Merge branch 'master' of ssh://gapil.gnulinux.it/srv/git/gapil
[gapil.git] / signal.tex
index 3c794a665bf623627a684907ad99f856a2d2551b..40e84dc429a1d0d15917cb7b883b28df2f208d29 100644 (file)
@@ -1,6 +1,6 @@
 %% signal.tex
 %%
-%% Copyright (C) 2000-2015 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2019 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
@@ -245,7 +245,6 @@ segnale. Per alcuni segnali (per la precisione \signal{SIGKILL} e
 \signal{SIGSTOP}) questa azione è predeterminata dal kernel e non può essere
 mai modificata, ma per tutti gli altri si può selezionare una delle tre
 possibilità seguenti:
-
 \begin{itemize*}
 \item ignorare il segnale;
 \item intercettare il segnale, ed utilizzare il gestore specificato;
@@ -322,9 +321,9 @@ Linux anche a seconda della architettura hardware e della versione del kernel.
 
 Quelli che invece sono stati, almeno a grandi linee, standardizzati, sono i
 nomi dei segnali e le costanti di preprocessore che li identificano, che sono
-tutte nella forma \texttt{SIGnome}, e sono queste che devono essere usate nei
-programmi. Come tutti gli altri nomi e le funzioni che concernono i segnali,
-esse sono definite nell'header di sistema \headfile{signal.h}.
+tutte nella forma \texttt{SIG\textsl{nome}}, e sono queste che devono essere
+usate nei programmi. Come tutti gli altri nomi e le funzioni che concernono i
+segnali, esse sono definite nell'header di sistema \headfile{signal.h}.
 
 \begin{table}[!htb]
   \footnotesize
@@ -393,8 +392,7 @@ quelli \textit{real-time} in sez.~\ref{sec:sig_real_time}). Ma si tenga
 presente che solo quelli elencati nella prima sezione della tabella sono
 presenti su tutte le architetture. Nelle sezioni successive si sono riportati
 rispettivamente quelli che esistono solo sull'architettura PC e quelli che non
-esistono sull'architettura PC, ma sono definiti sulle architetture
-\textit{alpha} o \textit{mips}.
+esistono sull'architettura PC, ma sono definiti su altre.
 
 Alcuni segnali erano previsti fin dallo standard ANSI C, ed i segnali sono
 presenti in tutti i sistemi unix-like, ma l'elenco di quelli disponibili non è
@@ -407,7 +405,14 @@ presente che il significato dei segnali è abbastanza indipendente dalle
 implementazioni solo per quelli definiti negli standard POSIX.1-1990 e
 POSIX.1-2001. 
 
-\begin{table}[htb]
+Come accennato in sez.~\ref{sec:sig_notification} a ciascun segnale è
+associata una specifica azione predefinita che viene eseguita quando nessun
+gestore è installato. Le azioni predefinite possibili, che abbiamo già
+descritto in sez.~\ref{sec:sig_notification}, sono state riportate in
+tab.~\ref{tab:sig_signal_list} nella terza colonna, e di nuovo sono state
+indicate con delle lettere la cui legenda completa è illustrata in
+tab.~\ref{tab:sig_action_leg}).
+\begin{table}[!htb]
   \footnotesize
   \centering
   \begin{tabular}[c]{|c|l|}
@@ -428,13 +433,13 @@ POSIX.1-2001.
   \label{tab:sig_standard_leg}
 \end{table}
 
-Come accennato in sez.~\ref{sec:sig_notification} a ciascun segnale è
-associata una specifica azione predefinita che viene eseguita quando nessun
-gestore è installato. Le azioni predefinite possibili, che abbiamo già
-descritto in sez.~\ref{sec:sig_notification}, sono state riportate in
-tab.~\ref{tab:sig_signal_list} nella terza colonna, e di nuovo sono state
-indicate con delle lettere la cui legenda completa è illustrata in
-tab.~\ref{tab:sig_action_leg}).
+Si inoltre noti come \signal{SIGCONT} sia l'unico segnale a non avere
+l'indicazione di una azione predefinita nella terza colonna di
+tab.~\ref{tab:sig_signal_list}, questo perché il suo effetto è sempre quello
+di far ripartire un programma in stato \texttt{T} fermato da un segnale di
+stop. Inoltre i segnali \signal{SIGSTOP} e \signal{SIGKILL} si distinguono da
+tutti gli altri per la specifica caratteristica di non potere essere né
+intercettati, né bloccati, né ignorati.
 
 \begin{table}[htb]
   \footnotesize
@@ -456,15 +461,6 @@ tab.~\ref{tab:sig_action_leg}).
   \label{tab:sig_action_leg}
 \end{table}
 
-
-Si inoltre noti come \signal{SIGCONT} sia l'unico segnale a non avere
-l'indicazione di una azione predefinita nella terza colonna di
-tab.~\ref{tab:sig_signal_list}, questo perché il suo effetto è sempre quello
-di far ripartire un programma in stato \texttt{T} fermato da un segnale di
-stop. Inoltre i segnali \signal{SIGSTOP} e \signal{SIGKILL} si distinguono da
-tutti gli altri per la specifica caratteristica di non potere essere né
-intercettati, né bloccati, né ignorati.
-
 Il numero totale di segnali presenti è dato dalla macro \macrod{NSIG} (e tiene
 conto anche di quelli \textit{real-time}) e dato che i numeri dei segnali sono
 allocati progressivamente, essa corrisponde anche al successivo del valore
@@ -700,7 +696,7 @@ in cui si trattano gli argomenti relativi.  Questi segnali sono:
   La maggior pare dei programmi non hanno necessità di intercettare il
   segnale, in quanto esso è completamente trasparente rispetto all'esecuzione
   che riparte senza che il programma noti niente. Si possono installare dei
-  gestori per far si che un programma produca una qualche azione speciale
+  gestori per far sì che un programma produca una qualche azione speciale
   se viene fermato e riavviato, come per esempio riscrivere un prompt, o
   inviare un avviso. 
 
@@ -944,27 +940,28 @@ situazione è il seguente:
   essere riavvolto);
 \item le operazioni eseguite con \func{ioctl} che non è detto possano essere
   eseguite immediatamente;
-\item le funzioni di intercomunicazione fra processi (vedi cap.~\ref{cha:IPC})
-  che si bloccano in attesa di risposte da altri processi;
-\item la funzione \func{pause} (vedi sez.~\ref{sec:sig_pause_sleep}) e le
-  analoghe \func{sigsuspend}, \func{sigtimedwait}, e \func{sigwaitinfo} (vedi
-  sez.~\ref{sec:sig_real_time}), usate appunto per attendere l'arrivo di un
-  segnale;
-\item le funzioni associate al \textit{file locking} (vedi
+\item l'uso di funzioni di intercomunicazione fra processi (vedi
+  cap.~\ref{cha:IPC}) che si bloccano in attesa di risposte da altri processi;
+\item l'uso della funzione \func{pause} (vedi sez.~\ref{sec:sig_pause_sleep})
+  e le analoghe \func{sigsuspend}, \func{sigtimedwait}, e \func{sigwaitinfo}
+  (vedi sez.~\ref{sec:sig_real_time}), usate appunto per attendere l'arrivo di
+  un segnale;
+\item l'uso delle funzioni associate al \textit{file locking} (vedi
   sez.~\ref{sec:file_locking})
-\item la funzione \func{wait} e le analoghe funzioni di attesa se nessun
-  processo figlio è ancora terminato.
+\item l'uso della funzione \func{wait} e le analoghe funzioni di attesa se
+  nessun processo figlio è ancora terminato.
 \end{itemize*}
 
 In questo caso si pone il problema di cosa fare una volta che il gestore sia
 ritornato. La scelta originaria dei primi Unix era quella di far ritornare
 anche la \textit{system call} restituendo l'errore di \errcode{EINTR}. Questa
 è a tutt'oggi una scelta corrente, ma comporta che i programmi che usano dei
-gestori controllino lo stato di uscita delle funzioni che eseguono una system
-call lenta per ripeterne la chiamata qualora l'errore fosse questo.
+gestori controllino lo stato di uscita delle funzioni che eseguono una
+\textit{system call} lenta per ripeterne la chiamata qualora l'errore fosse
+questo.
 
 Dimenticarsi di richiamare una \textit{system call} interrotta da un segnale è
-un errore comune, tanto che le \acr{glibc} provvedono una macro
+un errore comune, tanto che la \acr{glibc} provvede una macro
 \code{TEMP\_FAILURE\_RETRY(expr)} che esegue l'operazione automaticamente,
 ripetendo l'esecuzione dell'espressione \var{expr} fintanto che il risultato
 non è diverso dall'uscita con un errore \errcode{EINTR}.
@@ -976,7 +973,7 @@ bisogno di preoccuparsi di controllare il codice di errore; si perde però la
 possibilità di eseguire azioni specifiche all'occorrenza di questa particolare
 condizione.
 
-Linux e le \acr{glibc} consentono di utilizzare entrambi gli approcci,
+Linux e la \acr{glibc} consentono di utilizzare entrambi gli approcci,
 attraverso una opportuna opzione di \func{sigaction} (vedi
 sez.~\ref{sec:sig_sigaction}). È da chiarire comunque che nel caso di
 interruzione nel mezzo di un trasferimento parziale di dati, le \textit{system
@@ -987,18 +984,18 @@ interrotte con un errore di \errcode{EINTR} indipendentemente dal fatto che ne
 possa essere stato richiesto il riavvio automatico, queste funzioni sono:
 
 \begin{itemize*}
-\item le funzioni di attesa di un segnale, come \func{pause} (vedi
-  sez.~\ref{sec:sig_pause_sleep}), \func{sigsuspend}, \func{sigtimedwait}, e
+\item le funzioni di attesa di un segnale: \func{pause} (vedi
+  sez.~\ref{sec:sig_pause_sleep}) o \func{sigsuspend}, \func{sigtimedwait}, e
   \func{sigwaitinfo} (vedi sez.~\ref{sec:sig_real_time}).
-\item le funzioni di attesa dell'\textit{I/O multiplexing}, come
-  \func{select}, \func{pselect}, \func{poll}, \func{ppoll}, \func{epoll\_wait}
-  e \func{epoll\_pwait} (vedi sez.~\ref{sec:file_multiplexing}).
+\item le funzioni di attesa dell'\textit{I/O multiplexing} (vedi
+  sez.~\ref{sec:file_multiplexing}) come \func{select}, \func{pselect},
+  \func{poll}, \func{ppoll}, \func{epoll\_wait} e \func{epoll\_pwait}.
 \item le funzioni del System V IPC che prevedono attese: \func{msgrcv},
   \func{msgsnd} (vedi sez.~\ref{sec:ipc_sysv_mq}), \func{semop} e
   \func{semtimedop} (vedi sez.~\ref{sec:ipc_sysv_sem}).
-\item le funzioni di attesa di un processo: \func{usleep}, \func{nanosleep}
-  (vedi sez.~\ref{sec:sig_pause_sleep}) e \func{clock\_nanosleep} (vedi
-  sez.~\ref{sec:sig_timer_adv}).
+\item le funzioni per la messa in attesa di un processo come \func{usleep},
+  \func{nanosleep} (vedi sez.~\ref{sec:sig_pause_sleep}) e
+  \func{clock\_nanosleep} (vedi sez.~\ref{sec:sig_timer_adv}).
 \item le funzioni che operano sui socket quando è stato impostato un
   \textit{timeout} sugli stessi con \func{setsockopt} (vedi
   sez.~\ref{sec:sock_generic_options}) ed in particolare \func{accept},
@@ -1043,17 +1040,17 @@ comportamento, pur mantenendone immutato il prototipo\footnote{in realtà in
 
 In questa definizione per l'argomento \param{handler} che indica il gestore da
 installare si è usato un tipo di dato, \type{sighandler\_t}, che è una
-estensione GNU, definita dalle \acr{glibc}, che permette di riscrivere il
+estensione GNU, definita dalla \acr{glibc}, che permette di riscrivere il
 prototipo di \func{signal} nella forma appena vista, molto più leggibile di
 quanto non sia la versione originaria, che di norma è definita come:
 \includecodesnip{listati/signal.c}
-questa infatti, per la poca chiarezza della sintassi del C quando si vanno a
+questa infatti, per la complessità della sintassi del C quando si vanno a
 trattare puntatori a funzioni, è molto meno comprensibile.  Da un confronto
 con il precedente prototipo si può dedurre la definizione di
 \typed{sighandler\_t} che è:
 \includecodesnip{listati/sighandler_t.c}
 e cioè un puntatore ad una funzione \ctyp{void} (cioè senza valore di ritorno)
-che prende un argomento di tipo \ctyp{int}. Si noti come si devono usare le
+che prende un argomento di tipo \ctyp{int}. Si noti come si devono usare le
 parentesi intorno al nome della funzione per via delle precedenze degli
 operatori del C, senza di esse si sarebbe definita una funzione che ritorna un
 puntatore a \ctyp{void} e non un puntatore ad una funzione \ctyp{void}.
@@ -1069,10 +1066,12 @@ della funzione da chiamare all'occorrenza del segnale, può assumere anche i
 due valori costanti \const{SIG\_IGN} e \const{SIG\_DFL}. Il primo indica che
 il segnale deve essere ignorato. Il secondo ripristina l'azione predefinita, e
 serve a tornare al comportamento di default quando non si intende più gestire
-direttamente un segnale. Si ricordi però che i due segnali \signal{SIGKILL} e
-\signal{SIGSTOP} non possono essere né ignorati né intercettati e per loro
-l'uso di \func{signal} non ha alcun effetto, qualunque cosa si specifichi
-per \param{handler}.
+direttamente un segnale.
+
+Si ricordi però che i due segnali \signal{SIGKILL} e \signal{SIGSTOP} non
+possono essere né ignorati né intercettati e per loro l'uso di \func{signal}
+non ha alcun effetto, qualunque cosa si specifichi nell'argomento
+\param{handler}.
 
 La funzione restituisce l'indirizzo dell'azione precedente, che può essere
 salvato per poterlo ripristinare (con un'altra chiamata a \func{signal}) in un
@@ -1084,29 +1083,33 @@ notificati.
 L'uso di \func{signal} è soggetto a problemi di compatibilità, dato che essa
 si comporta in maniera diversa per sistemi derivati da BSD o da System V. In
 questi ultimi infatti la funzione è conforme al comportamento originale dei
-primi Unix in cui il gestore viene disinstallato alla sua chiamata, secondo la
+primi Unix in cui il gestore viene disinstallato alla sua chiamata secondo la
 semantica inaffidabile; anche Linux seguiva questa convenzione con le vecchie
 librerie del C come la \acr{libc4} e la \acr{libc5}.\footnote{nelle
-  \acr{libc5} esiste però la possibilità di includere \file{bsd/signal.h} al
-  posto di \headfile{signal.h}, nel qual caso la funzione \func{signal} viene
+  \acr{libc5} esisteva però la possibilità di includere \file{bsd/signal.h} al
+  posto di \headfile{signal.h}, nel qual caso la funzione \func{signal} era
   ridefinita per seguire la semantica affidabile usata da BSD.}
 
 Al contrario BSD segue la semantica affidabile, non disinstallando il gestore
-e bloccando il segnale durante l'esecuzione dello stesso. Con l'utilizzo delle
+e bloccando il segnale durante l'esecuzione dello stesso. Con l'utilizzo della
 \acr{glibc} dalla versione 2 anche Linux è passato a questo comportamento.  Il
 comportamento della versione originale della funzione, il cui uso è deprecato
 per i motivi visti in sez.~\ref{sec:sig_semantics}, può essere ottenuto
 chiamando \funcm{sysv\_signal}, una volta che si sia definita la macro
-\macro{\_XOPEN\_SOURCE}.  In generale, per evitare questi problemi, l'uso di
-\func{signal}, che tra l'altro ha un comportamento indefinito in caso di
-processo multi-\textit{thread}, è da evitare: tutti i nuovi programmi devono
+\macro{\_XOPEN\_SOURCE}.
+
+In generale, per evitare questi problemi e per le possibili differenze nella
+semantica fra versioni diverse di kernel, l'uso di \func{signal} è sempre da
+evitare, visto che tra l'altro la funzione ha un comportamento indefinito in
+caso di processi multi-\textit{thread}; l'unico utilizzo sicuro della funzione
+è con \const{SIG\_IGN} e \const{SIG\_DFL}, in tutti gli altri casi si deve
 usare \func{sigaction}.
 
-È da tenere presente che, seguendo lo standard POSIX, il comportamento di un
-processo che ignora i segnali \signal{SIGFPE}, \signal{SIGILL}, o
-\signal{SIGSEGV}, qualora questi non originino da una chiamata ad una
-\func{kill} o altra funzione affine, è indefinito. Un gestore che ritorna da
-questi segnali può dare luogo ad un ciclo infinito.
+Infine si deve tenere presente che su Linux, seguendo lo standard POSIX, il
+comportamento di un processo che ignora i segnali \signal{SIGFPE},
+\signal{SIGILL}, o \signal{SIGSEGV}, qualora questi non originino da una
+chiamata ad una \func{kill} o altra funzione affine, è indefinito. Un gestore
+che ritorna da questi segnali può dare luogo ad un ciclo infinito.
 
 
 \subsection{Le funzioni per l'invio di segnali}
@@ -1147,9 +1150,10 @@ gestore dovrà prima reinstallare l'azione predefinita, per poi attivarla
 chiamando \func{raise}.
 
 In realtà \func{raise} è una funzione di libreria, che per i processi ordinari
-viene implementata attraverso la funzione di sistema \funcd{kill} che è quella
-che consente effettivamente di inviare un segnale generico ad un processo, il
- suo prototipo è:
+veniva implementata (nelle versioni più recenti del kernel viene usata
+\func{tgkill} che vedremo in sez.~\ref{sec:thread_signal}) attraverso la
+funzione di sistema \funcd{kill} che è quella che consente effettivamente di
+inviare un segnale generico ad un processo, il suo prototipo è:
 
 \begin{funcproto}{
 \fhead{sys/types.h}
@@ -1190,7 +1194,7 @@ con \param{pid} non esistono.
     $>0$ & Il segnale è mandato al processo con \ids{PID} uguale
            a \param{pid}.\\
     0    & Il segnale è mandato ad ogni processo del \textit{process group}
-           del chiamante.\\  
+           (vedi sez.~\ref{sec:sess_proc_group}) del chiamante.\\  
     $-1$ & Il segnale è mandato ad ogni processo (eccetto \cmd{init}).\\
     $<-1$& Il segnale è mandato ad ogni processo del \textit{process group} 
            con \ids{PGID} uguale a $|\param{pid}|$.\\
@@ -1208,13 +1212,16 @@ illustrato in tab.~\ref{tab:sig_kill_values} che riporta i valori possibili
 per questo argomento. Si tenga conto però che il sistema ricicla i \ids{PID}
 (come accennato in sez.~\ref{sec:proc_pid}) per cui l'esistenza di un processo
 non significa che esso sia realmente quello a cui si intendeva mandare il
-segnale.
+segnale (torneremo su questo in sez.~\ref{sec:sig_pid_fd}).
 
 Indipendentemente dalla funzione specifica che viene usata solo
 l'amministratore può inviare un segnale ad un processo qualunque, in tutti gli
 altri casi l'\ids{UID} reale o l'\ids{UID} effettivo del processo chiamante
 devono corrispondere all'\ids{UID} reale o all'\ids{UID} salvato della
-destinazione. Fa eccezione il caso in cui il segnale inviato sia
+destinazione.\footnote{questo a partire dal kernel 1.3.78, seguendo lo
+  standard POSIX.1; in precedenza il comportamento era diverso, gli
+  interessati alla storia possono consultare la pagina di manuale della
+  funzione.} Fa eccezione il caso in cui il segnale inviato sia
 \signal{SIGCONT}, nel quale occorre anche che entrambi i processi appartengano
 alla stessa sessione.
 
@@ -1287,9 +1294,6 @@ standard POSIX, prima della terminazione tutti i file aperti e gli stream
 saranno chiusi ed i buffer scaricati su disco. Non verranno invece eseguite le
 eventuali funzioni registrate con \func{atexit} e \func{on\_exit}.
 
-
-
-
 \subsection{Le funzioni di allarme ed i \textit{timer}}
 \label{sec:sig_alarm_abort}
 
@@ -1333,11 +1337,11 @@ processo tre diversi timer:
   corrisponde al \textit{clock time}). La scadenza di questo timer provoca
   l'emissione di \signal{SIGALRM};
 \item un \textit{virtual timer} che calcola il tempo di processore usato dal
-  processo in user space (che corrisponde all'\textit{user time}). La scadenza
-  di questo timer provoca l'emissione di \signal{SIGVTALRM};
+  processo in \textit{user space} (che corrisponde all'\textit{user time}). La
+  scadenza di questo timer provoca l'emissione di \signal{SIGVTALRM};
 \item un \textit{profiling timer} che calcola la somma dei tempi di processore
-  utilizzati direttamente dal processo in user space, e dal kernel nelle
-  \textit{system call} ad esso relative (che corrisponde a quello che in
+  utilizzati direttamente dal processo in \textit{user space}, e dal kernel
+  nelle \textit{system call} ad esso relative (che corrisponde a quello che in
   sez.~\ref{sec:sys_unix_time} abbiamo chiamato \textit{processor time}). La
   scadenza di questo timer provoca l'emissione di \signal{SIGPROF}.
 \end{itemize*}
@@ -1419,7 +1423,7 @@ questo modo il ciclo verrà ripetuto; se invece il valore di \var{it\_interval}
 L'uso di \func{setitimer} consente dunque un controllo completo di tutte le
 caratteristiche dei timer, ed in effetti la stessa \func{alarm}, benché
 definita direttamente nello standard POSIX.1, può a sua volta essere espressa
-in termini di \func{setitimer}, come evidenziato dal manuale delle \acr{glibc}
+in termini di \func{setitimer}, come evidenziato dal manuale della \acr{glibc}
 \cite{GlibcMan} che ne riporta la definizione mostrata in
 fig.~\ref{fig:sig_alarm_def}.\footnote{questo comporta anche che non è il caso
   di mescolare chiamate ad \func{abort} e a \func{setitimer}.}
@@ -1498,7 +1502,7 @@ una operazione un numero sufficiente di volte per far passare il tempo
 richiesto.
 
 Ma in un sistema multitasking un ciclo di attesa è solo un inutile spreco di
-tempo di processore, dato che altri programmi possono essere eseguiti nel
+tempo di processore dato che altri programmi possono essere eseguiti nel
 frattempo, per questo ci sono delle apposite funzioni che permettono di
 mantenere un processo in attesa per il tempo voluto, senza impegnare il
 processore. In pratica si tratta di funzioni che permettono di portare
@@ -1565,15 +1569,15 @@ realizzata con l'uso di \func{pause} e \func{alarm}, in una maniera analoga a
 quella dell'esempio che vedremo in sez.~\ref{sec:sig_example}. In tal caso
 mescolare chiamate di \func{alarm} e \func{sleep} o modificare l'azione
 associata \signal{SIGALRM}, può portare a dei risultati indefiniti. Nel caso
-delle \acr{glibc} è stata usata una implementazione completamente indipendente
+della \acr{glibc} è stata usata una implementazione completamente indipendente
 e questi problemi non ci sono, ma un programma portabile non può fare questa
 assunzione.
 
 La granularità di \func{sleep} permette di specificare attese soltanto in
 secondi, per questo sia sotto BSD4.3 che in SUSv2 è stata definita un'altra
 funzione con una precisione teorica del microsecondo. I due standard hanno
-delle definizioni diverse, ma le \acr{glibc} seguono (secondo la pagina di
-manuale almeno dalla versione 2.2.2) seguono quella di SUSv2 per cui la
+delle definizioni diverse, ma la \acr{glibc} segue (secondo la pagina di
+manuale almeno dalla versione 2.2.2)  quella di SUSv2 per cui la
 funzione \funcd{usleep} (dove la \texttt{u} è intesa come sostituzione di
 $\mu$), ha il seguente prototipo:
 
@@ -1833,12 +1837,12 @@ che si fa in questo caso è impostare all'interno del gestore un opportuno flag
 da controllare nel corpo principale del programma, con un codice del tipo di
 quello riportato in fig.~\ref{fig:sig_event_wrong}.
 
-La logica del programma è quella di far impostare al gestore (\texttt{\small
-  14--19}) una variabile globale, preventivamente inizializzata nel programma
-principale, ad un diverso valore. In questo modo dal corpo principale del
-programma si potrà determinare, osservandone il contenuto di detta variabile,
-l'occorrenza o meno del segnale, ed eseguire le azioni conseguenti
-(\texttt{\small 6--11}) relative.
+La logica del programma è quella di impostare nel gestore una variabile
+globale preventivamente inizializzata nel programma principale ad un valore
+diverso (\texttt{\small 14--19}). In questo modo dal corpo principale del
+programma si potrà determinare, osservando il contenuto di detta variabile,
+l'occorrenza o meno del segnale, ed eseguire le conseguenti azioni relative
+(\texttt{\small 6--11}).
 
 \begin{figure}[!htbp]
   \footnotesize\centering
@@ -1861,11 +1865,11 @@ la sua occorrenza sarà perduta.
 
 Questi esempi ci mostrano come per poter eseguire una gestione effettiva dei
 segnali occorrono delle funzioni più sofisticate di quelle finora
-illustrate. La funzione \func{signal} infatti ha la sua origine nella
-interfaccia alquanto primitiva che venne adottata nei primi sistemi Unix, ma
-con questa funzione è sostanzialmente impossibile gestire in maniera adeguata
-di tutti i possibili aspetti con cui un processo deve reagire alla ricezione
-di un segnale.
+illustrate. La funzione \func{signal} infatti ha la sua origine
+nell'interfaccia alquanto primitiva che venne adottata nei primi sistemi Unix,
+ma con questa funzione è sostanzialmente impossibile gestire in maniera
+adeguata di tutti i possibili aspetti con cui un processo deve reagire alla
+ricezione di un segnale.
 
 
 
@@ -2001,10 +2005,10 @@ relativi all'uso di \func{signal}. Per ovviare a tutto questo lo standard
 POSIX.1 ha ridefinito completamente l'interfaccia per la gestione dei segnali,
 rendendola molto più flessibile e robusta, anche se leggermente più complessa.
 
-La funzione di sistema principale prevista dall'interfaccia POSIX.1 per i
-segnali è \funcd{sigaction}. Essa ha sostanzialmente lo stesso uso di
-\func{signal}, permette cioè di specificare le modalità con cui un segnale può
-essere gestito da un processo. Il suo prototipo è:
+La principale funzione di sistema prevista dall'interfaccia POSIX.1 per la
+gestione dei segnali è \funcd{sigaction}. Essa ha sostanzialmente lo stesso
+uso di \func{signal}, permette cioè di specificare le modalità con cui un
+segnale può essere gestito da un processo. Il suo prototipo è:
 
 \begin{funcproto}{
 \fhead{signal.h}
@@ -2707,8 +2711,8 @@ massimo associato ad un segnale \textit{real-time}.
 Su Linux di solito il primo valore è 33, mentre il secondo è \code{\_NSIG-1},
 che di norma (vale a dire sulla piattaforma i386) è 64. Questo dà un totale di
 32 segnali disponibili, contro gli almeno 8 richiesti da POSIX.1b. Si tenga
-presente però che i primi segnali \textit{real-time} disponibili vendono usati
-dalle \acr{glibc} per l'implementazione dei \textit{thread} POSIX (vedi
+presente però che i primi segnali \textit{real-time} disponibili vengono usati
+dalla \acr{glibc} per l'implementazione dei \textit{thread} POSIX (vedi
 sez.~\ref{sec:thread_posix_intro}), ed il valore di \const{SIGRTMIN} viene
 modificato di conseguenza.\footnote{per la precisione vengono usati i primi
   tre per la vecchia implementazione dei \textit{LinuxThread} ed i primi due
@@ -2820,11 +2824,11 @@ nell'argomento \param{value}. Se invece si è installato un gestore nella forma
 classica il segnale sarà generato, ma tutte le caratteristiche tipiche dei
 segnali \textit{real-time} (priorità e coda) saranno perse.
 
-Secondo lo standard POSIX la profondità della coda è indicata dalla costante
+Per lo standard POSIX la profondità della coda è indicata dalla costante
 \constd{SIGQUEUE\_MAX}, una della tante costanti di sistema definite dallo
 standard POSIX che non abbiamo riportato esplicitamente in
 sez.~\ref{sec:sys_limits}. Il suo valore minimo secondo lo standard,
-\constd{\_POSIX\_SIGQUEUE\_MAX}, è pari a 32. Nel caso di Linux la coda ha una
+\macrod{\_POSIX\_SIGQUEUE\_MAX}, è pari a 32. Nel caso di Linux la coda ha una
 dimensione variabile; fino alla versione 2.6.7 c'era un limite massimo globale
 che poteva essere impostato come parametro del kernel in
 \sysctlfiled{kernel/rtsig-max} ed il valore predefinito era pari a 1024. A
@@ -2911,8 +2915,6 @@ ci sono segnali pendenti la funzione ritornerà immediatamente, in questo modo
 si può eliminare un segnale dalla coda senza dover essere bloccati qualora
 esso non sia presente.
 
-\itindbeg{thread} 
-
 L'uso di queste funzioni è principalmente associato alla gestione dei segnali
 con i \textit{thread}. In genere esse vengono chiamate dal \textit{thread}
 incaricato della gestione, che al ritorno della funzione esegue il codice che
@@ -2924,8 +2926,6 @@ che venga eseguita l'azione predefinita, devono essere mascherati per tutti i
 \textit{thread}, compreso quello dedicato alla gestione, che potrebbe
 riceverlo fra due chiamate successive.
 
-\itindend{thread} 
-
 
 \subsection{La gestione avanzata delle temporizzazioni}
 \label{sec:sig_timer_adv}
@@ -3047,11 +3047,21 @@ tab.~\ref{tab:sig_timer_clockid_types}.
 \end{table}
 
 
+% TODO: dal 4.17 CLOCK_MONOTONIC e CLOCK_BOOTTIME sono identici vedi
+% https://lwn.net/Articles/751651/ e
+% https://git.kernel.org/linus/d6ed449afdb38f89a7b38ec50e367559e1b8f71f
+% change reverted, vedi: https://lwn.net/Articles/752757/
+
 % NOTE: dal 3.0 anche i cosiddetti Posix Alarm Timers, con
 % CLOCK_REALTIME_ALARM vedi http://lwn.net/Articles/429925/
 % TODO: dal 3.10 anche CLOCK_TAI 
 
-Per poter utilizzare queste funzionalità le \acr{glibc} richiedono che la
+% TODO seguire l'evoluzione delle nuove syscall per il problema del 2038,
+% iniziate ad entrare nel kernel dal 5.1, vedi
+% https://lwn.net/Articles/776435/, https://lwn.net/Articles/782511/,
+% https://git.kernel.org/linus/b1b988a6a035 
+
+Per poter utilizzare queste funzionalità la \acr{glibc} richiede che la
 macro \macro{\_POSIX\_C\_SOURCE} sia definita ad un valore maggiore o uguale
 di \texttt{199309L} (vedi sez.~\ref{sec:intro_gcc_glibc_std}), inoltre i
 programmi che le usano devono essere collegati con la libreria delle
@@ -3559,7 +3569,7 @@ singolo (in gergo \textit{one shot}).
 
 Infine, quando un timer non viene più utilizzato, lo si può cancellare,
 rimuovendolo dal sistema e recuperando le relative risorse, effettuando in
-sostanza l'operazione inversa rispetto a \funcd{timer\_create}. Per questo
+sostanza l'operazione inversa rispetto a \func{timer\_create}. Per questo
 compito lo standard prevede una apposita funzione di sistema,
 \funcd{timer\_delete}, il cui prototipo è:
 
@@ -3638,7 +3648,6 @@ specificato \const{TIMER\_ABSTIME} per \param{flags}.
 \itindend{POSIX~Timer~API}
 
 
-
 \subsection{Ulteriori funzioni di gestione}
 \label{sec:sig_specific_features}
 
@@ -3668,8 +3677,6 @@ dato che essa può solo assicurare che un segnale è stato inviato, dato che
 escluderne l'avvenuto invio al momento della chiamata non significa nulla
 rispetto a quanto potrebbe essere in un qualunque momento successivo.
 
-\itindbeg{stack} 
-
 Una delle caratteristiche di BSD, disponibile anche in Linux, è la possibilità
 di usare uno \textit{stack} alternativo per i segnali; è cioè possibile fare
 usare al sistema un altro \textit{stack} (invece di quello relativo al
@@ -3770,8 +3777,6 @@ si accresce automaticamente (ed infatti eccederne le dimensioni può portare a
 conseguenze imprevedibili).  Si ricordi infine che una chiamata ad una
 funzione della famiglia \func{exec} cancella ogni \textit{stack} alternativo.
 
-\itindend{stack} 
-
 Abbiamo visto in fig.~\ref{fig:sig_sleep_incomplete} come si possa usare
 \func{longjmp} per uscire da un gestore rientrando direttamente nel corpo
 del programma, sappiamo però che nell'esecuzione di un gestore il segnale
@@ -3785,7 +3790,7 @@ ripristinata la maschera dei segnali precedente l'invocazione, come per un
 normale ritorno, mentre quella usata da System V no.
 
 Lo standard POSIX.1 non specifica questo comportamento per \func{setjmp} e
-\func{longjmp}, ed il comportamento delle \acr{glibc} dipende da quale delle
+\func{longjmp}, ed il comportamento della \acr{glibc} dipende da quale delle
 caratteristiche si sono abilitate con le macro viste in
 sez.~\ref{sec:intro_gcc_glibc_std}.
 
@@ -3826,6 +3831,27 @@ tipo \type{sigjmp\_buf}, è assolutamente identica a \func{longjmp}.
 % argomento a priorità IDLE (fare quando non resta niente altro da trattare)
 
 
+\subsection{I \textit{pidfd} e l'invio di segnali \textit{race-free}}
+\label{sec:sig_pid_fd}
+
+
+% TODO: trattare (qui?) pidfd_send_signal() introdotta con il kernel 5.1 vedi
+% https://lwn.net/Articles/784831/, https://lwn.net/Articles/773459/ e
+% https://lwn.net/Articles/801319/ 
+% oppure sopra in "Ulteriori funzioni di gestione"
+
+% TODO: Nuova subsection sui pidfd, e le funzioni correlate, in particolare:
+% trattare pidfd_send_signal, aggiunta con il kernel 5.1 (vedi
+% https://lwn.net/Articles/783052/) per mandare segnali a processi senza dover
+% usare un PID, vedi anche https://lwn.net/Articles/773459/,
+% https://git.kernel.org/linus/3eb39f47934f
+% trattare pure pidfd_open() (vedi https://lwn.net/Articles/789023/) per
+% ottere un pid fd pollabile aggiunta con il kernel 5.3
+% man pidfd_send_signal su le versioni più recenti della man pages
+
+
+
+
 % LocalWords:  kernel POSIX timer shell control ctrl kill raise signal handler
 % LocalWords:  reliable unreliable fig race condition sez struct process table
 % LocalWords:  delivered pending scheduler sigpending l'I suspend SIGKILL wait