Varie correzioni da Fabio Rossi, e relative aggiunte nei ringrazimenti per
[gapil.git] / prochand.tex
index 69da2ce7199b032d725e6ca47e045a4d92bdf92c..651e14536584e9e1e5289714ea92da1ef8cdc928 100644 (file)
@@ -1,9 +1,9 @@
 %% prochand.tex
 %%
-%% Copyright (C) 2000-2004 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2005 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
-%% Free Software Foundation; with the Invariant Sections being "Prefazione",
+%% Free Software Foundation; with the Invariant Sections being "Un preambolo",
 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
 %% license is included in the section entitled "GNU Free Documentation
 %% License".
@@ -116,7 +116,7 @@ Dato che tutti i processi attivi nel sistema sono comunque generati da
 \cmd{init} o da uno dei suoi figli\footnote{in realtà questo non è del tutto
   vero, in Linux ci sono alcuni processi speciali che pur comparendo come
   figli di \cmd{init}, o con \acr{pid} successivi, sono in realtà generati
-  direttamente dal kernel, (come \cmd{keventd}, \cmd{kswapd}, etc.).} si
+  direttamente dal kernel, (come \cmd{keventd}, \cmd{kswapd}, ecc.).} si
 possono classificare i processi con la relazione padre/figlio in
 un'organizzazione gerarchica ad albero, in maniera analoga a come i file sono
 organizzati in un albero di directory (si veda
@@ -144,8 +144,8 @@ fig.~\ref{fig:proc_task_struct}.
 \end{figure}
 
 Come accennato in sez.~\ref{sec:intro_unix_struct} è lo
-\textit{scheduler}\index{scheduler} che decide quale processo mettere in
-esecuzione; esso viene eseguito ad ogni system call ed ad ogni
+\textit{scheduler}\index{\textit{scheduler}} che decide quale processo mettere
+in esecuzione; esso viene eseguito ad ogni system call ed ad ogni
 interrupt,\footnote{più in una serie di altre occasioni. NDT completare questa
   parte.} (ma può essere anche attivato esplicitamente). Il timer di sistema
 provvede comunque a che esso sia invocato periodicamente, generando un
@@ -157,10 +157,10 @@ Hertz.\footnote{Il valore usuale di questa costante 
   sez.~\ref{sec:sys_unix_time}).}
 %Si ha cioè un interrupt dal timer ogni centesimo di secondo.
 
-Ogni volta che viene eseguito, lo \textit{scheduler}\index{scheduler} effettua
-il calcolo delle priorità dei vari processi attivi (torneremo su questo in
-sez.~\ref{sec:proc_priority}) e stabilisce quale di essi debba essere posto in
-esecuzione fino alla successiva invocazione.
+Ogni volta che viene eseguito, lo \textit{scheduler}\index{\textit{scheduler}}
+effettua il calcolo delle priorità dei vari processi attivi (torneremo su
+questo in sez.~\ref{sec:proc_priority}) e stabilisce quale di essi debba
+essere posto in esecuzione fino alla successiva invocazione.
 
 
 \subsection{Una panoramica sulle funzioni fondamentali}
@@ -267,9 +267,10 @@ fig.~\ref{fig:proc_fork_code}, nel programma \file{ForkTest.c}.
 Il fatto che il \acr{pid} sia un numero univoco per il sistema lo rende un
 candidato per generare ulteriori indicatori associati al processo di cui
 diventa possibile garantire l'unicità: ad esempio in alcune implementazioni la
-funzione \func{tmpname} (si veda sez.~\ref{sec:file_temp_file}) usa il
-\acr{pid} per generare un pathname univoco, che non potrà essere replicato da
-un altro processo che usi la stessa funzione.
+funzione \func{tempnam} (si veda sez.~\ref{sec:file_temp_file}) usa il
+\acr{pid} per generare un \index{\textit{pathname}}\textit{pathname} univoco,
+che non potrà essere replicato da un altro processo che usi la stessa
+funzione.
 
 Tutti i processi figli dello stesso processo padre sono detti
 \textit{sibling}, questa è una delle relazioni usate nel \textsl{controllo di
@@ -325,14 +326,14 @@ pertanto padre e figlio vedono variabili diverse.
 Per quanto riguarda la gestione della memoria, in generale il segmento di
 testo, che è identico per i due processi, è condiviso e tenuto in read-only
 per il padre e per i figli. Per gli altri segmenti Linux utilizza la tecnica
-del \textit{copy on write}\index{copy on write}; questa tecnica comporta che
-una pagina di memoria viene effettivamente copiata per il nuovo processo solo
-quando ci viene effettuata sopra una scrittura (e si ha quindi una reale
-differenza fra padre e figlio). In questo modo si rende molto più efficiente
-il meccanismo della creazione di un nuovo processo, non essendo più necessaria
-la copia di tutto lo spazio degli indirizzi virtuali del padre, ma solo delle
-pagine di memoria che sono state modificate, e solo al momento della modifica
-stessa.
+del \textit{copy on write}\index{\textit{copy~on~write}}; questa tecnica
+comporta che una pagina di memoria viene effettivamente copiata per il nuovo
+processo solo quando ci viene effettuata sopra una scrittura (e si ha quindi
+una reale differenza fra padre e figlio). In questo modo si rende molto più
+efficiente il meccanismo della creazione di un nuovo processo, non essendo più
+necessaria la copia di tutto lo spazio degli indirizzi virtuali del padre, ma
+solo delle pagine di memoria che sono state modificate, e solo al momento
+della modifica stessa.
 
 La differenza che si ha nei due processi è che nel processo padre il valore di
 ritorno della funzione \func{fork} è il \acr{pid} del processo figlio, mentre
@@ -399,8 +400,8 @@ degli eventuali tempi di attesa in secondi (eseguiti tramite la funzione
 descrizione delle opzioni); il codice completo, compresa la parte che gestisce
 le opzioni a riga di comando, è disponibile nel file \file{ForkTest.c},
 distribuito insieme agli altri sorgenti degli esempi su
-\href{http://gapil.firenze.linux.it/gapil_source.tgz}
-{\texttt{http://gapil.firenze.linux.it/gapil\_source.tgz}}.
+\href{http://gapil.truelite.it/gapil_source.tgz}
+{\textsf{http://gapil.truelite.it/gapil\_source.tgz}}.
 
 Decifrato il numero di figli da creare, il ciclo principale del programma
 (\texttt{\small 24--40}) esegue in successione la creazione dei processi figli
@@ -441,8 +442,8 @@ Go to next child
 Esaminiamo questo risultato: una prima conclusione che si può trarre è che non
 si può dire quale processo fra il padre ed il figlio venga eseguito per
 primo\footnote{a partire dal kernel 2.5.2-pre10 è stato introdotto il nuovo
-  scheduler\index{scheduler} di Ingo Molnar che esegue sempre per primo il
-  figlio; per mantenere la portabilità è opportuno non fare comunque
+  scheduler\index{\textit{scheduler}} di Ingo Molnar che esegue sempre per
+  primo il figlio; per mantenere la portabilità è opportuno non fare comunque
   affidamento su questo comportamento.} dopo la chiamata a \func{fork};
 dall'esempio si può notare infatti come nei primi due cicli sia stato eseguito
 per primo il padre (con la stampa del \acr{pid} del nuovo processo) per poi
@@ -464,7 +465,7 @@ istruzioni del codice fra padre e figli, n
 essere messi in esecuzione. Se è necessaria una qualche forma di precedenza
 occorrerà provvedere ad espliciti meccanismi di sincronizzazione, pena il
 rischio di incorrere nelle cosiddette 
-\textit{race condition}\index{race condition
+\textit{race condition}\index{\textit{race~condition}
 (vedi sez.~\ref{sec:proc_race_cond}).
 
 Si noti inoltre che essendo i segmenti di memoria utilizzati dai singoli
@@ -570,7 +571,7 @@ file senza una qualche forma di sincronizzazione in quanto, come visto anche
 con il nostro esempio, le varie scritture risulteranno mescolate fra loro in
 una sequenza impredicibile. Per questo le modalità con cui in genere si usano
 i file dopo una \func{fork} sono sostanzialmente due:
-\begin{enumerate}
+\begin{enumerate*}
 \item Il processo padre aspetta la conclusione del figlio. In questo caso non
   è necessaria nessuna azione riguardo ai file, in quanto la sincronizzazione
   della posizione corrente dopo eventuali operazioni di lettura e scrittura
@@ -578,42 +579,44 @@ i file dopo una \func{fork} sono sostanzialmente due:
 \item L'esecuzione di padre e figlio procede indipendentemente. In questo caso
   ciascuno dei due processi deve chiudere i file che non gli servono una volta
   che la \func{fork} è stata eseguita, per evitare ogni forma di interferenza.
-\end{enumerate}
+\end{enumerate*}
 
 Oltre ai file aperti i processi figli ereditano dal padre una serie di altre
 proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in
 comune dopo l'esecuzione di una \func{fork} è la seguente:
 \begin{itemize*}
 \item i file aperti e gli eventuali flag di
-  \textit{close-on-exec}\index{close-on-exec} impostati (vedi
-  sez.~\ref{sec:proc_exec} e sez.~\ref{sec:file_fcntl}).
+  \textit{close-on-exec}\index{\textit{close-on-exec}} impostati (vedi
+  sez.~\ref{sec:proc_exec} e sez.~\ref{sec:file_fcntl});
 \item gli identificatori per il controllo di accesso: l'\textsl{user-ID
     reale}, il \textsl{group-ID reale}, l'\textsl{user-ID effettivo}, il
   \textsl{group-ID effettivo} ed i \textit{group-ID supplementari} (vedi
-  sez.~\ref{sec:proc_access_id}).
+  sez.~\ref{sec:proc_access_id});
 \item gli identificatori per il controllo di sessione: il \textit{process
     group-ID} e il \textit{session id} ed il terminale di controllo (vedi
-  sez.~\ref{sec:sess_proc_group}).
+  sez.~\ref{sec:sess_proc_group});
 \item la directory di lavoro e la directory radice (vedi
-  sez.~\ref{sec:file_work_dir} e sez.~\ref{sec:file_chroot}).
-\item la maschera dei permessi di creazione (vedi sez.~\ref{sec:file_umask}).
+  sez.~\ref{sec:file_work_dir} e sez.~\ref{sec:file_chroot});
+\item la maschera dei permessi di creazione (vedi sez.~\ref{sec:file_umask});
 \item la maschera dei segnali bloccati (vedi sez.~\ref{sec:sig_sigmask}) e le
-  azioni installate (vedi sez.~\ref{sec:sig_gen_beha}).
+  azioni installate (vedi sez.~\ref{sec:sig_gen_beha});
 \item i segmenti di memoria condivisa agganciati al processo (vedi
-  sez.~\ref{sec:ipc_sysv_shm}).
-\item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit}).
+  sez.~\ref{sec:ipc_sysv_shm});
+\item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
+\item le priorità real-time e le affinità di processore (vedi
+  sez.~\ref{sec:proc_real_time});
 \item le variabili di ambiente (vedi sez.~\ref{sec:proc_environ}).
 \end{itemize*}
-le differenze fra padre e figlio dopo la \func{fork} invece sono:
+Le differenze fra padre e figlio dopo la \func{fork} invece sono:
 \begin{itemize*}
-\item il valore di ritorno di \func{fork}.
-\item il \acr{pid} (\textit{process id})
+\item il valore di ritorno di \func{fork};
+\item il \acr{pid} (\textit{process id});
 \item il \acr{ppid} (\textit{parent process id}), quello del figlio viene
-  impostato al \acr{pid} del padre.
+  impostato al \acr{pid} del padre;
 \item i valori dei tempi di esecuzione della struttura \struct{tms} (vedi
-  sez.~\ref{sec:sys_cpu_times}) che nel figlio sono posti a zero.
+  sez.~\ref{sec:sys_cpu_times}) che nel figlio sono posti a zero;
 \item i \textit{lock} sui file (vedi sez.~\ref{sec:file_locking}), che non
-  vengono ereditati dal figlio.
+  vengono ereditati dal figlio;
 \item gli allarmi ed i segnali pendenti (vedi sez.~\ref{sec:sig_gen_beha}), che
   per il figlio vengono cancellati.
 \end{itemize*}
@@ -636,13 +639,14 @@ padre, che costituiva un inutile appesantimento in tutti quei casi in cui la
 \func{fork} veniva fatta solo per poi eseguire una \func{exec}. La funzione
 venne introdotta in BSD per migliorare le prestazioni.
 
-Dato che Linux supporta il \textit{copy on write}\index{copy on write} la
-perdita di prestazioni è assolutamente trascurabile, e l'uso di questa
-funzione (che resta un caso speciale della system call \func{\_\_clone}), è
-deprecato; per questo eviteremo di trattarla ulteriormente.
+Dato che Linux supporta il \textit{copy on
+  write}\index{\textit{copy~on~write}} la perdita di prestazioni è
+assolutamente trascurabile, e l'uso di questa funzione (che resta un caso
+speciale della system call \func{\_\_clone}) è deprecato; per questo eviteremo
+di trattarla ulteriormente.
 
 
-\subsection{La conclusione di un processo.}
+\subsection{La conclusione di un processo}
 \label{sec:proc_termination}
 
 In sez.~\ref{sec:proc_conclusion} abbiamo già affrontato le modalità con cui
@@ -669,16 +673,16 @@ comunque una serie di operazioni: chiude tutti i file aperti, rilascia la
 memoria che stava usando, e così via; l'elenco completo delle operazioni
 eseguite alla chiusura di un processo è il seguente:
 \begin{itemize*}
-\item tutti i file descriptor sono chiusi.
-\item viene memorizzato lo stato di terminazione del processo.
+\item tutti i file descriptor sono chiusi;
+\item viene memorizzato lo stato di terminazione del processo;
 \item ad ogni processo figlio viene assegnato un nuovo padre (in genere
-  \cmd{init}).
+  \cmd{init});
 \item viene inviato il segnale \const{SIGCHLD} al processo padre (vedi
-  sez.~\ref{sec:sig_sigchld}).
+  sez.~\ref{sec:sig_sigchld});
 \item se il processo è un leader di sessione ed il suo terminale di controllo
   è quello della sessione viene mandato un segnale di \const{SIGHUP} a tutti i
-  processi del gruppo di foreground e il terminale di controllo viene
-  disconnesso (vedi sez.~\ref{sec:sess_ctrl_term}).
+  processi del gruppo di \textit{foreground} e il terminale di controllo viene
+  disconnesso (vedi sez.~\ref{sec:sess_ctrl_term});
 \item se la conclusione di un processo rende orfano un \textit{process
     group} ciascun membro del gruppo viene bloccato, e poi gli vengono
   inviati in successione i segnali \const{SIGHUP} e \const{SIGCONT}
@@ -767,10 +771,10 @@ informazione, non pi
 completamente conclusa.
 
 Possiamo utilizzare il nostro programma di prova per analizzare anche questa
-condizione: lanciamo il comando \cmd{forktest} in background, indicando al
-processo padre di aspettare 10 secondi prima di uscire; in questo caso, usando
-\cmd{ps} sullo stesso terminale (prima dello scadere dei 10 secondi)
-otterremo:
+condizione: lanciamo il comando \cmd{forktest} in \textit{background} (vedi
+sez.~\ref{sec:sess_job_control}), indicando al processo padre di aspettare 10
+secondi prima di uscire; in questo caso, usando \cmd{ps} sullo stesso
+terminale (prima dello scadere dei 10 secondi) otterremo:
 
 \footnotesize
 \begin{verbatim}
@@ -850,7 +854,7 @@ Al ritorno della funzione lo stato di terminazione del figlio viene salvato
 nella variabile puntata da \param{status} e tutte le risorse del kernel
 relative al processo (vedi sez.~\ref{sec:proc_termination}) vengono rilasciate.
 Nel caso un processo abbia più figli il valore di ritorno (il \acr{pid} del
-figlio) permette di identificare qual'è quello che è uscito.
+figlio) permette di identificare qual è quello che è uscito.
 
 Questa funzione ha il difetto di essere poco flessibile, in quanto ritorna
 all'uscita di un qualunque processo figlio. Nelle occasioni in cui è
@@ -957,26 +961,32 @@ generato dalla terminazione di un figlio, avremo la certezza che la chiamata a
     \hline
     \hline
     \macro{WIFEXITED(s)}   & Condizione vera (valore non nullo) per un processo
-    figlio che sia terminato normalmente. \\
+                             figlio che sia terminato normalmente. \\
     \macro{WEXITSTATUS(s)} & Restituisce gli otto bit meno significativi dello
-    stato di uscita del processo (passato attraverso \func{\_exit}, \func{exit}
-    o come valore di ritorno di \func{main}). Può essere valutata solo se
-    \val{WIFEXITED} ha restituito un valore non nullo.\\
+                             stato di uscita del processo (passato attraverso
+                             \func{\_exit}, \func{exit} o come valore di
+                             ritorno di \func{main}). Può essere valutata solo
+                             se \val{WIFEXITED} ha restituito un valore non
+                             nullo.\\ 
     \macro{WIFSIGNALED(s)} & Vera se il processo figlio è terminato
-    in maniera anomala a causa di un segnale che non è stato catturato (vedi
-    sez.~\ref{sec:sig_notification}).\\
-    \macro{WTERMSIG(s)}    & restituisce il numero del segnale che ha causato
-    la terminazione anomala del processo.  Può essere valutata solo se
-    \val{WIFSIGNALED} ha restituito un valore non nullo.\\
+                             in maniera anomala a causa di un segnale che non
+                             è stato catturato (vedi
+                             sez.~\ref{sec:sig_notification}).\\ 
+    \macro{WTERMSIG(s)}    & Restituisce il numero del segnale che ha causato
+                             la terminazione anomala del processo.  Può essere
+                             valutata solo se \val{WIFSIGNALED} ha restituito
+                             un valore non nullo.\\ 
     \macro{WCOREDUMP(s)}   & Vera se il processo terminato ha generato un
-    file si \textit{core dump}. Può essere valutata solo se
-    \val{WIFSIGNALED} ha restituito un valore non nullo.\footnotemark \\
+                             file di \textit{core dump}. Può essere valutata
+                             solo se \val{WIFSIGNALED} ha restituito un valore
+                             non nullo.\footnotemark \\ 
     \macro{WIFSTOPPED(s)}  & Vera se il processo che ha causato il ritorno di
-    \func{waitpid} è bloccato. L'uso è possibile solo avendo specificato
-    l'opzione \const{WUNTRACED}. \\
-    \macro{WSTOPSIG(s)}    & restituisce il numero del segnale che ha bloccato
-    il processo, Può essere valutata solo se \val{WIFSTOPPED} ha
-    restituito un valore non nullo. \\
+                             \func{waitpid} è bloccato. L'uso è possibile solo
+                             avendo specificato l'opzione \const{WUNTRACED}. \\
+    \macro{WSTOPSIG(s)}    & Restituisce il numero del segnale che ha bloccato
+                             il processo. Può essere valutata solo se
+                             \val{WIFSTOPPED} ha restituito un valore non
+                             nullo. \\ 
     \hline
   \end{tabular}
   \caption{Descrizione delle varie macro di preprocessore utilizzabili per 
@@ -1015,7 +1025,7 @@ usando le apposite funzioni trattate in sez.~\ref{sec:sig_strsignal}.
 
 Linux, seguendo un'estensione di BSD, supporta altre due funzioni per la
 lettura dello stato di terminazione di un processo, analoghe alle precedenti
-ma che prevedono un ulteriore parametro attraverso il quale il kernel può
+ma che prevedono un ulteriore argomento attraverso il quale il kernel può
 restituire al padre informazioni sulle risorse usate dal processo terminato e
 dai vari figli.  Le due funzioni sono \funcd{wait3} e \funcd{wait4}, che
 diventano accessibili definendo la macro \macro{\_USE\_BSD}; i loro prototipi
@@ -1024,10 +1034,10 @@ sono:
   \headdecl{sys/times.h} \headdecl{sys/types.h} \headdecl{sys/wait.h}
   \headdecl{sys/resource.h} 
   
-  \funcdecl{pid\_t wait4(pid\_t pid, int * status, int options, struct rusage
-    * rusage)}   
-  È identica a \func{waitpid} sia per comportamento che per i valori dei
-  parametri, ma restituisce in \param{rusage} un sommario delle risorse usate
+  \funcdecl{pid\_t wait4(pid\_t pid, int *status, int options, struct rusage
+    *rusage)}   
+  È identica a \func{waitpid} sia per comportamento che per i valori degli
+  argomenti, ma restituisce in \param{rusage} un sommario delle risorse usate
   dal processo.
 
   \funcdecl{pid\_t wait3(int *status, int options, struct rusage *rusage)}
@@ -1073,14 +1083,14 @@ famiglia di funzioni) che possono essere usate per questo compito, in realt
     riconosciuto come tale, o compilato per un'altra architettura.
   \item[\errcode{ENOENT}] il file o una delle librerie dinamiche o l'interprete
     necessari per eseguirlo non esistono.
-  \item[\errcode{ETXTBSY}] L'eseguibile è aperto in scrittura da uno o più
+  \item[\errcode{ETXTBSY}] l'eseguibile è aperto in scrittura da uno o più
     processi. 
-  \item[\errcode{EINVAL}] L'eseguibile ELF ha più di un segmento
+  \item[\errcode{EINVAL}] l'eseguibile ELF ha più di un segmento
     \const{PF\_INTERP}, cioè chiede di essere eseguito da più di un
     interprete.
-  \item[\errcode{ELIBBAD}] Un interprete ELF non è in un formato
+  \item[\errcode{ELIBBAD}] un interprete ELF non è in un formato
     riconoscibile.
-  \item[\errcode{E2BIG}] La lista degli argomenti è troppo grande.
+  \item[\errcode{E2BIG}] la lista degli argomenti è troppo grande.
   \end{errlist}
   ed inoltre anche \errval{EFAULT}, \errval{ENOMEM}, \errval{EIO},
   \errval{ENAMETOOLONG}, \errval{ELOOP}, \errval{ENOTDIR}, \errval{ENFILE},
@@ -1095,8 +1105,8 @@ argomenti e dell'ambiente possono essere acceduti dal nuovo programma
 quando la sua funzione \func{main} è dichiarata nella forma
 \code{main(int argc, char *argv[], char *envp[])}.
 
-Le altre funzioni della famiglia servono per fornire all'utente una serie
-possibile di diverse interfacce per la creazione di un nuovo processo. I loro
+Le altre funzioni della famiglia servono per fornire all'utente una serie di
+possibili diverse interfacce per la creazione di un nuovo processo. I loro
 prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
@@ -1108,7 +1118,7 @@ prototipi sono:
 \funcdecl{int execvp(const char *file, char *const argv[])} 
 
 Sostituiscono l'immagine corrente del processo con quella indicata nel primo
-argomento. I parametri successivi consentono di specificare gli argomenti a
+argomento. Gli argomenti successivi consentono di specificare gli argomenti a
 linea di comando e l'ambiente ricevuti dal nuovo processo.
 
 \bodydesc{Queste funzioni ritornano solo in caso di errore, restituendo -1;
@@ -1118,8 +1128,8 @@ linea di comando e l'ambiente ricevuti dal nuovo processo.
 
 Per capire meglio le differenze fra le funzioni della famiglia si può fare
 riferimento allo specchietto riportato in tab.~\ref{tab:proc_exec_scheme}. La
-prima differenza riguarda le modalità di passaggio dei parametri che poi
-andranno a costituire gli argomenti a linea di comando (cioè i valori di
+prima differenza riguarda le modalità di passaggio dei valori che poi andranno
+a costituire gli argomenti a linea di comando (cioè i valori di
 \param{argv} e \param{argc} visti dalla funzione \func{main} del programma
 chiamato).
 
@@ -1151,8 +1161,8 @@ per indicare il nome del file che contiene il programma che verr
     argomenti a lista    &$\bullet$&$\bullet$&$\bullet$&&& \\
     argomenti a vettore  &&&&$\bullet$&$\bullet$&$\bullet$\\
     \hline
-    filename completo    &&$\bullet$&&&$\bullet$& \\ 
-    ricerca su \var{PATH}&$\bullet$&&$\bullet$&$\bullet$&&$\bullet$ \\
+    filename completo     &$\bullet$&&$\bullet$&$\bullet$&&$\bullet$\\ 
+    ricerca su \var{PATH} &&$\bullet$&&&$\bullet$& \\
     \hline
     ambiente a vettore   &&&$\bullet$&&&$\bullet$ \\
     uso di \var{environ} &$\bullet$&$\bullet$&&$\bullet$&$\bullet$& \\
@@ -1166,10 +1176,10 @@ per indicare il nome del file che contiene il programma che verr
 La seconda differenza fra le funzioni riguarda le modalità con cui si
 specifica il programma che si vuole eseguire. Con lo mnemonico \code{p} si
 indicano le due funzioni che replicano il comportamento della shell nello
-specificare il comando da eseguire; quando il parametro \param{file} non
-contiene una ``\file{/}'' esso viene considerato come un nome di programma, e
-viene eseguita automaticamente una ricerca fra i file presenti nella lista di
-directory specificate dalla variabile di ambiente \var{PATH}. Il file che
+specificare il comando da eseguire; quando l'argomento \param{file} non
+contiene una ``\texttt{/}'' esso viene considerato come un nome di programma,
+e viene eseguita automaticamente una ricerca fra i file presenti nella lista
+di directory specificate dalla variabile di ambiente \var{PATH}. Il file che
 viene posto in esecuzione è il primo che viene trovato. Se si ha un errore
 relativo a permessi di accesso insufficienti (cioè l'esecuzione della
 sottostante \func{execve} ritorna un \errcode{EACCES}), la ricerca viene
@@ -1179,42 +1189,43 @@ non viene trovato nessun altro file viene finalmente restituito
 
 Le altre quattro funzioni si limitano invece a cercare di eseguire il file
 indicato dall'argomento \param{path}, che viene interpretato come il
-\textit{pathname} del programma.
+\index{\textit{pathname}}\textit{pathname} del programma.
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=16cm]{img/exec_rel}
+  \includegraphics[width=15cm]{img/exec_rel}
   \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
   \label{fig:proc_exec_relat}
 \end{figure}
 
 La terza differenza è come viene passata la lista delle variabili di ambiente.
-Con lo mnemonico \code{e} vengono indicate quelle funzioni che necessitano di
-un vettore di parametri \var{envp[]} analogo a quello usato per gli argomenti
-a riga di comando (terminato quindi da un \val{NULL}), le altre usano il
-valore della variabile \var{environ} (vedi sez.~\ref{sec:proc_environ}) del
-processo di partenza per costruire l'ambiente.
+Con lo mnemonico \texttt{e} vengono indicate quelle funzioni che necessitano
+di un vettore di parametri \var{envp[]} analogo a quello usato per gli
+argomenti a riga di comando (terminato quindi da un \val{NULL}), le altre
+usano il valore della variabile \var{environ} (vedi
+sez.~\ref{sec:proc_environ}) del processo di partenza per costruire
+l'ambiente.
 
 Oltre a mantenere lo stesso \acr{pid}, il nuovo programma fatto partire da
 \func{exec} assume anche una serie di altre proprietà del processo chiamante;
 la lista completa è la seguente:
 \begin{itemize*}
 \item il \textit{process id} (\acr{pid}) ed il \textit{parent process id}
-  (\acr{ppid}).
+  (\acr{ppid});
 \item l'\textsl{user-ID reale}, il \textit{group-ID reale} ed i
-  \textsl{group-ID supplementari} (vedi sez.~\ref{sec:proc_access_id}).
+  \textsl{group-ID supplementari} (vedi sez.~\ref{sec:proc_access_id});
 \item il \textit{session id} (\acr{sid}) ed il \textit{process group-ID}
-  (\acr{pgid}), vedi sez.~\ref{sec:sess_proc_group}.
-\item il terminale di controllo (vedi sez.~\ref{sec:sess_ctrl_term}).
-\item il tempo restante ad un allarme (vedi sez.~\ref{sec:sig_alarm_abort}).
+  (\acr{pgid}), vedi sez.~\ref{sec:sess_proc_group};
+\item il terminale di controllo (vedi sez.~\ref{sec:sess_ctrl_term});
+\item il tempo restante ad un allarme (vedi sez.~\ref{sec:sig_alarm_abort});
 \item la directory radice e la directory di lavoro corrente (vedi
-  sez.~\ref{sec:file_work_dir}).
+  sez.~\ref{sec:file_work_dir});
 \item la maschera di creazione dei file (\var{umask}, vedi
   sez.~\ref{sec:file_umask}) ed i \textit{lock} sui file (vedi
-  sez.~\ref{sec:file_locking}).
+  sez.~\ref{sec:file_locking});
 \item i segnali sospesi (\textit{pending}) e la maschera dei segnali (si veda
-  sez.~\ref{sec:sig_sigmask}).
-\item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit}).
+  sez.~\ref{sec:sig_sigmask});
+\item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
 \item i valori delle variabili \var{tms\_utime}, \var{tms\_stime},
   \var{tms\_cutime}, \var{tms\_ustime} (vedi sez.~\ref{sec:sys_cpu_times}).
 \end{itemize*}
@@ -1227,7 +1238,7 @@ speciale 
 sez.~\ref{sec:sig_gen_beha}).
 
 La gestione dei file aperti dipende dal valore che ha il flag di
-\textit{close-on-exec}\index{close-on-exec} (vedi anche
+\textit{close-on-exec}\index{\textit{close-on-exec}} (vedi anche
 sez.~\ref{sec:file_fcntl}) per ciascun file descriptor. I file per cui è
 impostato vengono chiusi, tutti gli altri file restano aperti. Questo
 significa che il comportamento predefinito è che i file restano aperti
@@ -1237,8 +1248,9 @@ che imposti il suddetto flag.
 Per le directory, lo standard POSIX.1 richiede che esse vengano chiuse
 attraverso una \func{exec}, in genere questo è fatto dalla funzione
 \func{opendir} (vedi sez.~\ref{sec:file_dir_read}) che effettua da sola
-l'impostazione del flag di \textit{close-on-exec}\index{close-on-exec} sulle
-directory che apre, in maniera trasparente all'utente.
+l'impostazione del flag di
+\textit{close-on-exec}\index{\textit{close-on-exec}} sulle directory che apre,
+in maniera trasparente all'utente.
 
 Abbiamo detto che l'\textsl{user-ID reale} ed il \textsl{group-ID reale}
 restano gli stessi all'esecuzione di \func{exec}; lo stesso vale per
@@ -1250,17 +1262,28 @@ bit impostato, in questo caso l'\textsl{user-ID effettivo} ed il
 gruppo cui il file appartiene (per i dettagli vedi sez.~\ref{sec:proc_perms}).
 
 Se il file da eseguire è in formato \emph{a.out} e necessita di librerie
-condivise, viene lanciato il \textit{linker} dinamico \cmd{ld.so} prima del
-programma per caricare le librerie necessarie ed effettuare il link
+condivise, viene lanciato il \textit{linker} dinamico \cmd{/lib/ld.so} prima
+del programma per caricare le librerie necessarie ed effettuare il link
 dell'eseguibile. Se il programma è in formato ELF per caricare le librerie
 dinamiche viene usato l'interprete indicato nel segmento \const{PT\_INTERP},
 in genere questo è \file{/lib/ld-linux.so.1} per programmi linkati con le
 \acr{libc5}, e \file{/lib/ld-linux.so.2} per programmi linkati con le
-\acr{glibc}. Infine nel caso il file sia uno script esso deve iniziare con
-una linea nella forma \cmd{\#!/path/to/interpreter} dove l'interprete indicato
-deve esse un programma valido (binario, non un altro script) che verrà
+\acr{glibc}. 
+
+Infine nel caso il file sia uno script esso deve iniziare con una linea nella
+forma \cmd{\#!/path/to/interpreter [argomenti]} dove l'interprete indicato
+deve essere un programma valido (binario, non un altro script) che verrà
 chiamato come se si fosse eseguito il comando \cmd{interpreter [argomenti]
-  filename}.
+  filename}.\footnote{si tenga presente che con Linux quanto viene scritto
+  come \texttt{argomenti} viene passato all'inteprete come un unico argomento
+  con una unica stringa di lunghezza massima di 127 caratteri e se questa
+  dimensione viene ecceduta la stringa viene troncata; altri Unix hanno
+  dimensioni massime diverse, e diversi comportamenti, ad esempio FreeBSD
+  esegue la scansione della riga e la divide nei vari argomenti e se è troppo
+  lunga restitituisce un errore di \const{ENAMETOOLONG}, una comparazione dei
+  vari comportamenti si trova su
+  \href{http://www.in-ulm.de/~mascheck/various/shebang/}
+  {\texttt{http://www.in-ulm.de/\tild mascheck/various/shebang/}}.}
 
 Con la famiglia delle \func{exec} si chiude il novero delle funzioni su cui è
 basata la gestione dei processi in Unix: con \func{fork} si crea un nuovo
@@ -1275,7 +1298,7 @@ vari parametri connessi ai processi.
 \label{sec:proc_perms}
 
 In questa sezione esamineremo le problematiche relative al controllo di
-accesso dal punto di vista del processi; vedremo quali sono gli identificatori
+accesso dal punto di vista dei processi; vedremo quali sono gli identificatori
 usati, come questi possono essere modificati nella creazione e nel lancio di
 nuovi processi, le varie funzioni per la loro manipolazione diretta e tutte le
 problematiche connesse ad una gestione accorta dei privilegi.
@@ -1313,7 +1336,7 @@ kernel nella gestione dei permessi di accesso.
 Dato che tutte le operazioni del sistema vengono compiute dai processi, è
 evidente che per poter implementare un controllo sulle operazioni occorre
 anche poter identificare chi è che ha lanciato un certo programma, e pertanto
-anche a ciascun processo dovrà essere associato ad un utente e ad un gruppo.
+anche a ciascun processo dovrà essere associato un utente e un gruppo.
 
 Un semplice controllo di una corrispondenza fra identificativi non garantisce
 però sufficiente flessibilità per tutti quei casi in cui è necessario poter
@@ -1378,7 +1401,7 @@ nel sistema.
 Al secondo gruppo appartengono lo \textsl{user-ID effettivo} ed il
 \textsl{group-ID effettivo} (a cui si aggiungono gli eventuali \textsl{group-ID
   supplementari} dei gruppi dei quali l'utente fa parte).  Questi sono invece
-gli identificatori usati nella verifiche dei permessi del processo e per il
+gli identificatori usati nelle verifiche dei permessi del processo e per il
 controllo di accesso ai file (argomento affrontato in dettaglio in
 sez.~\ref{sec:file_perm_overview}).
 
@@ -1439,7 +1462,7 @@ e gruppo effettivi all'inizio dell'esecuzione di un nuovo programma.
 
 L'\textsl{user-ID di filesystem} e il \textsl{group-ID di filesystem} sono
 un'estensione introdotta in Linux per rendere più sicuro l'uso di NFS
-(torneremo sull'argomento in sez.~\ref{sec:proc_setfsuid}). Essi sono una
+(torneremo sull'argomento in sez.~\ref{sec:proc_setuid}). Essi sono una
 replica dei corrispondenti identificatori del gruppo \textit{effective}, ai
 quali si sostituiscono per tutte le operazioni di verifica dei permessi
 relativi ai file (trattate in sez.~\ref{sec:file_perm_overview}).  Ogni
@@ -1448,14 +1471,15 @@ riportato su di essi, per cui in condizioni normali si pu
 ignorarne l'esistenza, in quanto saranno del tutto equivalenti ai precedenti.
 
 
-\subsection{Le funzioni \func{setuid} e \func{setgid}}
+\subsection{Le funzioni di gestione degli identificatori dei processi}
 \label{sec:proc_setuid}
 
-Le due funzioni che vengono usate per cambiare identità (cioè utente e gruppo
-di appartenenza) ad un processo sono rispettivamente \funcd{setuid} e
-\funcd{setgid}; come accennato in sez.~\ref{sec:proc_access_id} in Linux esse
-seguono la semantica POSIX che prevede l'esistenza dell'\textit{user-ID
-  salvato} e del \textit{group-ID salvato}; i loro prototipi sono:
+Le due funzioni più comuni che vengono usate per cambiare identità (cioè
+utente e gruppo di appartenenza) ad un processo sono rispettivamente
+\funcd{setuid} e \funcd{setgid}; come accennato in
+sez.~\ref{sec:proc_access_id} in Linux esse seguono la semantica POSIX che
+prevede l'esistenza dell'\textit{user-ID salvato} e del \textit{group-ID
+  salvato}; i loro prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
@@ -1544,11 +1568,7 @@ processo, rendendo impossibile riguadagnare i privilegi di amministratore.
 Questo comportamento è corretto per l'uso che ne fa \cmd{login} una volta che
 crea una nuova shell per l'utente; ma quando si vuole cambiare soltanto
 l'\textsl{user-ID effettivo} del processo per cedere i privilegi occorre
-ricorrere ad altre funzioni (si veda ad esempio sez.~\ref{sec:proc_seteuid}).
-
-
-\subsection{Le funzioni \func{setreuid} e \func{setregid}}
-\label{sec:proc_setreuid}
+ricorrere ad altre funzioni.
 
 Le due funzioni \funcd{setreuid} e \funcd{setregid} derivano da BSD che, non
 supportando\footnote{almeno fino alla versione 4.3+BSD TODO, FIXME verificare
@@ -1602,14 +1622,10 @@ che si imposta un qualunque valore diverso da quello dall'user-ID reale
 corrente, l'user-ID salvato viene automaticamente uniformato al valore
 dell'user-ID effettivo.
 
-
-\subsection{Le funzioni \func{seteuid} e \func{setegid}}
-\label{sec:proc_seteuid}
-
-Le due funzioni \funcd{seteuid} e \funcd{setegid} sono un'estensione allo
-standard POSIX.1 (ma sono comunque supportate dalla maggior parte degli Unix)
-e vengono usate per cambiare gli identificatori del gruppo \textit{effective};
-i loro prototipi sono:
+Altre due funzioni, \funcd{seteuid} e \funcd{setegid}, sono un'estensione
+dello standard POSIX.1, ma sono comunque supportate dalla maggior parte degli
+Unix; esse vengono usate per cambiare gli identificatori del gruppo
+\textit{effective} ed i loro prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
@@ -1632,13 +1648,11 @@ all'amministratore di impostare solo l'user-ID effettivo, dato che l'uso
 normale di \func{setuid} comporta l'impostazione di tutti gli identificatori.
  
 
-\subsection{Le funzioni \func{setresuid} e \func{setresgid}}
-\label{sec:proc_setresuid}
-
-Le due funzioni \funcd{setresuid} e \funcd{setresgid} sono un'estensione
-introdotta in Linux,\footnote{a partire dal kernel 2.1.44.} e permettono un
-completo controllo su tutti e tre i gruppi di identificatori (\textit{real},
-\textit{effective} e \textit{saved}), i loro prototipi sono:
+Le due funzioni \funcd{setresuid} e \funcd{setresgid} sono invece
+un'estensione introdotta in Linux,\footnote{per essere precisi a partire dal
+  kernel 2.1.44.}  e permettono un completo controllo su tutti e tre i gruppi
+di identificatori (\textit{real}, \textit{effective} e \textit{saved}), i loro
+prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
@@ -1661,7 +1675,7 @@ Le due funzioni sono identiche, quanto detto per la prima riguardo gli user-ID
 si applica alla seconda per i group-ID. I processi non privilegiati possono
 cambiare uno qualunque degli user-ID solo ad un valore corrispondente o
 all'user-ID reale, o a quello effettivo o a quello salvato, l'amministratore
-può specificare i valori che vuole; un valore di -1 per un qualunque parametro
+può specificare i valori che vuole; un valore di -1 per un qualunque argomento
 lascia inalterato l'identificatore corrispondente.
 
 Per queste funzioni esistono anche due controparti che permettono di leggere
@@ -1691,15 +1705,13 @@ che queste funzioni sono le uniche in grado di leggere gli identificatori del
 gruppo \textit{saved}.
 
 
-\subsection{Le funzioni \func{setfsuid} e \func{setfsgid}}
-\label{sec:proc_setfsuid}
-
-Queste funzioni servono per impostare gli identificatori del gruppo
-\textit{filesystem} che sono usati da Linux per il controllo dell'accesso ai
-file.  Come già accennato in sez.~\ref{sec:proc_access_id} Linux definisce
-questo ulteriore gruppo di identificatori, che in circostanze normali sono
-assolutamente equivalenti a quelli del gruppo \textit{effective}, dato che
-ogni cambiamento di questi ultimi viene immediatamente riportato su di essi.
+Infine le funzioni \func{setfsuid} e \func{setfsgid} servono per impostare gli
+identificatori del gruppo \textit{filesystem} che sono usati da Linux per il
+controllo dell'accesso ai file.  Come già accennato in
+sez.~\ref{sec:proc_access_id} Linux definisce questo ulteriore gruppo di
+identificatori, che in circostanze normali sono assolutamente equivalenti a
+quelli del gruppo \textit{effective}, dato che ogni cambiamento di questi
+ultimi viene immediatamente riportato su di essi.
 
 C'è un solo caso in cui si ha necessità di introdurre una differenza fra gli
 identificatori dei gruppi \textit{effective} e \textit{filesystem}, ed è per
@@ -1736,7 +1748,7 @@ coincide con uno dei di quelli del gruppo \textit{real}, \textit{effective} o
 \textit{saved}.
 
 
-\subsection{Le funzioni \func{setgroups} e \func{getgroups}}
+\subsection{Le funzioni per la gestione dei gruppi associati a un processo}
 \label{sec:proc_setgroups}
 
 Le ultime funzioni che esamineremo sono quelle che permettono di operare sui
@@ -1848,13 +1860,6 @@ compila con il flag \cmd{-ansi}, 
 scrivere codice portabile.
 
 
-%
-% Da fare !!!
-% insieme alla risistemazioni dei titoli delle sezioni precedenti
-% (accorpare il materiale) qualosa tipo:
-% le funzioni di controllo
-% estenzioni di Linux
-%
 %\subsection{La gestione delle capabilities}
 %\label{sec:proc_capabilities}
 
@@ -1865,10 +1870,10 @@ scrivere codice portabile.
 \label{sec:proc_priority}
 
 In questa sezione tratteremo più approfonditamente i meccanismi con il quale
-lo \textit{scheduler}\index{scheduler} assegna la CPU ai vari processi attivi.
-In particolare prenderemo in esame i vari meccanismi con cui viene gestita
-l'assegnazione del tempo di CPU, ed illustreremo le varie funzioni di
-gestione.
+lo \textit{scheduler}\index{\textit{scheduler}} assegna la CPU ai vari
+processi attivi.  In particolare prenderemo in esame i vari meccanismi con cui
+viene gestita l'assegnazione del tempo di CPU, ed illustreremo le varie
+funzioni di gestione.
 
 
 \subsection{I meccanismi di \textit{scheduling}}
@@ -1886,8 +1891,8 @@ contrario di altri sistemi (che usano invece il cosiddetto \textit{cooperative
   multitasking}) non sono i singoli processi, ma il kernel stesso a decidere
 quando la CPU deve essere passata ad un altro processo. Come accennato in
 sez.~\ref{sec:proc_hierarchy} questa scelta viene eseguita da una sezione
-apposita del kernel, lo \textit{scheduler}\index{scheduler}, il cui scopo è
-quello di distribuire al meglio il tempo di CPU fra i vari processi.
+apposita del kernel, lo \textit{scheduler}\index{\textit{scheduler}}, il cui
+scopo è quello di distribuire al meglio il tempo di CPU fra i vari processi.
 
 La cosa è resa ancora più complicata dal fatto che con le architetture
 multi-processore si deve anche scegliere quale sia la CPU più opportuna da
@@ -2007,19 +2012,24 @@ questo la priorit
 essere eseguito, e quando un processo potrà subentrare ad un altro
 nell'esecuzione.
 
-Il meccanismo usato da Linux è piuttosto semplice, ad ogni processo è
-assegnata una \textit{time-slice}, cioè un intervallo di tempo (letteralmente
-una fetta) per il quale esso deve essere eseguito. Il valore della
-\textit{time-slice} è controllato dalla cosiddetta \textit{nice} (o
-\textit{niceness}) del processo.  Essa è contenuta nel campo \var{nice} di
-\struct{task\_struct}; tutti i processi vengono creati con lo stesso valore,
-ed essa specifica il valore della durata iniziale della \textit{time-slice}
-che viene assegnato ad un altro campo della struttura (\var{counter}) quando
-il processo viene eseguito per la prima volta e diminuito progressivamente ad
-ogni interruzione del timer.
-
-Durante la sua esecuzione lo scheduler\index{scheduler} scandisce la coda dei
-processi in stato \textit{runnable} associando, in base al valore di
+Il meccanismo usato da Linux è piuttosto semplice,\footnote{in realtà nella
+  serie 2.6.x lo \textit{scheduler} è stato riscritto da zero e può usare
+  diversi algoritmi, selezionabili sia in fase di compilazione, che, nelle
+  versioni più recenti, all'avvio (addirittura è stato ideato un sistema
+  modulare che permette di cambiare lo scheduler al volo, che comunque non è
+  incluso nel kernel ufficiale).} ad ogni processo è assegnata una
+\textit{time-slice}, cioè un intervallo di tempo (letteralmente una fetta) per
+il quale esso deve essere eseguito. Il valore della \textit{time-slice} è
+controllato dalla cosiddetta \textit{nice} (o \textit{niceness}) del processo.
+Essa è contenuta nel campo \var{nice} di \struct{task\_struct}; tutti i
+processi vengono creati con lo stesso valore, ed essa specifica il valore
+della durata iniziale della \textit{time-slice} che viene assegnato ad un
+altro campo della struttura (\var{counter}) quando il processo viene eseguito
+per la prima volta e diminuito progressivamente ad ogni interruzione del
+timer.
+
+Durante la sua esecuzione lo scheduler\index{\textit{scheduler}} scandisce la
+coda dei processi in stato \textit{runnable} associando, in base al valore di
 \var{counter}, un peso ad ogni processo in attesa di esecuzione,\footnote{il
   calcolo del peso in realtà è un po' più complicato, ad esempio nei sistemi
   multiprocessore viene favorito un processo eseguito sulla stessa CPU, e a
@@ -2157,8 +2167,8 @@ processo qualsiasi sia la sua priorit
   Adeos gestiti dalle code del nano-kernel), in modo da poterli controllare
   direttamente qualora ci sia la necessità di avere un processo con priorità
   più elevata di un \textit{interrupt handler}.} mentre con l'incorrere in un
-page fault\index{page fault} si possono avere ritardi non previsti. Se
-l'ultimo problema può essere aggirato attraverso l'uso delle funzioni di
+page fault\index{\textit{page~fault}} si possono avere ritardi non previsti.
+Se l'ultimo problema può essere aggirato attraverso l'uso delle funzioni di
 controllo della memoria virtuale (vedi sez.~\ref{sec:proc_mem_lock}), il primo
 non è superabile e può comportare ritardi non prevedibili riguardo ai tempi di
 esecuzione di qualunque processo.
@@ -2172,21 +2182,31 @@ si lavora con processi che usano priorit
 cui si sia assegnata la massima priorità assoluta, in modo da poter essere
 comunque in grado di rientrare nel sistema.
 
-Quando c'è un processo con priorità assoluta lo scheduler\index{scheduler} lo
-metterà in esecuzione prima di ogni processo normale. In caso di più processi
-sarà eseguito per primo quello con priorità assoluta più alta. Quando ci sono
-più processi con la stessa priorità assoluta questi vengono tenuti in una coda
-e tocca al kernel decidere quale deve essere eseguito.
-Il meccanismo con cui vengono gestiti questi processi dipende dalla politica
-di scheduling che si è scelto; lo standard ne prevede due:
+Quando c'è un processo con priorità assoluta lo
+scheduler\index{\textit{scheduler}} lo metterà in esecuzione prima di ogni
+processo normale. In caso di più processi sarà eseguito per primo quello con
+priorità assoluta più alta. Quando ci sono più processi con la stessa priorità
+assoluta questi vengono tenuti in una coda e tocca al kernel decidere quale
+deve essere eseguito.  Il meccanismo con cui vengono gestiti questi processi
+dipende dalla politica di scheduling che si è scelto; lo standard ne prevede
+due:
 \begin{basedescript}{\desclabelwidth{1.2cm}\desclabelstyle{\nextlinelabel}}
 \item[\textit{FIFO}] \textit{First In First Out}. Il processo viene eseguito
-  fintanto che non cede volontariamente la CPU, si blocca, finisce o viene
-  interrotto da un processo a priorità più alta.
-\item[\textit{RR}] \textit{Round Robin}. Ciascun processo viene eseguito a
-  turno per un certo periodo di tempo (una \textit{time slice}). Solo i
-  processi con la stessa priorità ed in stato \textit{runnable} entrano nel
-  circolo.
+  fintanto che non cede volontariamente la CPU (con \func{sched\_yield}), si
+  blocca, finisce o viene interrotto da un processo a priorità più alta. Se il
+  processo viene interrotto da uno a priorità più alta esso resterà in cima
+  alla lista e sarà il primo ad essere eseguito quando i processi a priorità
+  più alta diverranno inattivi. Se invece lo si blocca volontariamente sarà
+  posto in coda alla lista (ed altri processi con la stessa priorità potranno
+  essere eseguiti).
+\item[\textit{RR}] \textit{Round Robin}. Il comportamento è del tutto analogo
+  a quello precedente, con la sola differenza che ciascun processo viene
+  eseguito al massimo per un certo periodo di tempo (la cosiddetta
+  \textit{time slice}) dopo di che viene automaticamente posto in fondo alla
+  coda dei processi con la stessa priorità. In questo modo si ha comunque una
+  esecuzione a turno di tutti i processi, da cui il nome della politica. Solo
+  i processi con la stessa priorità ed in stato \textit{runnable} entrano nel
+  \textsl{girotondo}.
 \end{basedescript}
 
 La funzione per impostare le politiche di scheduling (sia real-time che
@@ -2218,7 +2238,7 @@ assolute diverse da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
 \begin{table}[htb]
   \centering
   \footnotesize
-  \begin{tabular}[c]{|c|l|}
+  \begin{tabular}[c]{|l|l|}
     \hline
     \textbf{Policy}  & \textbf{Significato} \\
     \hline
@@ -2229,8 +2249,8 @@ assolute diverse da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
     \const{SCHED\_OTHER}& Scheduling ordinario\\
     \hline
   \end{tabular}
-  \caption{Valori dell'argomento \param{policy}  per la funzione
-    \func{sched\_setscheduler}. }
+  \caption{Valori dell'argomento \param{policy} per la funzione
+    \func{sched\_setscheduler}.}
   \label{tab:proc_sched_policy}
 \end{table}
 
@@ -2238,8 +2258,8 @@ Il valore della priorit
 \struct{sched\_param} (riportata in fig.~\ref{fig:sig_sched_param}), il cui
 solo campo attualmente definito è \var{sched\_priority}, che nel caso delle
 priorità assolute deve essere specificato nell'intervallo fra un valore
-massimo ed uno minimo, che nel caso sono rispettivamente 1 e 99 (il valore
-zero è legale, ma indica i processi normali).
+massimo ed uno minimo, che nel caso sono rispettivamente 1 e 99il valore
+nullo è legale, ma indica i processi normali.
 
 \begin{figure}[!bht]
   \footnotesize \centering
@@ -2251,10 +2271,17 @@ zero 
   \label{fig:sig_sched_param}
 \end{figure}
 
+Si tenga presente che quando si imposta una politica di scheduling real-time
+per un processo (o se ne cambia la priorità con \func{sched\_setparam}) questo
+viene messo in cima alla lista dei processi con la stessa priorità; questo
+comporta che verrà eseguito subito, interrompendo eventuali altri processi con
+la stessa priorità in quel momento in esecuzione.
+
 Lo standard POSIX.1b prevede comunque che i due valori della massima e minima
 priorità statica possano essere ottenuti, per ciascuna delle politiche di
-scheduling realtime, tramite le due funzioni \funcd{sched\_get\_priority\_max}
-e \funcd{sched\_get\_priority\_min}, i cui prototipi sono:
+scheduling \textit{real-time}, tramite le due funzioni
+\funcd{sched\_get\_priority\_max} e \funcd{sched\_get\_priority\_min}, i cui
+prototipi sono:
 \begin{functions}
   \headdecl{sched.h}
   
@@ -2289,25 +2316,6 @@ volontariamente la CPU (in tal caso, tornando nello stato \textit{runnable}
 sarà reinserito in coda alla lista); l'esecuzione viene ripresa subito solo
 nel caso che esso sia stato interrotto da un processo a priorità più alta.
 
-La priorità assoluta può essere riletta indietro dalla funzione
-\funcd{sched\_getscheduler}, il cui prototipo è:
-\begin{prototype}{sched.h}
-{int sched\_getscheduler(pid\_t pid)}
-  Legge la politica di scheduling per il processo \param{pid}.
-  
-  \bodydesc{La funzione ritorna la politica di scheduling in caso di successo
-    e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
-    \begin{errlist}
-    \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
-    \item[\errcode{EINVAL}] il valore di \param{pid} è negativo.
-  \end{errlist}}
-\end{prototype}
-
-La funzione restituisce il valore (secondo quanto elencato in
-tab.~\ref{tab:proc_sched_policy}) della politica di scheduling per il processo
-specificato; se \param{pid} è nullo viene restituito quello del processo
-chiamante.
-
 Se si intende operare solo sulla priorità assoluta di un processo si possono
 usare le funzioni \funcd{sched\_setparam} e \funcd{sched\_getparam}, i cui
 prototipi sono:
@@ -2324,7 +2332,10 @@ prototipi sono:
     e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
     \begin{errlist}
     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
-    \item[\errcode{EINVAL}] il valore di \param{pid} è negativo.
+    \item[\errcode{EINVAL}] il valore di \param{p} non ha senso per la
+      politica scelta.
+    \item[\errcode{EPERM}] il processo non ha i privilegi sufficienti per
+      eseguire l'operazione.
   \end{errlist}}
 \end{functions}
 
@@ -2333,7 +2344,31 @@ L'uso di \func{sched\_setparam} che 
 \func{sched\_setscheduler} specificando 0 come valore di \param{pid} si opera
 sul processo corrente. La disponibilità di entrambe le funzioni può essere
 verificata controllando la macro \macro{\_POSIX\_PRIORITY\_SCHEDULING} che è
-definita nell'header \file{sched.h}.
+definita nell'header \file{sched.h}. 
+
+Si tenga presente che per eseguire la funzione il processo chiamante deve
+avere un user-ID effettivo uguale all'user-ID reale o a quello effettivo del
+processo di cui vuole cambiare la priorità, oppure deve avere i privilegi di
+amministratore (con la capacità \const{CAP\_SYS\_NICE}).
+
+La priorità assoluta può essere riletta indietro dalla funzione
+\funcd{sched\_getscheduler}, il cui prototipo è:
+\begin{prototype}{sched.h}
+{int sched\_getscheduler(pid\_t pid)}
+  Legge la politica di scheduling per il processo \param{pid}.
+  
+  \bodydesc{La funzione ritorna la politica di scheduling in caso di successo
+    e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
+    \item[\errcode{EINVAL}] il valore di \param{pid} è negativo.
+  \end{errlist}}
+\end{prototype}
+
+La funzione restituisce il valore (secondo quanto elencato in
+tab.~\ref{tab:proc_sched_policy}) della politica di scheduling per il processo
+specificato; se \param{pid} è nullo viene restituito quello del processo
+chiamante.
 
 L'ultima funzione che permette di leggere le informazioni relative ai processi
 real-time è \funcd{sched\_rr\_get\_interval}, che permette di ottenere la
@@ -2343,7 +2378,7 @@ il suo prototipo 
   {int sched\_rr\_get\_interval(pid\_t pid, struct timespec *tp)} Legge in
   \param{tp} la durata della \textit{time slice} per il processo \param{pid}.
   
-  \bodydesc{La funzione ritorna 0in caso di successo e -1 in caso di errore,
+  \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
     nel qual caso \var{errno} può assumere i valori:
     \begin{errlist}
     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
@@ -2353,7 +2388,10 @@ il suo prototipo 
 
 La funzione restituisce il valore dell'intervallo di tempo usato per la
 politica \textit{round robin} in una struttura \struct{timespec}, (la cui
-definizione si può trovare in fig.~\ref{fig:sys_timeval_struct}).
+definizione si può trovare in fig.~\ref{fig:sys_timeval_struct}). In realtà
+dato che in Linux questo intervallo di tempo è prefissato e non modificabile,
+questa funzione ritorna sempre un valore di 150 millisecondi, e non importa
+specificare il PID di un processo reale.
 
 
 Come accennato ogni processo che usa lo scheduling real-time può rilasciare
@@ -2375,6 +2413,178 @@ l'esecuzione non sar
 in modalità \textit{fifo}, per permettere l'esecuzione degli altri processi
 con pari priorità quando la sezione più urgente è finita.
 
+Infine con il supporto dei sistemi multiprocessore sono state introdotte delle
+funzioni che permettono di controllare in maniera più dettagliata la scelta di
+quale processore utilizzare per eseguire un certo programma. Uno dei problemi
+che si pongono nei sistemi multiprocessore è infatti quello
+dell'\textsl{effetto ping-pong}.\index{\textsl{effetto ping-pong}} Può
+accadere cioè che lo scheduler, quando riavvia un processo precedentemente
+interrotto, scegliendo il primo processore disponibile lo faccia eseguire da
+un processore diverso rispetto a quello su cui era stato eseguito in
+precedenza. Se il processo passa da un processore all'altro in questo modo
+(cosa che avveniva abbastanza di frequente con i kernel della seria 2.4.x) si
+ha l'\textsl{effetto ping-pong}.
+
+Questo tipo di comportamento può generare dei seri problemi di prestazioni;
+infatti tutti i processori moderni utilizzano una memoria interna (la
+\textit{cache}) contenente i dati più usati, che permette di evitare di
+eseguire un accesso (molto più lento) alla memoria principale sulla scheda
+madre.  Chiaramente un processo sarà favorito se i suoi dati sono nella cache
+del processore, ma è ovvio che questo può essere vero solo per un processore
+alla volta, perché in presenza di più copie degli stessi dati su più
+processori, non si potrebbe determinare quale di questi ha la versione dei
+dati aggiornata rispetto alla memoria principale.
+
+Questo comporta che quando un processore inserisce un dato nella sua cache,
+tutti gli altri processori che hanno lo stesso dato devono invalidarlo, e
+questa operazione è molto costosa in termini di prestazioni. Il problema
+diventa serio quando si verifica l'\textsl{effetto ping-pong}, in tal caso
+infatti un processo \textsl{rimbalza} continuamente da un processore all'altro
+e si ha una continua invalidazione della cache, che non diventa mai
+disponibile. 
+
+Per ovviare a questo tipo di problemi è nato il concetto di \textsl{affinità
+  di processore} (o \index{\textit{CPU~affinity}}\textit{CPU affinity}); la
+possibilità cioè di far sì che un processo possa essere assegnato per
+l'esecuzione sempre allo stesso processore. Lo scheduler dei kernel della
+serie 2.4.x aveva una scarsa \textit{CPU affinity}, e l'effetto ping-pong era
+comune; con il nuovo scheduler dei kernel della 2.6.x questo problema è stato
+risolto ed esso cerca di mantenere il più possibile ciascun processo sullo
+stesso processore.
+
+In certi casi però resta l'esigenza di poter essere sicuri che un processo sia
+sempre eseguito dallo stesso processore,\footnote{quella che viene detta
+  \textit{hard CPU affinity}, in contrasto con quella fornita dallo scheduler,
+  detta \textit{soft CPU affinity}, che di norma indica solo una preferenza,
+  non un requisito assoluto.} e per poter risolvere questo tipo di
+problematiche nei nuovi kernel\footnote{le due system call per la gestione
+  della \textit{CPU affinity} sono state introdotte nel kernel 2.5.8, e le
+  funzioni di libreria nelle \textsl{glibc} 2.3.} è stata introdotta
+l'opportuna infrastruttura ed una nuova system call che permette di impostare
+su quali processori far eseguire un determinato processo attraverso una
+\textsl{maschera di affinità}. La corrispondente funzione di libreria è
+\funcd{sched\_setaffinity} ed il suo prototipo\footnote{di questa funzione (e
+  della corrispondente \func{sched\_setaffinity}) esistono versioni diverse
+  per gli argomenti successivi a \param{pid}: la prima (quella riportata nella
+  pagina di manuale) prevedeva due ulteriori argomenti di tipo
+  \texttt{unsigned int len} e \texttt{unsigned long *mask}, poi l'argomento
+  \texttt{len} è stato eliminato, successivamente si è introdotta la versione
+  riportata con però un secondo argomento di tipo \texttt{size\_t cpusetsize}
+  (anche questa citata nella pagina di manuale); la versione citata è quella
+  riportata nel manuale delle \textsl{glibc} e corripondente alla definizione
+  presente in \file{sched.h}.} è:
+\begin{prototype}{sched.h}
+  {int sched\_setaffinity (pid\_t pid, const cpu\_set\_t *cpuset)} 
+  Imposta la maschera di affinità del processo \param{pid}.
+  
+  \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
+    nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
+    \item[\errcode{EINVAL}] il valore di \param{cpuset} contiene riferimenti a
+      processori non esistenti nel sistema.
+    \item[\errcode{EPERM}] il processo non ha i privilegi sufficienti per
+      eseguire l'operazione.
+  \end{errlist} 
+  ed inoltre anche \errval{EFAULT}.}
+\end{prototype}
+
+La funzione imposta, con l'uso del valore contenuto all'indirizzo
+\param{cpuset}, l'insieme dei processori sui quali deve essere eseguito il
+processo identificato tramite il valore passato in \param{pid}. Come in
+precedenza il valore nullo di \param{pid} indica il processo corrente.  Per
+poter utilizzare questa funzione sono richiesti i privilegi di amministratore
+(è necessaria la capacità \const{CAP\_SYS\_NICE}) altrimenti essa fallirà con
+un errore di \errcode{EPERM}. Una volta impostata una maschera di affinità,
+questa viene ereditata attraverso una \func{fork}, in questo modo diventa
+possibile legare automaticamente un gruppo di processi ad un singolo
+processore.
+
+Nell'uso comune, almeno con i kernel della serie 2.6.x, l'uso di questa
+funzione non è necessario, in quanto è lo scheduler stesso che provvede a
+mantenere al meglio l'affinità di processore. Esistono però esigenze
+particolari, ad esempio quando un processo (o un gruppo di processi) è
+utilizzato per un compito importante (ad esempio per applicazioni real-time o
+la cui risposta è critica) e si vuole la massima velocità, con questa
+interfaccia diventa possibile selezionare gruppi di processori utilizzabili in
+maniera esclusiva.  Lo stesso dicasi quando l'accesso a certe risorse (memoria
+o periferiche) può avere un costo diverso a seconda del processore (come
+avviene nelle architetture NUMA).
+
+Infine se un gruppo di processi accede alle stesse risorse condivise (ad
+esempio una applicazione con più thread) può avere senso usare lo stesso
+processore in modo da sfruttare meglio l'uso della sua cache; questo
+ovviamente riduce i benefici di un sistema multiprocessore nell'esecuzione
+contemporanea dei thread, ma in certi casi (quando i thread sono inerentemente
+serializzati nell'accesso ad una risorsa) possono esserci sufficienti vantaggi
+nell'evitare la perdita della cache da rendere conveniente l'uso dell'affinità
+di processore.
+
+Per facilitare l'uso dell'argomento \param{cpuset} le \acr{glibc} hanno
+introdotto un apposito dato di tipo, \ctyp{cpu\_set\_t},\footnote{questa è una
+  estensione specifica delle \acr{glibc}, da attivare definendo la macro
+  \macro{\_GNU\_SOURCE}, non esiste infatti una standardardizzazione per
+  questo tipo di interfaccia e POSIX al momento non prevede nulla al
+  riguardo.} che permette di identificare un insieme di processori. Il dato è
+una maschera binaria: in generale è un intero a 32 bit in cui ogni bit
+corrisponde ad un processore, ma dato che per architetture particolari il
+numero di bit di un intero può non essere sufficiente, è stata creata questa
+che è una interfaccia generica che permette di usare a basso livello un tipo
+di dato qualunque rendendosi indipendenti dal numero di bit e dalla loro
+disposizione.
+
+Questa interfaccia, oltre alla definizione del tipo di dato apposito, prevede
+anche una serie di macro di preprocessore per la manipolazione dello stesso,
+che consentono di svuotare un insieme, aggiungere o togliere un processore da
+esso o verificare se vi è già presente:
+\begin{functions}
+  \headdecl{sched.h}
+  \funcdecl{void \macro{CPU\_ZERO}(cpu\_set\_t *set)}
+  Inizializza l'insieme (vuoto).
+
+  \funcdecl{void \macro{CPU\_SET}(int cpu, cpu\_set\_t *set)}
+  Inserisce il processore \param{cpu} nell'insieme.
+
+  \funcdecl{void \macro{CPU\_CLR}(int cpu, cpu\_set\_t *set)}
+  Rimuove il processore \param{cpu} nell'insieme.
+  
+  \funcdecl{int \macro{CPU\_ISSET}(int cpu, cpu\_set\_t *set)}
+  Controlla se il processore \param{cpu} è nell'insieme.
+\end{functions}
+
+Oltre a queste macro, simili alle analoghe usate per gli insiemi di file
+descriptor (vedi sez.~\ref{sec:file_select}) è definita la costante
+\const{CPU\_SETSIZE} che indica il numero massimo di processori che possono
+far parte dell'insieme, e che costituisce un limite massimo al valore
+dell'argomento \param{cpu}.
+
+In generale la maschera di affinità è preimpostata in modo che un processo
+possa essere eseguito su qualunque processore, se può comunque leggere il
+valore per un processo specifico usando la funzione
+\funcd{sched\_getaffinity}, il suo prototipo è:
+\begin{prototype}{sched.h}
+  {int sched\_getaffinity (pid\_t pid, const cpu\_set\_t *cpuset)} 
+  Legge la maschera di affinità del processo \param{pid}.
+  
+  \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
+    nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
+    \item[\errcode{EFAULT}] il valore di \param{cpuset} non è un indirizzo
+      valido. 
+  \end{errlist} }
+\end{prototype}
+
+La funzione restituirà all'indirizzo specificato da \param{cpuset} il valore
+della maschera di affinità del processo, così da poterla riutilizzare per una
+successiva reimpostazione. In questo caso non sono necessari privilegi
+paricolari.  
+
+È chiaro che queste funzioni per la gestione dell'affinità hanno significato
+soltanto su un sistema multiprocessore, esse possono comunque essere
+utilizzate anche in un sistema con un processore singolo, nel qual caso però
+non avranno alcun risultato effettivo.
+
 
 \section{Problematiche di programmazione multitasking}
 \label{sec:proc_multi_prog}
@@ -2404,7 +2614,7 @@ In un ambiente multitasking il concetto 
 essere interrotto in qualunque momento dal kernel che mette in esecuzione un
 altro processo o dalla ricezione di un segnale; occorre pertanto essere
 accorti nei confronti delle possibili 
-\textit{race condition}\index{race condition} (vedi
+\textit{race condition}\index{\textit{race~condition}} (vedi
 sez.~\ref{sec:proc_race_cond}) derivanti da operazioni interrotte in una fase
 in cui non erano ancora state completate.
 
@@ -2438,17 +2648,17 @@ condiviso, onde evitare problemi con le ottimizzazioni del codice.
 
 
 
-\subsection{Le \textit{race condition}\index{race condition} e i 
-  \textit{deadlock}\index{deadlock}}
+\subsection{Le \textit{race condition} ed i \textit{deadlock}}
 \label{sec:proc_race_cond}
 
-Si definiscono \textit{race condition}\index{race condition} tutte quelle
-situazioni in cui processi diversi operano su una risorsa comune, ed in cui il
-risultato viene a dipendere dall'ordine in cui essi effettuano le loro
-operazioni. Il caso tipico è quello di un'operazione che viene eseguita da un
-processo in più passi, e può essere compromessa dall'intervento di un altro
-processo che accede alla stessa risorsa quando ancora non tutti i passi sono
-stati completati.
+\index{\textit{race~condition}|(}
+Si definiscono \textit{race condition} tutte quelle situazioni in cui processi
+diversi operano su una risorsa comune, ed in cui il risultato viene a
+dipendere dall'ordine in cui essi effettuano le loro operazioni. Il caso
+tipico è quello di un'operazione che viene eseguita da un processo in più
+passi, e può essere compromessa dall'intervento di un altro processo che
+accede alla stessa risorsa quando ancora non tutti i passi sono stati
+completati.
 
 Dato che in un sistema multitasking ogni processo può essere interrotto in
 qualunque momento per farne subentrare un altro in esecuzione, niente può
@@ -2461,37 +2671,39 @@ funzioner
 Per questo occorre essere ben consapevoli di queste problematiche, e del fatto
 che l'unico modo per evitarle è quello di riconoscerle come tali e prendere
 gli adeguati provvedimenti per far sì che non si verifichino. Casi tipici di
-\textit{race condition}\index{race condition} si hanno quando diversi processi
-accedono allo stesso file, o nell'accesso a meccanismi di intercomunicazione
-come la memoria condivisa. In questi casi, se non si dispone della possibilità
-di eseguire atomicamente le operazioni necessarie, occorre che quelle parti di
-codice in cui si compiono le operazioni sulle risorse condivise (le cosiddette
-\textsl{sezioni critiche}\index{sezioni critiche}) del programma, siano
+\textit{race condition} si hanno quando diversi processi accedono allo stesso
+file, o nell'accesso a meccanismi di intercomunicazione come la memoria
+condivisa. In questi casi, se non si dispone della possibilità di eseguire
+atomicamente le operazioni necessarie, occorre che quelle parti di codice in
+cui si compiono le operazioni sulle risorse condivise (le cosiddette
+\textsl{sezioni critiche}\index{sezioni~critiche}) del programma, siano
 opportunamente protette da meccanismi di sincronizzazione (torneremo su queste
 problematiche di questo tipo in cap.~\ref{cha:IPC}).
 
-Un caso particolare di \textit{race condition}\index{race condition} sono poi
-i cosiddetti \textit{deadlock}\index{deadlock}, particolarmente gravi in
-quanto comportano spesso il blocco completo di un servizio, e non il
-fallimento di una singola operazione. Per definizione un
-\textit{deadlock}\index{deadlock} è una situazione in cui due o più processi
+\index{\textit{deadlock}|(} 
+Un caso particolare di \textit{race condition} sono poi i cosiddetti
+\textit{deadlock}, particolarmente gravi in quanto comportano spesso il blocco
+completo di un servizio, e non il fallimento di una singola operazione. Per
+definizione un \textit{deadlock} è una situazione in cui due o più processi
 non sono più in grado di proseguire perché ciascuno aspetta il risultato di
 una operazione che dovrebbe essere eseguita dall'altro.
 
 
 L'esempio tipico di una situazione che può condurre ad un
-\textit{deadlock}\index{deadlock} è quello in cui un flag di
+\textit{deadlock} è quello in cui un flag di
 ``\textsl{occupazione}'' viene rilasciato da un evento asincrono (come un
 segnale o un altro processo) fra il momento in cui lo si è controllato
 (trovandolo occupato) e la successiva operazione di attesa per lo sblocco. In
 questo caso, dato che l'evento di sblocco del flag è avvenuto senza che ce ne
 accorgessimo proprio fra il controllo e la messa in attesa, quest'ultima
-diventerà perpetua (da cui il nome di \textit{deadlock}\index{deadlock}).
+diventerà perpetua (da cui il nome di \textit{deadlock}).
 
 In tutti questi casi è di fondamentale importanza il concetto di atomicità
 visto in sez.~\ref{sec:proc_atom_oper}; questi problemi infatti possono essere
 risolti soltanto assicurandosi, quando essa sia richiesta, che sia possibile
 eseguire in maniera atomica le operazioni necessarie.
+\index{\textit{race~condition}|)}
+\index{\textit{deadlock}|)}
 
 
 \subsection{Le funzioni rientranti}