Cambiato il riferimento nelle note di copyright alla nuova sezione invariante
[gapil.git] / network.tex
index 7d1d053d6c8c1e66f039f7b8e2e0f41cbaa8ecd9..dada52f3a664a6d31b39cb8baa130f95931b2855 100644 (file)
+%% network.tex
+%%
+%% Copyright (C) 2000-2004 Simone Piccardi.  Permission is granted to
+%% copy, distribute and/or modify this document under the terms of the GNU Free
+%% Documentation License, Version 1.1 or any later version published by the
+%% Free Software Foundation; with the Invariant Sections being "Un preambolo",
+%% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
+%% license is included in the section entitled "GNU Free Documentation
+%% License".
+%%
 \chapter{Introduzione alla programmazione di rete}
 \label{cha:network}
 
-In questo capitolo sarà fatta un'introduzione ai contetti generali che servono
-come prerequisiti per capire la programmazione di rete, partiremo con due
-semplici esempi per poi passare ad un esame a grandi linee dei protocolli di
-rete e di come questi sono organizzati e interagiscono.
+In questo capitolo sarà fatta un'introduzione ai concetti generali che servono
+come prerequisiti per capire la programmazione di rete, non tratteremo quindi
+aspetti specifici ma faremo una breve introduzione al modello più comune usato
+nella programmazione di rete, per poi passare ad un esame a grandi linee dei
+protocolli di rete e di come questi sono organizzati e interagiscono. 
 
 In particolare, avendo assunto l'ottica di un'introduzione mirata alla
-programmazione, ci concentreremo sul protocollo più diffuso, TCP/IP, che è
-quello che sta alla base di internet, ed in particolare prenderemo in esame in
-questa introduzione i concetti più importanti da conoscere ai fini della
-programmazione.
+programmazione, ci concentreremo sul protocollo più diffuso, il TCP/IP, che è
+quello che sta alla base di internet, avendo cura di sottolineare i concetti
+più importanti da conoscere per la scrittura dei programmi.
 
-\section{Il modello client-server}
-\label{sec:net_cliserv}
-
-La differenza principale fra un'applicazione di rete e un programma normale è
-che quest'ultima per definizione concerne la comunicazione fra ``processi''
-diversi (che in generale non girano neanche sulla stessa macchina). Questo già
-prefigura un cambiamento completo rispetto all'ottica del ``programma''
-monolitico all'interno del quale vengono eseguite tutte le istruzioni, e
-presuppone un sistema operativo ``multitasking'' in grado di eseguire processi
-diversi.
-
-Il concetto fondamentale si basa la programmazione di rete sotto Linux (e
-sotto Unix in generale) è il modello \textit{client-server} in cui un
-programma di servizio, il \textit{server} riceve un connessione e risponde a
-un programma di utilizzo, il \textit{client}, provvedendo a quest'ultimo un
-definito insieme di servizi.
-
-Esempi di questo modello sono il WEB, ftp, telnet, ssh e praticamente ogni
-servizio che viene fornito tramite la rete, ma il modello è utilizzato in
-generale anche per programmi che non fanno necessariamente uso della rete,
-come il sistema a finestre.
-
-Normalmente si dividono i server in due categorie principali, e vengono detti
-\textit{concorrenti} o \textit{iterativi}, sulla base del loro comportamento.
-
-Un server iterativo risponde alla richiesta inviando i dati e resta occupato
-(non rispondendo ad ulteriori richieste) fintanto che non ha concluso la
-richiesta. Una volta completata la richiesta il server diventa di nuovo
-disponibile.
-
-Un server concorrente al momento di trattare la richiesta crea un processo
-figlio incaricato di fornire i servizi richiesti, per poi porsi in attesa di
-ulteriori richieste. In questo modo più richieste possono essere soddisfatte
-contemporaneamente; una volta che il processo figlio ha concluso il suo lavoro
-viene terminato, mentre il server originale resta sempre attivo.
 
 
-\subsection{Un primo esempio di client}
-\label{sec:net_cli_sample}
+\section{Modelli di programmazione}
+\label{sec:net_prog_model}
 
-Per evitare di rendere l'esposizione dei concetti generali sulla rete
-puramente teorica iniziamo con il mostrare un esempio di un client TCP
-elementare.  Scopo di questo esempio è fornire un primo approccio alla
-programmazione di rete, tutto questo sarà esaminato in dettaglio nei capitoli
-successivo; qui ci limiteremo a introdurre la nomenclatura senza fornire
-definizioni precise e dettagli di funzionamento che saranno trattati
-estensivamente più avanti.
 
-In \nfig\ è riportata la sezione principale del codice del nostro client
-elementare per il servizio \textit{daytime}, un servizio standard che
-restituisce l'ora locale della macchina a cui si effettua la richesta.
-
-
-\begin{figure}[!htb]
-  \footnotesize
-  \begin{lstlisting}{}
-#include <sys/types.h>   /* predefined types */
-#include <unistd.h>      /* include unix standard library */
-#include <arpa/inet.h>   /* IP addresses conversion utiliites */
-#include <sys/socket.h>  /* socket library */
-#include <stdio.h>       /* include standard I/O library */
-
-int main(int argc, char *argv[])
-{
-    int sock_fd;
-    int i, nread;
-    struct sockaddr_in serv_add;
-    char buffer[MAXLINE];
-     ...
-    /* create socket */
-    if ( (sock_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
-        perror("Socket creation error");
-        return -1;
-    }
-    /* initialize address */
-    memset((void *) &serv_add, 0, sizeof(serv_add)); /* clear server address */
-    serv_add.sin_family = AF_INET;                   /* address type is INET */
-    serv_add.sin_port = htons(13);                   /* daytime post is 13 */
-    /* build address using inet_pton */
-    if ( (inet_pton(AF_INET, argv[optind], &serv_add.sin_addr)) <= 0) {
-        perror("Address creation error");
-        return -1;
-    }
-    /* extablish connection */
-    if (connect(sock_fd, (struct sockaddr *)&serv_add, sizeof(serv_add)) < 0) {
-        perror("Connection error");
-        return -1;
-    }
-    /* read daytime from server */
-    while ( (nread = read(sock_fd, buffer, MAXLINE)) > 0) {
-        buffer[nread]=0;
-        if (fputs(buffer, stdout) == EOF) {          /* write daytime */
-            perror("fputs error");
-            return -1;
-        }
-    }
-    /* error on read */
-    if (nread < 0) {
-        perror("Read error");
-        return -1;
-    }
-    /* normal exit */
-    return 0;
-}
-  \end{lstlisting}
-  \caption{Esempio di codice di un client elementare per il servizio daytime.}
-  \label{fig:net_cli_code}
-\end{figure}
+La differenza principale fra un'applicazione di rete e un programma normale è
+che quest'ultima per definizione concerne la comunicazione fra processi
+diversi, che in generale non girano neanche sulla stessa macchina. Questo già
+prefigura un cambiamento completo rispetto all'ottica del programma monolitico
+all'interno del quale vengono eseguite tutte le istruzioni, e chiaramente
+presuppone un sistema operativo multitasking in grado di eseguire più processi
+contemporaneamente.
+
+In questa prima sezione esamineremo brevemente i principali modelli di
+programmazione in uso. Ne daremo una descrizione assolutamente generica e
+superficiale, che ne illustri le caratteristiche principali, non essendo fra
+gli scopi del testo approfondire questi argomenti.
+
+\subsection{Il modello \textit{client-server}}
+\label{sec:net_cliserv}
 
-Il sorgente completo del programma (\texttt{SimpleDaytimeTCPClient.c}, che
-comprende il trattamento delle opzioni e una funzione per stampare un
-messaggio di aiuto) è allegato alla guida nella sezione dei codici sorgente e
-può essere compilato su una qualunque macchina linux.
-
-Il programma anzitutto include gli header necessari (\texttt{\small 1--5});
-dopo la dichiarazione delle variabili (\texttt{\small 9--12}) si è omessa
-tutta la parte relativa al trattamento degli argomenti passati dalla linea di
-comando (effettuata con le apposite routines illustrate in
-\ref{cha:parameter_options}).
-
-Il primo passo (\texttt{\small 14--18}) è creare un \textit{socket} IPv4
-(\texttt{AF\_INET}), di tipo TCP \texttt{SOCK\_STREAM} (in sostanza un canale
-di comunicazione attraverso internet, questi termini verranno spiegati con
-precisione più avanti). La funzione \texttt{socket} ritorna un descrittore,
-analogo a quello dei file, che viene usato per identificare il socket in tutte
-le chiamate successive. Nel caso la chiamata fallisca si stampa un errore con
-la relativa routine e si esce.
-
-Il passo seguente (\texttt{\small 19--27}) è quello di costruire una apposita
-struttura \texttt{sockaddr\_in} in cui sarà inserito l'indirizzo del server ed
-il numero della porta del servizio. Il primo passo è inizializzare tutto a
-zero, per poi inserire il tipo di protocollo e la porta (usando per
-quest'ultima la funzione \texttt{htons} per convertire il formato dell'intero
-usato dal computer a quello usato nella rete), infine si utilizza la funzione
-\texttt{inet\_pton} per convertire l'indirizzo numerico passato dalla linea di
-comando.
-
-Usando la funzione \texttt{connect} sul socket creato in precedenza
-(\texttt{\small 28--32}) si provvede poi a stabilire la connessione con il
-server specificato dall'indirizzo immesso nella struttura possata come secondo
-argomento, il terzo argomento è la dimensione di detta struttura. Dato che
-esistono diversi tipi di socket, si è dovuto effettuare un cast della
-struttura inizializzata in precedenza, che è specifica per i socket IPv4.  Un
-valore di ritorno negativo implica il fallimento della connessione.
-
-Completata con successo la connessione il passo successivo (\texttt{\small
-  34--40}) è leggere la data dal socket; il server invierà sempre una stringa
-di 26 caratteri della forma \verb|Wed Apr 4 00:53:00 2001\r\n|, che viene
-letta dalla funzione \texttt{read} e scritta su \texttt{stdout}.
-
-Dato il funzionamento di TCP la risposta potrà tornare in un unico pacchetto
-di 26 byte (come avverrà senz'altro nel caso in questione) ma potrebbe anche
-arrivare in 26 pacchetti di un byte.  Per questo nel caso generale non si può
-mai assumere che tutti i dati arrivino con una singola lettura, pertanto
-quest'ultima deve essere effettuata in un loop in cui si continui a leggere
-fintanto che la funzione \texttt{read} non ritorni uno zero (che significa che
-l'altro capo ha chiuso la connessione) o un numero minore di zero (che
-significa un errore nella connessione).
-
-Si noti come in questo caso la fine dei dati sia specificata dal server che
-chiude la connessione; questa è una delle tecniche possibili (è quella usata
-pure dal protocollo HTTP), ma ce ne possono essere altre, ad esempio FTP marca
-la conclusione di un blocco di dati con la sequenza ASCII \verb|\r\n|
-(carriage return e line feed), mentre il DNS mette la lunghezza in testa ad
-ogni blocco che trasmette. Il punto essenziale è che TCP non provvede nessuna
-indicazione che permetta di marcare dei blocchi di dati, per cui se questo è
-necessario deve provvedere il programma stesso.
-
-\subsection{Un primo esempio di server}
-\label{sec:net_serv_sample}
-
-Dopo aver illustrato il client daremo anche un esempio di un server
-elementare, in grado di rispondere al precedente client. Il listato è
-nuovamente mostrato in \nfig, il sorgente completo
-(\texttt{SimpleDaytimeTCPServer.c}) è allegato insieme agli altri file nella
-directory \texttt{sources}.
+L'architettura fondamentale su cui si basa gran parte della programmazione di
+rete sotto Linux (e sotto Unix in generale) è il modello
+\textit{client-server} caratterizzato dalla presenza di due categorie di
+soggetti, i programmi di servizio, chiamati \textit{server}, che ricevono le
+richieste e forniscono le risposte, ed i programmi di utilizzo, detti
+\textit{client}.
+
+In generale un server può (di norma deve) essere in grado di rispondere a più
+di un client, per cui è possibile che molti programmi possano interagire
+contemporaneamente, quello che contraddistingue il modello però è che
+l'architettura dell'interazione è sempre nei termini di molti verso uno, il
+server, che viene ad assumere un ruolo privilegiato.
+
+Seguono questo modello tutti i servizi fondamentali di internet, come le
+pagine web, la posta elettronica, ftp, telnet, ssh e praticamente ogni
+servizio che viene fornito tramite la rete, anche se, come abbiamo visto, il
+modello è utilizzato in generale anche per programmi che, come gli esempi che
+abbiamo usato in cap.~\ref{cha:IPC} a proposito della comunicazione fra
+processi nello stesso sistema, non fanno necessariamente uso della rete.
 
-\begin{figure}[!htbp]
-  \footnotesize
-  \begin{lstlisting}{}
-#include <sys/types.h>   /* predefined types */
-#include <unistd.h>      /* include unix standard library */
-#include <arpa/inet.h>   /* IP addresses conversion utiliites */
-#include <sys/socket.h>  /* socket library */
-#include <stdio.h>       /* include standard I/O library */
-#include <time.h>
-#define MAXLINE 80
-#define BACKLOG 10
-int main(int argc, char *argv[])
-{
-/* 
- * Variables definition  
- */
-    int list_fd, conn_fd;
-    int i;
-    struct sockaddr_in serv_add;
-    char buffer[MAXLINE];
-    time_t timeval;
-    ...
-    /* create socket */
-    if ( (list_fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
-        perror("Socket creation error");
-        exit(-1);
-    }
-    /* initialize address */
-    memset((void *)&serv_add, 0, sizeof(serv_add)); /* clear server address */
-    serv_add.sin_family = AF_INET;                  /* address type is INET */
-    serv_add.sin_port = htons(13);                  /* daytime port is 13 */
-    serv_add.sin_addr.s_addr = htonl(INADDR_ANY);   /* connect from anywhere */
-    /* bind socket */
-    if (bind(list_fd, (struct sockaddr *)&serv_add, sizeof(serv_add)) < 0) {
-        perror("bind error");
-        exit(-1);
-    }
-    /* listen on socket */
-    if (listen(list_fd, BACKLOG) < 0 ) {
-        perror("listen error");
-        exit(-1);
-    }
-    /* write daytime to client */
-    while (1) {
-        if ( (conn_fd = accept(list_fd, (struct sockaddr *) NULL, NULL)) <0 ) {
-            perror("accept error");
-            exit(-1);
-        }
-        timeval = time(NULL);
-        snprintf(buffer, sizeof(buffer), "%.24s\r\n", ctime(&timeval));
-        if ( (write(conn_fd, buffer, strlen(buffer))) < 0 ) {
-            perror("write error");
-            exit(-1);
-        }
-        close(conn_fd);
-    }
-    /* normal exit */
-    exit(0);
-}
-  \end{lstlisting}
-  \caption{Esempio di codice di un semplice server per il servizio daytime.}
-  \label{fig:net_serv_code}
-\end{figure}
+Normalmente si dividono i server in due categorie principali, e vengono detti
+\textsl{concorrenti} o \textsl{iterativi}, sulla base del loro comportamento.
+Un \textsl{server iterativo} risponde alla richiesta inviando i dati e resta
+occupato e non rispondendo ad ulteriori richieste fintanto che non ha fornito
+una risposta alla richiesta. Una volta completata la risposta il server
+diventa di nuovo disponibile.
+
+Un \textsl{server concorrente} al momento di trattare la richiesta crea un
+processo figlio (o un thread) incaricato di fornire i servizi richiesti, per
+porsi immediatamente in attesa di ulteriori richieste. In questo modo, con
+sistemi multitasking, più richieste possono essere soddisfatte
+contemporaneamente. Una volta che il processo figlio ha concluso il suo lavoro
+esso di norma viene terminato, mentre il server originale resta sempre attivo.
+
+
+\subsection{Il modello \textit{peer-to-peer}}
+\label{sec:net_peertopeer}
+
+Come abbiamo visto il tratto saliente dell'architettura \textit{client-server}
+è quello della preminenza del server rispetto ai client, le architetture
+\textit{peer-to-peer} si basano su un approccio completamente opposto che è
+quello di non avere nessun programma che svolga un ruolo preminente.
+
+Questo vuol dire che in generale ciascun programma viene ad agire come un nodo
+in una rete potenzialmente paritetica; ciascun programma si trova pertanto a
+ricevere ed inviare richieste ed a ricevere ed inviare risposte, e non c'è più
+la separazione netta dei compiti che si ritrova nelle architetture
+\textit{client-server}.
+
+Le architetture \textit{peer-to-peer} sono salite alla ribalta con
+l'esplosione del fenomeno Napster, ma gli stessi protocolli di routing sono un
+buon esempio di architetture \textit{peer-to-peer}, in cui ciascun nodo,
+tramite il demone che gestisce il routing, richiede ed invia informazioni ad
+altri nodi.
+
+In realtà in molti casi di architetture classificate come \textit{peer-to-peer}
+non è detto che la struttura sia totalmente paritetica e ci sono parecchi
+esempi in cui alcuni servizi vengono centralizzati o distribuiti
+gerarchicamente, come per lo stesso Napster, in cui le ricerche venivano
+effettuate su un server centrale.
+
+
+
+\subsection{Il modello \textit{three-tier}}
+\label{sec:net_three_tier}
+
+Benché qui sia trattato a parte, il modello \textit{three-tier} in realtà è
+una estensione del modello \textit{client-server}. Con il crescere della
+quantità dei servizi forniti in rete (in particolare su internet) ed al numero
+di accessi richiesto. Si è così assistito anche ad una notevole crescita di
+complessità, in cui diversi servizi venivano ad essere integrati fra di loro.
+
+In particolare sempre più spesso si assiste ad una integrazione di servizi di
+database con servizi di web, in cui le pagine vengono costruite dinamicamente
+sulla base dei dati contenuti nel database. In tutti questi casi il problema
+fondamentale di una architettura \textit{client-server} è che la richiesta di
+un servizio da parte di un gran numero di client si scontra con il collo di
+bottiglia dell'accesso diretto ad un unico server, con gravi problemi di
+scalabilità.
+
+Rispondere a queste esigenze di scalabilità il modello più semplice (chiamato
+talvolta \textit{two-tier}) da adottare è stata quello di distribuire il
+carico delle richieste su più server identici, mantenendo quindi
+sostanzialmente inalterata l'architettura \textit{client-server} originale.
+
+Nel far questo ci si scontra però con gravi problemi di manutenibilità dei
+servizi, in particolare per quanto riguarda la sincronizzazione dei dati, e di
+inefficienza dell'uso delle risorse. Il problema è particolarmente grave ad
+esempio per i database che non possono essere replicati e sincronizzati
+facilmente, e che sono molto onerosi, la loro replicazione è costosa e
+complessa.
+
+È a partire da queste problematiche che nasce il modello \textit{three-tier},
+che si struttura, come dice il nome, su tre livelli. Il primo livello, quello
+dei client che eseguono le richieste e gestiscono l'interfaccia con l'utente,
+resta sostanzialmente lo stesso del modello \textit{client-server}, ma la
+parte server viene suddivisa in due livelli, introducendo un
+\textit{middle-tier}, su cui deve appoggiarsi tutta la logica di analisi delle
+richieste dei client per ottimizzare l'accesso al terzo livello, che è quello
+che si limita a fornire i dati dinamici che verranno usati dalla logica
+implementata nel \textit{middle-tier} per eseguire le operazioni richieste dai
+client.
+
+In questo modo si può disaccoppiare la logica dai dati, replicando la prima,
+che è molto meno soggetta a cambiamenti ed evoluzione, e non soffre di
+problemi di sincronizzazione, e centralizzando opportunamente i secondi. In
+questo modo si può distribuire il carico ed accedere in maniera efficiente i
+dati.
 
-Come per il client si includono gli header necessari a cui è aggiunto quello
-per trattare i tempi, e si definiscono alcune costanti e le variabili
-necessarie in seguito (\texttt{\small 1--18}), come nel caso precedente si
-sono omesse le parti relative al trattamento delle opzioni da riga di comando.
-
-La creazione del socket (\texttt{\small 22--26}) è analoga al caso precedente,
-come pure l'inizializzazione della struttura \texttt{sockaddr\_in}, anche in
-questo caso si usa la porta standard del servizio daytime, ma come indirizzo
-IP si il valore predefinito \texttt{INET\_ANY} che corrisponde ad un indirizzo
-generico (\texttt{\small 27--31}).
-
-Si effettua poi (\texttt{\small 32--36}) la chiamata alla funzione
-\texttt{bind} che permette di associare la precedente struttura al socket, in
-modo che quest'ultimo possa essere usato per accettare connessioni su una
-qualunque delle interfacce di rete locali.
-
-Il passo successivo (\texttt{\small 37--41}) è mettere ``in ascolto'' il
-socket, questo viene effettuato con la funzione \texttt{listen} che dice al
-kernel di accettare connessioni per il socket specificato, la funzione indica
-inoltre, con il secondo parametro, il numero massimo di connessioni che il
-kernel accetterà di mettere in coda per il suddetto socket.
-
-Questa ultima chiamata completa la preparazione del socket per l'ascolto (che
-viene chiamato anche \textit{listening descriptor}) a questo punto il processo
-è mandato in sleep (\texttt{\small 44--47}) con la successiva chiamata alla
-funzione \texttt{accept}, fin quando non arriva e viene accettata una
-connessione da un client.
-
-Quando questo avviene \texttt{accept} ritorna un secondo descrittore di
-socket, che viene chiamato \textit{connected descriptor} che è quello che
-viene usato dalla successiva chiamata alla \texttt{write} per scrivere la
-risposta al client, una volta che si è opportunamente (\texttt{\small 48--49})
-costruita la stringa con la data da trasmettere. Completata la trasmissione il
-nuovo socket viene chiuso (\texttt{\small 54}).
-Il tutto è inserito in un loop infinito (\texttt{\small 42--55}) in modo da
-poter ripetere l'invio della data ad una successiva connessione.
-
-È impostante notare che questo server è estremamente elementare, infatti a
-parte il fatto di essere dipendente da IPv4, esso è in grado di servire solo
-un client alla volta, è cioè un \textsl{server iterativo}, inoltre esso è
-scritto per essere lanciato da linea di comando, se lo si volesse utilizzare
-come demone di sistema (che è in esecuzione anche quando non c'è nessuna shell
-attiva e il terminale da cui lo si è lanciato è stato sconnesso),
-occorrerebbero delle opportune modifiche.
 
 \section{I protocolli di rete}
 \label{sec:net_protocols}
 
-Visto un primo esempio di programmazione, passiamo ora ad una introduzione più
-dettagliata del funzionamento delle reti e dei relativi protocolli.
-
 Parlando di reti di computer si parla in genere di un insieme molto vasto ed
 eterogeneo di mezzi di comunicazione che vanno dal cavo telefonico, alla fibra
-ottica, alle comunicazioni via satellite; per rendere possibile la
+ottica, alle comunicazioni via satellite o via radio; per rendere possibile la
 comunicazione attraverso un così variegato insieme di mezzi sono stati
 adottati una serie di protocolli, il più famoso dei quali, quello alla base
 del funzionamento di internet, è il protocollo TCP/IP.
@@ -315,146 +168,184 @@ del funzionamento di internet, 
 \label{sec:net_iso_osi}
 
 Una caratteristica comune dei protocolli di rete è il loro essere strutturati
-in livelli sovrapposti; in questo modo un livello superiore esegue richieste
-al livello sottostante e da questo riceve responsi, mentre livelli uguali su
-macchine diverse conversano tramite lo stesso protocollo. Questo modello di
-funzionamento è stato stato standardizzato dalla \textit{International
-  Standards Organization} (ISO) che ha preparato fin dal 1984 il Modello di
-Riferimento \textit{Open Systems Interconnection} (OSI), strutturato in sette
-livelli, secondo la tabella in \ntab.
+in livelli sovrapposti; in questo modo ogni protocollo di un certo livello
+realizza le sue funzionalità basandosi su un protocollo del livello
+sottostante.  Questo modello di funzionamento è stato standardizzato dalla
+\textit{International Standards Organization} (ISO) che ha preparato fin dal
+1984 il Modello di Riferimento \textit{Open Systems Interconnection} (OSI),
+strutturato in sette livelli, secondo quanto riportato in
+tab.~\ref{tab:net_osilayers}.
 
 \begin{table}[htb]
   \centering
-  \begin{tabular}{l c c l} 
-    \textbf{Livello} & \multicolumn{2}{c}{\textbf{Nome}} & \\
+  \begin{tabular}{|l|c|c|} 
+    \hline
+    \textbf{Livello} & \multicolumn{2}{|c|}{\textbf{Nome}} \\
     \hline
-    Livello 7&\textit{Application} &\textsl{Applicazione}& \\ 
-    Livello 6&\textit{Presentation} &\textsl{Presentazione}& \\ 
-    Livello 5&\textit{Session} &\textsl{Sessione}& \\ 
-    Livello 4&\textit{Transport} &\textsl{Trasporto}& \\ 
-    Livello 3&\textit{Network} &\textsl{Rete}&   \\ 
-    Livello 2&\textit{DataLink} &\textsl{Collegamento Dati}& \\
-    Livello 1&\textit{Connection} &\textsl{Connessione Fisica}& \\
+    \hline
+    Livello 7&\textit{Application}  &\textsl{Applicazione}\\ 
+    Livello 6&\textit{Presentation} &\textsl{Presentazione} \\ 
+    Livello 5&\textit{Session}      &\textsl{Sessione} \\ 
+    Livello 4&\textit{Transport}    &\textsl{Trasporto} \\ 
+    Livello 3&\textit{Network}      &\textsl{Rete}\\ 
+    Livello 2&\textit{DataLink}     &\textsl{Collegamento Dati} \\
+    Livello 1&\textit{Physical}   &\textsl{Connessione Fisica} \\
     \hline
 \end{tabular}
 \caption{I sette livelli del protocollo ISO/OSI.}
 \label{tab:net_osilayers}
 \end{table}
 
-Il modello ISO/OSI è stato sviluppato corrispondentemente alla definizione
-della serie di protocolli X.25 per la commutazione di pacchetto. Ma nonostante
-il lavoro dettagliato di standardizzazione il modello si è rivelato
-sostanzialmente troppo complesso e poco flessibile rispetto a quello,
-precedente, su cui si basa TCP/IP che è diventato uno standard de facto;
-quest'ultimo viene comunemente chiamato modello DoD (\textit{Department of
-  Defense}), dato che fu sviluppato dall'agenzia ARPA per il Dipartimento
-della Difesa Americano.
-
+Il modello ISO/OSI è stato sviluppato in corrispondenza alla definizione della
+serie di protocolli X.25 per la commutazione di pacchetto; come si vede è un
+modello abbastanza complesso\footnote{infatti per memorizzarne i vari livelli
+  è stata creata la frase \texttt{All people seem to need data processing}, in
+  cui ciascuna parola corrisponde all'iniziale di uno dei livelli.}, tanto che
+usualmente si tende a suddividerlo in due parti, secondo lo schema mostrato in
+fig.~\ref{fig:net_osi_tcpip_comp}, con un \textit{upper layer} che riguarda
+solo le applicazioni, che viene realizzato in user space, ed un \textit{lower
+  layer} in cui si mescolano la gestione fatta dal kernel e le funzionalità
+fornite dall'hardware.
+
+Il modello ISO/OSI mira ad effettuare una classificazione completamente
+generale di ogni tipo di protocollo di rete; nel frattempo però era stato
+sviluppato anche un altro modello, relativo al protocollo TCP/IP, che è quello
+su cui è basata internet, che è diventato uno standard de facto.  Questo
+modello viene talvolta chiamato anche modello \textit{DoD} (sigla che sta per
+\textit{Department of Defense}), dato che fu sviluppato dall'agenzia ARPA per
+il Dipartimento della Difesa Americano.
 
-\begin{figure}[!htbp]
+\begin{figure}[!htb]
   \centering
-  
-  \caption{Struttura a livelli dei protocolli OSi e TCP/IP, con la  
-    relative corrispondeze e la divisione fra kernel e user space.}
+  \includegraphics[width=13cm]{img/iso_tcp_comp}
+  \caption{Struttura a livelli dei protocolli OSI e TCP/IP, con la  
+    relative corrispondenze e la divisione fra kernel e user space.}
   \label{fig:net_osi_tcpip_comp}
 \end{figure}
 
-
-
-\subsection{Il modello DoD (TCP/IP)}
+La scelta fra quale dei due modelli utilizzare dipende per lo più dai gusti
+personali. Come caratteristiche generali il modello ISO/OSI è più teorico e
+generico, basato separazioni funzionali, mentre il modello TCP/IP è più vicino
+alla separazione concreta dei vari strati del sistema operativo; useremo
+pertanto quest'ultimo, anche per la sua maggiore semplicità.\footnote{questa
+  semplicità ha un costo quando si fa riferimento agli strati più bassi, che
+  sono in effetti descritti meglio dal modello ISO/OSI, in quanto gran parte
+  dei protocolli di trasmissione hardware sono appunto strutturati sui due
+  livelli di \textit{Data Link} e \textit{Connection}.}
+
+\subsection{Il modello TCP/IP (o DoD)}
 \label{sec:net_tcpip_overview}
 
-Così come ISO/OSI anche TCP/IP è stato strutturato in livelli (riassunti in
-\ntab); un confronto fra i due è riportato in \curfig\ dove viene evidenziata
-anche la corrispondenza fra i rispettivi livelli (che comunque è
-approssimativa) e su come essi vanno ad inserirsi all'interno del sistema
-operativo rispetto alla divisione fra user space e kernel space spiegata in
-\ref{sec:intro_unix_struct}.
+Così come ISO/OSI anche il modello del TCP/IP è stato strutturato in livelli
+(riassunti in tab.~\ref{tab:net_layers}); un confronto fra i due è riportato
+in fig.~\ref{fig:net_osi_tcpip_comp} dove viene evidenziata anche la
+corrispondenza fra i rispettivi livelli (che comunque è approssimativa) e su
+come essi vanno ad inserirsi all'interno del sistema rispetto alla divisione
+fra user space e kernel space spiegata in
+sez.~\ref{sec:intro_unix_struct}.\footnote{in realtà è sempre possibile
+  accedere dallo user space, attraverso una opportuna interfaccia (come
+  vedremo in sez.~\ref{sec:sock_sa_packet}), ai livelli inferiori del
+  protocollo.}
 
 \begin{table}[htb]
   \centering
-  \begin{tabular}{l c c l} 
-    \textbf{Livello} & \multicolumn{2}{c}{\textbf{Nome}} & \textbf{Esempi} \\
+  \begin{tabular}{|l|c|c|l|} 
     \hline
-    Livello 1&\textit{Application} &\textsl{Applicazione}& 
+    \textbf{Livello} & \multicolumn{2}{|c|}{\textbf{Nome}} & \textbf{Esempi} \\
+    \hline
+    \hline
+    Livello 4&\textit{Application} &\textsl{Applicazione}& 
     Telnet, FTP, etc. \\ 
-    Livello 2&\textit{Transport} &\textsl{Trasporto}& TCP, UDP \\ 
-    Livello 3&\textit{Network} &\textsl{Rete}& IP, (ICMP, IGMP)  \\ 
-    Livello 4&\textit{Link} &\textsl{Connessione}& 
+    Livello 3&\textit{Transport} &\textsl{Trasporto}& TCP, UDP \\ 
+    Livello 2&\textit{Network} &\textsl{Rete}& IP, (ICMP, IGMP)  \\ 
+    Livello 1&\textit{Link} &\textsl{Collegamento}& 
     device driver \& scheda di interfaccia  \\
     \hline
 \end{tabular}
-\caption{I quattro livelli del protocollo TPC/IP.}
+\caption{I quattro livelli del protocollo TCP/IP.}
 \label{tab:net_layers}
 \end{table}
 
-
-Come si può notare TCP/IP è più semplice del modello ISO/OSI e strutturato in
-soli quattro livelli. Il suo nome deriva dai due principali protocolli che lo
-compongono, il TCP \textit{Trasmission Control Protocol} e l'IP
-\textit{Internet Protocol}. Le funzioni dei vari livelli sono le seguenti:
-
-\begin{description}
-\item \textbf{Applicazione} É relativo ai programmi di interfaccia utente, in
-  genere questi vengono realizzati secondo il modello Client-Server (vedi
-  \ref{sec:net_cliserv}.
-\item \textbf{Trasporto} Fornisce la comunicazione tra le due stazioni
+Come si può notare come il modello TCP/IP è più semplice del modello ISO/OSI
+ed è strutturato in soli quattro livelli. Il suo nome deriva dai due
+principali protocolli che lo compongono, il TCP (\textit{Trasmission Control
+  Protocol}) che copre il livello 3 e l'IP (\textit{Internet Protocol}) che
+copre il livello 2. Le funzioni dei vari livelli sono le seguenti:
+
+\begin{basedescript}{\desclabelwidth{2.5cm}\desclabelstyle{\nextlinelabel}}
+\item[\textbf{Applicazione}] É relativo ai programmi di interfaccia con la
+  rete, in genere questi vengono realizzati secondo il modello client-server
+  (vedi sez.~\ref{sec:net_cliserv}), realizzando una comunicazione secondo un
+  protocollo che è specifico di ciascuna applicazione.
+\item[\textbf{Trasporto}] Fornisce la comunicazione tra le due stazioni
   terminali su cui girano gli applicativi, regola il flusso delle
-  informazioni, e può fornire un trasporto affidabile, cioè con recupero
-  errori. Il protocollo principale di questo livello è il TCP.
-\item \textbf{Rete} Si occupa dello smistamento dei singoli pacchetti su una
+  informazioni, può fornire un trasporto affidabile, cioè con recupero degli
+  errori o inaffidabile. I protocolli principali di questo livello sono il TCP
+  e l'UDP.
+\item[\textbf{Rete}] Si occupa dello smistamento dei singoli pacchetti su una
   rete complessa e interconnessa, a questo stesso livello operano i protocolli
   per il reperimento delle informazioni necessarie allo smistamento, per lo
   scambio di messaggi di controllo e per il monitoraggio della rete. Il
   protocollo su cui si basa questo livello è IP (sia nella attuale versione,
-  IPv4 che nella nuova IPv6).
-\item \textbf{Connessione} È responsabile per l'interfacciamento al
+  IPv4, che nella nuova versione, IPv6).
+\item[\textbf{Collegamento}] È responsabile per l'interfacciamento al
   dispositivo elettronico che effettua la comunicazione fisica, gestendo
-  l'invio e la ricezione dall'hardware dei pacchetti.
-\end{description}
-
+  l'invio e la ricezione dei pacchetti da e verso l'hardware.
+\end{basedescript}
 
-La comunicazione fra due stazioni avviene pertanto secondo le modalità
-illustrate in \nfig. 
+La comunicazione fra due stazioni remote avviene secondo le modalità
+illustrate in fig.~\ref{fig:net_tcpip_data_flux}, dove si è riportato il flusso
+dei dati reali e i protocolli usati per lo scambio di informazione su ciascun
+livello. Si è genericamente indicato \textit{ethernet} per il livello 1, anche
+se in realtà i protocolli di trasmissione usati possono essere molti altri.
 
-
-\begin{figure}[!htbp]
-  \centering
-  
+\begin{figure}[!htb]
+  \centering \includegraphics[width=13cm]{img/tcp_data_flux}
   \caption{Strutturazione del flusso dei dati nella comunicazione fra due
     applicazioni attraverso i protocolli della suite TCP/IP.}
   \label{fig:net_tcpip_data_flux}
 \end{figure}
 
-Le singole applicazioni si scambieranno i dati secondo un loro formato
-specifico, implementando un protocollo di applicazione (esempi possono essere
-HTTP, POP, telnet, SMTP, etc). 
-
-Questi dati vengono inviati al livello di trasporto usando un'interfaccia
-opportuna (i \textit{socket}, che esamineremo in dettaglio in seguito), i
-quali li spezzerà in pacchetti di dimensione opportuna e li incapsulerà
-all'interno del suo protocollo di trasporto aggiungendo ad ogni pacchetto le
-informazioni necessarie alla gestione di quest'ultimo. Questo processo viene
-svolto dirattamente nel kernel ad esempio dallo stack TCP nel caso il
-protocollo di trasporto sia questo.
-
-Una volta composto il pacchetto nel formato adatto al protocollo di trasporto
-usato questo sarà passato al successivo livello, quello del collegamento che
-si occupa di inserire le opportune informazioni per poter effettuare
-l'instradamento nella rete ed il recapito alla destinazione finale. In genere
-questo è il livello di IP (Internet Protocol), a cui vengono inseriti i numeri
-IP che identificano i computer su internet.
-
-L'ultimo passo è il trasferimento del pacchetto al driver della interfaccia di
-trasmissione che si incarica di incapsularlo nel relativo protocollo di
-trasmissione fisica usato dall'hardware usato per la comunicazione (ad esempio
-ethernet per una scheda di rete).
+Per chiarire meglio la struttura della comunicazione attraverso i vari
+protocolli mostrata in fig.~\ref{fig:net_tcpip_data_flux}, conviene prendere in
+esame i singoli passaggi fatti per passare da un livello al sottostante,
+la procedura si può riassumere nei seguenti passi:
+\begin{itemize}
+\item Le singole applicazioni comunicano scambiandosi i dati ciascuna secondo
+  un suo specifico formato. Per applicazioni generiche, come la posta o le
+  pagine web, viene di solito definito ed implementato quello che viene
+  chiamato un protocollo di applicazione (esempi possono essere HTTP, POP,
+  SMTP, ecc.), ciascuno dei quali è descritto in un opportuno standard (di
+  solito attraverso un RFC\footnote{L'acronimo RFC sta per \textit{Request For
+      Comment} ed è la procedura attraverso la quale vengono proposti gli
+    standard per Internet.}).
+\item I dati delle applicazioni vengono inviati al livello di trasporto usando
+  un'interfaccia opportuna (i \textit{socket}\index{socket}, che esamineremo
+  in dettaglio in cap.~\ref{cha:socket_intro}). Qui verranno spezzati in
+  pacchetti di dimensione opportuna e inseriti nel protocollo di trasporto,
+  aggiungendo ad ogni pacchetto le informazioni necessarie per la sua
+  gestione. Questo processo viene svolto direttamente nel kernel, ad esempio
+  dallo stack TCP, nel caso il protocollo di trasporto usato sia questo.
+\item Una volta composto il pacchetto nel formato adatto al protocollo di
+  trasporto usato questo sarà passato al successivo livello, quello di rete,
+  che si occupa di inserire le opportune informazioni per poter effettuare
+  l'instradamento nella rete ed il recapito alla destinazione finale. In
+  genere questo è il livello di IP (Internet Protocol), a cui vengono inseriti
+  i numeri IP che identificano i computer su internet.
+\item L'ultimo passo è il trasferimento del pacchetto al driver della
+  interfaccia di trasmissione, che si incarica di incapsularlo nel relativo
+  protocollo di trasmissione. Questo può avvenire sia in maniera diretta, come
+  nel caso di ethernet, in cui i pacchetti vengono inviati sulla linea
+  attraverso le schede di rete, che in maniera indiretta con protocolli come
+  PPP o SLIP, che vengono usati come interfaccia per far passare i dati su
+  altri dispositivi di comunicazione (come la seriale o la parallela).
+\end{itemize}
 
 
-\subsection{Criteri generali del design di TCP/IP}
+\subsection{Criteri generali dell'architettura del TCP/IP}
 \label{sec:net_tcpip_design}
 
-La filosofia architetturale di TCP/IP è semplice: costruire una rete che
+La filosofia architetturale del TCP/IP è semplice: costruire una rete che
 possa sopportare il carico in transito, ma permettere ai singoli nodi di
 scartare pacchetti se il carico è temporaneamente eccessivo, o se risultano
 errati o non recapitabili.
@@ -467,126 +358,166 @@ successo n
 È il livello di trasporto che si deve occupare (qualora necessiti) del
 controllo del flusso dei dati e del recupero degli errori; questo è realizzato
 dal protocollo TCP. La sede principale di "intelligenza" della rete è pertanto
-al livello di trasporto o superiore.
+al livello di trasporto o ai livelli superiori.
 
 Infine le singole stazioni collegate alla rete non fungono soltanto da punti
-terminali di comunicazione, ma possono anche assumere il ruolo di router, per
-l'interscambio di pacchetti da una rete ad un'altra. Questo rende possibile la
-flessibilità della rete che è in grado di adattarsi ai mutamenti delle
-interconnessioni.
+terminali di comunicazione, ma possono anche assumere il ruolo di
+\textit{router} (\textsl{instradatori}), per l'interscambio di pacchetti da
+una rete ad un'altra. Questo rende possibile la flessibilità della rete che è
+in grado di adattarsi ai mutamenti delle interconnessioni.
 
 La caratteristica essenziale che rende tutto ciò possibile è la strutturazione
 a livelli tramite l'incapsulamento. Ogni pacchetto di dati viene incapsulato
-nel formato del livello successivo, fino al livello della connessione fisica.
-In questo modo il pacchetto ricevuto ad un livello $n$ dalla stazione di
-destinazione è esattamente lo stesso spedito dal livello $n$ dalla sorgente.
-Questo rende facile il progettare il software facendo riferimento unicamente a
-quanto necessario ad un singolo livello, con la confidenza che questo poi sarà
-trattato uniformemente da tutti i nodi della rete.
+nel formato del livello successivo, fino al livello del collegamento fisico.
+In questo modo il pacchetto ricevuto ad un livello \textit{n} dalla stazione
+di destinazione è esattamente lo stesso spedito dal livello \textit{n} dalla
+sorgente.  Questo rende facile il progettare il software facendo riferimento
+unicamente a quanto necessario ad un singolo livello, con la confidenza che
+questo poi sarà trattato uniformemente da tutti i nodi della rete.
 
 
 \section{Il protocollo TCP/IP}
 \label{sec:net_tpcip}
 
-Come appena mostrato il protocollo TCP/IP è un insieme di protocolli diversi,
-che operano su 4 livelli diversi. Per gli interessi della programmazione di
-rete però sono importanti principalmente i due livelli centrali, e soprattutto
-quello di trasporto. 
-
-La principale interfaccia di programmazione di rete, quella dei socket, è
-infatti un'interfaccia nei confronti di quest'ultimo. Questo avviene perché al
-di sopra del livello di trasporto i programmi hanno a che fare solo con
-dettagli specifici delle applicazioni, mentre al di sotto vengono curati tutti
-i dettagli relativi alla comunicazione. È pertanto naturale definire una API
-su questo confine tanto più che è proprio li (come evidenziato in \pfig) che
-nei sistemi unix (e non solo) viene inserita la divisione fra kernel space e
-user space.
-
-In realtà in un sistema unix è possibile accedere anche agli altri livelli
-inferiori (e non solo a quello di trasporto) con opportune interfacce (la cosa
-è indicata in \pfig\ lasciando uno spazio fra UDP e TCP), ma queste vengono
-usate solo quando si vogliono fare applicazioni di sistema per il controllo
-della rete a basso livello, un uso quindi molto specialistico, e che non
-rientra in quanto trattato qui.
-
-In questa sezione daremo una breve descrizione dei vari protocolli di TCP/IP,
-concentrandoci per le ragioni esposte sul livello di trasposto. All'interno di
-questo privilegeremo poi il protocollo TCP, per il ruolo centrale che svolge
-nella maggior parte delle applicazioni.
+Come accennato in sez.~\ref{sec:net_protocols} il protocollo TCP/IP è un
+insieme di protocolli diversi, che operano su 4 livelli diversi. Per gli
+interessi della programmazione di rete però sono importanti principalmente i
+due livelli centrali, e soprattutto quello di trasporto.
+
+La principale interfaccia usata nella programmazione di rete, quella dei
+socket\index{socket}, è infatti un'interfaccia nei confronti di quest'ultimo.
+Questo avviene perché al di sopra del livello di trasporto i programmi hanno a
+che fare solo con dettagli specifici delle applicazioni, mentre al di sotto
+vengono curati tutti i dettagli relativi alla comunicazione. È pertanto
+naturale definire una interfaccia di programmazione su questo confine, tanto
+più che è proprio lì (come evidenziato in fig.~\ref{fig:net_osi_tcpip_comp})
+che nei sistemi Unix (e non solo) viene inserita la divisione fra kernel space
+e user space.
+
+In realtà in un sistema Unix è possibile accedere anche agli altri livelli
+inferiori (e non solo a quello di trasporto) con opportune interfacce di
+programmazione (vedi sez.~\ref{sec:sock_sa_packet}), ma queste vengono usate
+solo quando si debbano fare applicazioni di sistema per il controllo della
+rete a basso livello, di uso quindi molto specialistico.
+
+In questa sezione daremo una descrizione sommaria dei vari protocolli del
+TCP/IP, concentrandoci, per le ragioni appena esposte, sul livello di
+trasporto.  All'interno di quest'ultimo privilegeremo poi il protocollo TCP,
+per il ruolo centrale che svolge nella maggior parte delle applicazioni.
+
 
 \subsection{Il quadro generale}
+\label{sec:net_tcpip_general}
 
 Benché si parli di TCP/IP questa famiglia di protocolli è composta anche da
-altri membri. In \nfig\ si è riportato uno schema che mostra un panorama sui
-vari prottocolli della famiglia, e delle loro relazioni reciproche e con
-alcune dalle principali applicazioni che li usano.
+molti membri. In fig.~\ref{fig:net_tcpip_overview} si è riportato uno schema
+che mostra un panorama sui principali protocolli della famiglia, e delle loro
+relazioni reciproche e con alcune dalle principali applicazioni che li usano.
 
 \begin{figure}[!htbp]
   \centering
-  
+  \includegraphics[width=13cm]{img/tcpip_overview}  
   \caption{Panoramica sui vari protocolli che compongono la suite TCP/IP.}
   \label{fig:net_tcpip_overview}
 \end{figure}
 
-I vari protocolli mostrati in figura sono i seguenti:
+I vari protocolli riportati in fig.~\ref{fig:net_tcpip_overview} sono i
+seguenti:
 
-\begin{list}{}{}
-\item \textsl{IPv4} \textit{Internet Protocol version 4}. È quello che
+\begin{basedescript}{\desclabelwidth{1.7cm}\desclabelstyle{\nextlinelabel}}
+\item[\textsl{IPv4}] \textit{Internet Protocol version 4}. È quello che
   comunemente si chiama IP. Ha origine negli anni '80 e da allora è la base su
-  cui è cotriuta internet. Usa indirizzi a 32 bit e provvede la trasmissione
-  dei pacchetti TCP, UDP, ICMP e IGMP.
-\item \textsl{IPv6} \textit{Internet Protocol version 6}. È stato progettato a
-  metà degli anni '90 per rimpiazzare IPv4. Ha indirizzi a 128 bit e effettua
-  lo stesso servizio di trasporto di IPv4 per i pacchetti TCP, UDP e ICPMv6.
-\item \textsl{TCP} \textit{Trasmission Control Protocol}. È un protocollo
-  orientato alla connessione che provvede un trasporto affidabile e
-  bidirezionale di un flusso di dati. I socket TCP sono esempi di
-  \textit{stream socket}. Il protocollo ha cura di tutti gli aspetti del
-  trasporto, come l'acknoweledgment, i timeout, la ritrasmissione, etc. È 
-  usato dalla maggior parte delle applicazioni. Può essere usato sia con IPv4
-  che con IPv6.
-\item \textsl{UDP} \textit{User Datagram Protocol}. È un protocollo senza
-  connessione a pacchetti. I socket UDP sono esempi di \textit{datagram
-    socket}. Contrariamente al TCP in protocollo non è affidabile e non c'è
-  garanzia che i pacchetti raggiungano la loro destinazione, né sull'eventuale
-  ordine di arrivo. Può essere usato sia con IPv4 che con IPv6.
-\item \textsl{ICMP} \textit{Internet Control Message Protocol}. Gestisce gli
-  errori e trasporta l'informazione di controllo fra stazioni remote e
-  instradatori (\textit{host} e \textit{router}). I messaggi sono normalmente
-  generati dal software del kernel che gestisce la comunicazione TCP/IP, anche
-  se ICMP può venire usato direttamente da alcuni programmi come
-  \texttt{ping}. A volte ci si riferisce ad esso come ICPMv4 per distinguerlo
-  da ICMPv6.
-\item \textsl{ICMP} \textit{Internet Group Management Protocol}. É un
-  protocollo usato per il \textit{multicasting} (vedi
-  \ref{sec:xxx_multicast}), che è opzionale in IPv4.
-\item \textsl{ARP} \textit{Address Resolution Protocol}. È il protocollo che
-  mappa un indirizzo IP in un indirizzo hardware (come un indirizzo
-  internet). È usato in reti di tipo broadcast come ethernet, token ring o
-  FDDI ma non serve in connessioni punto-punto.
-\item \textsl{RARP} \textit{Reverse Address Resolution Protocol}. È il
-  protocollo che mappa un indirizzo hardware in un indirizzo IP. Viene usato a
-  volte per durante il boot per assegnare un indirizzo IP ad una macchina.
-\item \textsl{ICMPv6} \textit{Internet Control Message Protocol, version 6}.
+  cui è costruita internet. Usa indirizzi a 32 bit, e mantiene tutte le
+  informazioni di instradamento e controllo per la trasmissione dei pacchetti
+  sulla rete; tutti gli altri protocolli della suite (eccetto ARP e RARP, e
+  quelli specifici di IPv6) vengono trasmessi attraverso di esso.
+\item[\textsl{IPv6}] \textit{Internet Protocol version 6}. È stato progettato
+  a metà degli anni '90 per rimpiazzare IPv4. Ha uno spazio di indirizzi
+  ampliato 128 bit che consente più gerarchie di indirizzi,
+  l'autoconfigurazione, ed un nuovo tipo di indirizzi, gli \textit{anycast},
+  che consentono di inviare un pacchetto ad una stazione su un certo gruppo.
+  Effettua lo stesso servizio di trasmissione dei pacchetti di IPv4 di cui
+  vuole essere un sostituto.
+\item[\textsl{TCP}] \textit{Trasmission Control Protocol}. È un protocollo
+  orientato alla connessione che provvede un trasporto affidabile per un
+  flusso di dati bidirezionale fra due stazioni remote. Il protocollo ha cura
+  di tutti gli aspetti del trasporto, come l'acknoweledgment, i timeout, la
+  ritrasmissione, etc. È usato dalla maggior parte delle applicazioni.
+\item[\textsl{UDP}] \textit{User Datagram Protocol}. È un protocollo senza
+  connessione, per l'invio di dati a pacchetti. Contrariamente al TCP il
+  protocollo non è affidabile e non c'è garanzia che i pacchetti raggiungano
+  la loro destinazione, si perdano, vengano duplicati, o abbiano un
+  particolare ordine di arrivo.
+\item[\textsl{ICMP}] \textit{Internet Control Message Protocol}. È il
+  protocollo usato a livello 2 per gestire gli errori e trasportare le
+  informazioni di controllo fra stazioni remote e instradatori (cioè fra
+  \textit{host} e \textit{router}). I messaggi sono normalmente generati dal
+  software del kernel che gestisce la comunicazione TCP/IP, anche se ICMP può
+  venire usato direttamente da alcuni programmi come \cmd{ping}. A volte ci
+  si riferisce ad esso come ICPMv4 per distinguerlo da ICMPv6.
+\item[\textsl{IGMP}] \textit{Internet Group Management Protocol}. É un
+  protocollo di livello 2 usato per il \textit{multicasting} (vedi
+  sez.~\ref{sec:xxx_multicast}).  Permette alle stazioni remote di notificare
+  ai router che supportano questa comunicazione a quale gruppo esse
+  appartengono.  Come ICMP viene implementato direttamente sopra IP.
+\item[\textsl{ARP}] \textit{Address Resolution Protocol}. È il protocollo che
+  mappa un indirizzo IP in un indirizzo hardware sulla rete locale. È usato in
+  reti di tipo broadcast come Ethernet, Token Ring o FDDI che hanno associato
+  un indirizzo fisico (il \textit{MAC address}) alla interfaccia, ma non serve
+  in connessioni punto-punto.
+\item[\textsl{RARP}] \textit{Reverse Address Resolution Protocol}. È il
+  protocollo che esegue l'operazione inversa rispetto ad ARP (da cui il nome)
+  mappando un indirizzo hardware in un indirizzo IP. Viene usato a volte per
+  durante l'avvio per assegnare un indirizzo IP ad una macchina.
+\item[\textsl{ICMPv6}] \textit{Internet Control Message Protocol, version 6}.
   Combina per IPv6 le funzionalità di ICMPv4, IGMP e ARP.
-\item \textsl{NETLINK} \textit{Netlink}.
-  Provvede l'interfaccia di accesso alla comunicazione a basso livello.
-\end{list}
-
-Gran parte delle applicazioni comunicano usando TCP o UDP, ed alcune si
-rifanno ad IP (ed i suoi correlati ICMP e IGMP); benché sia TCP che UDP siano
-basati su IP e sia possibile intervenire a questo livello con i \textit{raw
-  socket} questa tecnica è molto meno diffusa e a parte applicazioni
-particolari si preferisce sempre usare i servizi messi a disposizione dai due
-protocolli precedenti.  Per questo motivo a parte alcuni brevi accenni su IP
-in questa sezione ci concentreremo sul livello di trasporto.
+\item[\textsl{EGP}] \textit{Exterior Gateway Protocol}. È un protocollo di
+  routing usato per comunicare lo stato fra gateway vicini a livello di
+  \textsl{sistemi autonomi}\footnote{vengono chiamati \textit{autonomous
+      systems} i raggruppamenti al livello più alto della rete.}, con
+  meccanismi che permettono di identificare i vicini, controllarne la
+  raggiungibilità e scambiare informazioni sullo stato della rete. Viene
+  implementato direttamente sopra IP. 
+\item[\textsl{OSPF}] \textit{Open Shortest Path First}. È in protocollo di
+  routing per router su reti interne, che permette a questi ultimi di
+  scambiarsi informazioni sullo stato delle connessioni e dei legami che
+  ciascuno ha con gli altri. Viene implementato direttamente sopra IP.
+\item[\textsl{GRE}] \textit{Generic Routing Encapsulation}. È un protocollo
+  generico di incapsulamento che permette di incapsulare un qualunque altro
+  protocollo all'interno di IP. 
+\item[\textsl{AH}] \textit{Authentication Header}. Provvede l'autenticazione
+  dell'integrità e dell'origine di un pacchetto. È una opzione nativa in IPv6
+  e viene implementato come protocollo a sé su IPv4. Fa parte della suite di
+  IPSEC che provvede la trasmissione cifrata ed autenticata a livello IP.
+\item[\textsl{ESP}] \textit{Encapsulating Security Payload}. Provvede la
+  cifratura insieme all'autenticazione dell'integrità e dell'origine di un
+  pacchetto. Come per AH è opzione nativa in IPv6 e viene implementato come
+  protocollo a sé su IPv4.
+\item[\textsl{PPP}] \textit{Point-to-Point Protocol}. È un protocollo a
+  livello 1 progettato per lo scambio di pacchetti su connessioni punto punto.
+  Viene usato per configurare i collegamenti, definire i protocolli di rete
+  usati ed incapsulare i pacchetti di dati. È un protocollo complesso con
+  varie componenti.
+\item[\textsl{SLIP}] \textit{Serial Line over IP}. È un protocollo di livello
+  1 che permette di trasmettere un pacchetto IP attraverso una linea seriale.
+\end{basedescript}
+
+Gran parte delle applicazioni comunicano usando TCP o UDP, solo alcune, e per
+scopi particolari si rifanno direttamente ad IP (ed i suoi correlati ICMP e
+IGMP); benché sia TCP che UDP siano basati su IP e sia possibile intervenire a
+questo livello con i \textit{raw socket} questa tecnica è molto meno diffusa e
+a parte applicazioni particolari si preferisce sempre usare i servizi messi a
+disposizione dai due protocolli precedenti.  Per questo motivo a parte alcuni
+brevi accenni su IP in questa sezione ci concentreremo sul livello di
+trasporto.
 
 \subsection{Internet Protocol (IP)}
 \label{sec:net_ip}
 
 Quando si parla di IP ci si riferisce in genere alla versione attualmente in
 uso che è la versione 4 (e viene pertanto chiamato IPv4). Questa versione
-venne standardizzata nel 1981 dall'RFC~719.
+venne standardizzata nel 1981
+dall'\href{http://www.ietf.org/rfc/rfc0719.txt}{RFC~719}.
 
 Internet Protocol nasce per disaccoppiare le applicazioni della struttura
 hardware delle reti di trasmissione, e creare una interfaccia di trasmissione
@@ -597,9 +528,9 @@ all'altro della rete; le caratteristiche essenziali con cui questo viene
 realizzato in IPv4 sono due:
 
 \begin{itemize}
-\item \textit{Universal addressing} la comunicazione avviene fra due host
-  identificati univocamente con un indirizzo a 32 bit che può appartenere ad
-  una sola interfaccia di rete.
+\item \textit{Universal addressing} la comunicazione avviene fra due stazioni
+  remote identificate univocamente con un indirizzo a 32 bit che può
+  appartenere ad una sola interfaccia di rete.
 \item \textit{Best effort} viene assicurato il massimo impegno nella
   trasmissione, ma non c'è nessuna garanzia per i livelli superiori né sulla
   percentuale di successo né sul tempo di consegna dei pacchetti di dati.
@@ -618,44 +549,45 @@ grandi linee nei seguenti punti:
 \begin{itemize}
 \item l'espansione delle capacità di indirizzamento e instradamento, per
   supportare una gerarchia con più livelli di indirizzamento, un numero di
-  nodi indirizzabili molto maggiore e una autoconfigurazione degli indirizzi
+  nodi indirizzabili molto maggiore e una autoconfigurazione degli indirizzi.
 \item l'introduzione un nuovo tipo di indirizzamento, l'\textit{anycast} che
-  si aggiunge agli usuali \textit{unycast} e \textit{multicast}
-\item la semplificazione del formato della testata, eliminando o rendendo
-  opzionali alcuni dei campi di IPv4, per eliminare la necessità di
-  riprocessamento della stessa da parte dei router e contenere l'aumento di
-  dimensione dovuto all'ampiamento degli indirizzi
+  si aggiunge agli usuali \textit{unycast} e \textit{multicast}.
+\item la semplificazione del formato dell'intestazione (\textit{header}) dei
+  pacchetti, eliminando o rendendo opzionali alcuni dei campi di IPv4, per
+  eliminare la necessità di riprocessamento della stessa da parte dei router e
+  contenere l'aumento di dimensione dovuto all'ampliamento degli indirizzi.
 \item un supporto per le opzioni migliorato, per garantire una trasmissione
   più efficiente del traffico normale, limiti meno stringenti sulle dimensioni
   delle opzioni, e la flessibilità necessaria per introdurne di nuove in
-  futuro
-\item il supporto per delle capacità di qualità di servizio (QoS) che
+  futuro.
+\item il supporto per delle capacità di \textsl{qualità di servizio} (QoS) che
   permettano di identificare gruppi di dati per i quali si può provvedere un
   trattamento speciale (in vista dell'uso di internet per applicazioni
-  multimediali e/o ``real-time'')
+  multimediali e/o ``real-time'').
 \end{itemize}
 
-Per maggiori dettagli riguardo al protocollo si può consultare
-\ref{sec:appA_ip}.
+Maggiori dettagli riguardo a caratteristiche, notazioni e funzionamento del
+protocollo IP sono forniti nell'appendice sez.~\ref{sec:ip_protocol}.
 
  
-\subsection{UDP: User Datagram Protocol)}
+\subsection{User Datagram Protocol (UDP)}
 \label{sec:net_udp}
 
-UDP è un protocollo di trasporto molto semplice, la sua descizione completa è
-contenuta dell'RFC~768, ma in sostanza esso è una semplice interfaccia a IP dal
-livello di trasporto. Quando un'applicazione usa UDP essa scrive un pacchetto
-di dati (il cosiddetto \textit{datagram} che da il nome al protocollo) su un
-socket, al pacchetto viene aggiunto un header molto semplice (per una
-descrizione più accurata vedi \ref{sec:appA_udp}), e poi viene passato al
-livello superiore (IPv4 o IPv6 che sia) che lo spedisce verso la destinazione.
-Dato che né IPv4 né IPv6 garantiscono l'affidabilità niente assicura che il
+UDP è un protocollo di trasporto molto semplice, la sua descrizione completa è
+contenuta dell'\href{http://www.ietf.org/rfc/rfc0768.txt}{RFC~768}, ma in
+sostanza esso è una semplice interfaccia a IP dal livello di trasporto. Quando
+un'applicazione usa UDP essa scrive un pacchetto di dati (il cosiddetto
+\textit{datagram} che da il nome al protocollo) su un socket\index{socket}, al
+pacchetto viene aggiunto un header molto semplice (per una descrizione più
+accurata vedi sez.~\ref{sec:udp_protocol}), e poi viene passato al livello
+superiore (IPv4 o IPv6 che sia) che lo spedisce verso la destinazione.  Dato
+che né IPv4 né IPv6 garantiscono l'affidabilità niente assicura che il
 pacchetto arrivi a destinazione, né che più pacchetti arrivino nello stesso
 ordine in cui sono stati spediti.
 
 Pertanto il problema principale che si affronta quando si usa UDP è la
 mancanza di affidabilità, se si vuole essere sicuri che i pacchetti arrivino a
-destinazione occorrerà provvedere con l'applicazione all'interno della quale
+destinazione occorrerà provvedere con l'applicazione, all'interno della quale
 si dovrà inserire tutto quanto necessario a gestire la notifica di
 ricevimento, la ritrasmissione, il timeout. 
 
@@ -672,76 +604,193 @@ viene anche essa trasmessa all'applicazione all'atto del ricevimento.
 Infine UDP è un protocollo che opera senza connessione
 (\textit{connectionless}) in quanto non è necessario stabilire nessun tipo di
 relazione tra origine e destinazione dei pacchetti. Si hanno così situazioni
-in cui un client può scrivere su uno stesso socket pacchetti destinati a
-server diversi, o un server ricevere su un socket paccetti provenienti da
-client diversi.  Il modo più semplice di immaginarsi il funzionamento di UDP è
-quello della radio, in cui si può ``trasmettere a'' e ``ricevere da'' più
-stazioni usando la stessa frequenza.
+in cui un client può scrivere su uno stesso socket\index{socket} pacchetti
+destinati a server diversi, o un server ricevere su un socket\index{socket}
+pacchetti provenienti da client diversi.  Il modo più semplice di immaginarsi
+il funzionamento di UDP è quello della radio, in cui si può
+\textsl{trasmettere} e \textsl{ricevere} da più stazioni usando la stessa
+frequenza.
 
 Nonostante gli evidenti svantaggi comportati dall'inaffidabilità UDP ha il
-grande pregio della velocità che in certi casi è essenziale; inoltre si presta
-bene per le applicazioni in cui la connessione non è necessaria e
-costituirebbe solo un peso di prestazioni mentre una perdita di pacchetti può
-essere tollerata, ad esempio quelle che usano il multicasting.
+grande pregio della velocità, che in certi casi è essenziale; inoltre si
+presta bene per le applicazioni in cui la connessione non è necessaria, e
+costituirebbe solo un peso in termini di prestazioni, mentre una perdita di
+pacchetti può essere tollerata, ad esempio le applicazioni di streaming e
+quelle che usano il multicasting.
 
-\subsection{TCP: Transport Control Protocol)}
+\subsection{Transport Control Protocol (TCP)}
 \label{sec:net_tcp}
 
-Il TCP è un protocollo molto complesso, definito nell'RFC~739 e completamente
-diverso da UDP; alla base del suo design infatti non stanno semplicità e
-velocità, ma la ricerca della massima affidabilità possibile nella
-trasmissione dei dati.
+Il TCP è un protocollo molto complesso, definito
+nell'\href{http://www.ietf.org/rfc/rfc0739.txt}{RFC~739} e completamente
+diverso da UDP; alla base della sua progettazione infatti non stanno
+semplicità e velocità, ma la ricerca della massima affidabilità possibile
+nella trasmissione dei dati.
 
-La prima differenza con UDP è che TCP provvede sempre una conessione diretta
+La prima differenza con UDP è che TCP provvede sempre una connessione diretta
 fra un client e un server, attraverso la quale essi possono comunicare; per
 questo il paragone più appropriato per questo protocollo è quello del
 collegamento telefonico, in quanto prima viene stabilita una connessione fra
-due i due capi della comunicazione su cui poi viene quest'ultima viene
-effettuata.
+due i due capi della comunicazione su cui poi effettuare quest'ultima.
 
 Caratteristica fondamentale di TCP è l'affidabilità; quando i dati vengono
-inviati attraverso una connessione ne viene richiesto un ``ricevuto''
+inviati attraverso una connessione ne viene richiesto un ``\textsl{ricevuto}''
 (il cosiddetto \textit{acknowlegment}), se questo non arriva essi verranno
-ritrasmessi per un determinato numero di tentativi, intervallati da un
-periodo di tempo crescente, fino a che sarà considerata fallita o caduta la
-connessione (e generato un errore di \textit{time-out}), dopo un periodo di
-tempo che dipende dall'implementazione e che può variare far i
-quattro e i dieci minuti.
-
-Inoltre per tenere conto delle diverse condizioni in cui può trovarsi la linea
-di comunicazione TCP comprende anche un algoritmo di calcolo dinamico del
-tempo di andata e ritorno dei pacchetti (il cosiddetto RTT, 
-\textit{round-trip time}) fra un client e un server che lo rende in grado di
-adattarsi alle condizioni della rete per non generare inutili ritrasmissioni o
-cadere facilmente in timeout.
+ritrasmessi per un determinato numero di tentativi, intervallati da un periodo
+di tempo crescente, fino a che sarà considerata fallita o caduta la
+connessione (e sarà generato un errore di \textit{timeout}); il periodo di
+tempo dipende dall'implementazione e può variare far i quattro e i dieci
+minuti.
+
+Inoltre, per tenere conto delle diverse condizioni in cui può trovarsi la
+linea di comunicazione, TCP comprende anche un algoritmo di calcolo dinamico
+del tempo di andata e ritorno dei pacchetti fra un client e un server (il
+cosiddetto RTT, \textit{round-trip time}), che lo rende in grado di adattarsi
+alle condizioni della rete per non generare inutili ritrasmissioni o cadere
+facilmente in timeout.
 
 Inoltre TCP è in grado di preservare l'ordine dei dati assegnando un numero di
 sequenza ad ogni byte che trasmette. Ad esempio se un'applicazione scrive 3000
-bytes su un socket TCP, questi potranno essere spezzati dal protocollo in due
-segmenti (le unità di dati passate da TCP a IP vengono chiamate
-\textit{segment}) di 1500 bytes, di cui il primo conterrà il numero di
+byte su un socket\index{socket} TCP, questi potranno essere spezzati dal
+protocollo in due segmenti (le unità di dati passate da TCP a IP vengono
+chiamate \textit{segment}) di 1500 byte, di cui il primo conterrà il numero di
 sequenza $1-1500$ e il secondo il numero $1501-3000$. In questo modo anche se
 i segmenti arrivano a destinazione in un ordine diverso, o se alcuni arrivano
-più volte a causa di ritrasmissioni dovute alla perdita dei ricevuto,
-all'arrivo sarà comunque possibile riordinare i dati e scartare i duplicati.
+più volte a causa di ritrasmissioni dovute alla perdita degli
+\textit{acknowlegment}, all'arrivo sarà comunque possibile riordinare i dati e
+scartare i duplicati.
 
 Il protocollo provvede anche un controllo di flusso (\textit{flow control}),
 cioè specifica sempre all'altro capo della trasmissione quanti dati può
-ricevere tramite una \textit{advertised window} (letteralmente finestra
-annunciata), che indica lo spazio disponibile nel buffer di ricezione,
-cosicchè nella trasmissione non vengano inviati più dati di quelli che possono
-essere ricevuti. 
+ricevere tramite una \textit{advertised window} (letteralmente
+\textsl{finestra annunciata)}, che indica lo spazio disponibile nel buffer di
+ricezione, cosicché nella trasmissione non vengano inviati più dati di quelli
+che possono essere ricevuti.
 
 Questa finestra cambia dinamicamente diminuendo con la ricezione dei dati dal
-socket ed aumentando con la lettura di quest'ultimo da parte
+socket\index{socket} ed aumentando con la lettura di quest'ultimo da parte
 dell'applicazione, se diventa nulla il buffer di ricezione è pieno e non
 verranno accettati altri dati.  Si noti che UDP non provvede niente di tutto
-ciò per cui nulla impedisce che vengano trasmessi pacchetti ad un rate che il
-ricevitore non può sostenere.
+ciò per cui nulla impedisce che vengano trasmessi pacchetti ad un ritmo che il
+ricevente non può sostenere.
 
-Infine attraverso TCP la trasmissione è sempre bidirezionale (in inglese
-\textit{full-duplex}), è cioè possibile sia trasmettere che ricevere allo
-stesso tempo, il che poi comporta che quanto dicevamo a proposito del
-controllo di flusso e della gestione della sequenzialità dei dati viene
+Infine attraverso TCP la trasmissione è sempre bidirezionale (in inglese si
+dice che è \textit{full-duplex}). È cioè possibile sia trasmettere che
+ricevere allo stesso tempo, il che comporta che quanto dicevamo a proposito
+del controllo di flusso e della gestione della sequenzialità dei dati viene
 effettuato per entrambe le direzioni di comunicazione.
 
+%% Una descrizione più accurata del protocollo è fornita in appendice
+%% sez.~\ref{sec:tcp_protocol}.
+
+\subsection{Limiti e dimensioni riguardanti la trasmissione dei dati}
+\label{sec:net_lim_dim}
+
+Un aspetto di cui bisogna tenere conto nella programmazione di rete, e che
+ritornerà anche più avanti, è che ci sono una serie di limiti a cui la
+trasmissione dei dati attraverso i vari livelli del protocollo deve
+sottostare, limiti che è opportuno tenere presente perché in certi casi si
+possono avere delle conseguenze sul comportamento delle applicazioni.
+
+Un elenco di questi limiti, insieme ad un breve accenno alle loro origini ed
+alle eventuali implicazioni che possono avere, è il seguente:
+\begin{itemize}
+\item La dimensione massima di un pacchetto IP è di 65535 byte, compresa
+  l'intestazione. Questo è dovuto al fatto che la dimensione è indicata da un
+  campo apposito nell'header di IP che è lungo 16 bit (vedi
+  fig.~\ref{fig:IP_ipv4_head}).
+\item La dimensione massima di un pacchetto normale di IPv6 è di 65575 byte,
+  il campo apposito nell'header infatti è sempre a 16 bit, ma la dimensione
+  dell'header è fissa e di 40 byte e non è compresa nel valore indicato dal
+  suddetto campo. Inoltre IPv6 ha la possibilità di estendere la dimensione di
+  un pacchetto usando la \textit{jumbo payload option}.
+\item Molte reti fisiche hanno un MTU (\textit{maximum transfer unit}) che
+  dipende dal protocollo specifico usato al livello di connessione fisica. Il
+  più comune è quello di ethernet che è pari a 1500 byte, una serie di altri
+  valori possibili sono riportati in tab.~\ref{tab:net_mtu_values}.
+\end{itemize}
+
+Quando un pacchetto IP viene inviato su una interfaccia di rete e le sue
+dimensioni eccedono la MTU viene eseguita la cosiddetta
+\textit{frammentazione}, i pacchetti cioè vengono suddivisi\footnote{questo
+  accade sia per IPv4 che per IPv6, anche se i pacchetti frammentati sono
+  gestiti con modalità diverse, IPv4 usa un flag nell'header, IPv6 una
+  opportuna opzione, si veda sez.~\ref{sec:ipv6_protocol}.}) in blocchi più
+piccoli che possono essere trasmessi attraverso l'interfaccia.
+
+\begin{table}[!htb]
+  \centering
+  \begin{tabular}[c]{|l|c|}
+    \hline
+    \textbf{Rete} & \textbf{MTU} \\
+    \hline
+    \hline
+    Hyperlink & 65535 \\
+    Token Ring IBM (16 Mbit/sec) & 17914 \\
+    Token Ring IEEE 802.5 (4 Mbit/sec) & 4464 \\
+    FDDI & 4532 \\
+    Ethernet & 1500 \\
+    X.25 & 576 \\
+    \hline
+  \end{tabular}
+  \caption{Valori della MTU (\textit{maximum transfer unit}) per una serie di
+    reti diverse.}
+  \label{tab:net_mtu_values}
+\end{table}
+
+La MTU più piccola fra due stazioni viene in genere chiamata \textit{path
+  MTU}, che dice qual'è la lunghezza massima oltre la quale un pacchetto
+inviato da una stazione ad un'altra verrebbe senz'altro frammentato. Si tenga
+conto che non è affatto detto che la \textit{path MTU} sia la stessa in
+entrambe le direzioni, perché l'instradamento può essere diverso nei due
+sensi, con diverse tipologie di rete coinvolte.
+
+Una delle differenze fra IPv4 e IPv6 é che per IPv6 la frammentazione può
+essere eseguita solo alla sorgente, questo vuol dire che i router IPv6 non
+frammentano i pacchetti che ritrasmettono (anche se possono frammentare i
+pacchetti che generano loro stessi), mentre i router IPv4 si. In ogni caso una
+volta frammentati i pacchetti possono essere riassemblati solo alla
+destinazione.
+
+Nell'header di IPv4 è previsto il flag \texttt{DF} che specifica che il
+pacchetto non deve essere frammentato; un router che riceva un pacchetto le
+cui dimensioni eccedano quelle dell'MTU della rete di destinazione genererà un
+messaggio di errore ICMPv4 di tipo \textit{destination unreachable,
+  fragmentation needed but DF bit set}.  Dato che i router IPv6 non possono
+effettuare la frammentazione la ricezione di un pacchetto di dimensione
+eccessiva per la ritrasmissione genererà sempre un messaggio di errore ICMPv6
+di tipo \textit{packet too big}.
+
+Dato che il meccanismo di frammentazione e riassemblaggio dei pacchetti
+comporta inefficienza, normalmente viene utilizzato un procedimento, detto
+\textit{path MTU discovery} che permette di determinare il \textit{path MTU}
+fra due stazioni; per la realizzazione del procedimento si usa il flag DF di
+IPv4 e il comportamento normale di IPv6 inviando delle opportune serie di
+pacchetti (per i dettagli vedere
+l'\href{http://www.ietf.org/rfc/rfc1191.txt}{RFC~1191} per IPv4 e
+l'\href{http://www.ietf.org/rfc/rfc1981.txt}{RFC~1981} per IPv6) fintanto che
+non si hanno più errori.
+
+Il TCP usa sempre questo meccanismo, che per le implementazioni di IPv4 è
+opzionale, mentre diventa obbligatorio per IPv6.  Per IPv6 infatti, non
+potendo i router frammentare i pacchetti, è necessario, per poter comunicare,
+conoscere da subito il \textit{path MTU}.
+
+Infine TCP definisce una MSS \textit{Maximum Segment Size} che annuncia
+all'altro capo della connessione la dimensione massima dimensione del segmento
+di dati che può essere ricevuto, così da evitare la frammentazione. Di norma
+viene impostato alla dimensione della MTU dell'interfaccia meno la lunghezza
+delle intestazioni di IP e TCP, in Linux il default, mantenuto nella costante
+\const{TCP\_MSS} è 512.
+
+
+%\subsection{Il passaggio dei dati in TCP}
+%\label{sec:net_tcp_pass}
+
+%\subsection{Il passaggio dei dati in UDP}
+%\label{sec:net_udp_pass}
+
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: