Correzioni varie
[gapil.git] / signal.tex
index e67985bc2fdc42b902f632e35f34911e76ec1120..f071289d2b18776b56e58cb47c1b608a0e01b87c 100644 (file)
@@ -3,23 +3,37 @@
 
 I segnali sono il primo e più semplice meccanismo di comunicazione nei
 confronti dei processi. Non portano con se nessuna informazione che non sia il
-loro tipo, si tratta in sostanza di un'interruzione software portata ad un
+loro tipo; si tratta in sostanza di un'interruzione software portata ad un
 processo.
 
-In genere i segnali vengono usati dal kernel per riportare situazioni
+In genere essi vengono usati dal kernel per riportare ai processi situazioni
 eccezionali (come errori di accesso, eccezioni aritmetiche, etc.) ma possono
 anche essere usati come forma elementare di comunicazione fra processi (ad
 esempio vengono usati per il controllo di sessione), per notificare eventi
-(come la terminazione di un processo figlio), etc.
+(come la terminazione di un processo figlio), ecc.
 
+In questo capitolo esamineremo i vari aspetti della gestione dei segnali,
+partendo da una introduzione relativa ai concetti base con cui essi vengono
+realizzati, per poi affrontarne la classificazione a secondo di uso e modalità
+di generazionem fino ad esaminare in dettaglio funzioni e le metodologie di
+gestione.
 
 
-\section{I concetti base}
+\section{Introduzione}
+\label{sec:sig_intro}
+
+In questa sezione esamineremo i concetti base dei segnali, introducendo le
+caratteristiche essenziali con cui il sistema interagisce con i processi
+attraverso di essi.
+
+
+\subsection{I concetti base}
 \label{sec:sig_base}
 
 Come il nome stesso indica i segnali sono usati per notificare ad un processo
-l'occorrenza di un evento eccezionale. Gli eventi che possono generare un
-segnale sono vari; un breve elenco di possibile cause è il seguente:
+l'occorrenza di un qualche evento. Gli eventi che possono generare un segnale
+sono vari; un breve elenco di possibili cause per l'emissione di un segnale è
+il seguente:
 
 \begin{itemize*}
 \item un errore del programma, come una divisione per zero o un tentativo di
@@ -30,37 +44,45 @@ segnale sono vari; un breve elenco di possibile cause 
   essere eseguita.
 \item una richiesta dell'utente di terminare o fermare il programma. In genere
   si realizza attraverso un segnale mandato dalla shell in corrispondenza
-  della pressione di tasti del terminale come 'ctrl-c' o 'ctrl-z'.
+  della pressione di tasti del terminale come \code{C-c} o
+  \code{C-z}\footnote{indichiamo con \code{C-x} la pressione simultanea al
+    tasto \code{x} del tasto control (ctrl in molte tastiere)}.
 \item l'esecuzione di una \func{kill} o di una \func{raise} da parte del
   processo stesso o di un'altro (solo nel caso della \func{kill}).
 \end{itemize*}
 
-Ciascuno di questi eventi (tranne gli ultimi due che sono controllati
-dall'utente) comporta l'intervento diretto da parte del kernel che causa la
-generazione un particolare tipo di segnale.
+Ciascuno di questi eventi (compresi gli ultimi due che pure sono controllati
+dall'utente o da un altro processo) comporta l'intervento diretto da parte del
+kernel che causa la generazione un particolare tipo di segnale.
+
+Quando un processo riceve un segnale, invece del normale corso del programma,
+viene eseguita una azione di default o una apposita routine di gestione (il
+cosiddetto \textit{signal handler} o \textsl{manipolatore}) che può essere
+stata specificata dall'utente (nel qual caso si dice che si
+\textsl{intercetta} il segnale).
 
 
 \subsection{Le modalità di funzionamento}
 \label{sec:sig_semantics}
 
-Quando un processo riceve un segnale il kernel esegue una azione di default o
-una apposita routine di gestione (il cosiddetto \textit{signal handler} o
-\textsl{manipolatore}) che può essere specificata dall'utente (nel qual caso
-si dice che si \textsl{intercetta} il segnale).  Negli anni il comportamento
-del sistema in risposta ai segnali è stato modificato in vari modi nelle
-differenti implementazioni di unix.  Si possono individuare due tipologie
-fondamentali di comportamento dei segnali (dette semantiche) che vengono
-chiamate rispettivamente \textit{reliable} e \textit{unreliable}.
-
-Nella semantica \textit{unreliable} (quella implementata dalle prime versioni
-di unix) la routine di gestione del segnale specificata dall'utente non resta
-installata una volta chiamata; è perciò a carico dell'utente stesso ripetere
-l'installazione all'interno della routine di gestione stessa in tutti i casi
-in cui si vuole che il signal handler esterno resti attivo.
+Negli anni il comportamento del sistema in risposta ai segnali è stato
+modificato in vari modi nelle differenti implementazioni di Unix.  Si possono
+individuare due tipologie fondamentali di comportamento dei segnali (dette
+semantiche) che vengono chiamate rispettivamente semantica \textsl{affidabile}
+(o \textit{reliable}) e semantica \textsl{inaffidabile} (o
+\textit{unreliable}).
+
+Nella semantica \textsl{inaffidabile} (quella implementata dalle prime
+versioni di unix) la routine di gestione del segnale specificata dall'utente
+non resta attiva una volta che è stata eseguita; è perciò compito dell'utente
+stesso ripetere l'installazione della stessa all'interno della routine di
+gestione, in tutti i casi in cui si vuole che il manipolatore esterno resti
+attivo.
 
 In questo caso è possibile una situazione in cui i segnali possono essere
 perduti; si consideri il seguente segmento di codice in cui la prima
-operazione del manipolatore è quella di reinstallare se stesso:
+operazione del manipolatore è quella di reinstallare se stesso: 
+
 \footnotesize
 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
     int sig_handler();            /* handler function */
@@ -81,24 +103,26 @@ causare il comportamento originale assegnato al segnale (in genere la
 terminazione del processo).
 
 Questa è la ragione per cui l'implementazione dei segnali secondo questa
-semantica viene chiamata \textit{inaffidabile}, in quanto la ricezione del
+semantica viene chiamata \textsl{inaffidabile}, in quanto la ricezione del
 segnale e la reinstallazione del suo manipolatore non sono operazioni
-atomiche.
-
-Un'altro problema è che in questa semantica è che non esiste un modo per
-bloccare i segnali quando non si vuole che arrivino; i processi possono si
-ignorare il segnale, ma non è possibile istruire il sistema a non fare nulla
-in occasione di un segnale, pur mantenendo memoria del fatto che è avvenuto.
-
-Un caso classico, riportato da Stevens, in cui si incontra questo problema, è
-quello in cui si usa il manipolatore per settare un flag che riporta al
-processo l'occorrenza del segnale. Si consideri il seguente segmento di
-codice il cui scopo sarebbe quello di fermare il processo fino all'occorrenza
-di un opportuno segnale:
+atomiche, e sono sempre possibili delle race condition (sull'argomento vedi
+quanto detto in \secref{sec:proc_multi_prog}).
+
+Un'altro problema è che in questa semantica non esiste un modo per bloccare i
+segnali quando non si vuole che arrivino; i processi possono ignorare il
+segnale, ma non è possibile istruire il sistema a non fare nulla in occasione
+di un segnale, pur mantenendo memoria del fatto che è avvenuto.
+
+Un caso classico in cui si incontra questo problema, è quello in cui si usa il
+manipolatore per settare un flag che riporta al processo l'occorrenza del
+segnale, così che questo possa prendere provvedimenti al di fuori del
+manipolatore. Si consideri il seguente segmento di codice il cui scopo sarebbe
+quello di fermare il processo fino all'occorrenza di un opportuno segnale:
+
 \footnotesize
 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
 int signal_flag = 0;
-main ()
+main()
 {
     int sig_handler();            /* handler function */
     ...
@@ -135,41 +159,44 @@ il processo rester
 % sia \texttt{EINTR}.
 
 Questo ci mostra ad esempio come con la semantica inaffidabile non esista una
-modalità semplice per ottenere una operazione di pausa atomica (cioè mandare
-in sleep un processo fino all'arrivo di un segnale).
+modalità semplice per ottenere una operazione di pausa (cioè mandare in sleep
+un processo fino all'arrivo di un segnale).
 
-Nella semantica \textit{reliable} (quella utilizzata da Linux e da ogni Unix
-moderno) invece il signal handler una volta installato resta attivo e non si
-hanno tutti i problemi precedenti. In questa semantica i segnali vengono
+Nella semantica \textsl{affidabile} (quella utilizzata da Linux e da ogni Unix
+moderno) il manipolatore una volta installato resta attivo e non si hanno
+tutti i problemi precedenti. In questa semantica i segnali vengono
 \textsl{generati} dal kernel per un processo all'occorrenza dell'evento che
-causa il segnale. In genere questo viene fatto dal kernel settando un flag
-nella process table del processo.
+causa il segnale. In genere questo viene fatto dal kernel settando l'apposito
+campo della \var{task\_struct} del processo nella process table (si veda
+\figref{fig:proc_task_struct}).
 
 Si dice che il segnale viene \textsl{consegnato} al processo (dall'inglese
 \textit{delivered}) quando viene eseguita l'azione per esso prevista, mentre
 per tutto il tempo che passa fra la generazione del segnale e la sua consegna
-esso è detto \textsl{pendente}. In genere questa procedura viene effettuata
-dal kernel quando, riprendendo l'esecuzione del processo in questione, verifica
-la presenza del flag del segnale nella process table.
+esso è detto \textsl{pendente} (o \textit{pending}). In genere questa
+procedura viene effettuata dallo scheduler quando, riprendendo l'esecuzione
+del processo in questione, verifica la presenza del segnale nella
+\var{task\_struct} e mette in esecuzione il manipolatore.
 
 In questa semantica un processo ha la possibilità di bloccare la consegna dei
-segnali, in questo caso se l'azione per il suddetto segnale non è quella di
+segnali, in questo caso, se l'azione per il suddetto segnale non è quella di
 ignorarlo, il segnale resta \textsl{pendente} fintanto che il processo non lo
 sblocca (nel qual caso viene consegnato) o setta l'azione di default per
-ignorarlo. 
+ignorarlo.
 
-Si tenga presente kernel stabilisce cosa fare con un segnale che è stato
-bloccato al momento della consegna, non quando viene generato; questo consente
-di cambiare l'azione per il segnale prima che esso venga consegnato, e si può
-usare la funzione \func{sigpending} (vedi \secref{sec:sig_sigpending}) per
-determinare quali segnali sono bloccati e quali sono pendenti.
+Si tenga presente che il kernel stabilisce cosa fare con un segnale che è
+stato bloccato al momento della consegna, non quando viene generato; questo
+consente di cambiare l'azione per il segnale prima che esso venga consegnato,
+e si può usare la funzione \func{sigpending} (vedi
+\secref{sec:sig_sigpending}) per determinare quali segnali sono bloccati e
+quali sono pendenti.
 
 
 \subsection{Tipi di segnali}
 \label{sec:sig_types}
 
-In generale gli eventi che generano segnali si possono dividere in tre
-categorie principali: errori, eventi e richieste esplicite. 
+In generale gli eventi che generano segnali si possono dividere in tre
+categorie principali: errori, eventi esterni e richieste esplicite.
 
 Un errore significa che un programma ha fatto qualcosa di sbagliato e non può
 continuare ad essere eseguito. Non tutti gli errori causano dei segnali, in
@@ -187,19 +214,19 @@ Una richiesta esplicita significa l'uso di una chiamata di sistema (come
 viene fatta usualmente dalla shell quando l'utente invoca la sequenza di tasti
 di stop o di suspend, ma può essere pure inserita all'interno di un programma.
 
-Si dice poi che i segnali possono essere \textit{asincroni} o
-\textit{sincroni}. Un segnale sincrono è legato ad una azione specifica di un
-programma ed è inviato (a meno che non sia bloccato) durante tale azione;
-molti errori generano segnali sincroni, così come la richiesta esplicita da
-parte del processo tramite le chiamate al sistema. Alcuni errori come la
-divisione per zero non sono completamente sincroni e possono arrivare dopo
-qualche istruzione.
+Si dice poi che i segnali possono essere \textsl{asincroni} o
+\textsl{sincroni}. Un segnale \textsl{sincrono} è legato ad una azione
+specifica di un programma ed è inviato (a meno che non sia bloccato) durante
+tale azione; molti errori generano segnali \textsl{sincroni}, così come la
+richiesta esplicita da parte del processo tramite le chiamate al sistema.
+Alcuni errori come la divisione per zero non sono completamente sincroni e
+possono arrivare dopo qualche istruzione.
 
-I segnali asincroni sono generati da eventi fuori dal controllo del processo
-che li riceve e arrivano in tempi impredicibili nel corso dell'esecuzione del
-programma. Eventi esterni come la terminazione di un processo figlio generano
-segnali asincroni, così come le richieste di generazione di un segnale
-effettuate da altri processi.
+I segnali \textsl{asincroni} sono generati da eventi fuori dal controllo del
+processo che li riceve, e arrivano in tempi impredicibili nel corso
+dell'esecuzione del programma. Eventi esterni come la terminazione di un
+processo figlio generano segnali \textsl{asincroni}, così come le richieste di
+generazione di un segnale effettuate da altri processi.
 
 In generale un tipo di segnale o è sincrono o è asincrono, salvo il caso in
 cui esso sia generato attraverso una richiesta esplicita tramite chiamata al
@@ -207,150 +234,169 @@ sistema, nel qual caso qualunque tipo di segnale (quello scelto nella
 chiamata) può diventare sincrono o asincrono a seconda che sia generato
 internamente o esternamente al processo.
 
+
 \subsection{La notifica dei segnali}
 \label{sec:sig_notification}
 
-Quando un segnale viene generato il kernel prende nota del fatto; si dice così
-che diventa \textit{pending} (sospeso), e rimarrà tale fino al momento in cui
-verrà notificato al processo a cui deve essere inviato.
-
-Normalmente l'invio al processo che deve ricevere il segnale è immediato, a
-meno che il segnale in questione non sia stato bloccato (\textit{blocked}) nel
-qual caso l'invio non avviene ed il segnale resta sospeso indefinitamente. Una
-volta però che esso venga sbloccato il segnale sarà subito notificato.
-
-Una volta che il segnale viene notificato (che questo avvenga subito o dopo
-una attesa più o meno lunga) viene eseguita l'azione specificata per detto
+Come accennato quando un segnale viene generato, se la sua azione di default
+non è quella di essere ignorato, il kernel prende nota del fatto nella
+\var{task\_struct} del processo; si dice così che il segnale diventa
+\textsl{pendente} (o \textit{pending}), e rimane tale fino al momento in cui
+verrà notificato al processo (o verrà specificata come azione di default
+quella di ingorarlo).
+
+Normalmente l'invio al processo che deve ricevere il segnale è immediato ed
+avviene non appena questo viene rimesso in esecuzione dallo scheduler che
+esegue l'azione specificata. Questo a meno che il segnale in questione non sia
+stato bloccato prima della notifica, nel qual caso l'invio non avviene ed il
+segnale resta \textsl{pendente} indefinitamente. Quando lo si sblocca il
+segnale \textsl{pendente} sarà subito notificato.
+
+Si ricordi però che se l'azione specificata per un segnale è quella di essere
+ignorato questo sarà scartato immediatamente al momento della sua generazione,
+e questo anche se in quel momento il segnale è bloccato (perché ciò che viene
+bloccata è la notifica). Per questo motivo un segnale, fintanto che viene
+ignorato, non sarà mai notificato, anche se è stato bloccato ed in seguito si
+è specificata una azione diversa (nel qual caso solo i segnali successivi alla
+nuova specificazione saranno notificati).
+
+Una volta che un segnale viene notificato (che questo avvenga subito o dopo
+una attesa più o meno lunga) viene eseguita l'azione specificata per il
 segnale. Per alcuni segnali (\macro{SIGKILL} e \macro{SIGSTOP}) questa azione
-è fissa e non può essere cambiata, ma per tutti gli altri il programma può
-specificare una scelta fra le tre seguenti:
+è fissa e non può essere cambiata, ma per tutti gli altri si può selezionare
+una  delle tre possibilità seguenti:
 
 \begin{itemize*}
-\item ignorare il segnale.
-\item catturare il segnale, ed utilizzare il manipolatore (\textit{signal
-    handler}) specificato.
+\item \textsl{ignorare} il segnale.
+\item \textsl{catturare} il segnale, ed utilizzare il manipolatore
+  specificato.
 \item accettare l'azione di default per quel segnale.
 \end{itemize*}
 
-Il programma può specificare queste scelte usano le due routine
-\func{signal} e \func{sigaction}; se si è installato un manipolatore sarà
-quest'ultimo a intercettare il segnale ed ad essere eseguito, e mentre viene
-eseguito (onde evitare race conditions) il segnale viene bloccato.
-
-Se l'azione specificata per un certo tipo di segnale è quella di ignorarlo
-questo sarà scartato immediatamente ogni volta che verrà generato, e questo
-avverrà anche se in quel momento il segnale è bloccato. Per questo un segnale
-ignorato non sarà mai notificato, anche se in seguito si sarà specificata una
-diversa azione per lo stesso segnale.
+Un programma può specificare queste scelte usando le due funzioni
+\func{signal} e \func{sigaction} (vedi \secref{sec:sig_signal} e
+\secref{sec:sig_sigaction}); se si è installato un manipolatore sarà
+quest'ultimo ad essere eseguito alla notifica del segnale.  Inoltre il sistema
+fa si che mentre viene eseguito il manipolatore di un segnale, questo ultimo
+venga automaticamente bloccato (così si possono evitare race condition).
 
-Se arriva un segnale per il quale non è stato specificata un'azione viene
-utilizzata l'azione standard. Questa è diversa da segnale a segnale (come
-vedremo in \secref{sec:sig_standard}) ma per la maggior parte essa comporta la
-terminazione del processo, per alcuni che invece rappresentano eventi innocui
-l'azione standard è di non fare nulla.
+Nel caso non sia stata specificata un'azione, viene utilizzata l'azione
+standard che (come vedremo in \secref{sec:sig_standard}) è propria di ciascun
+segnale; nella maggior parte dei casi essa porta alla terminazione del
+processo, ma alcuni segnali che rappresentano eventi innocui vengono ignorati.
 
 Quando un segnale termina un processo, il padre può determinare la causa della
 terminazione esaminando il codice di stato riportato delle funzioni
-\func{wait} e \func{waitpid} in cui è riportato anche se la causa è un
-segnale e nel caso quale; questo è il modo in cui la shell determina i motivi
-della terminazione di un programma e scrive un eventuale messaggio di errore.
+\func{wait} e \func{waitpid} (vedi \secref{sec:proc_wait}); questo è il modo
+in cui la shell determina i motivi della terminazione di un programma e scrive
+un eventuale messaggio di errore.
 
 I segnali che rappresentano errori del programma (divisione per zero o
-violazioni di accesso) hanno anche la caratteristica di scrivere un file
-\textit{core dump} che registra lo stato del processo prima della terminazione
-e può essere esaminato da un debugger per investigare sulla causa dell'errore.
-Lo stesso avviene se i suddetti segnale vengono generati artificialmente con
-una \func{kill}.
+violazioni di accesso) hanno anche la caratteristica di scrivere un file di
+\textit{core dump} che registra lo stato del processo (ed in particolare della
+memoria e dello stack) prima della terminazione.  Questo può essere esaminato
+in seguito con un debugger per investigare sulla causa dell'errore.  Lo stesso
+avviene se i suddetti segnale vengono generati con una \func{kill}.
+
 
 
+\section{La classificazione dei segnali}
+\label{sec:sig_classification}
 
-\section{I segnali standard}
+Esamineremo in questa sezione quali sono i vari segnali definiti nel sistema,
+le loro caratteristiche e tipologia, le varie macro e costanti che permettono
+di identificarli, e le funzioni che ne stampano la descrizione.
+
+
+\subsection{I segnali standard}
 \label{sec:sig_standard}
 
-Esaminiamo ora i vari segnali disponibili e le loro caratteristiche. 
 Ciascun segnale è identificato rispetto al sistema da un numero, ma l'uso
 diretto di questo numero da parte dei programmi è da evitare, in quanto esso
-può variare a seconda dell'implementazione del sistema.
+può variare a seconda dell'implementazione del sistema, e nel caso si Linux,
+anche a seconda dell'architettura hardware. 
 
-Per questo ad ogni tipo di segnale viene associato un nome, che corrisponde,
-tramite una macro di preprocessore, al suddetto numero. Sono questi nomi, che
-sono standardizzati e uniformi rispetto alle varie implementazioni, che si
-devono usare nei programmi. Tutti i nomi e le funzioni che concernono i
-segnali sono definiti nell'header di sistema \file{signal.h}.
-
-Il numero totale di segnali presenti è dato dalla macro \macro{NSIG}, e dato
-che i numeri dei segnali sono allocati progressivamente, essa corrisponde
-anche al successivo del valore numerico assegnato all'ultimo segnale definito.
-In \ntab\ si è riportato l'elenco completo dei segnali definiti in Linux
-(estratto dalle man page), comparati con quelli definiti in vari standard.
 \begin{table}[htb]
   \footnotesize
   \centering
-  \begin{tabular}[c]{|l|c|c|c||c|p{6cm}|}
+  \begin{tabular}[c]{|l|c|c|p{8cm}|}
     \hline
-    Segnale  & POSIX.1 & SUSv2 & Linux  &Azione &  Descrizione \\
+    \textbf{Segnale}&\textbf{Standard}&\textbf{Azione}&\textbf{Descrizione} \\
     \hline
     \hline
-    SIGHUP   &$\bullet$&&$\bullet$&  A  & Hangup  o
-    fine del processo di controllo  \\
-    SIGINT   &$\bullet$&&$\bullet$&  A  & Interrupt da tastiera (\cmd{C-c})\\
-    SIGQUIT  &$\bullet$&&$\bullet$&  C  & Quit da tastiera (\cmd{C-y}) \\
-    SIGILL   &$\bullet$&&$\bullet$&  C  & Istruzione illegale\\
-    SIGABRT  &$\bullet$&&$\bullet$&  C  & Segnale di Abort da \func{abort} \\
-    SIGFPE   &$\bullet$&&$\bullet$&  C  & Errore aritmetico\\
-    SIGKILL  &$\bullet$&&$\bullet$& AEF & Segnale di terminazione forzata \\
-    SIGSEGV  &$\bullet$&&$\bullet$&  C  & Errore di accesso in memoria\\
-    SIGPIPE  &$\bullet$&&$\bullet$&  A  & Pipe spezzata\\
-    SIGALRM  &$\bullet$&&$\bullet$&  A  & Segnale del timer da \func{alarm} \\
-    SIGTERM  &$\bullet$&&$\bullet$&  A  & Segnale di terminazione \verb|C-\|\\
-    SIGUSR1  &$\bullet$&&$\bullet$&  A  & User-defined signal 1\\
-    SIGUSR2  &$\bullet$&&$\bullet$&  A  & User-defined signal 2\\
-    SIGCHLD  &$\bullet$&&$\bullet$&  B  & Child stopped or terminated\\
-    SIGCONT  &$\bullet$&&$\bullet$&     & Continue if stopped\\
-    SIGSTOP  &$\bullet$&&$\bullet$& DEF & Stop process\\
-    SIGTSTP  &$\bullet$&&$\bullet$&  D  & Stop typed at tty \\
-    SIGTTIN  &$\bullet$&&$\bullet$&  D  & tty input for background process \\
-    SIGTTOU  &$\bullet$&&$\bullet$&  D  & tty output for background process \\
-    SIGBUS   &&$\bullet$&$\bullet$& C & Bus error (bad memory access) \\
-    SIGPOLL  &&$\bullet$&$\bullet$& A & Pollable event (Sys V). Synonym of SIGIO\\
-    SIGPROF   &&$\bullet$&$\bullet$& A & Profiling timer expired \\
-    SIGSYS    &&$\bullet$&$\bullet$& C & Bad argument to routine (SVID)\\
-    SIGTRAP   &&$\bullet$&$\bullet$& C & Trace/breakpoint trap \\
-    SIGURG    &&$\bullet$&$\bullet$& B & Urgent condition on socket (4.2 BSD)\\
-    SIGVTALRM &&$\bullet$&$\bullet$& A & Virtual alarm clock (4.2 BSD) \\
-    SIGXCPU   &&$\bullet$&$\bullet$& C & CPU time limit exceeded (4.2 BSD)  \\
-    SIGXFSZ   &&$\bullet$&$\bullet$& C & File size limit exceeded (4.2 BSD)\\
-    SIGIOT    &&&$\bullet$& C &     IOT trap. A synonym for SIGABRT        \\
-    SIGEMT    &&&$\bullet$&   &                                            \\
-    SIGSTKFLT &&&$\bullet$& A &     Stack fault on coprocessor             \\
-    SIGIO     &&&$\bullet$& A &     I/O now possible (4.2 BSD)             \\
-    SIGCLD    &&&$\bullet$&   &     A synonym for SIGCHLD                  \\
-    SIGPWR    &&&$\bullet$& A &     Power failure (System V)               \\
-    SIGINFO   &&&$\bullet$&   &     A synonym for SIGPWR                   \\
-    SIGLOST   &&&$\bullet$& A &     File lock lost                         \\
-    SIGWINCH  &&&$\bullet$& B &     Window resize signal (4.3 BSD, Sun)    \\
-    SIGUNUSED &&&$\bullet$& A &     Unused signal (will be SIGSYS)         \\
+    \macro{SIGHUP}   &PL & A & Hangup o fine del processo di controllo      \\
+    \macro{SIGINT}   &PL & A & Interrupt da tastiera (\cmd{C-c})            \\
+    \macro{SIGQUIT}  &PL & C & Quit da tastiera (\cmd{C-y})                 \\
+    \macro{SIGILL}   &PL & C & Istruzione illegale                          \\
+    \macro{SIGABRT}  &PL & C & Segnale di abort da \func{abort}             \\
+    \macro{SIGFPE}   &PL & C & Errore aritmetico                            \\
+    \macro{SIGKILL}  &PL &AEF& Segnale di terminazione forzata              \\
+    \macro{SIGSEGV}  &PL & C & Errore di accesso in memoria                 \\
+    \macro{SIGPIPE}  &PL & A & Pipe spezzata                                \\
+    \macro{SIGALRM}  &PL & A & Segnale del timer da \func{alarm}             \\
+    \macro{SIGTERM}  &PL & A & Segnale di terminazione \verb|C-\|            \\
+    \macro{SIGUSR1}  &PL & A & Segnale utente numero 1                       \\
+    \macro{SIGUSR2}  &PL & A & Segnale utente numero 2                       \\
+    \macro{SIGCHLD}  &PL & B & Figlio terminato o fermato                    \\
+    \macro{SIGCONT}  &PL &   & Continua se fermato                           \\
+    \macro{SIGSTOP}  &PL &DEF& Ferma il processo                             \\
+    \macro{SIGTSTP}  &PL & D & Stop typed at tty                             \\
+    \macro{SIGTTIN}  &PL & D & Input sul terminale per un processo 
+                               in background                                 \\
+    \macro{SIGTTOU}  &PL & D & Output sul terminale per un processo          
+                               in background                                 \\
+    \macro{SIGBUS}   &SL & C & Errore sul bus (bad memory access)            \\
+    \macro{SIGPOLL}  &SL & A & Pollable event (Sys V).                      
+                               Sinonimo di \macro{SIGIO}                     \\
+    \macro{SIGPROF}  &SL & A & Timer del profiling scaduto                   \\
+    \macro{SIGSYS}   &SL & C & Bad argument to routine (SVID)                \\
+    \macro{SIGTRAP}  &SL & C & Trace/breakpoint trap                         \\
+    \macro{SIGURG}   &SLB& B & Urgent condition on socket                    \\
+    \macro{SIGVTALRM}&SLB& A & Virtual alarm clock                           \\
+    \macro{SIGXCPU}  &SLB& C & Ecceduto il limite sul CPU time               \\
+    \macro{SIGXFSZ}  &SLB& C & Ecceduto il limite sulla dimensione dei file  \\
+    \macro{SIGIOT}   &L  & C & IOT trap. A synonym for \macro{SIGABRT}       \\
+    \macro{SIGEMT}   &L  &   &                                               \\
+    \macro{SIGSTKFLT}&L  & A & Stack fault on coprocessor                    \\
+    \macro{SIGIO}    &LB & A & I/O now possible (4.2 BSD)                    \\
+    \macro{SIGCLD}   &L  &   & A synonym for \macro{SIGCHLD}                 \\
+    \macro{SIGPWR}   &L  & A & Fallimento dell'alimentazione                 \\
+    \macro{SIGINFO}  &L  &   & A synonym for \macro{SIGPWR}                  \\
+    \macro{SIGLOST}  &L  & A & Perso un lock sul file (per NFS)              \\
+    \macro{SIGWINCH} &LB & B & Window resize signal (4.3 BSD, Sun)           \\
+    \macro{SIGUNUSED}&L  & A & Unused signal (will be SIGSYS)                \\
     \hline
   \end{tabular}
-  \caption{Lista dei segnali in Linux}
+  \caption{Lista dei segnali in Linux.}
   \label{tab:sig_signal_list}
 \end{table}
-in \curtab\ si sono riportate le azioni di default di ciascun segnale
-(riassunte con delle lettere, la cui legenda completa è in \ntab), quando
-nessun manipolatore è installato un segnale può essere ignorato o causare la
-terminazione del processo.
 
-In alcuni casi alla terminazione del processo è associata la creazione di un
-file (posto nella directory corrente del processo e chiamato \file{core}) su
-cui viene salvata un'immagine della memoria del processo (il cosiddetto
-\textit{core dump}), che può essere usata da un debugger per esaminare lo
-stato dello stack e delle variabili al momento della ricezione del segnale.
+Per questo motivo ad ogni segnale viene associato un nome, definendo con una
+macro di preprocessore una costante uguale al suddetto numero. Sono questi
+nomi, che sono standardizzati e sostanzialemnte uniformi rispetto alle varie
+implementazioni, che si devono usare nei programmi. Tutti i nomi e le funzioni
+che concernono i segnali sono definiti nell'header di sistema \file{signal.h}.
+
+Il numero totale di segnali presenti è dato dalla macro \macro{NSIG}, e dato
+che i numeri dei segnali sono allocati progressivamente, essa corrisponde
+anche al successivo del valore numerico assegnato all'ultimo segnale definito.
+In \tabref{tab:sig_signal_list} si è riportato l'elenco completo dei segnali
+definiti in Linux (estratto dalle man page), comparati con quelli definiti in
+vari standard.
+
+In \tabref{tab:sig_signal_list} si sono anche riportate le azioni di default
+di ciascun segnale (riassunte con delle lettere, la cui legenda completa è in
+\tabref{tab:sig_action_leg}), quando nessun manipolatore è installato un
+segnale può essere ignorato o causare la terminazione del processo. Nella
+colonna standard sono stati indicati anche gli standard in cui ciascun segnale
+è definito, secondo lo schema di \tabref{tab:sig_standard_leg}.
 
 \begin{table}[htb]
+  \footnotesize
   \centering
   \begin{tabular}[c]{|c|p{8cm}|}
     \hline
-    Sigla & Significato \\
+    \textbf{Sigla} & \textbf{Significato} \\
     \hline
     \hline
     A & L'azione di default è terminare il processo. \\
@@ -362,11 +408,36 @@ stato dello stack e delle variabili al momento della ricezione del segnale.
     F & Il segnale non può essere ignorato.\\
     \hline
   \end{tabular}
-  \caption{Legenda delle caratteristiche dei segnali riportate in 
-    \tabref{tab:sig_signal_list}. }
+  \caption{Legenda delle azioni di default dei segnali riportate in 
+    \tabref{tab:sig_signal_list}.}
   \label{tab:sig_action_leg}
 \end{table}
 
+In alcuni casi alla terminazione del processo è associata la creazione di un
+file (posto nella directory corrente del processo e chiamato \file{core}) su
+cui viene salvata un'immagine della memoria del processo (il cosiddetto
+\textit{core dump}), che può essere usata da un debugger per esaminare lo
+stato dello stack e delle variabili al momento della ricezione del segnale.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|l|}
+    \hline
+    \textbf{Sigla} & \textbf{Standard} \\
+    \hline
+    \hline
+    P & POSIX. \\
+    B & BSD. \\
+    L & Linux.\\
+    S & SUSv2.\\
+    \hline
+  \end{tabular}
+  \caption{Legenda dei valori della colonna \textbf{Standard} di 
+    \tabref{tab:sig_signal_list}.}
+  \label{tab:sig_standard_leg}
+\end{table}
+
 La descrizione dettagliata del significato dei vari segnali, raggruppati per
 tipologia, verrà affrontate nel seguito.
 
@@ -406,7 +477,7 @@ Questi segnali sono:
 %   molte diverse eccezioni che \texttt{SIGFPE} non distingue, mentre lo
 %   standard IEEE per le operazioni in virgola mobile definisce varie eccezioni
 %   aritmetiche e richiede che esse siano notificate.  
-
+  
 \item[\macro{SIGILL}] Il nome deriva da \textit{illegal instruction},
   significa che il programma sta cercando di eseguire una istruzione
   privilegiata o inesistente, in generale del codice illegale. Poiché il
@@ -415,8 +486,8 @@ Questi segnali sono:
   Quest'ultimo caso può accadere quando si passa un puntatore sbagliato al
   posto di un puntatore a funzione, o si eccede la scrittura di un vettore di
   una variabile locale, andando a corrompere lo stack. Lo stesso segnale viene
-  generato in caso di overflow dello stack o di problemi nell'esecuzione di di
-  un signal handler.
+  generato in caso di overflow dello stack o di problemi nell'esecuzione di un
+  manipolatore.
 \item[\macro{SIGSEGV}] Il nome deriva da \textit{segment violation}, e
   significa che il programma sta cercando di leggere o scrivere in una zona di
   memoria protetta al di fuori di quella che gli è stata riservata dal
@@ -680,13 +751,15 @@ descritta in \secref{sec:sys_strerror}; il suo prototipo 
 
 Una modalità alternativa per utilizzare le descrizioni restituite da
 \func{strsignal} e \func{psignal} è quello di fare usare la variabile
-\var{sys\_siglist}, che può essere acceduta dichiarando:
+\var{sys\_siglist}, che è definita in \file{signal.h} e può essere acceduta
+con la dichiarazione:
 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
     extern const char *const sys_siglist[]
 \end{lstlisting}
-\var{sys\_siglist} contiene le stringhe di descrizione indicizzate per numero
-di segnale, per cui \code{char *decr = strsignal(SIGINT)} può essere
-sostituito dall'equivalente \code{char *decr = sys\_siglist[SIGINT]}.
+l'array \var{sys\_siglist} contiene i puntatori alle stringhe di descrizione,
+indicizzate per numero di segnale, per cui una chiamata del tipo di \code{char
+  *decr = strsignal(SIGINT)} può essere sostituita dall'equivalente \code{char
+  *decr = sys\_siglist[SIGINT]}.
 
 
 
@@ -728,26 +801,36 @@ comportamento, pur mantenendone immutato il prototipo\footnote{in realt
 
 In questa definizione si è usato il tipo \type{sighandler\_t} che è una
 estensione GNU definita in Linux che permette di riscrivere il prototipo in
-forma più leggibile dell'originario \code{void (*signal(int signum, void
-  (*handler)(int)))int)}, e che è sostanzialmente equivalente alla
-definizione:
+forma più leggibile dell'originario:
+\begin{verbatim}
+void (*signal(int signum, void (*handler)(int)))int)
+\end{verbatim}
+che, per la poca chiarezza della sintassi del C quando si vanno a trattare
+puntatori a funzioni, è molto meno comprensibile, da questo si può dedurre la
+definizione di \type{sighandler\_t} che è:
 \begin{verbatim}
     typedef void (* sighandler_t)(int) 
 \end{verbatim}
-cioè un puntatore ad una funzione di tipo \type{void} con un parametro di tipo
-\type{int}\footnote{si devono usare le parentesi intorno al nome della
-  funzione per via delle precedenze degli operatori del C, senza di esse si
-  sarebbe definita una funzione che ritorna un puntatore a \type{void} e non
-  un puntatore ad una funzione \type{void}}.
+si tratta cioè un puntatore ad una funzione \type{void} (cioè senza valore di
+rtorno) e che prende un argomento di tipo \type{int}\footnote{si devono usare
+  le parentesi intorno al nome della funzione per via delle precedenze degli
+  operatori del C, senza di esse si sarebbe definita una funzione che ritorna
+  un puntatore a \type{void} e non un puntatore ad una funzione \type{void}}.
+La funzione \func{signal} quindi restituisce e prende come secondo argomento
+un puntatore a una funzione di questo tipo, che è appunto il manipolatore del
+segnale.
 
 Il numero di segnale passato in \param{signum} segnale può essere indicato
-direttamente con una delle costanti definite in \secref{sec:sig_standard}, il
+direttamente con una delle costanti definite in \secref{sec:sig_standard}. Il
 manipolatore \param{handler} invece, oltre all'indirizzo della funzione da
 chiamare all'occorrenza del segnale, può assumere anche i valori costanti
 \macro{SIG\_IGN} con cui si dice ignorare il segnale e \macro{SIG\_DFL} per
-installare l'azione di di default (si ricordi però che i due segnali
-\macro{SIGKILL} e \macro{SIGSTOP} non possono essere ignorati né
-intercettati).
+installare l'azione di di default\footnote{si ricordi però che i due segnali
+  \macro{SIGKILL} e \macro{SIGSTOP} non possono essere ignorati né
+  intercettati}.
+
+
+
 
 
 \subsection{Funzioni rientranti e default dei segnali}
@@ -760,3 +843,8 @@ intercettati).
 \subsection{La funzione \func{sigpending}}
 \label{sec:sig_sigpending}
 
+
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: