo_sub}, si
+preoccupa di gestire la comunicazione, leggendo una riga alla volta dallo
+\file{stdin}, scrivendola sul socket e ristampando su \file{stdout} quanto
+ricevuto in risposta dal server.
+
+\begin{figure}[!htb]
+  \footnotesize
+  \begin{lstlisting}{}
+void ClientEcho(FILE * filein, int socket) 
+{
+    char sendbuff[MAXLINE], recvbuff[MAXLINE];
+    int nread; 
+    while (fgets(sendbuff, MAXLINE, filein) != NULL) {
+        SockWrite(socket, sendbuff, strlen(sendbuff)); 
+        nread = SockRead(socket, recvbuff, strlen(sendbuff));        
+        recvbuff[nread] = 0;
+        fputs(recvbuff, stdout);
+    }
+    return;
+}
+  \end{lstlisting}
+  \caption{Codice della prima versione della funzione \texttt{ClientEcho} per 
+    la gestione del servizio \texttt{echo}.}
+  \label{fig:TCPsimpl_client_echo_sub}
+\end{figure}
+
+La funzione utilizza due buffer per gestire i dati inviati e letti sul socket
+(\texttt{\small 3}).  La comunicazione viene gestita all'interno di un ciclo
+(linee \texttt{\small 5--10}), i dati da inviare sulla connessione vengono
+presi dallo \file{stdin} usando la funzione \func{fgets} che legge una
+linea di testo (terminata da un \texttt{CR} e fino al massimo di
+\const{MAXLINE} caratteri) e la salva sul buffer di invio, la funzione
+\func{SockWrite} (\texttt{\small 3}) scrive detti dati sul socket (gestendo
+l'invio multiplo qualora una singola \func{write} non basti, come spiegato
+in \secref{sec:sock_io_behav}).
+
+I dati che vengono riletti indietro con una \func{SockRead} sul buffer di
+ricezione e viene inserita la terminazione della stringa (\texttt{\small
+  7--8}) e per poter usare la funzione \func{fputs} per scriverli su
+\file{stdout}. 
+
+Un end of file inviato su \file{stdin} causa il ritorno di \func{fgets}
+con un puntatore nullo e l'uscita dal ciclo, al che la subroutine ritorna ed
+il client esce.
+
+
+\section{Il funzionamento del servizio}
+\label{sec:TCPsimpl_normal_work}
+
+Benché il codice dell'esempio precedente sia molto ridotto, esso ci permetterà
+di considerare in dettaglio tutte le problematiche che si possono incontrare
+nello scrivere un'applicazione di rete. Infatti attraverso l'esame delle sue
+modalità di funzionamento normali, all'avvio e alla terminazione, e di quello
+che avviene nelle varie situazioni limite, da una parte potremo approfondire
+la comprensione del protocollo TCP/IP e dall'altra ricavare le indicazioni
+necessarie per essere in grado di scrivere applicazioni robuste, in grado di
+gestire anche i casi limite.
+
+
+\subsection{L'avvio e il funzionamento}
+\label{sec:TCPsimpl_startup}
+
+Il primo passo è compilare e lanciare il server (da root, per poter usare la
+porta 7 che è riservata), alla partenza esso eseguirà l'apertura passiva con
+la sequenza delle chiamate a \func{socket}, \func{bind}, \func{listen} e poi
+si bloccherà nella \func{accept}. A questo punto si potrà controllarne lo
+stato con \cmd{netstat}:
+\begin{verbatim}
+[piccardi@roke piccardi]$ netstat -at
+Active Internet connections (servers and established)
+Proto Recv-Q Send-Q Local Address           Foreign Address         State 
+...
+tcp        0      0 *:echo                  *:*                     LISTEN
+...
+\end{verbatim} %$
+che ci mostra come il socket sia in ascolto sulla porta richiesta, accettando
+connessioni da qualunque indirizzo e da qualunque porta e su qualunque
+interfaccia locale.
+
+A questo punto si può lanciare il client, esso chiamerà \func{socket} e
+\func{connect}; una volta completato il three way handshake la connessione è
+stabilita; la \func{connect} ritornerà nel client\footnote{si noti che è
+  sempre la \func{connect} del client a ritornare per prima, in quanto
+  questo avviene alla ricezione del secondo segmento (l'ACK del server) del
+  three way handshake, la \func{accept} del server ritorna solo dopo
+  un altro mezzo RTT quando il terzo segmento (l'ACK del client) viene
+  ricevuto.} e la \func{accept} nel server, ed usando di nuovo
+\cmd{netstat} otterremmo che:
+\begin{verbatim}
+Active Internet connections (servers and established)
+Proto Recv-Q Send-Q Local Address           Foreign Address         State
+tcp        0      0 *:echo                  *:*                     LISTEN
+tcp        0      0 roke:echo               gont:32981              ESTABLISHED
+\end{verbatim}
+mentre per quanto riguarda l'esecuzione dei programmi avremo che:
+\begin{itemize}
+\item il client chiama la funzione \code{ClientEcho} che si blocca sulla
+  \func{fgets} dato che non si è ancora scritto nulla sul terminale.
+\item il server eseguirà una \func{fork} facendo chiamare al processo figlio
+  la funzione \code{ServEcho}, quest'ultima si bloccherà sulla \func{read}
+  dal socket sul quale ancora non sono presenti dati.
+\item il processo padre del server chiamerà di nuovo \func{accept}
+  bloccandosi fino all'arrivo di un'altra connessione.
+\end{itemize}
+e se usiamo il comando \cmd{ps} per esaminare lo stato dei processi otterremo
+un risultato del tipo:
+\begin{verbatim}
+[piccardi@roke piccardi]$ ps ax
+  PID TTY      STAT   TIME COMMAND
+ ...  ...      ...    ...  ...
+ 2356 pts/0    S      0:00 ./echod
+ 2358 pts/1    S      0:00 ./echo 127.0.0.1
+ 2359 pts/0    S      0:00 ./echod
+\end{verbatim} %$
+(dove si sono cancellate le righe inutili) da cui si evidenzia la presenza di
+tre processi, tutti in stato di \textit{sleep} (vedi
+\tabref{tab:proc_proc_states}).
+
+Se a questo punto si inizia a scrivere qualcosa sul client non sarà trasmesso
+niente fin tanto che non si prema il tasto di a capo (si ricordi quanto detto
+in \secref{sec:file_line_io} a proposito dell'I/O su terminale), solo allora
+\func{fgets} ritornerà ed il client scriverà quanto immesso sul socket, per
+poi passare a rileggere quanto gli viene inviato all'indietro dal server, che
+a sua volta sarà inviato sullo standard output, che nel caso ne provoca
+l'immediatamente stampa a video.
+
+
+\subsection{La conclusione normale}
+\label{sec:TCPsimpl_conclusion}
+
+Tutto quello che scriveremo sul client sarà rimandato indietro dal server e
+ristampato a video fintanto che non concluderemo l'immissione dei dati; una
+sessione tipica sarà allora del tipo: 
+\begin{verbatim}
+[piccardi@roke sources]$ ./echo 127.0.0.1
+Questa e` una prova
+Questa e` una prova
+Ho finito
+Ho finito
+\end{verbatim} %$
+che termineremo inviando un EOF dal terminale (usando la combinazione di tasti
+ctrl-D, che non compare a schermo); se eseguiamo un \cmd{netstat} a questo
+punto avremo:
+\begin{verbatim}
+[piccardi@roke piccardi]$ netstat -at 
+tcp        0      0 *:echo                  *:*                     LISTEN
+tcp        0      0 localhost:33032         localhost:echo          TIME_WAIT
+\end{verbatim} %$
+con il client che entra in \texttt{TIME\_WAIT}.
+
+Esaminiamo allora in dettaglio la sequenza di eventi che porta alla
+terminazione normale della connessione, che ci servirà poi da riferimento
+quando affronteremo il comportamento in caso di conclusioni anomale:
+
+\begin{enumerate}
+\item inviando un carattere di EOF da terminale la \func{fgets} ritorna
+  restituendo un puntatore nullo che causa l'uscita dal ciclo di
+  \code{while}, così la \code{ClientEcho} ritorna.
+\item al ritorno di \code{ClientEcho} ritorna anche la funzione \code{main}, e
+  come parte del processo terminazione tutti i file descriptor vengono chiusi
+  (si ricordi quanto detto in \secref{sec:proc_term_conclusion}); questo causa
+  la chiusura del socket di comunicazione; il client allora invierà un FIN al
+  server a cui questo risponderà con un ACK.  A questo punto il client verrà a
+  trovarsi nello stato \texttt{FIN\_WAIT\_2} ed il server nello stato
+  \texttt{CLOSE\_WAIT} (si riveda quanto spiegato in
+  \secref{sec:TCPel_conn_term}).
+\item quando il server riceve il FIN la \func{read} del processo figlio che
+  gestisce la connessione ritorna restituendo 0 causando così l'uscita dal
+  ciclo e il ritorno di \code{ServEcho}, a questo punto il processo figlio
+  termina chiamando \func{exit}.
+\item all'uscita del figlio tutti i file descriptor vengono chiusi, la
+  chiusura del socket connesso fa sì che venga effettuata la sequenza finale
+  di chiusura della connessione, viene emesso un FIN dal server che riceverà
+  un ACK dal client, a questo punto la connessione è conclusa e il client
+  resta nello stato \texttt{TIME\_WAIT}.
+
+\end{enumerate}
+
+
+\subsection{La gestione dei processi figli}
+\label{sec:TCPsimpl_child_hand}
+
+Tutto questo riguarda la connessione, c'è però da tenere conto dell'effetto
+del procedimento di chiusura del processo figlio nel server (si veda quanto
+esaminato in \secref{sec:proc_termination}). In questo caso avremo l'invio del
+segnale \const{SIGCHLD} al padre, ma dato che non si è installato un
+gestore e che l'azione predefinita per questo segnale è quella di essere
+ignorato, non avendo predisposto la ricezione dello stato di terminazione,
+otterremo che il processo figlio entrerà nello stato di zombie\index{zombie}
+(si riveda quanto illustrato in \secref{sec:sig_sigchld}), come risulterà
+ripetendo il comando \cmd{ps}:
+\begin{verbatim}
+ 2356 pts/0    S      0:00 ./echod
+ 2359 pts/0    Z      0:00 [echod <defunct>]
+\end{verbatim}
+
+Poiché non è possibile lasciare processi zombie\index{zombie} che pur inattivi
+occupano spazio nella tabella dei processi e a lungo andare saturerebbero le
+risorse del kernel, occorrerà ricevere opportunamente lo stato di terminazione
+del processo (si veda \secref{sec:proc_wait}), cosa che faremo utilizzando
+\const{SIGCHLD} secondo quanto illustrato in \secref{sec:sig_sigchld}.
+
+La prima modifica al nostro server è pertanto quella di inserire la gestione
+della terminazione dei processi figli attraverso l'uso di un gestore.
+Per questo useremo la funzione \code{Signal}, illustrata in
+\figref{fig:sig_Signal_code}, per installare il semplice gestore che
+riceve i segnali dei processi figli terminati già visto in 
+\figref{fig:sig_sigchld_handl}; aggiungendo il seguente codice:
+\begin{lstlisting}{}
+    ...
+    /* install SIGCHLD handler */
+    Signal(SIGCHLD, sigchld_hand);  /* establish handler */
+    /* create socket */
+    ...
+\end{lstlisting}
+
+\noindent
+all'esempio illustrato in \figref{fig:TCPsimpl_serv_code}, e linkando il tutto
+alla funzione \code{sigchld\_hand}, si risolverà completamente il problema
+degli zombie\index{zombie}.
+
 
 
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: