Lavoro in treno per webbit
[gapil.git] / signal.tex
index 2f3b75b8c002272cb102ff8d78842a5ce008d10e..246c308c1f36bb0ab62cfe6ca999cdd6fdd5ed10 100644 (file)
@@ -16,7 +16,7 @@ In questo capitolo esamineremo i vari aspetti della gestione dei segnali,
 partendo da una introduzione relativa ai concetti base con cui essi vengono
 realizzati, per poi affrontarne la classificazione a secondo di uso e modalità
 di generazione fino ad esaminare in dettaglio funzioni e le metodologie di
-gestione.
+gestione. 
 
 
 \section{Introduzione}
@@ -750,7 +750,7 @@ processo alla loro occorrenza.
 
 
 \subsection{Il comportamento generale del sistema.}
-  \label{sec:sig_gen_beha}
+\label{sec:sig_gen_beha}
 
 Abbiamo già trattato in \secref{sec:sig_intro} le modalità con cui il sistema
 gestisce l'interazione fra segnali e processi, ci resta da esaminare però il
@@ -778,28 +778,29 @@ manipolatore; viene mantenuto invece ogni eventuale settaggio dell'azione a
 programmi eseguiti in background, che altrimenti sarebbero interrotti da una
 successiva pressione di \texttt{C-c} o \texttt{C-y}.
 
-Per quanto riguarda tutte le altre system call esse vengono tradizionalmente
-classificate, proprio in base al loro comportamento nei confronti dei segnali,
-in \textsl{lente} (\textit{slow}) e \textsl{veloci} (\textit{fast}). La gran
-parte appartiene a quest'ultima categoria che non è influenzata dall'arrivo di
-un segnale. In tal caso un eventuale manipolatore viene sempre eseguito dopo
-che la system call è stata completata. Esse sono dette \textsl{veloci} proprio
-in quanto la loro esecuzione è sostanzialmente immediata e attendere per
-eseguire un manipolatore non comporta nessun inconveniente.
-
-Esistono però dei casi in cui questo non è possibile perché renderebbe
-impossibile una risposta pronta al segnale. In generale questo avviene tutte
-le volte che si ha a che fare con system call che possono bloccarsi
-indefinitamente, (quelle che, per questo, vengono chiamate \textsl{lente}). Un
-elenco dei casi in cui si presenta questa situazione è il seguente:
+Per quanto riguarda il comportamento di tutte le altre system call si danno
+sostanzialmente due casi, a seconda che esse siano \textsl{lente}
+(\textit{slow}) o \textsl{veloci} (\textit{fast}). La gran parte di esse
+appartiene a quest'ultima categoria, che non è influenzata dall'arrivo di un
+segnale. Esse sono dette \textsl{veloci} in quanto la loro esecuzione è
+sostanzialmente immediata; la risposta al segnale viene sempre data dopo che
+la system call è stata completata, in quanto attendere per eseguire un
+manipolatore non comporta nessun inconveniente.
+
+In alcuni casi però alcune system call (che per questo motivo vengono chiamate
+\textsl{lente}) possono bloccarsi indefinitamente. In questo caso non si può
+attendere la conclusione della sistem call, perché questo renderebbe
+impossibile una risposta pronta al segnale, per cui il manipolatore viene
+eseguito prima che la system call sia ritornata.  Un elenco dei casi in cui si
+presenta questa situazione è il seguente:
 \begin{itemize}
-\item lettura da file che possono bloccarsi in attesa di dati non ancora
-  presenti (come per certi file di dispositivo, la rete o le pipe).
-\item scrittura sugli stessi file, nel caso in cui dati non possano essere
+\item la lettura da file che possono bloccarsi in attesa di dati non ancora
+  presenti (come per certi file di dispositivo, i socket o le pipe).
+\item la scrittura sugli stessi file, nel caso in cui dati non possano essere
   accettati immediatamente.
-\item apertura di un file di dispositivo che richiede operazioni non immediate
-  per una una risposta. 
-\item operazioni eseguite con \func{ioctl} che non è detto possano essere
+\item l'apertura di un file di dispositivo che richiede operazioni non
+  immediate per una una risposta.
+\item le operazioni eseguite con \func{ioctl} che non è detto possano essere
   eseguite immediatamente.
 \item le funzioni di intercomunicazione che si bloccano in attesa di risposte
   da altri processi.
@@ -1400,7 +1401,7 @@ la creazione di zombie.
 #include <sys/wait.h>
 #include "macro.h"
 
-void Hand_CHLD(int sig)
+void sigchld_hand(int sig)
 {
     int errno_save;
     int status;
@@ -1794,16 +1795,6 @@ struct sigaction
   \label{fig:sig_sigaction}
 \end{figure}
 
-Come si può notare da quanto riportato in \figref{fig:sig_sigaction} in Linux
-\func{sigaction} permette di specificare il manipolatore in due forme diverse,
-indicate dai campi \var{sa\_handler} e \var{sa\_sigaction}; esse devono essere
-usate in maniera alternativa (in certe implementazioni questi vengono
-specificati come \ctyp{union}): la prima è quella classica usata anche con
-\func{signal}, la seconda permette invece di usare un manipolatore in grado di
-ricevere informazioni più dettagliate dal sistema (ad esempio il tipo di
-errore in caso di \macro{SIGFPE}), attraverso dei parametri aggiuntivi; per i
-dettagli si consulti la man page di \func{sigaction}).
-
 Il campo \var{sa\_mask} serve ad indicare l'insieme dei segnali che devono
 essere bloccati durante l'esecuzione del manipolatore, ad essi viene comunque
 sempre aggiunto il segnale che ne ha causato la chiamata, a meno che non si
@@ -1860,6 +1851,68 @@ in \tabref{tab:sig_sa_flag}.
   \label{tab:sig_sa_flag}
 \end{table}
 
+Come si può notare in \figref{fig:sig_sigaction} \func{sigaction}
+permette\footnote{La possibilità è prevista dallo standard POSIX.1b, ma in
+  Linux è stata aggiunta a partire dai kernel della serie 2.2.x. In precedenza
+  era possibile ottenere alcune informazioni addizionali usando
+  \var{sa\_handler} con un secondo parametro addizionale di tipo \var{struct
+    sigcontext}, che adesso è deprecato.}  di utilizzare due forme diverse di
+manipolatore, da specificare, a seconda dell'uso o meno del flag
+\macro{SA\_SIGINFO}, rispettivamente attraverso i campi \var{sa\_sigaction} o
+\var{sa\_handler}, (che devono essere usati in maniera alternativa, in certe
+implementazioni questi vengono addirittura definiti come \ctyp{union}): la
+prima è quella classica usata anche con \func{signal}, la seconda permette
+invece di usare un manipolatore in grado di ricevere informazioni più
+dettagliate dal sistema, attraverso la struttura \var{siginfo\_t}, riportata
+in \figref{fig:sig_siginfo_t}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+siginfo_t {
+    int      si_signo;  /* Signal number */
+    int      si_errno;  /* An errno value */
+    int      si_code;   /* Signal code */
+    pid_t    si_pid;    /* Sending process ID */
+    uid_t    si_uid;    /* Real user ID of sending process */
+    int      si_status; /* Exit value or signal */
+    clock_t  si_utime;  /* User time consumed */
+    clock_t  si_stime;  /* System time consumed */
+    sigval_t si_value;  /* Signal value */
+    int      si_int;    /* POSIX.1b signal */
+    void *   si_ptr;    /* POSIX.1b signal */
+    void *   si_addr;   /* Memory location which caused fault */
+    int      si_band;   /* Band event */
+    int      si_fd;     /* File descriptor */
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{siginfo\_t}.} 
+  \label{fig:sig_siginfo_t}
+\end{figure}
+Installando un manipolatore di tipo \var{sa\_sigaction} diventa allora
+possibile accedere alle informazioni restituite attraverso il puntatore a
+questa struttura. Tutti i segnali settano i campi \var{si\_signo}, che riporta
+il segnale ricevuto, \var{si\_errno}, che riporta il codice di errore, e
+\var{si\_code}, che viene usato per indicare la ragione per cui è stato emesso
+il segnale (come i dettagli sul tipo di errore per \macro{SIGFPE} e
+\macro{SIGILL}) ed ha valori diversi\footnote{un elenco dettagliato è
+  disponibile nella man page di \func{sigaction}.} a seconda del tipo di
+segnale ricevuto.
+
+Il resto della struttura può essere definito come \ctyp{union} ed i valori
+eventualmente presenti dipendono dal segnale, così \macro{SIGCHLD} ed i
+segnali POSIX.1b\footnote{NdA trovare quale sono e completare l'informazione.}
+inviati tramite \func{kill} avvalorano \var{si\_pid} e \var{si\_uid} coi
+valori corrispondenti al processo che ha emesso il segnale, \macro{SIGILL},
+\macro{SIGFPE}, \macro{SIGSEGV} e \macro{SIGBUS} avvalorano \var{si\_addr} con
+l'indirizzo cui è avvenuto l'errore, \macro{SIGIO} (vedi
+\secref{sec:file_asyncronous_io}) e \macro{SIGPOLL} avvalorano \var{si\_fd}
+con il numero del file descriptor.
+
 Benché sia possibile usare nello stesso programma sia \func{sigaction} che
 \func{signal} occorre molta attenzione, in quanto le due funzioni possono
 interagire in maniera anomala. Infatti l'azione specificata con
@@ -1873,16 +1926,9 @@ Per questo 
 ripristinare correttamente un manipolatore precedente, anche se questo è stato
 installato con \func{signal}. In generale poi non è il caso di usare il valore
 di ritorno di \func{signal} come campo \var{sa\_handler}, o viceversa, dato
-che in certi sistemi questi possono essere diversi. In generale dunque, a meno
-che non si sia vincolati allo standard ISO C, è sempre il caso di evitare
-l'uso di \func{signal} a favore di \func{sigaction}.
-
-Per questo motivo si è provveduto, per mantenere un'interfaccia semplificata
-che abbia le stesse caratteristiche di \func{signal}, a definire una funzione
-equivalente attraverso \func{sigaction}; la funzione è \code{Signal}, e si
-trova definita come \code{inline} nel file \file{wrapper.h} (nei sorgenti
-allegati), riportata in \figref{fig:sig_Signal_code}. La riutilizzeremo spesso
-in seguito. 
+che in certi sistemi questi possono essere diversi. In definitiva dunque, a
+meno che non si sia vincolati all'aderenza stretta allo standard ISO C, è
+sempre il caso di evitare l'uso di \func{signal} a favore di \func{sigaction}.
 
 \begin{figure}[!htb]
   \footnotesize \centering
@@ -1914,6 +1960,13 @@ inline SigFunc * Signal(int signo, SigFunc *func)
   \label{fig:sig_Signal_code}
 \end{figure}
 
+Per questo motivo si è provveduto, per mantenere un'interfaccia semplificata
+che abbia le stesse caratteristiche di \func{signal}, a definire una funzione
+equivalente attraverso \func{sigaction}; la funzione è \code{Signal}, e si
+trova definita come \code{inline} nel file \file{wrapper.h} (nei sorgenti
+allegati), riportata in \figref{fig:sig_Signal_code}. La riutilizzeremo spesso
+in seguito. 
+
 \subsection{La gestione della \textsl{maschera dei segnali} o 
   \textit{signal mask}}
 \label{sec:sig_sigmask}
@@ -2278,26 +2331,6 @@ ripristinata in un successivo \func{siglongjmp}; quest'ultima funzione, a
 parte l'uso di \type{sigjmp\_buf} per \param{env}, è assolutamente identica a
 \func{longjmp}.
 
-\begin{prototype}{signal.h}
-{int sigaltstack(const stack\_t *ss, stack\_t *oss)}
-  
-Installa un nuovo stack per i segnali.
-  
-  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
-    errore, nel qual caso \var{errno} assumerà i valori:
-
-  \begin{errlist}
-  \item[\macro{ENOMEM}] La dimensione specificata per il nuovo stack è minore
-  di \macro{MINSIGSTKSZ}.
-  \item[\macro{EPERM}] Uno degli indirizzi non è valido.
-  \item[\macro{EFAULT}] Si è cercato di cambiare lo stack alternativo mentre
-  questo è attivo (cioè il processo è in esecuzione su di esso).
-  \item[\macro{EINVAL}] \param{ss} non è nullo e \var{ss\_flags} contiene un
-  valore diverso da zero che non è \macro{SS\_DISABLE}.
-  \end{errlist}}
-\end{prototype}
-
-
 
 %%% Local Variables: 
 %%% mode: latex