Iniziata sigaction
[gapil.git] / signal.tex
index 0e1c42a1c850a29fb70ef7c7d0af6e5857887edd..98e476eb52ef57e99ef2390f23b4b12bfd916482 100644 (file)
@@ -19,6 +19,7 @@ di generazione fino ad esaminare in dettaglio funzioni e le metodologie di
 gestione.
 
 
+
 \section{Introduzione}
 \label{sec:sig_intro}
 
@@ -83,22 +84,8 @@ attivo.
 In questo caso è possibile una situazione in cui i segnali possono essere
 perduti. Si consideri il seguente segmento di codice, in cui la prima
 operazione del manipolatore è quella di reinstallare se stesso: 
-
-\footnotesize
-\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-    int sig_handler();            /* handler function */
-    ...
-    signal(SIGINT, sig_handler);  /* establish handler */
-    ...
-
-int sig_handler() 
-{
-    signal(SIGINT, sig_handler);  /* restablish handler */
-    ...                           /* process signal */
-}
-\end{lstlisting}
-\normalsize
-se un secondo segnale arriva prima che il manipolatore invocato dal primo
+s
+e un secondo segnale arriva prima che il manipolatore invocato dal primo
 abbia eseguito la reinstallazione di se stesso il segnale può essere perso o
 causare il comportamento originale assegnato al segnale (in genere la
 terminazione del processo).
@@ -321,7 +308,6 @@ In \tabref{tab:sig_signal_list} si 
 definiti in Linux (estratto dalle man page), comparati con quelli definiti in
 vari standard.
 
-
 \begin{table}[htb]
   \footnotesize
   \centering
@@ -965,43 +951,28 @@ manipolatore potr
 \func{raise}.
 
 Se invece si vuole inviare un segnale ad un altro processo occorre utilizzare
-la funzione \func{kill}; il suo prototipo è:
+la funzione \func{kill}; il cui prototipo è:
 \begin{functions}
   \headdecl{sys/types.h}
   \headdecl{signal.h}
   \funcdecl{int kill(pid\_t pid, int sig)} Invia il segnale \param{sig} al
   processo specificato con \param{pid}.
-
-  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
-    errore, nel qual caso \var{errno} assumerà i valori:
-  \begin{errlist}
-  \item[\macro{EINVAL}] Si è specificato un numero di segnale invalido.
-  \item[\macro{EPERM}] Il processo non ha il permesso di inviare il segnale
-  alla destinazione specificata.
-  \item[\macro{ESRCH}] Il \acr{pid} o il process group indicati non
-  esistono. Gli zombie (vedi \ref{sec:proc_termination}) sono considerati come
-  processi esistenti.
-  \end{errlist}}
 \end{functions}
 
-La funzione \code{raise(sig)} è sostanzialmente equivalente ad una
-\code{kill(getpid(), sig)}. Siccome \func{raise}, che è definita nello
-standard ISO C, non esiste in alcune vecchie versioni di Unix, in generale
-l'uso di \func{kill} finisce per essere più portabile.
-
-Lo standard POSIX poi prevede che il valore 0 sia usato per specificare il
-segnale nullo.  Se le funzioni vengono chiamate con questo valore non viene
-inviato nessun segnale, ma viene eseguito il controllo degli errori, in tal
-caso si otterrà un errore \macro{EPERM} se non si hanno i permessi necessari
-ed un errore \macro{ESRCH} se il processo specificato non esiste. Si tenga
-conto però che il sistema ricicla i \acr{pid} (come accennato in
-\secref{sec:proc_pid}) per cui l'esistenza di un processo non significa che
+Lo standard POSIX prevede che il valore 0 per \param{sig} sia usato per
+specificare il segnale nullo.  Se le funzioni vengono chiamate con questo
+valore non viene inviato nessun segnale, ma viene eseguito il controllo degli
+errori, in tal caso si otterrà un errore \macro{EPERM} se non si hanno i
+permessi necessari ed un errore \macro{ESRCH} se il processo specificato non
+esiste. Si tenga conto però che il sistema ricicla i \acr{pid} (come accennato
+in \secref{sec:proc_pid}) per cui l'esistenza di un processo non significa che
 esso sia realmente quello a cui si intendeva mandare il segnale.
 
 Il valore dell'argomento \param{pid} specifica il processo (o i processi) di
 destinazione a cui il segnale deve essere inviato e può assumere i valori
 riportati in \tabref{tab:sig_kill_values}.
 \begin{table}[htb]
+  \footnotesize
   \centering
   \begin{tabular}[c]{|r|l|}
     \hline
@@ -1022,6 +993,12 @@ riportati in \tabref{tab:sig_kill_values}.
 \end{table}
 
 
+Si noti pertanto che la funzione \code{raise(sig)} può essere definita in
+termini di \func{kill}, ed è sostanzialmente equivalente ad una
+\code{kill(getpid(), sig)}. Siccome \func{raise}, che è definita nello
+standard ISO C, non esiste in alcune vecchie versioni di Unix, in generale
+l'uso di \func{kill} finisce per essere più portabile.
+
 Solo l'amministratore può inviare un segnale ad un processo qualunque, in
 tutti gli altri casi il \textit{real user id} o l'\textit{effective user id}
 del processo chiamante devono corrispondere al \textit{real user id} o al
@@ -1044,9 +1021,10 @@ segnale al processo che ha effettuato la chiamata.
 \label{sec:sig_alarm_abort}
 
 Un caso particolare di segnali generati a richiesta è quello che riguarda i
-segnali di temporizzazione e \macro{SIGABORT}, per i quali sono previste
-funzioni specifiche che ne effettuino l'invio. La prima di queste è
-\func{alarm} il cui prototipo è:
+vari segnali di temporizzazione e \macro{SIGABORT}, per ciascuno di questi
+segnali sono previste funzioni specifiche che ne effettuino l'invio. La più
+comune delle funzioni usate per la temporizzazione è \func{alarm} il cui
+prototipo è:
 \begin{prototype}{unistd.h}{unsigned int alarm(unsigned int seconds)}
   Predispone l'invio di \macro{SIGALARM} dopo \param{seconds} secondi.
   
@@ -1054,22 +1032,25 @@ funzioni specifiche che ne effettuino l'invio. La prima di queste 
     precedente allarme, o zero se non c'erano allarmi pendenti.}
 \end{prototype}
 
-La funzione provvede un meccanismo che consente ad un processo di predisporre
+La funzione fornisce un meccanismo che consente ad un processo di predisporre
 un'interruzione nel futuro, (ad esempio per effettuare una qualche operazione
-dopo un certo periodo di tempo), programmando l'emissione di un segnale (in
-genere \macro{SIGALARM}) dopo il numero di secondi specificato da
+dopo un certo periodo di tempo), programmando l'emissione di un segnale (nel
+caso in questione \macro{SIGALARM}) dopo il numero di secondi specificato da
 \param{seconds}.
 
 Se si specifica per \param{seconds} un valore nullo non verrà inviato nessun
 segnale; siccome alla chiamata viene cancellato ogni precedente allarme,
-questo può essere usato per cancellare una programmazione precedente. La
-funzione inoltre ritorna il numero di secondi rimanenti all'invio dell'allarme
-precedentemente programmato, in modo che sia eventualmente possibile
-effettuare delle scelte in caso di necessità di più interruzioni.
+questo può essere usato per cancellare una programmazione precedente. 
+
+La funzione inoltre ritorna il numero di secondi rimanenti all'invio
+dell'allarme precedentemente programmato, in modo che sia possibile
+controllare se non si cancella un precedente allarme ed eventualmente
+predisporre le opportune misure per gestire il caso di necessità di più
+interruzioni.
 
 In \secref{sec:sys_unix_time} abbiamo visto che ad ogni processo sono
-associati tre tempi diversi: \textit{clock time}, \textit{user time} e
-\textit{system time}.  Per poterli calcolare il kernel mantiene per ciascun
+associati tre tempi diversi: il \textit{clock time}, l'\textit{user time} ed
+il \textit{system time}.  Per poterli calcolare il kernel mantiene per ciascun
 processo tre diversi timer:
 \begin{itemize}
 \item un \textit{real-time timer} che calcola il tempo reale trascorso (che
@@ -1110,6 +1091,7 @@ Il valore di \param{which} permette di specificare quale dei tre timer
 illustrati in precedenza usare; i possibili valori sono riportati in
 \tabref{tab:sig_setitimer_values}.
 \begin{table}[htb]
+  \footnotesize
   \centering
   \begin{tabular}[c]{|l|l|}
     \hline
@@ -1129,7 +1111,7 @@ illustrati in precedenza usare; i possibili valori sono riportati in
 Il valore della struttura specificata \param{value} viene usato per settare il
 timer, se il puntatore \param{ovalue} non è nullo il precedente valore viene
 salvato qui. I valori dei timer devono essere indicati attraverso una
-struttura \var{itimerval}, definita in \ref{fig:file_stat_struct}.
+struttura \var{itimerval}, definita in \figref{fig:file_stat_struct}.
 
 La struttura è composta da due membri, il primo, \var{it\_interval} definisce
 il periodo del timer; il secondo, \var{it\_value} il tempo mancante alla
@@ -1137,18 +1119,22 @@ scadenza. Entrambi esprimono i tempi tramite una struttura \var{timeval} che
 permette una precisione fino al microsecondo.
 
 Ciascun timer decrementa il valore di \var{it\_value} fino a zero, poi invia
-il segnale e resetta \var{it\_value} al valore di \var{it\_interval},
-ripetendo il ciclo; se \var{it\_interval} è nullo il timer si ferma.
+il segnale e resetta \var{it\_value} al valore di \var{it\_interval}, in
+questo modo il ciclo verrà ripetuto; se invece il valore di \var{it\_interval}
+è nullo il timer si ferma.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-struct itimerval {
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct itimerval 
+{
     struct timeval it_interval; /* next value */
     struct timeval it_value;    /* current value */
 };
-struct timeval {
+
+struct timeval 
+{
     long tv_sec;                /* seconds */
     long tv_usec;               /* microseconds */
 };
@@ -1164,12 +1150,13 @@ L'uso di \func{setitimer} consente dunque un controllo completo di tutte le
 caratteristiche dei timer, ed in effetti la stessa \func{alarm}, benché
 definita direttamente nello standard POSIX.1, può a sua volta essere espressa
 in termini di \func{setitimer}, come evidenziato dal manuale delle \acr{glibc}
-\cite{glibc} che ne riporta la definizione in \figref{fig:sig_alarm_def}.
+\cite{glibc} che ne riporta la definizione mostrata in
+\figref{fig:sig_alarm_def}.
 
 \begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
 unsigned int alarm(unsigned int seconds)
 {
     struct itimerval old, new;
@@ -1177,10 +1164,12 @@ unsigned int alarm(unsigned int seconds)
     new.it_interval.tv_sec = 0;
     new.it_value.tv_usec = 0;
     new.it_value.tv_sec = (long int) seconds;
-    if (setitimer(ITIMER_REAL, &new, &old) < 0)
+    if (setitimer(ITIMER_REAL, &new, &old) < 0) {
         return 0;
-    else
+    }
+    else {
         return old.it_value.tv_sec;
+    }
 }
     \end{lstlisting}
   \end{minipage} 
@@ -1190,13 +1179,23 @@ unsigned int alarm(unsigned int seconds)
 \end{figure}
 
 Si deve comunque tenere presente che la precisione di queste funzioni è
-limitata da quella del timer di sistema (in genere 10~ms). Il sistema assicura
-comunque che il segnale non sarà mai generato prima della scadenza programmata
-(l'arrotondamento cioè è sempre effettuato per eccesso). Una seconda causa di
-potenziali ritardi è che il segnale viene generato alla scadenza del timer,
-ma poi deve essere consegnato; se il processo è attivo (questo è sempre vero
-per \macro{ITIMER\_VIRT}) la consegna è immediata, altrimenti può esserci un
-ulteriore ritardo che può variare a seconda del carico del sistema.
+limitata da quella della frequenza del timer di sistema (che nel caso dei PC
+significa circa 10~ms). Il sistema assicura comunque che il segnale non sarà
+mai generato prima della scadenza programmata (l'arrotondamento cioè è sempre
+effettuato per eccesso).  
+
+Una seconda causa di potenziali ritardi è che il segnale viene generato alla
+scadenza del timer, ma poi deve essere consegnato al processo; se quest'ultimo
+è attivo (questo è sempre vero per \macro{ITIMER\_VIRT}) la consegna è
+immediata, altrimenti può esserci un ulteriore ritardo che può variare a
+seconda del carico del sistema.
+
+Questo ha una conseguenza che può indurre ad errori molto subdoli, si tenga
+conto poi che in caso di sistema molto carico, si può avere il caso patologico
+in cui un timer scade prima che il segnale di una precedente scadenza sia
+stato consegnato; in questo caso, per il comportamento dei segnali descritto
+in \secref{sec:sig_sigchld}, un solo segnale sarà consegnato.
+
 
 Dato che sia \func{alarm} che \func{setitimer} non consentono di leggere il
 valore corrente di un timer senza modificarlo, è possibile usare la funzione
@@ -1285,7 +1284,7 @@ aspettare.
 In alcune implementazioni inoltre l'uso di \func{sleep} può avere conflitti
 con quello di \macro{SIGALRM}, dato che la funzione può essere realizzata con
 l'uso di \func{pause} e \func{alarm} (in maniera analoga all'esempio che
-vedremo in \ref{sec:sig_example}). In tal caso mescolare chiamata di
+vedremo in \secref{sec:sig_example}). In tal caso mescolare chiamata di
 \func{alarm} e \func{sleep} o modificare l'azione di \macro{SIGALRM}, può
 causare risultati indefiniti. Nel caso delle \acr{glibc} è stata usata una
 implementazione completamente indipendente e questi problemi non ci sono.
@@ -1332,22 +1331,6 @@ delle strutture di tipo \var{timespec}, la cui definizione 
 \figref{fig:sig_timespec_def}, che permettono di specificare un tempo con una
 precisione (teorica) fino al nanosecondo. 
 
-\begin{figure}[!htb]
-  \footnotesize \centering
-  \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-struct timespec
-{
-    time_t  tv_sec;         /* seconds */
-    long    tv_nsec;        /* nanoseconds */
-};
-    \end{lstlisting}
-  \end{minipage} 
-  \normalsize 
-  \caption{La struttura \var{timespec} di \func{nanosleep}.} 
-  \label{fig:sig_timespec_def}
-\end{figure}
-
 La funzione risolve anche il problema di proseguire l'attesa dopo
 l'interruzione dovuta ad un segnale; infatti in tal caso in \param{rem} viene
 restituito il tempo rimanente rispetto a quanto richiesto inizialmente, e
@@ -1363,6 +1346,21 @@ sia scarico ed il processa venga immediatamente rimesso in esecuzione); per
 questo motivo il valore restituito in \param{rem} è sempre arrotondato al
 multiplo successivo di 1/\macro{HZ}.
 
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct timespec {
+    time_t  tv_sec;         /* seconds */
+    long    tv_nsec;        /* nanoseconds */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{timespec} di \func{nanosleep}.} 
+  \label{fig:sig_timespec_def}
+\end{figure}
+
 In realtà è possibile ottenere anche pause più precise del centesimo di
 secondo usando politiche di scheduling real time come \macro{SCHED\_FIFO} o
 \macro{SCHED\_RR}; in tal caso infatti il meccanismo di scheduling ordinario
@@ -1387,7 +1385,7 @@ padre.\footnote{in realt
   il nome di \macro{SIGCLD} come sinonimo di \macro{SIGCHLD}.} In generale
 dunque, quando non interessa elaborare lo stato di uscita di un processo, si
 può completare la gestione della terminazione installando un manipolatore per
-\macro{SIGCHLD} il cui unico compito sia quello chiamare \func{wait} per
+\macro{SIGCHLD} il cui unico compito sia quello chiamare \func{waitpid} per
 completare la procedura di terminazione in modo da evitare la formazione di
 zombie.
 
@@ -1442,34 +1440,42 @@ void Hand_CHLD(int sig)
 \end{figure}
 
 Il codice del manipolatore è di lettura immediata; come buona norma di
-programmazione (si ricordi quanto accennato \ref{sec:sys_errno}) si comincia
-(\texttt{\small 13}) con il salvare lo stato corrente di \var{errno}, in modo
-da poterla ripristinare prima del ritorno del manipolatore (\texttt{\small
-  23}). In questo modo si preserva il valore della variabile visto dal corso
-di esecuzione principale del processo, che sarebbe altrimenti sarebbe
-sovrascritto dal valore restituito nella successiva chiamata di \func{wait}.
+programmazione (si ricordi quanto accennato \secref{sec:sys_errno}) si
+comincia (\texttt{\small 12-13}) con il salvare lo stato corrente di
+\var{errno}, in modo da poterlo ripristinare prima del ritorno del
+manipolatore (\texttt{\small 22-23}). In questo modo si preserva il valore
+della variabile visto dal corso di esecuzione principale del processo, che
+sarebbe altrimenti sarebbe sovrascritto dal valore restituito nella successiva
+chiamata di \func{wait}.
 
 Il compito principale del manipolatore è quello di ricevere lo stato di
 terminazione del processo, cosa che viene eseguita nel ciclo in
-(\texttt{\small 15--21}).  Il ciclo è necessario a causa di una caratteristica
+(\texttt{\small 15-21}).  Il ciclo è necessario a causa di una caratteristica
 fondamentale della gestione dei segnali: abbiamo già accennato come fra la
 generazione di un segnale e l'esecuzione del manipolatore possa passare un
-certo lasso di tempo; dato che questo lasso di tempo può dipendere da parecchi
-fattori esterni, niente ci assicura che il manipolatore venga eseguito prima
-della generazione di altri segnali dello stesso tipo. In questo caso
-normalmente i segnali vengono ``fusi'' insieme ed al processo ne viene
-recapitato soltanto uno.
-
-Questo può essere un caso comune proprio con \texttt{SIGCHLD}, quando molti
-processi figli terminano in rapida successione, e si presenta comunque tutte
-le volte che un segnale viene bloccato. Nel nostro caso se si chiamasse
-\func{waitpid} una sola volta si correrebbe il rischio di non leggere lo stato
-di uscita di tutti i processi effettivamente terminati, i cui segnali sono
-stati riuniti in uno solo. Per questo il ciclo di (\texttt{\small 15--21})
-ripete la lettura (eseguita con il parametro \macro{WNOHANG}, che permette di
-evitare il blocco della funzione) fintanto che essa non restitusce un valore
-nullo, segno che non resta nessun processo concluso di cui si debba ancora
-ricevere lo stato di terminazione.
+certo lasso di tempo e niente ci assicura che il manipolatore venga eseguito
+prima della generazione di ulteriori segnali dello stesso tipo. In questo caso
+normalmente i segnali segnali successivi vengono ``fusi'' col primo ed al
+processo ne viene recapitato soltanto uno.
+
+Questo può essere un caso comune proprio con \macro{SIGCHLD}, qualora capiti
+che molti processi figli terminino in rapida successione. Esso inoltre si
+presenta tutte le volte che un segnale viene bloccato: per quanti siano i
+segnali emessi durante il periodo di blocco, una volta che quest'ultimo sarà
+rimosso sarà recapitato un solo segnale.
+
+Allora nel caso della terminazione dei processi figli, se si chiamasse
+\func{waitpid} una sola volta, essa leggerebbe lo stato di teminazione per un
+solo processo, anche se i processi terminati sono più di uno, e gli altri
+resterebbero in stato di zombie per un tempo indefinito.
+
+Per questo occorre ripetere la chiamata di \func{waitpid} fino a che essa non
+ritorni un valore nullo, segno che non resta nessun processo di cui si debba
+ancora ricevere lo stato di terminazione (si veda \secref{sec:proc_wait} per
+la sintassi della funzione). Si noti anche come la funzione venga invocata con
+il parametro \macro{WNOHANG} che permette di evitare il suo blocco quando
+tutti gli stati di terminazione sono stati ricevuti.
+
 
 
 \section{Gestione avanzata}
@@ -1482,7 +1488,9 @@ che i segnali possono generare e alla natura asincrona degli stessi.
 
 Affronteremo queste problematiche in questa sezione, partendo da un esempio
 che le evidenzi, per poi prendere in esame le varie funzioni che permettono di
-risolvere i problemi più complessi connessi alla programmazione con i segnali.
+risolvere i problemi più complessi connessi alla programmazione con i segnali,
+fino a trattare le caratteristiche generali della gestione dei medesimi nella
+casistica ordinaria.
 
 
 \subsection{Un esempio di problema}
@@ -1491,8 +1499,20 @@ risolvere i problemi pi
 Come accennato in \secref{sec:sig_pause_sleep} è possibile implementare
 \func{sleep} a partire da dall'uso di \func{pause} e \func{alarm}. A prima
 vista questo può sembrare di implementazione immediata; ad esempio una
-semplice versione di \func{sleep} potrebbe essere la seguente quella
-illustrata in \ref{fig:sig_sleep_wrong}.
+semplice versione di \func{sleep} potrebbe essere quella illustrata in
+\figref{fig:sig_sleep_wrong}.
+
+
+Dato che è nostra intenzione utilizzare \macro{SIGALARM} il primo passo della
+nostra implementazione di sarà quello di installare il relativo manipolatore
+salvando il precedente (\texttt{\small 4-7}).  Si effettuerà poi una chiamata
+ad \func{alarm} per specificare il tempo d'attesa per l'invio del segnale a
+cui segue la chiamata a \func{pause} per fermare il programma (\texttt{\small
+  8-9}) fino alla sua ricezione.  Al ritorno di \func{pause}, causato dal
+ritorno del manipolatore (\texttt{\small 15-23}), si ripristina il
+manipolatore originario (\texttt{\small 10-11}) restituendo l'eventuale tempo
+rimanente (\texttt{\small 12-13}) che potrà essere diverso da zero qualora
+l'interruzione di \func{pause} venisse causata da un altro segnale.
 
 \begin{figure}[!htb]
   \footnotesize \centering
@@ -1524,32 +1544,153 @@ void alarm_hand(int sig) {
     \end{lstlisting}
   \end{minipage} 
   \normalsize 
-  \caption{Una implementazione sbagliata di \func{sleep}.} 
+  \caption{Una implementazione pericolosa di \func{sleep}.} 
   \label{fig:sig_sleep_wrong}
 \end{figure}
 
-Ma questa funzione, a parte il non gestire il caso in cui si è avuta una
-precedente chiamata a \func{alarm}, presenta una pericolosa race condition.
-Infatti se il processo viene interrotto fra la chiamata di \func{alarm} e
-\func{pause} può capitare (nel caso il sistema sia molto carico) che
-quest'ultima possa essere eseguita dopo l'arrivo di \macro{SIGALRM}. In questo
-caso ci si troverebbe di fronte ad un deadlock, in cui \func{pause} non
-verrebbe mai interrotta (se non in caso di un altro segnale).
+Questo codice però, a parte il non gestire il caso in cui si è avuta una
+precedente chiamata a \func{alarm} (che si è tralasciato per brevità),
+presenta una pericolosa race condition.  Infatti se il processo viene
+interrotto fra la chiamata di \func{alarm} e \func{pause} può capitare (ad
+esempio se il sistema è molto carico) che il tempo di attesa scada prima
+dell'esecuzione quest'ultima, cosicchè essa sarebbe eseguita dopo l'arrivo di
+\macro{SIGALRM}. In questo caso ci si troverebbe di fronte ad un deadlock, in
+quanto \func{pause} non verrebbe mai più interrotta (se non in caso di un
+altro segnale).
+
+Questo problema può essere risolto (ed è la modalità con cui veniva fatto in
+SVr2) usando la funzione \func{longjump} (vedi \secref{sec:proc_longjmp}) per
+uscire dal manipolatore; in questo modo, con una condizione sullo stato di
+uscita di quest'ultima, si può evitare la chiamata a \func{pause}, usando un
+codice del tipo di quello riportato in \figref{fig:sig_sleep_incomplete}.
 
-Come abbiamo accennato in \secref{sec:proc_atom_oper} quando si ha a che fare
-con i segnali 
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}{}
+static jmp_buff alarm_return;
+unsigned int sleep(unsigned int seconds)
+{
+    signandler_t prev_handler;
+    if ((prev_handler = signal(SIGALRM, alarm_hand)) == SIG_ERR) {
+        printf("Cannot set handler for alarm\n");
+        exit(1);
+    }
+    if (setjmp(alarm_return) == 0) { /* if not returning from handler */
+        alarm(second);      /* call alarm */
+        pause();            /* then wait */
+    }
+    /* restore previous signal handler */
+    signal(SIGALRM, prev_handler);
+    /* remove alarm, return remaining time */
+    return alarm(0);
+}
+void alarm_hand(int sig) {
+    /* check if the signal is the right one */
+    if (sig != SIGALRM) { /* if not exit with error */
+        printf("Something wrong, handler for SIGALRM\n");
+        exit(1);
+    } else {    /* return in main after the call to pause */
+        longjump(alarm_return, 1);
+    }
+}      
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Una implementazione ancora malfunzionante di \func{sleep}.} 
+  \label{fig:sig_sleep_incomplete}
+\end{figure}
 
+In questo caso il manipolatore (\texttt{\small 18-26}) non ritorna come in
+\figref{fig:sig_sleep_wrong}, ma usa \func{longjmp} (\texttt{\small 24}) per
+rientrare nel corpo principale del programma; dato che in questo caso il
+valore di uscita di \func{setjmp} è 1 grazie alla condizione in
+(\texttt{\small 9-12}) si evita comunque che \func{pause} sia chiamata a
+vuoto.
 
+Ma anche questa implementazione comporta dei problemi; in questo caso infatti
+non viene gestita correttamente l'interazione con gli altri segnali; se
+infatti il segnale di allarme interrompe un altro manipolatore, in questo caso
+l'esecuzione non riprenderà nel manipolatore in questione, ma nel ciclo
+principale, interrompendone inopportunamente l'esecuzione.  È per questo
+motivo che occorrono funzioni più sofisticate della semplice \func{signal} che
+permettano di gestire i segnali in maniera più completa.
 
 
-\subsection{Le funzioni \func{sigprocmask} e \func{sigpending}}
-\label{sec:sig_sigpending}
 
+\subsection{La funzione \func{sigaction}}
+\label{sec:sig_sigaction}
 
+Come evidenziato nel paragrafo precedente, le funzioni di gestione dei segnali
+dei primi Unix, hanno dei limiti non superabili; per questo motivo lo standard
+POSIX ha introdotto una interfaccia di gestione completamente nuova, che
+permette un controllo molto più dettagliato. La funzione principale di questa
+nuova interfaccia è \func{sigaction}; il cui prototipo è:
+
+\begin{prototype}{signal.h}{int sigaction(int signum, const struct sigaction
+    *act, struct sigaction *oldact)} 
+  
+  Installa un nuovo manipolatore per il segnale \param{signum}.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} assumerà i valori:
+  \begin{errlist}
+  \item[\macro{EINVAL}] Si è specificato un numero di segnale invalido o si è
+    cercato di installare il manipolatore per \macro{SIGKILL} o
+    \macro{SIGSTOP}.
+  \item[\macro{EFAULT}] Si sono specificati indirizzi non validi.
+  \end{errlist}}
+\end{prototype}
+
+La funzione serve ad installare una nuova azione per il segnale
+\param{signum}; si parla di azione e non di manipolatore come nel caso di
+\func{signal}, in quanto la funzione consente di specificare le varie
+caratteristiche della risposta al segnale, non solo la funzione del
+manipolatore.  Lo standard POSIX raccomanda di usare sempre questa funzione al
+posto di \func{signal} (che in genere viene definita tramite essa), in quanto
+offre un controllo completo, sia pure al prezzo di una maggiore complessità
+d'uso.
+
+Se il puntatore \param{act} non è nullo la funzione installa la nuova azione
+da esso specificata, se \param{oldact} non è nullo il valore dell'azione
+corrente viene restituito indietro.  Questo permette (specificando \param{act}
+nullo e \param{oldact} non nullo) di superare uno dei limiti di \func{signal},
+che non consente di ottenere l'azione corrente senza installarne una nuova.
+
+Entrambi i puntatori fanno riferimento alla struttura \var{sigaction}, che
+permette di descrivere tutte le caratteristiche dell'azione associata ad un
+segnale.  Anch'essa è descritta dallo standard POSIX ed in Linux è definita
+secondo quanto riportato in \secref{fig:sig_sigaction}, il campo
+\var{sa\_restorer}, non previsto dallo standard, è obsoleto e non deve essere
+più usato.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct sigaction {
+    void (*sa_handler)(int);
+    void (*sa_sigaction)(int, siginfo_t *, void *);
+    sigset_t sa_mask;
+    int sa_flags;
+    void (*sa_restorer)(void);
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{sigaction}.} 
+  \label{fig:sig_sigaction}
+\end{figure}
+
+
+\subsection{I \textit{signal set}}
+\label{sec:sig_sigset}
+
+
+\subsection{Le funzioni \func{sigpending} e \func{sigsuspend}}
+\label{sec:sig_sigpending}
 
 
-\subsection{La funzione \func{sigaction}}
-\label{sec:sig_sigaction}
 
 
 
@@ -1557,8 +1698,6 @@ con i segnali
 \label{sec:sig_reentrant}
 
 
-, affrontando inoltre le varie problematiche di programmazione che si devono
-tenere presenti quando si ha a che fare con essi.