Programma per scrivere su una shared memory.
[gapil.git] / ipc.tex
diff --git a/ipc.tex b/ipc.tex
index 9d8ebe6d88822dd1788a9782dd6fcaaec37e8792..c2d3c213cfbacf57bc8213e734f5039fb100ff16 100644 (file)
--- a/ipc.tex
+++ b/ipc.tex
@@ -1967,7 +1967,7 @@ Let's call it an accidental feature.
 \end{verbatim}
 con un risultato del tutto equivalente al precedente. Infine potremo chiudere
 il server inviando il segnale di terminazione con il comando \code{killall
-  mqfortuned} verficando che effettivamente la coda di messaggi viene rimossa.
+  mqfortuned} verificando che effettivamente la coda di messaggi viene rimossa.
 
 Benché funzionante questa architettura risente dello stesso inconveniente
 visto anche nel caso del precedente server basato sulle fifo; se il client
@@ -2670,7 +2670,7 @@ caso di terminazione imprevista del processo.
 L'ultima funzione (\texttt{\small 46--49}) della serie, è \func{MutexRemove},
 che rimuove il mutex. Anche in questo caso si ha un wrapper per una chiamata a
 \func{semctl} con il comando \const{IPC\_RMID}, che permette di cancellare il
-smemaforo; il valore di ritorno di quest'ultima viene passato all'indietro.
+semaforo; il valore di ritorno di quest'ultima viene passato all'indietro.
 
 Chiamare \func{MutexLock} decrementa il valore del semaforo: se questo è
 libero (ha già valore 1) sarà bloccato (valore nullo), se è bloccato la
@@ -2872,7 +2872,7 @@ un segmento di memoria condivisa 
 
 Il comando specificato attraverso l'argomento \param{cmd} determina i diversi
 effetti della funzione; i possibili valori che esso può assumere, ed il
-corripondente comportamento della funzione, sono i seguenti:
+corrispondente comportamento della funzione, sono i seguenti:
 
 \begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
 \item[\const{IPC\_STAT}] Legge le informazioni riguardo il segmento di memoria
@@ -3197,8 +3197,8 @@ l'accesso alla memoria condivisa.
 
 Una volta completata l'inizializzazione e la creazione degli oggetti di
 intercomunicazione il programma entra nel ciclo principale (\texttt{\small
-  45--54}) dove vengono eseguitw indefinitamente le attività di monitoraggio.
-Il primo passo (\texttt{\small 46}) è esguire \func{daemon} per proseguire con
+  45--54}) dove vengono eseguite indefinitamente le attività di monitoraggio.
+Il primo passo (\texttt{\small 46}) è eseguire \func{daemon} per proseguire con
 l'esecuzione in background come si conviene ad un programma demone; si noti
 che si è mantenuta, usando un valore non nullo del primo argomento, la
 directory di lavoro corrente.
@@ -3328,8 +3328,8 @@ int main(int argc, char *argv[])
     \end{lstlisting}
   \end{minipage} 
   \normalsize 
-  \caption{Codice del programma client del monitori di directory,
-    \file{ReadMonitor.c}.}
+  \caption{Codice del programma client del monitor delle proprietà di una
+    directory, \file{ReadMonitor.c}.}
   \label{fig:ipc_dirmonitor_client}
 \end{figure}
 
@@ -3361,7 +3361,7 @@ stampano i vari valori mantenuti nella memoria condivisa attraverso l'uso di
 il mutex, prima di uscire.
 
 Verifichiamo allora il funzionamento dei nostri programmi; al solito, usando
-le funzioni di libreira occorre definire opportunamente
+le funzioni di libreria occorre definire opportunamente
 \code{LD\_LIBRARY\_PATH}; poi si potrà lanciare il server con:
 \begin{verbatim}
 [piccardi@gont sources]$ ./dirmonitor ./
@@ -3419,7 +3419,7 @@ nel qual caso, ripetendo la lettura otterremo che:
 [piccardi@gont sources]$ ./readmon 
 Cannot find shared memory: No such file or directory
 \end{verbatim}%$
-e potremo verificare che anche gli oggetti di intercomunicazion e sono stati
+e potremo verificare che anche gli oggetti di intercomunicazione sono stati
 cancellati:
 \begin{verbatim}
 [piccardi@gont sources]$ ipcs
@@ -3615,7 +3615,6 @@ int FindMutex(const char *path_name)
 int LockMutex(int fd)
 {
     struct flock lock;                                /* file lock structure */
-    /* first open the file (creating it if not existent) */
     /* set flock structure */
     lock.l_type = F_WRLCK;                        /* set type: read or write */
     lock.l_whence = SEEK_SET;        /* start from the beginning of the file */
@@ -3686,53 +3685,54 @@ aprire il file da usare per il file locking, solo che in questo caso le
 opzioni di \func{open} sono tali che il file in questione deve esistere di
 già.
 
-La terza funzione (\texttt{\small 11--23}) è \func{LockMutex} e serve per
+La terza funzione (\texttt{\small 11--22}) è \func{LockMutex} e serve per
 acquisire il mutex. La funzione definisce (\texttt{\small 14}) e inizializza
-(\texttt{\small 17--20}) la struttura \var{lock} da usare per acquisire un
+(\texttt{\small 16--19}) la struttura \var{lock} da usare per acquisire un
 write lock sul file, che poi (\texttt{\small 21}) viene richiesto con
 \func{fcntl}, restituendo il valore di ritorno di quest'ultima. Se il file è
 libero il lock viene acquisito e la funzione ritorna immediatamente;
 altrimenti \func{fcntl} si bloccherà (si noti che la si è chiamata con
 \func{F\_SETLKW}) fino al rilascio del lock.
 
-La quarta funzione (\texttt{\small 24--35}) è \func{UnlockMutex} e serve a
+La quarta funzione (\texttt{\small 24--34}) è \func{UnlockMutex} e serve a
 rilasciare il mutex. La funzione è analoga alla precedente, solo che in questo
-caso si inizializza (\texttt{\small 29--32}) la struttura \var{lock} per il
-rilascio del lock, che viene effettuato (\texttt{\small 34}) con la opportuna
+caso si inizializza (\texttt{\small 28--31}) la struttura \var{lock} per il
+rilascio del lock, che viene effettuato (\texttt{\small 33}) con la opportuna
 chiamata a \func{fcntl}. Avendo usato il file locking in semantica POSIX (si
 riveda quanto detto \secref{sec:file_posix_lock}) solo il processo che ha
 precedentemente eseguito il lock può sbloccare il mutex.
 
-La quinta funzione (\texttt{\small 36--40}) è \func{RemoveMutex} e serve a
+La quinta funzione (\texttt{\small 36--39}) è \func{RemoveMutex} e serve a
 cancellare il mutex. Anche questa funzione è stata definita per mantenere una
 analogia con le funzioni basate sui semafori, e si limita a cancellare
-(\texttt{\small 39}) il file con una chiamata ad \func{unlink}. Si noti che in
+(\texttt{\small 38}) il file con una chiamata ad \func{unlink}. Si noti che in
 questo caso la funzione non ha effetto sui mutex già ottenuti con precedenti
 chiamate a \func{FindMutex} o \func{CreateMutex}, che continueranno ad essere
 disponibili fintanto che i relativi file descriptor restano aperti. Pertanto
 per rilasciare un mutex occorrerà prima chiamare \func{UnlockMutex} oppure
 chiudere il file usato per il lock.
 
-La sesta funzione (\texttt{\small 41--56}) è \func{ReadMutex} e serve a
-leggere lo stato del mutex. In questo caso si prepara (\texttt{\small 47--50})
+La sesta funzione (\texttt{\small 41--55}) è \func{ReadMutex} e serve a
+leggere lo stato del mutex. In questo caso si prepara (\texttt{\small 46--49})
 la solita struttura \var{lock} come l'acquisizione del lock, ma si effettua
-(\texttt{\small 52}) la chiamata a \func{fcntl} usando il comando
+(\texttt{\small 51}) la chiamata a \func{fcntl} usando il comando
 \const{F\_GETLK} per ottenere lo stato del lock, e si restituisce
-(\texttt{\small 53}) il valore di ritorno in caso di errore, ed il valore del
-campo \var{l\_type} (che descrive lo stato del lock) altrimenti. Per questo
-motivo la funzione restituirà -1 in caso di errore e uno dei due valori
-\const{F\_UNLCK} o \const{F\_WRLCK}\footnote{non si dovrebbe mai avere il
-  terzo valore possibile, \const{F\_RDLCK}, dato che la nostra interfaccia usa
-  solo i write lock. Però è sempre possibile che siano richiesti altri lock
-  sul file al di fuori dell'interfaccia, nel qual caso si potranno avere,
-  ovviamente, interferenze indesiderate.} in caso di successo, ad indicare che
-il mutex è, rispettivamente, libero o occupato.
+(\texttt{\small 52}) il valore di ritorno in caso di errore, ed il valore del
+campo \var{l\_type} (che descrive lo stato del lock) altrimenti
+(\texttt{\small 54}). Per questo motivo la funzione restituirà -1 in caso di
+errore e uno dei due valori \const{F\_UNLCK} o \const{F\_WRLCK}\footnote{non
+  si dovrebbe mai avere il terzo valore possibile, \const{F\_RDLCK}, dato che
+  la nostra interfaccia usa solo i write lock. Però è sempre possibile che
+  siano richiesti altri lock sul file al di fuori dell'interfaccia, nel qual
+  caso si potranno avere, ovviamente, interferenze indesiderate.} in caso di
+successo, ad indicare che il mutex è, rispettivamente, libero o occupato.
 
 Basandosi sulla semantica dei file lock POSIX valgono tutte le considerazioni
 relative al comportamento di questi ultimi fatte in
 \secref{sec:file_posix_lock}; questo significa ad esempio che, al contrario di
 quanto avveniva con l'interfaccia basata sui semafori, chiamate multiple a
-\func{UnlockMutex} o \func{LockMutex} non hanno nessun inconveniente.
+\func{UnlockMutex} o \func{LockMutex} non si cumulano e non danno perciò
+nessun inconveniente.
 
 
 \subsection{Il \textit{memory mapping} anonimo}
@@ -3744,7 +3744,7 @@ una valida alternativa alle code di messaggi; nella stessa situazione si pu
 evitare l'uso di una memoria condivisa facendo ricorso al cosiddetto
 \textit{memory mapping} anonimo.
 
-Abbiamo visto in \secref{sec:file_memory_map} che è possibile mappare il
+In \secref{sec:file_memory_map} abbiamo visto come sia possibile mappare il
 contenuto di un file nella memoria di un processo, e che, quando viene usato
 il flag \const{MAP\_SHARED}, le modifiche effettuate al contenuto del file
 vengono viste da tutti i processi che lo hanno mappato. Utilizzare questa
@@ -3763,8 +3763,9 @@ il \textit{memory mapping} anonimo.\footnote{nei sistemi derivati da SysV una
   \file{/dev/zero}. In tal caso i valori scritti nella regione mappata non
   vengono ignorati (come accade qualora si scriva direttamente sul file), ma
   restano in memoria e possono essere riletti secondo le stesse modalità usate
-  nel \textit{memory mapping} anonimo.} Un esempio di utilizzo di questa
-tecnica è mostrato in 
+  nel \textit{memory mapping} anonimo.} Vedremo come utilizzare questa tecnica
+più avanti, quando realizzeremo una nuova versione del monitor visto in
+\secref{sec:ipc_sysv_shm} che possa restituisca i risultati via rete.
 
 
 
@@ -3778,29 +3779,59 @@ meccanismi di comunicazione, che vanno sotto il nome di POSIX IPC, definendo
 una interfaccia completamente nuova, che tratteremo in questa sezione.
 
 
-
 \subsection{Considerazioni generali}
 \label{sec:ipc_posix_generic}
 
-Il Linux non tutti gli oggetti del POSIX IPC sono supportati nel kernel
-ufficiale; solo la memoria condivisa è presente, ma solo a partire dal kernel
-2.4.x, per gli altri oggetti esistono patch e librerie non ufficiali.
-Nonostante questo è importante esaminare questa interfaccia per la sua netta
-superiorità nei confronti di quella del \textit{SysV IPC}.
+In Linux non tutti gli oggetti del POSIX IPC sono pienamente supportati nel
+kernel ufficiale; solo la memoria condivisa è presente con l'interfaccia
+completa, ma solo a partire dal kernel 2.4.x, i semafori sono forniti dalle
+\acr{glibc} nella sezione che implementa i thread POSIX, le code di messaggi
+non hanno alcun tipo di supporto ufficiale.  Per queste ultime esistono
+tuttavia dei patch e una libreria aggiuntiva.
+
+La caratteristica fondamentale dell'interfaccia POSIX è l'abbandono dell'uso
+degli identificatori e delle chiavi visti nel SysV IPC, per passare ai
+\textit{Posix IPC names}\index{Posix IPC names}, che sono sostanzialmente
+equivalenti ai nomi dei file. Tutte le funzioni che creano un oggetto di IPC
+Posix prendono come primo argomento una stringa che indica uno di questi nomi;
+lo standard è molto generico riguardo l'implementazione, ed i nomi stessi
+possono avere o meno una corrispondenza sul filesystem; tutto quello che è
+richiesto è che:
+\begin{itemize}
+\item i nomi devono essere conformi alle regole che caratterizzano i
+  \textit{pathname}, in particolare non essere più lunghi di \const{PATH\_MAX}
+  byte e terminati da un carattere nullo.
+\item se il nome inizia per una \texttt{/} chiamate differenti allo stesso
+  nome fanno riferimento allo stesso oggetto, altrimenti l'interpretazione del
+  nome dipende dall'implementazione.
+\item l'interpretazione di ulteriori \texttt{/} presenti nel nome dipende
+  dall'implementazione.
+\end{itemize}
+
+Il comportamento delle funzioni è pertanto subordinato in maniera quasi
+completa alla relativa implementazione.\footnote{tanto che Stevens in
+  \cite{UNP2} cita questo caso come un esempio della maniera standard per
+  consentire soluzioni non standard.} Nel caso di Linux per quanto riguarda la
+memoria condivisa, tutto viene creato nella directory \file{/dev/shm}, ed i
+nomi sono presi come pathname assoluto (comprendente eventuali sottodirectory)
+rispetto a questa radice (per maggiori dettagli si veda quanto illustrato in
+\secref{sec:ipc_posix_shm}). Lo stesso accade per l'implementazione
+sperimentale delle code di messaggi, che però fa riferimento alla directory
+\file{/dev/mqueue}.
 
 
 \subsection{Code di messaggi}
 \label{sec:ipc_posix_mq}
 
-Le code di messaggi non sono ancora supportate nel kernel
-ufficiale;\footnote{esiste però una proposta di implementazione di Krzysztof
-  Benedyczak, a partire dal kernel 2.5.50.}  inoltre esse possono essere
-implementate, usando la memoria condivisa ed i mutex, con funzioni di
-libreria. In generale, come le corrispettive del SysV IPC, sono poco usate,
-dato che i socket\index{socket}, nei casi in cui sono sufficienti, sono più
-comodi, e negli altri casi la comunicazione può essere gestita direttamente
-con mutex e memoria condivisa. Per questo ci limiteremo ad una descrizione
-essenziale.
+Le code di messaggi non sono ancora supportate nel kernel ufficiale, esiste
+però una implementazione sperimentale di Michal Wronski e Krzysztof
+Benedyczak,\footnote{i patch al kernel e la relativa libreria possono essere
+  trovati \href{http://www.mat.uni.torun.pl/~wrona/posix_ipc}
+  {http://www.mat.uni.torun.pl/\~{}wrona/posix\_ipc}.}.  In generale, come le
+corrispettive del SysV IPC, sono poco usate, dato che i socket\index{socket},
+nei casi in cui sono sufficienti, sono più comodi, e negli altri casi la
+comunicazione può essere gestita direttamente con mutex e memoria condivisa.
+
 
 
 
@@ -3809,16 +3840,50 @@ essenziale.
 
 Dei semafori POSIX esistono sostanzialmente due implementazioni; una è fatta a
 livello di libreria ed è fornita dalla libreria dei thread; questa però li
-implementa solo a livello di thread e non di processi. Esiste un'altra
-versione, realizzata da Konstantin Knizhnik, che reimplementa l'interfaccia
-POSIX usando i semafori di SysV IPC. 
+implementa solo a livello di thread e non di processi.\footnote{questo
+  significa che i semafori sono visibili solo all'interno dei thread creati da
+  un singolo processo, e non possono essere usati come meccanismo di
+  sincronizzazione fra processi diversi.} Esiste però anche una libreria
+realizzata da Konstantin Knizhnik, che reimplementa l'interfaccia POSIX usando
+i semafori di SysV IPC, e che non vale comunque la pena di usare visto che i
+problemi sottolineati in \secref{sec:ipc_sysv_sem} rimangono, anche se
+mascherati.
+
+
 
 
 \subsection{Memoria condivisa}
 \label{sec:ipc_posix_shm}
 
 La memoria condivisa è l'unico degli oggetti di IPC POSIX già presente nel
-kernel ufficiale. 
+kernel ufficiale. Per poterla utilizzare occorre abilitare il filesystem
+\texttt{tmpfs}, uno speciale filesystem che mantiene tutti i suoi contenuti in
+memoria,\footnote{il filesystem \texttt{tmpfs} è diverso da un normale RAM
+  disk, anch'esso disponibile attraverso il filesystem \texttt{ramfs}, proprio
+  perché realizza una interfaccia utilizzabile anche per la memoria condivisa;
+  esso infatti non ha dimensione fissa, ed usa direttamente la cache interna
+  del kernel (viene usato anche per la SysV shared memory). In più i suoi
+  contenuti, essendo trattati direttamente dalla memoria
+  virtuale\index{memoria virtuale} e possono essere salvati sullo swap
+  automaticamente.} abilitando l'opzione \texttt{CONFIG\_TMPFS} in fase di
+compilazione del kernel, e montando il filesystem aggiungendo una riga tipo:
+\begin{verbatim}
+tmpfs   /dev/shm        tmpfs   defaults        0      0
+\end{verbatim}
+ad \file{/etc/fstab}, oppure dove si preferisce con un comando del
+tipo:\footnote{il filesystem riconosce, oltre quelle mostrate, le opzioni
+  \texttt{uid} e \texttt{gid} che identificano rispettivamente utente e gruppo
+  cui assegnarne la titolarità, e \texttt{nr\_blocks} che permette di
+  specificarne la dimensione in blocchi, cioè in multipli di
+  \const{PAGECACHE\_SIZE}.}
+\begin{verbatim}
+mount -t tmpfs -o size=10G,nr_inodes=10k,mode=700 tmpfs /mytmpfs
+\end{verbatim}
+
+
+ la memoria
+condivisa è trattata come un filesystem separato, con tutte le caratteristiche
+di un qualunque filesystem,
 
 
 %%% Local Variables: