Aggiunte varie sempre sui segnali real-time
[gapil.git] / signal.tex
index 4055c7a4f8e60d3c0f60134f71b1802c9218cad1..ea8454e2555c90322f0e83db3d7db492d783e634 100644 (file)
@@ -16,7 +16,7 @@ In questo capitolo esamineremo i vari aspetti della gestione dei segnali,
 partendo da una introduzione relativa ai concetti base con cui essi vengono
 realizzati, per poi affrontarne la classificazione a secondo di uso e modalità
 di generazione fino ad esaminare in dettaglio funzioni e le metodologie di
-gestione.
+gestione. 
 
 
 \section{Introduzione}
@@ -120,8 +120,8 @@ int sig_handler()
 Questa è la ragione per cui l'implementazione dei segnali secondo questa
 semantica viene chiamata \textsl{inaffidabile}; infatti la ricezione del
 segnale e la reinstallazione del suo manipolatore non sono operazioni
-atomiche, e sono sempre possibili delle race condition (sull'argomento vedi
-quanto detto in \secref{sec:proc_multi_prog}).
+atomiche, e sono sempre possibili delle race condition\index{race condition}
+(sull'argomento vedi quanto detto in \secref{sec:proc_multi_prog}).
 
 Un'altro problema è che in questa semantica non esiste un modo per bloccare i
 segnali quando non si vuole che arrivino; i processi possono ignorare il
@@ -242,7 +242,8 @@ Un programma pu
 \secref{sec:sig_sigaction}). Se si è installato un manipolatore sarà
 quest'ultimo ad essere eseguito alla notifica del segnale.  Inoltre il sistema
 farà si che mentre viene eseguito il manipolatore di un segnale, quest'ultimo
-venga automaticamente bloccato (così si possono evitare race condition).
+venga automaticamente bloccato (così si possono evitare race
+condition\index{race condition}).
 
 Nel caso non sia stata specificata un'azione, viene utilizzata l'azione
 standard che (come vedremo in \secref{sec:sig_standard}) è propria di ciascun
@@ -377,7 +378,7 @@ stato dello stack e delle variabili al momento della ricezione del segnale.
     \macro{SIGTTOU}  &PL & D & Output sul terminale per un processo          
                                in background                                 \\
     \macro{SIGBUS}   &SL & C & Errore sul bus (bad memory access)            \\
-    \macro{SIGPOLL}  &SL & A & Pollable event (Sys V).                      
+    \macro{SIGPOLL}  &SL & A & \textit{Pollable event} (Sys V).  
                                Sinonimo di \macro{SIGIO}                     \\
     \macro{SIGPROF}  &SL & A & Timer del profiling scaduto                   \\
     \macro{SIGSYS}   &SL & C & Argomento sbagliato per una subroutine (SVID) \\
@@ -411,9 +412,9 @@ tipologia, verr
 \label{sec:sig_prog_error}
 
 Questi segnali sono generati quando il sistema, o in certi casi direttamente
-l'hardware (come per i page fault non validi) rileva un qualche errore
-insanabile nel programma in esecuzione. In generale la generazione di questi
-segnali significa che il programma ha dei gravi problemi (ad esempio ha
+l'hardware (come per i \textit{page fault} non validi) rileva un qualche
+errore insanabile nel programma in esecuzione. In generale la generazione di
+questi segnali significa che il programma ha dei gravi problemi (ad esempio ha
 dereferenziato un puntatore non valido o ha eseguito una operazione aritmetica
 proibita) e l'esecuzione non può essere proseguita.
 
@@ -662,11 +663,11 @@ segnali sono:
   situazione precedente.
 \item[\macro{SIGXCPU}] Sta per \textit{CPU time limit exceeded}. Questo
   segnale è generato quando un processo eccede il limite impostato per il
-  tempo di CPU disponibile, vedi \secref{sec:sys_xxx}. 
+  tempo di CPU disponibile, vedi \secref{sec:sys_resource_limit}. 
 \item[\macro{SIGXFSZ}] Sta per \textit{File size limit exceeded}. Questo
   segnale è generato quando un processo tenta di estendere un file oltre le
   dimensioni specificate dal limite impostato per le dimensioni massime di un
-  file, vedi \secref{sec:sys_xxx}. 
+  file, vedi \secref{sec:sys_resource_limit}. 
 \end{basedescript}
 
 
@@ -682,8 +683,8 @@ classificabili in maniera omogenea. Questi segnali sono:
   implementare una comunicazione elementare fra processi diversi, o per
   eseguire a richiesta una operazione utilizzando un manipolatore. L'azione di
   default è terminare il processo.
-\item[\macro{SIGWINCH}] Il nome sta per \textit{window (size) change} ed è
-  generato da molti sistemi (GNU/Linux compreso) quando le dimensioni (in
+\item[\macro{SIGWINCH}] Il nome sta per \textit{window (size) change} e viene
+  generato in molti sistemi (GNU/Linux compreso) quando le dimensioni (in
   righe e colonne) di un terminale vengono cambiate. Viene usato da alcuni
   programmi testuali per riformattare l'uscita su schermo quando si cambia
   dimensione a quest'ultimo. L'azione di default è di essere ignorato.
@@ -714,7 +715,7 @@ di \func{strsignal}. Nel caso si debba mantenere traccia del messaggio sar
 necessario copiarlo.
 
 La seconda funzione deriva da BSD ed è analoga alla funzione \func{perror}
-descritta in \secref{sec:sys_strerror}; il suo prototipo è:
+descritta sempre in \secref{sec:sys_strerror}; il suo prototipo è:
 \begin{prototype}{signal.h}{void psignal(int sig, const char *s)} 
   Stampa sullo standard error un messaggio costituito dalla stringa \param{s},
   seguita da due punti ed una descrizione del segnale indicato da \param{sig}.
@@ -750,7 +751,7 @@ processo alla loro occorrenza.
 
 
 \subsection{Il comportamento generale del sistema.}
-  \label{sec:sig_gen_beha}
+\label{sec:sig_gen_beha}
 
 Abbiamo già trattato in \secref{sec:sig_intro} le modalità con cui il sistema
 gestisce l'interazione fra segnali e processi, ci resta da esaminare però il
@@ -778,28 +779,29 @@ manipolatore; viene mantenuto invece ogni eventuale settaggio dell'azione a
 programmi eseguiti in background, che altrimenti sarebbero interrotti da una
 successiva pressione di \texttt{C-c} o \texttt{C-y}.
 
-Per quanto riguarda tutte le altre system call esse vengono tradizionalmente
-classificate, proprio in base al loro comportamento nei confronti dei segnali,
-in \textsl{lente} (\textit{slow}) e \textsl{veloci} (\textit{fast}). La gran
-parte appartiene a quest'ultima categoria che non è influenzata dall'arrivo di
-un segnale. In tal caso un eventuale manipolatore viene sempre eseguito dopo
-che la system call è stata completata. Esse sono dette \textsl{veloci} proprio
-in quanto la loro esecuzione è sostanzialmente immediata e attendere per
-eseguire un manipolatore non comporta nessun inconveniente.
-
-Esistono però dei casi in cui questo non è possibile perché renderebbe
-impossibile una risposta pronta al segnale. In generale questo avviene tutte
-le volte che si ha a che fare con system call che possono bloccarsi
-indefinitamente, (quelle che, per questo, vengono chiamate \textsl{lente}). Un
-elenco dei casi in cui si presenta questa situazione è il seguente:
+Per quanto riguarda il comportamento di tutte le altre system call si danno
+sostanzialmente due casi, a seconda che esse siano \textsl{lente}
+(\textit{slow}) o \textsl{veloci} (\textit{fast}). La gran parte di esse
+appartiene a quest'ultima categoria, che non è influenzata dall'arrivo di un
+segnale. Esse sono dette \textsl{veloci} in quanto la loro esecuzione è
+sostanzialmente immediata; la risposta al segnale viene sempre data dopo che
+la system call è stata completata, in quanto attendere per eseguire un
+manipolatore non comporta nessun inconveniente.
+
+In alcuni casi però alcune system call (che per questo motivo vengono chiamate
+\textsl{lente}) possono bloccarsi indefinitamente. In questo caso non si può
+attendere la conclusione della sistem call, perché questo renderebbe
+impossibile una risposta pronta al segnale, per cui il manipolatore viene
+eseguito prima che la system call sia ritornata.  Un elenco dei casi in cui si
+presenta questa situazione è il seguente:
 \begin{itemize}
-\item lettura da file che possono bloccarsi in attesa di dati non ancora
-  presenti (come per certi file di dispositivo, la rete o le pipe).
-\item scrittura sugli stessi file, nel caso in cui dati non possano essere
+\item la lettura da file che possono bloccarsi in attesa di dati non ancora
+  presenti (come per certi file di dispositivo, i socket o le pipe).
+\item la scrittura sugli stessi file, nel caso in cui dati non possano essere
   accettati immediatamente.
-\item apertura di un file di dispositivo che richiede operazioni non immediate
-  per una una risposta. 
-\item operazioni eseguite con \func{ioctl} che non è detto possano essere
+\item l'apertura di un file di dispositivo che richiede operazioni non
+  immediate per una una risposta.
+\item le operazioni eseguite con \func{ioctl} che non è detto possano essere
   eseguite immediatamente.
 \item le funzioni di intercomunicazione che si bloccano in attesa di risposte
   da altri processi.
@@ -996,6 +998,18 @@ termini di \func{kill}, ed 
 standard ISO C, non esiste in alcune vecchie versioni di Unix, in generale
 l'uso di \func{kill} finisce per essere più portabile.
 
+Una seconda funzione che può essere definita in termini di \func{kill} è
+\func{killpg}, che è sostanzialmente equivalente a
+\code{kill(-pidgrp, signal)}; il suo prototipo è:
+\begin{prototype}{signal.h}{int killpg(pid\_t pidgrp, int signal)} 
+  
+  Invia il segnale \param{signal} al process group \param{pidgrp}.
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore, gli errori sono gli stessi di \func{kill}.}
+\end{prototype}
+e che permette di inviare un segnale a tutto un \textit{process group} (vedi
+\secref{sec:sess_xxx}).
+
 Solo l'amministratore può inviare un segnale ad un processo qualunque, in
 tutti gli altri casi il \textit{real user id} o l'\textit{effective user id}
 del processo chiamante devono corrispondere al \textit{real user id} o al
@@ -1108,7 +1122,7 @@ illustrati in precedenza usare; i possibili valori sono riportati in
 Il valore della struttura specificata \param{value} viene usato per settare il
 timer, se il puntatore \param{ovalue} non è nullo il precedente valore viene
 salvato qui. I valori dei timer devono essere indicati attraverso una
-struttura \var{itimerval}, definita in \figref{fig:file_stat_struct}.
+struttura \type{itimerval}, definita in \figref{fig:file_stat_struct}.
 
 La struttura è composta da due membri, il primo, \var{it\_interval} definisce
 il periodo del timer; il secondo, \var{it\_value} il tempo mancante alla
@@ -1129,16 +1143,10 @@ struct itimerval
     struct timeval it_interval; /* next value */
     struct timeval it_value;    /* current value */
 };
-
-struct timeval 
-{
-    long tv_sec;                /* seconds */
-    long tv_usec;               /* microseconds */
-};
     \end{lstlisting}
   \end{minipage} 
   \normalsize 
-  \caption{La struttura \var{itimerval}, che definisce i valori dei timer di
+  \caption{La struttura \type{itimerval}, che definisce i valori dei timer di
     sistema.} 
   \label{fig:sig_itimerval}
 \end{figure}
@@ -1324,9 +1332,9 @@ Lo standard richiede che la funzione sia implementata in maniera del tutto
 indipendente da \func{alarm}\footnote{nel caso di Linux questo è fatto
   utilizzando direttamente il timer del kernel.} e sia utilizzabile senza
 interferenze con l'uso di \macro{SIGALRM}. La funzione prende come parametri
-delle strutture di tipo \var{timespec}, la cui definizione è riportata in 
-\figref{fig:sig_timespec_def}, che permettono di specificare un tempo con una
-precisione (teorica) fino al nanosecondo. 
+delle strutture di tipo \var{timespec}, la cui definizione è riportata in
+\figref{fig:sys_timeval_struct}, che permettono di specificare un tempo con
+una precisione (teorica) fino al nanosecondo.
 
 La funzione risolve anche il problema di proseguire l'attesa dopo
 l'interruzione dovuta ad un segnale; infatti in tal caso in \param{rem} viene
@@ -1343,21 +1351,6 @@ sia scarico ed il processa venga immediatamente rimesso in esecuzione); per
 questo motivo il valore restituito in \param{rem} è sempre arrotondato al
 multiplo successivo di 1/\macro{HZ}.
 
-\begin{figure}[!htb]
-  \footnotesize \centering
-  \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
-struct timespec {
-    time_t  tv_sec;         /* seconds */
-    long    tv_nsec;        /* nanoseconds */
-};
-    \end{lstlisting}
-  \end{minipage} 
-  \normalsize 
-  \caption{La struttura \var{timespec} di \func{nanosleep}.} 
-  \label{fig:sig_timespec_def}
-\end{figure}
-
 In realtà è possibile ottenere anche pause più precise del centesimo di
 secondo usando politiche di scheduling real time come \macro{SCHED\_FIFO} o
 \macro{SCHED\_RR}; in tal caso infatti il meccanismo di scheduling ordinario
@@ -1403,13 +1396,13 @@ la creazione di zombie.
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
     \begin{lstlisting}{}
-#include <errno.h>       /* error simbol definitions */
+#include <errno.h>       /* error symbol definitions */
 #include <signal.h>      /* signal handling declarations */
 #include <sys/types.h>
 #include <sys/wait.h>
 #include "macro.h"
 
-void Hand_CHLD(int sig)
+void sigchld_hand(int sig)
 {
     int errno_save;
     int status;
@@ -1461,7 +1454,7 @@ presenta tutte le volte che un segnale viene bloccato: per quanti siano i
 segnali emessi durante il periodo di blocco, una volta che quest'ultimo sarà
 rimosso sarà recapitato un solo segnale.
 
-Allora nel caso della terminazione dei processi figli, se si chiamasse
+Allora, nel caso della terminazione dei processi figli, se si chiamasse
 \func{waitpid} una sola volta, essa leggerebbe lo stato di terminazione per un
 solo processo, anche se i processi terminati sono più di uno, e gli altri
 resterebbero in stato di zombie per un tempo indefinito.
@@ -1480,8 +1473,9 @@ tutti gli stati di terminazione sono stati ricevuti.
 
 Le funzioni esaminate finora fanno riferimento ad alle modalità più elementari
 della gestione dei segnali; non si sono pertanto ancora prese in
-considerazione le tematiche più complesse, collegate alle varie race condition
-che i segnali possono generare e alla natura asincrona degli stessi.
+considerazione le tematiche più complesse, collegate alle varie race
+condition\index{race condition} che i segnali possono generare e alla natura
+asincrona degli stessi.
 
 Affronteremo queste problematiche in questa sezione, partendo da un esempio
 che le evidenzi, per poi prendere in esame le varie funzioni che permettono di
@@ -1501,43 +1495,44 @@ versione di \func{sleep} potrebbe essere quella illustrata in
 
 Dato che è nostra intenzione utilizzare \macro{SIGALRM} il primo passo della
 nostra implementazione di sarà quello di installare il relativo manipolatore
-salvando il precedente (\texttt{\small 4-7}).  Si effettuerà poi una chiamata
-ad \func{alarm} per specificare il tempo d'attesa per l'invio del segnale a
-cui segue la chiamata a \func{pause} per fermare il programma (\texttt{\small
-  8-9}) fino alla sua ricezione.  Al ritorno di \func{pause}, causato dal
-ritorno del manipolatore (\texttt{\small 15-23}), si ripristina il
-manipolatore originario (\texttt{\small 10-11}) restituendo l'eventuale tempo
-rimanente (\texttt{\small 12-13}) che potrà essere diverso da zero qualora
+salvando il precedente (\texttt{\small 14-17}).  Si effettuerà poi una
+chiamata ad \func{alarm} per specificare il tempo d'attesa per l'invio del
+segnale a cui segue la chiamata a \func{pause} per fermare il programma
+(\texttt{\small 17-19}) fino alla sua ricezione.  Al ritorno di \func{pause},
+causato dal ritorno del manipolatore (\texttt{\small 1-9}), si ripristina il
+manipolatore originario (\texttt{\small 20-21}) restituendo l'eventuale tempo
+rimanente (\texttt{\small 22-23}) che potrà essere diverso da zero qualora
 l'interruzione di \func{pause} venisse causata da un altro segnale.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
     \begin{lstlisting}{}
+void alarm_hand(int sig) {
+    /* check if the signal is the right one */
+    if (sig != SIGALRM) { /* if not exit with error */
+        printf("Something wrong, handler for SIGALRM\n");
+        exit(1);
+    } else {    /* do nothing, just interrupt pause */
+        return;
+    }
+}
 unsigned int sleep(unsigned int seconds)
 {
-    signandler_t prev_handler;
+    sighandler_t prev_handler;
+    /* install and check new handler */
     if ((prev_handler = signal(SIGALRM, alarm_hand)) == SIG_ERR) {
-        printf("Cannot set handler for alarm\n");
-        exit(1);
+        printf("Cannot set handler for alarm\n"); 
+        exit(-1);
     }
-    alarm(second);
+    /* set alarm and go to sleep */
+    alarm(seconds); 
     pause(); 
     /* restore previous signal handler */
     signal(SIGALRM, prev_handler);
-    /* remove alarm, return remaining time */
+    /* return remaining time */
     return alarm(0);
 }
-void alarm_hand(int sig) 
-{
-    /* check if the signal is the right one */
-    if (sig != SIGALRM) { /* if not exit with error */
-        printf("Something wrong, handler for SIGALRM\n");
-        exit(1);
-    } else {    /* do nothing, just interrupt pause */
-        return;
-    }
-}      
     \end{lstlisting}
   \end{minipage} 
   \normalsize 
@@ -1547,13 +1542,13 @@ void alarm_hand(int sig)
 
 Questo codice però, a parte il non gestire il caso in cui si è avuta una
 precedente chiamata a \func{alarm} (che si è tralasciato per brevità),
-presenta una pericolosa race condition.  Infatti se il processo viene
-interrotto fra la chiamata di \func{alarm} e \func{pause} può capitare (ad
-esempio se il sistema è molto carico) che il tempo di attesa scada prima
-dell'esecuzione quest'ultima, cosicché essa sarebbe eseguita dopo l'arrivo di
-\macro{SIGALRM}. In questo caso ci si troverebbe di fronte ad un deadlock, in
-quanto \func{pause} non verrebbe mai più interrotta (se non in caso di un
-altro segnale).
+presenta una pericolosa race condition\index{race condition}.  Infatti se il
+processo viene interrotto fra la chiamata di \func{alarm} e \func{pause} può
+capitare (ad esempio se il sistema è molto carico) che il tempo di attesa
+scada prima dell'esecuzione quest'ultima, cosicché essa sarebbe eseguita dopo
+l'arrivo di \macro{SIGALRM}. In questo caso ci si troverebbe di fronte ad un
+deadlock, in quanto \func{pause} non verrebbe mai più interrotta (se non in
+caso di un altro segnale).
 
 Questo problema può essere risolto (ed è la modalità con cui veniva fatto in
 SVr2) usando la funzione \func{longjmp} (vedi \secref{sec:proc_longjmp}) per
@@ -1602,7 +1597,7 @@ void alarm_hand(int sig)
 In questo caso il manipolatore (\texttt{\small 18-26}) non ritorna come in
 \figref{fig:sig_sleep_wrong}, ma usa \func{longjmp} (\texttt{\small 24}) per
 rientrare nel corpo principale del programma; dato che in questo caso il
-valore di uscita di \func{setjmp} è 1 grazie alla condizione in
+valore di uscita di \func{setjmp} è 1, grazie alla condizione in
 (\texttt{\small 9-12}) si evita comunque che \func{pause} sia chiamata a
 vuoto.
 
@@ -1618,7 +1613,7 @@ Un secondo esempio 
 qualche forma di evento; in genere quello che si fa in questo caso è settare
 nel manipolatore un opportuno flag da controllare nel corpo principale del
 programma (con un codice del tipo di quello riportato in
-\secref{fig:sig_event_wrong}.
+\figref{fig:sig_event_wrong}).
 
 \begin{figure}[!htb]
   \footnotesize \centering
@@ -1657,19 +1652,20 @@ quale potr
 segnale, e prendere le relative azioni conseguenti (\texttt{\small 6-11}).
 
 Questo è il tipico esempio di caso, già citato in \secref{sec:proc_race_cond},
-in cui si genera una race condition; se infatti il segnale arriva
-immediatamente dopo l'esecuzione del controllo (\texttt{\small 6}) ma prima
-della cancellazione del flag (\texttt{\small 7}), la sua occorrenza sarà
-perduta.
+in cui si genera una race condition\index{race condition}; se infatti il
+segnale arriva immediatamente dopo l'esecuzione del controllo (\texttt{\small
+  6}) ma prima della cancellazione del flag (\texttt{\small 7}), la sua
+occorrenza sarà perduta.
 
 Questi esempi ci mostrano che per una gestione effettiva dei segnali occorrono
-funzioni più sofisticate della semplice interfaccia dei primi sistemi Unix,
-che permettano di gestire tutti i possibili aspetti con cui un processo deve
+funzioni più sofisticate di quelle illustrate finora, che hanno origine dalla
+interfaccia semplice, ma poco sofisticata, dei primi sistemi Unix, in modo da
+consentire la gestione di tutti i possibili aspetti con cui un processo deve
 reagire alla ricezione di un segnale.
 
 
 
-\subsection{I \textit{signal set}}
+\subsection{Gli \textsl{insiemi di segnali} o \textit{signal set}}
 \label{sec:sig_sigset}
 
 Come evidenziato nel paragrafo precedente, le funzioni di gestione dei segnali
@@ -1741,13 +1737,13 @@ insieme.
 \label{sec:sig_sigaction}
 
 La funzione principale dell'interfaccia standard POSIX.1 per i segnali è
-\func{sigaction}, essa ha sostanzialemente le stesse funzioni di
-\func{signal}, permette cioè di specificare come un segnale può essere gestito
+\func{sigaction}, essa ha sostanzialemente lo stesso uso di \func{signal},
+permette cioè di specificare le modalità con cui un segnale può essere gestito
 da un processo. Il suo prototipo è:
 \begin{prototype}{signal.h}{int sigaction(int signum, const struct sigaction
     *act, struct sigaction *oldact)} 
   
-  Installa un nuovo manipolatore per il segnale \param{signum}.
+  Installa una nuova azione per il segnale \param{signum}.
   
   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
     errore, nel qual caso \var{errno} assumerà i valori:
@@ -1762,11 +1758,12 @@ da un processo. Il suo prototipo 
 La funzione serve ad installare una nuova \textsl{azione} per il segnale
 \param{signum}; si parla di \textsl{azione} e non di \textsl{manipolatore}
 come nel caso di \func{signal}, in quanto la funzione consente di specificare
-le varie caratteristiche della risposta al segnale, non solo la funzione del
-manipolatore.  Per questo lo standard raccomanda di usare sempre questa
-funzione al posto di \func{signal} (che in genere viene definita tramite
-essa), in quanto offre un controllo completo su tutti gli aspetti della
-gestione di un segnale, sia pure al prezzo di una maggiore complessità d'uso.
+le varie caratteristiche della risposta al segnale, non solo la funzione che
+verrà eseguita alla sua occorrenza.  Per questo lo standard raccomanda di
+usare sempre questa funzione al posto di \func{signal} (che in genere viene
+definita tramite essa), in quanto permette un controllo completo su tutti gli
+aspetti della gestione di un segnale, sia pure al prezzo di una maggiore
+complessità d'uso.
 
 Se il puntatore \param{act} non è nullo, la funzione installa la nuova azione
 da esso specificata, se \param{oldact} non è nullo il valore dell'azione
@@ -1800,32 +1797,24 @@ struct sigaction
   \label{fig:sig_sigaction}
 \end{figure}
 
-Come si può notare da quanto riportato in \figref{fig:sig_sigaction} in Linux
-\func{sigaction} permette di specificare il manipolatore in due forme diverse,
-indicate dai campi \var{sa\_handler} e \var{sa\_sigaction}; esse devono essere
-usate in maniera alternativa (in certe implementazioni questi vengono
-specificati come \ctyp{union}): la prima è quella classica usata anche con
-\func{signal}, la seconda permette invece di usare un manipolatore in grado di
-ricevere informazioni più dettagliate dal sistema (ad esempio il tipo di
-errore in caso di \macro{SIGFPE}), attraverso dei parametri aggiuntivi; per i
-dettagli si consulti la man page di \func{sigaction}).
-
 Il campo \var{sa\_mask} serve ad indicare l'insieme dei segnali che devono
 essere bloccati durante l'esecuzione del manipolatore, ad essi viene comunque
 sempre aggiunto il segnale che ne ha causato la chiamata, a meno che non si
-sia specificato con \var{sa\_flag} un comportamento diverso. 
+sia specificato con \var{sa\_flag} un comportamento diverso. Quando il
+manipolatore ritorna comunque la maschera dei segnali bloccati (vedi
+\secref{sec:sig_sigmask}) viene ripristinata al valore precedente
+l'invocazione.
 
 L'uso di questo campo permette ad esempio di risolvere il problema residuo
 dell'implementazione di \code{sleep} mostrata in
-\secref{fig:sig_sleep_incomplete}: in quel caso infatti se il segnale di
-allarme interrompe un altro manipolatore questo non sarà eseguito
-correttamente, la cosa può essere prevenuta installando quest'ultimo usando
-\var{sa\_mask} per bloccare \macro{SIGALRM} durante la sua esecuzione.
-
-Il valore di \var{sa\_flag} permette di specificare vari aspetti del
-comportamento di \func{sigaction}, e della reazione del processo ai vari
-segnali; i valori possibili ed il relativo significato sono riportati in
-\tabref{tab:sig_sa_flag}. 
+\secref{fig:sig_sleep_incomplete}. In quel caso infatti se il segnale di
+allarme avesse interrotto un altro manipolatore questo non sarebbe stato
+eseguito correttamente; la cosa poteva essere prevenuta installando gli altri
+manipolatori usando \var{sa\_mask} per bloccare \macro{SIGALRM} durante la
+loro esecuzione.  Il valore di \var{sa\_flag} permette di specificare vari
+aspetti del comportamento di \func{sigaction}, e della reazione del processo
+ai vari segnali; i valori possibili ed il relativo significato sono riportati
+in \tabref{tab:sig_sa_flag}.
 
 \begin{table}[htb]
   \footnotesize
@@ -1857,13 +1846,88 @@ segnali; i valori possibili ed il relativo significato sono riportati in
                            \var{sa\_sigaction} al posto di \var{sa\_handler}.\\
     \macro{SA\_ONSTACK}  & Stabilisce l'uso di uno stack alternativo per
                            l'esecuzione del manipolatore (vedi
-                           \secref{sec:sig_xxx}).\\ 
+                           \secref{sec:sig_specific_features}).\\ 
     \hline
   \end{tabular}
   \caption{Valori del campo \var{sa\_flag} della struttura \var{sigaction}.}
   \label{tab:sig_sa_flag}
 \end{table}
 
+Come si può notare in \figref{fig:sig_sigaction} \func{sigaction}
+permette\footnote{La possibilità è prevista dallo standard POSIX.1b, ed è
+  stata aggiunta nei kernel della serie 2.1.x con l'introduzione dei segnali
+  real-time (vedi \secref{sec:sig_real_time}). In precedenza era possibile
+  ottenere alcune informazioni addizionali usando \var{sa\_handler} con un
+  secondo parametro addizionale di tipo \var{struct sigcontext}, che adesso è
+  deprecato.}  di utilizzare due forme diverse di manipolatore, da
+specificare, a seconda dell'uso o meno del flag \macro{SA\_SIGINFO},
+rispettivamente attraverso i campi \var{sa\_sigaction} o \var{sa\_handler},
+(che devono essere usati in maniera alternativa, in certe implementazioni
+questi vengono addirittura definiti come \ctyp{union}): la prima è quella
+classica usata anche con \func{signal}, la seconda permette invece di usare un
+manipolatore in grado di ricevere informazioni più dettagliate dal sistema,
+attraverso la struttura \type{siginfo\_t}, riportata in
+\figref{fig:sig_siginfo_t}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+siginfo_t {
+    int      si_signo;  /* Signal number */
+    int      si_errno;  /* An errno value */
+    int      si_code;   /* Signal code */
+    pid_t    si_pid;    /* Sending process ID */
+    uid_t    si_uid;    /* Real user ID of sending process */
+    int      si_status; /* Exit value or signal */
+    clock_t  si_utime;  /* User time consumed */
+    clock_t  si_stime;  /* System time consumed */
+    sigval_t si_value;  /* Signal value */
+    int      si_int;    /* POSIX.1b signal */
+    void *   si_ptr;    /* POSIX.1b signal */
+    void *   si_addr;   /* Memory location which caused fault */
+    int      si_band;   /* Band event */
+    int      si_fd;     /* File descriptor */
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \type{siginfo\_t}.} 
+  \label{fig:sig_siginfo_t}
+\end{figure}
+Installando un manipolatore di tipo \var{sa\_sigaction} diventa allora
+possibile accedere alle informazioni restituite attraverso il puntatore a
+questa struttura. Tutti i segnali settano i campi \var{si\_signo}, che riporta
+il numero del segnale ricevuto, \var{si\_errno}, che riporta, quando diverso
+da zero, il codice dell'errore associato al segnale, e \var{si\_code}, che
+viene usato dal kernel per specificare maggiori dettagli riguardo l'evento che
+ha causato l'emissione del segnale.
+
+In generale \var{si\_code} contiene, per i segnali generici, per quelli
+real-time e per tutti quelli inviati tramite \func{kill}, informazioni circa
+l'origine del segnale (se generato dal kernel, da un timer, da \func{kill},
+ecc.). Alcuni segnali però usano \var{si\_code} per fornire una informazione
+specifica: ad esempio i vari segnali di errore (\macro{SIGFPE},
+\macro{SIGILL}, \macro{SIGBUS} e \macro{SIGSEGV}) lo usano per fornire
+maggiori dettagli riguardo l'errore (come il tipo di errore aritmetico, di
+istruzione illecita o di violazione di memoria) mentre alcuni segnali di
+controllo (\macro{SIGCHLD}, \macro{SIGTRAP} e \macro{SIGPOLL}) forniscono
+altre informazioni speecifiche.  In tutti i casi il valore del campo è
+riportato attraverso delle costanti (le cui definizioni si trovano
+\file{bits/siginfo.h}) il cui elenco dettagliato è disponibile nella man page
+di \func{sigaction}.
+
+Il resto della struttura è definito come \ctyp{union} ed i valori
+eventualmente presenti dipendono dal segnale, così \macro{SIGCHLD} ed i
+segnali real-time (vedi \secref{sec:sig_real_time}) inviati tramite
+\func{kill} avvalorano \var{si\_pid} e \var{si\_uid} coi valori corrispondenti
+al processo che ha emesso il segnale, \macro{SIGILL}, \macro{SIGFPE},
+\macro{SIGSEGV} e \macro{SIGBUS} avvalorano \var{si\_addr} con l'indirizzo cui
+è avvenuto l'errore, \macro{SIGIO} (vedi \secref{sec:file_asyncronous_io})
+avvalora \var{si\_fd} con il numero del file descriptor e \var{si\_band} per i
+dati urgenti su un socket.
+
 Benché sia possibile usare nello stesso programma sia \func{sigaction} che
 \func{signal} occorre molta attenzione, in quanto le due funzioni possono
 interagire in maniera anomala. Infatti l'azione specificata con
@@ -1877,22 +1941,58 @@ Per questo 
 ripristinare correttamente un manipolatore precedente, anche se questo è stato
 installato con \func{signal}. In generale poi non è il caso di usare il valore
 di ritorno di \func{signal} come campo \var{sa\_handler}, o viceversa, dato
-che in certi sistemi questi possono essere diversi. In generale dunque, a meno
-che non si sia vincolati allo standard ISO C, è sempre il caso di evitare
-l'uso di \func{signal} a favore di \func{sigaction}.
+che in certi sistemi questi possono essere diversi. In definitiva dunque, a
+meno che non si sia vincolati all'aderenza stretta allo standard ISO C, è
+sempre il caso di evitare l'uso di \func{signal} a favore di \func{sigaction}.
 
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}{}
+typedef void SigFunc(int);
+inline SigFunc * Signal(int signo, SigFunc *func) 
+{
+    struct sigaction new_handl, old_handl;
+    new_handl.sa_handler=func;
+    /* clear signal mask: no signal blocked during execution of func */
+    if (sigemptyset(&new_handl.sa_mask)!=0){  /* initialize signal set */
+        perror("cannot initializes the signal set to empty"); /* see mess. */
+        exit(1);
+    }
+    new_handl.sa_flags=0;                  /* init to 0 all flags */
+    /* change action for signo signal */
+    if (sigaction(signo,&new_handl,&old_handl)){ 
+        perror("sigaction failed on signal action setting");
+        exit(1);
+    }
+    return (old_handl.sa_handler);
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Una funzione equivalente a \func{signal} definita attraverso
+    \func{sigaction}.} 
+  \label{fig:sig_Signal_code}
+\end{figure}
 
+Per questo motivo si è provveduto, per mantenere un'interfaccia semplificata
+che abbia le stesse caratteristiche di \func{signal}, a definire una funzione
+equivalente attraverso \func{sigaction}; la funzione è \code{Signal}, e si
+trova definita come \code{inline} nel file \file{wrapper.h} (nei sorgenti
+allegati), riportata in \figref{fig:sig_Signal_code}. La riutilizzeremo spesso
+in seguito. 
 
-\subsection{La gestione del blocco dei segnali}
+\subsection{La gestione della \textsl{maschera dei segnali} o 
+  \textit{signal mask}}
 \label{sec:sig_sigmask}
 
 Come spiegato in \secref{sec:sig_semantics} tutti i moderni sistemi unix-like
 permettono si bloccare temporaneamente (o di eliminare completamente, settando
 \macro{SIG\_IGN} come azione) la consegna dei segnali ad un processo. Questo è
-fatto specificando la \textsl{maschera dei segnali} (o \textit{signal mask})
-del processo\footnote{nel caso di Linux essa è mantenuta dal campo
-  \var{blocked} della \var{task\_struct} del processo.} cioè l'insieme dei
-segnali la cui consegna è bloccata. Abbiamo accennato in
+fatto specificando la cosiddetta \textsl{maschera dei segnali} (o
+\textit{signal mask}) del processo\footnote{nel caso di Linux essa è mantenuta
+  dal campo \var{blocked} della \var{task\_struct} del processo.} cioè
+l'insieme dei segnali la cui consegna è bloccata. Abbiamo accennato in
 \secref{sec:proc_fork} che la \textit{signal mask} viene ereditata dal padre
 alla creazione di un processo figlio, e abbiamo visto al paragrafo precedente
 che essa può essere modificata, durante l'esecuzione di un manipolatore,
@@ -1900,7 +2000,7 @@ attraverso l'uso dal campo \var{sa\_mask} di \var{sigaction}.
 
 Uno dei problemi evidenziatisi con l'esempio di \secref{fig:sig_event_wrong} è
 che in molti casi è necessario proteggere delle sezioni di codice (nel caso in
-questoine la sezione fra il controllo e la eventuale cancellazione del flag
+questione la sezione fra il controllo e la eventuale cancellazione del flag
 che testimoniava l'avvenuta occorrenza del segnale) in modo da essere sicuri
 che essi siano eseguiti senza interruzioni.
 
@@ -1924,9 +2024,9 @@ segnali; il suo prototipo 
 
 La funzione usa l'insieme di segnali dato all'indirizzo \param{set} per
 modificare la maschera dei segnali del processo corrente. La modifica viene
-effettuta a seconda del valore dell'argomento \param{how}, secondo le modalità
+effettuata a seconda del valore dell'argomento \param{how}, secondo le modalità
 specificate in \tabref{tab:sig_procmask_how}. Qualora si specifichi un valore
-non nullo per \param{oldset} la mashera dei segnali corrente viene salvata a
+non nullo per \param{oldset} la maschera dei segnali corrente viene salvata a
 quell'indirizzo.
 
 \begin{table}[htb]
@@ -1957,9 +2057,21 @@ critica. La funzione permette di risolvere problemi come quelli mostrati in
 \secref{fig:sig_event_wrong}, proteggendo la sezione fra il controllo del flag
 e la sua cancellazione. 
 
-Un altro problema che abbiamo visto presentarsi con l'uso di \func{pause} è
-quello relativo 
-
+La funzione può essere usata anche all'interno di un manipolatore, ad esempio
+per riabilitare la consegna del segnale che l'ha invocato, in questo caso però
+occorre ricordare che qualunque modifica alla maschera dei segnali viene
+perduta alla conclusione del terminatore. 
+
+Benché con l'uso di \func{sigprocmask} si possano risolvere la maggior parte
+dei casi di race condition\index{race condition} restano aperte alcune
+possibilità legate all'uso di \func{pause}; il caso è simile a quello del
+problema illustrato nell'esempio di \secref{fig:sig_sleep_incomplete}, e cioè
+la possibilità che il processo riceva il segnale che si intende usare per
+uscire dallo stato di attesa invocato con \func{pause} immediatamente prima
+dell'esecuzione di quest'ultima. Per poter effettuare atomicamente la modifica
+della maschera dei segnali (di solito attivandone uno specifico) insieme alla
+sospensione del processo lo standard POSIX ha previsto la funzione
+\func{sigsuspend}, il cui prototipo è:
 \begin{prototype}{signal.h}
 {int sigsuspend(const sigset\_t *mask)} 
   
@@ -1973,8 +2085,391 @@ quello relativo
   \end{errlist}}
 \end{prototype}
 
+Come esempio dell'uso di queste funzioni proviamo a riscrivere un'altra volta
+l'esempio di implementazione di \code{sleep}. Abbiamo accennato in
+\secref{sec:sig_sigaction} come con \func{sigaction} sia possibile bloccare
+\macro{SIGALRM} nell'installazione dei manipolatori degli altri segnali, per
+poter usare l'implementazione vista in \secref{fig:sig_sleep_incomplete} senza
+interferenze.  Questo però comporta una precauzione ulteriore al semplice uso
+della funzione, vediamo allora come usando la nuova interfaccia è possibile
+ottenere un'implementazione, riportata in \figref{fig:sig_sleep_ok} che non
+presenta neanche questa necessità.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}{}
+void alarm_hand(int);
+unsigned int sleep(unsigned int seconds)
+{
+    struct sigaction new_action, old_action;
+    sigset_t old_mask, stop_mask, sleep_mask;
+    /* set the signal handler */
+    sigemptyset(&new_action.sa_mask);              /* no signal blocked */
+    new_action.sa_handler = alarm_hand;            /* set handler */
+    new_action.sa_flags = 0;                       /* no flags */
+    sigaction(SIGALRM, &new_action, &old_action);  /* install action */
+    /* block SIGALRM to avoid race conditions */
+    sigemptyset(&stop_mask);                       /* init mask to empty */
+    sigaddset(&stop_mask, SIGALRM);                /* add SIGALRM */
+    sigprocmask(SIG_BLOCK, &stop_mask, &old_mask); /* add SIGALRM to blocked */
+    /* send the alarm */
+    alarm(seconds); 
+    /* going to sleep enabling SIGALRM */
+    sleep_mask = old_mask;                         /* take mask */
+    sigdelset(&sleep_mask, SIGALRM);               /* remove SIGALRM */
+    sigsuspend(&sleep_mask);                       /* go to sleep */
+    /* restore previous settings */
+    sigprocmask(SIG_SETMASK, &old_mask, NULL);     /* reset signal mask */    
+    sigaction(SIGALRM, &old_action, NULL);         /* reset signal action */
+    /* return remaining time */
+    return alarm(0);
+}
+void alarm_hand(int sig) 
+{
+    return;     /* just return to interrupt sigsuspend */
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Una implementazione completa di \func{sleep}.} 
+  \label{fig:sig_sleep_ok}
+\end{figure}
+
+Per evitare i problemi di interferenza con gli altri segnali in questo caso
+non si è usato l'approccio di \figref{fig:sig_sleep_incomplete} evitando l'uso
+di \func{longjmp}. Come in precedenza il manipolatore (\texttt{\small 35-37})
+non esegue nessuna operazione, limitandosi a ritornare per interrompere il
+programma messo in attesa.
+
+La prima parte della funzione (\texttt{\small 11-15}) provvede ad installare
+l'opportuno manipolatore per \macro{SIGALRM}, salvando quello originario, che
+sarà ripristinato alla conclusione della stessa (\texttt{\small 28}); il passo
+successivo è quello di bloccare \macro{SIGALRM} (\texttt{\small 17-19}) per
+evitare che esso possa essere ricevuto dal processo fra l'esecuzione di
+\func{alarm} (\texttt{\small 21}) e la sospensione dello stesso. Nel fare
+questo si salva la maschera corrente dei segnali, che sarà ripristinata alla
+fine (\texttt{\small 27}), e al contempo si prepara la maschera dei segnali
+\var{sleep\_mask} per riattivare \macro{SIGALRM} all'esecuzione di
+\func{sigsuspend}.  
+
+In questo modo non sono più possibili race condition\index{race condition}
+dato che \macro{SIGALRM} viene disabilitato con \func{sigprocmask} fino alla
+chiamata di \func{sigsuspend}. Questo metodo è assolutamente generale e può
+essere applicato a qualunque altra situazione in cui si deve attendere per un
+segnale, i passi sono sempre i seguenti:
+\begin{enumerate*}
+\item Leggere la maschera dei segnali corrente e bloccare il segnale voluto
+  con \func{sigprocmask}. 
+\item Mandare il processo in attesa con \func{sigsuspend} abilitando la
+  ricezione del segnale voluto.
+\item Ripristinare la maschera dei segnali originaria.
+\end{enumerate*}
+Per quanto possa sembrare strano bloccare la ricezione di un segnale per poi
+riabilitarla immediatamente dopo, in questo modo si evita il deadlock dovuto
+all'arrivo del segnale prima dell'esecuzione di \func{sigsuspend}.
+
+
+\subsection{Ulteriori funzioni di gestione}
+\label{sec:sig_specific_features}
+
+In questa ultimo paragrafo esamineremo varie funzioni di gestione dei segnali
+non descritte finora, relative agli aspetti meno utilizzati. La prima di esse
+è \func{sigpending},  anch'essa introdotta dallo standard POSIX.1; il suo
+prototipo è:
+\begin{prototype}{signal.h}
+{int sigpending(sigset\_t *set)} 
+  
+Scrive in \param{set} l'insieme dei segnali pendenti.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore.}
+\end{prototype}
+
+La funzione permette di ricavare quali sono i segnali pendenti per il processo
+in corso, cioè i segnali che sono stato inviati dal kernel ma non sono stati
+ancora ricevuti dal processo in quanto bloccati. Non esiste una funzione
+equivalente nella vecchia interfaccia, ma essa è tutto sommato poco utile,
+dato che essa può solo assicurare che un segnale è stato inviato, dato che
+escluderne l'avvenuto invio al momento della chiamata non significa nulla
+rispetto a quanto potrebbe essere in un qualunque momento successivo.
+
+Una delle caratteristiche di BSD, disponibile anche in Linux, è la possibilità
+di usare uno stack alternativo per i segnali; è cioè possibile fare usare al
+sistema un altro stack (invece di quello relativo al processo, vedi
+\secref{sec:proc_mem_layout}) solo durante l'esecuzione di un
+manipolatore. L'uso di uno stack alternativo è del tutto trasparente ai
+manipolatori, occorre però seguire una certa procedura:
+\begin{enumerate*}
+\item Allocare un'area di memoria di dimensione sufficiente da usare come
+  stack alternativo.
+\item Usare la funzione \func{sigaltstack} per rendere noto al sistema
+  l'esistenza e la locazione dello stack alternativo.
+\item Quando si installa un manipolatore occorre usare \func{sigaction}
+  specificando il flag \macro{SA\_ONSTACK} (vedi \tabref{tab:sig_sa_flag}) per
+  dire al sistema di usare lo stack alternativo durante l'esecuzione del
+  manipolatore. 
+\end{enumerate*}
+
+In genere il primo passo viene effettuato allocando un'opportuna area di
+memoria con \code{malloc}; in \file{signal.h} sono definite due costanti,
+\macro{SIGSTKSZ} e \macro{MINSIGSTKSZ}, che possono essere utilizzate per
+allocare una quantità di spazio opportuna, in modo da evitare overflow. La
+prima delle due è la dimensione canonica per uno stack di segnali e di norma è
+sufficiente per tutti gli usi normali. La seconda è lo spazio che occorre al
+sistema per essere in grado di lanciare il manipolatore e la dimensione di uno
+stack alternativo deve essere sempre maggiore di questo valore. Quando si
+conosce esattamente quanto è lo spazio necessario al manipolatore gli si può
+aggiungere questo valore per allocare uno stack di dimensione sufficiente.
+
+Come accennato per poter essere usato lo stack per i segnali deve essere
+indicato al sistema attraverso la funzione \func{sigaltstack}; il suo
+prototipo è:
+\begin{prototype}{signal.h}
+{int sigaltstack(const stack\_t *ss, stack\_t *oss)}
+  
+Installa un nuovo stack per i segnali.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} assumerà i valori:
+
+  \begin{errlist}
+  \item[\macro{ENOMEM}] La dimensione specificata per il nuovo stack è minore
+  di \macro{MINSIGSTKSZ}.
+  \item[\macro{EPERM}] Uno degli indirizzi non è valido.
+  \item[\macro{EFAULT}] Si è cercato di cambiare lo stack alternativo mentre
+  questo è attivo (cioè il processo è in esecuzione su di esso).
+  \item[\macro{EINVAL}] \param{ss} non è nullo e \var{ss\_flags} contiene un
+  valore diverso da zero che non è \macro{SS\_DISABLE}.
+  \end{errlist}}
+\end{prototype}
+
+La funzione prende come argomenti puntatori ad una struttura di tipo
+\var{stack\_t}, definita in \figref{fig:sig_stack_t}. I due valori \param{ss}
+e \param{oss}, se non nulli, indicano rispettivamente il nuovo stack da
+installare e quello corrente (che viene restituito dalla funzione per un
+successivo ripristino).
 
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+typedef struct {
+    void  *ss_sp;     /* Base address of stack */
+    int    ss_flags;  /* Flags */
+    size_t ss_size;   /* Number of bytes in stack */
+} stack_t;
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{stack\_t}.} 
+  \label{fig:sig_stack_t}
+\end{figure}
+
+Il campo \var{ss\_sp} di \var{stack\_t} indica l'indirizzo base dello stack,
+mentre \var{ss\_size} ne indica la dimensione; il campo \var{ss\_flags} invece
+indica lo stato dello stack. Nell'indicare un nuovo stack occorre
+inizializzare \var{ss\_sp} e \var{ss\_size} rispettivamente al puntatore e
+alla dimensione della memoria allocata, mentre \var{ss\_flags} deve essere
+nullo.  Se invece si vuole disabilitare uno stack occorre indicare
+\macro{SS\_DISABLE} come valore di \var{ss\_flags} e gli altri valori saranno
+ignorati.
+
+Se \param{oss} non è nullo verrà restituito dalla funzione indirizzo e
+dimensione dello stack corrente nei relativi campi, mentre \var{ss\_flags}
+potrà assumere il valore \macro{SS\_ONSTACK} se il processo è in esecuzione
+sullo stack alternativo (nel qual caso non è possibile cambiarlo) e
+\macro{SS\_DISABLE} se questo non è abilitato.
+
+In genere si installa uno stack alternativo per i segnali quando si teme di
+avere problemi di esaurimento dello stack standard o di superamento di un
+limite imposto con chiamata de tipo \code{setrlimit(RLIMIT\_STACK, \&rlim)}.
+In tal caso infatti si avrebbe un segnale di \macro{SIGSEGV}, che potrebbe
+essere gestito soltanto avendo abilitato uno stack alternativo. 
+
+Si tenga presente che le funzioni chiamate durante l'esecuzione sullo stack
+alternativo continueranno ad usare quest'ultimo, che, al contrario di quanto
+avviene per lo stack ordinario dei processi, non si accresce automaticamente
+(ed infatti eccederne le dimensioni può portare a conseguenze imprevedibili).
+Si ricordi infine che una chiamata ad una funzione della famiglia
+\func{exec} cancella ogni stack alternativo.
+
+Abbiamo visto in \secref{fig:sig_sleep_incomplete} come si possa usare
+\func{longjmp} per uscire da un manipolatore rientrando direttamente nel corpo
+del programma; sappiamo però che nell'esecuzione di un manipolatore il segnale
+che l'ha invocato viene bloccato, e abbiamo detto che possiamo ulteriormente
+modificarlo con \func{sigprocmask}. 
+
+Resta quindi il problema di cosa succede alla maschera dei segnali quando si
+esce da un manipolatore usando questa funzione. Il comportamento dipende
+dall'implementazione; in particolare BSD ripristina la maschera dei segnali
+precedente l'invocazione, come per un normale ritorno, mentre System V no. Lo
+standard POSIX.1 non specifica questo comportamento per \func{setjmp} e
+\func{longjmp}, ed il comportamento delle \acr{glibc} dipende da quale delle
+caratteristiche si sono abilitate con le macro viste in
+\secref{sec:intro_gcc_glibc_std}.
+
+Lo standard POSIX però prevede anche la presenza di altre due funzioni
+\func{sigsetjmp} e \func{siglongjmp}, che permettono di decidere quale dei due
+comportamenti il programma deve assumere; i loro prototipi sono:
+\begin{functions}
+  \headdecl{setjmp.h} 
+  
+  \funcdecl{int sigsetjmp(sigjmp\_buf env, int savesigs)} Salva il contesto
+  dello stack per un salto non locale.
+  \funcdecl{void siglongjmp(sigjmp\_buf env, int val)} Esegue un salto non
+  locale su un precedente contesto.
+
+  \bodydesc{Le due funzioni sono identiche alle analoghe \func{setjmp} e
+    \func{longjmp} di \secref{sec:proc_longjmp}, ma consentono di specificare
+    il comportamento sul ripristino o meno della maschera dei segnali.}
+\end{functions}
+
+Le due funzioni prendono come primo argomento la variabile su cui viene
+salvato il contesto dello stack per permettere il salto non locale; nel caso
+specifico essa è di tipo \type{sigjmp\_buf}, e non \type{jmp\_buf} come per le
+analoghe di \secref{sec:proc_longjmp} in quanto in questo caso viene salvata
+anche la maschera dei segnali.
+
+Nel caso di \func{sigsetjmp} se si specifica un valore di \param{savesigs}
+diverso da zero la maschera dei valori sarà salvata in \param{env} e
+ripristinata in un successivo \func{siglongjmp}; quest'ultima funzione, a
+parte l'uso di \type{sigjmp\_buf} per \param{env}, è assolutamente identica a
+\func{longjmp}.
+
+
+
+\subsection{I segnali real-time}
+\label{sec:sig_real_time}
+
+
+Lo standard POSIX.1b, nel definire una serie di nuove interfacce per i servizi
+real-time, ha introdotto una estensione del modello classico dei segnali che
+presenta dei significativi miglioramenti,\footnote{questa estensione è stata
+  introdotta in Linux a partire dal kernel 2.1.43(?), e dalle \acr{glibc}
+  2.1(?).} in particolare sono stati superati tre limiti fondamentali dei
+segnali classici:
+\begin{description}
+\item[I segnali non sono accumulati] 
+  
+  se più segnali vengono generati prima dell'esecuzione di un manipolatore
+  questo sarà eseguito una sola volta, ed il processo non sarà in grado di
+  accorgersi di quante volte l'evento che ha generato il segnale è accaduto.
+\item[I segnali non trasportano informazione] 
+  
+  i segnali classici non prevedono prevedono altra informazione sull'evento
+  che li ha generati se non il fatto che sono stati emessi (tutta
+  l'informazione che il kernel associa ad un segnale è il suo numero).
+\item[I segnali non hanno un ordine di consegna] 
+
+  l'ordine in cui diversi segnali vengono consegnati è casuale e non
+  prevedibile. Non è possibile stabilire una priorità per cui la reazione a
+  certi segnali ha la precedenza rispetto ad altri.
+\end{description}
+
+
+Per poter superare queste limitazioni lo standard ha introdotto delle nuove
+caratteristiche, che sono state associate ad una nuova classe di segnali, che
+vengono chiamati \textsl{segnali real-time}, in particolare:
+
+\begin{itemize*}
+\item i segnali sono inseriti in una coda che permette di consegnare istanze
+  multiple dello stesso segnale qualora esso venga inviato più volte prima
+  dell'esecuzione del manipolatore; si assicura così che il processo riceva un
+  segnale per ogni occorrenza dell'evento che lo genera.
+\item è stata introdotta una priorità nella consegna dei segnali: i segnali
+  vengono consegnati in ordine a seconda del loro valore, partendo da quelli
+  con un numero minore, che pertanto hanno una priorità maggiore.
+\item è stata introdotta la possibilità di restituire dei dati al
+  manipolatore, attraverso l'uso di un campo apposito nella struttura
+  \type{siginfo\_t} accessibile tramite manipolatori di tipo
+  \var{sa\_sigaction}.
+\end{itemize*}
+
+Queste nuove caratteristiche (eccetto l'ultima, che, come visto in
+\secref{sec:sig_sigaction}, è parzialmente disponibile anche con i segnali
+ordinari) si applicano solo ai nuovi segnali real-time; questi ultimi sono
+accessibili in un range di valori specificati dalle due macro \macro{SIGRTMIN}
+e \macro{SIGRTMAX},\footnote{in Linux di solito il primo valore è 32, ed il
+  secondo \code{\_NSIG-1}, che di norma è 63, per un totale di 32 segnali
+  disponibili, contro gli almeno 8 richiesti da POSIX.1b.} che specificano il
+numero minimo e massimo associato ad un segnale real-time.
+
+I segnali con un numero più basso hanno una priorità maggiore e vengono
+consegnati per primi, inoltre i segnali real-time non possono interrompere
+l'esecuzione di un manipolatore di un segnale a priorità più alta; la loro
+azione di default è quella di terminare il programma.  I segnali ordinari
+hanno tutti la stessa priorità, che è più alta di quella di qualunque segnale
+real-time.
+
+Si tenga presente che questi nuovi segnali non sono associati a nessun evento
+sepcifico (a meno di non utilizzarli, come vedremo in
+\secref{sec:file_asyncronous_io}, per l'I/O asincrono) e devono essere inviati
+esplicitamente. Tutti i segnali real-time restituiscono al manipolatore, oltre
+ai campi \var{si\_pid} e \var{si\_uid} di \type{siginfo\_t} una struttura
+\type{sigval} (riportata in \figref{fig:sig_sigval}) in cui può essere
+restituito al processo un valore o un indirizzo, che costituisce il meccanismo
+con cui il segnale è in grado di inviare una ulteriore informazione al
+processo.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+union sigval {
+        int sival_int;
+        void *sival_ptr;
+}
+          \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \type{sigval}, usata dai segnali real time per
+    restituire dati al manipolatore.}
+  \label{fig:sig_sigval}
+\end{figure}
+
+A causa di queste loro caratteristiche, la funzione \func{kill} non è adatta
+ad inviare un segnale real time, in quanto non è in grado di fornire alcun
+valore per \var{sigval}; per questo motivo lo standard ha previsto una nuova
+funzione, \func{sigqueue}, il cui prototipo è:
+\begin{prototype}{signal.h}
+  {int sigqueue(pid\_t pid, int signo, const union sigval value)}
+  
+  Invia il segnale \param{signo} al processo \param{pid}, restituendo al
+  manipolatore il valore \param{value}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} viene settata ai valori:
+  \begin{errlist}
+  \item[\macro{EAGAIN}] La coda è esarita, ci sono già \macro{SIGQUEUE\_MAX}
+    segnali in attesa si consegna.
+  \item[\macro{EPERM}] Non si hanno privilegi appropriati per inviare il
+    segnale al processo specificato.
+  \item[\macro{ESRCH}] Il processo \param{pid} non esiste.
+  \item[\macro{EINVAL}] Si è specificato un valore non valido per
+    \param{signo}.
+  \end{errlist}
+  ed inoltre \macro{ENOMEM}.}
+\end{prototype}
 
+Il comportamento della funzione è analogo a quello di \func{kill}, ed i
+privilegi occorrenti ad inviare il segnale ad un determinato processo sono gli
+stessi; un valore nullo di \func{signo} permette di verificare le condizioni
+di errore senza inviare nessun segnale.
+
+Se il segnale è bloccato la funzione ritorna immediatamente, se si è
+installato un manipolatore con \macro{SA\_SIGINFO} e ci sono risorse
+disponibili, vale a dire che c'è posto nella coda\footnote{la profondità della
+  coda è indicata dalla costante \macro{SIGQUEUE\_MAX}, una della tante
+  costanti di sistema definite dallo standard POSIX, che non abbiamo riportato
+  esplicitamente in \secref{sec:sys_limits}. Il suo valore minimo secondo lo
+  standard, \macro{\_POSIX\_SIGQUEUE\_MAX}, è pari a 32.}, esso viene inserito
+e diventa pendente; una volta consegnato riporterà nel campo \var{si\_code} di
+\var{siginfo} il valore \macro{SI\_QUEUE} e il campo \var{si\_value} riceverà
+quanto inviato con \param{value}. Se invece si è installato un manipolatore
+nella forma classica il segnale sarà generato, ma in caso di emissioni
+multiple prima dell'esecuzione del manipolatore, sarà ricevuto una sola volta.