Risistemata flock, aggiunta figura sulla struttura del sistema
[gapil.git] / prochand.tex
index 0826840cd966782cf3f1c659b23bfa1a4275324e..3f093759180ae0c364bfd34bbe6e39df922b76f5 100644 (file)
@@ -109,9 +109,10 @@ Dato che tutti i processi attivi nel sistema sono comunque generati da
 possono classificare i processi con la relazione padre/figlio in
 un'organizzazione gerarchica ad albero, in maniera analoga a come i file sono
 organizzati in un albero di directory (si veda
-\secref{sec:file_organization}); in \curfig\ si è mostrato il risultato del
-comando \cmd{pstree} che permette di visualizzare questa struttura, alla cui
-base c'è \cmd{init} che è progenitore di tutti gli altri processi.
+\secref{sec:file_organization}); in \figref{fig:proc_tree} si è mostrato il
+risultato del comando \cmd{pstree} che permette di visualizzare questa
+struttura, alla cui base c'è \cmd{init} che è progenitore di tutti gli altri
+processi.
 
 Il kernel mantiene una tabella dei processi attivi, la cosiddetta
 \textit{process table}; per ciascun processo viene mantenuta una voce nella
@@ -120,7 +121,7 @@ contiene tutte le informazioni rilevanti per quel processo. Tutte le strutture
 usate a questo scopo sono dichiarate nell'header file \file{linux/sched.h}, ed
 uno schema semplificato, che riporta la struttura delle principali informazioni
 contenute nella \type{task\_struct} (che in seguito incontreremo a più
-riprese), è mostrato in \nfig.
+riprese), è mostrato in \figref{fig:proc_task_struct}.
 
 \begin{figure}[htb]
   \centering
@@ -137,10 +138,12 @@ system call ed ad ogni interrupt,\footnote{pi
   occasioni. NDT completare questa parte.} (ma può essere anche attivato
 esplicitamente). Il timer di sistema provvede comunque a che esso sia invocato
 periodicamente, generando un interrupt periodico secondo la frequenza
-specificata dalla costante \macro{HZ}, definita in \file{asm/param.h}. Il
-valore usuale è 100\footnote{è così per tutte le architetture eccetto l'alpha,
-  per la quale è 1000} ed è espresso in Hertz. Si ha cioè un interrupt dal
-timer ogni centesimo di secondo.
+specificata dalla costante \macro{HZ}, definita in \file{asm/param.h}, ed il
+cui valore è espresso in Hertz.\footnote{Il valore usuale di questa costante è
+  100, per tutte le architetture eccetto l'alpha, per la quale è 1000. Occorre
+  fare attenzione a non confondere questo valore con quello dei clock tick
+  (vedi \secref{sec:sys_unix_time}).}
+%Si ha cioè un interrupt dal timer ogni centesimo di secondo.
 
 Ogni volta che viene eseguito, lo \textit{scheduler} effettua il calcolo delle
 priorità dei vari processi attivi (torneremo su questo in
@@ -211,29 +214,29 @@ Come accennato nell'introduzione, ogni processo viene identificato dal sistema
 da un numero identificativo unico, il \textit{process id} o \acr{pid};
 quest'ultimo è un tipo di dato standard, il \type{pid\_t} che in genere è un
 intero con segno (nel caso di Linux e delle \acr{glibc} il tipo usato è
-\type{int}).
+\ctyp{int}).
 
 Il \acr{pid} viene assegnato in forma progressiva ogni volta che un nuovo
 processo viene creato, fino ad un limite che, essendo il \acr{pid} un numero
 positivo memorizzato in un intero a 16 bit, arriva ad un massimo di 32767.
 Oltre questo valore l'assegnazione riparte dal numero più basso disponibile a
-partire da un minimo di 300,\footnote{questi valori sono definiti dalla macro
-  \macro{PID\_MAX} in \file{threads.h} e direttamente in \file{fork.c} nei
-  sorgenti del kernel.} che serve a riservare i \acr{pid} più bassi ai processi
-eseguiti dal direttamente dal kernel.  Per questo motivo, come visto in
-\secref{sec:proc_hierarchy}, il processo di avvio (\cmd{init}) ha sempre il
-\acr{pid} uguale a uno.
+partire da un minimo di 300,\footnote{questi valori, fino al kernel 2.4.x,
+  sono definiti dalla macro \macro{PID\_MAX} in \file{threads.h} e
+  direttamente in \file{fork.c}, con il kernel 2.5.x e la nuova interfaccia
+  per i thread creata da Ingo Molnar anche il meccanismo di allocazione dei
+  \acr{pid} è stato modificato.} che serve a riservare i \acr{pid} più bassi
+ai processi eseguiti dal direttamente dal kernel.  Per questo motivo, come
+visto in \secref{sec:proc_hierarchy}, il processo di avvio (\cmd{init}) ha
+sempre il \acr{pid} uguale a uno.
 
 Tutti i processi inoltre memorizzano anche il \acr{pid} del genitore da cui
 sono stati creati, questo viene chiamato in genere \acr{ppid} (da
 \textit{parent process id}).  Questi due identificativi possono essere
 ottenuti da programma usando le funzioni:
 \begin{functions}
-\headdecl{sys/types.h}
-\headdecl{unistd.h}
-\funcdecl{pid\_t getpid(void)} Restituisce il pid del processo corrente.
-\funcdecl{pid\_t getppid(void)} Restituisce il pid del padre del processo
-    corrente.
+  \headdecl{sys/types.h} \headdecl{unistd.h} \funcdecl{pid\_t getpid(void)}
+  Restituisce il \acr{pid} del processo corrente.  \funcdecl{pid\_t
+    getppid(void)} Restituisce il \acr{pid} del padre del processo corrente.
 
 \bodydesc{Entrambe le funzioni non riportano condizioni di errore.}
 \end{functions}
@@ -256,8 +259,8 @@ un processo e le varie relazioni fra processi utilizzate per definire una
 sessione.
 
 Oltre al \acr{pid} e al \acr{ppid}, (e a quelli che vedremo in
-\secref{sec:sess_xxx}, relativi al controllo di sessione), ad ogni processo
-vengono associati degli altri identificatori che vengono usati per il
+\secref{sec:sess_proc_group}, relativi al controllo di sessione), ad ogni
+processo vengono associati degli altri identificatori che vengono usati per il
 controllo di accesso.  Questi servono per determinare se un processo può
 eseguire o meno le operazioni richieste, a seconda dei privilegi e
 dell'identità di chi lo ha posto in esecuzione; l'argomento è complesso e sarà
@@ -377,14 +380,18 @@ int main(int argc, char *argv[])
 Normalmente la chiamata a \func{fork} può fallire solo per due ragioni, o ci
 sono già troppi processi nel sistema (il che di solito è sintomo che
 qualcos'altro non sta andando per il verso giusto) o si è ecceduto il limite
-sul numero totale di processi permessi all'utente (vedi \secref{sec:sys_xxx}).
+sul numero totale di processi permessi all'utente (vedi
+\secref{sec:sys_resource_limit}, ed in particolare
+\tabref{tab:sys_rlimit_values}).
 
 L'uso di \func{fork} avviene secondo due modalità principali; la prima è
 quella in cui all'interno di un programma si creano processi figli cui viene
 affidata l'esecuzione di una certa sezione di codice, mentre il processo padre
-ne esegue un'altra. È il caso tipico dei server di rete in cui il padre riceve
-ed accetta le richieste da parte dei client, per ciascuna delle quali pone in
-esecuzione un figlio che è incaricato di fornire il servizio.
+ne esegue un'altra. È il caso tipico dei server (il modello
+\textit{client-server} è illustrato in \secref{sec:net_cliserv}) di rete in
+cui il padre riceve ed accetta le richieste da parte dei client, per ciascuna
+delle quali pone in esecuzione un figlio che è incaricato di fornire il
+servizio.
 
 La seconda modalità è quella in cui il processo vuole eseguire un altro
 programma; questo è ad esempio il caso della shell. In questo caso il processo
@@ -399,21 +406,21 @@ d'uso, esistono numerosi scenari in cui si pu
 aver bisogno di eseguire una \func{exec}. Inoltre, anche nel caso della
 seconda modalità d'uso, avere le due funzioni separate permette al figlio di
 cambiare gli attributi del processo (maschera dei segnali, redirezione
-dell'output, \textit{user id}) prima della \func{exec}, rendendo così
+dell'output, identificatori) prima della \func{exec}, rendendo così
 relativamente facile intervenire sulle le modalità di esecuzione del nuovo
 programma.
 
-In \curfig\ si è riportato il corpo del codice del programma di esempio
-\cmd{forktest}, che ci permette di illustrare molte caratteristiche dell'uso
-della funzione \func{fork}. Il programma permette di creare un numero di figli
-specificato da linea di comando, e prende anche alcune opzioni per indicare
-degli eventuali tempi di attesa in secondi (eseguiti tramite la funzione
-\func{sleep}) per il padre ed il figlio (con \cmd{forktest -h} si ottiene la
-descrizione delle opzioni); il codice completo, compresa la parte che gestisce
-le opzioni a riga di comando, è disponibile nel file \file{ForkTest.c},
-distribuito insieme agli altri sorgenti degli esempi su
-\href{http://firenze.linux.it/~piccardi/gapil_source.tgz}
-{\texttt{http://firenze.linux.it/\~~\hspace{-2.0mm}piccardi/gapil\_source.tgz}}.
+In \figref{fig:proc_fork_code} si è riportato il corpo del codice del
+programma di esempio \cmd{forktest}, che ci permette di illustrare molte
+caratteristiche dell'uso della funzione \func{fork}. Il programma permette di
+creare un numero di figli specificato da linea di comando, e prende anche
+alcune opzioni per indicare degli eventuali tempi di attesa in secondi
+(eseguiti tramite la funzione \func{sleep}) per il padre ed il figlio (con
+\cmd{forktest -h} si ottiene la descrizione delle opzioni); il codice
+completo, compresa la parte che gestisce le opzioni a riga di comando, è
+disponibile nel file \file{ForkTest.c}, distribuito insieme agli altri
+sorgenti degli esempi su \href{http://gapil.firenze.linux.it/gapil_source.tgz}
+{\texttt{http://gapil.firenze.linux.it/gapil\_source.tgz}}.
 
 Decifrato il numero di figli da creare, il ciclo principale del programma
 (\texttt{\small 24--40}) esegue in successione la creazione dei processi figli
@@ -427,7 +434,7 @@ alla conclusione del ciclo, prima di uscire, pu
 periodo di attesa.
 
 Se eseguiamo il comando senza specificare attese (come si può notare in
-\texttt{\small 17--19} i valori di default specificano di non attendere),
+\texttt{\small 17--19} i valori predefiniti specificano di non attendere),
 otterremo come output sul terminale:
 
 \footnotesize
@@ -474,8 +481,9 @@ Pertanto non si pu
 istruzioni del codice fra padre e figli, né sull'ordine in cui questi potranno
 essere messi in esecuzione. Se è necessaria una qualche forma di precedenza
 occorrerà provvedere ad espliciti meccanismi di sincronizzazione, pena il
-rischio di incorrere nelle cosiddette \textit{race condition} \index{race
-  condition} (vedi \secref{sec:proc_race_cond}.
+rischio di incorrere nelle cosiddette 
+\textit{race condition}\index{race condition} 
+(vedi \secref{sec:proc_race_cond}).
 
 Si noti inoltre che essendo i segmenti di memoria utilizzati dai singoli
 processi completamente separati, le modifiche delle variabili nei processi
@@ -594,33 +602,33 @@ Oltre ai file aperti i processi figli ereditano dal padre una serie di altre
 proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in
 comune dopo l'esecuzione di una \func{fork} è la seguente:
 \begin{itemize*}
-\item i file aperti e gli eventuali flag di \textit{close-on-exec} settati
+\item i file aperti e gli eventuali flag di \textit{close-on-exec} impostati
   (vedi \secref{sec:proc_exec} e \secref{sec:file_fcntl}).
-\item gli identificatori per il controllo di accesso: il \textit{real user
-    id}, il \textit{real group id}, l'\textit{effective user id},
-  l'\textit{effective group id} ed i \textit{supplementary group id} (vedi
+\item gli identificatori per il controllo di accesso: l'\textsl{userid reale},
+  il \textsl{groupid reale}, l'\textsl{userid effettivo}, il \textsl{groupid
+    effettivo} ed i \textit{groupid supplementari} (vedi
   \secref{sec:proc_access_id}).
 \item gli identificatori per il controllo di sessione: il \textit{process
-    group id} e il \textit{session id} ed il terminale di controllo (vedi
-  \secref{sec:sess_xxx} e \secref{sec:sess_xxx}).
+    groupid} e il \textit{session id} ed il terminale di controllo (vedi
+  \secref{sec:sess_proc_group}).
 \item la directory di lavoro e la directory radice (vedi
   \secref{sec:file_work_dir} e \secref{sec:file_chroot}).
 \item la maschera dei permessi di creazione (vedi \secref{sec:file_umask}).
-\item la maschera dei segnali bloccati (vedi \secref{sec:sig_sigpending}) e le
+\item la maschera dei segnali bloccati (vedi \secref{sec:sig_sigmask}) e le
   azioni installate (vedi \secref{sec:sig_gen_beha}).
 \item i segmenti di memoria condivisa agganciati al processo (vedi
-\secref{sec:ipc_xxx}). 
-\item i limiti sulle risorse (vedi \secref{sec:sys_xxx}).
+  \secref{sec:ipc_sysv_shm}).
+\item i limiti sulle risorse (vedi \secref{sec:sys_resource_limit}).
 \item le variabili di ambiente (vedi \secref{sec:proc_environ}).
 \end{itemize*}
 le differenze fra padre e figlio dopo la \func{fork} invece sono:
 \begin{itemize*}
 \item il valore di ritorno di \func{fork}.
-\item il \textit{process id}
-\item il \textit{parent process id} (quello del figlio viene settato al
-  \acr{pid} del padre).
-\item i valori dei tempi di esecuzione (vedi \secref{sec:sys_xxx}) che
-  nel figlio sono posti a zero.
+\item il \acr{pid} (\textit{process id})
+\item il \acr{ppid} (\textit{parent process id}), quello del figlio viene
+  impostato al \acr{pid} del padre.
+\item i valori dei tempi di esecuzione della struttura \var{tms} (vedi
+  \secref{sec:sys_cpu_times}) che nel figlio sono posti a zero.
 \item i \textit{file lock} (vedi \secref{sec:file_locking}), che non
   vengono ereditati dal figlio.
 \item gli allarmi ed i segnali pendenti (vedi \secref{sec:sig_gen_beha}), che
@@ -645,10 +653,10 @@ padre, che costituiva un inutile appesantimento in tutti quei casi in cui la
 \func{fork} veniva fatta solo per poi eseguire una \func{exec}. La funzione
 venne introdotta in BSD per migliorare le prestazioni.
 
-Dato che Linux supporta il \textit{copy on write} la perdita di prestazioni è
-assolutamente trascurabile, e l'uso di questa funzione (che resta un caso
-speciale della funzione \func{clone}), è deprecato; per questo eviteremo di
-trattarla ulteriormente.
+Dato che Linux supporta il \textit{copy on write}\index{copy on write} la
+perdita di prestazioni è assolutamente trascurabile, e l'uso di questa
+funzione (che resta un caso speciale della funzione \func{clone}), è
+deprecato; per questo eviteremo di trattarla ulteriormente.
 
 
 \subsection{La conclusione di un processo.}
@@ -684,13 +692,14 @@ eseguite alla chiusura di un processo 
   \cmd{init}).
 \item viene inviato il segnale \macro{SIGCHLD} al processo padre (vedi
   \secref{sec:sig_sigchld}).
-\item se il processo è un leader di sessione viene mandato un segnale di
-  \macro{SIGHUP} a tutti i processi in background e il terminale di
-  controllo viene disconnesso (vedi \secref{sec:sess_xxx}).
+\item se il processo è un leader di sessione ed il suo terminale di controllo
+  è quello della sessione viene mandato un segnale di \macro{SIGHUP} a tutti i
+  processi del gruppo di foreground e il terminale di controllo viene
+  disconnesso (vedi \secref{sec:sess_ctrl_term}).
 \item se la conclusione di un processo rende orfano un \textit{process
     group} ciascun membro del gruppo viene bloccato, e poi gli vengono
   inviati in successione i segnali \macro{SIGHUP} e \macro{SIGCONT}
-  (vedi \secref{sec:sess_xxx}).
+  (vedi ancora \secref{sec:sess_ctrl_term}).
 \end{itemize*}
 
 Oltre queste operazioni è però necessario poter disporre di un meccanismo
@@ -762,15 +771,15 @@ informazioni riguardo ai processi che sta terminando.
 
 Questo viene fatto mantenendo attiva la voce nella tabella dei processi, e
 memorizzando alcuni dati essenziali, come il \acr{pid}, i tempi di CPU usati
-dal processo (vedi \secref{sec:sys_unix_time}) e lo stato di
-terminazione\footnote{NdA verificare esattamente cosa c'è!}, mentre la memoria
-in uso ed i file aperti vengono rilasciati immediatamente. I processi che sono
-terminati, ma il cui stato di terminazione non è stato ancora ricevuto dal
-padre sono chiamati \textit{zombie}, essi restano presenti nella tabella dei
-processi ed in genere possono essere identificati dall'output di \cmd{ps} per
-la presenza di una \texttt{Z} nella colonna che ne indica lo stato. Quando il
-padre effettuerà la lettura dello stato di uscita anche questa informazione,
-non più necessaria, verrà scartata e la terminazione potrà dirsi completamente
+dal processo (vedi \secref{sec:sys_unix_time}) e lo stato di terminazione,
+mentre la memoria in uso ed i file aperti vengono rilasciati immediatamente. I
+processi che sono terminati, ma il cui stato di terminazione non è stato
+ancora ricevuto dal padre sono chiamati \textit{zombie}, essi restano presenti
+nella tabella dei processi ed in genere possono essere identificati
+dall'output di \cmd{ps} per la presenza di una \texttt{Z} nella colonna che ne
+indica lo stato (vedi \tabref{tab:proc_proc_states}). Quando il padre
+effettuerà la lettura dello stato di uscita anche questa informazione, non più
+necessaria, verrà scartata e la terminazione potrà dirsi completamente
 conclusa.
 
 Possiamo utilizzare il nostro programma di prova per analizzare anche questa
@@ -866,9 +875,10 @@ cercato sia ancora attivo.
 
 Per questo motivo lo standard POSIX.1 ha introdotto la funzione \func{waitpid}
 che effettua lo stesso servizio, ma dispone di una serie di funzionalità più
-ampie, legate anche al controllo di sessione.  Dato che è possibile ottenere
-lo stesso comportamento di \func{wait} si consiglia di utilizzare sempre
-questa funzione, il cui prototipo è:
+ampie, legate anche al controllo di sessione (si veda
+\ref{sec:sess_job_control}).  Dato che è possibile ottenere lo stesso
+comportamento di \func{wait} si consiglia di utilizzare sempre questa
+funzione, il cui prototipo è:
 \begin{functions}
 \headdecl{sys/types.h}
 \headdecl{sys/wait.h}
@@ -891,7 +901,7 @@ sempre fino a che un processo figlio non termina, mentre \func{waitpid} ha la
 possibilità si specificare un'opzione \macro{WNOHANG} che ne previene il
 blocco; inoltre \func{waitpid} può specificare quale processo attendere sulla
 base del valore fornito dall'argomento \param{pid}, secondo lo
-specchietto riportato in \ntab:
+specchietto riportato in \tabref{tab:proc_waidpid_pid}:
 \begin{table}[!htb]
   \centering
   \footnotesize
@@ -900,7 +910,8 @@ specchietto riportato in \ntab:
     \textbf{Valore} & \textbf{Macro} &\textbf{Significato}\\
     \hline
     \hline
-    $<-1$& -- & attende per un figlio il cui \textit{process group} è uguale al
+    $<-1$& -- & attende per un figlio il cui \textit{process group} (vedi
+    \secref{sec:sess_proc_group}) è uguale al
     valore assoluto di \var{pid}. \\
     $-1$ & \macro{WAIT\_ANY} & attende per un figlio qualsiasi, usata in
     questa maniera è equivalente a \func{wait}.\\ 
@@ -918,18 +929,22 @@ specchietto riportato in \ntab:
 Il comportamento di \func{waitpid} può inoltre essere modificato passando
 delle opportune opzioni tramite l'argomento \param{option}. I valori possibili
 sono il già citato \macro{WNOHANG}, che previene il blocco della funzione
-quando il processo figlio non è terminato, e \macro{WUNTRACED} (usata per il
-controllo di sessione, trattato in \capref{cha:session}) che fa ritornare la
-funzione anche per i processi figli che sono bloccati ed il cui stato non è
-stato ancora riportato al padre. Il valore dell'opzione deve essere
-specificato come maschera binaria ottenuta con l'OR delle suddette costanti
-con zero.
+quando il processo figlio non è terminato, e \macro{WUNTRACED}. Quest'ultimo
+viene generalmente usato per il controllo di sessione, (trattato in
+\secref{sec:sess_job_control}) in quanto permette di identificare i processi
+bloccati. La funzione infatti in tal caso ritorna, restituendone il \acr{pid},
+se c'è un processo figlio che è entrato in stato di sleep (vedi
+\tabref{tab:proc_proc_states}) di cui non si è ancora letto lo stato (con
+questa stessa opzione). Il valore dell'opzione deve essere specificato come
+maschera binaria ottenuta con l'OR delle suddette costanti con zero. In Linux
+sono previste altre opzioni non standard relative al comportamento con i
+thread, che saranno trattate in \secref{sec:thread_xxx}.
 
 La terminazione di un processo figlio è chiaramente un evento asincrono
 rispetto all'esecuzione di un programma e può avvenire in un qualunque
 momento. Per questo motivo, come accennato nella sezione precedente, una delle
 azioni prese dal kernel alla conclusione di un processo è quella di mandare un
-segnale di \macro{SIGCHLD} al padre. L'azione di default (si veda
+segnale di \macro{SIGCHLD} al padre. L'azione predefinita (si veda
 \secref{sec:sig_base}) per questo segnale è di essere ignorato, ma la sua
 generazione costituisce il meccanismo di comunicazione asincrona con cui il
 kernel avverte il processo padre che uno dei suoi figli è terminato.
@@ -996,7 +1011,7 @@ Lo standard POSIX.1 definisce una serie di macro di preprocessore da usare per
 analizzare lo stato di uscita. Esse sono definite sempre in
 \file{<sys/wait.h>} ed elencate in \tabref{tab:proc_status_macro} (si tenga
 presente che queste macro prendono come parametro la variabile di tipo
-\type{int} puntata da \var{status}).
+\ctyp{int} puntata da \var{status}).
 
 Si tenga conto che nel caso di conclusione anomala il valore restituito da
 \macro{WTERMSIG} può essere confrontato con le costanti definite in
@@ -1015,15 +1030,14 @@ sulle risorse usate dal processo terminato e dai vari figli.  I prototipi di
 queste funzioni, che diventano accessibili definendo la costante
 \macro{\_USE\_BSD}, sono:
 \begin{functions}
-  \headdecl{sys/times.h} 
-  \headdecl{sys/types.h} 
-  \headdecl{sys/wait.h}        
-  \headdecl{sys/resource.h}
+  \headdecl{sys/times.h} \headdecl{sys/types.h} \headdecl{sys/wait.h}
+  \headdecl{sys/resource.h} 
+  
   \funcdecl{pid\_t wait4(pid\_t pid, int * status, int options, struct rusage
-    * rusage)} 
-  È identica a \func{waitpid} sia per comportamento che per i
-  valori dei parametri, ma restituisce in \param{rusage} un sommario delle
-  risorse usate dal processo (per i dettagli vedi \secref{sec:sys_xxx})
+    * rusage)}   
+  È identica a \func{waitpid} sia per comportamento che per i valori dei
+  parametri, ma restituisce in \param{rusage} un sommario delle risorse usate
+  dal processo.
 
   \funcdecl{pid\_t wait3(int *status, int options, struct rusage *rusage)}
   Prima versione, equivalente a \code{wait4(-1, \&status, opt, rusage)} è
@@ -1031,16 +1045,9 @@ queste funzioni, che diventano accessibili definendo la costante
 \end{functions}
 \noindent 
 la struttura \type{rusage} è definita in \file{sys/resource.h}, e viene
-utilizzata anche dalla funzione \func{getrusage} (vedi \secref{sec:sys_xxx})
-per ottenere le risorse di sistema usate da un processo; la sua definizione è
-riportata in \figref{fig:sys_rusage_struct}.
-
-In genere includere esplicitamente \file{<sys/time.h>} non è più
-necessario, ma aumenta la portabilità, e serve in caso si debba accedere
-ai campi di \var{rusage} definiti come \type{struct timeval}. La
-struttura è ripresa da BSD 4.3, attualmente (con il kernel 2.4.x) i soli
-campi che sono mantenuti sono: \var{ru\_utime}, \var{ru\_stime},
-\var{ru\_minflt}, \var{ru\_majflt}, e \var{ru\_nswap}.
+utilizzata anche dalla funzione \func{getrusage} (vedi
+\secref{sec:sys_resource_use}) per ottenere le risorse di sistema usate da un
+processo; la sua definizione è riportata in \figref{fig:sys_rusage_struct}.
 
 
 \subsection{Le funzioni \func{exec}}
@@ -1063,11 +1070,11 @@ famiglia di funzioni) che possono essere usate per questo compito, in realt
 {int execve(const char *filename, char *const argv[], char *const envp[])}
   Esegue il programma contenuto nel file \param{filename}.
   
-  \bodydesc{La funzione ritorna -1 solo in caso di errore, nel qual caso
-    caso la \var{errno} può assumere i valori:
+  \bodydesc{La funzione ritorna solo in caso di errore, restituendo -1; nel
+    qual caso \var{errno} può assumere i valori:
   \begin{errlist}
   \item[\macro{EACCES}] il file non è eseguibile, oppure il filesystem è
-    montato in \cmd{noexec}, oppure non è un file normale o un interprete.
+    montato in \cmd{noexec}, oppure non è un file regolare o un interprete.
   \item[\macro{EPERM}] il file ha i bit \acr{suid} o \acr{sgid}, l'utente non
     è root, e o il processo viene tracciato, o il filesystem è montato con
     l'opzione \cmd{nosuid}.
@@ -1112,16 +1119,17 @@ Sostituiscono l'immagine corrente del processo con quella indicata nel primo
 argomento. I parametri successivi consentono di specificare gli argomenti a
 linea di comando e l'ambiente ricevuti dal nuovo processo.
 
-\bodydesc{Queste funzioni ritornano solo in caso di errore, restituendo
-  -1; nel qual caso \var{errno} andrà ad assumere i valori visti in
-  precedenza per \func{execve}.}
+\bodydesc{Queste funzioni ritornano solo in caso di errore, restituendo -1;
+  nel qual caso \var{errno} assumerà i valori visti in precedenza per
+  \func{execve}.}
 \end{functions}
 
 Per capire meglio le differenze fra le funzioni della famiglia si può fare
-riferimento allo specchietto riportato in \ntab. La prima differenza riguarda
-le modalità di passaggio dei parametri che poi andranno a costituire gli
-argomenti a linea di comando (cioè i valori di \var{argv} e \var{argc} visti
-dalla funzione \func{main} del programma chiamato). 
+riferimento allo specchietto riportato in \tabref{tab:proc_exec_scheme}. La
+prima differenza riguarda le modalità di passaggio dei parametri che poi
+andranno a costituire gli argomenti a linea di comando (cioè i valori di
+\var{argv} e \var{argc} visti dalla funzione \func{main} del programma
+chiamato).
 
 Queste modalità sono due e sono riassunte dagli mnemonici \code{v} e \code{l}
 che stanno rispettivamente per \textit{vector} e \textit{list}. Nel primo caso
@@ -1185,7 +1193,7 @@ indicato dal parametro \var{path}, che viene interpretato come il
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=13cm]{img/exec_rel}
+  \includegraphics[width=15cm]{img/exec_rel}
   \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
   \label{fig:proc_exec_relat}
 \end{figure}
@@ -1203,12 +1211,11 @@ la lista completa 
 \begin{itemize*}
 \item il \textit{process id} (\acr{pid}) ed il \textit{parent process id}
   (\acr{ppid}).
-\item il \textit{real user id} ed il \textit{real group id} (vedi
-  \secref{sec:proc_access_id}).
-\item i \textit{supplementary group id} (vedi \secref{sec:proc_access_id}).
-\item il \textit{session id} ed il \textit{process group id} (vedi
-  \secref{sec:sess_xxx}).
-\item il terminale di controllo (vedi \secref{sec:sess_xxx}).
+\item l'\textsl{userid reale}, il \textit{groupid reale} ed i \textsl{groupid
+    supplementari} (vedi \secref{sec:proc_access_id}).
+\item il \textit{session id} (\acr{sid}) ed il \textit{process groupid}
+  (\acr{pgid}), vedi \secref{sec:sess_proc_group}.
+\item il terminale di controllo (vedi \secref{sec:sess_ctrl_term}).
 \item il tempo restante ad un allarme (vedi \secref{sec:sig_alarm_abort}).
 \item la directory radice e la directory di lavoro corrente (vedi
   \secref{sec:file_work_dir}).
@@ -1216,38 +1223,40 @@ la lista completa 
   \secref{sec:file_umask}) ed i \textit{lock} sui file (vedi
   \secref{sec:file_locking}).
 \item i segnali sospesi (\textit{pending}) e la maschera dei segnali (si veda
-  \secref{sec:sig_sigpending}).
-\item i limiti sulle risorse (vedi \secref{sec:sys_limits}).
+  \secref{sec:sig_sigmask}).
+\item i limiti sulle risorse (vedi \secref{sec:sys_resource_limit}).
 \item i valori delle variabili \var{tms\_utime}, \var{tms\_stime},
-  \var{tms\_cutime}, \var{tms\_ustime} (vedi \secref{sec:xxx_xxx}).
+  \var{tms\_cutime}, \var{tms\_ustime} (vedi \secref{sec:sys_cpu_times}).
 \end{itemize*}
 
-Inoltre i segnali che sono stati settati per essere ignorati nel processo
-chiamante mantengono lo stesso settaggio pure nel nuovo programma, tutti gli
-altri segnali vengono settati alla loro azione di default. Un caso speciale è
-il segnale \macro{SIGCHLD} che, quando settato a \macro{SIG\_IGN}, può anche
-non essere resettato a \macro{SIG\_DFL} (si veda \secref{sec:sig_gen_beha}).
+Inoltre i segnali che sono stati impostati per essere ignorati nel processo
+chiamante mantengono la stessa impostazione pure nel nuovo programma, tutti
+gli altri segnali vengono impostati alla loro azione predefinita. Un caso
+speciale è il segnale \macro{SIGCHLD} che, quando impostato a
+\macro{SIG\_IGN}, può anche non essere reimpostato a \macro{SIG\_DFL} (si veda
+\secref{sec:sig_gen_beha}).
 
 La gestione dei file aperti dipende dal valore che ha il flag di
 \textit{close-on-exec} (trattato in \secref{sec:file_fcntl}) per ciascun file
-descriptor. I file per cui è settato vengono chiusi, tutti gli altri file
-restano aperti. Questo significa che il comportamento di default è che i file
+descriptor. I file per cui è impostato vengono chiusi, tutti gli altri file
+restano aperti. Questo significa che il comportamento predefinito è che i file
 restano aperti attraverso una \func{exec}, a meno di una chiamata esplicita a
-\func{fcntl} che setti il suddetto flag.
+\func{fcntl} che imposti il suddetto flag.
 
 Per le directory, lo standard POSIX.1 richiede che esse vengano chiuse
 attraverso una \func{exec}, in genere questo è fatto dalla funzione
-\func{opendir} (vedi \secref{sec:file_dir_read}) che effettua da sola il
-settaggio del flag di \textit{close-on-exec} sulle directory che apre, in
+\func{opendir} (vedi \secref{sec:file_dir_read}) che effettua da sola
+l'impostazione del flag di \textit{close-on-exec} sulle directory che apre, in
 maniera trasparente all'utente.
 
-Abbiamo detto che il \textit{real user id} ed il \textit{real group id}
-restano gli stessi all'esecuzione di \func{exec}; lo stesso vale per
-l'\textit{effective user id} ed l'\textit{effective group id}, tranne quando
-il file che si va ad eseguire abbia o il \acr{suid} bit o lo \acr{sgid} bit
-settato, in questo caso l'\textit{effective user id} e l'\textit{effective
-  group id} vengono settati rispettivamente all'utente o al gruppo cui il file
-appartiene (per i dettagli vedi \secref{sec:proc_perms}).
+Abbiamo detto che l'\textsl{userid reale} ed il \textsl{groupid reale} restano
+gli stessi all'esecuzione di \func{exec}; lo stesso vale per l'\textsl{userid
+  effettivo} ed il \textsl{groupid effettivo} (il significato di questi
+identificatori è trattato in \secref{sec:proc_access_id}), tranne quando il
+file che si va ad eseguire abbia o il \acr{suid} bit o lo \acr{sgid} bit
+impostato, in questo caso l'\textsl{userid effettivo} ed il \textsl{groupid
+  effettivo} vengono impostati rispettivamente all'utente o al gruppo cui il
+file appartiene (per i dettagli vedi \secref{sec:proc_perms}).
 
 Se il file da eseguire è in formato \emph{a.out} e necessita di librerie
 condivise, viene lanciato il \textit{linker} dinamico \cmd{ld.so} prima del
@@ -1255,8 +1264,8 @@ programma per caricare le librerie necessarie ed effettuare il link
 dell'eseguibile. Se il programma è in formato ELF per caricare le librerie
 dinamiche viene usato l'interprete indicato nel segmento \macro{PT\_INTERP},
 in genere questo è \file{/lib/ld-linux.so.1} per programmi linkati con le
-\emph{libc5}, e \file{/lib/ld-linux.so.2} per programmi linkati con le
-\emph{glibc}. Infine nel caso il file sia uno script esso deve iniziare con
+\acr{libc5}, e \file{/lib/ld-linux.so.2} per programmi linkati con le
+\acr{glibc}. Infine nel caso il file sia uno script esso deve iniziare con
 una linea nella forma \cmd{\#!/path/to/interpreter} dove l'interprete indicato
 deve esse un valido programma (binario, non un altro script) che verrà
 chiamato come se si fosse eseguito il comando \cmd{interpreter [arg]
@@ -1266,7 +1275,7 @@ Con la famiglia delle \func{exec} si chiude il novero delle funzioni su cui 
 basata la gestione dei processi in Unix: con \func{fork} si crea un nuovo
 processo, con \func{exec} si avvia un nuovo programma, con \func{exit} e
 \func{wait} si effettua e verifica la conclusione dei programmi. Tutte le
-altre funzioni sono ausiliarie e servono la lettura e il settaggio dei vari
+altre funzioni sono ausiliarie e servono la lettura e l'impostazione dei vari
 parametri connessi ai processi.
 
 
@@ -1287,8 +1296,12 @@ problematiche connesse ad una gestione accorta dei privilegi.
 Come accennato in \secref{sec:intro_multiuser} il modello base\footnote{in
   realtà già esistono estensioni di questo modello base, che lo rendono più
   flessibile e controllabile, come le \textit{capabilities}, le ACL per i file
-  o il \textit{Mandatory Access Control} di SELinux.} di sicurezza di un
-sistema unix-like è fondato sui concetti di utente e gruppo, e sulla
+  o il \textit{Mandatory Access Control} di SELinux; inoltre basandosi sul
+  lavoro effettuato con SELinux, a partire dal kernel 2.5.x, è iniziato lo
+  sviluppo di una infrastruttura di sicurezza, il \textit{Linux Security
+    Modules}, ol LSM, in grado di fornire diversi agganci a livello del kernel
+  per modularizzare tutti i possibili controlli di accesso.} di sicurezza di
+un sistema unix-like è fondato sui concetti di utente e gruppo, e sulla
 separazione fra l'amministratore (\textsl{root}, detto spesso anche
 \textit{superuser}) che non è sottoposto a restrizioni, ed il resto degli
 utenti, per i quali invece vengono effettuati i vari controlli di accesso.
@@ -1298,8 +1311,8 @@ utenti, per i quali invece vengono effettuati i vari controlli di accesso.
 %notevole flessibilità, 
 
 Abbiamo già accennato come il sistema associ ad ogni utente e gruppo due
-identificatori univoci, lo \acr{uid} e il \acr{gid}; questi servono al kernel
-per identificare uno specifico utente o un gruppo di utenti, per poi poter
+identificatori univoci, lo userid ed il groupid; questi servono al kernel per
+identificare uno specifico utente o un gruppo di utenti, per poi poter
 controllare che essi siano autorizzati a compiere le operazioni richieste.  Ad
 esempio in \secref{sec:file_access_control} vedremo come ad ogni file vengano
 associati un utente ed un gruppo (i suoi \textsl{proprietari}, indicati
@@ -1309,42 +1322,49 @@ kernel nella gestione dei permessi di accesso.
 Dato che tutte le operazioni del sistema vengono compiute dai processi, è
 evidente che per poter implementare un controllo sulle operazioni occorre
 anche poter identificare chi è che ha lanciato un certo programma, e pertanto
-anche a ciascun processo è associato un utente e a un gruppo.
+anche a ciascun processo dovrà essere associato ad un utente e ad un gruppo.
 
 Un semplice controllo di una corrispondenza fra identificativi non garantisce
 però sufficiente flessibilità per tutti quei casi in cui è necessario poter
 disporre di privilegi diversi, o dover impersonare un altro utente per un
 limitato insieme di operazioni. Per questo motivo in generale tutti gli Unix
 prevedono che i processi abbiano almeno due gruppi di identificatori, chiamati
-rispettivamente \textit{real} ed \textit{effective}.
+rispettivamente \textit{real} ed \textit{effective} (cioè \textsl{reali} ed
+\textsl{effettivi}). Nel caso di Linux si aggiungono poi altri due gruppi, il
+\textit{saved} (\textsl{salvati}) ed il \textit{filesystem} (\textsl{di
+  filesystem}), secondo la situazione illustrata in \tabref{tab:proc_uid_gid}.
 
 \begin{table}[htb]
   \footnotesize
   \centering
-  \begin{tabular}[c]{|c|l|p{6.5cm}|}
+  \begin{tabular}[c]{|c|c|l|p{7.3cm}|}
     \hline
-    \textbf{Suffisso} & \textbf{Significato} & \textbf{Utilizzo} \\ 
+    \textbf{Suffisso} & \textbf{Gruppo} & \textbf{Denominazione} 
+                                        & \textbf{Significato} \\ 
     \hline
     \hline
-    \acr{uid}   & \textit{real user id} & indica l'utente che ha lanciato
-    il programma\\ 
-    \acr{gid}   & \textit{real group id} & indica il gruppo dell'utente 
-    che ha lanciato il programma \\ 
+    \acr{uid}   & \textit{real} & \textsl{userid reale} 
+                & indica l'utente che ha lanciato il programma\\ 
+    \acr{gid}   & '' &\textsl{groupid reale} 
+                & indica il gruppo principale dell'utente che ha lanciato 
+                  il programma \\ 
     \hline
-    \acr{euid}  & \textit{effective user id} & indica l'utente usato
-    dal programma nel controllo di accesso \\ 
-    \acr{egid}  & \textit{effective group id} & indica il gruppo 
-    usato dal programma  nel controllo di accesso \\ 
-    --          & \textit{supplementary group id} & indica i gruppi cui
-    l'utente appartiene  \\ 
+    \acr{euid}  & \textit{effective} &\textsl{userid effettivo} 
+                & indica l'utente usato nel controllo di accesso \\ 
+    \acr{egid}  & '' & \textsl{groupid effettivo} 
+                & indica il gruppo usato nel controllo di accesso \\ 
+    --          & -- & \textsl{groupid supplementari} 
+                & indicano gli ulteriori gruppi cui l'utente appartiene \\ 
     \hline
-    --          & \textit{saved user id} &  copia dell'\acr{euid} iniziale\\ 
-    --          & \textit{saved group id} &  copia dell'\acr{egid} iniziale \\ 
+    --          & \textit{saved} & \textsl{userid salvato} 
+                & è una copia dell'\acr{euid} iniziale\\ 
+    --          & '' & \textsl{groupid salvato} 
+                & è una copia dell'\acr{egid} iniziale \\ 
     \hline
-    \acr{fsuid} & \textit{filesystem user id} & indica l'utente effettivo per
-    il filesystem \\ 
-    \acr{fsgid} & \textit{filesystem group id} & indica il gruppo effettivo
-    per il filesystem  \\ 
+    \acr{fsuid} & \textit{filesystem} &\textsl{userid di filesystem} 
+                & indica l'utente effettivo per l'accesso al filesystem \\ 
+    \acr{fsgid} & '' & \textsl{groupid di filesystem} 
+                & indica il gruppo effettivo per l'accesso al filesystem  \\ 
     \hline
   \end{tabular}
   \caption{Identificatori di utente e gruppo associati a ciascun processo con
@@ -1352,31 +1372,32 @@ rispettivamente \textit{real} ed \textit{effective}.
   \label{tab:proc_uid_gid}
 \end{table}
 
-Al primo gruppo appartengono il \textit{real user id} e il \textit{real group
-  id}: questi vengono settati al login ai valori corrispondenti all'utente con
-cui si accede al sistema (e relativo gruppo di default). Servono per
-l'identificazione dell'utente e normalmente non vengono mai cambiati. In
-realtà vedremo (in \secref{sec:proc_setuid}) che è possibile modificarli, ma
-solo ad un processo che abbia i privilegi di amministratore; questa
-possibilità è usata ad esempio da \cmd{login} che, una volta completata la
-procedura di autenticazione, lancia una shell per la quale setta questi
-identificatori ai valori corrispondenti all'utente che entra nel sistema.
-
-Al secondo gruppo appartengono l'\textit{effective user id} e
-l'\textit{effective group id} (a cui si aggiungono gli eventuali
-\textit{supplementary group id} dei gruppi dei quali l'utente fa parte).
-Questi sono invece gli identificatori usati nella verifiche dei permessi del
-processo e per il controllo di accesso ai file (argomento affrontato in
-dettaglio in \secref{sec:file_perm_overview}). 
+Al primo gruppo appartengono l'\textsl{userid reale} ed il \textsl{groupid
+  reale}: questi vengono impostati al login ai valori corrispondenti
+all'utente con cui si accede al sistema (e relativo gruppo principale).
+Servono per l'identificazione dell'utente e normalmente non vengono mai
+cambiati. In realtà vedremo (in \secref{sec:proc_setuid}) che è possibile
+modificarli, ma solo ad un processo che abbia i privilegi di amministratore;
+questa possibilità è usata proprio dal programma \cmd{login} che, una volta
+completata la procedura di autenticazione, lancia una shell per la quale
+imposta questi identificatori ai valori corrispondenti all'utente che entra
+nel sistema.
+
+Al secondo gruppo appartengono l'\textsl{userid effettivo} e l'\textsl{groupid
+  effettivo} (a cui si aggiungono gli eventuali \textsl{groupid supplementari}
+dei gruppi dei quali l'utente fa parte).  Questi sono invece gli
+identificatori usati nella verifiche dei permessi del processo e per il
+controllo di accesso ai file (argomento affrontato in dettaglio in
+\secref{sec:file_perm_overview}).
 
 Questi identificatori normalmente sono identici ai corrispondenti del gruppo
 \textit{real} tranne nel caso in cui, come accennato in
 \secref{sec:proc_exec}, il programma che si è posto in esecuzione abbia i bit
-\acr{suid} o \acr{sgid} settati (il significato di questi bit è affrontato in
-dettaglio in \secref{sec:file_suid_sgid}). In questo caso essi saranno settati
-all'utente e al gruppo proprietari del file. Questo consente, per programmi in
-cui ci sia necessità, di dare a qualunque utente normale privilegi o permessi
-di un'altro (o dell'amministratore).
+\acr{suid} o \acr{sgid} impostati (il significato di questi bit è affrontato
+in dettaglio in \secref{sec:file_suid_sgid}). In questo caso essi saranno
+impostati all'utente e al gruppo proprietari del file. Questo consente, per
+programmi in cui ci sia necessità, di dare a qualunque utente normale
+privilegi o permessi di un'altro (o dell'amministratore).
 
 Come nel caso del \acr{pid} e del \acr{ppid} tutti questi identificatori
 possono essere letti dal processo attraverso delle opportune funzioni, i cui
@@ -1384,18 +1405,18 @@ prototipi sono i seguenti:
 \begin{functions}
   \headdecl{unistd.h}
   \headdecl{sys/types.h}  
-  \funcdecl{uid\_t getuid(void)} Restituisce il \textit{real user id} del
+  \funcdecl{uid\_t getuid(void)} Restituisce l'\textsl{userid reale} del
   processo corrente.
 
-  \funcdecl{uid\_t geteuid(void)} Restituisce l'\textit{effective user id} del
+  \funcdecl{uid\_t geteuid(void)} Restituisce l'\textsl{userid effettivo} del
   processo corrente.
 
-  \funcdecl{gid\_t getgid(void)} Restituisce il \textit{real group id} del
-  processo corrente.
-
-  \funcdecl{gid\_t getegid(void)} Restituisce l'\textit{effective group id} del
+  \funcdecl{gid\_t getgid(void)} Restituisce il \textsl{groupid reale} del
   processo corrente.
   
+  \funcdecl{gid\_t getegid(void)} Restituisce il \textsl{groupid effettivo}
+  del processo corrente.
+  
   \bodydesc{Queste funzioni non riportano condizioni di errore.}
 \end{functions}
 
@@ -1406,37 +1427,32 @@ maggiori privilegi necessari, una volta che si siano effettuate le operazioni
 per i quali erano richiesti, e a poterli eventualmente recuperare in caso
 servano di nuovo.
 
-Questo in Linux viene fatto usando altri due gruppi di identificatori, il
-\textit{saved} ed il \textit{filesystem}, analoghi ai precedenti. Il primo
-gruppo è lo stesso usato in SVr4, e previsto dallo standard POSIX quando è
-definita la costante \macro{\_POSIX\_SAVED\_IDS},\footnote{in caso si abbia a
-  cuore la portabilità del programma su altri Unix è buona norma controllare
-  sempre la disponibilità di queste funzioni controllando se questa costante è
+Questo in Linux viene fatto usando altri gli altri due gruppi di
+identificatori, il \textit{saved} ed il \textit{filesystem}. Il primo gruppo è
+lo stesso usato in SVr4, e previsto dallo standard POSIX quando è definita la
+costante \macro{\_POSIX\_SAVED\_IDS},\footnote{in caso si abbia a cuore la
+  portabilità del programma su altri Unix è buona norma controllare sempre la
+  disponibilità di queste funzioni controllando se questa costante è
   definita.} il secondo gruppo è specifico di Linux e viene usato per
 migliorare la sicurezza con NFS.
 
-Il \textit{saved user id} e il \textit{saved group id} sono copie
-dell'\textit{effective user id} e dell'\textit{effective group id} del
-processo padre, e vengono settati dalla funzione \func{exec} all'avvio del
-processo, come copie dell'\textit{effective user id} e dell'\textit{effective
-  group id} dopo che questo sono stati settati tenendo conto di eventuali
-\acr{suid} o \acr{sgid}.  Essi quindi consentono di tenere traccia di quale
-fossero utente e gruppo effettivi all'inizio dell'esecuzione di un nuovo
-programma.
+L'\textsl{userid salvato} ed il \textsl{groupid salvato} sono copie
+dell'\textsl{userid effettivo} e del \textsl{groupid effettivo} del processo
+padre, e vengono impostati dalla funzione \func{exec} all'avvio del processo,
+come copie dell'\textsl{userid effettivo} e del \textsl{groupid effettivo}
+dopo che questo sono stati impostati tenendo conto di eventuali \acr{suid} o
+\acr{sgid}.  Essi quindi consentono di tenere traccia di quale fossero utente
+e gruppo effettivi all'inizio dell'esecuzione di un nuovo programma.
 
-Il \textit{filesystem user id} e il \textit{filesystem group id} sono
+L'\textsl{userid di filesystem} e il \textsl{groupid di filesystem} sono
 un'estensione introdotta in Linux per rendere più sicuro l'uso di NFS
 (torneremo sull'argomento in \secref{sec:proc_setfsuid}). Essi sono una
-replica dei corrispondenti \textit{effective id}, ai quali si sostituiscono
-per tutte le operazioni di verifica dei permessi relativi ai file (trattate in
-\secref{sec:file_perm_overview}).  Ogni cambiamento effettuato sugli
-\textit{effective id} viene automaticamente riportato su di essi, per cui in
-condizioni normali se ne può tranquillamente ignorare l'esistenza, in quanto
-saranno del tutto equivalenti ai precedenti.
-
-Uno specchietto riassuntivo, contenente l'elenco completo degli identificatori
-di utente e gruppo associati dal kernel ad ogni processo, è riportato in
-\tabref{tab:proc_uid_gid}.
+replica dei corrispondenti identificatori del gruppo \textit{effective}, ai
+quali si sostituiscono per tutte le operazioni di verifica dei permessi
+relativi ai file (trattate in \secref{sec:file_perm_overview}).  Ogni
+cambiamento effettuato sugli identificatori effettivi viene automaticamente
+riportato su di essi, per cui in condizioni normali si può tranquillamente
+ignorarne l'esistenza, in quanto saranno del tutto equivalenti ai precedenti.
 
 
 \subsection{Le funzioni \func{setuid} e \func{setgid}}
@@ -1445,16 +1461,16 @@ di utente e gruppo associati dal kernel ad ogni processo, 
 Le due funzioni che vengono usate per cambiare identità (cioè utente e gruppo
 di appartenenza) ad un processo sono rispettivamente \func{setuid} e
 \func{setgid}; come accennato in \secref{sec:proc_access_id} in Linux esse
-seguono la semantica POSIX che prevede l'esistenza del \textit{saved user id}
-e del \textit{saved group id}; i loro prototipi sono:
+seguono la semantica POSIX che prevede l'esistenza dell'\textit{userid
+  salvato} e del \textit{groupid salvato}; i loro prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
 
-\funcdecl{int setuid(uid\_t uid)} Setta l'\textit{user id} del processo
+\funcdecl{int setuid(uid\_t uid)} Imposta l'\textsl{userid} del processo
 corrente.
 
-\funcdecl{int setgid(gid\_t gid)} Setta il \textit{group id} del processo
+\funcdecl{int setgid(gid\_t gid)} Imposta il \textsl{groupid} del processo
 corrente.
 
 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso
@@ -1463,21 +1479,21 @@ corrente.
 
 Il funzionamento di queste due funzioni è analogo, per cui considereremo solo
 la prima; la seconda si comporta esattamente allo stesso modo facendo
-riferimento al \textit{group id} invece che all'\textit{user id}.  Gli
-eventuali \textit{supplementary group id} non vengono modificati.
-
+riferimento al \textsl{groupid} invece che all'\textsl{userid}.  Gli
+eventuali \textsl{groupid supplementari} non vengono modificati.
 
 L'effetto della chiamata è diverso a seconda dei privilegi del processo; se
-l'\textit{effective user id} è zero (cioè è quello dell'amministratore di
-sistema) allora tutti gli identificatori (\textit{real}, \textit{effective}
-e \textit{saved}) vengono settati al valore specificato da \var{uid},
-altrimenti viene settato solo l'\textit{effective user id}, e soltanto se il
-valore specificato corrisponde o al \textit{real user id} o al \textit{saved
-  user id}. Negli altri casi viene segnalato un errore (con \macro{EPERM}).
+l'\textsl{userid effettivo} è zero (cioè è quello dell'amministratore di
+sistema) allora tutti gli identificatori (\textit{real}, \textit{effective} e
+\textit{saved}) vengono impostati al valore specificato da \var{uid},
+altrimenti viene impostato solo l'\textsl{userid effettivo}, e soltanto se il
+valore specificato corrisponde o all'\textsl{userid reale} o
+all'\textsl{userid salvato}. Negli altri casi viene segnalato un errore (con
+\macro{EPERM}).
 
 Come accennato l'uso principale di queste funzioni è quello di poter
-consentire ad un programma con i bit \acr{suid} o \acr{sgid} settati di
-riportare l'\textit{effective user id} a quello dell'utente che ha lanciato il
+consentire ad un programma con i bit \acr{suid} o \acr{sgid} impostati di
+riportare l'\textsl{userid effettivo} a quello dell'utente che ha lanciato il
 programma, effettuare il lavoro che non necessita di privilegi aggiuntivi, ed
 eventualmente tornare indietro.
 
@@ -1490,41 +1506,41 @@ falsificare la registrazione. Per questo motivo questo file (e l'analogo
 un gruppo dedicato (\acr{utmp}) ed i programmi che devono accedervi (ad
 esempio tutti i programmi di terminale in X, o il programma \cmd{screen} che
 crea terminali multipli su una console) appartengono a questo gruppo ed hanno
-il bit \acr{sgid} settato.
+il bit \acr{sgid} impostato.
 
 Quando uno di questi programmi (ad esempio \cmd{xterm}) viene lanciato, la
 situazione degli identificatori è la seguente:
 \begin{eqnarray*}
   \label{eq:1}
-  \textit{real group id}      &=& \textrm{\acr{gid} (del chiamante)} \\
-  \textit{effective group id} &=& \textrm{\acr{utmp}} \\
-  \textit{saved group id}     &=& \textrm{\acr{utmp}}
+  \textsl{groupid reale}      &=& \textrm{\acr{gid} (del chiamante)} \\
+  \textsl{groupid effettivo}  &=& \textrm{\acr{utmp}} \\
+  \textsl{groupid salvato}    &=& \textrm{\acr{utmp}}
 \end{eqnarray*}
-in questo modo, dato che l'\textit{effective group id} è quello giusto, il
+in questo modo, dato che il \textsl{groupid effettivo} è quello giusto, il
 programma può accedere a \file{/var/log/utmp} in scrittura ed aggiornarlo. A
-questo punto il programma può eseguire una \code{setgid(getgid())} per settare
-l'\textit{effective group id} a quello dell'utente (e dato che il \textit{real
-  group id} corrisponde la funzione avrà successo), in questo modo non sarà
-possibile lanciare dal terminale programmi che modificano detto file, in tal
-caso infatti la situazione degli identificatori sarebbe:
+questo punto il programma può eseguire una \code{setgid(getgid())} per
+impostare il \textsl{groupid effettivo} a quello dell'utente (e dato che il
+\textsl{groupid reale} corrisponde la funzione avrà successo), in questo modo
+non sarà possibile lanciare dal terminale programmi che modificano detto file,
+in tal caso infatti la situazione degli identificatori sarebbe:
 \begin{eqnarray*}
   \label{eq:2}
-  \textit{real group id}      &=& \textrm{\acr{gid} (invariato)}  \\
-  \textit{effective group id} &=& \textrm{\acr{gid}} \\
-  \textit{saved group id}     &=& \textrm{\acr{utmp} (invariato)}
+  \textsl{groupid reale}      &=& \textrm{\acr{gid} (invariato)}  \\
+  \textsl{groupid effettivo}  &=& \textrm{\acr{gid}} \\
+  \textsl{groupid salvato}    &=& \textrm{\acr{utmp} (invariato)}
 \end{eqnarray*}
 e ogni processo lanciato dal terminale avrebbe comunque \acr{gid} come
-\textit{effective group id}. All'uscita dal terminale, per poter di nuovo
+\textsl{groupid effettivo}. All'uscita dal terminale, per poter di nuovo
 aggiornare lo stato di \file{/var/log/utmp} il programma eseguirà una
 \code{setgid(utmp)} (dove \var{utmp} è il valore numerico associato al gruppo
 \acr{utmp}, ottenuto ad esempio con una precedente \func{getegid}), dato che
-in questo caso il valore richiesto corrisponde al \textit{saved group id} la
+in questo caso il valore richiesto corrisponde al \textsl{groupid salvato} la
 funzione avrà successo e riporterà la situazione a:
 \begin{eqnarray*}
   \label{eq:3}
-  \textit{real group id}      &=& \textrm{\acr{gid} (invariato)}  \\
-  \textit{effective group id} &=& \textrm{\acr{utmp}} \\
-  \textit{saved group id}     &=& \textrm{\acr{utmp} (invariato)}
+  \textsl{groupid reale}      &=& \textrm{\acr{gid} (invariato)}  \\
+  \textsl{groupid effettivo}  &=& \textrm{\acr{utmp}} \\
+  \textsl{groupid salvato}    &=& \textrm{\acr{utmp} (invariato)}
 \end{eqnarray*}
 consentendo l'accesso a \file{/var/log/utmp}.
 
@@ -1534,7 +1550,7 @@ comporta il cambiamento di tutti gli identificatori associati al processo,
 rendendo impossibile riguadagnare i privilegi di amministratore.  Questo
 comportamento è corretto per l'uso che ne fa \cmd{login} una volta che crea
 una nuova shell per l'utente; ma quando si vuole cambiare soltanto
-l'\textit{effective user id} del processo per cedere i privilegi occorre
+l'\textsl{userid effettivo} del processo per cedere i privilegi occorre
 ricorrere ad altre funzioni (si veda ad esempio \secref{sec:proc_seteuid}).
 
 
@@ -1542,84 +1558,83 @@ ricorrere ad altre funzioni (si veda ad esempio \secref{sec:proc_seteuid}).
 \label{sec:proc_setreuid}
 
 Queste due funzioni derivano da BSD che, non supportando\footnote{almeno fino
-  alla versione 4.3+BSD TODO, FIXME verificare e aggiornare la nota.} i
-\textit{saved id}, le usava per poter scambiare fra di loro \textit{effective}
-e \textit{real id}. I loro prototipi sono:
+  alla versione 4.3+BSD TODO, FIXME verificare e aggiornare la nota.} gli
+identificatori del gruppo \textit{saved}, le usa per poter scambiare fra di
+loro \textit{effective} e \textit{real}. I loro prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
 
-\funcdecl{int setreuid(uid\_t ruid, uid\_t euid)} Setta il \textit{real user
-  id} e l'\textit{effective user id} del processo corrente ai valori
+\funcdecl{int setreuid(uid\_t ruid, uid\_t euid)} Imposta l'\textsl{userid
+  reale} e l'\textsl{userid effettivo} del processo corrente ai valori
 specificati da \var{ruid} e \var{euid}.
   
-\funcdecl{int setregid(gid\_t rgid, gid\_t egid)} Setta il \textit{real group
-  id} e l'\textit{effective group id} del processo corrente ai valori
+\funcdecl{int setregid(gid\_t rgid, gid\_t egid)} Imposta il \textsl{groupid
+  reale} ed il \textsl{groupid effettivo} del processo corrente ai valori
 specificati da \var{rgid} e \var{egid}.
 
 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso
   di fallimento: l'unico errore possibile è \macro{EPERM}.}
 \end{functions}
 
-I processi non privilegiati possono settare i \textit{real id} soltanto ai
-valori dei loro \textit{effective id} o \textit{real id} e gli
-\textit{effective id} ai valori dei loro \textit{real id}, \textit{effective
-  id} o \textit{saved id}; valori diversi comportano il fallimento della
-chiamata; l'amministratore invece può specificare un valore qualunque.
-Specificando un valore di -1 l'identificatore corrispondente viene lasciato
-inalterato.
+La due funzioni sono analoghe ed il loro comportamento è identico; quanto
+detto per la prima prima riguardo l'userid, si applica immediatamente alla
+seconda per il groupid. I processi non privilegiati possono impostare solo i
+valori del loro userid effettivo o reale; valori diversi comportano il
+fallimento della chiamata; l'amministratore invece può specificare un valore
+qualunque.  Specificando un argomento di valore -1 l'identificatore
+corrispondente verrà lasciato inalterato.
 
-Con queste funzione si possono scambiare fra loro \textit{real id} e
-\textit{effective id}, e pertanto è possibile implementare un comportamento
-simile a quello visto in precedenza per \func{setgid}, cedendo i privilegi con
-un primo scambio, e recuperandoli, eseguito il lavoro non privilegiato, con un
-secondo scambio.
+Con queste funzione si possono scambiare fra loro gli userid reale e
+effettivo, e pertanto è possibile implementare un comportamento simile a
+quello visto in precedenza per \func{setgid}, cedendo i privilegi con un primo
+scambio, e recuperandoli, eseguito il lavoro non privilegiato, con un secondo
+scambio.
 
 In questo caso però occorre porre molta attenzione quando si creano nuovi
 processi nella fase intermedia in cui si sono scambiati gli identificatori, in
-questo caso infatti essi avranno un \textit{real id} privilegiato, che dovrà
+questo caso infatti essi avranno un userid reale privilegiato, che dovrà
 essere esplicitamente eliminato prima di porre in esecuzione un nuovo
-programma (occorrerà cioè eseguire un'altra chiamata dopo la \func{fork}, e
-prima della \func{exec} per uniformare i \textit{real id} agli
-\textit{effective id}) in caso contrario quest'ultimo potrebbe a sua volta
-effettuare uno scambio e riottenere privilegi non previsti.
+programma (occorrerà cioè eseguire un'altra chiamata dopo la \func{fork} e
+prima della \func{exec} per uniformare l'userid reale a quello effettivo) in
+caso contrario il nuovo programma potrebbe a sua volta effettuare uno scambio
+e riottenere privilegi non previsti.
 
 Lo stesso problema di propagazione dei privilegi ad eventuali processi figli
-si porrebbe per i \textit{saved id}: queste funzioni derivano da
-un'implementazione che non ne prevede la presenza, e quindi non è possibile
-usarle per correggere la situazione come nel caso precedente. Per questo
-motivo in Linux tutte le volte che tali funzioni vengono usate per modificare
-uno degli identificatori ad un valore diverso dal \textit{real id} precedente,
-il \textit{saved id} viene sempre settato al valore dell'\textit{effective
-  id}.
-
+si pone per l'userid salvato: questa funzione deriva da un'implementazione che
+non ne prevede la presenza, e quindi non è possibile usarla per correggere la
+situazione come nel caso precedente. Per questo motivo in Linux tutte le volte
+che si imposta un qualunque valore diverso da quello dall'userid reale
+corrente, l'userid salvato viene automaticamente uniformato al valore
+dell'userid effettivo.
 
 
 \subsection{Le funzioni \func{seteuid} e \func{setegid}}
 \label{sec:proc_seteuid}
 
 Queste funzioni sono un'estensione allo standard POSIX.1 (ma sono comunque
-supportate dalla maggior parte degli Unix) e usate per cambiare gli
-\textit{effective id}; i loro prototipi sono:
+supportate dalla maggior parte degli Unix) e vengono usate per cambiare gli
+identificatori del gruppo \textit{effective}; i loro prototipi sono:
 \begin{functions}
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
 
-\funcdecl{int seteuid(uid\_t uid)} Setta l'\textit{effective user id} del
-processo corrente a \var{uid}.
+\funcdecl{int seteuid(uid\_t uid)} Imposta l'userid effettivo del processo
+corrente a \var{uid}.
 
-\funcdecl{int setegid(gid\_t gid)} Setta l'\textit{effective group id} del
-processo corrente a \var{gid}.
+\funcdecl{int setegid(gid\_t gid)} Imposta il groupid effettivo del processo
+corrente a \var{gid}.
 
 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso
   di fallimento: l'unico errore possibile è \macro{EPERM}.}
 \end{functions}
 
-Gli utenti normali possono settare l'\textit{effective id} solo al valore del
-\textit{real id} o del \textit{saved id}, l'amministratore può specificare
-qualunque valore. Queste funzioni sono usate per permettere a root di settare
-solo l'\textit{effective id}, dato che l'uso normale di \func{setuid} comporta
-il settaggio di tutti gli identificatori.
+Come per le precedenti le due funzioni sono identiche, per cui tratteremo solo
+la prima. Gli utenti normali possono impostare l'userid effettivo solo al
+valore dell'userid reale o dell'userid salvato, l'amministratore può
+specificare qualunque valore. Queste funzioni sono usate per permettere
+all'amministratore di impostare solo l'userid effettivo, dato che l'uso
+normale di \func{setuid} comporta l'impostazione di tutti gli identificatori.
  
 
 \subsection{Le funzioni \func{setresuid} e \func{setresgid}}
@@ -1632,25 +1647,25 @@ e permettono un completo controllo su tutti gli identificatori (\textit{real},
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
 
-\funcdecl{int setresuid(uid\_t ruid, uid\_t euid, uid\_t suid)} Setta il
-\textit{real user id}, l'\textit{effective user id} e il \textit{saved user
-  id} del processo corrente ai valori specificati rispettivamente da
-\var{ruid}, \var{euid} e \var{suid}.
+\funcdecl{int setresuid(uid\_t ruid, uid\_t euid, uid\_t suid)} Imposta
+l'userid reale, l'userid effettivo e l'userid salvato del processo corrente
+ai valori specificati rispettivamente da \var{ruid}, \var{euid} e \var{suid}.
   
-\funcdecl{int setresgid(gid\_t rgid, gid\_t egid, gid\_t sgid)} Setta il
-\textit{real group id}, l'\textit{effective group id} e il \textit{saved group
-  id} del processo corrente ai valori specificati rispettivamente da
-\var{rgid}, \var{egid} e \var{sgid}.
+\funcdecl{int setresgid(gid\_t rgid, gid\_t egid, gid\_t sgid)} Imposta il
+groupid reale, il groupid effettivo ed il groupid salvato del processo
+corrente ai valori specificati rispettivamente da \var{rgid}, \var{egid} e
+\var{sgid}.
 
 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso
   di fallimento: l'unico errore possibile è \macro{EPERM}.}
 \end{functions}
 
-I processi non privilegiati possono cambiare uno qualunque degli
-identificatori usando uno qualunque dei valori correnti di \textit{real id},
-\textit{effective id} o \textit{saved id}, l'amministratore può specificare i
-valori che vuole; un valore di -1 per un qualunque parametro lascia inalterato
-l'identificatore corrispondente.
+Le due funzioni sono identiche, quanto detto per la prima riguardo gli userid
+si applica alla seconda per i groupid. I processi non privilegiati possono
+cambiare uno qualunque degli userid solo ad un valore corripondente o
+all'userid reale, o a quello effettivo o a quello salvato, l'amministratore
+può specificare i valori che vuole; un valore di -1 per un qualunque parametro
+lascia inalterato l'identificatore corrispondente.
 
 Per queste funzioni esistono anche due controparti che permettono di leggere
 in blocco i vari identificatori: \func{getresuid} e \func{getresgid}; i loro
@@ -1659,13 +1674,12 @@ prototipi sono:
 \headdecl{unistd.h}
 \headdecl{sys/types.h}
 
-\funcdecl{int getresuid(uid\_t *ruid, uid\_t *euid, uid\_t *suid)} Legge il
-\textit{real user id}, l'\textit{effective user id} e il \textit{saved user
-  id} del processo corrente.
+\funcdecl{int getresuid(uid\_t *ruid, uid\_t *euid, uid\_t *suid)} Legge
+l'userid reale, l'userid effettivo e l'userid salvato del processo corrente.
   
 \funcdecl{int getresgid(gid\_t *rgid, gid\_t *egid, gid\_t *sgid)} Legge il
-\textit{real group id}, l'\textit{effective group id} e il \textit{saved group
-  id} del processo corrente.
+groupid reale, il groupid effettivo e il groupid salvato del processo
+corrente.
 
 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso di
   fallimento: l'unico errore possibile è \macro{EFAULT} se gli indirizzi delle
@@ -1675,31 +1689,32 @@ prototipi sono:
 Anche queste funzioni sono un'estensione specifica di Linux, e non richiedono
 nessun privilegio. I valori sono restituiti negli argomenti, che vanno
 specificati come puntatori (è un'altro esempio di \textit{value result
-  argument}). Si noti che queste funzioni sono le uniche in grado di leggere i
-\textit{saved id}.
+  argument}). Si noti che queste funzioni sono le uniche in grado di leggere
+gli identificatori del gruppo \textit{saved}.
 
 
 \subsection{Le funzioni \func{setfsuid} e \func{setfsgid}}
 \label{sec:proc_setfsuid}
 
-Queste funzioni sono usate per settare gli identificatori usati da Linux per
-il controllo dell'accesso ai file. Come già accennato in
-\secref{sec:proc_access_id} in Linux è definito questo ulteriore gruppo di
-identificatori, che di norma sono assolutamente equivalenti agli
-\textit{effective id}, dato che ogni cambiamento di questi ultimi viene
-immediatamente riportato sui \textit{filesystem id}.
-
-C'è un solo caso in cui si ha necessità di introdurre una differenza fra
-\textit{effective id} e \textit{filesystem id}, ed è per ovviare ad un
-problema di sicurezza che si presenta quando si deve implementare un server
-NFS. Il server NFS infatti deve poter cambiare l'identificatore con cui accede
-ai file per assumere l'identità del singolo utente remoto, ma se questo viene
-fatto cambiando l'\textit{effective id} o il \textit{real id} il server si
-espone alla ricezione di eventuali segnali ostili da parte dell'utente di cui
-ha temporaneamente assunto l'identità.  Cambiando solo il \textit{filesystem
-  id} si ottengono i privilegi necessari per accedere ai file, mantenendo
-quelli originari per quanto riguarda tutti gli altri controlli di accesso,
-così che l'utente non possa inviare segnali al server NFS.
+Queste funzioni sono usate per impostare gli identificatori del gruppo
+\textit{filesystem} che usati da Linux per il controllo dell'accesso ai file.
+Come già accennato in \secref{sec:proc_access_id} Linux definisce questo
+ulteriore gruppo di identificatori, che di norma sono assolutamente
+equivalenti a quelli del gruppo \textit{effective}, dato che ogni cambiamento
+di questi ultimi viene immediatamente riportato su di essi.
+
+C'è un solo caso in cui si ha necessità di introdurre una differenza fra gli
+identificatori dei gruppi \textit{effective} e \textit{filesystem}, ed è per
+ovviare ad un problema di sicurezza che si presenta quando si deve
+implementare un server NFS. Il server NFS infatti deve poter cambiare
+l'identificatore con cui accede ai file per assumere l'identità del singolo
+utente remoto, ma se questo viene fatto cambiando l'userid effettivo o
+l'userid reale il server si espone alla ricezione di eventuali segnali ostili
+da parte dell'utente di cui ha temporaneamente assunto l'identità.  Cambiando
+solo l'userid di filesystem si ottengono i privilegi necessari per accedere ai
+file, mantenendo quelli originari per quanto riguarda tutti gli altri
+controlli di accesso, così che l'utente non possa inviare segnali al server
+NFS.
 
 Le due funzioni usate per cambiare questi identificatori sono \func{setfsuid}
 e \func{setfsgid}, ovviamente sono specifiche di Linux e non devono essere
@@ -1707,10 +1722,10 @@ usate se si intendono scrivere programmi portabili; i loro prototipi sono:
 \begin{functions}
 \headdecl{sys/fsuid.h}
 
-\funcdecl{int setfsuid(uid\_t fsuid)} Setta il \textit{filesystem user id} del
+\funcdecl{int setfsuid(uid\_t fsuid)} Imposta l'userid di filesystem del
 processo corrente a \var{fsuid}.
 
-\funcdecl{int setfsgid(gid\_t fsgid)} Setta l'\textit{filesystem group id} del
+\funcdecl{int setfsgid(gid\_t fsgid)} Imposta il groupid di filesystem del
 processo corrente a \var{fsgid}.
 
 \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 in caso
@@ -1718,7 +1733,8 @@ processo corrente a \var{fsgid}.
 \end{functions}
 \noindent queste funzioni hanno successo solo se il processo chiamante ha i
 privilegi di amministratore o, per gli altri utenti, se il valore specificato
-coincide con uno dei \textit{real}, \textit{effective} o \textit{saved id}.
+coincide con uno dei di quelli del gruppo \textit{real}, \textit{effective} o
+\textit{saved}.
 
 
 \subsection{Le funzioni \func{setgroups} e \func{getgroups}}
@@ -1740,8 +1756,8 @@ questa funzione 
   \param{size}.
   
   \bodydesc{La funzione restituisce il numero di gruppi letti in caso di
-    successo e -1 in caso di fallimento, nel qual caso \var{errno} viene
-    settata a
+    successo e -1 in caso di fallimento, nel qual caso \var{errno} assumerà
+    i valori
     \begin{errlist}
     \item[\macro{EFAULT}] \param{list} non ha un indirizzo valido.
     \item[\macro{EINVAL}] il valore di \param{size} è diverso da zero ma
@@ -1749,9 +1765,9 @@ questa funzione 
     \end{errlist}}
 \end{functions}
 \noindent non è specificato se la funzione inserisca o meno nella lista
-l'\textit{effective user id} del processo. Se si specifica un valore di
-\param{size} uguale a 0 \param{list} non viene modificato, ma si ottiene il
-numero di gruppi supplementari.
+il groupid effettivo del processo. Se si specifica un valore di \param{size}
+uguale a 0 \param{list} non viene modificato, ma si ottiene il numero di
+gruppi supplementari.
 
 Una seconda funzione, \func{getgrouplist}, può invece essere usata per
 ottenere tutti i gruppi a cui appartiene un utente; il suo prototipo è:
@@ -1771,18 +1787,18 @@ cui l'utente appartiene. Si noti che \param{ngroups} 
 perché qualora il valore specificato sia troppo piccolo la funzione ritorna
 -1, passando indietro il numero dei gruppi trovati.
 
-Per settare i gruppi supplementari di un processo ci sono due funzioni, che
+Per impostare i gruppi supplementari di un processo ci sono due funzioni, che
 possono essere usate solo se si hanno i privilegi di amministratore. La prima
 delle due è \func{setgroups}, ed il suo prototipo è:
 \begin{functions}
   \headdecl{sys/types.h}
   \headdecl{grp.h}
   
-  \funcdecl{int setgroups(size\_t size, gid\_t *list)} Setta i gruppi
+  \funcdecl{int setgroups(size\_t size, gid\_t *list)} Imposta i gruppi
   supplementari del processo ai valori specificati in \param{list}.
 
   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
-    fallimento, nel qual caso \var{errno} viene settata a:
+    fallimento, nel qual caso \var{errno} assumerà i valori:
     \begin{errlist}
     \item[\macro{EFAULT}] \param{list} non ha un indirizzo valido.
     \item[\macro{EPERM}] il processo non ha i privilegi di amministratore.
@@ -1791,18 +1807,18 @@ delle due 
     \end{errlist}}
 \end{functions}
 
-Se invece si vogliono settare i gruppi supplementari del processo a quelli di
+Se invece si vogliono impostare i gruppi supplementari del processo a quelli di
 un utente specifico, si può usare \func{initgroups} il cui prototipo è:
 \begin{functions}
   \headdecl{sys/types.h}
   \headdecl{grp.h}
 
-  \funcdecl{int initgroups(const char *user, gid\_t group)} Setta i gruppi
+  \funcdecl{int initgroups(const char *user, gid\_t group)} Imposta i gruppi
   supplementari del processo a quelli di cui è membro l'utente \param{user},
   aggiungendo il gruppo addizionale \param{group}.
   
   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
-    fallimento, nel qual caso \var{errno} viene settata agli stessi valori di
+    fallimento, nel qual caso \var{errno} assumerà gli stessi valori di
     \func{setgroups} più \macro{ENOMEM} quando non c'è memoria sufficiente per
     allocare lo spazio per informazioni dei gruppi.}
 \end{functions}
@@ -1810,8 +1826,7 @@ un utente specifico, si pu
 La funzione esegue la scansione del database dei gruppi (usualmente
 \file{/etc/groups}) cercando i gruppi di cui è membro \param{user} e
 costruendo una lista di gruppi supplementari a cui aggiunge \param{group}, che
-poi setta usando \func{setgroups}.
-
+poi imposta usando \func{setgroups}.
 Si tenga presente che sia \func{setgroups} che \func{initgroups} non sono
 definite nello standard POSIX.1 e che pertanto non è possibile utilizzarle
 quando si definisce \macro{\_POSIX\_SOURCE} o si compila con il flag
@@ -1832,9 +1847,9 @@ tempo di CPU, ed illustreremo le varie funzioni di gestione.
 
 La scelta di un meccanismo che sia in grado di distribuire in maniera efficace
 il tempo di CPU per l'esecuzione dei processi è sempre una questione delicata,
-ed oggetto di numerose ricerche; in ogni caso essa dipende in maniera
-essenziale anche dal tipo di utilizzo che deve essere fatto del sistema.
-
+ed oggetto di numerose ricerche; in generale essa dipende in maniera
+essenziale anche dal tipo di utilizzo che deve essere fatto del sistema, per
+cui non esiste un meccanismo che sia valido per tutti gli usi.
 
 La caratteristica specifica di un sistema multitasking come Linux è quella del
 cosiddetto \textit{prehemptive multitasking}: questo significa che al
@@ -1846,36 +1861,35 @@ apposita del kernel, lo \textit{scheduler}, il cui scopo 
 distribuire al meglio il tempo di CPU fra i vari processi.
 
 La cosa è resa ancora più complicata dal fatto che con le architetture
-multi-processore si introduce anche la problematica dovuta alla scelta di
-quale sia la CPU più opportuna da utilizzare.\footnote{nei processori moderni
-  la presenza di ampie cache può rendere poco efficiente trasferire
-  l'esecuzione di un processo da una CPU ad un'altra, per cui occorrono
-  meccanismi per determinare quale è la migliore scelta fra le diverse CPU.}
-Tutto questo comunque appartiene alle sottigliezze dell'implementazione del
-kernel, e dal punto di vista dei programmi che girano in user space, anche
-quando si hanno più processori (e dei processi che sono eseguiti davvero in
-contemporanea), si può pensare alle politiche di scheduling come concernenti
-la risorsa \textsl{tempo di esecuzione}, la cui assegnazione sarà governata
-dagli stessi meccanismi di scelta di priorità, solo che nel caso di più
-processori sarà a disposizione di più di un processo alla volta.
-
-I processi non devono solo eseguire del codice, ad esempio molto spesso
-saranno impegnati in operazioni di I/O, possono venire bloccati da un
-comando dal terminale, sospesi per un certo periodo di tempo. In tutti questi
-casi la CPU diventa disponibile ed è compito dello kernel provvedere a mettere
-in esecuzione un altro processo.
+multi-processore si deve anche scegliere quale sia la CPU più opportuna da
+utilizzare.\footnote{nei processori moderni la presenza di ampie cache può
+  rendere poco efficiente trasferire l'esecuzione di un processo da una CPU ad
+  un'altra, per cui effettuare la migliore scelta fra le diverse CPU non è
+  banale.}  Tutto questo comunque appartiene alle sottigliezze
+dell'implementazione del kernel; dal punto di vista dei programmi che girano
+in user space, anche quando si hanno più processori (e dei processi che sono
+eseguiti davvero in contemporanea), le politiche di scheduling riguardano
+semplicemente l'allocazione della risorsa \textsl{tempo di esecuzione}, la cui
+assegnazione sarà governata dai meccanismi di scelta delle priorità che
+restano gli stessi indipendentemente dal numero di processori.
+
+Si tenga conto poi che i processi non devono solo eseguire del codice: ad
+esempio molto spesso saranno impegnati in operazioni di I/O, o potranno
+venire bloccati da un comando dal terminale, o sospesi per un certo periodo di
+tempo.  In tutti questi casi la CPU diventa disponibile ed è compito dello
+kernel provvedere a mettere in esecuzione un altro processo.
 
 Tutte queste possibilità sono caratterizzate da un diverso \textsl{stato} del
-processo ,
-
-In Linux un processo può trovarsi in uno degli stati riportati in
+processo, in Linux un processo può trovarsi in uno degli stati riportati in
 \tabref{tab:proc_proc_states}; ma soltanto i processi che sono nello stato
-\textit{runnable} concorrono per l'esecuzione. Questo vuol di
-
+\textit{runnable} concorrono per l'esecuzione. Questo vuol dire che, qualunque
+sia la sua priorità, un processo non potrà mai essere messo in esecuzione
+fintanto che esso si trova in uno qualunque degli altri stati.
 
 \begin{table}[htb]
+  \footnotesize
   \centering
-  \begin{tabular}[c]{|p{3cm}|c|p{8cm}|}
+  \begin{tabular}[c]{|p{2.8cm}|c|p{10cm}|}
     \hline
     \textbf{Stato} & \texttt{STAT} & \textbf{Descrizione} \\
     \hline
@@ -1894,28 +1908,17 @@ In Linux un processo pu
     \hline
   \end{tabular}
   \caption{Elenco dei possibili stati di un processo in Linux, nella colonna
-    \texttt{STAT} si è riportata la corripondente lettera usata dal comando 
+    \texttt{STAT} si è riportata la corrispondente lettera usata dal comando 
     \cmd{ps} nell'omonimo campo.}
   \label{tab:proc_proc_states}
 \end{table}
 
-
-
 Si deve quindi tenere presente che l'utilizzo della CPU è soltanto una delle
-risorse che sono necessarie per l'esecuzione di un programma, e spesso non è
-neanche la più importante. Per questo motivo non è affatto detto che dare ad
-un programma la massima priorità di esecuzione abbia risultati significativi
-in termini di prestazioni.
-
-
-
-
-Una delle caratteristiche c
-
-la priorità assoluta viene invece ignorata per quelli che sono bloccati su una
-richiesta di I/O o in stato di \textit{sleep}
-
-
+risorse che sono necessarie per l'esecuzione di un programma, e a seconda
+dello scopo del programma non è detto neanche che sia la più importante (molti
+programmi dipendono in maniera molto più critica dall'I/O). Per questo motivo
+non è affatto detto che dare ad un programma la massima priorità di esecuzione
+abbia risultati significativi in termini di prestazioni.
 
 Il meccanismo tradizionale di scheduling di Unix (che tratteremo in
 \secref{sec:proc_sched_stand}) è sempre stato basato su delle \textsl{priorità
@@ -1949,10 +1952,10 @@ priorit
 
 In generale quello che succede in tutti gli Unix moderni è che ai processi
 normali viene sempre data una priorità assoluta pari a zero, e la decisione di
-assegnazione della CPU è fatta solo in base ad una priorità dinamica che è
-calcolata indipendentemente. È tuttavia possibile assegnare anche una priorità
-assoluta nel qual caso un processo avrà la precedenza su tutti gli altri di
-priorità inferiore che saranno eseguiti solo quando quest'ultimo non avrà
+assegnazione della CPU è fatta solo con il meccanismo tradizionale della
+priorità dinamica. In Linux tuttavia è possibile assegnare anche una priorità
+assoluta, nel qual caso un processo avrà la precedenza su tutti gli altri di
+priorità inferiore, che saranno eseguiti solo quando quest'ultimo non avrà
 bisogno della CPU.
 
 
@@ -1972,25 +1975,381 @@ questo la priorit
 essere eseguito, e quando un processo potrà subentrare ad un altro
 nell'esecuzione.
 
+Il meccanismo usato da Linux è piuttosto semplice, ad ogni processo è
+assegnata una \textit{time-slice}, cioè in intervallo di tempo (letteralmente
+una fetta) per il quale esso deve essere eseguito. Il valore della
+\textit{time-slice} è controllato dalla cosiddetta \textit{nice} (o
+\textit{niceness}) del processo.  Essa è contenuta nel campo \var{nice} di
+\var{task\_struct}; tutti i processi vengono creati con lo stesso valore, ed
+essa specifica il valore della durata iniziale della \textit{time-slice} che
+viene assegnato ad un altro campo della struttura (\var{counter}) quando il
+processo viene eseguito per la prima volta e diminuito progressivamente ad
+ogni interruzione del timer.
+
+Quando lo scheduler viene eseguito scandisce la coda dei processi in stato
+\textit{runnable} associando, sulla base del valore di \var{counter}, un peso
+a ciascun processo in attesa di esecuzione,\footnote{il calcolo del peso in
+  realtà è un po' più complicato, ad esempio nei sistemi multiprocessore viene
+  favorito un processo che è eseguito sulla stessa CPU, e a parità del valore
+  di \var{counter} viene favorito chi ha una priorità più elevata.} chi ha il
+peso più alto verrà posto in esecuzione, ed il precedente processo sarà
+spostato in fondo alla coda.  Dato che ad ogni interruzione del timer il
+valore di \var{counter} del processo corrente viene diminuito, questo assicura
+che anche i processi con priorità più bassa verranno messi in esecuzione.
+
+La priorità di un processo è così controllata attraverso il valore di
+\var{nice}, che stabilisce la durata della \textit{time-slice}; per il
+meccanismo appena descritto infatti un valore più lungo infatti assicura una
+maggiore attribuzione di CPU.  L'origine del nome di questo parametro sta nel
+fatto che in genere esso viene generalmente usato per diminuire la priorità di
+un processo, come misura di cortesia nei confronti degli altri.
+I processi infatti vengono creati dal sistema con lo stesso valore di
+\var{nice} (nullo) e nessuno è privilegiato rispetto agli altri; il valore può
+essere modificato solo attraverso la funzione \func{nice}, il cui prototipo è:
+\begin{prototype}{unistd.h}
+{int nice(int inc)}
+  Aumenta il valore di \var{nice} per il processo corrente.
+  
+  \bodydesc{La funzione ritorna zero in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} può assumere i valori:
+  \begin{errlist}
+  \item[\macro{EPERM}] un processo senza i privilegi di amministratore ha
+    specificato un valore di \param{inc} negativo.
+  \end{errlist}}
+\end{prototype}
+
+L'argomento \param{inc} indica l'incremento del valore di \var{nice}:
+quest'ultimo può assumere valori compresi fra \macro{PRIO\_MIN} e
+\macro{PRIO\_MAX} (che nel caso di Linux sono $-19$ e $20$), ma per
+\param{inc} si può specificare un valore qualunque, positivo o negativo, ed il
+sistema provvederà a troncare il risultato nell'intervallo consentito. Valori
+positivi comportano maggiore \textit{cortesia} e cioè una diminuzione della
+priorità, ogni utente può solo innalzare il valore di un suo processo. Solo
+l'amministratore può specificare valori negativi che permettono di aumentare
+la priorità di un processo.
+
+In SUSv2 la funzione ritorna il nuovo valore di \var{nice}; Linux non segue
+questa convenzione, e per leggere il nuovo valore occorre invece usare la
+funzione \func{getpriority}, derivata da BSD, il cui prototipo è:
+\begin{prototype}{sys/resource.h}
+{int getpriority(int which, int who)}
+  
+Restituisce il valore di \var{nice} per l'insieme dei processi specificati.
+
+  \bodydesc{La funzione ritorna la priorità in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} può assumere i valori:
+  \begin{errlist}
+  \item[\macro{ESRCH}] non c'è nessun processo che corrisponda ai valori di
+  \param{which} e \param{who}.
+  \item[\macro{EINVAL}] il valore di \param{which} non è valido.
+  \end{errlist}}
+\end{prototype}
+\noindent (in vecchie versioni può essere necessario includere anche
+\file{<sys/time.h>}, questo non è più necessario con versioni recenti delle
+librerie, ma è comunque utile per portabilità).
+
+La funzione permette di leggere la priorità di un processo, di un gruppo di
+processi (vedi \secref{sec:sess_proc_group}) o di un utente, a seconda del
+valore di \param{which}, secondo la legenda di \tabref{tab:proc_getpriority},
+specificando un corrispondente valore per \param{who}; un valore nullo di
+quest'ultimo indica il processo, il gruppo di processi o l'utente correnti.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|c|c|l|}
+    \hline
+    \param{which} & \param{who} & \textbf{Significato} \\
+    \hline
+    \hline
+    \macro{PRIO\_PROCESS} & \type{pid\_t} &  processo  \\
+    \macro{PRIO\_PRGR}    & \type{pid\_t} &  process group  \\
+    \macro{PRIO\_USER}    & \type{uid\_t} &  utente \\
+    \hline
+  \end{tabular}
+  \caption{Legenda del valore dell'argomento \param{which} e del tipo
+    dell'argomento \param{who} delle funzioni \func{getpriority} e
+    \func{setpriority} per le tre possibili scelte.}
+  \label{tab:proc_getpriority}
+\end{table}
+
+La funzione restituisce la priorità più alta (cioè il valore più basso) fra
+quelle dei processi specificati; dato che -1 è un valore possibile, per poter
+rilevare una condizione di errore è necessario cancellare sempre \var{errno}
+prima della chiamata alla funzione, per verificare che essa resti uguale a
+zero.  
+
+Analoga a \func{getpriority} la funzione \func{setpriority} permette di
+impostare la priorità di uno o più processi; il suo prototipo è:
+\begin{prototype}{sys/resource.h}
+{int setpriority(int which, int who, int prio)}  
+  Imposta la priorità per l'insieme dei processi specificati.
+
+  \bodydesc{La funzione ritorna la priorità in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} può assumere i valori:
+  \begin{errlist}
+  \item[\macro{ESRCH}] non c'è nessun processo che corrisponda ai valori di
+  \param{which} e \param{who}.
+  \item[\macro{EINVAL}] il valore di \param{which} non è valido.
+  \item[\macro{EPERM}] un processo senza i privilegi di amministratore ha
+    specificato un valore di \param{inc} negativo.
+  \item[\macro{EACCESS}] un processo senza i privilegi di amministratore ha
+    cercato di modificare la priorità di un processo di un altro utente.
+  \end{errlist}}
+\end{prototype}
+
+La funzione imposta la priorità al valore specificato da \param{prio} per
+tutti i processi indicati dagli argomenti \param{which} e \param{who}.  La
+gestione dei permessi dipende dalle varie implementazioni; in Linux, secondo
+le specifiche dello standard SUSv3, e come avviene per tutti i sistemi che
+derivano da SYSV, è richiesto che l'userid reale o effettivo del processo
+chiamante corrispondano al real user id (e solo quello) del processo di cui si
+vuole cambiare la priorità; per i sistemi derivati da BSD invece (SunOS,
+Ultrix, *BSD) la corrispondenza può essere anche con l'userid effettivo.
 
 
 
 \subsection{Il meccanismo di \textit{scheduling real-time}}
 \label{sec:proc_real_time}
 
-Per settare le 
+Come spiegato in \secref{sec:proc_sched} lo standard POSIX.1b ha introdotto le
+priorità assolute per permettere la gestione di processi real-time. In realtà
+nel caso di Linux non si tratta di un vero hard real-time, in quanto in
+presenza di eventuali interrupt il kernel interrompe l'esecuzione di un
+processo qualsiasi sia la sua priorità,\footnote{questo a meno che non si
+  siano installate le patch di RTLinux, RTAI o Adeos, con i quali è possibile
+  ottenere un sistema effettivamente hard real-time. In tal caso infatti gli
+  interrupt vengono intercettati dall'interfaccia real-time (o nel caso di
+  Adeos gestiti dalle code del nano-kernel), in modo da poterlo controllare
+  direttamente qualora ci sia la necessità di avere un processo con priorità
+  più elevata di un \textit{interrupt handler}.} mentre con l'incorrere in un
+page fault\index{page fault} si possono avere ritardi non previsti. Se
+l'ultimo problema può essere aggirato attraverso l'uso delle funzioni di
+controllo della memoria virtuale (vedi \secref{sec:proc_mem_lock}), il primo
+non è superabile e può comportare ritardi non prevedibili riguardo ai tempi di
+esecuzione di qualunque processo.
+
+In ogni caso occorre usare le priorità assolute con molta attenzione: se si dà
+ad un processo una priorità assoluta e questo finisce in un loop infinito,
+nessun altro processo potrà essere eseguito, ed esso sarà mantenuto in
+esecuzione permanentemente assorbendo tutta la CPU e senza nessuna possibilità
+di riottenere l'accesso al sistema. Per questo motivo è sempre opportuno,
+quando si lavora con processi che usano priorità assolute, tenere attiva una
+shell cui si sia assegnata la massima priorità assoluta, in modo da poter
+essere comunque in grado di rientrare nel sistema.
+
+Quando c'è un processo con priorità assoluta lo scheduler lo metterà in
+esecuzione prima di ogni processo normale. In caso di più processi sarà
+eseguito per primo quello con priorità assoluta più alta. Quando ci sono più
+processi con la stessa priorità assoluta questi vengono tenuti in una coda
+tocca al kernel decidere quale deve essere eseguito. 
+
+Il meccanismo con cui vengono gestiti questi processi dipende dalla politica
+di scheduling che si è scelto; lo standard ne prevede due:
+\begin{basedescript}{\desclabelwidth{2cm}\desclabelstyle{\nextlinelabel}}
+\item[\textit{FIFO}] \textit{First In First Out}. Il processo viene eseguito
+  fintanto che non cede volontariamente la CPU, si blocca, finisce o viene
+  interrotto da un processo a priorità più alta.
+\item[\textit{RR}] \textit{Round Robin}. Ciascun processo viene eseguito a
+  turno per un certo periodo di tempo (una \textit{time slice}). Solo i
+  processi con la stessa priorità ed in stato \textit{runnable} entrano nel
+  circolo.
+\end{basedescript}
+
+La funzione per impostare le politiche di scheduling (sia real-time che
+ordinarie) ed i relativi parametri è \func{sched\_setscheduler}; il suo
+prototipo è:
+\begin{prototype}{sched.h}
+{int sched\_setscheduler(pid\_t pid, int policy, const struct sched\_param *p)}
+  Imposta priorità e politica di scheduling per il processo \param{pid}.
+
+  \bodydesc{La funzione ritorna la priorità in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\macro{ESRCH}] il processo \param{pid} non esiste.
+    \item[\macro{EINVAL}] il valore di \param{policy} non esiste o il relativo
+      valore di \param{p} non è valido.
+    \item[\macro{EPERM}] il processo non ha i privilegi per attivare la
+      politica richiesta (vale solo per \macro{SCHED\_FIFO} e
+      \macro{SCHED\_RR}).
+  \end{errlist}}
+\end{prototype}
+
+La funzione esegue l'impostazione per il processo specificato; un valore nullo
+di \param{pid} esegue l'impostazione per il processo corrente, solo un
+processo con i privilegi di amministratore può impostare delle priorità
+assolute diverse da zero. La politica di scheduling è specificata
+dall'argomento \param{policy} i cui possibili valori sono riportati in
+\tabref{tab:proc_sched_policy}; un valore negativo per \param{policy} mantiene
+la politica di scheduling corrente.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|c|l|}
+    \hline
+    \textbf{Policy}  & \textbf{Significato} \\
+    \hline
+    \hline
+    \macro{SCHED\_FIFO} & Scheduling real-time con politica \textit{FIFO} \\
+    \macro{SCHED\_RR}   & Scheduling real-time con politica \textit{Round
+    Robin} \\
+    \macro{SCHED\_OTHER}& Scheduling ordinario\\
+    \hline
+  \end{tabular}
+  \caption{Valori dell'argomento \param{policy}  per la funzione
+    \func{sched\_setscheduler}. }
+  \label{tab:proc_sched_policy}
+\end{table}
+
+Il valore della priorità è passato attraverso la struttura \var{sched\_param}
+(riportata in \figref{fig:sig_sched_param}), il cui solo campo attualmente
+definito è \var{sched\_priority}, che nel caso delle priorità assolute deve
+essere specificato nell'intervallo fra un valore massimo ed uno minimo, che
+nel caso sono rispettivamente 1 e 99 (il valore zero è legale, ma indica i
+processi normali).
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct sched_param {
+    int sched_priority;
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{sched\_param}.} 
+  \label{fig:sig_sched_param}
+\end{figure}
+
 
 
-\footnote{a meno che non si siano installate le patch di RTLinux o RTAI, con i
-  quali è possibile ottenere un sistema effettivamente hard real-time.}
+Lo standard POSIX.1b prevede comunque che i due valori della massima e minima
+priorità statica possano essere ottenuti, per ciascuna delle politiche di
+scheduling realtime, tramite le due funzioni \func{sched\_get\_priority\_max}
+e \func{sched\_get\_priority\_min}, i cui prototipi sono:
+\begin{functions}
+  \headdecl{sched.h}
+  
+  \funcdecl{int sched\_get\_priority\_max(int policy)} Legge il valore
+  massimo della priorità statica per la politica di scheduling \param{policy}.
 
-in realtà non si tratta di un vero hard real-time, in quanto
-  la presenza di eventuali interrupt o di page fault può sempre interrompere
-  l'esecuzione di un processo, a meno di non installare le estensioni di
-  RTLinux o RTAI, il normale kernel non è real-time.
+  
+  \funcdecl{int sched\_get\_priority\_min(int policy)} Legge il valore minimo
+  della priorità statica per la politica di scheduling \param{policy}.
+  
+  \bodydesc{La funzioni ritornano il valore della priorità in caso di successo
+    e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\macro{EINVAL}] il valore di \param{policy} è invalido.
+  \end{errlist}}
+\end{functions}
 
 
+I processi con politica di scheduling \macro{SCHED\_OTHER} devono specificare
+un valore nullo (altrimenti si avrà un errore \macro{EINVAL}), questo valore
+infatti non ha niente a che vedere con la priorità dinamica determinata dal
+valore di \var{nice}, che deve essere impostato con le funzioni viste in
+precedenza.
+
+Il kernel mantiene i processi con la stessa priorità assoluta in una lista, ed
+esegue sempre il primo della lista, mentre un nuovo processo che torna in
+stato \textit{runnable} viene sempre inserito in coda alla lista. Se la
+politica scelta è \macro{SCHED\_FIFO} quando il processo viene eseguito viene
+automaticamente rimesso in coda alla lista, e la sua esecuzione continua
+fintanto che non viene bloccato da una richiesta di I/O, o non rilascia
+volontariamente la CPU (in tal caso, tornando nello stato \textit{runnable}
+sarà reinserito in coda alla lista); l'esecuzione viene ripresa subito solo
+nel caso che esso sia stato interrotto da un processo a priorità più alta.
+
+La priorità assoluta può essere riletta indietro dalla funzione
+\func{sched\_getscheduler}, il cui prototipo è:
+\begin{prototype}{sched.h}
+{int sched\_getscheduler(pid\_t pid)}
+  Legge la politica di scheduling per il processo \param{pid}.
+  
+  \bodydesc{La funzione ritorna la politica di scheduling in caso di successo
+    e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\macro{ESRCH}] il processo \param{pid} non esiste.
+    \item[\macro{EINVAL}] il valore di \param{pid} è negativo.
+  \end{errlist}}
+\end{prototype}
+
+La funzione restituisce il valore (secondo la quanto elencato in
+\tabref{tab:proc_sched_policy}) della politica di scheduling per il processo
+specificato; se \param{pid} è nullo viene restituito quello del processo
+chiamante.
+
+Se si intende operare solo sulla priorità assoluta di un processo si possono
+usare le funzioni \func{sched\_setparam} e \func{sched\_getparam}, i cui
+prototipi sono:
+  
+\begin{functions}
+  \headdecl{sched.h}
+
+  \funcdecl{int sched\_setparam(pid\_t pid, const struct sched\_param *p)}
+  Imposta la priorità assoluta del processo \param{pid}.
+
+
+  \funcdecl{int sched\_getparam(pid\_t pid, struct sched\_param *p)}
+  Legge la priorità assoluta del processo \param{pid}.
+
+  \bodydesc{La funzione ritorna la priorità  in caso di successo
+    e -1 in caso di errore, nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\macro{ESRCH}] il processo \param{pid} non esiste.
+    \item[\macro{EINVAL}] il valore di \param{pid} è negativo.
+  \end{errlist}}
+\end{functions}
+
+L'uso di \func{sched\_setparam} che è del tutto equivalente a
+\func{sched\_setscheduler} con \param{priority} uguale a -1. Come per
+\func{sched\_setscheduler} specificando 0 come valore di \param{pid} si opera
+sul processo corrente. La disponibilità di entrambe le funzioni può essere
+verificata controllando la macro \macro{\_POSIX\_PRIORITY\_SCHEDULING} che è
+definita nell'header \macro{sched.h}.
+
+L'ultima funzione che permette di leggere le informazioni relative ai processi
+real-time è \func{sched\_rr\_get\_interval}, che permette di ottenere la
+lunghezza della \textit{time slice} usata dalla politica \textit{round robin};
+il suo prototipo è:
+\begin{prototype}{sched.h}
+  {int sched\_rr\_get\_interval(pid\_t pid, struct timespec *tp)} Legge in
+  \param{tp} la durata della \textit{time slice} per il processo \param{pid}.
+  
+  \bodydesc{La funzione ritorna 0in caso di successo e -1 in caso di errore,
+    nel qual caso \var{errno} può assumere i valori:
+    \begin{errlist}
+    \item[\macro{ESRCH}] il processo \param{pid} non esiste.
+    \item[\macro{ENOSYS}] la system call non è stata implementata.
+  \end{errlist}}
+\end{prototype}
+
+La funzione restituisce il valore dell'intervallo di tempo usato per la
+politica \textit{round robin} in una struttura \var{timespec}, (la cui
+definizione si può trovare in \figref{fig:sys_timeval_struct}).
+
+
+Come accennato ogni processo che usa lo scheduling real-time può rilasciare
+volontariamente la CPU; questo viene fatto attraverso la funzione
+\func{sched\_yield}, il cui prototipo è:
+\begin{prototype}{sched.h}
+  {int sched\_yield(void)} 
+  
+  Rilascia volontariamente l'esecuzione.
+  
+  \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
+    nel qual caso \var{errno} viene impostata opportunamente.}
+\end{prototype}
 
+La funzione fa si che il processo rilasci la CPU, in modo da essere rimesso in
+coda alla lista dei processi da eseguire, e permettere l'esecuzione di un
+altro processo; se però il processo è l'unico ad essere presente sulla coda
+l'esecuzione non sarà interrotta. In genere usano questa funzione i processi
+in modalità \textit{fifo}, per permettere l'esecuzione degli altri processi
+con pari priorità quando la sezione più urgente è finita.
 
 
 \section{Problematiche di programmazione multitasking}
@@ -2020,7 +2379,8 @@ di interruzione in una fase intermedia.
 In un ambiente multitasking il concetto è essenziale, dato che un processo può
 essere interrotto in qualunque momento dal kernel che mette in esecuzione un
 altro processo o dalla ricezione di un segnale; occorre pertanto essere
-accorti nei confronti delle possibili \textit{race condition} (vedi
+accorti nei confronti delle possibili 
+\textit{race condition}\index{race condition} (vedi
 \secref{sec:proc_race_cond}) derivanti da operazioni interrotte in una fase in
 cui non erano ancora state completate.
 
@@ -2045,16 +2405,17 @@ operazioni atomiche (torneremo su questi aspetti in
 In questo caso il sistema provvede un tipo di dato, il \type{sig\_atomic\_t},
 il cui accesso è assicurato essere atomico.  In pratica comunque si può
 assumere che, in ogni piattaforma su cui è implementato Linux, il tipo
-\type{int}, gli altri interi di dimensione inferiore ed i puntatori sono
+\ctyp{int}, gli altri interi di dimensione inferiore ed i puntatori sono
 atomici. Non è affatto detto che lo stesso valga per interi di dimensioni
 maggiori (in cui l'accesso può comportare più istruzioni in assembler) o per
 le strutture. In tutti questi casi è anche opportuno marcare come
-\type{volatile} le variabili che possono essere interessate ad accesso
+\ctyp{volatile} le variabili che possono essere interessate ad accesso
 condiviso, onde evitare problemi con le ottimizzazioni del codice.
 
 
 
-\subsection{Le \textit{race condition} e i \textit{deadlock}}
+\subsection{Le \textit{race condition}\index{race condition} e i 
+  \textit{deadlock}}
 \label{sec:proc_race_cond}
 
 Si definiscono \textit{race condition} tutte quelle situazioni in cui processi
@@ -2081,9 +2442,9 @@ file, o nell'accesso a meccanismi di intercomunicazione come la memoria
 condivisa. In questi casi, se non si dispone della possibilità di eseguire
 atomicamente le operazioni necessarie, occorre che quelle parti di codice in
 cui si compiono le operazioni sulle risorse condivise (le cosiddette
-\textsl{sezioni critiche}) del programma, siano opportunamente protette da
-meccanismi di sincronizzazione (torneremo su queste problematiche di questo
-tipo in \secref{sec:ipc_semaph}).
+\textsl{sezioni critiche}\index{sezioni critiche}) del programma, siano
+opportunamente protette da meccanismi di sincronizzazione (torneremo su queste
+problematiche di questo tipo in \capref{cha:IPC}).
 
 Un caso particolare di \textit{race condition} sono poi i cosiddetti
 \textit{deadlock}, particolarmente gravi in quanto comportano spesso il blocco