Merge branch 'master' of ssh://gapil.gnulinux.it/srv/git/gapil
[gapil.git] / prochand.tex
index 2fb0f7c09e21a4396f284e3d111f176d4d727cdc..3ee2344c9195736428b2f5535815f6d353e8d751 100644 (file)
@@ -1,6 +1,6 @@
 %% prochand.tex
 %%
-%% Copyright (C) 2000-2016 by Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2019 by Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
@@ -22,7 +22,7 @@ all'interno del sistema. Saranno cioè affrontati i dettagli della creazione e
 della terminazione dei processi, della gestione dei loro attributi e
 privilegi, e di tutte le funzioni a questo connesse. Infine nella sezione
 finale introdurremo alcune problematiche generiche della programmazione in
-ambiente multitasking.
+ambiente \textit{multitasking}.
 
 
 \section{Le funzioni di base della gestione dei processi}
@@ -39,12 +39,12 @@ terminazione dei processi, e per la messa in esecuzione degli altri programmi.
 \subsection{L'architettura della gestione dei processi}
 \label{sec:proc_hierarchy}
 
-A differenza di quanto avviene in altri sistemi, ad esempio nel VMS la
+A differenza di quanto avviene in altri sistemi, ad esempio nel VMS, dove la
 generazione di nuovi processi è un'operazione privilegiata, una delle
 caratteristiche fondanti di Unix, che esamineremo in dettaglio più avanti, è
 che qualunque processo può a sua volta generarne altri. Ogni processo è
 identificato presso il sistema da un numero univoco, il cosiddetto
-\textit{Process ID} o, più brevemente, \ids{PID}, assegnato in forma
+\textit{Process ID}, o più brevemente \ids{PID}, assegnato in forma
 progressiva (vedi sez.~\ref{sec:proc_pid}) quando il processo viene creato.
 
 Una seconda caratteristica di un sistema unix-like è che la generazione di un
@@ -57,16 +57,16 @@ indichiamo nella linea di comando.
 Una terza caratteristica del sistema è che ogni processo è sempre stato
 generato da un altro processo, il processo generato viene chiamato
 \textit{processo figlio} (\textit{child process}) mentre quello che lo ha
-viene chiamato \textsl{processo padre} (\textit{parent process}). Questo vale
-per tutti i processi, con una sola eccezione, dato che ci deve essere un punto
-di partenza esiste un processo speciale (che normalmente è \cmd{/sbin/init}),
-che come abbiamo accennato in sez.~\ref{sec:intro_kern_and_sys} viene lanciato
-dal kernel alla conclusione della fase di avvio. Essendo questo il primo
-processo lanciato dal sistema ha sempre il \ids{PID} uguale a 1 e non è figlio
-di nessun altro processo.
-
-Ovviamente \cmd{init} è un processo speciale che in genere si occupa di far
-partire tutti gli altri processi necessari al funzionamento del sistema,
+generato viene chiamato \textsl{processo padre} (\textit{parent
+  process}). Questo vale per tutti i processi, con una sola eccezione; dato
+che ci deve essere un punto di partenza esiste un processo iniziale (che
+normalmente è \cmd{/sbin/init}), che come accennato in
+sez.~\ref{sec:intro_kern_and_sys} viene lanciato dal kernel alla conclusione
+della fase di avvio. Essendo questo il primo processo lanciato dal sistema ha
+sempre \ids{PID} uguale a 1 e non è figlio di nessun altro processo.
+
+Ovviamente \cmd{init} è un processo particolare che in genere si occupa di
+lanciare tutti gli altri processi necessari al funzionamento del sistema,
 inoltre \cmd{init} è essenziale per svolgere una serie di compiti
 amministrativi nelle operazioni ordinarie del sistema (torneremo su alcuni di
 essi in sez.~\ref{sec:proc_termination}) e non può mai essere terminato. La
@@ -138,10 +138,10 @@ Il kernel mantiene una tabella dei processi attivi, la cosiddetta
 questa tabella, costituita da una struttura \kstruct{task\_struct}, che
 contiene tutte le informazioni rilevanti per quel processo. Tutte le strutture
 usate a questo scopo sono dichiarate nell'\textit{header file}
-\file{linux/sched.h}, ed uno schema semplificato, che riporta la struttura
-delle principali informazioni contenute nella \texttt{task\_struct} (che in
-seguito incontreremo a più riprese), è mostrato in
-fig.~\ref{fig:proc_task_struct}.
+\file{linux/sched.h}, ed in fig.~\ref{fig:proc_task_struct} si è riportato uno
+schema semplificato che mostra la struttura delle principali informazioni
+contenute nella \texttt{task\_struct}, che in seguito incontreremo a più
+riprese.
 
 \begin{figure}[!htb]
   \centering \includegraphics[width=14cm]{img/task_struct}
@@ -179,7 +179,7 @@ su macchine che non stanno facendo nulla, con un forte risparmio nell'uso
 dell'energia da parte del processore che può essere messo in stato di
 sospensione anche per lunghi periodi di tempo.
 
-Indipendentemente dalle motivazioni per cui questo avviene, ogni volta che
+Ma, indipendentemente dalle motivazioni per cui questo avviene, ogni volta che
 viene eseguito lo \textit{scheduler} effettua il calcolo delle priorità dei
 vari processi attivi (torneremo su questo in sez.~\ref{sec:proc_priority}) e
 stabilisce quale di essi debba essere posto in esecuzione fino alla successiva
@@ -194,7 +194,7 @@ invocazione.
 
 Come accennato nella sezione precedente ogni processo viene identificato dal
 sistema da un numero identificativo univoco, il \textit{process ID} o
-\ids{PID}. Questo è un tipo di dato standard, \type{pid\_t} che in genere è un
+\ids{PID}. Questo è un tipo di dato standard, \type{pid\_t}, che in genere è un
 intero con segno (nel caso di Linux e della \acr{glibc} il tipo usato è
 \ctyp{int}).
 
@@ -272,7 +272,7 @@ sez.~\ref{sec:proc_perms}.
 \subsection{La funzione \func{fork} e le funzioni di creazione dei processi}
 \label{sec:proc_fork}
 
-La funzione di sistema \funcd{fork} è la funzione fondamentale della gestione
+La funzione di sistema \func{fork} è la funzione fondamentale della gestione
 dei processi: come si è detto tradizionalmente l'unico modo di creare un nuovo
 processo era attraverso l'uso di questa funzione,\footnote{in realtà oggi la
   \textit{system call} usata da Linux per creare nuovi processi è \func{clone}
@@ -281,19 +281,21 @@ processo era attraverso l'uso di questa funzione,\footnote{in realtà oggi la
   \func{fork} viene implementata tramite \func{clone}, cosa che consente una
   migliore interazione coi \textit{thread}.} essa quindi riveste un ruolo
 centrale tutte le volte che si devono scrivere programmi che usano il
-multitasking.\footnote{oggi questa rilevanza, con la diffusione dell'uso dei
-  \textit{thread} che tratteremo al cap.~\ref{cha:threads}, è in parte minore,
-  ma \func{fork} resta comunque la funzione principale per la creazione di
-  processi.} Il prototipo della funzione è:
+\textit{multitasking}.\footnote{oggi questa rilevanza, con la diffusione
+  dell'uso dei \textit{thread}\unavref{ che tratteremo al
+    cap.~\ref{cha:threads}}, è in parte minore, ma \func{fork} resta comunque
+  la funzione principale per la creazione di processi.} Il prototipo di
+\funcd{fork} è:
 
 \begin{funcproto}{ 
 \fhead{unistd.h}
 \fdecl{pid\_t fork(void)}
 \fdesc{Crea un nuovo processo.} 
 }
-{La funzione ritorna il \ids{PID} del figlio al padre e $0$ al figlio in caso 
-  di successo e $-1$ al padre senza creare il figlio per un errore,
-  nel qual caso \var{errno} assumerà uno dei valori: 
+
+{La funzione ritorna in caso di successo il \ids{PID} del figlio nel padre e
+  $0$ nel figlio mentre ritorna $-1$ nel padre, senza creare il figlio, per un
+  errore, al caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
   \item[\errcode{EAGAIN}] non ci sono risorse sufficienti per creare un altro
     processo (per allocare la tabella delle pagine e le strutture del task) o
@@ -304,7 +306,7 @@ multitasking.\footnote{oggi questa rilevanza, con la diffusione dell'uso dei
 \end{funcproto}
 
 Dopo il successo dell'esecuzione di una \func{fork} sia il processo padre che
-il processo figlio continuano ad essere eseguiti normalmente a partire
+il processo figlio continuano ad essere eseguiti normalmente, a partire
 dall'istruzione successiva alla \func{fork}. Il processo figlio è una copia
 del padre, e riceve una copia dei segmenti di testo, dati e dello
 \textit{stack} (vedi sez.~\ref{sec:proc_mem_layout}), ed esegue esattamente lo
@@ -334,11 +336,11 @@ eseguito dal padre o dal figlio.  Si noti come la funzione \func{fork} ritorni
 due volte, una nel padre e una nel figlio.
 
 La scelta di questi valori di ritorno non è casuale, un processo infatti può
-avere più figli, ed il valore di ritorno di \func{fork} è l'unico modo che gli
-permette di identificare quello appena creato. Al contrario un figlio ha
-sempre un solo padre, il cui \ids{PID} può sempre essere ottenuto con
-\func{getppid}, come spiegato in sez.~\ref{sec:proc_pid}, per cui si usa il
-valore nullo, che non è il \ids{PID} di nessun processo.
+avere più figli, ed il valore di ritorno di \func{fork} è l'unico che gli
+permette di identificare qual è quello appena creato. Al contrario un figlio
+ha sempre un solo padre il cui \ids{PID}, come spiegato in
+sez.~\ref{sec:proc_pid}, può sempre essere ottenuto con \func{getppid}; per
+questo si ritorna un valore nullo, che non è il \ids{PID} di nessun processo.
 
 Normalmente la chiamata a \func{fork} può fallire solo per due ragioni: o ci
 sono già troppi processi nel sistema, il che di solito è sintomo che
@@ -353,7 +355,7 @@ ne esegue un'altra. È il caso tipico dei programmi server (il modello
 \textit{client-server} è illustrato in sez.~\ref{sec:net_cliserv}) in cui il
 padre riceve ed accetta le richieste da parte dei programmi client, per
 ciascuna delle quali pone in esecuzione un figlio che è incaricato di fornire
-il servizio.
+le risposte associate al servizio.
 
 La seconda modalità è quella in cui il processo vuole eseguire un altro
 programma; questo è ad esempio il caso della shell. In questo caso il processo
@@ -393,8 +395,8 @@ degli eventuali tempi di attesa in secondi (eseguiti tramite la funzione
 \func{sleep}) per il padre ed il figlio (con \cmd{forktest -h} si ottiene la
 descrizione delle opzioni). Il codice completo, compresa la parte che gestisce
 le opzioni a riga di comando, è disponibile nel file \file{fork\_test.c},
-distribuito insieme agli altri sorgenti degli esempi su
-\url{http://gapil.truelite.it/gapil_source.tgz}.
+distribuito insieme agli altri sorgenti degli esempi della guida su
+\url{http://gapil.gnulinux.it}.
 
 Decifrato il numero di figli da creare, il ciclo principale del programma
 (\texttt{\small 24-40}) esegue in successione la creazione dei processi figli
@@ -460,36 +462,36 @@ In realtà con l'introduzione dei kernel della serie 2.6 lo \textit{scheduler}
   risultati precedenti infatti sono stati ottenuti usando un kernel della
   serie 2.4.}  Questa è una ottimizzazione adottata per evitare che il padre,
 effettuando per primo una operazione di scrittura in memoria, attivasse il
-meccanismo del \textit{copy on write}, operazione inutile qualora il figlio
-venga creato solo per eseguire una \func{exec} su altro programma che scarta
-completamente lo spazio degli indirizzi e rende superflua la copia della
-memoria modificata dal padre. Eseguendo sempre per primo il figlio la
-\func{exec} verrebbe effettuata subito, con la certezza di utilizzare
+meccanismo del \textit{copy on write}, operazione inutile quando il figlio
+viene creato solo per eseguire una \func{exec} per lanciare un altro programma
+che scarta completamente lo spazio degli indirizzi e rende superflua la copia
+della memoria modificata dal padre. Eseguendo sempre per primo il figlio la
+\func{exec} verrebbe effettuata subito, con la certezza di utilizzare il
 \textit{copy on write} solo quando necessario.
 
 Con il kernel 2.6.32 però il comportamento è stato nuovamente cambiato,
 stavolta facendo eseguire per primo sempre il padre. Si è realizzato infatti
-che l'eventualità prospettata per la scelta precedente era comunque molto
-improbabile, mentre l'esecuzione immediata del padre presenta sempre il
+che l'eventualità prospettata per la scelta precedente era comunque poco
+probabile, mentre l'esecuzione immediata del padre presenta sempre il
 vantaggio di poter utilizzare immediatamente tutti i dati che sono nella cache
-della CPU e nella unità di gestione della memoria virtuale senza doverli
+della CPU e nell'unità di gestione della memoria virtuale, senza doverli
 invalidare, cosa che per i processori moderni, che hanno linee di cache
 interne molto profonde, avrebbe un forte impatto sulle prestazioni.
 
-Allora anche se quanto detto in precedenza vale come comportamento effettivo
-dei programmi soltanto per i kernel fino alla serie 2.4, per mantenere la
-portabilità con altri kernel unix-like, e con i diversi comportamenti adottati
-dalle Linux nelle versioni successive, è opportuno non fare affidamento su
-nessun tipo comportamento predefinito e non dare per assunta l'esecuzione
-preventiva del padre o del figlio.
-
-Si noti poi come dopo la \func{fork}, essendo i segmenti di memoria utilizzati
-dai singoli processi completamente indipendenti, le modifiche delle variabili
-nei processi figli, come l'incremento di \var{i} in (\texttt{\small 31}), sono
-visibili solo a loro, (ogni processo vede solo la propria copia della
-memoria), e non hanno alcun effetto sul valore che le stesse variabili hanno
-nel processo padre ed in eventuali altri processi figli che eseguano lo stesso
-codice.
+Allora anche se quanto detto in precedenza si verifica nel comportamento
+effettivo dei programmi soltanto per i kernel fino alla serie 2.4, per
+mantenere la portabilità con altri kernel unix-like e con i diversi
+comportamenti adottati dalle Linux nella sua evoluzione, è comunque opportuno
+non fare nessuna assunzione sull'ordine di esecuzione di padre e figlio dopo
+la chiamata a \func{fork}.
+
+Si noti infine come dopo la \func{fork}, essendo i segmenti di memoria
+utilizzati dai singoli processi completamente indipendenti, le modifiche delle
+variabili nei processi figli, come l'incremento di \var{i} in (\texttt{\small
+  31}), sono visibili solo a loro, (ogni processo vede solo la propria copia
+della memoria), e non hanno alcun effetto sul valore che le stesse variabili
+hanno nel processo padre ed in eventuali altri processi figli che eseguano lo
+stesso codice.
 
 Un secondo aspetto molto importante nella creazione dei processi figli è
 quello dell'interazione dei vari processi con i file. Ne parleremo qui anche
@@ -528,15 +530,15 @@ che come si vede è completamente diverso da quanto ottenevamo sul terminale.
 Il comportamento delle varie funzioni di interfaccia con i file è analizzato
 in gran dettaglio in sez.~\ref{sec:file_unix_interface} per l'interfaccia
 nativa Unix ed in sez.~\ref{sec:files_std_interface} per la standardizzazione
-adottata nelle librerie del linguaggio C e valida per qualunque sistema
-operativo. 
+adottata nelle librerie del linguaggio C, valida per qualunque sistema
+operativo.
 
 Qui basta accennare che si sono usate le funzioni standard della libreria del
 C che prevedono l'output bufferizzato. Il punto è che questa bufferizzazione
 (che tratteremo in dettaglio in sez.~\ref{sec:file_buffering}) varia a seconda
 che si tratti di un file su disco, in cui il buffer viene scaricato su disco
 solo quando necessario, o di un terminale, in cui il buffer viene scaricato ad
-ogni carattere di a capo.
+ogni carattere di ``a capo''.
 
 Nel primo esempio allora avevamo che, essendovi un a capo nella stringa
 stampata, ad ogni chiamata a \func{printf} il buffer veniva scaricato, per cui
@@ -566,19 +568,19 @@ viene rediretto come si è fatto nell'esempio, lo stesso avviene anche per
 tutti i figli. La funzione \func{fork} infatti ha la caratteristica di
 duplicare nei processi figli tutti i \textit{file descriptor} (vedi
 sez.~\ref{sec:file_fd}) dei file aperti nel processo padre (allo stesso modo
-in cui lo fa la funzione \func{dup}, trattata in sez.~\ref{sec:file_dup}), il
-che comporta che padre e figli condividono le stesse voci della \textit{file
-  table} (tratteremo in dettaglio questi termini in sez.~\ref{sec:file_fd} e
-sez.~\ref{sec:file_shared_access}) fra cui c'è anche la posizione corrente nel
-file.
-
-In questo modo se un processo scrive su un file aggiornerà la posizione
-corrente sulla \textit{file table}, e tutti gli altri processi, che vedono la
-stessa \textit{file table}, vedranno il nuovo valore. In questo modo si evita,
-in casi come quello appena mostrato in cui diversi processi scrivono sullo
-stesso file, che l'output successivo di un processo vada a sovrapporsi a
-quello dei precedenti: l'output potrà risultare mescolato, ma non ci saranno
-parti perdute per via di una sovrascrittura.
+in cui lo fa la funzione \func{dup}, trattata in sez.~\ref{sec:file_dup}). Ciò
+fa sì che padre e figli condividano le stesse voci della \textit{file table}
+(tratteremo in dettaglio questi termini in sez.~\ref{sec:file_fd} e
+sez.~\ref{sec:file_shared_access}) fra le quali c'è anche la posizione
+corrente nel file.
+
+Quando un processo scrive su un file la posizione corrente viene aggiornata
+sulla \textit{file table}, e tutti gli altri processi, che vedono la stessa
+\textit{file table}, vedranno il nuovo valore. In questo modo si evita, in
+casi come quello appena mostrato in cui diversi figli scrivono sullo stesso
+file usato dal padre, che una scrittura eseguita in un secondo tempo da un
+processo vada a sovrapporsi a quelle precedenti: l'output potrà risultare
+mescolato, ma non ci saranno parti perdute per via di una sovrascrittura.
 
 Questo tipo di comportamento è essenziale in tutti quei casi in cui il padre
 crea un figlio e attende la sua conclusione per proseguire, ed entrambi
@@ -586,9 +588,9 @@ scrivono sullo stesso file. Un caso tipico di questo comportamento è la shell
 quando lancia un programma.  In questo modo, anche se lo standard output viene
 rediretto, il padre potrà sempre continuare a scrivere in coda a quanto
 scritto dal figlio in maniera automatica; se così non fosse ottenere questo
-comportamento sarebbe estremamente complesso necessitando di una qualche forma
-di comunicazione fra i due processi per far riprendere al padre la scrittura
-al punto giusto.
+comportamento sarebbe estremamente complesso, necessitando di una qualche
+forma di comunicazione fra i due processi per far riprendere al padre la
+scrittura al punto giusto.
 
 In generale comunque non è buona norma far scrivere più processi sullo stesso
 file senza una qualche forma di sincronizzazione in quanto, come visto anche
@@ -610,7 +612,7 @@ proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in
 comune dopo l'esecuzione di una \func{fork} è la seguente:
 \begin{itemize*}
 \item i file aperti e gli eventuali flag di \textit{close-on-exec} impostati
-  (vedi sez.~\ref{sec:proc_exec} e sez.~\ref{sec:file_fcntl_ioctl});
+  (vedi sez.~\ref{sec:proc_exec} e sez.~\ref{sec:file_shared_access});
 \item gli identificatori per il controllo di accesso: l'\textsl{user-ID
     reale}, il \textsl{group-ID reale}, l'\textsl{user-ID effettivo}, il
   \textsl{group-ID effettivo} ed i \textsl{group-ID supplementari} (vedi
@@ -771,10 +773,12 @@ terminato; si potrebbe avere cioè quello che si chiama un processo
 \textsl{orfano}.
 
 Questa complicazione viene superata facendo in modo che il processo orfano
-venga \textsl{adottato} da \cmd{init}, o meglio dal processo con \ids{PID} 1,
-cioè quello lanciato direttamente dal kernel all'avvio, che sta alla base
-dell'albero dei processi visto in sez.~\ref{sec:proc_hierarchy} e che anche
-per questo motivo ha un ruolo essenziale nel sistema e non può mai
+venga \textsl{adottato} da \cmd{init}, o meglio dal processo con \ids{PID}
+1,\footnote{anche se, come vedremo in sez.~\ref{sec:process_prctl}, a partire
+  dal kernel 3.4 è diventato possibile delegare questo compito anche ad un
+  altro processo.} cioè quello lanciato direttamente dal kernel all'avvio, che
+sta alla base dell'albero dei processi visto in sez.~\ref{sec:proc_hierarchy}
+e che anche per questo motivo ha un ruolo essenziale nel sistema e non può mai
 terminare.\footnote{almeno non senza un blocco completo del sistema, in caso
   di terminazione o di non esecuzione di \cmd{init} infatti il kernel si
   blocca con un cosiddetto \textit{kernel panic}, dato che questo è un errore
@@ -814,9 +818,10 @@ terminano, e come si può notare in questo caso, al contrario di quanto visto
 in precedenza, essi riportano 1 come \ids{PPID}.
 
 Altrettanto rilevante è il caso in cui il figlio termina prima del padre,
-perché non è detto che il padre possa ricevere immediatamente lo stato di
-terminazione, quindi il kernel deve comunque conservare una certa quantità di
-informazioni riguardo ai processi che sta terminando.
+perché non è detto che il padre sia in esecuzione e possa ricevere
+immediatamente lo stato di terminazione, quindi il kernel deve comunque
+conservare una certa quantità di informazioni riguardo ai processi che sta
+terminando.
 
 Questo viene fatto mantenendo attiva la voce nella tabella dei processi, e
 memorizzando alcuni dati essenziali, come il \ids{PID}, i tempi di CPU usati
@@ -900,10 +905,10 @@ che il processo padre ancora non ha avuto il tempo di gestirli.
 \subsection{Le funzioni di attesa e ricezione degli stati di uscita}
 \label{sec:proc_wait}
 
-Uno degli usi più comuni delle capacità multitasking di un sistema unix-like
-consiste nella creazione di programmi di tipo server, in cui un processo
-principale attende le richieste che vengono poi soddisfatte da una serie di
-processi figli. 
+Uno degli usi più comuni delle capacità \textit{multitasking} di un sistema
+unix-like consiste nella creazione di programmi di tipo server, in cui un
+processo principale attende le richieste che vengono poi soddisfatte da una
+serie di processi figli.
 
 Si è già sottolineato al paragrafo precedente come in questo caso diventi
 necessario gestire esplicitamente la conclusione dei figli onde evitare di
@@ -985,9 +990,9 @@ sistema, \funcd{waitpid}, il cui prototipo è:
 
 La prima differenza fra le due funzioni è che con \func{waitpid} si può
 specificare in maniera flessibile quale processo attendere, sulla base del
-valore fornito dall'argomento \param{pid}, questo può assumere diversi valori,
+valore fornito dall'argomento \param{pid}. Questo può assumere diversi valori,
 secondo lo specchietto riportato in tab.~\ref{tab:proc_waidpid_pid}, dove si
-sono riportate anche le costanti definite per indicare alcuni di essi. 
+sono riportate anche le costanti definite per indicare alcuni di essi.
 
 \begin{table}[!htb]
   \centering
@@ -1024,8 +1029,8 @@ tabella si sono riportati anche alcune opzioni non standard specifiche di
 Linux, che consentono un controllo più dettagliato per i processi creati con
 la \textit{system call} generica \func{clone} (vedi
 sez.~\ref{sec:process_clone}) e che vengono usati principalmente per la
-gestione della terminazione dei \textit{thread} (vedi
-sez.~\ref{sec:thread_xxx}).
+gestione della terminazione dei \textit{thread}\unavref{ (vedi
+sez.~\ref{sec:thread_xxx})}.
 
 \begin{table}[!htb]
   \centering
@@ -1040,8 +1045,7 @@ sez.~\ref{sec:thread_xxx}).
     \const{WUNTRACED} & Ritorna anche quando un processo figlio è stato
                         fermato.\\ 
     \const{WCONTINUED}& Ritorna anche quando un processo figlio che era stato
-                        fermato ha ripreso l'esecuzione (disponibile solo a
-                        partire dal kernel 2.6.10).\\
+                        fermato ha ripreso l'esecuzione (dal kernel 2.6.10).\\
     \hline
     \constd{\_\_WCLONE}& Attende solo per i figli creati con \func{clone} 
                         (vedi sez.~\ref{sec:process_clone}), vale a dire
@@ -1051,7 +1055,7 @@ sez.~\ref{sec:thread_xxx}).
                         processi figli ordinari ignorando quelli creati da
                         \func{clone}.\\
     \constd{\_\_WALL}  & Attende per qualunque figlio, sia ordinario che creato
-                        con  \func{clone}, se specificata insieme a
+                        con \func{clone}, se specificata con
                         \const{\_\_WCLONE} quest'ultima viene ignorata. \\
     \constd{\_\_WNOTHREAD}& Non attende per i figli di altri \textit{thread}
                         dello stesso \textit{thread group}, questo era il
@@ -1087,12 +1091,12 @@ Nel caso di \const{WUNTRACED} la funzione ritorna, restituendone il \ids{PID},
 quando un processo figlio entra nello stato \textit{stopped}\footnote{in
   realtà viene notificato soltanto il caso in cui il processo è stato fermato
   da un segnale di stop (vedi sez.~\ref{sec:sess_ctrl_term}), e non quello in
-  cui lo stato \textit{stopped} è dovuto all'uso di \func{ptrace} (vedi
-  sez.~\ref{sec:process_ptrace}).} (vedi tab.~\ref{tab:proc_proc_states}),
-mentre con \const{WCONTINUED} la funzione ritorna quando un processo in stato
-\textit{stopped} riprende l'esecuzione per la ricezione del segnale
-\signal{SIGCONT} (l'uso di questi segnali per il controllo di sessione è
-trattato in sez.~\ref{sec:sess_ctrl_term}).
+  cui lo stato \textit{stopped} è dovuto all'uso di \func{ptrace}\unavref{
+    (vedi sez.~\ref{sec:process_ptrace})}.} (vedi
+tab.~\ref{tab:proc_proc_states}), mentre con \const{WCONTINUED} la funzione
+ritorna quando un processo in stato \textit{stopped} riprende l'esecuzione per
+la ricezione del segnale \signal{SIGCONT} (l'uso di questi segnali per il
+controllo di sessione è trattato in sez.~\ref{sec:sess_ctrl_term}).
 
 \constend{WUNTRACED}
 \constend{WCONTINUED}
@@ -1102,10 +1106,10 @@ con \func{waitpid}) è chiaramente un evento asincrono rispetto all'esecuzione
 di un programma e può avvenire in un qualunque momento. Per questo motivo,
 come accennato nella sezione precedente, una delle azioni prese dal kernel
 alla conclusione di un processo è quella di mandare un segnale di
-\signal{SIGCHLD} al padre. L'azione predefinita (si veda
-sez.~\ref{sec:sig_base}) per questo segnale è di essere ignorato, ma la sua
-generazione costituisce il meccanismo di comunicazione asincrona con cui il
-kernel avverte il processo padre che uno dei suoi figli è terminato.
+\signal{SIGCHLD} al padre. L'azione predefinita per questo segnale (si veda
+sez.~\ref{sec:sig_base}) è di essere ignorato, ma la sua generazione
+costituisce il meccanismo di comunicazione asincrona con cui il kernel avverte
+il processo padre che uno dei suoi figli è terminato.
 
 Il comportamento delle funzioni è però cambiato nel passaggio dal kernel 2.4
 al kernel 2.6, quest'ultimo infatti si è adeguato alle prescrizioni dello
@@ -1139,15 +1143,15 @@ la chiamata a \func{waitpid} non si bloccherà.
 
 Come accennato sia \func{wait} che \func{waitpid} restituiscono lo stato di
 terminazione del processo tramite il puntatore \param{status}, e se non
-interessa memorizzare lo stato si può passare un puntatore nullo. Il valore
-restituito da entrambe le funzioni dipende dall'implementazione, ma
-tradizionalmente gli 8 bit meno significativi sono riservati per memorizzare
-lo stato di uscita del processo, e gli altri per indicare il segnale che ha
-causato la terminazione (in caso di conclusione anomala), uno per indicare se
-è stato generato un \textit{core dump} (vedi sez.~\ref{sec:sig_standard}),
-ecc.\footnote{le definizioni esatte si possono trovare in
-  \file{<bits/waitstatus.h>} ma questo file non deve mai essere usato
-  direttamente, esso viene incluso attraverso \file{<sys/wait.h>}.}
+interessa memorizzarlo si può passare un puntatore nullo. Il valore restituito
+da entrambe le funzioni dipende dall'implementazione, ma tradizionalmente gli
+8 bit meno significativi sono riservati per memorizzare lo stato di uscita del
+processo, e gli altri per indicare il segnale che ha causato la terminazione
+(in caso di conclusione anomala), uno per indicare se è stato generato un
+\textit{core dump} (vedi sez.~\ref{sec:sig_standard}), ecc.\footnote{le
+  definizioni esatte si possono trovare in \file{<bits/waitstatus.h>} ma
+  questo file non deve mai essere usato direttamente, esso viene incluso
+  attraverso \file{<sys/wait.h>}.}
 
 \begin{table}[!htb]
   \centering
@@ -1275,6 +1279,9 @@ primo, quale processo o quale gruppo di processi selezionare.
   \label{tab:proc_waitid_idtype}
 \end{table}
 
+% TODO: documentare P_PIDFD per attendere un pidfd (per pidfd vedi
+% https://lwn.net/Articles/794707/) introdotta con il 5.4
+
 Come per \func{waitpid} anche il comportamento di \func{waitid} è
 controllato dall'argomento \param{options}, da specificare come maschera
 binaria dei valori riportati in tab.~\ref{tab:proc_waitid_options}. Benché
@@ -1325,7 +1332,7 @@ Tratteremo nei dettagli la struttura \struct{siginfo\_t} ed il significato dei
 suoi vari campi in sez.~\ref{sec:sig_sigaction}, per quanto ci interessa qui
 basta dire che al ritorno di \func{waitid} verranno avvalorati i seguenti
 campi:
-\begin{basedescript}{\desclabelwidth{2.0cm}}
+\begin{basedescript}{\desclabelwidth{1.8cm}}
 \item[\var{si\_pid}] con il \ids{PID} del figlio.
 \item[\var{si\_uid}] con l'\textsl{user-ID reale} (vedi
   sez.~\ref{sec:proc_perms}) del figlio.
@@ -1391,6 +1398,12 @@ creato un nuovo processo, la funzione semplicemente rimpiazza lo
 programma letto da disco, eseguendo il \textit{link-loader} con gli effetti
 illustrati in sez.~\ref{sec:proc_main}.
 
+\begin{figure}[!htb]
+  \centering \includegraphics[width=8cm]{img/exec_rel}
+  \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
+  \label{fig:proc_exec_relat}
+\end{figure}
+
 Ci sono sei diverse versioni di \func{exec} (per questo la si è chiamata
 famiglia di funzioni) che possono essere usate per questo compito, in realtà
 (come mostrato in fig.~\ref{fig:proc_exec_relat}), tutte queste funzioni sono
@@ -1398,7 +1411,7 @@ tutte varianti che consentono di invocare in modi diversi, semplificando il
 passaggio degli argomenti, la funzione di sistema \funcd{execve}, il cui
 prototipo è:
 
-\begin{funcproto}{ 
+\begin{funcproto}{
 \fhead{unistd.h}
 \fdecl{int execve(const char *filename, char *const argv[], char *const envp[])}
 \fdesc{Esegue un programma.} 
@@ -1410,15 +1423,18 @@ prototipo è:
     eseguibili, o il file è su un filesystem montato con l'opzione
     \cmd{noexec}, o manca  il permesso di attraversamento di una delle
     directory del \textit{pathname}.
+  \item[\errcode{EAGAIN}] dopo un cambio di \ids{UID} si è ancora  sopra il
+    numero massimo di processi consentiti per l'utente (dal kernel 3.1, per i
+    dettagli vedi sez.~\ref{sec:proc_setuid}).
   \item[\errcode{EINVAL}] l'eseguibile ELF ha più di un segmento
     \const{PT\_INTERP}, cioè chiede di essere eseguito da più di un
     interprete.
   \item[\errcode{ELIBBAD}] un interprete ELF non è in un formato
     riconoscibile.
-  \item[\errcode{ENOEXEC}] il file è in un formato non eseguibile o non
-    riconosciuto come tale, o compilato per un'altra architettura.
   \item[\errcode{ENOENT}] il file o una delle librerie dinamiche o l'interprete
     necessari per eseguirlo non esistono.
+  \item[\errcode{ENOEXEC}] il file è in un formato non eseguibile o non
+    riconosciuto come tale, o compilato per un'altra architettura.
   \item[\errcode{EPERM}] il file ha i bit \acr{suid} o \acr{sgid} e l'utente
     non è root, ed il processo viene tracciato, oppure il filesystem è montato
     con l'opzione \cmd{nosuid}. 
@@ -1444,8 +1460,8 @@ torneremo in sez.~\ref{sec:sys_res_limits}).
 
 In caso di successo la funzione non ritorna, in quanto al posto del programma
 chiamante viene eseguito il nuovo programma indicato da \param{filename}. Se
-il processo corrente è tracciato con \func{ptrace} (vedi
-sez.~\ref{sec:process_ptrace}) in caso di successo viene emesso il segnale
+il processo corrente è tracciato con \func{ptrace}\unavref{ (vedi
+sez.~\ref{sec:process_ptrace})} in caso di successo viene emesso il segnale
 \signal{SIGTRAP}.
 
 Le altre funzioni della famiglia (\funcd{execl}, \funcd{execv},
@@ -1519,12 +1535,6 @@ che deve essere terminata da un puntatore nullo.  In entrambi i casi vale la
 convenzione che il primo argomento (\var{arg0} o \var{argv[0]}) viene usato
 per indicare il nome del file che contiene il programma che verrà eseguito.
 
-\begin{figure}[!htb]
-  \centering \includegraphics[width=9cm]{img/exec_rel}
-  \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}.}
-  \label{fig:proc_exec_relat}
-\end{figure}
-
 La seconda differenza fra le funzioni riguarda le modalità con cui si
 specifica il programma che si vuole eseguire. Con lo mnemonico ``\texttt{p}''
 si indicano le due funzioni che replicano il comportamento della shell nello
@@ -1573,10 +1583,8 @@ seguente:
 \item i limiti sulle risorse (vedi sez.~\ref{sec:sys_resource_limit});
 \item i valori delle variabili \var{tms\_utime}, \var{tms\_stime};
   \var{tms\_cutime}, \var{tms\_ustime} (vedi sez.~\ref{sec:sys_cpu_times});
-% TODO ===========Importante=============
-% TODO questo sotto è incerto, verificare
-% TODO ===========Importante=============
-\item la maschera dei segnali (si veda sez.~\ref{sec:sig_sigmask}).
+\item la maschera dei segnali (si veda sez.~\ref{sec:sig_sigmask});
+\item l'insieme dei segnali pendenti (vedi sez.~\ref{sec:sig_gen_beha}).
 \end{itemize*}
 
 Una serie di proprietà del processo originale, che non avrebbe senso mantenere
@@ -1585,8 +1593,6 @@ indirizzi totalmente indipendente e ricreato da zero, vengono perse con
 l'esecuzione di una \func{exec}. Lo standard POSIX.1-2001 prevede che le
 seguenti proprietà non vengano preservate:
 \begin{itemize*}
-\item l'insieme dei segnali pendenti (vedi sez.~\ref{sec:sig_gen_beha}), che
-  viene cancellato;
 \item gli eventuali stack alternativi per i segnali (vedi
   sez.~\ref{sec:sig_specific_features});
 \item i \textit{directory stream} (vedi sez.~\ref{sec:file_dir_read}), che
@@ -1620,9 +1626,9 @@ nell'esecuzione della funzione \func{exec}, queste sono:
   pendenti vengono cancellate;
 \item le \textit{capabilities} vengono modificate come
   illustrato in sez.~\ref{sec:proc_capabilities};
-\item tutti i \textit{thread} tranne il chiamante (vedi
-  sez.~\ref{sec:thread_xxx}) sono cancellati e tutti gli oggetti ad essi
-  relativi (vedi sez.~\ref{sec:thread_xxx}) rimossi;
+\item tutti i \textit{thread} tranne il chiamante\unavref{ (vedi
+    sez.~\ref{sec:thread_xxx})} vengono cancellati e tutti gli oggetti ad essi
+  relativi\unavref{ (vedi sez.~\ref{sec:thread_xxx})} sono rimossi;
 \item viene impostato il flag \const{PR\_SET\_DUMPABLE} di \func{prctl} (vedi
   sez.~\ref{sec:process_prctl}) a meno che il programma da eseguire non sia
   \acr{suid} o \acr{sgid} (vedi sez.~\ref{sec:proc_access_id} e
@@ -1637,20 +1643,18 @@ nell'esecuzione della funzione \func{exec}, queste sono:
 \end{itemize*}
 
 \itindbeg{close-on-exec}
-
 La gestione dei file aperti nel passaggio al nuovo programma lanciato con
-\func{exec} dipende dal valore che ha il flag di \textit{close-on-exec} (vedi
-sez.~\ref{sec:file_fcntl_ioctl}) per ciascun \textit{file descriptor}. I file
-per cui è impostato vengono chiusi, tutti gli altri file restano
+\func{exec} dipende dal valore che ha il flag di \textit{close-on-exec} per
+ciascun \textit{file descriptor} (vedi sez.~\ref{sec:file_shared_access}). I
+file per cui è impostato vengono chiusi, tutti gli altri file restano
 aperti. Questo significa che il comportamento predefinito è che i file restano
-aperti attraverso una \func{exec}, a meno di una chiamata esplicita a
-\func{fcntl} che imposti il suddetto flag.  Per le directory, lo standard
-POSIX.1 richiede che esse vengano chiuse attraverso una \func{exec}, in genere
-questo è fatto dalla funzione \func{opendir} (vedi
+aperti attraverso una \func{exec}, a meno di non aver impostato esplicitamente
+(in apertura o con \func{fnctl}) il suddetto flag. Per le directory, lo
+standard POSIX.1 richiede che esse vengano chiuse attraverso una \func{exec},
+in genere questo è fatto dalla funzione \func{opendir} (vedi
 sez.~\ref{sec:file_dir_read}) che effettua da sola l'impostazione del flag di
 \textit{close-on-exec} sulle directory che apre, in maniera trasparente
 all'utente.
-
 \itindend{close-on-exec}
 
 Il comportamento della funzione in relazione agli identificatori relativi al
@@ -1898,31 +1902,74 @@ sez.~\ref{sec:proc_access_id} seguono la semantica POSIX che prevede
 l'esistenza dell'\ids{UID} salvato e del \ids{GID} salvato, sono
 rispettivamente \funcd{setuid} e \funcd{setgid}; i loro prototipi sono:
 
-\begin{funcproto}{ 
+\begin{funcproto}{
 \fhead{unistd.h}
 \fhead{sys/types.h}
 \fdecl{int setuid(uid\_t uid)}
-\fdesc{Imposta l'\ids{UID} del processo corrente.} 
+\fdesc{Imposta l'\ids{UID} del processo corrente.}
 \fdecl{int setgid(gid\_t gid)}
-\fdesc{Imposta il \ids{GID} del processo corrente.} 
+\fdesc{Imposta il \ids{GID} del processo corrente.}
 }
 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
-caso \var{errno} può assumere solo il valore \errcode{EPERM}.
+caso \var{errno} uno dei valori: 
+\begin{errlist}
+\item[\errcode{EAGAIN}] (solo per \func{setuid}) la chiamata cambierebbe
+  l'\ids{UID} reale ma il kernel non dispone temporaneamente delle risorse per
+  farlo, oppure, per i kernel precedenti il 3.1, il cambiamento
+  dell'\ids{UID} reale farebbe superare il limite per il numero dei processi
+  \const{RLIMIT\_NPROC} (vedi sez.~\ref{sec:sys_resource_limit}).
+\item[\errcode{EINVAL}] il valore di dell'argomento non è valido per il
+    \textit{namespace} corrente (vedi sez.~\ref{sec:process_namespaces}).
+\item[\errcode{EPERM}] non si hanno i permessi per l'operazione richiesta.
+\end{errlist} 
 }
 \end{funcproto}
 
 Il funzionamento di queste due funzioni è analogo, per cui considereremo solo
 la prima, la seconda si comporta esattamente allo stesso modo facendo
-riferimento al \ids{GID} invece che all'\ids{UID}.  Gli eventuali \ids{GID}
+riferimento al \ids{GID} invece che all'\ids{UID}. Gli eventuali \ids{GID}
 supplementari non vengono modificati.
 
 L'effetto della chiamata è diverso a seconda dei privilegi del processo; se
-l'\ids{UID} effettivo è zero (cioè è quello dell'amministratore di sistema)
-allora tutti gli identificatori (\textit{real}, \textit{effective} e
-\textit{saved}) vengono impostati al valore specificato da \param{uid},
-altrimenti viene impostato solo l'\ids{UID} effettivo, e soltanto se il valore
-specificato corrisponde o all'\ids{UID} reale o all'\ids{UID} salvato. Negli
-altri casi viene segnalato un errore con \errcode{EPERM}.
+l'\ids{UID} effettivo è zero (cioè è quello dell'amministratore di sistema o
+il processo ha la capacità \const{CAP\_SETUID}) allora tutti gli
+identificatori (\textit{real}, \textit{effective} e \textit{saved}) vengono
+impostati al valore specificato da \param{uid}, altrimenti viene impostato
+solo l'\ids{UID} effettivo, e soltanto se il valore specificato corrisponde o
+all'\ids{UID} reale o all'\ids{UID} salvato, ottenendo un errore di
+\errcode{EPERM} negli altri casi.
+
+E' importante notare che la funzione può fallire, con
+\errval{EAGAIN},\footnote{non affronteremo qui l'altro caso di errore, che può
+  avvenire solo quando si esegue la funzione all'interno di un diverso
+  \textit{user namespace}, argomento su cui torneremo in
+  sez.~\ref{sec:process_namespaces} ma la considerazione di controllare sempre
+  lo stato di uscita si applica allo stesso modo.} anche quando viene invocata
+da un processo con privilegi di amministratore per cambiare il proprio
+l'\ids{UID} reale, sia per una temporanea indisponibilità di risorse del
+kernel, sia perché l'utente di cui si vuole assumere l'\ids{UID} andrebbe a
+superare un eventuale limite sul numero di processi (il limite
+\const{RLIMIT\_NPROC}, che tratteremo in sez.~\ref{sec:sys_resource_limit}),
+pertanto occorre sempre verificare lo stato di uscita della funzione.
+
+Non controllare questo tipo di errori perché si presume che la funzione abbia
+sempre successo quando si hanno i privilegi di amministratore può avere
+conseguente devastanti per la sicurezza, in particolare quando la si usa per
+cedere i suddetti privilegi ed eseguire un programma per conto di un utente
+non privilegiato.
+
+E' per diminuire l'impatto di questo tipo di disattenzioni che a partire dal
+kernel 3.1 il comportamento di \func{setuid} e di tutte le analoghe funzioni
+che tratteremo nel seguito di questa sezione è stato modificato e nel caso di
+superamento del limite sulle risorse esse hanno comunque successo. Quando
+questo avviene il processo assume comunque il nuovo \ids{UID} ed il controllo
+sul superamento di \const{RLIMIT\_NPROC} viene posticipato ad una eventuale
+successiva invocazione di \func{execve} (essendo questo poi il caso d'uso più
+comune). In tal caso, se alla chiamata ancora sussiste la situazione di
+superamento del limite, sarà \func{execve} a fallire con un errore di
+\const{EAGAIN}.\footnote{che pertanto, a partire dal kernel 3.1, può
+  restituire anche questo errore, non presente in altri sistemi
+  \textit{unix-like}.}
 
 Come accennato l'uso principale di queste funzioni è quello di poter
 consentire ad un programma con i bit \acr{suid} o \acr{sgid} impostati (vedi
@@ -1934,12 +1981,14 @@ Come esempio per chiarire l'uso di queste funzioni prendiamo quello con cui
 viene gestito l'accesso al file \sysfiled{/var/run/utmp}.  In questo file viene
 registrato chi sta usando il sistema al momento corrente; chiaramente non può
 essere lasciato aperto in scrittura a qualunque utente, che potrebbe
-falsificare la registrazione. Per questo motivo questo file (e l'analogo
-\sysfiled{/var/log/wtmp} su cui vengono registrati login e logout) appartengono
-ad un gruppo dedicato (in genere \acr{utmp}) ed i programmi che devono
-accedervi (ad esempio tutti i programmi di terminale in X, o il programma
-\cmd{screen} che crea terminali multipli su una console) appartengono a questo
-gruppo ed hanno il bit \acr{sgid} impostato.
+falsificare la registrazione.
+
+Per questo motivo questo file (e l'analogo \sysfiled{/var/log/wtmp} su cui
+vengono registrati login e logout) appartengono ad un gruppo dedicato (in
+genere \acr{utmp}) ed i programmi che devono accedervi (ad esempio tutti i
+programmi di terminale in X, o il programma \cmd{screen} che crea terminali
+multipli su una console) appartengono a questo gruppo ed hanno il bit
+\acr{sgid} impostato.
 
 Quando uno di questi programmi (ad esempio \cmd{xterm}) viene lanciato, la
 situazione degli identificatori è la seguente:
@@ -1981,10 +2030,10 @@ Occorre però tenere conto che tutto questo non è possibile con un processo con
 i privilegi di amministratore, in tal caso infatti l'esecuzione di una
 \func{setuid} comporta il cambiamento di tutti gli identificatori associati al
 processo, rendendo impossibile riguadagnare i privilegi di amministratore.
-Questo comportamento è corretto per l'uso che ne fa \cmd{login} una volta che
-crea una nuova shell per l'utente, ma quando si vuole cambiare soltanto
-l'\ids{UID} effettivo del processo per cedere i privilegi occorre
-ricorrere ad altre funzioni.
+Questo comportamento è corretto per l'uso che ne fa un programma come
+\cmd{login} una volta che crea una nuova shell per l'utente, ma quando si
+vuole cambiare soltanto l'\ids{UID} effettivo del processo per cedere i
+privilegi occorre ricorrere ad altre funzioni.
 
 Le due funzioni di sistema \funcd{setreuid} e \funcd{setregid} derivano da BSD
 che, non supportando (almeno fino alla versione 4.3+BSD) gli identificatori
@@ -2000,7 +2049,7 @@ del gruppo \textit{saved}, le usa per poter scambiare fra di loro
 \fdesc{Imposta \ids{GID} reale e \ids{GID} effettivo del processo corrente.} 
 }
 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
-caso \var{errno} può assumere solo il valore \errcode{EPERM}.
+caso \var{errno} assume i valori visti per \func{setuid}/\func{setgid}.
 }
 \end{funcproto}
 
@@ -2008,12 +2057,13 @@ Le due funzioni sono identiche, quanto diremo per la prima riguardo gli
 \ids{UID} si applica alla seconda per i \ids{GID}.  La funzione
 \func{setreuid} imposta rispettivamente l'\ids{UID} reale e l'\ids{UID}
 effettivo del processo corrente ai valori specificati da \param{ruid}
-e \param{euid}.  I processi non privilegiati possono impostare solo valori che
-corrispondano o al loro \ids{UID} effettivo o a quello reale o a quello
-salvato, valori diversi comportano il fallimento della chiamata.
-L'amministratore invece può specificare un valore qualunque.  Specificando un
-argomento di valore $-1$ l'identificatore corrispondente verrà lasciato
-inalterato.
+e \param{euid}.
+
+I processi non privilegiati possono impostare solo valori che corrispondano o
+al loro \ids{UID} effettivo o a quello reale o a quello salvato, valori
+diversi comportano il fallimento della chiamata.  L'amministratore invece può
+specificare un valore qualunque.  Specificando un argomento di valore $-1$
+l'identificatore corrispondente verrà lasciato inalterato.
 
 Con queste funzioni si possono scambiare fra loro gli \ids{UID} reale ed
 effettivo, e pertanto è possibile implementare un comportamento simile a
@@ -2052,7 +2102,8 @@ del gruppo \textit{effective} ed i loro prototipi sono:
 \fdesc{Imposta il \ids{GID} effettivo del processo corrente.} 
 }
 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
-caso \var{errno} può assumere solo il valore \errcode{EPERM}.
+  caso \var{errno} assume i valori visti per \func{setuid}/\func{setgid}
+  tranne \errval{EAGAIN}. 
 }
 \end{funcproto}
 
@@ -2079,7 +2130,7 @@ un completo controllo su tutti e tre i gruppi di identificatori
 \fdesc{Imposta il \ids{GID} reale, effettivo e salvato del processo corrente.} 
 }
 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
-caso \var{errno} può assumere solo il valore \errcode{EPERM}.
+caso \var{errno} assume i valori visti per \func{setuid}/\func{setgid}.
 }
 \end{funcproto}
 
@@ -2088,7 +2139,7 @@ gli \ids{UID} si applica alla seconda per i \ids{GID}.  La funzione
 \func{setresuid} imposta l'\ids{UID} reale, l'\ids{UID} effettivo e
 l'\ids{UID} salvato del processo corrente ai valori specificati
 rispettivamente dagli argomenti \param{ruid}, \param{euid} e \param{suid}.  I
-processi non privilegiati possono cambiare uno qualunque degli\ids{UID} solo
+processi non privilegiati possono cambiare uno qualunque degli \ids{UID} solo
 ad un valore corrispondente o all'\ids{UID} reale, o a quello effettivo o a
 quello salvato, l'amministratore può specificare i valori che vuole. Un valore
 di $-1$ per un qualunque argomento lascia inalterato l'identificatore
@@ -2142,10 +2193,10 @@ si ottengono i privilegi necessari per accedere ai file, mantenendo quelli
 originari per quanto riguarda tutti gli altri controlli di accesso, così che
 l'utente non possa inviare segnali al server NFS.
 
-Le due funzioni di sistema usate per cambiare questi identificatori sono
-\funcd{setfsuid} e \funcd{setfsgid}, ed ovviamente sono specifiche di Linux e
-non devono essere usate se si intendono scrivere programmi portabili; i loro
-prototipi sono:
+Le due funzioni di sistema usate appositamente per cambiare questi
+identificatori sono \funcd{setfsuid} e \funcd{setfsgid} ovviamente sono
+specifiche di Linux e non devono essere usate se si intendono scrivere
+programmi portabili; i loro prototipi sono:
 
 \begin{funcproto}{ 
 \fhead{sys/fsuid.h}
@@ -2154,9 +2205,10 @@ prototipi sono:
 \fdecl{int setfsgid(gid\_t fsgid)}
 \fdesc{Legge il \ids{GID} di filesystem del processo corrente.} 
 }
-{Le funzioni restituiscono il nuovo valore dell'identificativo in caso di
-  successo e quello corrente per un errore, in questo caso non viene però
-  impostato nessun codice di errore in \var{errno}.}
+
+{Le funzioni restituiscono sia in caso di successo che di errore il valore
+  corrente dell'identificativo, e in caso di errore non viene impostato nessun
+  codice in \var{errno}.}
 \end{funcproto}
 
 Le due funzioni sono analoghe ed usano il valore passato come argomento per
@@ -2165,6 +2217,12 @@ solo se il processo chiamante ha i privilegi di amministratore o, per gli
 altri utenti, se il valore specificato coincide con uno dei di quelli del
 gruppo \textit{real}, \textit{effective} o \textit{saved}.
 
+Il problema di queste funzioni è che non restituiscono un codice di errore e
+non c'è modo di sapere (con una singola chiamata) di sapere se hanno avuto
+successo o meno, per verificarlo occorre eseguire una chiamata aggiuntiva
+passando come argomento $-1$ (un valore impossibile per un identificativo),
+così fallendo si può di ottenere il valore corrente e verificare se è
+cambiato.
 
 \subsection{Le funzioni per la gestione dei gruppi associati a un processo}
 \label{sec:proc_setgroups}
@@ -2200,8 +2258,8 @@ La funzione legge gli identificatori dei gruppi supplementari del processo sul
 vettore \param{list} che deve essere di dimensione pari a \param{size}. Non è
 specificato se la funzione inserisca o meno nella lista il \ids{GID} effettivo
 del processo. Se si specifica un valore di \param{size} uguale a $0$ allora
-l'argomento \param{list} non viene modificato, ma si ottiene il numero di
-gruppi supplementari.
+l'argomento \param{list} non viene modificato, ma si ottiene dal valore di
+ritorno il numero di gruppi supplementari.
 
 Una seconda funzione, \funcd{getgrouplist}, può invece essere usata per
 ottenere tutti i gruppi a cui appartiene utente identificato per nome; il suo
@@ -2311,8 +2369,8 @@ ed oggetto di numerose ricerche; in generale essa dipende in maniera
 essenziale anche dal tipo di utilizzo che deve essere fatto del sistema, per
 cui non esiste un meccanismo che sia valido per tutti gli usi.
 
-La caratteristica specifica di un sistema multitasking come Linux è quella del
-cosiddetto \itindex{preemptive~multitasking} \textit{preemptive
+La caratteristica specifica di un sistema \textit{multitasking} come Linux è
+quella del cosiddetto \itindex{preemptive~multitasking} \textit{preemptive
   multitasking}: questo significa che al contrario di altri sistemi (che usano
 invece il cosiddetto \itindex{cooperative~multitasking} \textit{cooperative
   multitasking}) non sono i singoli processi, ma il kernel stesso a decidere
@@ -2342,7 +2400,7 @@ tempo.  In tutti questi casi la CPU diventa disponibile ed è compito dello
 kernel provvedere a mettere in esecuzione un altro processo.
 
 Tutte queste possibilità sono caratterizzate da un diverso \textsl{stato} del
-processo, in Linux un processo può trovarsi in uno degli stati riportati in
+processo; in Linux un processo può trovarsi in uno degli stati riportati in
 tab.~\ref{tab:proc_proc_states}; ma soltanto i processi che sono nello stato
 \textit{runnable} concorrono per l'esecuzione. Questo vuol dire che, qualunque
 sia la sua priorità, un processo non potrà mai essere messo in esecuzione
@@ -2357,7 +2415,7 @@ fintanto che esso si trova in uno qualunque degli altri stati.
     \hline
     \hline
     \textit{runnable}& \texttt{R} & Il processo è in esecuzione o è pronto ad
-                                    essere eseguito (cioè è in attesa che gli
+                                    essere eseguito (in attesa che gli
                                     venga assegnata la CPU).\\
     \textit{sleep}   & \texttt{S} & Il processo  è in attesa di un
                                     risposta dal sistema, ma può essere 
@@ -2441,9 +2499,9 @@ prevede solo priorità dinamiche. È di questo che, di norma, ci si dovrà
 preoccupare nella programmazione.  Come accennato in Linux i processi ordinari
 hanno tutti una priorità assoluta nulla; quello che determina quale, fra tutti
 i processi in attesa di esecuzione, sarà eseguito per primo, è la cosiddetta
-\textsl{priorità dinamica},\footnote{quella che viene mostrata nella colonna
-  \texttt{PR} del comando \texttt{top}.} che è chiamata così proprio perché
-varia nel corso dell'esecuzione di un processo.
+\textsl{priorità dinamica}, quella che viene mostrata nella colonna
+\texttt{PR} del comando \texttt{top}, che è chiamata così proprio perché varia
+nel corso dell'esecuzione di un processo.
 
 Il meccanismo usato da Linux è in realtà piuttosto complesso,\footnote{e
   dipende strettamente dalla versione di kernel; in particolare a partire
@@ -2463,18 +2521,19 @@ in stato \textit{runnable} ma non viene posto in esecuzione.\footnote{in
   processo mettere in esecuzione avviene con un algoritmo molto più
   complicato, che tiene conto anche della \textsl{interattività} del processo,
   utilizzando diversi fattori, questa è una brutale semplificazione per
-  rendere l'idea del funzionamento, per una trattazione più dettagliata, anche
-  se non aggiornatissima, dei meccanismi di funzionamento dello
-  \textit{scheduler} si legga il quarto capitolo di \cite{LinKernDev}.} Lo
-\textit{scheduler} infatti mette sempre in esecuzione, fra tutti i processi in
-stato \textit{runnable}, quello che ha il valore di priorità dinamica più
-basso.\footnote{con le priorità dinamiche il significato del valore numerico
-  ad esse associato è infatti invertito, un valore più basso significa una
-  priorità maggiore.} Il fatto che questo valore venga diminuito quando un
-processo non viene posto in esecuzione pur essendo pronto, significa che la
-priorità dei processi che non ottengono l'uso del processore viene
-progressivamente incrementata, così che anche questi alla fine hanno la
-possibilità di essere eseguiti.
+  rendere l'idea del funzionamento, per una trattazione più dettagliata dei
+  meccanismi di funzionamento dello \textit{scheduler}, anche se non
+  aggiornatissima, si legga il quarto capitolo di \cite{LinKernDev}.}
+
+Lo \textit{scheduler} infatti mette sempre in esecuzione, fra tutti i processi
+in stato \textit{runnable}, quello che ha il valore di priorità dinamica più
+basso; con le priorità dinamiche il significato del valore numerico ad esse
+associato è infatti invertito, un valore più basso significa una priorità
+maggiore. Il fatto che questo valore venga diminuito quando un processo non
+viene posto in esecuzione pur essendo pronto, significa che la priorità dei
+processi che non ottengono l'uso del processore viene progressivamente
+incrementata, così che anche questi alla fine hanno la possibilità di essere
+eseguiti.
 
 Sia la dimensione della \textit{time-slice} che il valore di partenza della
 priorità dinamica sono determinate dalla cosiddetta \textit{nice} (o
@@ -2573,19 +2632,18 @@ caso \var{errno} assumerà uno dei valori:
 \end{errlist}}
 \end{funcproto}
 
-La funzione permette, a seconda di quanto specificato
-nell'argomento \param{which}, di leggere il valore di \textit{nice} di un
-processo, di un gruppo di processi (vedi sez.~\ref{sec:sess_proc_group}) o di
-un utente indicato dall'argomento \param{who}. Nelle vecchie versioni può
-essere necessario includere anche \headfiled{sys/time.h}, questo non è più
-necessario con versioni recenti delle librerie, ma è comunque utile per
-portabilità.
+La funzione permette, a seconda di quanto specificato nell'argomento
+\param{which}, di leggere il valore di \textit{nice} o di un processo, o di un
+gruppo di processi (vedi sez.~\ref{sec:sess_proc_group}) o di un utente,
+indicati con l'argomento \param{who}. Nelle vecchie versioni può essere
+necessario includere anche \headfiled{sys/time.h}, questo non è più necessario
+con versioni recenti delle librerie, ma è comunque utile per portabilità.
 
 I valori possibili per \param{which}, ed il tipo di valore che occorre usare
-in corrispondenza per \param{who} solo elencati nella legenda di
+in corrispondenza per \param{who}, solo elencati nella legenda di
 tab.~\ref{tab:proc_getpriority} insieme ai relativi significati. Usare un
 valore nullo per \param{who} indica, a seconda della corrispondente
-indicazione usata per \param{which} il processo, il gruppo di processi o
+indicazione usata per \param{which}, il processo, il gruppo di processi o
 l'utente correnti.
 
 \begin{table}[htb]
@@ -2610,7 +2668,7 @@ l'utente correnti.
 
 In caso di una indicazione che faccia riferimento a più processi, la funzione
 restituisce la priorità più alta (cioè il valore più basso) fra quelle dei
-processi corrispondenti. Come per \func{nice} $-1$ è un valore possibile
+processi corrispondenti. Come per \func{nice}, $-1$ è un possibile valore
 corretto, per cui di nuovo per poter rilevare una condizione di errore è
 necessario cancellare sempre \var{errno} prima della chiamata alla funzione e
 quando si ottiene un valore di ritorno uguale a $-1$ per verificare che essa
@@ -2645,9 +2703,9 @@ i quali valgono le stesse considerazioni fatte per \func{getpriority} e lo
 specchietto di tab.~\ref{tab:proc_getpriority}. 
 
 In questo caso come valore di \param{prio} deve essere specificato il valore
-di \textit{nice} da assegnare, e non un incremento (positivo o negativo) come
-nel caso di \func{nice}, nell'intervallo fra \const{PRIO\_MIN} ($-20$) e
-\const{PRIO\_MAX} ($19$). La funzione restituisce il valore di \textit{nice}
+di \textit{nice} da assegnare nell'intervallo fra \const{PRIO\_MIN} ($-20$) e
+\const{PRIO\_MAX} ($19$), e non un incremento (positivo o negativo) come nel
+caso di \func{nice}. La funzione restituisce il valore di \textit{nice}
 assegnato in caso di successo e $-1$ in caso di errore, e come per \func{nice}
 anche in questo caso per rilevare un errore occorre sempre porre a zero
 \var{errno} prima della chiamata della funzione, essendo $-1$ un valore di
@@ -2679,33 +2737,33 @@ valore di \textit{nice} è cambiato parecchio nelle progressive riscritture
 dello \textit{scheduler} di Linux, ed in particolare a partire dal kernel
 2.6.23 l'uso di diversi valori di \textit{nice} ha un impatto molto più forte
 nella distribuzione della CPU ai processi. Infatti se viene comunque calcolata
-una priorità dinamica per i processi che non ricevono la CPU così che anche
+una priorità dinamica per i processi che non ricevono la CPU, così che anche
 essi possano essere messi in esecuzione, un alto valore di \textit{nice}
 corrisponde comunque ad una \textit{time-slice} molto piccola che non cresce
 comunque, per cui un processo a bassa priorità avrà davvero scarse possibilità
 di essere eseguito in presenza di processi attivi a priorità più alta.
 
 
-
 \subsection{Il meccanismo di \textit{scheduling real-time}}
 \label{sec:proc_real_time}
 
 Come spiegato in sez.~\ref{sec:proc_sched} lo standard POSIX.1b ha introdotto
-le priorità assolute per permettere la gestione di processi real-time. In
-realtà nel caso di Linux non si tratta di un vero \textit{hard real-time}, in
-quanto in presenza di eventuali interrupt il kernel interrompe l'esecuzione di
-un processo qualsiasi sia la sua priorità,\footnote{questo a meno che non si
-  siano installate le patch di RTLinux, RTAI o Adeos, con i quali è possibile
-  ottenere un sistema effettivamente \textit{hard real-time}. In tal caso
-  infatti gli interrupt vengono intercettati dall'interfaccia
-  \textit{real-time} (o nel caso di Adeos gestiti dalle code del nano-kernel),
-  in modo da poterli controllare direttamente qualora ci sia la necessità di
-  avere un processo con priorità più elevata di un \textit{interrupt
-    handler}.} mentre con l'incorrere in un \textit{page fault} si possono
-avere ritardi non previsti.  Se l'ultimo problema può essere aggirato
-attraverso l'uso delle funzioni di controllo della memoria virtuale (vedi
-sez.~\ref{sec:proc_mem_lock}), il primo non è superabile e può comportare
-ritardi non prevedibili riguardo ai tempi di esecuzione di qualunque processo.
+le priorità assolute per permettere la gestione di processi
+\textit{real-time}. In realtà nel caso di Linux non si tratta di un vero
+\textit{hard real-time}, in quanto in presenza di eventuali interrupt il
+kernel interrompe l'esecuzione di un processo, qualsiasi sia la sua
+priorità,\footnote{questo a meno che non si siano installate le patch di
+  RTLinux, RTAI o Adeos, con i quali è possibile ottenere un sistema
+  effettivamente \textit{hard real-time}. In tal caso infatti gli interrupt
+  vengono intercettati dall'interfaccia \textit{real-time} (o nel caso di
+  Adeos gestiti dalle code del nano-kernel), in modo da poterli controllare
+  direttamente qualora ci sia la necessità di avere un processo con priorità
+  più elevata di un \textit{interrupt handler}.} mentre con l'incorrere in un
+\textit{page fault} si possono avere ritardi non previsti.  Se l'ultimo
+problema può essere aggirato attraverso l'uso delle funzioni di controllo
+della memoria virtuale (vedi sez.~\ref{sec:proc_mem_lock}), il primo non è
+superabile e può comportare ritardi non prevedibili riguardo ai tempi di
+esecuzione di qualunque processo.
 
 Nonostante questo, ed in particolare con una serie di miglioramenti che sono
 stati introdotti nello sviluppo del kernel,\footnote{in particolare a partire
@@ -2768,15 +2826,15 @@ ordinarie o viceversa, che di specificare, in caso di politiche
 caso \var{errno} assumerà uno dei valori:
 \begin{errlist}
     \item[\errcode{EINVAL}] il valore di \param{policy} non esiste o il
-      relativo valore di \param{p} non è valido per la politica scelta.
+      valore di \param{p} non è valido per la politica scelta.
     \item[\errcode{EPERM}] il processo non ha i privilegi per attivare la
       politica richiesta.
     \item[\errcode{ESRCH}] il processo \param{pid} non esiste.
- \end{errlist}}
   \end{errlist}}
 \end{funcproto}
 
 La funzione esegue l'impostazione per il processo specificato dall'argomento
-\param{pid}, un valore nullo di questo argomento esegue l'impostazione per il
+\param{pid}; un valore nullo di questo argomento esegue l'impostazione per il
 processo corrente.  La politica di \textit{scheduling} è specificata
 dall'argomento \param{policy} i cui possibili valori sono riportati in
 tab.~\ref{tab:proc_sched_policy}; la parte alta della tabella indica le
@@ -2813,6 +2871,8 @@ corrente.
 % TODO Aggiungere SCHED_DEADLINE, sulla nuova politica di scheduling aggiunta
 % con il kernel 3.14, vedi anche Documentation/scheduler/sched-deadline.txt e
 % http://lwn.net/Articles/575497/
+% vedi anche man 7 sched, man sched_setattr
+% https://lwn.net/Articles/805317/
 
 Con le versioni più recenti del kernel sono state introdotte anche delle
 varianti sulla politica di \textit{scheduling} tradizionale per alcuni carichi
@@ -2827,9 +2887,9 @@ di \textit{sleep}.\footnote{cosa che accade con grande frequenza per i
   processi interattivi, dato che essi sono per la maggior parte del tempo in
   attesa di dati in ingresso da parte dell'utente.} La si usa pertanto, come
 indica il nome, per processi che usano molta CPU (come programmi di calcolo)
-che in questo modo sono leggermente sfavoriti rispetto ai processi interattivi
-che devono rispondere a dei dati in ingresso, pur non perdendo il loro valore
-di \textit{nice}.
+che in questo modo, pur non perdendo il loro valore di \textit{nice}, sono
+leggermente sfavoriti rispetto ai processi interattivi che devono rispondere a
+dei dati in ingresso.
 
 La politica \const{SCHED\_IDLE} invece è una politica dedicata ai processi che
 si desidera siano eseguiti con la più bassa priorità possibile, ancora più
@@ -2848,7 +2908,7 @@ standard prevede che questo debba essere assegnato all'interno di un
 intervallo fra un massimo ed un minimo che nel caso di Linux sono
 rispettivamente 1 e 99.
 
-\begin{figure}[!htbp]
+\begin{figure}[!htb]
   \footnotesize \centering
   \begin{minipage}[c]{0.5\textwidth}
     \includestruct{listati/sched_param.c}
@@ -2864,8 +2924,8 @@ errore \errcode{EINVAL}, questo valore infatti non ha niente a che vedere con
 la priorità dinamica determinata dal valore di \textit{nice}, che deve essere
 impostato con le funzioni viste in precedenza.
 
-Lo standard POSIX.1b prevede inoltre che l'intervallo dei valori delle
-priorità statiche possa essere ottenuto con le funzioni di sistema
+Lo standard POSIX.1b prevede che l'intervallo dei valori delle priorità
+statiche possa essere ottenuto con le funzioni di sistema
 \funcd{sched\_get\_priority\_max} e \funcd{sched\_get\_priority\_min}, i cui
 prototipi sono:
 
@@ -2883,9 +2943,9 @@ prototipi sono:
 \end{errlist}}
 \end{funcproto}
 
-Le funzioni ritornano rispettivamente i due valori della massima e minima
-priorità statica possano essere ottenuti per una delle politiche di
-\textit{scheduling} \textit{real-time} indicata dall'argomento \param{policy}.
+Le funzioni ritornano rispettivamente il valore massimo e minimo usabile per
+la priorità statica di una delle politiche di \textit{scheduling}
+\textit{real-time} indicata dall'argomento \param{policy}.
 
 Si tenga presente che quando si imposta una politica di \textit{scheduling}
 real-time per un processo o se ne cambia la priorità statica questo viene
@@ -2900,8 +2960,8 @@ politica scelta è \const{SCHED\_FIFO} quando il processo viene eseguito viene
 automaticamente rimesso in coda alla lista, e la sua esecuzione continua
 fintanto che non viene bloccato da una richiesta di I/O, o non rilascia
 volontariamente la CPU (in tal caso, tornando nello stato \textit{runnable}
-sarà reinserito in coda alla lista); l'esecuzione viene ripresa subito solo
-nel caso che esso sia stato interrotto da un processo a priorità più alta.
+sarà in coda alla lista); l'esecuzione viene ripresa subito solo nel caso che
+esso sia stato interrotto da un processo a priorità più alta.
 
 Solo un processo con i privilegi di amministratore\footnote{più precisamente
   con la capacità \const{CAP\_SYS\_NICE}, vedi
@@ -3055,7 +3115,7 @@ comportava che i processi venissero messi in fondo alla coda di quelli attivi,
 con la possibilità di essere rimessi in esecuzione entro breve tempo, con
 l'introduzione del \textit{Completely Fair Scheduler} questo comportamento è
 cambiato ed un processo che chiama la funzione viene inserito nella lista dei
-processi inattivo, con un tempo molto maggiore.\footnote{è comunque possibile
+processi inattivi, con un tempo molto maggiore.\footnote{è comunque possibile
   ripristinare un comportamento analogo al precedente scrivendo il valore 1
   nel file \sysctlfiled{kernel/sched\_compat\_yield}.}
 
@@ -3065,7 +3125,7 @@ una risorsa contesa con altri processi, e si vuole dare agli altri una
 possibilità di approfittarne mettendoli in esecuzione, ma chiamarla senza
 necessità, specie se questo avviene ripetutamente all'interno di un qualche
 ciclo, può avere invece un forte impatto negativo per la generazione di
-\itindex{contest~switch} \textit{contest switch} inutili.
+\textit{context switch} inutili.
 
 
 \subsection{Il controllo dello \textit{scheduler} per i sistemi
@@ -3175,13 +3235,13 @@ questa viene ereditata attraverso una \func{fork}, in questo modo diventa
 possibile legare automaticamente un gruppo di processi ad un singolo
 processore.
 
-Nell'uso comune, almeno con i kernel successivi alla serie 2.6.x, l'uso di
+Nell'uso comune, almeno con i kernel successivi alla serie 2.6.x, utilizzare
 questa funzione non è necessario, in quanto è lo \textit{scheduler} stesso che
 provvede a mantenere al meglio l'affinità di processore. Esistono però
 esigenze particolari, ad esempio quando un processo (o un gruppo di processi)
 è utilizzato per un compito importante (ad esempio per applicazioni
 \textit{real-time} o la cui risposta è critica) e si vuole la massima
-velocità, e con questa interfaccia diventa possibile selezionare gruppi di
+velocità; con questa interfaccia diventa possibile selezionare gruppi di
 processori utilizzabili in maniera esclusiva.  Lo stesso dicasi quando
 l'accesso a certe risorse (memoria o periferiche) può avere un costo diverso a
 seconda del processore, come avviene nelle architetture NUMA
@@ -3208,10 +3268,10 @@ cui ogni bit corrisponde ad un processore, ma oggi esistono architetture in
 cui questo numero può non essere sufficiente, e per questo è stato creato
 questo tipo opaco e una interfaccia di gestione che permette di usare a basso
 livello un tipo di dato qualunque rendendosi indipendenti dal numero di bit e
-dalla loro disposizione.  Per questo le funzioni richiedono anche che oltre
-all'insieme di processori si indichi anche la dimensione dello stesso con
-l'argomento \param{setsize}, per il quale, se non si usa l'allocazione
-dinamica che vedremo a breve, ed è in genere sufficiente passare il valore
+dalla loro disposizione.  Per questo le funzioni di libreria richiedono che
+oltre all'insieme di processori si indichi anche la dimensione dello stesso
+con l'argomento \param{setsize}, per il quale, se non si usa l'allocazione
+dinamica che vedremo a breve, è in genere sufficiente passare il valore
 \code{sizeof(cpu\_set\_t)}.
 
 L'interfaccia di gestione degli insiemi di processori, oltre alla definizione
@@ -3250,7 +3310,7 @@ presente, diverso da zero se è presente).
 Si tenga presente che trattandosi di macro l'argomento \param{cpu} può essere
 valutato più volte. Questo significa ad esempio che non si può usare al suo
 posto una funzione o un'altra macro, altrimenti queste verrebbero eseguite più
-volte, l'argomento cioè non deve avere \textsl{effetti collaterali} (in gergo
+volte; l'argomento cioè non deve avere \textsl{effetti collaterali} (in gergo
  \textit{side effects}).\footnote{nel linguaggio C si
   parla appunto di \textit{side effects} quando si usano istruzioni la cui
   valutazione comporta effetti al di fuori dell'istruzione stessa, come il
@@ -3261,13 +3321,13 @@ volte, l'argomento cioè non deve avere \textsl{effetti collaterali} (in gergo
 \itindend{side~effects}
 
 
-Le CPU sono numerate da zero (che indica la prima disponibile) fino ad
-un numero massimo che dipende dalla architettura hardware. La costante
+Le CPU sono numerate da zero (che indica la prima disponibile) fino ad un
+numero massimo che dipende dall'architettura hardware. La costante
 \constd{CPU\_SETSIZE} indica il numero massimo di processori che possono far
 parte di un insieme (al momento vale sempre 1024), e costituisce un limite
-massimo al valore dell'argomento \param{cpu}.
-Dalla versione 2.6 della \acr{glibc} alle precedenti macro è stata aggiunta,
-per contare il numero di processori in un insieme, l'ulteriore:
+massimo al valore dell'argomento \param{cpu}.  Dalla versione 2.6 della
+\acr{glibc} alle precedenti macro è stata aggiunta, per contare il numero di
+processori in un insieme, l'ulteriore:
 
 {\centering
 \vspace{3pt}
@@ -3297,17 +3357,17 @@ compiere delle operazioni logiche sugli insiemi di processori con:
 }
 \end{funcbox}}
 
-Le prime tre macro richiedono due insiemi di partenza, \param{srcset1}
-\param{srcset2} e forniscono in un terzo insieme \param{destset} (che può
+Le prime tre macro richiedono due insiemi di partenza, \param{srcset1} e
+\param{srcset2} e forniscono in un terzo insieme \param{destset} (che può
 essere anche lo stesso di uno dei precedenti) il risultato della rispettiva
 operazione logica sui contenuti degli stessi. In sostanza con \macro{CPU\_AND}
 si otterrà come risultato l'insieme che contiene le CPU presenti in entrambi
 gli insiemi di partenza, con \macro{CPU\_OR} l'insieme che contiene le CPU
 presenti in uno qualunque dei due insiemi di partenza, e con \macro{CPU\_XOR}
-l'insieme che contiene le CPU presenti presenti in uno solo dei due insiemi di
+l'insieme che contiene le CPU presenti in uno solo dei due insiemi di
 partenza. Infine \macro{CPU\_EQUAL} confronta due insiemi ed è l'unica che
-restituisce un intero, da usare come valore logico che indica se sono
-identici o meno.
+restituisce un intero, da usare come valore logico che indica se sono identici
+o meno.
 
 Inoltre, sempre a partire dalla versione 2.7 della \acr{glibc}, è stata
 introdotta la possibilità di una allocazione dinamica degli insiemi di
@@ -3416,12 +3476,11 @@ l'accesso al singolo disco scrivendo nel file
 
 Gli \textit{scheduler} disponibili sono mostrati dal contenuto dello stesso
 file che riporta fra parentesi quadre quello attivo, il default in tutti i
-kernel recenti è proprio il \texttt{cfq},\footnote{nome con cui si indica
-  appunto lo \textit{scheduler} CFQ.} che supporta le priorità. Per i dettagli
-sulle caratteristiche specifiche degli altri \textit{scheduler}, la cui
-discussione attiene a problematiche di ambito sistemistico, si consulti la
-documentazione nella directory \texttt{Documentation/block/} dei sorgenti del
-kernel.
+kernel recenti è proprio il \texttt{cfq}, nome con cui si indica appunto lo
+\textit{scheduler} CFQ, che supporta le priorità. Per i dettagli sulle
+caratteristiche specifiche degli altri \textit{scheduler}, la cui discussione
+attiene a problematiche di ambito sistemistico, si consulti la documentazione
+nella directory \texttt{Documentation/block/} dei sorgenti del kernel.
 
 Una volta che si sia impostato lo \textit{scheduler} CFQ ci sono due
 specifiche \textit{system call}, specifiche di Linux, che consentono di
@@ -3456,11 +3515,11 @@ rispettivi prototipi sono:
 Le funzioni leggono o impostano la priorità di I/O sulla base dell'indicazione
 dei due argomenti \param{which} e \param{who} che hanno lo stesso significato
 già visto per gli omonimi argomenti di \func{getpriority} e
-\func{setpriority}. Anche in questo caso si deve specificare il valore
-di \param{which} tramite le opportune costanti riportate in
+\func{setpriority}. Anche in questo caso si deve specificare il valore di
+\param{which} tramite le opportune costanti riportate in
 tab.~\ref{tab:ioprio_args} che consentono di indicare un singolo processo, i
-processi di un \textit{process group} (tratteremo questo argomento in
-sez.~\ref{sec:sess_proc_group}) o tutti i processi di un utente.
+processi di un \textit{process group} (vedi sez.~\ref{sec:sess_proc_group}) o
+tutti i processi di un utente.
 
 \begin{table}[htb]
   \centering
@@ -3527,6 +3586,12 @@ da \func{ioprio\_get} e per ottenere rispettivamente la classe di
 macro viene invece usata per creare un valore di priorità da usare come
 argomento di \func{ioprio\_set} per eseguire una impostazione.
 
+Le classi di \textit{scheduling} previste dallo \textit{scheduler} CFQ sono
+tre, e ricalcano tre diverse modalità di distribuzione delle risorse, analoghe
+a quelle già adottate anche nel funzionamento dello \textit{scheduler} del
+processore. Ciascuna di esse è identificata tramite una opportuna costante,
+secondo quanto riportato in tab.~\ref{tab:IOsched_class}.
+
 \begin{table}[htb]
   \centering
   \footnotesize
@@ -3546,12 +3611,6 @@ argomento di \func{ioprio\_set} per eseguire una impostazione.
   \label{tab:IOsched_class}
 \end{table}
 
-Le classi di \textit{scheduling} previste dallo \textit{scheduler} CFQ sono
-tre, e ricalcano tre diverse modalità di distribuzione delle risorse analoghe
-a quelle già adottate anche nel funzionamento dello \textit{scheduler} del
-processore. Ciascuna di esse è identificata tramite una opportuna costante,
-secondo quanto riportato in tab.~\ref{tab:IOsched_class}.
-
 La classe di priorità più bassa è \constd{IOPRIO\_CLASS\_IDLE}; i processi in
 questa classe riescono ad accedere a disco soltanto quando nessun altro
 processo richiede l'accesso. Occorre pertanto usarla con molta attenzione,
@@ -3559,10 +3618,10 @@ perché un processo in questa classe può venire completamente bloccato quando
 ci sono altri processi in una qualunque delle altre due classi che stanno
 accedendo al disco. Quando si usa questa classe non ha senso indicare un
 valore di priorità, dato che in questo caso non esiste nessuna gerarchia e la
-priorità è identica, la minima possibile, per tutti i processi.
+priorità è identica, la minima possibile, per tutti i processi che la usano.
 
 La seconda classe di priorità di I/O è \constd{IOPRIO\_CLASS\_BE} (il nome sta
-per \textit{best-effort}) che è quella usata ordinariamente da tutti
+per \textit{best-effort}), che è quella usata ordinariamente da tutti
 processi. In questo caso esistono priorità diverse che consentono di
 assegnazione di una maggiore banda passante nell'accesso a disco ad un
 processo rispetto agli altri, con meccanismo simile a quello dei valori di
@@ -3570,8 +3629,7 @@ processo rispetto agli altri, con meccanismo simile a quello dei valori di
 bloccare indefinitamente quelli a priorità più bassa. In questo caso però le
 diverse priorità sono soltanto otto, indicate da un valore numerico fra 0 e 7
 e come per \textit{nice} anche in questo caso un valore più basso indica una
-priorità maggiore. 
-
+priorità maggiore.
 
 Infine la classe di priorità di I/O \textit{real-time}
 \constd{IOPRIO\_CLASS\_RT} ricalca le omonime priorità di processore: un
@@ -3602,715 +3660,14 @@ rimosso a partire dal kernel 2.6.25.
 
 %TODO verificare http://lwn.net/Articles/355987/
 
-\section{Funzioni di gestione avanzata}
-\label{sec:proc_advanced_control}
-
-Nelle precedenti sezioni si sono trattate la gran parte delle funzioni che
-attengono alla gestione ordinaria dei processi e delle loro proprietà più
-comuni. Tratteremo qui alcune \textit{system call} dedicate alla gestione di
-funzionalità dei processi molto specifiche ed avanzate, il cui uso è in genere
-piuttosto ridotto. Trattandosi di problematiche abbastanza complesse, che
-spesso presuppongono la conoscenza di altri argomenti trattati nel seguito
-della guida, si può saltare questa sezione in una prima lettura, tornando su
-di essa in un secondo tempo.
-
-
-\subsection{La funzione \func{prctl}}
-\label{sec:process_prctl}
-
-Benché la gestione ordinaria possa essere effettuata attraverso le funzioni
-che abbiamo già esaminato nelle sezioni precedenti, esistono una serie di
-proprietà e caratteristiche particolari dei processi non coperte da esse, per
-la cui gestione è stata predisposta una apposita \textit{system call} che
-fornisce una interfaccia generica per tutte le operazioni specialistiche. La
-funzione di sistema è \funcd{prctl} ed il suo prototipo è:\footnote{la
-  funzione non è standardizzata ed è specifica di Linux, anche se ne esiste
-  una analoga in IRIX; è stata introdotta con il kernel 2.1.57.}
-
-\begin{funcproto}{ 
-\fhead{sys/prctl.h}
-\fdecl{int prctl(int option, unsigned long arg2, unsigned long arg3, unsigned
-  long arg4, \\
-\phantom{int prctl(}unsigned long arg5)}
-\fdesc{Esegue una operazione speciale sul processo corrente.} 
-}
-{La funzione ritorna $0$ o un valore positivo dipendente dall'operazione in
-  caso di successo e $-1$ per un errore, nel qual caso \var{errno} assumerà
-  valori diversi a seconda del tipo di operazione richiesta (in genere
-  \errval{EINVAL} o \errval{EPERM}).}
-\end{funcproto}
-
-La funzione ritorna un valore nullo o positivo in caso di successo e $-1$ in
-caso di errore; il significato degli argomenti della funzione successivi al
-primo, il valore di ritorno in caso di successo, il tipo di errore restituito
-in \var{errno} dipendono dall'operazione eseguita, indicata tramite il primo
-argomento, \param{option}. Questo è un valore intero che identifica
-l'operazione, e deve essere specificato con l'uso di una delle costanti
-predefinite del seguente elenco, che illustra quelle disponibili al
-momento:\footnote{alla stesura di questa sezione, cioè con il kernel 3.2.}
-
-\begin{basedescript}{\desclabelwidth{1.5cm}\desclabelstyle{\nextlinelabel}}
-\item[\constd{PR\_CAPBSET\_READ}] Controlla la disponibilità di una delle
-  \textit{capability} (vedi sez.~\ref{sec:proc_capabilities}). La funzione
-  ritorna 1 se la capacità specificata nell'argomento \param{arg2} (con una
-  delle costanti di tab.~\ref{tab:proc_capabilities}) è presente nel
-  \textit{capabilities bounding set} del processo e zero altrimenti,
-  se \param{arg2} non è un valore valido si avrà un errore di \errval{EINVAL}.
-  Introdotta a partire dal kernel 2.6.25.
-
-\item[\constd{PR\_CAPBSET\_DROP}] Rimuove permanentemente una delle
-  \textit{capabilities} (vedi sez.~\ref{sec:proc_capabilities}) dal processo e
-  da tutti i suoi discendenti. La funzione cancella la capacità specificata
-  nell'argomento \param{arg2} con una delle costanti di
-  tab.~\ref{tab:proc_capabilities} dal \textit{capabilities bounding set} del
-  processo. L'operazione richiede i privilegi di amministratore (la capacità
-  \const{CAP\_SETPCAP}), altrimenti la chiamata fallirà con un errore di
-  \errcode{EPERM}; se il valore di \param{arg2} non è valido o se il supporto
-  per le \textit{file capabilities} non è stato compilato nel kernel la
-  chiamata fallirà con un errore di \errval{EINVAL}. Introdotta a partire dal
-  kernel 2.6.25.
-
-\item[\constd{PR\_SET\_DUMPABLE}] Imposta il flag che determina se la
-  terminazione di un processo a causa di un segnale per il quale è prevista la
-  generazione di un file di \textit{core dump} (vedi
-  sez.~\ref{sec:sig_standard}) lo genera effettivamente. In genere questo flag
-  viene attivato automaticamente, ma per evitare problemi di sicurezza (la
-  generazione di un file da parte di processi privilegiati può essere usata
-  per sovrascriverne altri) viene cancellato quando si mette in esecuzione un
-  programma con i bit \acr{suid} e \acr{sgid} attivi (vedi
-  sez.~\ref{sec:file_special_perm}) o con l'uso delle funzioni per la modifica
-  degli \ids{UID} dei processi (vedi sez.~\ref{sec:proc_setuid}).
-
-  L'operazione è stata introdotta a partire dal kernel 2.3.20, fino al kernel
-  2.6.12 e per i kernel successivi al 2.6.17 era possibile usare solo un
-  valore 0 di \param{arg2} per disattivare il flag ed un valore 1 per
-  attivarlo. Nei kernel dal 2.6.13 al 2.6.17 è stato supportato anche il
-  valore 2, che causava la generazione di un \textit{core dump} leggibile solo
-  dall'amministratore, ma questa funzionalità è stata rimossa per motivi di
-  sicurezza, in quanto consentiva ad un utente normale di creare un file di
-  \textit{core dump} appartenente all'amministratore in directory dove
-  l'utente avrebbe avuto permessi di accesso.
-
-\item[\constd{PR\_GET\_DUMPABLE}] Ottiene come valore di ritorno della funzione
-  lo stato corrente del flag che controlla la effettiva generazione dei
-  \textit{core dump}. Introdotta a partire dal kernel 2.3.20.
-
-\item[\constd{PR\_SET\_ENDIAN}] Imposta la \textit{endianness} del processo
-  chiamante secondo il valore fornito in \param{arg2}. I valori possibili sono
-  sono: \constd{PR\_ENDIAN\_BIG} (\textit{big endian}),
-  \constd{PR\_ENDIAN\_LITTLE} (\textit{little endian}), e
-  \constd{PR\_ENDIAN\_PPC\_LITTLE} (lo pseudo \textit{little endian} del
-  PowerPC). Introdotta a partire dal kernel 2.6.18, solo per architettura
-  PowerPC.
-
-\item[\constd{PR\_GET\_ENDIAN}] Ottiene il valore della \textit{endianness} del
-  processo chiamante, salvato sulla variabile puntata da \param{arg2} che deve
-  essere passata come di tipo ``\ctyp{int *}''. Introdotta a partire dal
-  kernel 2.6.18, solo su PowerPC.
-
-\item[\constd{PR\_SET\_FPEMU}] Imposta i bit di controllo per l'emulazione
-  della virgola mobile su architettura ia64, secondo il valore
-  di \param{arg2}, si deve passare \constd{PR\_FPEMU\_NOPRINT} per emulare in
-  maniera trasparente l'accesso alle operazioni in virgola mobile, o
-  \constd{PR\_FPEMU\_SIGFPE} per non emularle ed inviare il segnale
-  \signal{SIGFPE} (vedi sez.~\ref{sec:sig_prog_error}). Introdotta a partire
-  dal kernel 2.4.18, solo su architettura ia64.
-
-\item[\constd{PR\_GET\_FPEMU}] Ottiene il valore dei flag di controllo
-  dell'emulazione della virgola mobile, salvato all'indirizzo puntato
-  da \param{arg2}, che deve essere di tipo ``\ctyp{int *}''. Introdotta a
-  partire dal kernel 2.4.18, solo su architettura ia64.
-
-\item[\constd{PR\_SET\_FPEXC}] Imposta la modalità delle eccezioni in virgola
-  mobile (\textit{floating-point exception mode}) al valore di \param{arg2}.
-  I valori possibili sono: 
-  \begin{itemize*}
-  \item \constd{PR\_FP\_EXC\_SW\_ENABLE} per usare FPEXC per le eccezioni,
-  \item \constd{PR\_FP\_EXC\_DIV} per la divisione per zero in virgola mobile,
-  \item \constd{PR\_FP\_EXC\_OVF} per gli overflow,
-  \item \constd{PR\_FP\_EXC\_UND} per gli underflow,
-  \item \constd{PR\_FP\_EXC\_RES} per risultati non esatti,
-  \item \constd{PR\_FP\_EXC\_INV} per operazioni invalide,
-  \item \constd{PR\_FP\_EXC\_DISABLED} per disabilitare le eccezioni,
-  \item \constd{PR\_FP\_EXC\_NONRECOV} per usare la modalità di eccezione
-    asincrona non recuperabile,
-  \item \constd{PR\_FP\_EXC\_ASYNC} per usare la modalità di eccezione
-    asincrona recuperabile,
-  \item \constd{PR\_FP\_EXC\_PRECISE} per la modalità precisa di
-    eccezione.\footnote{trattasi di gestione specialistica della gestione
-      delle eccezioni dei calcoli in virgola mobile che, i cui dettagli al
-      momento vanno al di là dello scopo di questo testo.}
-  \end{itemize*}
-Introdotta a partire dal kernel 2.4.21, solo su PowerPC.
-
-\item[\constd{PR\_GET\_FPEXC}] Ottiene il valore della modalità delle eccezioni
-  delle operazioni in virgola mobile, salvata all'indirizzo
-  puntato \param{arg2}, che deve essere di tipo ``\ctyp{int *}''.  Introdotta
-  a partire dal kernel 2.4.21, solo su PowerPC.
-
-\item[\constd{PR\_SET\_KEEPCAPS}] Consente di controllare quali
-  \textit{capabilities} vengono cancellate quando si esegue un cambiamento di
-  \ids{UID} del processo (per i dettagli si veda
-  sez.~\ref{sec:proc_capabilities}, in particolare quanto illustrato a
-  pag.~\pageref{sec:capability-uid-transition}). Un valore nullo (il default)
-  per \param{arg2} comporta che vengano cancellate, il valore 1 che vengano
-  mantenute, questo valore viene sempre cancellato attraverso una \func{exec}.
-  L'uso di questo flag è stato sostituito, a partire dal kernel 2.6.26, dal
-  flag \const{SECURE\_KEEP\_CAPS} dei \textit{securebits} (vedi
-  sez.~\ref{sec:proc_capabilities} e l'uso di \const{PR\_SET\_SECUREBITS} più
-  avanti). Introdotta a partire dal kernel 2.2.18.
-
-\item[\constd{PR\_GET\_KEEPCAPS}] Ottiene come valore di ritorno della funzione
-  il valore del flag di controllo delle \textit{capabilities} impostato con
-  \const{PR\_SET\_KEEPCAPS}. Introdotta a partire dal kernel 2.2.18.
-
-\item[\constd{PR\_SET\_NAME}] Imposta il nome del processo chiamante alla
-  stringa puntata da \param{arg2}, che deve essere di tipo ``\ctyp{char *}''. Il
-  nome può essere lungo al massimo 16 caratteri, e la stringa deve essere
-  terminata da NUL se più corta.  Introdotta a partire dal kernel 2.6.9.
-
-\item[\constd{PR\_GET\_NAME}] Ottiene il nome del processo chiamante nella
-  stringa puntata da \param{arg2}, che deve essere di tipo ``\ctyp{char *}'';
-  si devono allocare per questo almeno 16 byte, e il nome sarà terminato da
-  NUL se più corto. Introdotta a partire dal kernel 2.6.9.
-
-\item[\constd{PR\_SET\_PDEATHSIG}] Consente di richiedere l'emissione di un
-  segnale, che sarà ricevuto dal processo chiamante, in occorrenza della
-  terminazione del proprio processo padre; in sostanza consente di invertire
-  il ruolo di \signal{SIGCHLD}. Il valore di \param{arg2} deve indicare il
-  numero del segnale, o 0 per disabilitare l'emissione. Il valore viene
-  automaticamente cancellato per un processo figlio creato con \func{fork}.
-  Introdotta a partire dal kernel 2.1.57.
-
-\item[\constd{PR\_GET\_PDEATHSIG}] Ottiene il valore dell'eventuale segnale
-  emesso alla terminazione del padre, salvato all'indirizzo
-  puntato \param{arg2}, che deve essere di tipo ``\ctyp{int *}''. Introdotta a
-  partire dal kernel 2.3.15.
-
-\itindbeg{secure~computing~mode}
-\item[\constd{PR\_SET\_SECCOMP}] Imposta il cosiddetto \textit{secure computing
-    mode} per il processo corrente. Prevede come unica possibilità
-  che \param{arg2} sia impostato ad 1. Una volta abilitato il \textit{secure
-    computing mode} il processo potrà utilizzare soltanto un insieme
-  estremamente limitato di \textit{system call}: \func{read}, \func{write},
-  \func{\_exit} e \funcm{sigreturn}. Ogni altra \textit{system call} porterà
-  all'emissione di un \signal{SIGKILL} (vedi sez.~\ref{sec:sig_termination}).
-  Il \textit{secure computing mode} è stato ideato per fornire un supporto per
-  l'esecuzione di codice esterno non fidato e non verificabile a scopo di
-  calcolo;\footnote{lo scopo è quello di poter vendere la capacità di calcolo
-    della proprio macchina ad un qualche servizio di calcolo distribuito senza
-    comprometterne la sicurezza eseguendo codice non sotto il proprio
-    controllo.} in genere i dati vengono letti o scritti grazie ad un socket o
-  una \textit{pipe}, e per evitare problemi di sicurezza non sono possibili
-  altre operazioni se non quelle citate.  Introdotta a partire dal kernel
-  2.6.23, disponibile solo se si è abilitato il supporto nel kernel con
-  \texttt{CONFIG\_SECCOMP}.
-
-% TODO a partire dal kernel 3.5 è stato introdotto la possibilità di usare un
-% terzo argomento se il secondo è SECCOMP_MODE_FILTER, vedi
-% Documentation/prctl/seccomp_filter.txt 
-% vedi anche http://lwn.net/Articles/600250/
-
-% TODO a partire dal kernel 3.17 è stata introdotta la nuova syscall seccomp,
-% vedi http://lwn.net/Articles/600250/ e http://lwn.net/Articles/603321/
-
-\item[\constd{PR\_GET\_SECCOMP}] Ottiene come valore di ritorno della funzione
-  lo stato corrente del \textit{secure computing mode}, al momento attuale la
-  funzione è totalmente inutile in quanto l'unico valore ottenibile è 0, dato
-  che la chiamata di questa funzione in \textit{secure computing mode}
-  comporterebbe l'emissione di \signal{SIGKILL}, è stata comunque definita per
-  eventuali estensioni future. Introdotta a partire dal kernel 2.6.23.
-\itindend{secure~computing~mode}
-
-\item[\constd{PR\_SET\_SECUREBITS}] Imposta i \textit{securebits} per il
-  processo chiamante al valore indicato da \param{arg2}; per i dettagli sul
-  significato dei \textit{securebits} si veda
-  sez.~\ref{sec:proc_capabilities}, ed in particolare i valori di
-  tab.~\ref{tab:securebits_values} e la relativa trattazione. L'operazione
-  richiede i privilegi di amministratore (la capacità \const{CAP\_SETPCAP}),
-  altrimenti la chiamata fallirà con un errore di \errval{EPERM}. Introdotta a
-  partire dal kernel 2.6.26.
-
-\item[\constd{PR\_GET\_SECUREBITS}] Ottiene come valore di ritorno della
-  funzione l'impostazione corrente per i \textit{securebits}. Introdotta a
-  partire dal kernel 2.6.26.
-
-\item[\constd{PR\_SET\_TIMING}] Imposta il metodo di temporizzazione del
-  processo da indicare con il valore di \param{arg2}, attualmente i valori
-  possibili sono due, con \constd{PR\_TIMING\_STATISTICAL} si usa il metodo
-  statistico tradizionale, con \constd{PR\_TIMING\_TIMESTAMP} il più accurato
-  basato su dei \textit{timestamp}, quest'ultimo però non è ancora
-  implementato ed il suo uso comporta la restituzione di un errore di
-  \errval{EINVAL}. Introdotta a partire dal kernel 2.6.0-test4.
-
-\item[\constd{PR\_GET\_TIMING}] Ottiene come valore di ritorno della funzione
-  il metodo di temporizzazione del processo attualmente in uso (uno dei due
-  valori citati per \const{PR\_SET\_TIMING}). Introdotta a partire dal kernel
-  2.6.0-test4.
-
-\item[\constd{PR\_SET\_TSC}] Imposta il flag che indica se il processo
-  chiamante può leggere il registro di processore contenente il contatore dei
-  \textit{timestamp} (TSC, o \textit{Time Stamp Counter}) da indicare con il
-  valore di \param{arg2}. Si deve specificare \constd{PR\_TSC\_ENABLE} per
-  abilitare la lettura o \constd{PR\_TSC\_SIGSEGV} per disabilitarla con la
-  generazione di un segnale di \signal{SIGSEGV} (vedi
-  sez.~\ref{sec:sig_prog_error}). La lettura viene automaticamente
-  disabilitata se si attiva il \textit{secure computing mode} (vedi
-  \const{PR\_SET\_SECCOMP} più avanti).  Introdotta a partire dal kernel
-  2.6.26, solo su x86.
-
-\item[\constd{PR\_GET\_TSC}] Ottiene il valore del flag che controlla la
-  lettura del contattore dei \textit{timestamp}, salvato all'indirizzo
-  puntato \param{arg2}, che deve essere di tipo ``\ctyp{int *}''. Introdotta a
-  partire dal kernel 2.6.26, solo su x86.
-% articoli sul TSC e relativi problemi: http://lwn.net/Articles/209101/,
-% http://blog.cr0.org/2009/05/time-stamp-counter-disabling-oddities.html,
-% http://en.wikipedia.org/wiki/Time_Stamp_Counter 
-
-\item[\constd{PR\_SET\_UNALIGN}] Imposta la modalità di controllo per l'accesso
-  a indirizzi di memoria non allineati, che in varie architetture risultano
-  illegali, da indicare con il valore di \param{arg2}. Si deve specificare il
-  valore \constd{PR\_UNALIGN\_NOPRINT} per ignorare gli accessi non allineati,
-  ed il valore \constd{PR\_UNALIGN\_SIGBUS} per generare un segnale di
-  \signal{SIGBUS} (vedi sez.~\ref{sec:sig_prog_error}) in caso di accesso non
-  allineato.  Introdotta con diverse versioni su diverse architetture.
-
-\item[\const{PR\_GET\_UNALIGN}] Ottiene il valore della modalità di controllo
-  per l'accesso a indirizzi di memoria non allineati, salvato all'indirizzo
-  puntato \param{arg2}, che deve essere di tipo \code{(int *)}. Introdotta con
-  diverse versioni su diverse architetture.
-\item[\const{PR\_MCE\_KILL}] Imposta la politica di gestione degli errori
-  dovuti a corruzione della memoria per problemi hardware. Questo tipo di
-  errori vengono riportati dall'hardware di controllo della RAM e vengono
-  gestiti dal kernel,\footnote{la funzionalità è disponibile solo sulle
-    piattaforme più avanzate che hanno il supporto hardware per questo tipo di
-    controlli.} ma devono essere opportunamente riportati ai processi che
-  usano quella parte di RAM che presenta errori; nel caso specifico questo
-  avviene attraverso l'emissione di un segnale di \signal{SIGBUS} (vedi
-  sez.~\ref{sec:sig_prog_error}).\footnote{in particolare viene anche
-    impostato il valore di \var{si\_code} in \struct{siginfo\_t} a
-    \const{BUS\_MCEERR\_AO}; per il significato di tutto questo si faccia
-    riferimento alla trattazione di sez.~\ref{sec:sig_sigaction}.}
-
-  Il comportamento di default prevede che per tutti i processi si applichi la
-  politica generale di sistema definita nel file
-  \sysctlfiled{vm/memory\_failure\_early\_kill}, ma specificando
-  per \param{arg2} il valore \constd{PR\_MCE\_KILL\_SET} è possibile impostare
-  con il contenuto di \param{arg3} una politica specifica del processo
-  chiamante. Si può tornare alla politica di default del sistema utilizzando
-  invece per \param{arg2} il valore \constd{PR\_MCE\_KILL\_CLEAR}. In tutti i
-  casi, per compatibilità con eventuali estensioni future, tutti i valori
-  degli argomenti non utilizzati devono essere esplicitamente posti a zero,
-  pena il fallimento della chiamata con un errore di \errval{EINVAL}.
-  
-  In caso di impostazione di una politica specifica del processo con
-  \const{PR\_MCE\_KILL\_SET} i valori di \param{arg3} possono essere soltanto
-  due, che corrispondono anche al valore che si trova nell'impostazione
-  generale di sistema di \texttt{memory\_failure\_early\_kill}, con
-  \constd{PR\_MCE\_KILL\_EARLY} si richiede l'emissione immediata di
-  \signal{SIGBUS} non appena viene rilevato un errore, mentre con
-  \constd{PR\_MCE\_KILL\_LATE} il segnale verrà inviato solo quando il processo
-  tenterà un accesso alla memoria corrotta. Questi due valori corrispondono
-  rispettivamente ai valori 1 e 0 di
-  \texttt{memory\_failure\_early\_kill}.\footnote{in sostanza nel primo caso
-    viene immediatamente inviato il segnale a tutti i processi che hanno la
-    memoria corrotta mappata all'interno del loro spazio degli indirizzi, nel
-    secondo caso prima la pagina di memoria viene tolta dallo spazio degli
-    indirizzi di ciascun processo, mentre il segnale viene inviato solo quei
-    processi che tentano di accedervi.} Si può usare per \param{arg3} anche un
-  terzo valore, \constd{PR\_MCE\_KILL\_DEFAULT}, che corrisponde a impostare
-  per il processo la politica di default.\footnote{si presume la politica di
-    default corrente, in modo da non essere influenzati da un eventuale
-    successivo cambiamento della stessa.} Introdotta a partire dal kernel
-  2.6.32.
-\item[\constd{PR\_MCE\_KILL\_GET}] Ottiene come valore di ritorno della
-  funzione la politica di gestione degli errori dovuti a corruzione della
-  memoria. Tutti gli argomenti non utilizzati (al momento tutti) devono essere
-  nulli pena la ricezione di un errore di \errval{EINVAL}. Introdotta a
-  partire dal kernel 2.6.32.
-\itindbeg{child~reaper}
-\item[\constd{PR\_SET\_CHILD\_SUBREAPER}] Se \param{arg2} è diverso da zero
-  imposta l'attributo di \textit{child reaper} per il processo, se nullo lo
-  cancella. Lo stato di \textit{child reaper} è una funzionalità, introdotta
-  con il kernel 3.4, che consente di far svolgere al processo che ha questo
-  attributo il ruolo di ``\textsl{genitore adottivo}'' per tutti i processi
-  suoi ``\textsl{discendenti}'' che diventano orfani, in questo modo il
-  processo potrà ricevere gli stati di terminazione alla loro uscita,
-  sostituendo in questo ruolo \cmd{init} (si ricordi quanto illustrato in
-  sez.~\ref{sec:proc_termination}). Il meccanismo è stato introdotto ad uso
-  dei programmi di gestione dei servizi, per consentire loro di ricevere gli
-  stati di terminazione di tutti i processi che lanciano, anche se questi
-  eseguono una doppia \func{fork}; nel comportamento ordinario infatti questi
-  verrebbero adottati da \cmd{init} ed il programma che li ha lanciati non
-  sarebbe più in grado di riceverne lo stato di terminazione. Se un processo
-  con lo stato di \textit{child reaper} termina prima dei suoi discendenti,
-  svolgerà questo ruolo il più prossimo antenato ad avere lo stato di
-  \textit{child reaper}, 
-\item[\constd{PR\_GET\_CHILD\_SUBREAPER}] Ottiene l'impostazione relativa allo
-  lo stato di \textit{child reaper} del processo chiamante, salvata come
-  \textit{value result} all'indirizzo puntato da \param{arg2} (da indicare
-  come di tipo \code{int *}). Il valore viene letto come valore logico, se
-  diverso da 0 lo stato di \textit{child reaper} è attivo altrimenti è
-  disattivo. Introdotta a partire dal kernel 3.4.
-\itindend{child~reaper}
-
-
-% TODO documentare PR_SET_SECCOMP introdotto a partire dal kernel 3.5. Vedi:
-% * Documentation/prctl/seccomp_filter.txt
-% * http://lwn.net/Articles/475043/
-
-% TODO documentare PR_MPX_INIT e PR_MPX_RELEASE, vedi
-% http://lwn.net/Articles/582712/ 
-
-% TODO documentare PR_SET_MM_MAP aggiunta con il kernel 3.18, per impostare i
-% parametri di base del layout dello spazio di indirizzi di un processo (area
-% codice e dati, stack, brack pointer ecc. vedi
-% http://git.kernel.org/linus/f606b77f1a9e362451aca8f81d8f36a3a112139e 
-
-
-\label{sec:prctl_operation}
-\end{basedescript}
-
-
-\subsection{La \textit{system call} \func{clone}}
-\label{sec:process_clone}
-
-La funzione tradizionale con cui creare un nuovo processo in un sistema
-Unix-like, come illustrato in sez.~\ref{sec:proc_fork}, è \func{fork}, ma con
-l'introduzione del supporto del kernel per i \textit{thread} (vedi
-cap.~\ref{cha:threads}), si è avuta la necessità di una interfaccia che
-consentisse un maggiore controllo sulla modalità con cui vengono creati nuovi
-processi, che poi è stata utilizzata anche per fornire supporto per le
-tecnologie di virtualizzazione dei processi (i cosiddetti \textit{container}).
-
-Per questo l'interfaccia per la creazione di un nuovo processo è stata
-delegata ad una nuova \textit{system call}, \funcm{sys\_clone}, che consente
-di reimplementare anche la tradizionale \func{fork}. In realtà in questo caso
-più che di nuovi processi si può parlare della creazioni di nuovi
-``\textit{task}'' del kernel che possono assumere la veste sia di un processo
-classico isolato dagli altri come quelli trattati finora, che di un
-\textit{thread} in cui la memoria viene condivisa fra il processo chiamante ed
-il nuovo processo creato, come quelli che vedremo in
-sez.~\ref{sec:linux_thread}. Per evitare confusione fra \textit{thread} e
-processi ordinari, abbiamo deciso di usare la nomenclatura \textit{task} per
-indicare la unità di esecuzione generica messa a disposizione del kernel che
-\texttt{sys\_clone} permette di creare.
-
-\itindbeg{namespace}
-\itindbeg{container}
-
-Oltre a questo la funzione consente, ad uso delle nuove funzionalità di
-virtualizzazione dei processi, di creare nuovi ``\textit{namespace}'' per una
-serie di proprietà generali (come l'elenco dei \ids{PID}, l'albero dei file, i
-\textit{mount point}, la rete, il sistema di IPC, ecc.). L'uso dei
-``\textit{namespace}'' consente creare gruppi di processi che vedono le
-suddette proprietà in maniera indipendente fra loro. I processi di ciascun
-gruppo vengono così eseguiti come in una sorta di spazio separato da quello
-degli altri gruppi, che costituisce poi quello che viene chiamato un
-\textit{container}.
-
-\itindend{namespace}
-\itindend{container}
-
-La \textit{system call} richiede soltanto due argomenti: il
-primo, \param{flags}, consente di controllare le modalità di creazione del
-nuovo \textit{task}, il secondo, \param{child\_stack}, imposta l'indirizzo
-dello \textit{stack} per il nuovo \textit{task}, e deve essere indicato quando
-si intende creare un \textit{thread}. L'esecuzione del programma creato da
-\func{sys\_clone} riprende, come per \func{fork}, da dopo l'esecuzione della
-stessa.
-
-La necessità di avere uno \textit{stack} alternativo c'è solo quando si
-intende creare un \textit{thread}, in tal caso infatti il nuovo \textit{task}
-vede esattamente la stessa memoria del \textit{task}
-``\textsl{padre}'',\footnote{in questo caso per padre si intende semplicemente
-  il \textit{task} che ha eseguito \func{sys\_clone} rispetto al \textit{task}
-  da essa creato, senza nessuna delle implicazioni che il concetto ha per i
-  processi.} e nella sua esecuzione alla prima chiamata di una funzione
-andrebbe a scrivere sullo \textit{stack} usato anche dal padre (si ricordi
-quanto visto in sez.~\ref{sec:proc_mem_layout} riguardo all'uso dello
-\textit{stack}).
-
-Per evitare di doversi garantire contro la evidente possibilità di
-\textit{race condition} che questa situazione comporta (vedi
-sez.~\ref{sec:proc_race_cond} per una spiegazione della problematica) è
-necessario che il chiamante allochi preventivamente un'area di memoria.  In
-genere lo si fa con una \func{malloc} che allochi un buffer che la funzione
-imposterà come \textit{stack} del nuovo processo, avendo ovviamente cura di
-non utilizzarlo direttamente nel processo chiamante.
-
-In questo modo i due \textit{task} avranno degli \textit{stack} indipendenti e
-non si dovranno affrontare problematiche di \textit{race condition}.  Si tenga
-presente inoltre che in molte architetture di processore lo \textit{stack}
-cresce verso il basso, pertanto in tal caso non si dovrà specificare
-per \param{child\_stack} il puntatore restituito da \func{malloc}, ma un
-puntatore alla fine del buffer da essa allocato.
-
-Dato che tutto ciò è necessario solo per i \textit{thread} che condividono la
-memoria, la \textit{system call}, a differenza della funzione di libreria che
-vedremo a breve, consente anche di passare per \param{child\_stack} il valore
-\val{NULL}, che non imposta un nuovo \textit{stack}. Se infatti si crea un
-processo, questo ottiene un suo nuovo spazio degli indirizzi (è sottinteso
-cioè che non si stia usando il flag \const{CLONE\_VM} che vedremo a breve) ed
-in questo caso si applica la semantica del \textit{copy on write} illustrata
-in sez.~\ref{sec:proc_fork}, per cui le pagine dello \textit{stack} verranno
-automaticamente copiate come le altre e il nuovo processo avrà un suo
-\textit{stack} totalmente indipendente da quello del padre.
-
-Dato che l'uso principale della nuova \textit{system call} è quello relativo
-alla creazione dei \textit{thread}, la \acr{glibc} definisce una funzione di
-libreria con una sintassi diversa, orientata a questo scopo, e la
-\textit{system call} resta accessibile solo se invocata esplicitamente come
-visto in sez.~\ref{sec:proc_syscall}.\footnote{ed inoltre per questa
-  \textit{system call} non è disponibile la chiamata veloce con
-  \texttt{vsyscall}.} La funzione di libreria si chiama semplicemente
-\funcd{clone} ed il suo prototipo è:
-
-\begin{funcproto}{ 
-\fhead{sched.h}
-\fdecl{int clone(int (*fn)(void *), void *child\_stack, int flags, void *arg,
-  ...  \\
-\phantom{int clone(}/* pid\_t *ptid, struct user\_desc *tls, pid\_t *ctid */ )}
-\fdesc{Crea un nuovo processo o \textit{thread}.} 
-}
-{La funzione ritorna il \textit{Thread ID} assegnato al nuovo processo in caso
-  di successo e $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei
-  valori: 
-\begin{errlist}
-    \item[\errcode{EAGAIN}] sono già in esecuzione troppi processi.
-    \item[\errcode{EINVAL}] si è usata una combinazione non valida di flag o
-      un valore nullo per \param{child\_stack}.
-    \item[\errcode{ENOMEM}] non c'è memoria sufficiente per creare una nuova
-      \texttt{task\_struct} o per copiare le parti del contesto del chiamante
-      necessarie al nuovo \textit{task}.
-    \item[\errcode{EPERM}] non si hanno i privilegi di amministratore
-      richiesti dai flag indicati.
-\end{errlist}}
-\end{funcproto}
-
-% NOTE: una pagina con la descrizione degli argomenti:
-% * http://www.lindevdoc.org/wiki/Clone 
-
-La funzione prende come primo argomento \param{fn} il puntatore alla funzione
-che verrà messa in esecuzione nel nuovo processo, che può avere un unico
-argomento di tipo puntatore a \ctyp{void}, il cui valore viene passato dal
-terzo argomento \param{arg}. Per quanto il precedente prototipo possa
-intimidire nella sua espressione, in realtà l'uso è molto semplice basterà
-definire una qualunque funzione \param{fn} che restituisce un intero ed ha
-come argomento un puntatore a \ctyp{void}, e \code{fn(arg)} sarà eseguita in
-un nuovo processo.
-
-Il nuovo processo resterà in esecuzione fintanto che la funzione \param{fn}
-non ritorna, o esegue \func{exit} o viene terminata da un segnale. Il valore
-di ritorno della funzione (o quello specificato con \func{exit}) verrà
-utilizzato come stato di uscita della funzione. I tre
-argomenti \param{ptid}, \param{tls} e \param{ctid} sono opzionali e sono
-presenti solo a partire dal kernel 2.6 e sono stati aggiunti come supporto per
-le funzioni di gestione dei \textit{thread} (la \textit{Native Thread Posix
-  Library}, vedi sez.~\ref{sec:linux_ntpl}) nella \acr{glibc}, essi vengono
-utilizzati soltanto se si sono specificati rispettivamente i flag
-\const{CLONE\_PARENT\_SETTID}, \const{CLONE\_SETTLS} e
-\const{CLONE\_CHILD\_SETTID}. 
-
-La funzione ritorna un l'identificatore del nuovo \textit{task}, denominato
-\texttt{Thread ID} (da qui in avanti \ids{TID}) il cui significato è analogo
-al \ids{PID} dei normali processi e che a questo corrisponde qualora si crei
-un processo ordinario e non un \textit{thread}.
-
-Il comportamento di \func{clone}, che si riflette sulle caratteristiche del
-nuovo processo da essa creato, è controllato principalmente
-dall'argomento \param{flags}, che deve essere specificato come maschera
-binaria, ottenuta con un OR aritmetico di una delle costanti del seguente
-elenco, che illustra quelle attualmente disponibili:\footnote{si fa
-  riferimento al momento della stesura di questa sezione, cioè con il kernel
-  3.2.}
-
-\begin{basedescript}{\desclabelwidth{1.5 cm}\desclabelstyle{\nextlinelabel}}
-
-\item[\constd{CLONE\_CHILD\_CLEARTID}] cancella il valore del \textit{thread
-    ID} posto all'indirizzo dato dall'argomento \param{ctid}, eseguendo un
-  riattivazione del \textit{futex} (vedi sez.~\ref{sec:xxx_futex}) a
-  quell'indirizzo. Questo flag viene utilizzato dalla librerie di gestione dei
-  \textit{thread} ed è presente dal kernel 2.5.49.
-
-\item[\constd{CLONE\_CHILD\_SETTID}] scrive il \ids{TID} del \textit{thread}
-  figlio all'indirizzo dato dall'argomento \param{ctid}. Questo flag viene
-  utilizzato dalla librerie di gestione dei \textit{thread} ed è presente dal
-  kernel 2.5.49.
-
-\item[\constd{CLONE\_FILES}] se impostato il nuovo processo condividerà con il
-  padre la \textit{file descriptor table} (vedi sez.~\ref{sec:file_fd}),
-  questo significa che ogni \textit{file descriptor} aperto da un processo
-  verrà visto anche dall'altro e che ogni chiusura o cambiamento dei
-  \textit{file descriptor flag} di un \textit{file descriptor} verrà per
-  entrambi.
-
-  Se non viene impostato il processo figlio eredita una copia della
-  \textit{file descriptor table} del padre e vale la semantica classica della
-  gestione dei \textit{file descriptor}, che costituisce il comportamento
-  ordinario di un sistema unix-like e che illustreremo in dettaglio in
-  sez.~\ref{sec:file_shared_access}.
-
-\item[\constd{CLONE\_FS}] se questo flag viene impostato il nuovo processo
-  condividerà con il padre le informazioni relative all'albero dei file, ed in
-  particolare avrà la stessa radice (vedi sez.~\ref{sec:file_chroot}), la
-  stessa directory di lavoro (vedi sez.~\ref{sec:file_work_dir}) e la stessa
-  \textit{umask} (sez.~\ref{sec:file_perm_management}). Una modifica di una
-  qualunque di queste caratteristiche in un processo, avrà effetto anche
-  sull'altro. Se assente il nuovo processo riceverà una copia delle precedenti
-  informazioni, che saranno così indipendenti per i due processi, come avviene
-  nel comportamento ordinario di un sistema unix-like.
-
-\item[\constd{CLONE\_IO}] se questo flag viene impostato il nuovo il nuovo
-  processo condividerà con il padre il contesto dell'I/O, altrimenti, come
-  come avviene nel comportamento ordinario con una \func{fork} otterrà un suo
-  contesto dell'I/O. 
-
-  Il contesto dell'I/O viene usato dagli \textit{scheduler} di I/O (visti in
-  sez.~\ref{sec:io_priority}) e se questo è lo stesso per diversi processi
-  questi vengono trattati come se fossero lo stesso, condividendo il tempo per
-  l'accesso al disco, e possono interscambiarsi nell'accesso a disco. L'uso di
-  questo flag consente, quando più \textit{thread} eseguono dell'I/O per conto
-  dello stesso processo (ad esempio con le funzioni di I/O asincrono di
-  sez.~\ref{sec:file_asyncronous_io}), migliori prestazioni.
-
-%TODO : tutti i CLONE_NEW* attengono ai namespace, ed è meglio metterli nella
-%relativa sezione da creare a parte
-
-% \item[\constd{CLONE\_NEWIPC}] è uno dei flag ad uso dei \textit{container},
-%   introdotto con il kernel 2.6.19. L'uso di questo flag crea per il nuovo
-%   processo un nuovo \textit{namespace} per il sistema di IPC, sia per quello
-%   di SysV (vedi sez.~\ref{sec:ipc_sysv}) che, dal kernel 2.6.30, per le code
-%   di messaggi POSIX (vedi sez.~\ref{sec:ipc_posix_mq}); si applica cioè a
-%   tutti quegli oggetti che non vegono identificati con un \textit{pathname}
-%   sull'albero dei file.
-
-%   L'uso di questo flag richiede privilegi di amministratore (più precisamente
-%   la capacità \const{CAP\_SYS\_ADMIN}) e non può essere usato in combinazione
-%   con \const{CLONE\_SYSVSEM}. 
-
-% \item[\constd{CLONE\_NEWNET}]
-% \item[\constd{CLONE\_NEWNS}]
-% \item[\constd{CLONE\_NEWPID}]
-% \item[\constd{CLONE\_NEWUTS}]
-
-\item[\constd{CLONE\_PARENT}]
-\item[\constd{CLONE\_PARENT\_SETTID}]
-\item[\constd{CLONE\_PID}]
-
-\item[\constd{CLONE\_PTRACE}] se questo flag viene impostato ed il processo
-  chiamante viene tracciato (vedi sez.~\ref{sec:process_ptrace}) anche il
-  figlio viene tracciato. 
-
-\item[\constd{CLONE\_SETTLS}]
-\item[\constd{CLONE\_SIGHAND}]
-\item[\constd{CLONE\_STOPPED}]
-\item[\constd{CLONE\_SYSVSEM}]
-\item[\constd{CLONE\_THREAD}]
-
-\item[\constd{CLONE\_UNTRACED}] se questo flag viene impostato un processo non
-  può più forzare \const{CLONE\_PTRACE} su questo processo.
-
-\item[\constd{CLONE\_VFORK}] se questo flag viene impostato il chiamante viene
-  fermato fintato che il figlio appena creato non rilascia la sua memoria
-  virtuale con una chiamata a \func{exec} o \func{exit}, viene quindi
-  replicato il comportamento di \func{vfork}.
-
-\item[\constd{CLONE\_VM}] se questo flag viene impostato il nuovo processo
-  condividerà con il padre la stessa memoria virtuale, e le scritture in
-  memoria fatte da uno qualunque dei processi saranno visibili dall'altro,
-  così come ogni mappatura in memoria (vedi sez.~\ref{sec:file_memory_map}). 
-
-  Se non viene impostato il processo figlio otterrà una copia dello spazio
-  degli indirizzi e si otterrà il comportamento ordinario di un processo di un
-  sistema unix-like creato con la funzione \func{fork}.
-\end{basedescript}
-
-
-%TODO sezione separata sui namespace 
-
-%TODO trattare unshare, vedi anche http://lwn.net/Articles/532748/
-
-%TODO: trattare la funzione setns e i namespace file descriptors (vedi
-% http://lwn.net/Articles/407495/) introdotti con il kernel 3.0, altre
-% informazioni su setns qui: http://lwn.net/Articles/532748/
-% http://lwn.net/Articles/531498/
-
-
-%TODO trattare kcmp aggiunta con il kernel 3.5, vedi
-% https://lwn.net/Articles/478111/
-
-%\subsection{La funzione \func{ptrace}}
-%\label{sec:process_ptrace}
-
-%Da fare
-
-% TODO: trattare PTRACE_SEIZE, aggiunta con il kernel 3.1
-% TODO: trattare PTRACE_O_EXITKILL, aggiunta con il kernel 3.8 (vedi
-% http://lwn.net/Articles/529060/) 
-% TODO: trattare PTRACE_GETSIGMASK e PTRACE_SETSIGMASK introdotte con il
-% kernel 3.11
-% TODO: trattare PTRACE_O_SUSPEND_SECCOMP, aggiunta con il kernel 4.3, vedi
-% http://lwn.net/Articles/656675/ 
-
-%\subsection{La gestione delle operazioni in virgola mobile}
-%\label{sec:process_fenv}
-
-%Da fare.
-
-% TODO eccezioni ed arrotondamenti per la matematica in virgola mobile 
-% consultare la manpage di fenv, math_error, fpclassify, matherr, isgreater,
-% isnan, nan, INFINITY
-
-
-%\subsection{L'accesso alle porte di I/O}
-%\label{sec:process_io_port}
-
-%
-% TODO l'I/O sulle porte di I/O 
-% consultare le manpage di ioperm, iopl e outb
-% non c'entra nulla qui, va trovato un altro posto (altri meccanismi di I/O in
-% fileintro ?)
-
-%Da fare
-
-
-%\subsection{La gestione di architetture a nodi multipli}
-%\label{sec:process_NUMA}
-
-% TODO trattare i cpuset, che attiene anche a NUMA, e che possono essere usati
-% per associare l'uso di gruppi di processori a gruppi di processi (vedi
-% manpage omonima)
-% TODO trattare getcpu, che attiene anche a NUMA, mettere qui anche
-% sched_getcpu, che potrebbe essere indipendente ma richiama getcpu
-
-%TODO trattare le funzionalità per il NUMA
-% vedi man numa e, mbind, get_mempolicy, set_mempolicy, 
-% le pagine di manuale relative
-% vedere anche dove metterle...
-
-% \subsection{La gestione dei moduli}
-% \label{sec:kernel_modules}
-
-% da fare
-
-%TODO trattare init_module e finit_module (quest'ultima introdotta con il
-%kernel 3.8)
-
-%%%% Altre cose di cui non è chiara la collocazione:
-
-%TODO trattare membarrier, introdotta con il kernel 4.3
-% vedi http://lwn.net/Articles/369567/ http://lwn.net/Articles/369640/
-% http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=5b25b13ab08f616efd566347d809b4ece54570d1 
-
-\section{Problematiche di programmazione multitasking}
+\section{Problematiche di programmazione \textit{multitasking}}
 \label{sec:proc_multi_prog}
 
 Benché i processi siano strutturati in modo da apparire il più possibile come
-indipendenti l'uno dall'altro, nella programmazione in un sistema multitasking
-occorre tenere conto di una serie di problematiche che normalmente non
-esistono quando si ha a che fare con un sistema in cui viene eseguito un solo
-programma alla volta. 
+indipendenti l'uno dall'altro, nella programmazione in un sistema
+\textit{multitasking} occorre tenere conto di una serie di problematiche che
+normalmente non esistono quando si ha a che fare con un sistema in cui viene
+eseguito un solo programma alla volta.
 
 Per questo motivo, essendo questo argomento di carattere generale, ci è parso
 opportuno introdurre sinteticamente queste problematiche, che ritroveremo a
@@ -4328,10 +3685,10 @@ quando si ha la certezza che, qualora essa venga effettuata, tutti i passaggi
 che devono essere compiuti per realizzarla verranno eseguiti senza possibilità
 di interruzione in una fase intermedia.
 
-In un ambiente multitasking il concetto è essenziale, dato che un processo può
-essere interrotto in qualunque momento dal kernel che mette in esecuzione un
-altro processo o dalla ricezione di un segnale. Occorre pertanto essere
-accorti nei confronti delle possibili \textit{race condition} (vedi
+In un ambiente \textit{multitasking} il concetto è essenziale, dato che un
+processo può essere interrotto in qualunque momento dal kernel che mette in
+esecuzione un altro processo o dalla ricezione di un segnale. Occorre pertanto
+essere accorti nei confronti delle possibili \textit{race condition} (vedi
 sez.~\ref{sec:proc_race_cond}) derivanti da operazioni interrotte in una fase
 in cui non erano ancora state completate.
 
@@ -4385,13 +3742,13 @@ passi, e può essere compromessa dall'intervento di un altro processo che
 accede alla stessa risorsa quando ancora non tutti i passi sono stati
 completati.
 
-Dato che in un sistema multitasking ogni processo può essere interrotto in
-qualunque momento per farne subentrare un altro in esecuzione, niente può
-assicurare un preciso ordine di esecuzione fra processi diversi o che una
-sezione di un programma possa essere eseguita senza interruzioni da parte di
-altri. Queste situazioni comportano pertanto errori estremamente subdoli e
-difficili da tracciare, in quanto nella maggior parte dei casi tutto
-funzionerà regolarmente, e solo occasionalmente si avranno degli errori. 
+Dato che in un sistema \textit{multitasking} ogni processo può essere
+interrotto in qualunque momento per farne subentrare un altro in esecuzione,
+niente può assicurare un preciso ordine di esecuzione fra processi diversi o
+che una sezione di un programma possa essere eseguita senza interruzioni da
+parte di altri. Queste situazioni comportano pertanto errori estremamente
+subdoli e difficili da tracciare, in quanto nella maggior parte dei casi tutto
+funzionerà regolarmente, e solo occasionalmente si avranno degli errori.
 
 Per questo occorre essere ben consapevoli di queste problematiche, e del fatto
 che l'unico modo per evitarle è quello di riconoscerle come tali e prendere
@@ -4417,7 +3774,7 @@ essere soggetto a \textit{race condition} dato potrebbe essere interrotto in
 qualunque momento da un altro \textit{thread}. In tal caso occorre pianificare
 con estrema attenzione l'uso delle variabili ed utilizzare i vari meccanismi
 di sincronizzazione che anche in questo caso sono disponibili (torneremo su
-queste problematiche di questo tipo in cap.~\ref{sez:thread_xxx})
+queste problematiche di questo tipo in cap.~\ref{sec:pthread_sync})
 
 \itindbeg{deadlock} 
 
@@ -4456,7 +3813,7 @@ Si dice \textsl{rientrante} una funzione che può essere interrotta in
 qualunque punto della sua esecuzione ed essere chiamata una seconda volta da
 un altro \textit{thread} di esecuzione senza che questo comporti nessun
 problema nell'esecuzione della stessa. La problematica è comune nella
-programmazione \textit{multi-thread}, ma si hanno gli stessi problemi quando
+programmazione con i \textit{thread}, ma si hanno gli stessi problemi quando
 si vogliono chiamare delle funzioni all'interno dei gestori dei segnali.
 
 Fintanto che una funzione opera soltanto con le variabili locali è rientrante;
@@ -4490,7 +3847,7 @@ varie funzioni di libreria, che sono identificate aggiungendo il suffisso
 % LocalWords:  nell'header scheduler system interrupt timer HZ asm Hertz clock
 % LocalWords:  l'alpha tick fork wait waitpid exit exec image glibc int pgid ps
 % LocalWords:  sid thread Ingo Molnar ppid getpid getppid sys unistd LD threads
-% LocalWords:  void tempnam pathname sibling cap errno EAGAIN ENOMEM
+% LocalWords:  void tempnam pathname sibling cap errno EAGAIN ENOMEM context
 % LocalWords:  stack read only copy write tab client spawn forktest sleep PATH
 % LocalWords:  source LIBRARY scheduling race condition printf descriptor dup
 % LocalWords:  close group session tms lock vfork execve BSD stream main abort
@@ -4500,7 +3857,7 @@ varie funzioni di libreria, che sono identificate aggiungendo il suffisso
 % LocalWords:  filesystem noexec EPERM suid sgid root nosuid ENOEXEC ENOENT ELF
 % LocalWords:  ETXTBSY EINVAL ELIBBAD BIG EFAULT EIO ENAMETOOLONG ELOOP ENOTDIR
 % LocalWords:  ENFILE EMFILE argc execl path execv execle execlp execvp vector
-% LocalWords:  list environ NULL umask utime cutime ustime fcntl linker
+% LocalWords:  list environ NULL umask utime cutime ustime fcntl linker Posix
 % LocalWords:  opendir libc interpreter FreeBSD capabilities mandatory access
 % LocalWords:  control MAC SELinux security modules LSM superuser uid gid saved
 % LocalWords:  effective euid egid dell' fsuid fsgid getuid geteuid getgid SVr
@@ -4514,7 +3871,7 @@ varie funzioni di libreria, che sono identificate aggiungendo il suffisso
 % LocalWords:  shmctl ioperm iopl chroot ptrace accounting swap reboot hangup
 % LocalWords:  vhangup mknod lease permitted inherited inheritable bounding AND
 % LocalWords:  capability capget capset header ESRCH undef version obj clear PT
-% LocalWords:  pag ssize length proc capgetp preemptive cache runnable  contest
+% LocalWords:  pag ssize length proc capgetp preemptive cache runnable idled
 % LocalWords:  SIGSTOP soft slice nice niceness counter which SC switch side
 % LocalWords:  getpriority who setpriority RTLinux RTAI Adeos fault FIFO  COUNT
 % LocalWords:  yield Robin setscheduler policy param OTHER priority setparam to
@@ -4546,6 +3903,8 @@ varie funzioni di libreria, che sono identificate aggiungendo il suffisso
 % LocalWords:  NEWUTS SETTLS SIGHAND SYSVSEM UNTRACED tls ctid CLEARTID panic
 % LocalWords:  loader EISDIR SIGTRAP uninterrutible killable EQUAL sizeof XOR
 % LocalWords:  destset srcset ALLOC num cpus setsize emacs pager getty TID
+%  LocalWords:  reaper SUBREAPER Library futex klogd named rpc statd NPROC
+%  LocalWords:  EACCESS EBADF EBUSY ENXIO EOPNOTSUPP DISABLE tracer Yama
  
 %%% Local Variables: 
 %%% mode: latex