Aggiunti alcuni header alla lista e quattro chiacchiere sulle alternative
[gapil.git] / prochand.tex
index 534049e4af90da2abca9477674491f948239a2c8..4bb15c65003e9fa563cdb18c427f77ad092e6efa 100644 (file)
@@ -132,21 +132,22 @@ riprese), 
 \end{figure}
 
 
-Come accennato in \secref{sec:intro_unix_struct} è lo \textit{scheduler} che
-decide quale processo mettere in esecuzione; esso viene eseguito ad ogni
-system call ed ad ogni interrupt,\footnote{più in una serie di altre
-  occasioni. NDT completare questa parte.} (ma può essere anche attivato
-esplicitamente). Il timer di sistema provvede comunque a che esso sia invocato
-periodicamente, generando un interrupt periodico secondo la frequenza
-specificata dalla costante \macro{HZ}, definita in \file{asm/param.h}, ed il
-cui valore è espresso in Hertz.\footnote{Il valore usuale di questa costante è
-  100, per tutte le architetture eccetto l'alpha, per la quale è 1000. Occorre
-  fare attenzione a non confondere questo valore con quello dei clock tick
-  (vedi \secref{sec:sys_unix_time}).}
+Come accennato in \secref{sec:intro_unix_struct} è lo
+\textit{scheduler}\index{scheduler} che decide quale processo mettere in
+esecuzione; esso viene eseguito ad ogni system call ed ad ogni
+interrupt,\footnote{più in una serie di altre occasioni. NDT completare questa
+  parte.} (ma può essere anche attivato esplicitamente). Il timer di sistema
+provvede comunque a che esso sia invocato periodicamente, generando un
+interrupt periodico secondo la frequenza specificata dalla costante
+\macro{HZ}, definita in \file{asm/param.h}, ed il cui valore è espresso in
+Hertz.\footnote{Il valore usuale di questa costante è 100, per tutte le
+  architetture eccetto l'alpha, per la quale è 1000. Occorre fare attenzione a
+  non confondere questo valore con quello dei clock tick (vedi
+  \secref{sec:sys_unix_time}).}
 %Si ha cioè un interrupt dal timer ogni centesimo di secondo.
 
-Ogni volta che viene eseguito, lo \textit{scheduler} effettua il calcolo delle
-priorità dei vari processi attivi (torneremo su questo in
+Ogni volta che viene eseguito, lo \textit{scheduler}\index{scheduler} effettua
+il calcolo delle priorità dei vari processi attivi (torneremo su questo in
 \secref{sec:proc_priority}) e stabilisce quale di essi debba essere posto in
 esecuzione fino alla successiva invocazione.
 
@@ -459,15 +460,15 @@ Go to next child
 Esaminiamo questo risultato: una prima conclusione che si può trarre è che non
 si può dire quale processo fra il padre ed il figlio venga eseguito per
 primo\footnote{a partire dal kernel 2.5.2-pre10 è stato introdotto il nuovo
-  scheduler di Ingo Molnar che esegue sempre per primo il figlio; per
-  mantenere la portabilità è opportuno non fare comunque affidamento su questo
-  comportamento.} dopo la chiamata a \func{fork}; dall'esempio si può notare
-infatti come nei primi due cicli sia stato eseguito per primo il padre (con la
-stampa del \acr{pid} del nuovo processo) per poi passare all'esecuzione del
-figlio (completata con i due avvisi di esecuzione ed uscita), e tornare
-all'esecuzione del padre (con la stampa del passaggio al ciclo successivo),
-mentre la terza volta è stato prima eseguito il figlio (fino alla conclusione)
-e poi il padre.
+  scheduler\index{scheduler} di Ingo Molnar che esegue sempre per primo il
+  figlio; per mantenere la portabilità è opportuno non fare comunque
+  affidamento su questo comportamento.} dopo la chiamata a \func{fork};
+dall'esempio si può notare infatti come nei primi due cicli sia stato eseguito
+per primo il padre (con la stampa del \acr{pid} del nuovo processo) per poi
+passare all'esecuzione del figlio (completata con i due avvisi di esecuzione
+ed uscita), e tornare all'esecuzione del padre (con la stampa del passaggio al
+ciclo successivo), mentre la terza volta è stato prima eseguito il figlio
+(fino alla conclusione) e poi il padre.
 
 In generale l'ordine di esecuzione dipenderà, oltre che dall'algoritmo di
 scheduling usato dal kernel, dalla particolare situazione in si trova la
@@ -1492,10 +1493,10 @@ all'\textsl{userid salvato}. Negli altri casi viene segnalato un errore (con
 \macro{EPERM}).
 
 Come accennato l'uso principale di queste funzioni è quello di poter
-consentire ad un programma con i bit \acr{suid} o \acr{sgid} impostati di
-riportare l'\textsl{userid effettivo} a quello dell'utente che ha lanciato il
-programma, effettuare il lavoro che non necessita di privilegi aggiuntivi, ed
-eventualmente tornare indietro.
+consentire ad un programma con i bit \acr{suid} o \acr{sgid} impostati (vedi
+\secref{sec:file_suid_sgid}) di riportare l'\textsl{userid effettivo} a quello
+dell'utente che ha lanciato il programma, effettuare il lavoro che non
+necessita di privilegi aggiuntivi, ed eventualmente tornare indietro.
 
 Come esempio per chiarire l'uso di queste funzioni prendiamo quello con cui
 viene gestito l'accesso al file \file{/var/log/utmp}.  In questo file viene
@@ -1837,9 +1838,10 @@ quando si definisce \macro{\_POSIX\_SOURCE} o si compila con il flag
 \label{sec:proc_priority}
 
 In questa sezione tratteremo più approfonditamente i meccanismi con il quale
-lo \textit{scheduler} assegna la CPU ai vari processi attivi. In particolare
-prenderemo in esame i vari meccanismi con cui viene gestita l'assegnazione del
-tempo di CPU, ed illustreremo le varie funzioni di gestione.
+lo \textit{scheduler}\index{scheduler} assegna la CPU ai vari processi attivi.
+In particolare prenderemo in esame i vari meccanismi con cui viene gestita
+l'assegnazione del tempo di CPU, ed illustreremo le varie funzioni di
+gestione.
 
 
 \subsection{I meccanismi di \textit{scheduling}}
@@ -1857,8 +1859,8 @@ contrario di altri sistemi (che usano invece il cosiddetto \textit{cooperative
   multitasking}) non sono i singoli processi, ma il kernel stesso a decidere
 quando la CPU deve essere passata ad un altro processo. Come accennato in
 \secref{sec:proc_hierarchy} questa scelta viene eseguita da una sezione
-apposita del kernel, lo \textit{scheduler}, il cui scopo è quello di
-distribuire al meglio il tempo di CPU fra i vari processi.
+apposita del kernel, lo \textit{scheduler}\index{scheduler}, il cui scopo è
+quello di distribuire al meglio il tempo di CPU fra i vari processi.
 
 La cosa è resa ancora più complicata dal fatto che con le architetture
 multi-processore si deve anche scegliere quale sia la CPU più opportuna da
@@ -1986,16 +1988,17 @@ viene assegnato ad un altro campo della struttura (\var{counter}) quando il
 processo viene eseguito per la prima volta e diminuito progressivamente ad
 ogni interruzione del timer.
 
-Quando lo scheduler viene eseguito scandisce la coda dei processi in stato
-\textit{runnable} associando, sulla base del valore di \var{counter}, un peso
-a ciascun processo in attesa di esecuzione,\footnote{il calcolo del peso in
-  realtà è un po' più complicato, ad esempio nei sistemi multiprocessore viene
-  favorito un processo che è eseguito sulla stessa CPU, e a parità del valore
-  di \var{counter} viene favorito chi ha una priorità più elevata.} chi ha il
-peso più alto verrà posto in esecuzione, ed il precedente processo sarà
-spostato in fondo alla coda.  Dato che ad ogni interruzione del timer il
-valore di \var{counter} del processo corrente viene diminuito, questo assicura
-che anche i processi con priorità più bassa verranno messi in esecuzione.
+Quando lo scheduler\index{scheduler} viene eseguito scandisce la coda dei
+processi in stato \textit{runnable} associando, sulla base del valore di
+\var{counter}, un peso a ciascun processo in attesa di esecuzione,\footnote{il
+  calcolo del peso in realtà è un po' più complicato, ad esempio nei sistemi
+  multiprocessore viene favorito un processo che è eseguito sulla stessa CPU,
+  e a parità del valore di \var{counter} viene favorito chi ha una priorità
+  più elevata.} chi ha il peso più alto verrà posto in esecuzione, ed il
+precedente processo sarà spostato in fondo alla coda.  Dato che ad ogni
+interruzione del timer il valore di \var{counter} del processo corrente viene
+diminuito, questo assicura che anche i processi con priorità più bassa
+verranno messi in esecuzione.
 
 La priorità di un processo è così controllata attraverso il valore di
 \var{nice}, che stabilisce la durata della \textit{time-slice}; per il
@@ -2117,9 +2120,10 @@ priorit
 nel caso di Linux non si tratta di un vero hard real-time, in quanto in
 presenza di eventuali interrupt il kernel interrompe l'esecuzione di un
 processo qualsiasi sia la sua priorità,\footnote{questo a meno che non si
-  siano installate le patch di RTLinux o RTAI, con i quali è possibile
+  siano installate le patch di RTLinux, RTAI o Adeos, con i quali è possibile
   ottenere un sistema effettivamente hard real-time. In tal caso infatti gli
-  interrupt vengono intercettati dall'interfaccia real-time, e gestiti
+  interrupt vengono intercettati dall'interfaccia real-time (o nel caso di
+  Adeos gestiti dalle code del nano-kernel), in modo da poterlo controllare
   direttamente qualora ci sia la necessità di avere un processo con priorità
   più elevata di un \textit{interrupt handler}.} mentre con l'incorrere in un
 page fault\index{page fault} si possono avere ritardi non previsti. Se
@@ -2137,23 +2141,22 @@ quando si lavora con processi che usano priorit
 shell cui si sia assegnata la massima priorità assoluta, in modo da poter
 essere comunque in grado di rientrare nel sistema.
 
-Quando c'è un processo con priorità assoluta lo scheduler lo metterà in
-esecuzione prima di ogni processo normale. In caso di più processi sarà
-eseguito per primo quello con priorità assoluta più alta. Quando ci sono più
-processi con la stessa priorità assoluta questi vengono tenuti in una coda
-tocca al kernel decidere quale deve essere eseguito. 
-
-
+Quando c'è un processo con priorità assoluta lo scheduler\index{scheduler} lo
+metterà in esecuzione prima di ogni processo normale. In caso di più processi
+sarà eseguito per primo quello con priorità assoluta più alta. Quando ci sono
+più processi con la stessa priorità assoluta questi vengono tenuti in una coda
+tocca al kernel decidere quale deve essere eseguito.
 
 Il meccanismo con cui vengono gestiti questi processi dipende dalla politica
 di scheduling che si è scelto; lo standard ne prevede due:
-\begin{basedescript}{\desclabelwidth{3cm}\desclabelstyle{\nextlinelabel}}
-\item[\textit{FIFO}] il processo viene eseguito fintanto che non cede
-  volontariamente la CPU, si blocca, finisce o viene interrotto da un processo
-  a priorità più alta.
-\item[\textit{Round Robin}] ciascun processo viene eseguito a turno per un
-  certo periodo di tempo (una \textit{time slice}). Solo i processi con la
-  stessa priorità ed in stato \textit{runnable} entrano nel circolo.
+\begin{basedescript}{\desclabelwidth{2cm}\desclabelstyle{\nextlinelabel}}
+\item[\textit{FIFO}] \textit{First In First Out}. Il processo viene eseguito
+  fintanto che non cede volontariamente la CPU, si blocca, finisce o viene
+  interrotto da un processo a priorità più alta.
+\item[\textit{RR}] \textit{Round Robin}. Ciascun processo viene eseguito a
+  turno per un certo periodo di tempo (una \textit{time slice}). Solo i
+  processi con la stessa priorità ed in stato \textit{runnable} entrano nel
+  circolo.
 \end{basedescript}
 
 La funzione per impostare le politiche di scheduling (sia real-time che