Versione finale del client ECHO su TCP, con esempio di uso della funzione
[gapil.git] / process.tex
index 5a3e630b84e9030f61e7ba60d8707c0d4fa73f10..aeacae83df46fd91a9f3c6a104236432b3f48ca5 100644 (file)
@@ -1,6 +1,6 @@
 %% process.tex
 %%
-%% Copyright (C) 2000-2002 Simone Piccardi.  Permission is granted to
+%% Copyright (C) 2000-2003 Simone Piccardi.  Permission is granted to
 %% copy, distribute and/or modify this document under the terms of the GNU Free
 %% Documentation License, Version 1.1 or any later version published by the
 %% Free Software Foundation; with the Invariant Sections being "Prefazione",
@@ -46,22 +46,20 @@ avvio, usando il programma \cmd{ld-linux.so}.  Questo programma prima carica
 le librerie condivise che servono al programma, poi effettua il link dinamico
 del codice e alla fine lo esegue. Infatti, a meno di non aver specificato il
 flag \texttt{-static} durante la compilazione, tutti i programmi in Linux sono
-incompleti e necessitano di essere linkati alle librerie condivise quando
-vengono avviati.  La procedura è controllata da alcune variabili di ambiente e
-dal contenuto di \file{/etc/ld.so.conf}. I dettagli sono riportati nella man
-page di \cmd{ld.so}.
+incompleti e necessitano di essere \textit{linkati} alle librerie condivise
+quando vengono avviati.  La procedura è controllata da alcune variabili di
+ambiente e dal contenuto di \file{/etc/ld.so.conf}. I dettagli sono riportati
+nella man page di \cmd{ld.so}.
 
 Il sistema fa partire qualunque programma chiamando la funzione \func{main};
 sta al programmatore chiamare così la funzione principale del programma da cui
 si suppone iniziare l'esecuzione; in ogni caso senza questa funzione lo stesso
-linker darebbe luogo ad errori.
+\textit{linker} darebbe luogo ad errori.
 
 Lo standard ISO C specifica che la funzione \func{main} può non avere 
 argomenti o prendere due argomenti che rappresentano gli argomenti passati da
 linea di comando, in sostanza un prototipo che va sempre bene è il seguente:
-\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-    int main (int argc, char *argv[])
-\end{lstlisting}
+\includecodesnip{listati/main_def.c}
 
 In realtà nei sistemi Unix esiste un'altro modo per definire la funzione
 \func{main}, che prevede la presenza di un terzo parametro, \code{char
@@ -80,10 +78,10 @@ automaticamente quando \func{main} ritorna).  Una forma alternativa 
 di chiamare direttamente la system call \func{\_exit}, che restituisce il
 controllo direttamente alla routine di conclusione dei processi del kernel.
 
-Oltre alla conclusione ``normale'' esiste anche la possibilità di una
-conclusione ``anomala'' del programma a causa della ricezione di un segnale
-(si veda \capref{cha:signals}) o della chiamata alla funzione \func{abort};
-torneremo su questo in \secref{sec:proc_termination}.
+Oltre alla conclusione ``\textsl{normale}'' esiste anche la possibilità di una
+conclusione ``\textsl{anomala}'' del programma a causa della ricezione di un
+segnale (si veda \capref{cha:signals}) o della chiamata alla funzione
+\func{abort}; torneremo su questo in \secref{sec:proc_termination}.
 
 Il valore di ritorno della funzione \func{main}, o quello usato nelle chiamate
 ad \func{exit} e \func{\_exit}, viene chiamato \textsl{stato di uscita} (o
@@ -124,9 +122,9 @@ valori di tipo \ctyp{int} 0 e 1.
 \subsection{Le funzioni \func{exit} e \func{\_exit}}
 \label{sec:proc_exit}
 
-Come accennato le funzioni usate per effettuare un'uscita ``normale'' da un
-programma sono due, la prima è la funzione \funcd{exit}, che è definita dallo
-standard ANSI C ed il cui prototipo è:
+Come accennato le funzioni usate per effettuare un'uscita ``\textit{normale}''
+da un programma sono due, la prima è la funzione \funcd{exit}, che è definita
+dallo standard ANSI C ed il cui prototipo è:
 \begin{prototype}{stdlib.h}{void exit(int status)}
   Causa la conclusione ordinaria del programma.
 
@@ -358,9 +356,7 @@ seguenti segmenti:
   La prima parte è il segmento dei dati inizializzati, che contiene le
   variabili il cui valore è stato assegnato esplicitamente. Ad esempio
   se si definisce:
-  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-    double pi = 3.14;
-  \end{lstlisting}
+\includecodesnip{listati/pi.c}
   questo valore sarà immagazzinato in questo segmento. La memoria di questo
   segmento viene preallocata all'avvio del programma e inizializzata ai valori
   specificati.
@@ -368,9 +364,7 @@ seguenti segmenti:
   La seconda parte è il segmento dei dati non inizializzati, che contiene le
   variabili il cui valore non è stato assegnato esplicitamente. Ad esempio se
   si definisce:
-  \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-    int vect[100];
-  \end{lstlisting}
+\includecodesnip{listati/vect.c}
   questo vettore sarà immagazzinato in questo segmento. Anch'esso viene
   allocato all'avvio, e tutte le variabili vengono inizializzate a zero (ed i
   puntatori a \val{NULL}).\footnote{si ricordi che questo vale solo per le
@@ -392,10 +386,10 @@ seguenti segmenti:
   del chiamante (tipo il contenuto di alcuni registri della CPU). Poi la
   funzione chiamata alloca qui lo spazio per le sue variabili locali: in
   questo modo le funzioni possono essere chiamate ricorsivamente. Al ritorno
-  della funzione lo spazio è automaticamente rilasciato e ``ripulito''. La
-  pulizia in C e C++ viene fatta dal chiamante.\footnote{a meno che non sia
-    stato specificato l'utilizzo di una calling convention diversa da quella
-    standard.}
+  della funzione lo spazio è automaticamente rilasciato e
+  ``\textsl{ripulito}''. La pulizia in C e C++ viene fatta dal
+  chiamante.\footnote{a meno che non sia stato specificato l'utilizzo di una
+    calling convention diversa da quella standard.}
   
   La dimensione di questo segmento aumenta seguendo la crescita dello stack
   del programma, ma non viene ridotta quando quest'ultimo si restringe.
@@ -531,7 +525,7 @@ in ingresso; per questo si dovr
 ad un adeguato aggiornamento di tutti gli altri puntatori all'interno del
 blocco di dati ridimensionato.
 
-Un errore abbastanza frequente (specie se si ha a che fare con array di
+Un errore abbastanza frequente (specie se si ha a che fare con vettori di
 puntatori) è quello di chiamare \func{free} più di una volta sullo stesso
 puntatore; per evitare questo problema una soluzione di ripiego è quella di
 assegnare sempre a \val{NULL} ogni puntatore liberato con \func{free}, dato
@@ -541,7 +535,7 @@ operazione.
 Le \acr{glibc} hanno un'implementazione delle routine di allocazione che è
 controllabile dall'utente attraverso alcune variabili di ambiente, in
 particolare diventa possibile tracciare questo tipo di errori usando la
-variabile d'ambiente \val{MALLOC\_CHECK\_} che quando viene definita mette in
+variabile dambiente \val{MALLOC\_CHECK\_} che quando viene definita mette in
 uso una versione meno efficiente delle funzioni suddette, che però è più
 tollerante nei confronti di piccoli errori come quello di chiamate doppie a
 \func{free}.  In particolare:
@@ -555,8 +549,8 @@ tollerante nei confronti di piccoli errori come quello di chiamate doppie a
 
 Il problema più comune e più difficile da risolvere che si incontra con le
 routine di allocazione è quando non viene opportunamente liberata la memoria
-non più utilizzata, quello che in inglese viene chiamato \textit{memory-leak},
-cioè una \textsl{perdita di memoria}.
+non più utilizzata, quello che in inglese viene chiamato \textit{memory
+  leak}\index{memory leak}, cioè una \textsl{perdita di memoria}.
 
 Un caso tipico che illustra il problema è quello in cui in una subroutine si
 alloca della memoria per uso locale senza liberarla prima di uscire. La
@@ -569,7 +563,7 @@ Il problema 
 momento, in corrispondenza ad una qualunque chiamata di \func{malloc}, che può
 essere in una sezione del codice che non ha alcuna relazione con la subroutine
 che contiene l'errore. Per questo motivo è sempre molto difficile trovare un
-\textit{memory leak}.
+\textit{memory leak}\index{memory leak}.
 
 In C e C++ il problema è particolarmente sentito. In C++, per mezzo della
 programmazione ad oggetti, il problema dei \textit{memory leak} è notevolmente
@@ -615,10 +609,10 @@ molto complesse riguardo l'allocazione della memoria.
 \label{sec:proc_mem_alloca}
 
 Una possibile alternativa all'uso di \func{malloc}, che non soffre dei
-problemi di \textit{memory leak} descritti in precedenza, è la funzione
-\funcd{alloca}, che invece di allocare la memoria nello heap usa il segmento
-di stack della funzione corrente. La sintassi è identica a quella di
-\func{malloc}, il suo prototipo è:
+problemi di \textit{memory leak}\index{memory leak} descritti in precedenza, è
+la funzione \funcd{alloca}, che invece di allocare la memoria nello heap usa
+il segmento di stack della funzione corrente. La sintassi è identica a quella
+di \func{malloc}, il suo prototipo è:
 \begin{prototype}{stdlib.h}{void *alloca(size\_t size)}
   Alloca \param{size} byte nello stack.
   
@@ -634,10 +628,10 @@ quindi non esiste un analogo della \func{free}) in quanto essa viene
 rilasciata automaticamente al ritorno della funzione.
 
 Come è evidente questa funzione ha molti vantaggi, anzitutto permette di
-evitare alla radice i problemi di memory leak, dato che non serve più la
-deallocazione esplicita; inoltre la deallocazione automatica funziona anche
-quando si usa \func{longjmp} per uscire da una subroutine con un salto non
-locale da una funzione (vedi \secref{sec:proc_longjmp}).
+evitare alla radice i problemi di memory leak\index{memory leak}, dato che non
+serve più la deallocazione esplicita; inoltre la deallocazione automatica
+funziona anche quando si usa \func{longjmp} per uscire da una subroutine con
+un salto non locale da una funzione (vedi \secref{sec:proc_longjmp}).
 
 Un altro vantaggio è che in Linux la funzione è molto più veloce di
 \func{malloc} e non viene sprecato spazio, infatti non è necessario gestire un
@@ -682,7 +676,7 @@ prima funzione 
     fallimento, nel qual caso \var{errno} assumerà il valore \errval{ENOMEM}.}
 \end{prototype}
 
-La funzione è un'interfaccia diretta all'ominima system call ed imposta
+La funzione è un'interfaccia diretta all'omonima system call ed imposta
 l'indirizzo finale del segmento dati di un processo all'indirizzo specificato
 da \param{end\_data\_segment}. Quest'ultimo deve essere un valore ragionevole,
 ed inoltre la dimensione totale del segmento non deve comunque eccedere un
@@ -691,7 +685,7 @@ dimensioni massime dello spazio dati del processo.
 
 La seconda funzione per la manipolazione delle dimensioni del segmento
 dati\footnote{in questo caso si tratta soltanto di una funzione di libreria, e
-  non di una sistem call.} è \funcd{sbrk}, ed il suo prototipo è:
+  non di una system call.} è \funcd{sbrk}, ed il suo prototipo è:
 \begin{prototype}{unistd.h}{void *sbrk(ptrdiff\_t increment)} 
   Incrementa la dimensione dello spazio dati.
   
@@ -815,10 +809,10 @@ prototipi sono:
 \end{functions}
 
 Le due funzioni permettono rispettivamente di bloccare e sbloccare la
-paginazione per l'intervallo di memoria specificato dagli argomenti, che ne
-indicano nell'ordine l'indirizzo iniziale e la lunghezza.  Tutte le pagine che
-contengono una parte dell'intervallo bloccato sono mantenute in RAM per tutta
-la durata del blocco.
+paginazione\index{paginazione} per l'intervallo di memoria specificato dagli
+argomenti, che ne indicano nell'ordine l'indirizzo iniziale e la lunghezza.
+Tutte le pagine che contengono una parte dell'intervallo bloccato sono
+mantenute in RAM per tutta la durata del blocco.
 
 Altre due funzioni, \funcd{mlockall} e \funcd{munlockall}, consentono di
 bloccare genericamente la paginazione\index{paginazione} per l'intero spazio
@@ -961,37 +955,11 @@ ritornato il carattere \texttt{':'}, infine se viene incontrato il valore
 elementi di \param{argv} che cominciano con il carattere \texttt{'-'}.
 
 \begin{figure}[htb]
-  \footnotesize
-    \begin{lstlisting}{}
-    opterr = 0;  /* don't want writing to stderr */
-    while ( (i = getopt(argc, argv, "hp:c:e:")) != -1) {
-        switch (i) {
-        /* 
-         * Handling options 
-         */ 
-        case 'h':   /* help option */
-            printf("Wrong -h option use\n");
-            usage();
-            return -1;
-            break;
-        case 'c':   /* take wait time for childen */
-            wait_child = strtol(optarg, NULL, 10);    /* convert input */
-            break;
-        case 'p':   /* take wait time for childen */
-            wait_parent = strtol(optarg, NULL, 10);   /* convert input */
-            break;
-        case 'e':   /* take wait before parent exit */
-            wait_end = strtol(optarg, NULL, 10);      /* convert input */
-            break;
-        case '?':   /* unrecognized options */
-            printf("Unrecognized options -%c\n",optopt);
-            usage();
-        default:    /* should not reached */
-            usage();
-        }
-    }
-    debug("Optind %d, argc %d\n",optind,argc);
-  \end{lstlisting}
+  \footnotesize \centering
+  \begin{minipage}[c]{15.6cm}
+  \includecodesample{listati/option_code.c}
+  \end{minipage}
+  \normalsize
   \caption{Esempio di codice per la gestione delle opzioni.}
   \label{fig:proc_options_code}
 \end{figure}
@@ -1058,18 +1026,16 @@ sistema un \textsl{ambiente}, nella forma di una lista di variabili (detta
 \textit{environment list}) messa a disposizione dal processo, e costruita
 nella chiamata alla funzione \func{exec} quando questo viene lanciato.
 
-Come per la lista dei parametri anche questa lista è un array di puntatori a
+Come per la lista dei parametri anche questa lista è un vettore di puntatori a
 caratteri, ciascuno dei quali punta ad una stringa, terminata da un
 \val{NULL}. A differenza di \code{argv[]} in questo caso non si ha una
-lunghezza dell'array data da un equivalente di \param{argc}, ma la lista è
+lunghezza del vettore data da un equivalente di \param{argc}, ma la lista è
 terminata da un puntatore nullo.
 
 L'indirizzo della lista delle variabili di ambiente è passato attraverso la
 variabile globale \var{environ}, a cui si può accedere attraverso una semplice
 dichiarazione del tipo:
-\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-extern char ** environ;
-\end{lstlisting}
+\includecodesnip{listati/env_ptr.c}
 un esempio della struttura di questa lista, contenente alcune delle variabili
 più comuni che normalmente sono definite dal sistema, è riportato in
 \figref{fig:proc_envirno_list}.
@@ -1320,7 +1286,7 @@ funzione chiamante un valore relativo ad uno dei suoi parametri.  Per far
 questo si usa il cosiddetto \textit{value result argument}, si passa cioè,
 invece di una normale variabile, un puntatore alla stessa; vedremo alcuni
 esempi di questa modalità nelle funzioni che gestiscono i socket (in
-\secref{sec:TCPel_functions}), in cui, per permettere al kernel di restituire
+\secref{sec:TCP_functions}), in cui, per permettere al kernel di restituire
 informazioni sulle dimensioni delle strutture degli indirizzi utilizzate,
 viene usato questo meccanismo.
 
@@ -1330,11 +1296,11 @@ viene usato questo meccanismo.
 
 Come vedremo nei capitoli successivi, non sempre è possibile specificare un
 numero fisso di parametri per una funzione.  Lo standard ISO C prevede nella
-sua sintassi la possibilità di definire delle \textit{variadic function} che
-abbiano un numero variabile di argomenti, attraverso l'uso della
-\textit{ellipsis} \code{...} nella dichiarazione della funzione; ma non
-provvede a livello di linguaggio alcun meccanismo con cui dette funzioni
-possono accedere ai loro argomenti.
+sua sintassi la possibilità di definire delle \textit{variadic
+  function}\index{variadic} che abbiano un numero variabile di argomenti,
+attraverso l'uso della \textit{ellipsis} \code{...} nella dichiarazione della
+funzione; ma non provvede a livello di linguaggio alcun meccanismo con cui
+dette funzioni possono accedere ai loro argomenti.
 
 L'accesso viene invece realizzato dalle librerie standard che provvedono gli
 strumenti adeguati.  L'uso delle \textit{variadic function} prevede tre punti:
@@ -1348,14 +1314,12 @@ strumenti adeguati.  L'uso delle \textit{variadic function} prevede tre punti:
   a seguire gli addizionali.
 \end{itemize*}
 
-Lo standard ISO C prevede che una \textit{variadic function} abbia sempre
-almeno un argomento fisso; prima di effettuare la dichiarazione deve essere
-incluso l'apposito header file \file{stdarg.h}; un esempio di dichiarazione è
-il prototipo della funzione \func{execl} che vedremo in
+Lo standard ISO C prevede che una \textit{variadic function}\index{variadic}
+abbia sempre almeno un argomento fisso; prima di effettuare la dichiarazione
+deve essere incluso l'apposito header file \file{stdarg.h}; un esempio di
+dichiarazione è il prototipo della funzione \func{execl} che vedremo in
 \secref{sec:proc_exec}:
-\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-  int execl(const char *path, const char *arg, ...);
-\end{lstlisting}
+\includecodesnip{listati/exec_sample.c}
 in questo caso la funzione prende due parametri fissi ed un numero variabile
 di altri parametri (che verranno a costituire gli elementi successivi al primo
 del vettore \param{argv} passato al nuovo processo). Lo standard ISO C richiede
@@ -1365,7 +1329,7 @@ inoltre che l'ultimo degli argomenti fissi sia di tipo
   per compatibilità; ad esempio i tipi \ctyp{float} vengono convertiti
   automaticamente a \ctyp{double} ed i \ctyp{char} e gli \ctyp{short} ad
   \ctyp{int}. Un tipo \textit{self-promoting} è un tipo che verrebbe promosso
-  a sé stesso.} il che esclude array, puntatori a funzioni e interi di tipo
+  a sé stesso.} il che esclude vettori, puntatori a funzioni e interi di tipo
 \ctyp{char} o \ctyp{short} (con segno o meno). Una restrizione ulteriore di
 alcuni compilatori è di non dichiarare l'ultimo parametro fisso come
 \ctyp{register}.
@@ -1437,12 +1401,13 @@ stack all'indirizzo dove sono stati salvati i parametri, 
 normale pensare di poter effettuare questa operazione.
 
 In generale però possono esistere anche realizzazioni diverse, per questo
-motivo \macro{va\_list} è definito come \textsl{tipo opaco} e non può essere
-assegnato direttamente ad un'altra variabile dello stesso tipo. Per risolvere
-questo problema lo standard ISO C99\footnote{alcuni sistemi che non hanno
-  questa macro provvedono al suo posto \macro{\_\_va\_copy} che era il nome
-  proposto in una bozza dello standard.} ha previsto una macro ulteriore che
-permette di eseguire la copia di un puntatore alla lista degli argomenti:
+motivo \macro{va\_list} è definito come \textsl{tipo opaco}\index{tipo opaco}
+e non può essere assegnato direttamente ad un'altra variabile dello stesso
+tipo. Per risolvere questo problema lo standard ISO C99\footnote{alcuni
+  sistemi che non hanno questa macro provvedono al suo posto
+  \macro{\_\_va\_copy} che era il nome proposto in una bozza dello standard.}
+ha previsto una macro ulteriore che permette di eseguire la copia di un
+puntatore alla lista degli argomenti:
 \begin{prototype}{stdarg.h}{void va\_copy(va\_list dest, va\_list src)}
   Copia l'attuale valore \param{src} del puntatore alla lista degli argomenti
   su \param{dest}.
@@ -1548,7 +1513,12 @@ salvare il contesto dello stack 
 \end{functions}
   
 Quando si esegue la funzione il contesto corrente dello stack viene salvato
-nell'argomento \param{env}, una variabile di tipo \type{jmp\_buf} che deve
+nell'argomento \param{env}, una variabile di tipo
+\type{jmp\_buf}\footnote{questo è un classico esempio di variabile di
+  \textsl{tipo opaco}\index{tipo!opaco}. Si definiscono così strutture ed
+  altri oggetti usati da una libreria, la cui struttura interna non deve
+  essere vista dal programma chiamante (da cui il nome) che li devono
+  utilizzare solo attraverso dalle opportune funzioni di gestione.}  che deve
 essere stata definita in precedenza. In genere le variabili di tipo
 \type{jmp\_buf} vengono definite come variabili globali in modo da poter
 essere viste in tutte le funzioni del programma.
@@ -1575,7 +1545,7 @@ un punto precedentemente stabilito con \func{setjmp} si usa la funzione
 \end{functions}
 
 La funzione ripristina il contesto dello stack salvato da una chiamata a
-\func{setjmp} nell'argomento \param{env}. Dopo l'esecuzione della funzione
+\func{setjmp} nell'argomento \param{env}. Dopo l'esecuzione della funzione il
 programma prosegue nel codice successivo al ritorno della \func{setjmp} con
 cui si era salvato \param{env}, che restituirà il valore \param{val} invece di
 zero.  Il valore di \param{val} specificato nella chiamata deve essere diverso
@@ -1625,7 +1595,7 @@ e statiche mantengono i valori che avevano al momento della chiamata di
 Quello che succede infatti è che i valori delle variabili che sono tenute in
 memoria manterranno il valore avuto al momento della chiamata di
 \func{longjmp}, mentre quelli tenuti nei registri del processore (che nella
-chiamata ad un'altra funzioni vengono salvati nel contesto nello stack)
+chiamata ad un'altra funzione vengono salvati nel contesto nello stack)
 torneranno al valore avuto al momento della chiamata di \func{setjmp}; per
 questo quando si vuole avere un comportamento coerente si può bloccare
 l'ottimizzazione che porta le variabili nei registri dichiarandole tutte come