Chiarimenti sui permessi di accesso.
[gapil.git] / signal.tex
index 860a1f522c9984d2975db0d26ea7b3c3f54944ae..7cbda4f9ae2bef49a47f19251e5cfd504a544ece 100644 (file)
@@ -140,9 +140,9 @@ Si dice che il segnale viene \textsl{consegnato} al processo (dall'inglese
 \textit{delivered}) quando viene eseguita l'azione per esso prevista, mentre
 per tutto il tempo che passa fra la generazione del segnale e la sua consegna
 esso è detto \textsl{pendente} (o \textit{pending}). In genere questa
-procedura viene effettuata dallo scheduler quando, riprendendo l'esecuzione
-del processo in questione, verifica la presenza del segnale nella
-\var{task\_struct} e mette in esecuzione il gestore.
+procedura viene effettuata dallo scheduler\index{scheduler} quando,
+riprendendo l'esecuzione del processo in questione, verifica la presenza del
+segnale nella \var{task\_struct} e mette in esecuzione il gestore.
 
 In questa semantica un processo ha la possibilità di bloccare la consegna dei
 segnali, in questo caso, se l'azione per il suddetto segnale non è quella di
@@ -211,11 +211,12 @@ verr
 ignorarlo).
 
 Normalmente l'invio al processo che deve ricevere il segnale è immediato ed
-avviene non appena questo viene rimesso in esecuzione dallo scheduler che
-esegue l'azione specificata. Questo a meno che il segnale in questione non sia
-stato bloccato prima della notifica, nel qual caso l'invio non avviene ed il
-segnale resta \textsl{pendente} indefinitamente. Quando lo si sblocca il
-segnale \textsl{pendente} sarà subito notificato.
+avviene non appena questo viene rimesso in esecuzione dallo
+scheduler\index{scheduler} che esegue l'azione specificata. Questo a meno che
+il segnale in questione non sia stato bloccato prima della notifica, nel qual
+caso l'invio non avviene ed il segnale resta \textsl{pendente}
+indefinitamente. Quando lo si sblocca il segnale \textsl{pendente} sarà subito
+notificato.
 
 Si ricordi però che se l'azione specificata per un segnale è quella di essere
 ignorato questo sarà scartato immediatamente al momento della sua generazione,
@@ -617,25 +618,26 @@ cui si trattano gli argomenti relativi.  Questi segnali sono:
   gestori per far si che un programma produca una qualche azione speciale
   se viene fermato e riavviato, come per esempio riscrivere un prompt, o
   inviare un avviso. 
-\item[\macro{SIGSTOP}] Il segnale ferma un processo (lo porta in uno stato di
-  sleep); il segnale non può essere né intercettato, né ignorato, né bloccato.
+\item[\macro{SIGSTOP}] Il segnale ferma un processo (lo porta cioè in uno
+  stato di sleep, vedi \secref{sec:proc_sched}); il segnale non può essere né
+  intercettato, né ignorato, né bloccato.
 \item[\macro{SIGTSTP}] Il nome sta per \textit{interactive stop}. Il segnale
   ferma il processo interattivamente, ed è generato dal carattere SUSP
-  (prodotto dalla combinazione \macro{C-z}), ed al contrario di
+  (prodotto dalla combinazione \cmd{C-z}), ed al contrario di
   \macro{SIGSTOP} può essere intercettato e ignorato. In genere un programma
   installa un gestore per questo segnale quando vuole lasciare il sistema
   o il terminale in uno stato definito prima di fermarsi; se per esempio un
   programma ha disabilitato l'eco sul terminale può installare un gestore
   per riabilitarlo prima di fermarsi.
 \item[\macro{SIGTTIN}] Un processo non può leggere dal terminale se esegue una
-  sessione di lavoro in background. Quando un processo in background tenta di
-  leggere da un terminale viene inviato questo segnale a tutti i processi
-  della sessione di lavoro. L'azione predefinita è di fermare il processo.
-  L'argomento è trattato in \secref{sec:sess_xxx}.
+  sessione di lavoro in \textit{background}. Quando un processo in background
+  tenta di leggere da un terminale viene inviato questo segnale a tutti i
+  processi della sessione di lavoro. L'azione predefinita è di fermare il
+  processo.  L'argomento è trattato in \secref{sec:sess_job_control_overview}.
 \item[\macro{SIGTTOU}] Segnale analogo al precedente \macro{SIGTTIN}, ma
   generato quando si tenta di scrivere o modificare uno dei modi del
   terminale. L'azione predefinita è di fermare il processo, l'argomento è
-  trattato in \secref{sec:sess_xxx}.
+  trattato in \secref{sec:sess_job_control_overview}.
 \end{basedescript}
 
 
@@ -949,8 +951,8 @@ la funzione \func{kill}; il cui prototipo 
   \funcdecl{int kill(pid\_t pid, int sig)} Invia il segnale \param{sig} al
   processo specificato con \param{pid}.
   
-  \bodydesc{ La funzione restituisce 0 in caso di successo e -1 in caso di
-    errore nel qual caso \var{errno} può assumere i valori:
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore nel qual caso \var{errno} assumerà uno dei valori:
     \begin{errlist}
     \item[\macro{EINVAL}] Il segnale specificato non esiste.
     \item[\macro{ESRCH}] Il processo selezionato non esiste.
@@ -1008,7 +1010,7 @@ Una seconda funzione che pu
     errore, gli errori sono gli stessi di \func{kill}.}
 \end{prototype}
 e che permette di inviare un segnale a tutto un \textit{process group} (vedi
-\secref{sec:sess_xxx}).
+\secref{sec:sess_proc_group}).
 
 Solo l'amministratore può inviare un segnale ad un processo qualunque, in
 tutti gli altri casi l'userid reale o l'userid effettivo del processo
@@ -1094,7 +1096,7 @@ suo prototipo 
   \param{value} sul timer specificato da \func{which}.
   
   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
-    errore, nel qual caso \var{errno} può assumere i valori \macro{EINVAL} e
+    errore, nel qual caso \var{errno} assumerà uno dei valori \macro{EINVAL} o
     \macro{EFAULT}.}
 \end{prototype}
 
@@ -1255,8 +1257,8 @@ quello di usare la funzione \func{pause}, il cui prototipo 
   Pone il processo in stato di sleep fino al ritorno di un gestore.
   
   \bodydesc{La funzione ritorna solo dopo che un segnale è stato ricevuto ed
-    il relativo gestore è ritornato, nel qual caso restituisce -1 e imposta
-    \var{errno} a \macro{EINTR}.}
+    il relativo gestore è ritornato, nel qual caso restituisce -1 e
+    \var{errno} assumerà il valore \macro{EINTR}.}
 \end{prototype}
 
 La funzione segnala sempre una condizione di errore (il successo sarebbe
@@ -1305,7 +1307,8 @@ seguono quella di SUSv2 che prevede il seguente prototipo:
   Pone il processo in stato di sleep per \param{usec} microsecondi.
   
   \bodydesc{La funzione restituisce zero se l'attesa viene completata, o -1 in
-    caso di errore, nel qual caso \var{errno} è impostata a \macro{EINTR}.}
+    caso di errore, nel qual caso \var{errno} assumerà il valore
+    \macro{EINTR}.}
 
 \end{prototype}
 
@@ -1320,7 +1323,7 @@ POSIX1.b, il cui prototipo 
   In caso di interruzione restituisce il tempo restante in \param{rem}.
   
   \bodydesc{La funzione restituisce zero se l'attesa viene completata, o -1 in
-    caso di errore, nel qual caso \var{errno} è impostata a 
+    caso di errore, nel qual caso \var{errno} assumerà uno dei valori: 
     \begin{errlist}
     \item[\macro{EINVAL}] si è specificato un numero di secondi negativo o un
       numero di nanosecondi maggiore di 999.999.999.
@@ -1345,11 +1348,11 @@ Chiaramente, anche se il tempo pu
 nanosecondo, la precisione di \func{nanosleep} è determinata dalla risoluzione
 temporale del timer di sistema. Perciò la funzione attenderà comunque il tempo
 specificato, ma prima che il processo possa tornare ad essere eseguito
-occorrerà almeno attendere il successivo giro di scheduler e cioè un tempo che
-a seconda dei casi può arrivare fino a 1/\macro{HZ}, (sempre che il sistema
-sia scarico ed il processa venga immediatamente rimesso in esecuzione); per
-questo motivo il valore restituito in \param{rem} è sempre arrotondato al
-multiplo successivo di 1/\macro{HZ}.
+occorrerà almeno attendere il successivo giro di scheduler\index{scheduler} e
+cioè un tempo che a seconda dei casi può arrivare fino a 1/\macro{HZ}, (sempre
+che il sistema sia scarico ed il processa venga immediatamente rimesso in
+esecuzione); per questo motivo il valore restituito in \param{rem} è sempre
+arrotondato al multiplo successivo di 1/\macro{HZ}.
 
 In realtà è possibile ottenere anche pause più precise del centesimo di
 secondo usando politiche di scheduling real time come \macro{SCHED\_FIFO} o
@@ -1379,11 +1382,13 @@ pu
 completare la procedura di terminazione in modo da evitare la formazione di
 zombie.
 
-In \figref{fig:sig_sigchld_handl} è mostrato il codice della nostra
-implementazione del gestore; se aggiungiamo al codice di
-\file{ForkTest.c} l'installazione di questo gestore potremo verificare che
-ripetendo l'esempio visto in \secref{sec:proc_termination} che non si ha più
-la creazione di zombie.
+In \figref{fig:sig_sigchld_handl} è mostrato il codice contenente una
+implementazione generica di una routine di gestione per \macro{SIGCHLD}, (che
+si trova nei sorgenti allegati nel file \file{HandSIGCHLD.c}); se ripetiamo i
+test di \secref{sec:proc_termination}, invocando \cmd{forktest} con l'opzione
+\cmd{-s} (che si limita ad effettuare l'installazione di questa funzione come
+gestore di \macro{SIGCHLD}) potremo verificare che non si ha più la creazione
+di zombie.
 
 %  è pertanto
 % naturale usare un esempio che ci permette di concludere la trattazione della
@@ -1402,7 +1407,7 @@ la creazione di zombie.
 #include <sys/wait.h>
 #include "macro.h"
 
-void sigchld_hand(int sig)
+void HandSIGCHLD(int sig)
 {
     int errno_save;
     int status;
@@ -1425,18 +1430,19 @@ void sigchld_hand(int sig)
     \end{lstlisting}
   \end{minipage} 
   \normalsize 
-  \caption{Un gestore per il segnale \texttt{SIGCHLD}.} 
+  \caption{Codice di una funzione generica di gestione per il segnale
+    \texttt{SIGCHLD}.}  
   \label{fig:sig_sigchld_handl}
 \end{figure}
 
 Il codice del gestore è di lettura immediata; come buona norma di
 programmazione (si ricordi quanto accennato \secref{sec:sys_errno}) si
 comincia (\texttt{\small 12-13}) con il salvare lo stato corrente di
-\var{errno}, in modo da poterlo ripristinare prima del ritorno del
-gestore (\texttt{\small 22-23}). In questo modo si preserva il valore
-della variabile visto dal corso di esecuzione principale del processo, che
-sarebbe altrimenti sarebbe sovrascritto dal valore restituito nella successiva
-chiamata di \func{wait}.
+\var{errno}, in modo da poterlo ripristinare prima del ritorno del gestore
+(\texttt{\small 22-23}). In questo modo si preserva il valore della variabile
+visto dal corso di esecuzione principale del processo, che sarebbe altrimenti
+sarebbe sovrascritto dal valore restituito nella successiva chiamata di
+\func{wait}.
 
 Il compito principale del gestore è quello di ricevere lo stato di
 terminazione del processo, cosa che viene eseguita nel ciclo in
@@ -1712,9 +1718,9 @@ degli insiemi di segnali: \func{sigemptyset}, \func{sigfillset},
   
   \bodydesc{Le prime quattro funzioni ritornano 0 in caso di successo, mentre
     \func{sigismember} ritorna 1 se \param{signum} è in \param{set} e 0
-    altrimenti. In caso di errore tutte ritornano -1, con \var{errno} impostata a
-    \macro{EINVAL} (il solo errore possibile è che \param{signum} non sia un
-    segnale valido).}
+    altrimenti. In caso di errore tutte ritornano -1, con \var{errno}
+    impostata a \macro{EINVAL} (il solo errore possibile è che \param{signum}
+    non sia un segnale valido).}
 \end{functions}
 
 Dato che in generale non si può fare conto sulle caratteristiche di una
@@ -1896,13 +1902,13 @@ siginfo_t {
   \label{fig:sig_siginfo_t}
 \end{figure}
  
-Installando un gestore di tipo \var{sa\_sigaction} diventa allora
-possibile accedere alle informazioni restituite attraverso il puntatore a
-questa struttura. Tutti i segnali impostano i campi \var{si\_signo}, che riporta
-il numero del segnale ricevuto, \var{si\_errno}, che riporta, quando diverso
-da zero, il codice dell'errore associato al segnale, e \var{si\_code}, che
-viene usato dal kernel per specificare maggiori dettagli riguardo l'evento che
-ha causato l'emissione del segnale.
+Installando un gestore di tipo \var{sa\_sigaction} diventa allora possibile
+accedere alle informazioni restituite attraverso il puntatore a questa
+struttura. Tutti i segnali impostano i campi \var{si\_signo}, che riporta il
+numero del segnale ricevuto, \var{si\_errno}, che riporta, quando diverso da
+zero, il codice dell'errore associato al segnale, e \var{si\_code}, che viene
+usato dal kernel per specificare maggiori dettagli riguardo l'evento che ha
+causato l'emissione del segnale.
 
 In generale \var{si\_code} contiene, per i segnali generici, per quelli
 real-time e per tutti quelli inviati tramite \func{kill}, informazioni circa
@@ -2440,7 +2446,7 @@ funzione, \func{sigqueue}, il cui prototipo 
   gestore il valore \param{value}.
   
   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
-    errore, nel qual caso \var{errno} viene impostata ai valori:
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
   \item[\macro{EAGAIN}] La coda è esarita, ci sono già \macro{SIGQUEUE\_MAX}
     segnali in attesa si consegna.
@@ -2482,7 +2488,7 @@ meccanismi di comunicazione elementare; la prima di queste funzioni 
   Attende che uno dei segnali specificati in \param{set} sia pendente.
   
   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
-    errore, nel qual caso \var{errno} viene impostata ai valori:
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
   \item[\macro{EINTR}] La funzione è stata interrotta.
   \item[\macro{EINVAL}] Si è specificato un valore non valido per
@@ -2527,8 +2533,8 @@ relativi prototipi sono:
 
   
   \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso di
-    errore, nel qual caso \var{errno} viene impostata ai valori già visti per
-    \func{sigwait}, ai quali se aggiunge, per \func{sigtimedwait}:
+    errore, nel qual caso \var{errno} assumerà uno dei valori già visti per
+    \func{sigwait}, ai quali si aggiunge, per \func{sigtimedwait}:
   \begin{errlist}
   \item[\macro{EAGAIN}] Si è superato il timeout senza che un segnale atteso
     fosse emmesso.