Correzioni
[gapil.git] / signal.tex
index 90885ffd70e750208ae212cd8dbedd9bc5a3a2b1..95974f3b9577ab899c08bee02ffc1b160e498fa8 100644 (file)
@@ -2,7 +2,7 @@
 \label{cha:signals}
 
 I segnali sono il primo e più semplice meccanismo di comunicazione nei
-confronti dei processi. Non portano con se nessuna informazione che non sia il
+confronti dei processi. Non portano con sé nessuna informazione che non sia il
 loro tipo; si tratta in sostanza di un'interruzione software portata ad un
 processo.
 
@@ -15,7 +15,7 @@ esempio vengono usati per il controllo di sessione), per notificare eventi
 In questo capitolo esamineremo i vari aspetti della gestione dei segnali,
 partendo da una introduzione relativa ai concetti base con cui essi vengono
 realizzati, per poi affrontarne la classificazione a secondo di uso e modalità
-di generazionem fino ad esaminare in dettaglio funzioni e le metodologie di
+di generazione fino ad esaminare in dettaglio funzioni e le metodologie di
 gestione.
 
 
@@ -243,7 +243,7 @@ non 
 \var{task\_struct} del processo; si dice così che il segnale diventa
 \textsl{pendente} (o \textit{pending}), e rimane tale fino al momento in cui
 verrà notificato al processo (o verrà specificata come azione di default
-quella di ingorarlo).
+quella di ignorarlo).
 
 Normalmente l'invio al processo che deve ricevere il segnale è immediato ed
 avviene non appena questo viene rimesso in esecuzione dallo scheduler che
@@ -372,7 +372,7 @@ anche a seconda dell'architettura hardware.
 
 Per questo motivo ad ogni segnale viene associato un nome, definendo con una
 macro di preprocessore una costante uguale al suddetto numero. Sono questi
-nomi, che sono standardizzati e sostanzialemnte uniformi rispetto alle varie
+nomi, che sono standardizzati e sostanzialmente uniformi rispetto alle varie
 implementazioni, che si devono usare nei programmi. Tutti i nomi e le funzioni
 che concernono i segnali sono definiti nell'header di sistema \file{signal.h}.
 
@@ -819,20 +819,20 @@ eseguire un manipolatore non comporta nessun inconveniente.
 Esistono però dei casi in cui questo non è possibile perché renderebbe
 impossibile una risposta pronta al segnale. In generale questo avviene tutte
 le volte che si ha a che fare con system call che possono bloccarsi
-indenfinitamente, che per questo vengono chiamate \textsl{lente}. Un elenco
+indefinitamente, che per questo vengono chiamate \textsl{lente}. Un elenco
 dei casi in cui si presenta questa situazione è il seguente:
 \begin{itemize*}
 \item lettura da file che possono bloccarsi in attesa di dati non ancora
-  presenti (come per certi dispositivi, la rete o le pipe).
+  presenti (come per certi file di dispositivo, la rete o le pipe).
 \item scrittura sugli stessi file, nel caso in cui dati non possano essere
   accettati immediatamente.
-\item apertura di un file di dipositivo che richiede operazioni non immediate
+\item apertura di un file di dispositivo che richiede operazioni non immediate
   per una una risposta. 
 \item operazioni eseguite con \func{ioctl} che non è detto possano essere
   eseguite immediatamente.
 \item le funzioni di intercomunicazione che si bloccano in attesa di risposte
   da altri processi.
-\item la funzione \func{pause} (usata appunto per attendere l'arrivo di un
+\item la funzione \func{pause} (usata appunto per attendere l'-arrivo di un
   segnale).
 \item la funzione \func{wait} (se nessun processo figlio è ancora terminato).
 \end{itemize*}
@@ -945,7 +945,7 @@ un ciclo infinito.
 \label{sec:sig_kill_raise}
 
 Come accennato in \secref{sec:sig_types}, un segnale può essere generato
-direttamente da un processo. L'invio di un sengale generico può essere
+direttamente da un processo. L'invio di un segnale generico può essere
 effettuato attraverso delle funzioni \func{kill} e \func{raise}. La prima
 serve per inviare un segnale al processo corrente, ed il suo prototipo è:
 \begin{prototype}{signal.h}{int raise(int sig)}
@@ -1047,8 +1047,6 @@ La funzione provvede un meccanismo che consente ad un processo di predisporre
 un'interruzione nel futuro, (ad esempio per effettuare una qualche operazione
 dopo un certo periodo di tempo), programmando l'emissione si un segnale di
 \macro{SIGALARM} dopo il numero di secondi specificato da \param{seconds}.
-Chiaramente la precisione è determinata da quella dell'orologio di sistema, e
-sono sempre possibili ritardi in caso di un sistema eccessivamente carico.
 
 Se si specifica per \param{seconds} un valore nullo non verrà inviato nessun
 segnale; siccome alla chiamata viene cancellato ogni precedente allarme,
@@ -1076,10 +1074,14 @@ timer per ciascun processo:
 \end{itemize}
 
 Il timer usato da \func{alarm} è il \textit{clock time}, e corrisponde cioè al
-tempo reale.  Dato che \func{alarm} non consente di usare gli altri timer, e
-non può specificare intervalli con precisione maggiore al secondo le
-\acr{glibc} provvedono la funzione \func{setitimer} che permette un controllo
-completo, a scapito di un uso molto più complesso. Il suo prototipo è:
+tempo reale. La funzione, pur essendo molto semplice, presenta numerosi
+limiti: non consente di usare gli altri timer, non può specificare intervalli
+con precisione maggiore del secondo e genera il segnale una sola volta.
+
+Per ovviare a questi limiti Linux deriva da BSD la funzione \func{setitimer}
+che permette di usare un timer qualunque e l'invio di segnali periodici, al
+costo però di una maggiore complessità d'uso e di una minore portabilità. Il
+suo prototipo è:
 \begin{prototype}{sys/time.h}{int setitimer(int which, const struct
     itimerval *value, struct itimerval *ovalue)} 
   
@@ -1091,9 +1093,9 @@ completo, a scapito di un uso molto pi
     \macro{EFAULT}.}
 \end{prototype}
 
-Il valore di \param{which} permette di specificare quale dei tre timer usare;
-i possibili valori sono riportati in \tabref{tab:sig_setitimer_values}.
-
+Il valore di \param{which} permette di specificare quale dei tre timer
+illustrati in precedenza usare; i possibili valori sono riportati in
+\tabref{tab:sig_setitimer_values}.
 \begin{table}[htb]
   \centering
   \begin{tabular}[c]{|l|l|}
@@ -1111,23 +1113,336 @@ i possibili valori sono riportati in \tabref{tab:sig_setitimer_values}.
   \label{tab:sig_setitimer_values}
 \end{table}
 
+Il valore della struttura specificata \param{value} viene usato per settare il
+timer, se il puntatore \param{ovalue} non è nullo il precedente valore viene
+salvato qui. I valori dei timer devono essere indicati attraverso una
+struttura \var{itimerval}, definita in \ref{fig:file_stat_struct}.
+
+La struttura è composta da due membri, il primo, \var{it\_interval} definisce
+il periodo del timer; il secondo, \var{it\_value} il tempo mancante alla
+scadenza. Entrambi esprimono i tempi tramite una struttura \var{timeval} che
+permette una precisione fino al microsecondo.
+
+Ciascun timer decrementa il valore di \var{it\_value} fino a zero, poi invia
+il segnale e resetta \var{it\_value} al valore di \var{it\_interval},
+ripetendo il ciclo; se \var{it\_interval} è nullo il timer si ferma.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+struct itimerval {
+    struct timeval it_interval; /* next value */
+    struct timeval it_value;    /* current value */
+};
+struct timeval {
+    long tv_sec;                /* seconds */
+    long tv_usec;               /* microseconds */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{itimerval}, che definisce i valori dei timer di
+    sistema.} 
+  \label{fig:sig_itimerval}
+\end{figure}
+
+L'uso di \func{setitimer} consente dunque un controllo completo di tutte le
+caratteristiche dei timer, ed in effetti la stessa \func{alarm}, benché
+definita direttamente nello standard POSIX.1, può a sua volta essere espressa
+in termini di \func{setitimer}, come evidenziato dal manuale delle \acr{glibc}
+\cite[glibc] che ne riporta la definizione in \figref{fig:sig_alarm_def}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+unsigned int alarm(unsigned int seconds)
+{
+    struct itimerval old, new;
+    new.it_interval.tv_usec = 0;
+    new.it_interval.tv_sec = 0;
+    new.it_value.tv_usec = 0;
+    new.it_value.tv_sec = (long int) seconds;
+    if (setitimer(ITIMER_REAL, &new, &old) < 0)
+        return 0;
+    else
+        return old.it_value.tv_sec;
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Definizione di \func{alarm} in termini di \func{setitimer}.} 
+  \label{fig:sig_alarm_def}
+\end{figure}
+
+Si deve comunque tenere presente che la precisione di queste funzioni è
+limitata da quella del timer di sistema (in genere 10~ms). Il sistema assicura
+comunque che il segnale non sarà mai generato prima della scadenza programmata
+(l'arrotondamento cioè è sempre effettuato per eccesso). Una seconda causa di
+potenziali ritardi è che il segnale viene generato alla scadenza del timer,
+ma poi deve essere consegnato; se il processo è attivo (questo è sempre vero
+per \macro{ITIMER\_VIRT}) la consegna è immediata, altrimenti può esserci un
+ulteriore ritardo che può variare a seconda del carico del sistema.
+
+Dato che sia \func{alarm} che \func{setitimer} non consentono di leggere il
+valore corrente di un timer senza modificarlo, è possibile usare la funzione
+\func{getitimer}, il cui prototipo è:
+\begin{prototype}{sys/time.h}{int getitimer(int which, struct
+    itimerval *value)}
+  
+  Legge in \param{value} il valore del timer specificato da \func{which}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore e restituisce gli stessi errori di \func{getitimer}}
+\end{prototype}
+\noindent i cui parametri hanno lo stesso significato e formato di quelli di
+\func{setitimer}. 
+
+
+L'ultima funzione che permette l'invio diretto di un segnale è \func{abort};
+che, come accennato in \ref{sec:proc_termination}, permette di abortire
+l'esecuzione di un programma tramite l'invio di \macro{SIGABRT}. Il suo
+prototipo è:
+\begin{prototype}{stdlib.h}{void abort(void)}
+  
+  Abortisce il processo corrente.
+  
+  \bodydesc{La funzione non ritorna, il processo è terminato inviando il
+  segnale di \macro{SIGABRT}.}
+\end{prototype}
+
+La differenza fra questa funzione e l'uso di \func{raise} è che anche se il
+segnale è bloccato o ignorato, la funzione ha effetto lo stesso. Il segnale
+può però essere intercettato per effettuare eventuali operazioni di chiusura
+prima della terminazione del processo.
+
+Lo standard ANSI C richiede inoltre che anche se il manipolatore ritorna, la
+funzione non ritorni comunque. Lo standard POSIX.1 va oltre e richiede che se
+il processo non viene terminato direttamente dal manipolatore sia la stessa
+\func{abort} a farlo al ritorno dello stesso. Inoltre, sempre seguendo lo
+standard POSIX, prima della terminazione tutti i file aperti e gli stream
+saranno chiusi ed i buffer scaricati su disco. Non verranno invece eseguite le
+funzioni registrate con \func{at\_exit} e \func{on\_exit}.
+
 
 \subsection{Le funzioni \func{pause} e \func{sleep}}
 \label{sec:sig_pause_sleep}
 
+Il metodo tradizionale per fare attendere ad un processo fino all'arrivo di un
+segnale è quello di usare la funzione \func{pause}, il cui prototipo è:
+\begin{prototype}{unistd.h}{int pause(void)}
+  
+  Pone il processo in stato di sleep fino al ritorno di un manipolatore.
+  
+  \bodydesc{La funzione ritorna solo dopo che un segnale è stato ricevuto ed
+  il relativo manipolatore è ritornato, nel qual caso restituisce -1 e setta
+  \var{errno} a \macro{EINTR}.}
+\end{prototype}
+
+La funzione segnala sempre una condizione di errore (il successo sarebbe
+quello di aspettare indefinitamente). In genere si usa questa funzione quando
+si vuole mettere un processo in attesa di un qualche evento specifico che non
+è sotto il suo diretto controllo (ad esempio la si può usare per far reagire
+il processo ad un segnale inviato da un altro processo).
+
+
+Se invece si vuole fare attendere un processo per un determinato intervallo di
+tempo lo standard POSIX.1 definisce la funzione \func{sleep}, il cui prototipo
+è:
+\begin{prototype}{unistd.h}{unsigned int sleep(unsigned int seconds)}
+  
+  Pone il processo in stato di sleep per \param{seconds} secondi.
+  
+  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o il
+  numero di secondi restanti se viene interrotta da un segnale.}
+\end{prototype}
 
+La funzione attende per il tempo specificato, a meno di non essere interrotta
+da un segnale. In questo caso non è una buona idea ripetere la chiamata per il
+tempo rimanente, in quanto la riattivazione del processo può avvenire in un
+qualunque momento, ma il valore restituito sarà sempre arrotondato al secondo,
+con la conseguenza che, se la successione dei segnali è particolarmente
+sfortunata, si potranno avere ritardi anche di parecchi secondi. In genere la
+scelta più sicura è quella di stabilire un termine per l'attesa, e ricalcolare
+tutte le volte il numero di secondi da aspettare.
+
+In alcune implementazioni inoltre l'uso di \func{sleep} può avere conflitti
+con quello di \macro{SIGALRM}, dato che la funzione può essere realizzata
+attraverso \func{pause} e \func{alarm} (in maniera analoga all'esempio che
+vedremo in \ref{sec:sig_example}). In tal caso mescolare chiamata di
+\func{alarm} e \func{sleep} o modificare l'azione di \macro{SIGALRM}, può
+causare risultati indefiniti. Nel caso delle \acr{glibc} è stata usata una
+implementazione completamente indipendente e questi problemi non ci sono.
+
+La granularità di \func{sleep} permette di specificare attese in secondi, per
+questo sia sotto BSD4.3 che in SUSv2 è stata definita la funzione
+\func{usleep} (dove la \texttt{u} è intesa come sostituzione di $\mu$); i due
+standard hanno delle definizioni diverse, ma le \acr{glibc}
+seguono\footnote{secondo la man page almeno dalla versione 2.2.2.} seguono
+quella di SUSv2 che prevede il seguente prototipo: 
+\begin{prototype}{unistd.h}{int usleep(unsigned long usec)}
+  
+  Pone il processo in stato di sleep per \param{usec} microsecondi.
+  
+  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o -1 in
+    caso di errore, nel qual caso \var{errno} è settata a \macro{EINTR}.}
 
+\end{prototype}
 
+Anche questa funzione a seconda delle implementazioni può presentare problemi
+nell'interazione con \func{alarm} e \macro{SIGALRM}, ed è pertanto deprecata
+in favore di \func{nanosleep}, definita dallo standard POSIX1.b, il cui
+prototipo è:
+\begin{prototype}{unistd.h}{int nanosleep(const struct timespec *req, struct
+    timespec *rem)}
+  
+  Pone il processo in stato di sleep per il tempo specificato da \param{req}.
+  In caso di interruzione restituisce il tempo restante in \param{rem}.
+  
+  \bodydesc{La funzione restituisce zero se l'attesa viene completata, o -1 in
+    caso di errore, nel qual caso \var{errno} è settata a 
+    \begin{errlist}
+    \item[\macro{EINVAL}] si è specificato un numero di secondi negativo o un
+      numero di nanosecondi maggiore di 999.999.999.
+    \item[\macro{EINTR}] la funzione è stata interrotta da un segnale.
+    \end{errlist}}
+\end{prototype}
 
-\subsection{Le semantiche di \macro{SIGCHLD}}
+Lo standard richiede che la funzione sia implementata in maniera del tutto
+indipendente da \func{alarm}\footnote{nel caso di Linux questo è fatto
+  utilizzando direttamente il timer del kernel.} e sia utilizzabile senza
+interferenze con l'uso di \macro{SIGALRM}. La funzione prende come parametri
+delle strutture di tipo \var{timespec}, la cui definizione è riportata in 
+\figref{fig:sig_timespec_def}, che permettono di specificare un tempo con una
+precisione (teorica) fino al nanosecondo. 
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+struct timespec
+{
+    time_t  tv_sec;         /* seconds */
+    long    tv_nsec;        /* nanoseconds */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{timespec} di \func{nanosleep}.} 
+  \label{fig:sig_timespec_def}
+\end{figure}
+
+La funzione risolve anche il problema di proseguire l'attesa dopo
+l'interruzione dovuta ad un segnale; infatti in tal caso in \param{rem} viene
+restituito il tempo rimanente rispetto a quanto richiesto inizialmente, e
+basta richiamare la funzione per completare l'attesa. 
+
+Chiaramente, anche se il tempo può essere specificato con risoluzioni fino al
+nanosecondo, la precisione di \func{nanosleep} è determinata dalla risoluzione
+temporale del timer di sistema. Perciò la funzione attenderà comunque il tempo
+specificato, ma prima che il processo possa tornare ad essere eseguito
+occorrerà almeno attendere il successivo giro di scheduler e cioè un tempo che
+a seconda dei casi può arrivare fino a 1/\macro{HZ}, (sempre che il sistema
+sia scarico ed il processa venga immediatamente rimesso in esecuzione); per
+questo motivo il valore restituito in \param{rem} è sempre arrotondato al
+multiplo successivo di 1/\macro{HZ}.
+
+In realtà è possibile ottenere anche pause più precise del centesimo di
+secondo usando politiche di scheduling real time come \macro{SCHED\_FIFO} o
+\macro{SCHED\_RR}; in tal caso infatti il meccanismo di scheduling ordinario
+viene evitato, e si raggiungono pause fino ai 2~ms con precisioni del $\mu$s.
+
+
+
+\subsection{La gestione di \macro{SIGCHLD}}
 \label{sec:sig_sigchld}
 
+Un semplice esempio per illustrare il funzionamento di un manipolatore di
+segnale è quello della gestione di \macro{SIGCHLD}.  Abbiamo visto in
+\secref{sec:proc_termination} che una delle azioni eseguite dal kernel alla
+conclusione di un processo è quella di inviare questo segnale al
+padre;\footnote{in realtà in SRV4 eredita la semantica di System V, in cui il
+  segnale si chiama \macro{SIGCLD} e viene trattato in maniera speciale; in
+  System V infatti se si setta esplicitamente l'azione a \macro{SIG\_IGN} il
+  segnale non viene generato ed il sistema non genera zombie (lo stato di
+  terminazione viene scartato senza dover chiamare una \func{wait}). L'azione
+  di default è sempre quella di ignorare il segnale, ma non attiva questo
+  comportamento. Linux, come BSD e POSIX, non supporta questa semantica ed usa
+  il nome di \macro{SIGCLD} come sinonimo di \macro{SIGCHLD}.} è pertanto
+naturale completare qui la trattazione della terminazione dei processi
+illustrando le modalità per gestire questo segnale.
+
+
+
 
 
 
 \section{Gestione avanzata}
 \label{sec:sig_control}
 
+Le funzioni esaminate finora fanno riferimento ad alle modalità più elementari
+della gestione dei segnali; non si sono pertanto ancora prese in
+considerazione le tematiche più complesse, collegate alle varie race condition
+che i segnali possono generare e alla natura asincrona degli stessi.
+
+Affronteremo queste problematiche in questa sezione, partendo da un esempio
+che le evidenzi, per poi prendere in esame le varie funzioni che permettono di
+risolvere i problemi più complessi connessi alla programmazione con i segnali.
+
+
+\subsection{Un esempio di problema}
+\label{sec:sig_example}
+
+Come accennato in \ref{sec:sig_pause_sleep} è possibile implementare
+\func{sleep} a partire da dall'uso di \func{pause} e \func{alarm}. A prima
+vista questo può sembrare di implementazione immediata; ad esempio una
+semplice versione di \func{sleep} potrebbe essere la seguente:
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+unsigned int sleep(unsigned int seconds)
+{
+    signandler_t prev_handler;
+    if ((prev_handler = signal(SIGALRM, alarm_hand)) == SIG_ERR) {
+        printf("Cannot set handler for alarm\n");
+        exit(1);
+    }
+    alarm(second);
+    pause(); 
+    /* restore previous signal handler */
+    signal(SIGALRM, prev_handler);
+    /* remove alarm, return remaining time */
+    return alarm(0);
+}
+void alarm_hand(int sig) {
+    /* check if the signal is the right one */
+    if (sig != SIGALRM) { /* if not exit with error */
+        printf("Something wrong, handler for SIGALRM\n");
+        exit(1);
+    } else {    /* do nothing, just interrupt pause */
+        return;
+    }
+}      
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Una implementazione sbagliata di \func{sleep}.} 
+  \label{fig:sig_timespec_def}
+\end{figure}
+
+Ma questa funzione, a parte il non gestire il caso in cui si è avuta una
+precedente chiamata a \func{alarm}, presenta una pericolosa race condition.
+Infatti se il processo viene interrotto fra la chiamata di \func{alarm} e
+\func{pause} può capitare (nel caso il sistema sia molto carico) che
+quest'ultima possa essere eseguita dopo l'arrivo di \macro{SIGALRM}. In questo
+caso ci si troverebbe di fronte ad un deadlock, in cui \func{pause} non
+verrebbe mai interrotta (se non in caso di un altro segnale).
+
+Come abbiamo accennato in \secref{sec:proc_atom_oper} quando si ha a che fare
+con i segnali 
+
 
 
 
@@ -1136,6 +1451,7 @@ i possibili valori sono riportati in \tabref{tab:sig_setitimer_values}.
 
 
 
+
 \subsection{La funzione \func{sigaction}}
 \label{sec:sig_sigaction}