Varie correzioni da Fabio Rossi, e relative aggiunte nei ringrazimenti per
[gapil.git] / prochand.tex
index 2975f388aaba975cb0c6b62567a1d09a3e20370c..651e14536584e9e1e5289714ea92da1ef8cdc928 100644 (file)
@@ -267,7 +267,7 @@ fig.~\ref{fig:proc_fork_code}, nel programma \file{ForkTest.c}.
 Il fatto che il \acr{pid} sia un numero univoco per il sistema lo rende un
 candidato per generare ulteriori indicatori associati al processo di cui
 diventa possibile garantire l'unicità: ad esempio in alcune implementazioni la
-funzione \func{tmpname} (si veda sez.~\ref{sec:file_temp_file}) usa il
+funzione \func{tempnam} (si veda sez.~\ref{sec:file_temp_file}) usa il
 \acr{pid} per generare un \index{\textit{pathname}}\textit{pathname} univoco,
 che non potrà essere replicato da un altro processo che usi la stessa
 funzione.
@@ -571,7 +571,7 @@ file senza una qualche forma di sincronizzazione in quanto, come visto anche
 con il nostro esempio, le varie scritture risulteranno mescolate fra loro in
 una sequenza impredicibile. Per questo le modalità con cui in genere si usano
 i file dopo una \func{fork} sono sostanzialmente due:
-\begin{enumerate}
+\begin{enumerate*}
 \item Il processo padre aspetta la conclusione del figlio. In questo caso non
   è necessaria nessuna azione riguardo ai file, in quanto la sincronizzazione
   della posizione corrente dopo eventuali operazioni di lettura e scrittura
@@ -579,7 +579,7 @@ i file dopo una \func{fork} sono sostanzialmente due:
 \item L'esecuzione di padre e figlio procede indipendentemente. In questo caso
   ciascuno dei due processi deve chiudere i file che non gli servono una volta
   che la \func{fork} è stata eseguita, per evitare ogni forma di interferenza.
-\end{enumerate}
+\end{enumerate*}
 
 Oltre ai file aperti i processi figli ereditano dal padre una serie di altre
 proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in
@@ -603,6 +603,8 @@ comune dopo l'esecuzione di una \func{fork} 
 \item i segmenti di memoria condivisa agganciati al processo (vedi
   sez.~\ref{sec:ipc_sysv_shm});
 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
+\item le priorità real-time e le affinità di processore (vedi
+  sez.~\ref{sec:proc_real_time});
 \item le variabili di ambiente (vedi sez.~\ref{sec:proc_environ}).
 \end{itemize*}
 Le differenze fra padre e figlio dopo la \func{fork} invece sono:
@@ -679,7 +681,7 @@ eseguite alla chiusura di un processo 
   sez.~\ref{sec:sig_sigchld});
 \item se il processo è un leader di sessione ed il suo terminale di controllo
   è quello della sessione viene mandato un segnale di \const{SIGHUP} a tutti i
-  processi del gruppo di foreground e il terminale di controllo viene
+  processi del gruppo di \textit{foreground} e il terminale di controllo viene
   disconnesso (vedi sez.~\ref{sec:sess_ctrl_term});
 \item se la conclusione di un processo rende orfano un \textit{process
     group} ciascun membro del gruppo viene bloccato, e poi gli vengono
@@ -769,10 +771,10 @@ informazione, non pi
 completamente conclusa.
 
 Possiamo utilizzare il nostro programma di prova per analizzare anche questa
-condizione: lanciamo il comando \cmd{forktest} in background, indicando al
-processo padre di aspettare 10 secondi prima di uscire; in questo caso, usando
-\cmd{ps} sullo stesso terminale (prima dello scadere dei 10 secondi)
-otterremo:
+condizione: lanciamo il comando \cmd{forktest} in \textit{background} (vedi
+sez.~\ref{sec:sess_job_control}), indicando al processo padre di aspettare 10
+secondi prima di uscire; in questo caso, usando \cmd{ps} sullo stesso
+terminale (prima dello scadere dei 10 secondi) otterremo:
 
 \footnotesize
 \begin{verbatim}
@@ -1191,7 +1193,7 @@ indicato dall'argomento \param{path}, che viene interpretato come il
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=16cm]{img/exec_rel}
+  \includegraphics[width=15cm]{img/exec_rel}
   \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
   \label{fig:proc_exec_relat}
 \end{figure}
@@ -1266,20 +1268,22 @@ dell'eseguibile. Se il programma 
 dinamiche viene usato l'interprete indicato nel segmento \const{PT\_INTERP},
 in genere questo è \file{/lib/ld-linux.so.1} per programmi linkati con le
 \acr{libc5}, e \file{/lib/ld-linux.so.2} per programmi linkati con le
-\acr{glibc}. Infine nel caso il file sia uno script esso deve iniziare con una
-linea nella forma \cmd{\#!/path/to/interpreter [argomenti]} dove l'interprete
-indicato deve essere un programma valido (binario, non un altro script) che
-verrà chiamato come se si fosse eseguito il comando \cmd{interpreter
-  [argomenti] filename}.\footnote{si tenga presente che con Linux quanto viene
-  scritto come \texttt{argomenti} viene passato all'inteprete come un unico
-  argomento con una unica stringa di lunghezza massima di 127 caratteri e se
-  questa dimensione viene ecceduta la stringa viene troncata; altri Unix hanno
+\acr{glibc}. 
+
+Infine nel caso il file sia uno script esso deve iniziare con una linea nella
+forma \cmd{\#!/path/to/interpreter [argomenti]} dove l'interprete indicato
+deve essere un programma valido (binario, non un altro script) che verrà
+chiamato come se si fosse eseguito il comando \cmd{interpreter [argomenti]
+  filename}.\footnote{si tenga presente che con Linux quanto viene scritto
+  come \texttt{argomenti} viene passato all'inteprete come un unico argomento
+  con una unica stringa di lunghezza massima di 127 caratteri e se questa
+  dimensione viene ecceduta la stringa viene troncata; altri Unix hanno
   dimensioni massime diverse, e diversi comportamenti, ad esempio FreeBSD
   esegue la scansione della riga e la divide nei vari argomenti e se è troppo
   lunga restitituisce un errore di \const{ENAMETOOLONG}, una comparazione dei
   vari comportamenti si trova su
   \href{http://www.in-ulm.de/~mascheck/various/shebang/}
-  {\texttt{http://www.in-ulm.de/\~mascheck/various/shebang/}}.}
+  {\texttt{http://www.in-ulm.de/\tild mascheck/various/shebang/}}.}
 
 Con la famiglia delle \func{exec} si chiude il novero delle funzioni su cui è
 basata la gestione dei processi in Unix: con \func{fork} si crea un nuovo
@@ -1294,7 +1298,7 @@ vari parametri connessi ai processi.
 \label{sec:proc_perms}
 
 In questa sezione esamineremo le problematiche relative al controllo di
-accesso dal punto di vista del processi; vedremo quali sono gli identificatori
+accesso dal punto di vista dei processi; vedremo quali sono gli identificatori
 usati, come questi possono essere modificati nella creazione e nel lancio di
 nuovi processi, le varie funzioni per la loro manipolazione diretta e tutte le
 problematiche connesse ad una gestione accorta dei privilegi.
@@ -1332,7 +1336,7 @@ kernel nella gestione dei permessi di accesso.
 Dato che tutte le operazioni del sistema vengono compiute dai processi, è
 evidente che per poter implementare un controllo sulle operazioni occorre
 anche poter identificare chi è che ha lanciato un certo programma, e pertanto
-anche a ciascun processo dovrà essere associato ad un utente e ad un gruppo.
+anche a ciascun processo dovrà essere associato un utente e un gruppo.
 
 Un semplice controllo di una corrispondenza fra identificativi non garantisce
 però sufficiente flessibilità per tutti quei casi in cui è necessario poter
@@ -1397,7 +1401,7 @@ nel sistema.
 Al secondo gruppo appartengono lo \textsl{user-ID effettivo} ed il
 \textsl{group-ID effettivo} (a cui si aggiungono gli eventuali \textsl{group-ID
   supplementari} dei gruppi dei quali l'utente fa parte).  Questi sono invece
-gli identificatori usati nella verifiche dei permessi del processo e per il
+gli identificatori usati nelle verifiche dei permessi del processo e per il
 controllo di accesso ai file (argomento affrontato in dettaglio in
 sez.~\ref{sec:file_perm_overview}).
 
@@ -1458,7 +1462,7 @@ e gruppo effettivi all'inizio dell'esecuzione di un nuovo programma.
 
 L'\textsl{user-ID di filesystem} e il \textsl{group-ID di filesystem} sono
 un'estensione introdotta in Linux per rendere più sicuro l'uso di NFS
-(torneremo sull'argomento in sez.~\ref{sec:proc_setfsuid}). Essi sono una
+(torneremo sull'argomento in sez.~\ref{sec:proc_setuid}). Essi sono una
 replica dei corrispondenti identificatori del gruppo \textit{effective}, ai
 quali si sostituiscono per tutte le operazioni di verifica dei permessi
 relativi ai file (trattate in sez.~\ref{sec:file_perm_overview}).  Ogni
@@ -1467,14 +1471,15 @@ riportato su di essi, per cui in condizioni normali si pu
 ignorarne l'esistenza, in quanto saranno del tutto equivalenti ai precedenti.
 
 
-\subsection{Le funzioni \func{setuid} e \func{setgid}}
+\subsection{Le funzioni di gestione degli identificatori dei processi}
 \label{sec:proc_setuid}
 
-Le due funzioni che vengono usate per cambiare identità (cioè utente e gruppo
-di appartenenza) ad un processo sono rispettivamente \funcd{setuid} e
-\funcd{setgid}; come accennato in sez.~\ref{sec:proc_access_id} in Linux esse
-seguono la semantica POSIX che prevede l'esistenza dell'\textit{user-ID
-  salvato} e del \textit{group-ID salvato}; i loro prototipi sono:
+Le due funzioni più comuni che vengono usate per cambiare identità (cioè
+utente e gruppo di appartenenza) ad un processo sono rispettivamente
+\funcd{setuid} e \funcd{setgid}; come accennato in
+sez.~\ref{sec:proc_access_id} in Linux esse seguono la semantica POSIX che
+prevede l'esistenza dell'\textit{user-ID salvato} e del \textit{group-ID
+  salvato}; i loro prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
@@ -1563,11 +1568,7 @@ processo, rendendo impossibile riguadagnare i privilegi di amministratore.
 Questo comportamento è corretto per l'uso che ne fa \cmd{login} una volta che
 crea una nuova shell per l'utente; ma quando si vuole cambiare soltanto
 l'\textsl{user-ID effettivo} del processo per cedere i privilegi occorre
-ricorrere ad altre funzioni (si veda ad esempio sez.~\ref{sec:proc_seteuid}).
-
-
-\subsection{Le funzioni \func{setreuid} e \func{setregid}}
-\label{sec:proc_setreuid}
+ricorrere ad altre funzioni.
 
 Le due funzioni \funcd{setreuid} e \funcd{setregid} derivano da BSD che, non
 supportando\footnote{almeno fino alla versione 4.3+BSD TODO, FIXME verificare
@@ -1621,14 +1622,10 @@ che si imposta un qualunque valore diverso da quello dall'user-ID reale
 corrente, l'user-ID salvato viene automaticamente uniformato al valore
 dell'user-ID effettivo.
 
-
-\subsection{Le funzioni \func{seteuid} e \func{setegid}}
-\label{sec:proc_seteuid}
-
-Le due funzioni \funcd{seteuid} e \funcd{setegid} sono un'estensione allo
-standard POSIX.1 (ma sono comunque supportate dalla maggior parte degli Unix)
-e vengono usate per cambiare gli identificatori del gruppo \textit{effective};
-i loro prototipi sono:
+Altre due funzioni, \funcd{seteuid} e \funcd{setegid}, sono un'estensione
+dello standard POSIX.1, ma sono comunque supportate dalla maggior parte degli
+Unix; esse vengono usate per cambiare gli identificatori del gruppo
+\textit{effective} ed i loro prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
@@ -1651,13 +1648,11 @@ all'amministratore di impostare solo l'user-ID effettivo, dato che l'uso
 normale di \func{setuid} comporta l'impostazione di tutti gli identificatori.
  
 
-\subsection{Le funzioni \func{setresuid} e \func{setresgid}}
-\label{sec:proc_setresuid}
-
-Le due funzioni \funcd{setresuid} e \funcd{setresgid} sono un'estensione
-introdotta in Linux,\footnote{a partire dal kernel 2.1.44.} e permettono un
-completo controllo su tutti e tre i gruppi di identificatori (\textit{real},
-\textit{effective} e \textit{saved}), i loro prototipi sono:
+Le due funzioni \funcd{setresuid} e \funcd{setresgid} sono invece
+un'estensione introdotta in Linux,\footnote{per essere precisi a partire dal
+  kernel 2.1.44.}  e permettono un completo controllo su tutti e tre i gruppi
+di identificatori (\textit{real}, \textit{effective} e \textit{saved}), i loro
+prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
@@ -1710,15 +1705,13 @@ che queste funzioni sono le uniche in grado di leggere gli identificatori del
 gruppo \textit{saved}.
 
 
-\subsection{Le funzioni \func{setfsuid} e \func{setfsgid}}
-\label{sec:proc_setfsuid}
-
-Queste funzioni servono per impostare gli identificatori del gruppo
-\textit{filesystem} che sono usati da Linux per il controllo dell'accesso ai
-file.  Come già accennato in sez.~\ref{sec:proc_access_id} Linux definisce
-questo ulteriore gruppo di identificatori, che in circostanze normali sono
-assolutamente equivalenti a quelli del gruppo \textit{effective}, dato che
-ogni cambiamento di questi ultimi viene immediatamente riportato su di essi.
+Infine le funzioni \func{setfsuid} e \func{setfsgid} servono per impostare gli
+identificatori del gruppo \textit{filesystem} che sono usati da Linux per il
+controllo dell'accesso ai file.  Come già accennato in
+sez.~\ref{sec:proc_access_id} Linux definisce questo ulteriore gruppo di
+identificatori, che in circostanze normali sono assolutamente equivalenti a
+quelli del gruppo \textit{effective}, dato che ogni cambiamento di questi
+ultimi viene immediatamente riportato su di essi.
 
 C'è un solo caso in cui si ha necessità di introdurre una differenza fra gli
 identificatori dei gruppi \textit{effective} e \textit{filesystem}, ed è per
@@ -1755,7 +1748,7 @@ coincide con uno dei di quelli del gruppo \textit{real}, \textit{effective} o
 \textit{saved}.
 
 
-\subsection{Le funzioni \func{setgroups} e \func{getgroups}}
+\subsection{Le funzioni per la gestione dei gruppi associati a un processo}
 \label{sec:proc_setgroups}
 
 Le ultime funzioni che esamineremo sono quelle che permettono di operare sui
@@ -1867,13 +1860,6 @@ compila con il flag \cmd{-ansi}, 
 scrivere codice portabile.
 
 
-%
-% Da fare !!!
-% insieme alla risistemazioni dei titoli delle sezioni precedenti
-% (accorpare il materiale) qualosa tipo:
-% le funzioni di controllo
-% estenzioni di Linux
-%
 %\subsection{La gestione delle capabilities}
 %\label{sec:proc_capabilities}
 
@@ -2026,16 +2012,21 @@ questo la priorit
 essere eseguito, e quando un processo potrà subentrare ad un altro
 nell'esecuzione.
 
-Il meccanismo usato da Linux è piuttosto semplice, ad ogni processo è
-assegnata una \textit{time-slice}, cioè un intervallo di tempo (letteralmente
-una fetta) per il quale esso deve essere eseguito. Il valore della
-\textit{time-slice} è controllato dalla cosiddetta \textit{nice} (o
-\textit{niceness}) del processo.  Essa è contenuta nel campo \var{nice} di
-\struct{task\_struct}; tutti i processi vengono creati con lo stesso valore,
-ed essa specifica il valore della durata iniziale della \textit{time-slice}
-che viene assegnato ad un altro campo della struttura (\var{counter}) quando
-il processo viene eseguito per la prima volta e diminuito progressivamente ad
-ogni interruzione del timer.
+Il meccanismo usato da Linux è piuttosto semplice,\footnote{in realtà nella
+  serie 2.6.x lo \textit{scheduler} è stato riscritto da zero e può usare
+  diversi algoritmi, selezionabili sia in fase di compilazione, che, nelle
+  versioni più recenti, all'avvio (addirittura è stato ideato un sistema
+  modulare che permette di cambiare lo scheduler al volo, che comunque non è
+  incluso nel kernel ufficiale).} ad ogni processo è assegnata una
+\textit{time-slice}, cioè un intervallo di tempo (letteralmente una fetta) per
+il quale esso deve essere eseguito. Il valore della \textit{time-slice} è
+controllato dalla cosiddetta \textit{nice} (o \textit{niceness}) del processo.
+Essa è contenuta nel campo \var{nice} di \struct{task\_struct}; tutti i
+processi vengono creati con lo stesso valore, ed essa specifica il valore
+della durata iniziale della \textit{time-slice} che viene assegnato ad un
+altro campo della struttura (\var{counter}) quando il processo viene eseguito
+per la prima volta e diminuito progressivamente ad ogni interruzione del
+timer.
 
 Durante la sua esecuzione lo scheduler\index{\textit{scheduler}} scandisce la
 coda dei processi in stato \textit{runnable} associando, in base al valore di
@@ -2201,12 +2192,21 @@ dipende dalla politica di scheduling che si 
 due:
 \begin{basedescript}{\desclabelwidth{1.2cm}\desclabelstyle{\nextlinelabel}}
 \item[\textit{FIFO}] \textit{First In First Out}. Il processo viene eseguito
-  fintanto che non cede volontariamente la CPU, si blocca, finisce o viene
-  interrotto da un processo a priorità più alta.
-\item[\textit{RR}] \textit{Round Robin}. Ciascun processo viene eseguito a
-  turno per un certo periodo di tempo (una \textit{time slice}). Solo i
-  processi con la stessa priorità ed in stato \textit{runnable} entrano nel
-  circolo.
+  fintanto che non cede volontariamente la CPU (con \func{sched\_yield}), si
+  blocca, finisce o viene interrotto da un processo a priorità più alta. Se il
+  processo viene interrotto da uno a priorità più alta esso resterà in cima
+  alla lista e sarà il primo ad essere eseguito quando i processi a priorità
+  più alta diverranno inattivi. Se invece lo si blocca volontariamente sarà
+  posto in coda alla lista (ed altri processi con la stessa priorità potranno
+  essere eseguiti).
+\item[\textit{RR}] \textit{Round Robin}. Il comportamento è del tutto analogo
+  a quello precedente, con la sola differenza che ciascun processo viene
+  eseguito al massimo per un certo periodo di tempo (la cosiddetta
+  \textit{time slice}) dopo di che viene automaticamente posto in fondo alla
+  coda dei processi con la stessa priorità. In questo modo si ha comunque una
+  esecuzione a turno di tutti i processi, da cui il nome della politica. Solo
+  i processi con la stessa priorità ed in stato \textit{runnable} entrano nel
+  \textsl{girotondo}.
 \end{basedescript}
 
 La funzione per impostare le politiche di scheduling (sia real-time che
@@ -2238,7 +2238,7 @@ assolute diverse da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
 \begin{table}[htb]
   \centering
   \footnotesize
-  \begin{tabular}[c]{|c|l|}
+  \begin{tabular}[c]{|l|l|}
     \hline
     \textbf{Policy}  & \textbf{Significato} \\
     \hline
@@ -2249,8 +2249,8 @@ assolute diverse da zero o politiche \const{SCHED\_FIFO} e \const{SCHED\_RR}.
     \const{SCHED\_OTHER}& Scheduling ordinario\\
     \hline
   \end{tabular}
-  \caption{Valori dell'argomento \param{policy}  per la funzione
-    \func{sched\_setscheduler}. }
+  \caption{Valori dell'argomento \param{policy} per la funzione
+    \func{sched\_setscheduler}.}
   \label{tab:proc_sched_policy}
 \end{table}
 
@@ -2258,8 +2258,8 @@ Il valore della priorit
 \struct{sched\_param} (riportata in fig.~\ref{fig:sig_sched_param}), il cui
 solo campo attualmente definito è \var{sched\_priority}, che nel caso delle
 priorità assolute deve essere specificato nell'intervallo fra un valore
-massimo ed uno minimo, che nel caso sono rispettivamente 1 e 99 (il valore
-zero è legale, ma indica i processi normali).
+massimo ed uno minimo, che nel caso sono rispettivamente 1 e 99il valore
+nullo è legale, ma indica i processi normali.
 
 \begin{figure}[!bht]
   \footnotesize \centering
@@ -2271,6 +2271,12 @@ zero 
   \label{fig:sig_sched_param}
 \end{figure}
 
+Si tenga presente che quando si imposta una politica di scheduling real-time
+per un processo (o se ne cambia la priorità con \func{sched\_setparam}) questo
+viene messo in cima alla lista dei processi con la stessa priorità; questo
+comporta che verrà eseguito subito, interrompendo eventuali altri processi con
+la stessa priorità in quel momento in esecuzione.
+
 Lo standard POSIX.1b prevede comunque che i due valori della massima e minima
 priorità statica possano essere ottenuti, per ciascuna delle politiche di
 scheduling \textit{real-time}, tramite le due funzioni
@@ -2310,25 +2316,6 @@ volontariamente la CPU (in tal caso, tornando nello stato \textit{runnable}
 sarà reinserito in coda alla lista); l'esecuzione viene ripresa subito solo
 nel caso che esso sia stato interrotto da un processo a priorità più alta.
 
-La priorità assoluta può essere riletta indietro dalla funzione
-\funcd{sched\_getscheduler}, il cui prototipo è:
-\begin{prototype}{sched.h}
-{int sched\_getscheduler(pid\_t pid)}
-  Legge la politica di scheduling per il processo \param{pid}.
-  
-  \bodydesc{La funzione ritorna la politica di scheduling in caso di successo
-    e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
-    \begin{errlist}
-    \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
-    \item[\errcode{EINVAL}] il valore di \param{pid} è negativo.
-  \end{errlist}}
-\end{prototype}
-
-La funzione restituisce il valore (secondo quanto elencato in
-tab.~\ref{tab:proc_sched_policy}) della politica di scheduling per il processo
-specificato; se \param{pid} è nullo viene restituito quello del processo
-chiamante.
-
 Se si intende operare solo sulla priorità assoluta di un processo si possono
 usare le funzioni \funcd{sched\_setparam} e \funcd{sched\_getparam}, i cui
 prototipi sono:
@@ -2345,7 +2332,10 @@ prototipi sono:
     e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
     \begin{errlist}
     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
-    \item[\errcode{EINVAL}] il valore di \param{pid} è negativo.
+    \item[\errcode{EINVAL}] il valore di \param{p} non ha senso per la
+      politica scelta.
+    \item[\errcode{EPERM}] il processo non ha i privilegi sufficienti per
+      eseguire l'operazione.
   \end{errlist}}
 \end{functions}
 
@@ -2354,7 +2344,31 @@ L'uso di \func{sched\_setparam} che 
 \func{sched\_setscheduler} specificando 0 come valore di \param{pid} si opera
 sul processo corrente. La disponibilità di entrambe le funzioni può essere
 verificata controllando la macro \macro{\_POSIX\_PRIORITY\_SCHEDULING} che è
-definita nell'header \file{sched.h}.
+definita nell'header \file{sched.h}. 
+
+Si tenga presente che per eseguire la funzione il processo chiamante deve
+avere un user-ID effettivo uguale all'user-ID reale o a quello effettivo del
+processo di cui vuole cambiare la priorità, oppure deve avere i privilegi di
+amministratore (con la capacità \const{CAP\_SYS\_NICE}).
+
+La priorità assoluta può essere riletta indietro dalla funzione
+\funcd{sched\_getscheduler}, il cui prototipo è:
+\begin{prototype}{sched.h}
+{int sched\_getscheduler(pid\_t pid)}
+  Legge la politica di scheduling per il processo \param{pid}.
+  
+  \bodydesc{La funzione ritorna la politica di scheduling in caso di successo
+    e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
+    \item[\errcode{EINVAL}] il valore di \param{pid} è negativo.
+  \end{errlist}}
+\end{prototype}
+
+La funzione restituisce il valore (secondo quanto elencato in
+tab.~\ref{tab:proc_sched_policy}) della politica di scheduling per il processo
+specificato; se \param{pid} è nullo viene restituito quello del processo
+chiamante.
 
 L'ultima funzione che permette di leggere le informazioni relative ai processi
 real-time è \funcd{sched\_rr\_get\_interval}, che permette di ottenere la
@@ -2364,7 +2378,7 @@ il suo prototipo 
   {int sched\_rr\_get\_interval(pid\_t pid, struct timespec *tp)} Legge in
   \param{tp} la durata della \textit{time slice} per il processo \param{pid}.
   
-  \bodydesc{La funzione ritorna 0in caso di successo e -1 in caso di errore,
+  \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
     nel qual caso \var{errno} può assumere i valori:
     \begin{errlist}
     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
@@ -2374,7 +2388,10 @@ il suo prototipo 
 
 La funzione restituisce il valore dell'intervallo di tempo usato per la
 politica \textit{round robin} in una struttura \struct{timespec}, (la cui
-definizione si può trovare in fig.~\ref{fig:sys_timeval_struct}).
+definizione si può trovare in fig.~\ref{fig:sys_timeval_struct}). In realtà
+dato che in Linux questo intervallo di tempo è prefissato e non modificabile,
+questa funzione ritorna sempre un valore di 150 millisecondi, e non importa
+specificare il PID di un processo reale.
 
 
 Come accennato ogni processo che usa lo scheduling real-time può rilasciare
@@ -2396,6 +2413,178 @@ l'esecuzione non sar
 in modalità \textit{fifo}, per permettere l'esecuzione degli altri processi
 con pari priorità quando la sezione più urgente è finita.
 
+Infine con il supporto dei sistemi multiprocessore sono state introdotte delle
+funzioni che permettono di controllare in maniera più dettagliata la scelta di
+quale processore utilizzare per eseguire un certo programma. Uno dei problemi
+che si pongono nei sistemi multiprocessore è infatti quello
+dell'\textsl{effetto ping-pong}.\index{\textsl{effetto ping-pong}} Può
+accadere cioè che lo scheduler, quando riavvia un processo precedentemente
+interrotto, scegliendo il primo processore disponibile lo faccia eseguire da
+un processore diverso rispetto a quello su cui era stato eseguito in
+precedenza. Se il processo passa da un processore all'altro in questo modo
+(cosa che avveniva abbastanza di frequente con i kernel della seria 2.4.x) si
+ha l'\textsl{effetto ping-pong}.
+
+Questo tipo di comportamento può generare dei seri problemi di prestazioni;
+infatti tutti i processori moderni utilizzano una memoria interna (la
+\textit{cache}) contenente i dati più usati, che permette di evitare di
+eseguire un accesso (molto più lento) alla memoria principale sulla scheda
+madre.  Chiaramente un processo sarà favorito se i suoi dati sono nella cache
+del processore, ma è ovvio che questo può essere vero solo per un processore
+alla volta, perché in presenza di più copie degli stessi dati su più
+processori, non si potrebbe determinare quale di questi ha la versione dei
+dati aggiornata rispetto alla memoria principale.
+
+Questo comporta che quando un processore inserisce un dato nella sua cache,
+tutti gli altri processori che hanno lo stesso dato devono invalidarlo, e
+questa operazione è molto costosa in termini di prestazioni. Il problema
+diventa serio quando si verifica l'\textsl{effetto ping-pong}, in tal caso
+infatti un processo \textsl{rimbalza} continuamente da un processore all'altro
+e si ha una continua invalidazione della cache, che non diventa mai
+disponibile. 
+
+Per ovviare a questo tipo di problemi è nato il concetto di \textsl{affinità
+  di processore} (o \index{\textit{CPU~affinity}}\textit{CPU affinity}); la
+possibilità cioè di far sì che un processo possa essere assegnato per
+l'esecuzione sempre allo stesso processore. Lo scheduler dei kernel della
+serie 2.4.x aveva una scarsa \textit{CPU affinity}, e l'effetto ping-pong era
+comune; con il nuovo scheduler dei kernel della 2.6.x questo problema è stato
+risolto ed esso cerca di mantenere il più possibile ciascun processo sullo
+stesso processore.
+
+In certi casi però resta l'esigenza di poter essere sicuri che un processo sia
+sempre eseguito dallo stesso processore,\footnote{quella che viene detta
+  \textit{hard CPU affinity}, in contrasto con quella fornita dallo scheduler,
+  detta \textit{soft CPU affinity}, che di norma indica solo una preferenza,
+  non un requisito assoluto.} e per poter risolvere questo tipo di
+problematiche nei nuovi kernel\footnote{le due system call per la gestione
+  della \textit{CPU affinity} sono state introdotte nel kernel 2.5.8, e le
+  funzioni di libreria nelle \textsl{glibc} 2.3.} è stata introdotta
+l'opportuna infrastruttura ed una nuova system call che permette di impostare
+su quali processori far eseguire un determinato processo attraverso una
+\textsl{maschera di affinità}. La corrispondente funzione di libreria è
+\funcd{sched\_setaffinity} ed il suo prototipo\footnote{di questa funzione (e
+  della corrispondente \func{sched\_setaffinity}) esistono versioni diverse
+  per gli argomenti successivi a \param{pid}: la prima (quella riportata nella
+  pagina di manuale) prevedeva due ulteriori argomenti di tipo
+  \texttt{unsigned int len} e \texttt{unsigned long *mask}, poi l'argomento
+  \texttt{len} è stato eliminato, successivamente si è introdotta la versione
+  riportata con però un secondo argomento di tipo \texttt{size\_t cpusetsize}
+  (anche questa citata nella pagina di manuale); la versione citata è quella
+  riportata nel manuale delle \textsl{glibc} e corripondente alla definizione
+  presente in \file{sched.h}.} è:
+\begin{prototype}{sched.h}
+  {int sched\_setaffinity (pid\_t pid, const cpu\_set\_t *cpuset)} 
+  Imposta la maschera di affinità del processo \param{pid}.
+  
+  \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
+    nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
+    \item[\errcode{EINVAL}] il valore di \param{cpuset} contiene riferimenti a
+      processori non esistenti nel sistema.
+    \item[\errcode{EPERM}] il processo non ha i privilegi sufficienti per
+      eseguire l'operazione.
+  \end{errlist} 
+  ed inoltre anche \errval{EFAULT}.}
+\end{prototype}
+
+La funzione imposta, con l'uso del valore contenuto all'indirizzo
+\param{cpuset}, l'insieme dei processori sui quali deve essere eseguito il
+processo identificato tramite il valore passato in \param{pid}. Come in
+precedenza il valore nullo di \param{pid} indica il processo corrente.  Per
+poter utilizzare questa funzione sono richiesti i privilegi di amministratore
+(è necessaria la capacità \const{CAP\_SYS\_NICE}) altrimenti essa fallirà con
+un errore di \errcode{EPERM}. Una volta impostata una maschera di affinità,
+questa viene ereditata attraverso una \func{fork}, in questo modo diventa
+possibile legare automaticamente un gruppo di processi ad un singolo
+processore.
+
+Nell'uso comune, almeno con i kernel della serie 2.6.x, l'uso di questa
+funzione non è necessario, in quanto è lo scheduler stesso che provvede a
+mantenere al meglio l'affinità di processore. Esistono però esigenze
+particolari, ad esempio quando un processo (o un gruppo di processi) è
+utilizzato per un compito importante (ad esempio per applicazioni real-time o
+la cui risposta è critica) e si vuole la massima velocità, con questa
+interfaccia diventa possibile selezionare gruppi di processori utilizzabili in
+maniera esclusiva.  Lo stesso dicasi quando l'accesso a certe risorse (memoria
+o periferiche) può avere un costo diverso a seconda del processore (come
+avviene nelle architetture NUMA).
+
+Infine se un gruppo di processi accede alle stesse risorse condivise (ad
+esempio una applicazione con più thread) può avere senso usare lo stesso
+processore in modo da sfruttare meglio l'uso della sua cache; questo
+ovviamente riduce i benefici di un sistema multiprocessore nell'esecuzione
+contemporanea dei thread, ma in certi casi (quando i thread sono inerentemente
+serializzati nell'accesso ad una risorsa) possono esserci sufficienti vantaggi
+nell'evitare la perdita della cache da rendere conveniente l'uso dell'affinità
+di processore.
+
+Per facilitare l'uso dell'argomento \param{cpuset} le \acr{glibc} hanno
+introdotto un apposito dato di tipo, \ctyp{cpu\_set\_t},\footnote{questa è una
+  estensione specifica delle \acr{glibc}, da attivare definendo la macro
+  \macro{\_GNU\_SOURCE}, non esiste infatti una standardardizzazione per
+  questo tipo di interfaccia e POSIX al momento non prevede nulla al
+  riguardo.} che permette di identificare un insieme di processori. Il dato è
+una maschera binaria: in generale è un intero a 32 bit in cui ogni bit
+corrisponde ad un processore, ma dato che per architetture particolari il
+numero di bit di un intero può non essere sufficiente, è stata creata questa
+che è una interfaccia generica che permette di usare a basso livello un tipo
+di dato qualunque rendendosi indipendenti dal numero di bit e dalla loro
+disposizione.
+
+Questa interfaccia, oltre alla definizione del tipo di dato apposito, prevede
+anche una serie di macro di preprocessore per la manipolazione dello stesso,
+che consentono di svuotare un insieme, aggiungere o togliere un processore da
+esso o verificare se vi è già presente:
+\begin{functions}
+  \headdecl{sched.h}
+  \funcdecl{void \macro{CPU\_ZERO}(cpu\_set\_t *set)}
+  Inizializza l'insieme (vuoto).
+
+  \funcdecl{void \macro{CPU\_SET}(int cpu, cpu\_set\_t *set)}
+  Inserisce il processore \param{cpu} nell'insieme.
+
+  \funcdecl{void \macro{CPU\_CLR}(int cpu, cpu\_set\_t *set)}
+  Rimuove il processore \param{cpu} nell'insieme.
+  
+  \funcdecl{int \macro{CPU\_ISSET}(int cpu, cpu\_set\_t *set)}
+  Controlla se il processore \param{cpu} è nell'insieme.
+\end{functions}
+
+Oltre a queste macro, simili alle analoghe usate per gli insiemi di file
+descriptor (vedi sez.~\ref{sec:file_select}) è definita la costante
+\const{CPU\_SETSIZE} che indica il numero massimo di processori che possono
+far parte dell'insieme, e che costituisce un limite massimo al valore
+dell'argomento \param{cpu}.
+
+In generale la maschera di affinità è preimpostata in modo che un processo
+possa essere eseguito su qualunque processore, se può comunque leggere il
+valore per un processo specifico usando la funzione
+\funcd{sched\_getaffinity}, il suo prototipo è:
+\begin{prototype}{sched.h}
+  {int sched\_getaffinity (pid\_t pid, const cpu\_set\_t *cpuset)} 
+  Legge la maschera di affinità del processo \param{pid}.
+  
+  \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
+    nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
+    \item[\errcode{EFAULT}] il valore di \param{cpuset} non è un indirizzo
+      valido. 
+  \end{errlist} }
+\end{prototype}
+
+La funzione restituirà all'indirizzo specificato da \param{cpuset} il valore
+della maschera di affinità del processo, così da poterla riutilizzare per una
+successiva reimpostazione. In questo caso non sono necessari privilegi
+paricolari.  
+
+È chiaro che queste funzioni per la gestione dell'affinità hanno significato
+soltanto su un sistema multiprocessore, esse possono comunque essere
+utilizzate anche in un sistema con un processore singolo, nel qual caso però
+non avranno alcun risultato effettivo.
+
 
 \section{Problematiche di programmazione multitasking}
 \label{sec:proc_multi_prog}