Corrette speigazione sul server con le message queue
[gapil.git] / ipc.tex
diff --git a/ipc.tex b/ipc.tex
index 6ae11a30a8e157e0f0d181583034dcb47f7489c9..a17bf4a0a5567930903cb7409d8f25f37359d737 100644 (file)
--- a/ipc.tex
+++ b/ipc.tex
@@ -50,13 +50,13 @@ Crea una coppia di file descriptor associati ad una \textit{pipe}.
     \macro{ENFILE} e \macro{EFAULT}.}
 \end{prototype}
 
-La funzione restituisce la coppia di file descriptor nell'array
+La funzione restituisce la coppia di file descriptor nel vettore
 \param{filedes}; il primo è aperto in lettura ed il secondo in scrittura. Come
 accennato concetto di funzionamento di una pipe è semplice: quello che si
 scrive nel file descriptor aperto in scrittura viene ripresentato tale e quale
 nel file descriptor aperto in lettura. I file descriptor infatti non sono
 connessi a nessun file reale, ma ad un buffer nel kernel, la cui dimensione è
-specificata dalla costante \macro{PIPE\_BUF}, (vedi
+specificata dal parametro di sistema \macro{PIPE\_BUF}, (vedi
 \secref{sec:sys_file_limits}). Lo schema di funzionamento di una pipe è
 illustrato in \figref{fig:ipc_pipe_singular}, in cui sono illustrati i due
 capi della pipe, associati a ciascun file descriptor, con le frecce che
@@ -124,7 +124,7 @@ consiste nell'inviare l'output di un processo (lo standard output) sull'input
 di un'altro. Realizzeremo il programma di esempio nella forma di un
 \textit{CGI}\footnote{Un CGI (\textit{Common Gateway Interface}) è un
   programma che permette la creazione dinamica di un oggetto da inserire
-  all'interno di una pagina HTML.}  per apache, che genera una immagine JPEG
+  all'interno di una pagina HTML.}  per Apache, che genera una immagine JPEG
 di un codice a barre, specificato come parametro di input.
 
 Un programma che deve essere eseguito come \textit{CGI} deve rispondere a
@@ -376,7 +376,7 @@ originarie del codice a barre e produce un JPEG di dimensioni corrette.
 Questo approccio però non funziona, per via di una delle caratteristiche
 principali delle pipe. Per poter effettuare la conversione di un PDF infatti è
 necessario, per la struttura del formato, potersi spostare (con \func{lseek})
-all'interno del file da convertire; se si eseguela conversione con \cmd{gs} su
+all'interno del file da convertire; se si esegue la conversione con \cmd{gs} su
 un file regolare non ci sono problemi, una pipe però è rigidamente
 sequenziale, e l'uso di \func{lseek} su di essa fallisce sempre con un errore
 di \macro{ESPIPE}, rendendo impossibile la conversione.  Questo ci dice che in
@@ -516,8 +516,8 @@ operazione che avr
 apertura (bloccante e non bloccante); questo può essere utilizzato per aprire
 comunque una fifo in scrittura anche se non ci sono ancora processi il
 lettura; è possibile anche usare la fifo all'interno di un solo processo, nel
-qual caso però occorre stare molto attenti alla possibili
-deadlock.\footnote{se si cerca di leggere da una fifo che non contiene dati si
+qual caso però occorre stare molto attenti alla possibili situazioni di
+stallo.\footnote{se si cerca di leggere da una fifo che non contiene dati si
   avrà un deadlock immediato, dato che il processo si blocca e non potrà
   quindi mai eseguire le funzioni di scrittura.}
 
@@ -558,7 +558,7 @@ leggerli, quando i dati inviati sono destinati a loro.
 Per risolvere questo problema, si può usare un'architettura come quella
 illustrata in \figref{fig:ipc_fifo_server_arch} in cui i client inviano le
 richieste al server su una fifo nota mentre le risposte vengono reinviate dal
-server a ciascuno di essi su una fifo temporanea creata per l'occazione.
+server a ciascuno di essi su una fifo temporanea creata per l'occasione.
 
 \begin{figure}[htb]
   \centering
@@ -584,41 +584,55 @@ diverso da quelli preimpostati. Il codice completo 
   \footnotesize \centering
   \begin{minipage}[c]{15cm}
     \begin{lstlisting}{}
+char *fifoname = "/tmp/fortune.fifo";
 int main(int argc, char *argv[])
 {
-    int i, n = 10;
-    char *fortunefilename = "/usr/share/games/fortunes/kids";
-    char *fifoname = "/tmp/fortune.fifo";
+/* Variables definition */
+    int i, n = 0;
+    char *fortunefilename = "/usr/share/games/fortunes/italia";
     char **fortune;
     char line[80];
     int fifo_server, fifo_client;
     int nread;
     ...
     if (n==0) usage();          /* if no pool depth exit printing usage info */
+    Signal(SIGTERM, HandSIGTERM);            /* set handlers for termination */
+    Signal(SIGINT, HandSIGTERM);
+    Signal(SIGQUIT, HandSIGTERM);
     i = FortuneParse(fortunefilename, fortune, n);          /* parse phrases */
-    /* 
-     * Comunication section 
-     */
     if (mkfifo(fifoname, 0622)) {  /* create well known fifo if does't exist */
         if (errno!=EEXIST) {
             perror("Cannot create well known fifo");
-            exit(-1);
+            exit(1);
         }
     }
+    /* open fifo two times to avoid EOF */
+    fifo_server = open(fifoname, O_RDONLY);
+    if (fifo_server < 0) {
+        perror("Cannot open read only well known fifo");
+        exit(1);
+    }
+    if (open(fifoname, O_WRONLY) < 0) {                        
+        perror("Cannot open write only well known fifo");
+        exit(1);
+    }
+    /* Main body: loop over requests */
     while (1) {
-        fifo_server = open(fifoname, O_RDONLY);      /* open well known fifo */
-        if (fifo_server < 0) {
-            perror("Cannot open well known fifo");
-            exit(-1);
-        }
         nread = read(fifo_server, line, 79);                 /* read request */
-        line[nread] = 0;
+        if (nread < 0) {
+            perror("Read Error");
+            exit(1);
+        }
+        line[nread] = 0;                       /* terminate fifo name string */
         n = random() % i;                             /* select random value */
         fifo_client = open(line, O_WRONLY);              /* open client fifo */
+        if (fifo_client < 0) {
+            perror("Cannot open");
+            exit(1);
+        }
         nread = write(fifo_client,                           /* write phrase */
                       fortune[n], strlen(fortune[n])+1);
-        close(fifo_client);                         /* close well known fifo */
-        close(fifo_server);                             /* close client fifo */
+        close(fifo_client);                             /* close client fifo */
     }
 }
     \end{lstlisting}
@@ -629,57 +643,231 @@ int main(int argc, char *argv[])
   \label{fig:ipc_fifo_server}
 \end{figure}
 
-Il server richiede (\texttt{\small 11}) che sia stata impostata una dimensione
-dell'insieme delle frasi non nulla, stampando, nel caso ciò non avvenga, un
-messaggio apposito ed uscendo. Poi (\texttt{\small 12}) effettua la chiamata
-alla funzione \code{FortuneParse} che legge dal file specificato in
-\var{fortunefilename} le prime \var{n} frasi e le memorizza nel vettore di
-puntatori \var{fortune}. Il codice della funzione non è riportato, in quanto
-non direttamente attinente allo scopo dell'esempio, lo si può trovare nel file
-\file{FortuneParse.c} allegato coi sorgenti degli esempi.
-
-Il passo successivo \texttt{\small 16--21}) è quello di creare, se non esiste
-già, la fifo nota sulla quale il server ascolterà le richieste, qualora si
-riscontri un errore il server uscirà (escludendo ovviamente il caso in cui la
-funzione \func{mkfifo} fallisce per la precedente esistenza della fifo. 
-
-Fatto questo si entra nel ciclo principale del programma \texttt{\small
-  22--36}), che viene eseguito indefinitamente (l'uscita del server deve
-essere effettuata tramite segnale), e che provvede a fornire le risposte ai
-client. Il server è progettato per accettare le richieste dai client che
-devono scrivere il nome della fifo sulla quale vogliono ricevere la risposta
-sulla fifo su cui il server è in ascolto.
-
-Il primo passo è aprire in lettura la fifo (\texttt{\small 23}), se nessun
-client ha effettuato una richiesta la fifo non ha capi aperti in scrittura, e
-pertanto il server si bloccherà. Una volta che un client ha aperto la fifo in
-scrittura il server si sbloccherà ed effetturà la lettura (\texttt{\small 28})
-della richiesta del client (nel caso limitata a 79 byte).
-
-Dopo di che verrà calcolato (\texttt{\small 30}) un numero casuale nel range
-delle frasi disponibili nella nostra lista, e verrà aperta (\texttt{\small
-  31}) la fifo sulla quale il client vuole ricevere la risposta, che sarà poi
-scritta (\texttt{\small 32}). Dopo di che \texttt{\small 34--35}) entrambe le
-fifo verranno chiuse.
+Il server richiede (\texttt{\small 12}) che sia stata impostata una dimensione
+dell'insieme delle frasi non nulla, dato che l'inizializzazione del vettore
+\var{fortune} avviene solo quando questa dimensione viene specificata, la
+presenza di un valore nullo provoca l'uscita dal programma attraverso la
+routine (non riportata) che ne stampa le modalità d'uso.  Dopo di che installa
+(\texttt{\small 13--15}) la funzione che gestisce i segnali di interruzione
+(anche questa non è riportata in \figref{fig:ipc_fifo_server}) che si limita a
+rimuovere dal filesystem la fifo usata dal server per comunicare.
+
+Terminata l'inizializzazione (\texttt{\small 16}) si effettua la chiamata alla
+funzione \code{FortuneParse} che legge dal file specificato in
+\var{fortunefilename} le prime \var{n} frasi e le memorizza (allocando
+dinamicamente la memoria necessaria) nel vettore di puntatori \var{fortune}.
+Anche il codice della funzione non è riportato, in quanto non direttamente
+attinente allo scopo dell'esempio.
+
+Il passo successivo (\texttt{\small 17--22}) è quello di creare con
+\func{mkfifo} la fifo nota sulla quale il server ascolterà le richieste,
+qualora si riscontri un errore il server uscirà (escludendo ovviamente il caso
+in cui la funzione \func{mkfifo} fallisce per la precedente esistenza della
+fifo).
+
+Una volta che si è certi che la fifo di ascolto esiste si procede
+(\texttt{\small 23--32}) alla sua apertura. Questo viene fatto due volte
+per evitare di dover gestire all'interno del ciclo principale il caso in cui
+il server è in ascolto ma non ci sono client che effettuano richieste.
+Si ricordi infatti che quando una fifo è aperta solo dal capo in lettura,
+l'esecuzione di \func{read} ritorna con zero byte (si ha cioè una condizione
+di end-of-file).
+
+Nel nostro caso la prima apertura si bloccherà fintanto che un qualunque
+client non apre a sua volta la fifo nota in scrittura per effettuare la sua
+richiesta. Pertanto all'inizio non ci sono problemi, il client però, una volta
+ricevuta la risposta, uscirà, chiudendo tutti i file aperti, compresa la fifo.
+A questo punto il server resta (se non ci sono altri client che stanno
+effettuando richieste) con la fifo chiusa sul lato in lettura e a questo punto
+\func{read} non si bloccherà in attesa di input, ma ritornerà in continuazione
+restituendo un end-of-file.\footnote{Si è usata questa tecnica per
+  compatibilità, Linux infatti supporta l'apertura delle fifo in
+  lettura/scrittura, per cui si sarebbe potuto effettuare una singola apertura
+  con \macro{O\_RDWR}, la doppia apertura comunque ha il vantaggio che non si
+  può scrivere per errore sul capo aperto in sola lettura.}
+
+Per questo motivo, dopo aver eseguito l'apertura in lettura (\texttt{\small
+  24--28}),\footnote{di solito si effettua l'apertura del capo in lettura in
+  modalità non bloccante, per evitare il rischio di uno stallo (se nessuno
+  apre la fifo in scrittura il processo non ritornerà mai dalla \func{open})
+  che nel nostro caso non esiste, mentre è necessario potersi bloccare in
+  lettura in attesa di una richiesta.} si esegue una seconda apertura in
+scrittura (\texttt{\small 29--32}), scartando il relativo file descriptor che
+non sarà mai usato, ma lasciando la fifo comunque aperta anche in scrittura,
+cosicché le successive possano bloccarsi.
+
+A questo punto si può entrare nel ciclo principale del programma che fornisce
+le risposte ai client (\texttt{\small 34--50}), che viene eseguito
+indefinitamente (l'uscita del server viene effettuata inviando un segnale, in
+modo da passare attraverso la routine di chiusura che cancella la fifo). 
+
+Il server è progettato per accettare come richieste dai client delle stringhe
+che contengono il nome della fifo sulla quale deve essere inviata la risposta.
+Per cui prima (\texttt{\small 35--39}) si esegue la lettura dalla stringa di
+richiesta dalla fifo nota (che a questo punto si bloccherà tutte le volte che
+non ci sono richieste). Dopo di che, una volta terminata la stringa
+(\texttt{\small 40}) e selezionato (\texttt{\small 41}) un numero casuale per
+ricavare la frase da inviare, si procederà (\texttt{\small 42--46})
+all'apertura della fifo per la risposta, che \texttt{\small 47--48}) poi vi
+sarà scritta. Infine (\texttt{\small 49}) si chiude la fifo di risposta che
+non serve più. 
+
+Il codice del client è invece riportato in \figref{fig:ipc_fifo_client}, anche
+in questo caso si è omessa la gestione delle opzioni e la funzione che stampa
+a video le informazioni di utilizzo ed esce, riportando solo la sezione
+principale del programma e le definizioni delle variabili. Il codice completo
+è nel file \file{FortuneClient.c} dei sorgenti allegati.
 
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}{}
+int main(int argc, char *argv[])
+{
+/* Variables definition */
+    int n = 0;
+    char *fortunefilename = "/tmp/fortune.fifo";
+    char line[80];
+    int fifo_server, fifo_client;
+    char fifoname[80];
+    int nread;
+    char buffer[PIPE_BUF];
+    ...
+    snprintf(fifoname, 80, "/tmp/fortune.%d", getpid());     /* compose name */
+    if (mkfifo(fifoname, 0622)) {                        /* open client fifo */
+        if (errno!=EEXIST) {
+            perror("Cannot create well known fifo");
+            exit(-1);
+        }
+    }
+    fifo_server = open(fortunefilename, O_WRONLY);       /* open server fifo */
+    if (fifo_server < 0) {
+        perror("Cannot open well known fifo");
+        exit(-1);
+    }
+    nread = write(fifo_server, fifoname, strlen(fifoname)+1);  /* write name */
+    close(fifo_server);                                 /* close server fifo */
+    fifo_client = open(fifoname, O_RDONLY);              /* open client fifo */
+    if (fifo_client < 0) {
+        perror("Cannot open well known fifo");
+        exit(-1);
+    }
+    nread = read(fifo_client, buffer, sizeof(buffer));        /* read answer */
+    printf("%s", buffer);                                   /* print fortune */
+    close(fifo_client);                                      /* close client */
+    close(fifo_server);                                      /* close server */
+    unlink(fifoname);                                  /* remove client fifo */
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del client di \textit{fortunes}
+    basato sulle fifo.}
+  \label{fig:ipc_fifo_client}
+\end{figure}
+
+La prima istruzione (\texttt{\small 12}) compone il nome della fifo che dovrà
+essere utilizzata per ricevere la risposta dal server.  Si usa il \acr{pid}
+del processo per essere sicuri di avere un nome univoco; dopo di che
+(\texttt{\small 13-18}) si procede alla creazione del relativo file, uscendo
+in caso di errore (a meno che il file non sia già presente sul filesystem).
+
+A questo punto il client può effettuare l'interrogazione del server, per
+questo prima si apre la fifo nota (\texttt{\small 19--23}), e poi ci si scrive
+(\texttt{\small 24}) la stringa composta in precedenza, che contiene il nome
+della fifo da utilizzare per la risposta. Infine si richiude la fifo del
+server che a questo punto non serve più (\texttt{\small 25}).
+
+Inoltrata la richiesta si può passare alla lettura della risposta; anzitutto
+si apre (\texttt{\small 26--30}) la fifo appena creata, da cui si deve
+riceverla, dopo di che si effettua una lettura (\texttt{\small 31})
+nell'apposito buffer; si è supposto, come è ragionevole, che le frasi inviate
+dal server siano sempre di dimensioni inferiori a \macro{PIPE\_BUF},
+tralasciamo la gestione del caso in cui questo non è vero. Infine si stampa
+(\texttt{\small 32}) a video la risposta, si chiude (\texttt{\small 33}) la
+fifo e si cancella (\texttt{\small 34}) il relativo file.
+Si noti come la fifo per la risposta sia stata aperta solo dopo aver inviato
+la richiesta, se non si fosse fatto così si avrebbe avuto uno stallo, in
+quanto senza la richiesta, il server non avrebbe potuto aprirne il capo in
+scrittura e l'apertura si sarebbe bloccata indefinitamente.
 
 Benché il nostro sistema client-server funzioni, la sua struttura è piuttosto
 complessa e continua ad avere vari inconvenienti\footnote{lo stesso Stevens,
   che esamina questa architettura in \cite{APUE}, nota come sia impossibile
   per il server sapere se un client è andato in crash, con la possibilità di
-  far restare le fifo temporanee sul filesystem, come sia necessario
+  far restare le fifo temporanee sul filesystem, di come sia necessario
   intercettare \macro{SIGPIPE} dato che un client può terminare dopo aver
-  fatto una richiesta, ma prima che la risposta sia inviata, e come occorra
-  gestire il caso in cui non ci sono client attivi (e la lettura dalla fifo
-  nota restituisca al serve un end-of-file.}; in generale infatti
-l'interfaccia delle fifo non è adatta a risolvere questo tipo di problemi, che
-possono essere affrontati in maniera più semplice ed efficace o usando i
+  fatto una richiesta, ma prima che la risposta sia inviata (cosa che nel
+  nostro esempio non è stata fatta).}; in generale infatti l'interfaccia delle
+fifo non è adatta a risolvere questo tipo di problemi, che possono essere
+affrontati in maniera più semplice ed efficace o usando i
 \textit{socket}\index{socket} (che tratteremo in dettaglio a partire da
 \capref{cha:socket_intro}) o ricorrendo a meccanismi di comunicazione diversi,
 come quelli che esamineremo in seguito.
 
 
 
+\subsection{La funzione \func{socketpair}}
+\label{sec:ipc_socketpair}
+
+Un meccanismo di comunicazione molto simile alle pipe, ma che non presenta il
+problema della unidirezionalità del flusso dei dati, è quello dei cosiddetti
+\textsl{socket locali} (o \textit{Unix domain socket}). Tratteremo l'argomento
+dei \textit{socket} in \capref{cha:socket_intro},\footnote{si tratta comunque
+  di oggetti di comunicazione che, come le pipe, sono utilizzati attraverso
+  dei file descriptor.} nell'ambito dell'interfaccia generale che essi
+forniscono per la programmazione di rete; e vedremo anche
+(in~\secref{sec:sock_sa_local}) come si possono definire dei file speciali (di
+tipo \textit{socket}, analoghi a quello associati alle fifo) cui si accede
+però attraverso quella medesima interfaccia; vale però la pena esaminare qui
+una modalità di uso dei socket locali\footnote{la funzione \func{socketpair} è
+  stata introdotta in BSD4.4, ma è supportata in genere da qualunque sistema
+  che fornisca l'interfaccia dei socket.} che li rende sostanzialmente
+identici ad una pipe bidirezionale.
+
+La funzione \func{socketpair} infatti consente di creare una coppia di file
+descriptor connessi fra di loro (tramite un socket, appunto), senza dover
+ricorrere ad un file speciale sul filesystem, i descrittori sono del tutto
+analoghi a quelli che si avrebbero con una chiamata a \func{pipe}, con la sola
+differenza è che in questo caso il flusso dei dati può essere effettuato in
+emtrambe le direzioni. Il prototipo della funzione è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/socket.h} 
+  
+  \funcdecl{int socketpair(int domain, int type, int protocol, int sv[2])}
+  
+  Crea una coppia di socket connessi fra loro.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\macro{EAFNOSUPPORT}] I socket locali non sono supportati.
+  \item[\macro{EPROTONOSUPPORT}] Il protocollo specificato non è supportato.
+  \item[\macro{EOPNOTSUPP}] Il protocollo specificato non supporta la
+  creazione di coppie di socket.
+  \end{errlist}
+  ed inoltre \macro{EMFILE},  \macro{EFAULT}.
+}
+\end{functions}
+
+La funzione restituisce in \param{sv} la coppia di descrittori connessi fra di
+loro: quello che si scrive su uno di essi sarà ripresentato in input
+sull'altro e viceversa. I parametri \param{domain}, \param{type} e
+\param{protocol} derivano dall'interfaccia dei socket (che è quella che
+fornisce il substrato per connettere i due descrittori), ma in questo caso i
+soli valori validi che possono essere specificati sono rispettivamente
+\macro{AF\_UNIX}, \macro{SOCK\_STREAM} e \macro{0}.
+
+L'utilità di chiamare questa funzione per evitare due chiamate a \func{pipe}
+può sembrare limitata; in realtà l'utilizzo di questa funzione (e dei socket
+locali in generale) permette di trasmettere attraverso le linea non solo dei
+dati, ma anche dei file descriptor: si può cioè passare da un processo ad un
+altro un file descriptor, con una sorta di duplicazione dello stesso non
+all'interno di uno stesso processo, ma fra processi distinti (torneremo su
+questa funzionalità in \secref{sec:xxx_fd_passing}). 
+
+
 \section{La comunicazione fra processi di System V}
 \label{sec:ipc_sysv}
 
@@ -708,29 +896,35 @@ in uso.
 
 Questo comporta due problemi: il primo è che, al contrario di quanto avviene
 per pipe e fifo, la memoria allocata per questi oggetti non viene rilasciata
-automaticamente quando nessuno li vuole più utilizzare, ed essi devono essere
-cancellati esplicitamente, se non si vuole che restino attivi fino al riavvio
-del sistema. Il secondo è che, dato che non c'è un contatore di riferimenti,
+automaticamente quando non c'è più nessuno che li utilizzi, ed essi devono
+essere cancellati esplicitamente, se non si vuole che restino attivi fino al
+riavvio del sistema. Il secondo problema è che, dato che non c'è, come per i
+file, un contatore del numero di riferimenti che ne indichi l'essere in uso,
 essi possono essere cancellati anche se ci sono dei processi che li stanno
 utilizzando, con tutte le conseguenze (negative) del caso.
 
-Gli oggetti usati nel System V IPC vengono creati direttamente dal kernel, e
-sono accessibili solo specificando il relativo \textsl{identificatore}. Questo
-è un numero progressivo (un po' come il \acr{pid} dei processi) che il kernel
-assegna a ciascuno di essi quanto vengono creati (sul prodedimento di
-assegnazione torneremo in \secref{sec:ipc_sysv_id_use}). L'identificatore
-viene restituito dalle funzioni che creano l'oggetto, ed è quindi locale al
-processo che le ha eseguite. Dato che l'identificatore viene assegnato
-dinamicamente dal kernel non è possibile prevedere quale sarà, ne utilizzare
-un qualche valore statico, si pone perciò il problema di come processi diversi
-possono accedere allo stesso oggetto.
-
-Per risolvere il problema il kernel associa a ciascun oggetto una struttura
-\var{ipc\_perm}; questa contiene una \textsl{chiave}, identificata da una
-variabile del tipo primitivo \type{key\_t}, che viene specificata in fase di
-creazione e tramite la quale è possibile ricavare l'identificatore. La
+Un'ulteriore caratterestica negativa è che gli oggetti usati nel System V IPC
+vengono creati direttamente dal kernel, e sono accessibili solo specificando
+il relativo \textsl{identificatore}. Questo è un numero progressivo (un po'
+come il \acr{pid} dei processi) che il kernel assegna a ciascuno di essi
+quanto vengono creati (sul procedimento di assegnazione torneremo in
+\secref{sec:ipc_sysv_id_use}). L'identificatore viene restituito dalle
+funzioni che creano l'oggetto, ed è quindi locale al processo che le ha
+eseguite. Dato che l'identificatore viene assegnato dinamicamente dal kernel
+non è possibile prevedere quale sarà, né utilizzare un qualche valore statico,
+si pone perciò il problema di come processi diversi possono accedere allo
+stesso oggetto.
+
+Per risolvere il problema nella struttura \var{ipc\_perm} che il kernel
+associa a ciascun oggetto, viene mantenuto anche un campo apposito che
+contiene anche una \textsl{chiave}, identificata da una variabile del tipo
+primitivo \type{key\_t}, da specificare in fase di creazione dell'oggetto, e
+tramite la quale è possibile ricavare l'identificatore.\footnote{in sostanza
+  si sposta il problema dell'accesso dalla classificazione in base
+  all'identificatore alla classificazione in base alla chiave, una delle tante
+  complicazioni inutili presenti nell'IPC di System V.} Oltre la chiave, la
 struttura, la cui definizione è riportata in \figref{fig:ipc_ipc_perm},
-contiene anche le varie proprietà associate all'oggetto. 
+mantiene varie proprietà ed informazioni associate all'oggetto.
 
 \begin{figure}[!htb]
   \footnotesize \centering
@@ -758,13 +952,13 @@ associato ad un oggetto ed accedervi. Il problema che sorge a questo punto 
 come devono fare per accordarsi sull'uso di una stessa chiave. Se i processi
 sono \textsl{parenti} la soluzione è relativamente semplice, in tal caso
 infatti si può usare il valore speciale \texttt{IPC\_PRIVATE} per creare un
-nuovo oggetto nel processo padre, l'idenficatore così ottenuto sarà
+nuovo oggetto nel processo padre, l'identificatore così ottenuto sarà
 disponibile in tutti i figli, e potrà essere passato come parametro attraverso
 una \func{exec}.
 
 Però quando i processi non sono \textsl{parenti} (come capita tutte le volte
 che si ha a che fare con un sistema client-server) tutto questo non è
-possibile; si potebbe comunque salvare l'identificatore su un file noto, ma
+possibile; si potrebbe comunque salvare l'identificatore su un file noto, ma
 questo ovviamente comporta lo svantaggio di doverselo andare a rileggere.  Una
 alternativa più efficace è quella che i programmi usino un valore comune per
 la chiave (che ad esempio può essere dichiarato in un header comune), ma c'è
@@ -782,8 +976,8 @@ file ed un numero di versione; il suo prototipo 
   Restituisce una chiave per identificare un oggetto del System V IPC.
   
   \bodydesc{La funzione restituisce la chiave in caso di successo e -1
-  altrimenti, nel qual caso \var{errno} viene settata ad uno dei possibili
-  codici di errore di \func{stat}.}
+    altrimenti, nel qual caso \var{errno} sarà uno dei possibili codici di
+    errore di \func{stat}.}
 \end{functions}
 
 La funzione determina un valore della chiave sulla base di \param{pathname},
@@ -791,28 +985,29 @@ che deve specificare il pathname di un file effettivamente esistente e di un
 numero di progetto \param{proj\_id)}, che di norma viene specificato come
 carattere, dato che ne vengono utilizzati solo gli 8 bit meno
 significativi.\footnote{nelle libc4 e libc5, come avviene in SunOS,
-  l'argomento \param{proj\_id)} è dichiarato tipo \ctyp{char}, le \acr{glibc}
-  han modificato il prototipo, ma vengono lo stesso utilizzati gli 8 bit meno
-  significativi.}
+  l'argomento \param{proj\_id} è dichiarato tipo \ctyp{char}, le \acr{glibc}
+  usano il prototipo specificato da XPG4, ma vengono lo stesso utilizzati gli
+  8 bit meno significativi.}
 
 Il problema è che anche così non c'è la sicurezza che il valore della chiave
 sia univoco, infatti esso è costruito combinando il byte di \param{proj\_id)}
 con i 16 bit meno significativi dell'inode del file \param{pathname} (che
 vengono ottenuti attraverso \func{stat}, da cui derivano i possibili errori),
-e gli 8 bit meno significativi del numero del device su cui è il file. Diventa
-perciò relativamente facile ottenere delle collisioni, specie se i file sono
-su dispositivi con lo stesso \textit{minor number}, come \file{/dev/hda1} e
-\file{/dev/sda1}.
+e gli 8 bit meno significativi del numero del dispositivo su cui è il file.
+Diventa perciò relativamente facile ottenere delle collisioni, specie se i
+file sono su dispositivi con lo stesso \textit{minor number}, come
+\file{/dev/hda1} e \file{/dev/sda1}.
 
 In genere quello che si fa è utilizzare un file comune usato dai programmi che
-devono comunicare (ad esempio un haeder, o uno dei programmi che devono usare
-l'oggetto in questione), utilizzando il numero di progetto per ottere le
-chiavi che interessano. In ogni caso occorre sempre controllare, prima di
+devono comunicare (ad esempio un header comune, o uno dei programmi che devono
+usare l'oggetto in questione), utilizzando il numero di progetto per ottenere
+le chiavi che interessano. In ogni caso occorre sempre controllare, prima di
 creare un oggetto, che la chiave non sia già stata utilizzata. Se questo va
 bene in fase di creazione, le cose possono complicarsi per i programmi che
 devono solo accedere, in quanto, a parte gli eventuali controlli sugli altri
 attributi di \var{ipc\_perm}, non esiste una modalità semplice per essere
-sicuri della validità di una certa chiave.
+sicuri che l'oggetto associato ad una certa chiave sia stato effettivamente
+creato da chi ci si aspetta.
 
 Questo è, insieme al fatto che gli oggetti sono permanenti e non mantengono un
 contatore di riferimenti per la cancellazione automatica, il principale
@@ -830,47 +1025,45 @@ Oltre alle chiavi, abbiamo visto che ad ogni oggetto sono associate in
 \var{ipc\_perm} ulteriori informazioni, come gli identificatori del creatore
 (nei campi \var{cuid} e \var{cgid}) e del proprietario (nei campi \var{uid} e
 \var{gid}) dello stesso, e un insieme di permessi (nel campo \var{mode}). In
-questo modo è possibile definire un controllo di accesso sugli oggetti, simile
-a quello che si ha per i file (vedi \secref{sec:file_perm_overview}).  
-
-Benché il controllo di accesso relativo agli oggetti di intercomunicazione sia
-molto simile a quello dei file, restano delle importanti differenze. La prima
-è che il permesso di esecuzione non esiste (e viene ignorato), per cui si può
-parlare solo di permessi di lettura e scrittura (nel caso dei semafori poi
-quest'ultimo è più propriamente il permesso di modificarne lo stato). I valori
-di \var{mode} sono gli stessi ed hanno lo stesso significato di quelli
-riportati in \secref{tab:file_mode_flags}\footnote{se però si vogliono usare
-  le costanti simboliche ivi definite occorrerà includere il file
-  \file{sys/stat.h}, alcuni sistemi definiscono le costanti \macro{MSG\_R}
-  (\texttt{0400}) e \macro{MSG\_W} (\texttt{0200}) per indicare i permessi
-  base di lettura e scrittura per il proprietario, da utilizzare, con gli
-  opportuni shift, pure per il gruppo e gli altri, in Linux, visto la loro
-  scarsa utilità, queste costanti non sono definite.} e come per i file
-definiscono gli accessi per il proprietario, il suo gruppo e tutti gli altri.
-
-Si tenga presente che per gli oggetti di IPC han senso solo i permessi di
-lettura e scrittura, quelli di esecuzione vengono ignorati. Quando l'oggetto
-viene creato i campi \var{cuid} e \var{uid} di \var{ipc\_perm} ed i campi
-\var{cgid} e \var{gid} vengono settati rispettivamente al valore dell'userid e
-del groupid effettivo del processo che ha chiamato la funzione, ma mentre i
-campi \var{uid} e \var{gid} possono essere cambiati, \var{cuid} e \var{cgid}
-restano sempre gli stessi.
-
-Il controllo di accesso è effettuato a due livelli. Il primo è nelle funzioni
-che richiedono l'identificatore di un oggetto data la chiave, che specificano
-tutte un argomento \param{flag}.  In tal caso quando viene effettuata la
-ricerca di una chiave, se \param{flag} specifica dei permessi, questi vengono
-controllati e l'identificatore viene restituito solo se essi corrispondono a
-quelli dell'oggetto. Se sono presenti dei permessi non presenti in \var{mode}
-l'accesso sarà invece negato. Questo però è di utilità indicativa, dato che è
-sempre possibile specificare un valore nullo per \param{flag}, nel qual caso
-il controllo avrà sempre successo.
-
-Il secondo livello è quello delle varie funzioni che accedono (in lettura o
-scrittura) all'oggetto. In tal caso lo schema dei controlli è simile a quello
-dei file, ed avviene secondo questa sequenza:
+questo modo è possibile definire un controllo di accesso sugli oggetti di IPC,
+simile a quello che si ha per i file (vedi \secref{sec:file_perm_overview}).
+
+Benché questo controllo di accesso sia molto simile a quello dei file, restano
+delle importanti differenze. La prima è che il permesso di esecuzione non
+esiste (e se specificato viene ignorato), per cui si può parlare solo di
+permessi di lettura e scrittura (nel caso dei semafori poi quest'ultimo è più
+propriamente un permesso di modifica). I valori di \var{mode} sono gli stessi
+ed hanno lo stesso significato di quelli riportati in
+\secref{tab:file_mode_flags}\footnote{se però si vogliono usare le costanti
+  simboliche ivi definite occorrerà includere il file \file{sys/stat.h},
+  alcuni sistemi definiscono le costanti \macro{MSG\_R} (\texttt{0400}) e
+  \macro{MSG\_W} (\texttt{0200}) per indicare i permessi base di lettura e
+  scrittura per il proprietario, da utilizzare, con gli opportuni shift, pure
+  per il gruppo e gli altri, in Linux, visto la loro scarsa utilità, queste
+  costanti non sono definite.} e come per i file definiscono gli accessi per
+il proprietario, il suo gruppo e tutti gli altri.
+
+Quando l'oggetto viene creato i campi \var{cuid} e \var{uid} di
+\var{ipc\_perm} ed i campi \var{cgid} e \var{gid} vengono settati
+rispettivamente al valore dell'userid e del groupid effettivo del processo che
+ha chiamato la funzione, ma, mentre i campi \var{uid} e \var{gid} possono
+essere cambiati, i campi \var{cuid} e \var{cgid} restano sempre gli stessi.
+
+Il controllo di accesso è effettuato a due livelli. Il primo livello è nelle
+funzioni che richiedono l'identificatore di un oggetto data la chiave. Queste
+specificano tutte un argomento \param{flag}, in tal caso quando viene
+effettuata la ricerca di una chiave, qualora \param{flag} specifichi dei
+permessi, questi vengono controllati e l'identificatore viene restituito solo
+se corrispondono a quelli dell'oggetto. Se ci sono dei permessi non presenti
+in \var{mode} l'accesso sarà negato. Questo controllo però è di utilità
+indicativa, dato che è sempre possibile specificare per \param{flag} un valore
+nullo, nel qual caso l'identificatore sarà restituito comunque.
+
+Il secondo livello di controllo è quello delle varie funzioni che accedono
+direttamente (in lettura o scrittura) all'oggetto. In tal caso lo schema dei
+controlli è simile a quello dei file, ed avviene secondo questa sequenza:
 \begin{itemize}
-\item se il processo ha i privilegi di amministatore l'accesso è sempre
+\item se il processo ha i privilegi di amministratore l'accesso è sempre
   consentito. 
 \item se l'userid effettivo del processo corrisponde o al valore del campo
   \var{cuid} o a quello del campo \var{uid} ed il permesso per il proprietario
@@ -884,9 +1077,10 @@ dei file, ed avviene secondo questa sequenza:
 \end{itemize}
 solo se tutti i controlli elencati falliscono l'accesso è negato. Si noti che
 a differenza di quanto avviene per i permessi dei file, fallire in uno dei
-passi elencati non comporta il fallimento dell'accesso. Un'altra differenza è
-che per gli oggetti di IPC il valore di \var{umask} (si ricordi quanto esposto
-in \secref{sec:file_umask}) non ha alcun effetto.
+passi elencati non comporta il fallimento dell'accesso. Un'ulteriore
+differenza rispetto a quanto avviene per i file è che per gli oggetti di IPC
+il valore di \var{umask} (si ricordi quanto esposto in
+\secref{sec:file_umask}) non ha alcun significato.
 
 
 \subsection{Gli identificatori ed il loro utilizzo}
@@ -894,16 +1088,16 @@ in \secref{sec:file_umask}) non ha alcun effetto.
 
 L'unico campo di \var{ipc\_perm} del quale non abbiamo ancora parlato è
 \var{seq}, che in \figref{fig:ipc_ipc_perm} è qualificato con un criptico
-``\textit{numero di sequenza}'', ne parliamo adesso dato che esso è
+``\textsl{numero di sequenza}'', ne parliamo adesso dato che esso è
 strettamente attinente alle modalità con cui il kernel assegna gli
 identificatori degli oggetti del sistema di IPC.
 
 Quando il sistema si avvia, alla creazione di ogni nuovo oggetto di IPC viene
 assegnato un numero progressivo, pari al numero di oggetti di quel tipo
-esistenti. Se il comportamente fosse sempre questo sarebbe identico a quello
+esistenti. Se il comportamento fosse sempre questo sarebbe identico a quello
 usato nell'assegnazione dei file descriptor nei processi, ed i valori degli
 identificatori tenderebbero ad essere riutilizzati spesso e restare di piccole
-dimensioni ed inferiori al numero massimo di oggetti diponibili.
+dimensioni (inferiori al numero massimo di oggetti disponibili).
 
 Questo va benissimo nel caso dei file descriptor, che sono locali ad un
 processo, ma qui il comportamento varrebbe per tutto il sistema, e per
@@ -923,7 +1117,7 @@ Il sistema dispone sempre di un numero fisso di oggetti di IPC,\footnote{fino
   al kernel 2.2.x questi valori, definiti dalle costanti \macro{MSGMNI},
   \macro{SEMMNI} e \macro{SHMMNI}, potevano essere cambiati (come tutti gli
   altri limiti relativi al \textit{System V IPC}) solo con una ricompilazione
-  del kernel, andando a modificarne la definizione nei relativi haeder file.
+  del kernel, andando a modificarne la definizione nei relativi header file.
   A partire dal kernel 2.4.x è possibile cambiare questi valori a sistema
   attivo scrivendo sui file \file{shmmni}, \file{msgmni} e \file{sem} di
   \file{/proc/sys/kernel} o con l'uso di \texttt{syscntl}.} e per ciascuno di
@@ -935,14 +1129,9 @@ sommato il valore di \var{seq} moltiplicato per il numero massimo di oggetti
 di quel tipo,\footnote{questo vale fino ai kernel della serie 2.2.x, dalla
   serie 2.4.x viene usato lo stesso fattore per tutti gli oggetti, esso è dato
   dalla costante \macro{IPCMNI}, definita in \file{include/linux/ipc.h}, che
-  indica il limite massimo per il numero di oggetti di IPC, ed il cui valore è
-  32768.}  si evita così il riutilizzo degli stessi numeri, e si fa sì che
-l'identificatore assuma tutti i valori possibili.
-
-In \figref{fig:ipc_sysv_idtest} è riportato il codice di un semplice programma
-di test che si limita a creare un oggetto (specificato a riga di comando),
-stamparne il numero di identificatore e cancellarlo per un numero specificato
-di volte. 
+  indica il limite massimo per il numero di tutti oggetti di IPC, ed il cui
+  valore è 32768.}  si evita così il riutilizzo degli stessi numeri, e si fa
+sì che l'identificatore assuma tutti i valori possibili.
 
 \begin{figure}[!htb]
   \footnotesize \centering
@@ -989,11 +1178,18 @@ int main(int argc, char *argv[])
   \label{fig:ipc_sysv_idtest}
 \end{figure}
 
+In \figref{fig:ipc_sysv_idtest} è riportato il codice di un semplice programma
+di test che si limita a creare un oggetto (specificato a riga di comando),
+stamparne il numero di identificatore e cancellarlo per un numero specificato
+di volte. Al solito non si è riportato il codice della gestione delle opzioni
+a riga di comando, che permette di specificare quante volte effettuare il
+ciclo \var{n}, e su quale tipo di oggetto eseguirlo.
+
 La figura non riporta il codice di selezione delle opzioni, che permette di
 inizializzare i valori delle variabili \var{type} al tipo di oggetto voluto, e
 \var{n} al numero di volte che si vuole effettuare il ciclo di creazione,
 stampa, cancellazione. I valori di default sono per l'uso delle code di
-messaggi e un ciclo di 10 volte. Se si lancia il comando si otterrà qualcosa
+messaggi e un ciclo di 5 volte. Se si lancia il comando si otterrà qualcosa
 del tipo:
 \begin{verbatim}
 piccardi@gont sources]$ ./ipctestid
@@ -1002,27 +1198,17 @@ Identifier Value 32768
 Identifier Value 65536 
 Identifier Value 98304 
 Identifier Value 131072 
-Identifier Value 163840 
-Identifier Value 196608 
-Identifier Value 229376 
-Identifier Value 262144 
-Identifier Value 294912 
 \end{verbatim}%$
 il che ci mostra che abbiamo un kernel della serie 2.4.x nel quale non avevamo
 ancora usato nessuna coda di messaggi. Se ripetiamo il comando otterremo
 ancora:
 \begin{verbatim}
 [piccardi@gont sources]$ ./ipctestid
-Identifier Value 327680 
-Identifier Value 360448 
-Identifier Value 393216 
-Identifier Value 425984 
-Identifier Value 458752 
-Identifier Value 491520 
-Identifier Value 524288 
-Identifier Value 557056 
-Identifier Value 589824 
-Identifier Value 622592 
+Identifier Value 163840 
+Identifier Value 196608 
+Identifier Value 229376 
+Identifier Value 262144 
+Identifier Value 294912 
 \end{verbatim}%$
 che ci mostra come il valore di \var{seq} sia in effetti una quantità
 mantenuta staticamente all'interno del sistema.
@@ -1042,13 +1228,12 @@ una 
   
   \funcdecl{int msgget(key\_t key, int flag)}
   
-  Restituisce l'identificatore di una cosa di messaggi.
+  Restituisce l'identificatore di una coda di messaggi.
   
   \bodydesc{La funzione restituisce l'identificatore (un intero positivo) o -1
-    in caso di errore, nel qual caso \var{errno} viene settato ad uno dei
-    valori: 
+    in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
-  \item[\macro{EACCES}] Il processo chiamante non ha i provilegi per accedere
+  \item[\macro{EACCES}] Il processo chiamante non ha i privilegi per accedere
   alla coda richiesta.  
   \item[\macro{EEXIST}] Si è richiesta la creazione di una coda che già
   esiste, ma erano specificati sia \macro{IPC\_CREAT} che \macro{IPC\_EXCL}. 
@@ -1087,21 +1272,625 @@ Se si imposta anche il bit corrispondente a \macro{IPC\_EXCL} la funzione avr
 successo solo se l'oggetto non esiste già, fallendo con un errore di
 \macro{EEXIST} altrimenti.
 
+Si tenga conto che l'uso di \macro{IPC\_PRIVATE} non impedisce ad altri
+processi di accedere alla coda (se hanno privilegi sufficienti) una volta che
+questi possano indovinare o ricavare (ad esempio per tentativi)
+l'identificatore ad essa associato. Per come sono implementati gli oggetti di
+IPC infatti non esiste una maniera che  garantisca l'accesso esclusivo ad una
+coda di messaggi.  Usare \macro{IPC\_PRIVATE} o macro{IPC\_CREAT} e
+\macro{IPC\_EXCL} per \param{flag} comporta solo la creazione di una nuova
+coda.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|r|l|l|}
+    \hline
+    \textbf{Costante} & \textbf{Valore} & \textbf{File in \texttt{proc}}
+    & \textbf{Significato} \\
+    \hline
+    \hline
+    \macro{MSGMNI}&   16& \file{msgmni} & Numero massimo di code di
+                                          messaggi. \\
+    \macro{MSGMAX}& 8192& \file{msgmax} & Dimensione massima di un singolo
+                                          messaggio.\\
+    \macro{MSGMNB}&16384& \file{msgmnb} & Dimensione massima del contenuto di 
+                                          una coda.\\
+    \hline
+  \end{tabular}
+  \caption{Valori delle costanti associate ai limiti delle code di messaggi.}
+  \label{tab:ipc_msg_limits}
+\end{table}
+
+Le code di messaggi sono caratterizzate da tre limiti fondamentali, definiti
+negli header e corrispondenti alle prime tre costanti riportate in
+\tabref{tab:ipc_msg_limits}, come accennato però in Linux è possibile
+modificare questi limiti attraverso l'uso di \func{syscntl} o scrivendo nei
+file \file{msgmax}, \file{msgmnb} e \file{msgmni} di \file{/proc/sys/kernel/}.
+
+
+\begin{figure}[htb]
+  \centering \includegraphics[width=15cm]{img/mqstruct}
+  \caption{Schema della struttura di una coda messaggi.}
+  \label{fig:ipc_mq_schema}
+\end{figure}
+
+
+Una coda di messaggi è costituita da una \textit{linked list};\footnote{una
+  \textit{linked list} è una tipica struttura di dati, organizzati in una
+  lista in cui ciascun elemento contiene un puntatore al successivo. In questo
+  modo la struttura è veloce nell'estrazione ed immissione dei dati dalle
+  estremità dalla lista (basta aggiungere un elemento in testa o in coda ed
+  aggiornare un puntatore), e relativamente veloce da attraversare in ordine
+  sequenziale (seguendo i puntatori), è invece relativamente lenta
+  nell'accesso casuale e nella ricerca.}  i nuovi messaggi vengono inseriti in
+coda alla lista e vengono letti dalla cima, in \figref{fig:ipc_mq_schema} si è
+riportato lo schema con cui queste strutture vengono mantenute dal
+kernel.\footnote{lo schema illustrato in \figref{fig:ipc_mq_schema} è in
+  realtà una semplificazione di quello usato effettivamente fino ai kernel
+  della serie 2.2.x, nei kernel della serie 2.4.x la gestione delle code di
+  messaggi è stata modificata ed è effettuata in maniera diversa; abbiamo
+  mantenuto lo schema precedente in quanto illustra comunque in maniera più
+  che adeguata i principi di funzionamento delle code di messaggi.}
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}
+struct msqid_ds {
+    struct ipc_perm msg_perm;     /* structure for operation permission */
+    time_t msg_stime;             /* time of last msgsnd command */
+    time_t msg_rtime;             /* time of last msgrcv command */
+    time_t msg_ctime;             /* time of last change */
+    msgqnum_t msg_qnum;           /* number of messages currently on queue */
+    msglen_t msg_qbytes;          /* max number of bytes allowed on queue */
+    pid_t msg_lspid;              /* pid of last msgsnd() */
+    pid_t msg_lrpid;              /* pid of last msgrcv() */
+    struct msg *msg_first;        /* first message on queue, unused  */
+    struct msg *msg_last;         /* last message in queue, unused */
+    unsigned long int msg_cbytes; /* current number of bytes on queue */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{msgid\_ds}, associata a ciascuna coda di
+    messaggi.}
+  \label{fig:ipc_msgid_ds}
+\end{figure}
+
+A ciascuna coda è associata una struttura \var{msgid\_ds}, la cui definizione,
+è riportata in \secref{fig:ipc_msgid_ds}. In questa struttura il kernel
+mantiene le principali informazioni riguardo lo stato corrente della
+coda.\footnote{come accennato questo vale fino ai kernel della serie 2.2.x,
+  essa viene usata nei kernel della serie 2.4.x solo per compatibilità in
+  quanto è quella restituita dalle funzioni dell'interfaccia.  Si noti come ci
+  sia una differenza con i campi mostrati nello schema di
+  \figref{fig:ipc_mq_schema} che sono presi dalla definizione di
+  \file{linux/msg.h}, e fanno riferimento alla definizione della omonima
+  struttura usata nel kernel.} In \figref{fig:ipc_msgid_ds} sono elencati i
+campi significativi definiti in \file{sys/msg.h}, a cui si sono aggiunti gli
+ultimi tre campi che sono previsti dalla implementazione originale di System
+V, ma non dallo standard Unix98.
+
+Quando si crea una nuova coda con \func{msgget} questa struttura viene
+inizializzata, in particolare il campo \var{msg\_perm} viene inizializzato
+come illustrato in \secref{sec:ipc_sysv_access_control}, per quanto riguarda
+gli altri campi invece:
+\begin{itemize}
+\item il campo \var{msg\_qnum}, che esprime il numero di messaggi presenti
+  sulla coda, viene inizializzato a 0.
+\item i campi \var{msg\_lspid} e \var{msg\_lrpid}, che esprimono
+  rispettivamente il \acr{pid} dell'ultimo processo che ha inviato o ricevuto
+  un messaggio sulla coda, sono inizializzati a 0.
+\item i campi \var{msg\_stime} e \var{msg\_rtime}, che esprimono
+  rispettivamente il tempo in cui è stato inviato o ricevuto l'ultimo
+  messaggio sulla coda, sono inizializzati a 0.
+\item il campo \var{msg\_ctime}, che esprime il tempo di creazione della coda,
+  viene inizializzato al tempo corrente.
+\item il campo \var{msg\_qbytes} che esprime la dimensione massima del
+  contenuto della coda (in byte) viene inizializzato al valore preimpostato
+  del sistema (\macro{MSGMNB}).
+\item i campi \var{msg\_first} e \var{msg\_last} che esprimono l'indirizzo del
+  primo e ultimo messaggio sono inizializzati a \macro{NULL} e
+  \var{msg\_cbytes}, che esprime la dimensione in byte dei messaggi presenti è
+  inizializzato a zero. Questi campi sono ad uso interno dell'implementazione
+  e non devono essere utilizzati da programmi in user space).
+\end{itemize}
+
+Una volta creata una coda di messaggi le operazioni di controllo vengono
+effettuate con la funzione \func{msgctl}, che (come le analoghe \func{semctl}
+e \func{shmctl}) fa le veci di quello che \func{ioctl} è per i file; il suo
+prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/msg.h} 
+  
+  \funcdecl{int msgctl(int msqid, int cmd, struct msqid\_ds *buf)}
+  
+  Esegue l'operazione specificata da \param{cmd} sulla coda \param{msqid}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo o -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\macro{EACCES}] Si è richiesto \macro{IPC\_STAT} ma processo chiamante
+    non ha i privilegi di lettura sulla coda.
+  \item[\macro{EIDRM}] La coda richiesta è stata cancellata.
+  \item[\macro{EPERM}] Si è richiesto \macro{IPC\_SET} o \macro{IPC\_RMID} ma
+    il processo non ha i privilegi, o si è richiesto di aumentare il valore di
+    \var{msg\_qbytes} oltre il limite \macro{MSGMNB} senza essere
+    amministratore.
+  \end{errlist}
+  ed inoltre \macro{EFAULT} ed \macro{EINVAL}.
+}
+\end{functions}
+
+La funzione permette di accedere ai valori della struttura \var{msqid\_ds},
+mantenuta all'indirizzo \param{buf}, per la coda specificata
+dall'identificatore \param{msqid}. Il comportamento della funzione dipende dal
+valore dell'argomento \param{cmd}, che specifica il tipo di azione da
+eseguire; i valori possibili sono:
+\begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
+\item[\macro{IPC\_STAT}] Legge le informazioni riguardo la coda nella
+  struttura indicata da \param{buf}. Occorre avere il permesso di lettura
+  sulla coda.
+\item[\macro{IPC\_RMID}] Rimuove la coda, cancellando tutti i dati, con
+  effetto immediato. Tutti i processi che cercheranno di accedere alla coda
+  riceveranno un errore di \macro{EIDRM}, e tutti processi in attesa su
+  funzioni di di lettura o di scrittura sulla coda saranno svegliati ricevendo
+  il medesimo errore. Questo comando può essere eseguito solo da un processo
+  con userid effettivo corrispondente al creatore o al proprietario della
+  coda, o all'amministratore.
+\item[\macro{IPC\_SET}] Permette di modificare i permessi ed il proprietario
+  della coda, ed il limite massimo sulle dimensioni del totale dei messaggi in
+  essa contenuti (\var{msg\_qbytes}). I valori devono essere passati in una
+  struttura \var{msqid\_ds} puntata da \param{buf}.  Per modificare i valori
+  di \var{msg\_perm.mode}, \var{msg\_perm.uid} e \var{msg\_perm.gid} occorre
+  essere il proprietario o il creatore della coda, oppure l'amministratore; lo
+  stesso vale per \var{msg\_qbytes}, ma l'amministratore ha la facoltà di
+  incrementarne il valore a limiti superiori a \macro{MSGMNB}.
+\end{basedescript}
+
+
+Una volta che si abbia a disposizione l'identificatore, per inviare un
+messaggio su una coda si utilizza la funzione \func{msgsnd}; il suo prototipo
+è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/msg.h} 
+  
+  \funcdecl{int msgsnd(int msqid, struct msgbuf *msgp, size\_t msgsz, int
+    msgflg)} 
+
+  Invia un messaggio sulla coda \param{msqid}.
+  
+  \bodydesc{La funzione restituisce 0, e -1 in caso di errore, nel qual caso
+    \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\macro{EACCES}] Non si hanno i privilegi di accesso sulla coda.
+  \item[\macro{EIDRM}] La coda è stata cancellata.
+  \item[\macro{EAGAIN}] Il messaggio non può essere inviato perché si è
+  superato il limite \var{msg\_qbytes} sul numero massimo di byte presenti
+  sulla coda, e si è richiesto \macro{IPC\_NOWAIT} in \param{flag}.
+  \item[\macro{EINTR}] La funzione è stata interrotta da un segnale.
+  \item[\macro{EINVAL}] Si è specificato un \param{msgid} invalido, o un
+    valore non positivo per \param{mtype}, o un valore di \param{msgsz}
+    maggiore di \macro{MSGMAX}.
+  \end{errlist}
+  ed inoltre \macro{EFAULT} ed \macro{ENOMEM}.
+}
+\end{functions}
+
+La funzione inserisce il messaggio sulla coda specificata da \param{msqid}; il
+messaggio ha lunghezza specificata da \param{msgsz} ed è passato attraverso il
+l'argomento \param{msgp}.  Quest'ultimo deve venire passato sempre come
+puntatore ad una struttura \var{msgbuf} analoga a quella riportata in
+\figref{fig:ipc_msbuf} che è quella che deve contenere effettivamente il
+messaggio.  La dimensione massima per il testo di un messaggio non può
+comunque superare il limite \macro{MSGMAX}.
+
+La struttura di \figref{fig:ipc_msbuf} è comunque solo un modello, tanto che
+la definizione contenuta in \file{sys/msg.h} usa esplicitamente per il secondo
+campo il valore \code{mtext[1]}, che non è di nessuna utilità ai fini pratici.
+La sola cosa che conta è che la struttura abbia come primo membro un campo
+\var{mtype} come nell'esempio; esso infatti serve ad identificare il tipo di
+messaggio e deve essere sempre specificato come intero positivo di tipo
+\ctyp{long}.  Il campo \var{mtext} invece può essere di qualsiasi tipo e
+dimensione, e serve a contenere il testo del messaggio.
+
+In generale pertanto per inviare un messaggio con \func{msgsnd} si usa
+ridefinire una struttura simile a quella di \figref{fig:ipc_msbuf}, adattando
+alle proprie esigenze il campo \var{mtype}, (o ridefinendo come si vuole il
+corpo del messaggio, anche con più campi o con strutture più complesse) avendo
+però la cura di mantenere nel primo campo un valore di tipo \ctyp{long} che ne
+indica il tipo.
+
+Si tenga presente che la lunghezza che deve essere indicata in questo
+argomento è solo quella del messaggio, non quella di tutta la struttura, se
+cioè \var{message} è una propria struttura che si passa alla funzione,
+\param{msgsz} dovrà essere uguale a \code{sizeof(message)-sizeof(long)}, (se
+consideriamo il caso dell'esempio in \figref{fig:ipc_msbuf}, \param{msgsz}
+dovrà essere pari a \macro{LENGTH}).
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}
+    struct msgbuf {
+         long mtype;          /* message type, must be > 0 */
+         char mtext[LENGTH];  /* message data */
+    };
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Schema della struttura \var{msgbuf}, da utilizzare come argomento
+    per inviare/ricevere messaggi.}
+  \label{fig:ipc_msbuf}
+\end{figure}
+
+Per capire meglio il funzionamento della funzione riprendiamo in
+considerazione la struttura della coda illustrata in
+\figref{fig:ipc_mq_schema}. Alla chiamata di \func{msgsnd} il nuovo messaggio
+sarà aggiunto in fondo alla lista inserendo una nuova struttura \var{msg}, il
+puntatore \var{msg\_last} di \var{msqid\_ds} verrà aggiornato, come pure il
+puntatore al messaggio successivo per quello che era il precedente ultimo
+messaggio; il valore di \var{mtype} verrà mantenuto in \var{msg\_type} ed il
+valore di \param{msgsz} in \var{msg\_ts}; il testo del messaggio sarà copiato
+all'indirizzo specificato da \var{msg\_spot}.
+
+Il valore dell'argomento \param{flag} permette di specificare il comportamento
+della funzione. Di norma, quando si specifica un valore nullo, la funzione
+ritorna immediatamente a meno che si sia ecceduto il valore di
+\var{msg\_qbytes}, o il limite di sistema sul numero di messaggi, nel qual
+caso si blocca mandando il processo in stato di \textit{sleep}.  Se si
+specifica per \param{flag} il valore \macro{IPC\_NOWAIT} la funzione opera in
+modalità non bloccante, ed in questi casi ritorna immediatamente con un errore
+di \macro{EAGAIN}.
+
+Se non si specifica \macro{IPC\_NOWAIT} la funzione resterà bloccata fintanto
+che non si liberano risorse sufficienti per poter inserire nella coda il
+messaggio, nel qual caso ritornerà normalmente. La funzione può ritornare, con
+una condizione di errore anche in due altri casi: quando la coda viene rimossa
+(nel qual caso si ha un errore di \macro{EIDRM}) o quando la funzione viene
+interrotta da un segnale (nel qual caso si ha un errore di \macro{EINTR}).
+
+Una volta completato con successo l'invio del messaggio sulla coda, la
+funzione aggiorna i dati mantenuti in \var{msqid\_ds}, in particolare vengono
+modificati:
+\begin{itemize*}
+\item Il valore di \var{msg\_lspid}, che viene impostato al \acr{pid} del
+  processo chiamante.
+\item Il valore di \var{msg\_qnum}, che viene incrementato di uno.
+\item Il valore \var{msg\_stime}, che viene impostato al tempo corrente.
+\end{itemize*}
+
+La funzione che viene utilizzata per estrarre un messaggio da una coda è
+\func{msgrcv}; il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/msg.h} 
+
+  \funcdecl{ssize\_t msgrcv(int msqid, struct msgbuf *msgp, size\_t msgsz,
+    long msgtyp, int msgflg)}
+  
+  Legge un messaggio dalla coda \param{msqid}.
+  
+  \bodydesc{La funzione restituisce il numero di byte letti in caso di
+    successo, e -1 in caso di errore, nel qual caso \var{errno} assumerà uno
+    dei valori:
+  \begin{errlist}
+  \item[\macro{EACCES}] Non si hanno i privilegi di accesso sulla coda.
+  \item[\macro{EIDRM}] La coda è stata cancellata.
+  \item[\macro{E2BIG}] Il testo del messaggio è più lungo di \param{msgsz} e
+  non si è specificato \macro{MSG\_NOERROR} in \param{msgflg}.
+  \item[\macro{EINTR}] La funzione è stata interrotta da un segnale mentre era
+  in attesa di ricevere un messaggio.
+  \item[\macro{EINVAL}] Si è specificato un \param{msgid} invalido o un valore
+    di \param{msgsz} negativo.
+  \end{errlist}
+  ed inoltre \macro{EFAULT}.
+}
+\end{functions}
 
+La funzione legge un messaggio dalla coda specificata, scrivendolo sulla
+struttura puntata da \param{msgp}, che dovrà avere un formato analogo a quello
+di \figref{fig:ipc_msbuf}.  Una volta estratto, il messaggio sarà rimosso dalla
+coda.  L'argomento \param{msgsz} indica la lunghezza massima del testo del
+messaggio (equivalente al valore del parametro \macro{LENGTH} nell'esempio di
+\figref{fig:ipc_msbuf}).
+
+Se il testo del messaggio ha lunghezza inferiore a \param{msgsz} esso viene
+rimosso dalla coda; in caso contrario, se \param{msgflg} è impostato a
+\macro{MSG\_NOERROR}, il messaggio viene troncato e la parte in eccesso viene
+perduta, altrimenti il messaggio non viene estratto e la funzione ritorna con
+un errore di \macro{E2BIG}.
+
+L'argomento \param{msgtyp} permette di restringere la ricerca ad un
+sottoinsieme dei messaggi presenti sulla coda; la ricerca infatti è fatta con
+una scansione della struttura mostrata in \figref{fig:ipc_mq_schema},
+restituendo il primo messaggio incontrato che corrisponde ai criteri
+specificati (che quindi, visto come i messaggi vengono sempre inseriti dalla
+coda, è quello meno recente); in particolare:
+\begin{itemize*}
+\item se \param{msgtyp} è 0 viene estratto il messaggio in cima alla coda, cioè
+  quello fra i presenti che è stato inserito inserito per primo. 
+\item se \param{msgtyp} è positivo viene estratto il primo messaggio il cui
+  tipo (il valore del campo \var{mtype}) corrisponde al valore di
+  \param{msgtyp}.
+\item se \param{msgtyp} è negativo viene estratto il primo fra i messaggi con
+  il valore più basso del tipo, fra tutti quelli il cui tipo ha un valore
+  inferiore al valore assoluto di \param{msgtyp}.
+\end{itemize*}
+
+Il valore di \param{msgflg} permette di controllare il comportamento della
+funzione, esso può essere nullo o una maschera binaria composta da uno o più
+valori.  Oltre al precedente \macro{MSG\_NOERROR}, sono possibili altri due
+valori: \macro{MSG\_EXCEPT}, che permette, quando \param{msgtyp} è positivo,
+di leggere il primo messaggio nella coda con tipo diverso da \param{msgtyp}, e
+\macro{IPC\_NOWAIT} che causa il ritorno immediato della funzione quando non
+ci sono messaggi sulla coda.
+
+Il comportamento usuale della funzione infatti, se non ci sono messaggi
+disponibili per la lettura, è di bloccare il processo in stato di
+\textit{sleep}. Nel caso però si sia specificato \macro{IPC\_NOWAIT} la
+funzione ritorna immediatamente con un errore \macro{ENOMSG}. Altrimenti la
+funzione ritorna normalmente non appena viene inserito un messaggio del tipo
+desiderato, oppure ritorna con errore qualora la coda sia rimossa (con
+\var{errno} impostata a \macro{EIDRM}) o se il processo viene interrotto da un
+segnale (con \var{errno} impostata a \macro{EINTR}).
+
+Una volta completata con successo l'estrazione del messaggio dalla coda, la
+funzione aggiorna i dati mantenuti in \var{msqid\_ds}, in particolare vengono
+modificati:
+\begin{itemize*}
+\item Il valore di \var{msg\_lrpid}, che viene impostato al \acr{pid} del
+  processo chiamante.
+\item Il valore di \var{msg\_qnum}, che viene decrementato di uno.
+\item Il valore \var{msg\_rtime}, che viene impostato al tempo corrente.
+\end{itemize*}
+
+Come esempio dell'uso delle code di messaggi possiamo riscrivere il nostro
+server di \textit{fortunes} usando queste al posto delle fifo. In questo caso
+useremo una sola coda di messaggi, usando il tipo di messaggio per comunicare
+in maniera indipendente con client diversi.
+
+\begin{figure}[!bht]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}{}
+int msgid;                                       /* Message queue identifier */
+int main(int argc, char *argv[])
+{
+/* Variables definition */
+    int i, n = 0;
+    char **fortune;                       /* array of fortune message string */
+    char *fortunefilename;                              /* fortune file name */
+    struct msgbuf_read {      /* message struct to read request from clients */
+        long mtype;                               /* message type, must be 1 */
+        long pid;             /* message data, must be the pid of the client */
+    } msg_read;
+    struct msgbuf_write {       /* message struct to write result to clients */
+        long mtype;            /* message type, will be the pid of the client*/
+        char mtext[MSGMAX];             /* message data, will be the fortune */
+    } msg_write;
+    key_t key;                                          /* Message queue key */
+    int size;                                                /* message size */
+    ...
+    Signal(SIGTERM, HandSIGTERM);            /* set handlers for termination */
+    Signal(SIGINT, HandSIGTERM);
+    Signal(SIGQUIT, HandSIGTERM);
+    if (n==0) usage();          /* if no pool depth exit printing usage info */
+    i = FortuneParse(fortunefilename, fortune, n);          /* parse phrases */
+    /* Create the queue */
+    key = ftok("./MQFortuneServer.c", 1); 
+    msgid = msgget(key, IPC_CREAT|0666);
+    if (msgid < 0) {
+        perror("Cannot create message queue");
+        exit(1);
+    }
+    /* Main body: loop over requests */
+    while (1) {
+        msgrcv(msgid, &msg_read, sizeof(int), 1, MSG_NOERROR);
+        n = random() % i;                             /* select random value */
+        strncpy(msg_write.mtext, fortune[n], MSGMAX);
+        size = min(strlen(fortune[n])+1, MSGMAX);  
+        msg_write.mtype=msg_read.pid;             /* use request pid as type */
+        msgsnd(msgid, &msg_write, size, 0);
+    }
+}
+/*
+ * Signal Handler to manage termination
+ */
+void HandSIGTERM(int signo) {
+    msgctl(msgid, IPC_RMID, NULL);                   /* remove message queue */
+    exit(0);
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del server di \textit{fortunes}
+    basato sulle \textit{message queue}.}
+  \label{fig:ipc_mq_fortune_server}
+\end{figure}
 
-Una coda di messaggi è costituita da una \textit{linked list} in cui nuovi
-messaggi vengono inseriti in coda e letti dalla cima, con una struttura del
-tipo di quella illustrata in
+In \figref{fig:ipc_mq_fortune_server} si è riportato un estratto delle parti
+primcipali del codice del nuovo server (il codice completo è nel file
+\file{MQFortuneServer.c} nei sorgenti allegati). Il programma è basato su un
+uso accorto della caratteristica di poter associate un ``tipo'' ai messaggi
+per permettere una comunicazione indipendente fra il server ed i vari client,
+usando il \acr{pid} di questi ultimi come identificativo. Questo è possibile
+in quanto, al contrario di una fifo, la lettura di una coda di messaggi può
+non essere sequanziale, proprio grazie alla classificazione dei messaggi sulla
+base del loro tipo.
+
+Il programma, oltre alle solite variabili per il nome del file da cui leggere
+le \textit{fortunes} e per il vettore di stringhe che contiene le frasi,
+definisce due strutture appositamente per la comunicazione; con
+\var{msgbuf\_read} (\texttt{\small 8--11}) vengono passate le richieste mentre
+con \var{msgbuf\_write} (\texttt{\small 12--15}) vengono restituite le frasi.
+
+La gestione delle opzioni si è al solito omessa, essa si curerà di impostare
+in \var{n} il numero di frasi da leggere specificato a linea di comando ed in
+\var{fortunefilename} il file da cui leggerle; dopo aver installato
+(\texttt{\small 19--21}) dei manipolatori per gestire l'uscita dal server,
+viene prima controllato (\texttt{\small 22}) il numero di frasi richieste
+abbia senso (cioè sia maggiore di zero), le quali poi (\texttt{\small 23})
+vengono lette nel vettore in memoria con la stessa funzione
+\code{FortuneParse()} usata anche per il server basato sulle fifo.
+
+Una volta inizializzato il vettore di stringhe coi messaggi presi dal file
+delle \textit{fortune} si procede (\texttt{\small 25}) con la generazione di
+una chiave per identificare la coda di messaggi (si usa il nome del file dei
+sorgenti del server) con la quale poi si esegue (\texttt{\small 26}) la
+creazione della stessa (si noti come si sia chiamata \func{msgget} con un
+valore opportuno per l'argomento \param{flag}), avendo cura di abortire il
+programma (\texttt{\small 27--29}) in caso di errore.
+
+Finita la fase di inizializzazione il server esegue in permanenza il ciclo
+principale (\texttt{\small 32--41}). Questo inizia (\texttt{\small 33}) con il
+porsi in attesa di un messaggio di richiesta da parte di un client; si noti
+infatti come \func{msgrcv} richieda un messaggio con \var{mtype} uguale a 1:
+questo è il valore usato per le richieste dato che corriponde al \acr{pid} di
+\cmd{init}, che non può essere un client. L'uso del flag \macro{MSG\_NOERROR}
+è solo per sicurezza, dato che i messaggi di richiesta sono di dimensione
+fissa (e contengono solo il \acr{pid} del client).
+
+Se non sono presenti messaggi di richiesta \func{msgrcv} si bloccherà,
+ritornando soltanto in corrispondenza dell'arrivo sulla coda di un messaggio
+di richiesta da parte di un client, in tal caso il ciclo prosegue
+(\texttt{\small 34}) selezionando una frase a caso, copiandola (\texttt{\small
+  35}) nella struttura \var{msgbuf\_write} usata per la risposta e
+calcolandone (\texttt{\small 36}) la dimensione.
+
+Per poter permettere a ciascun client di ricevere solo la risposta indirizzata
+a lui il tipo del messaggio in uscita viene inizializzato (\texttt{\small 37})
+al valore del \acr{pid} del client ricevuto nel messaggio di richiesta.
+L'ultimo passo del ciclo (\texttt{\small 38}) è inviare sulla coda il
+messaggio di risposta. Si tenga conto che se la coda è piena anche questa
+funzione potrà bloccarsi fintanto che non venga liberato dello spazio.
+
+Si noti che il programma può terminare solo grazie ad una interruzione da
+parte di un segnale; in tal caso verrà eseguito il manipolatore
+\code{HandSIGTERM}, che semplicemente si limita a cancellare la coda
+(\texttt{\small 44}) ed ad uscire (\texttt{\small 45}).
+
+\begin{figure}[!bht]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}{}
+int main(int argc, char *argv[])
+{
+    ...
+    key = ftok("./MQFortuneServer.c", 1); 
+    msgid = msgget(key, 0); 
+    if (msgid < 0) {
+        perror("Cannot find message queue");
+        exit(1);
+    }
+    /* Main body: do request and write result */
+    msg_read.mtype = 1;                      /* type for request is always 1 */
+    msg_read.pid = getpid();                   /* use pid for communications */
+    size = sizeof(msg_read.pid);  
+    msgsnd(msgid, &msg_read, size, 0);               /* send request message */
+    msgrcv(msgid, &msg_write, MSGMAX, msg_read.pid, MSG_NOERROR);
+    printf("%s", msg_write.mtext);
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del client di \textit{fortunes}
+    basato sulle \textit{message queue}.}
+  \label{fig:ipc_mq_fortune_client}
+\end{figure}
+
+In \figref{fig:ipc_mq_fortune_client} si è riportato un estratto il codice del
+programma client.  Al solito il codice completo è con i sorgenti allegati, nel
+file \file{MQFortuneClient.c}.  Come sempre si sono rimosse le parti relative
+alla gestione delle opzioni, ed in questo caso, anche la dichiarazione delle
+variabili, che, per la parte relative alle strutture usate per la
+comunicazione tramite le code, sono le stesse viste in
+\figref{fig:ipc_mq_fortune_server}.
+
+Il client in questo caso è molto semplice; la prima parte del programma
+(\texttt{\small 4--9}) si occupa di accedere alla coda di messaggi, ed è
+identica a quanto visto per il server, solo che in questo caso \func{msgget}
+non viene chiamata con il flag di creazione in quanto la coda deve essere
+preesistente. In caso di errore (ad esempio se il server non è stato avviato)
+il programma termina immediatamente. 
+
+Una volta acquistito l'identificatore della coda il client compone il
+messaggio di richiesta (\texttt{\small 12--13}) in \var{msg\_read}, usando 1
+per il tipo ed inserendo il proprio \acr{pid} come dato da passare al server.
+Calcolata (\texttt{\small 14}) la dimensione, provvede (\texttt{\small 15}) ad
+immettere la richiesta sulla coda. 
+
+A questo punto non resta che (\texttt{\small 16}) rileggere dalla coda la
+risposta del server richiedendo a \func{msgrcv} di selezionare i messaggi di
+tipo corrispondente al valore del \acr{pid} inviato nella richiesta. L'ultimo
+passo (\texttt{\small 17}) prima di uscire è quello di stampare a video il
+messaggio ricevuto.
+Benché funzionante questa archietettura risente dello stesso inconveniente
+visto anche nel caso del precedente server basato sulle fifo; se il client
+viene interrotto dopo l'invio del messaggio di richiesta e prima della lettura
+della risposta, quest'ultima resta nella coda (così come per le fifo si aveva
+il problema delle fifo che restavano nel filesystem). In questo caso però il
+problemi sono maggiori, sia perché è molto più facile esaurire la memoria
+dedicata ad una coda di messaggi che gli inode di un filesystem, sia perché,
+con il riutilizzo dei \acr{pid} da parte dei processi, un client eseguito in
+un momento successivo potrebbe ricevere un messaggio non indirizzato a
+lui.
 
 
 
 \subsection{Semafori}
 \label{sec:ipc_sysv_sem}
 
-Il secondo oggetto introdotto dal \textit{System V IPC} è quello dei semafori.
-Un semaforo è uno speciale contatore che permette di controllare l'accesso a
-risorse condivise. La funzione che permette di ottenere un insieme di semafori
-è \func{semget} ed il suo prototipo è:
+I semafori non sono meccanismi di intercomunicazione diretta come quelli
+(pipe, fifo e code di messaggi) visti finora, e non consentono di scambiare
+dati fra processi, ma servono piuttosto come meccanismi di sincronizzazione o
+di protezione per le \textsl{sezioni critiche}\index{sezioni critiche} del
+codice (si ricordi quanto detto in \secref{sec:proc_race_cond}). 
+
+Un semaforo è uno speciale contatore, mantenuto nel kernel, che permette, a
+seconda del suo valore, di consentire o meno la prosecuzione dell'esecuzione
+di un programma. In questo modo l'accesso ad una risorsa condivisa da più
+processi può essere controllato, associando ad essa un semaforo che consente
+di assicurare che non più di un processo alla volta possa usarla.
+
+Il concetto di semaforo è uno dei concetti base nella programmazione ed è
+assolutamente generico, così come del tutto generali sono modalità con cui lo
+si utilizza. Un processo che deve accedere ad una risorsa eseguirà un
+controllo del semaforo: se questo è positivo il suo valore sarà decrementato,
+indicando che si è consumato una unità della risorsa, ed il processo potrà
+proseguire nell'utilizzo di quest'ultima, provvedendo a rilasciarla, una volta
+completate le operazioni volute, reincrementando il semaforo.
+
+Se al momento del controllo il valore del semaforo è nullo, siamo invece in
+una situazione in cui la risorsa non è disponibile, ed il processo si
+bloccherà in stato di \textit{sleep} fin quando chi la sta utilizzando non la
+rilascerà, incrementando il valore del semaforo. Non appena il semaforo torna
+positivo, indicando che la risorsa è disponibile, il processo sarà svegliato,
+e si potrà operare come nel caso precedente (decremento del semaforo, accesso
+alla risorsa, incremento del semaforo).
+
+Per poter implementare questo tipo di logica le operazioni di controllo e
+decremento del contatore associato al semaforo devono essere atomiche,
+pertanto una realizzazione di un oggetto di questo tipo è necessariamente
+demandata al kernel. La forma più semplice di semaforo è quella del
+\textsl{semaforo binario}, o \textit{mutex}, in cui un valore diverso da zero
+(normalmente 1) indica la libertà di accesso, e un valore nullo l'occupazione
+della risorsa; in generale però si possono usare semafori con valori interi,
+utilizzando il valore del contatore come indicatore del ``numero di risorse''
+ancora disponibili.
+
+Il sistema di comunicazione interprocesso di System V IPC prevede anche i
+semafori, ma gli oggetti utilizzati non sono semafori singoli, ma gruppi di
+semafori detti \textsl{insiemi} (o \textit{semaphore set}); la funzione che
+permette di creare o ottenere l'identificatore di un insieme di semafori è
+\func{semget}, ed il suo prototipo è:
 \begin{functions}
   \headdecl{sys/types.h} 
   \headdecl{sys/ipc.h} 
@@ -1109,20 +1898,460 @@ risorse condivise. La funzione che permette di ottenere un insieme di semafori
   
   \funcdecl{int semget(key\_t key, int nsems, int flag)}
   
-  Restituisce l'identificatore di un semaforo.
+  Restituisce l'identificatore di un insieme di semafori.
   
   \bodydesc{La funzione restituisce l'identificatore (un intero positivo) o -1
-    in caso di errore, nel qual caso \var{errno} viene settato agli stessi
-    valori visti per \func{msgget}.}
+    in caso di errore, nel qual caso \var{errno} assumerà gli stessi valori
+    visti per \func{msgget}.}
 \end{functions}
 
-La funzione è del tutto analoga a \func{msgget} ed identico è l'uso degli
-argomenti \param{key} e \param{flag}, per cui non ripeteremo quanto detto al
-proposito in \secref{sec:ipc_sysv_mq}. L'argomento \param{nsems} permette di
-specificare quanti semfori deve contenere l'insieme qualora se ne richieda la
-creazione, e deve essere nullo quando si effettua una richiesta
-dell'identificatore di un insieme già esistente.
+La funzione è del tutto analoga a \func{msgget}, solo che in questo caso
+restituisce l'identificatore di un insieme di semafori, in particolare è
+identico l'uso degli argomenti \param{key} e \param{flag}, per cui non
+ripeteremo quanto detto al proposito in \secref{sec:ipc_sysv_mq}. L'argomento
+\param{nsems} permette di specificare quanti semafori deve contenere l'insieme
+quando se ne richieda la creazione, e deve essere nullo quando si effettua una
+richiesta dell'identificatore di un insieme già esistente.
+
+Purtroppo questa implementazione complica inutilmente lo schema elementare che
+abbiamo descritto, dato che non è possibile definire un singolo semaforo, ma
+se ne deve creare per forza un insieme.  Ma questa in definitiva è solo una
+complicazione inutile, il problema è che i semafori del System V IPC soffrono
+di altri due, ben più gravi, difetti.
+
+Il primo difetto è che non esiste una funzione che permetta di creare ed
+inizializzare un semaforo in un'unica chiamata; occorre prima creare l'insieme
+dei semafori con \func{semget} e poi inizializzarlo con \func{semctl}, si
+perde così ogni possibilità di eseguire atomicamente questa operazione.
+
+Il secondo difetto deriva dalla caratteristica generale degli oggetti del
+System V IPC di essere risorse globali di sistema, che non vengono cancellate
+quando nessuno le usa più; ci si così a trova a dover affrontare
+esplicitamente il caso in cui un processo termina per un qualche errore,
+lasciando un semaforo occupato, che resterà tale fino al successivo riavvio
+del sistema. Come vedremo esistono delle modalità per evitare tutto ciò, ma
+diventa necessario indicare esplicitamente che si vuole il ripristino del
+semaforo all'uscita del processo.
 
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}
+struct semid_ds
+{
+    struct ipc_perm sem_perm;           /* operation permission struct */
+    time_t sem_otime;                   /* last semop() time */
+    time_t sem_ctime;                   /* last time changed by semctl() */
+    unsigned long int sem_nsems;        /* number of semaphores in set */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{semid\_ds}, associata a ciascun insieme di
+    semafori.}
+  \label{fig:ipc_semid_ds}
+\end{figure}
+
+A ciascun insieme di semafori è associata una struttura \var{semid\_ds},
+riportata in \figref{fig:ipc_semid_ds}. Come nel caso delle code di messaggi
+quando si crea un nuovo insieme di semafori con \func{semget} questa struttura
+viene inizializzata, in particolare il campo \var{sem\_perm} viene
+inizializzato come illustrato in \secref{sec:ipc_sysv_access_control} (si
+ricordi che in questo caso il permesso di scrittura è in realtà permesso di
+alterare il semaforo), per quanto riguarda gli altri campi invece:
+\begin{itemize*}
+\item il campo \var{sem\_nsems}, che esprime il numero di semafori
+  nell'insieme, viene inizializzato al valore di \param{nsems}.
+\item il campo \var{sem\_ctime}, che esprime il tempo di creazione
+  dell'insieme, viene inizializzato al tempo corrente
+\item il campo \var{sem\_otime}, che esprime il tempo dell'ultima operazione
+  effettuata, viene inizializzato a zero.
+\end{itemize*}
+
+Ciascun semaforo dell'insieme è realizzato come una struttura di tipo
+\var{sem} che ne contiene i dati essenziali, la sua definizione\footnote{si è
+  riportata la definizione originaria del kernel 1.0, che contiene la prima
+  realizzazione del System V IPC in Linux. In realtà questa struttura ormai è
+  ridotta ai soli due primi membri, e gli altri vengono calcolati
+  dinamicamente. La si è utilizzata a scopo di esempio, perché indica tutti i
+  valori associati ad un semaforo, restituiti dalle funzioni di controllo, e
+  citati dalla pagine di manuale.} è riportata in \figref{fig:ipc_sem}. Di
+norma questa struttura non è accessibile in user space, ma lo sono, in maniera
+indiretta, tramite l'uso delle funzioni di controllo, i valori in essa
+specificati, che indicano rispettivamente: il valore del semaforo, il
+\acr{pid} dell'ultimo processo che ha eseguito una operazione, il numero di
+processi in attesa che esso venga incrementato ed il numero di processi in
+attesa che esso si annulli.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}
+struct sem {
+  short   sempid;         /* pid of last operation */
+  ushort  semval;         /* current value */
+  ushort  semncnt;        /* num procs awaiting increase in semval */
+  ushort  semzcnt;        /* num procs awaiting semval = 0 */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{sem}, che contiene i dati di un singolo semaforo.}
+  \label{fig:ipc_sem}
+\end{figure}
+
+L'architettura dell'implementazione dei semafori è riportata in
+\figref{fig:ipc_sem_schema}.  Si è presa come riferimento l'architettura
+usata fino al kernel 2.2.x (ed illustrata anche in \cite{tlk}) in quanto), che
+viene mantenuta per compatibilità anche nel 2.4.x.
+
+\begin{figure}[htb]
+  \centering \includegraphics[width=15cm]{img/semtruct}
+  \caption{Schema della struttura di un insieme di semafori.}
+  \label{fig:ipc_sem_schema}
+\end{figure}
+
+Come per le code di messaggi anche per gli insiemi di semafori esistono una
+serie di limiti, i cui valori sono associati ad altrettante costanti, che si
+sono riportate in \tabref{tab:ipc_sem_limits}. Alcuni di questi limiti sono al
+solito accessibili e modificabili attraverso \func{sysctl} o scrivendo
+direttamente nel file \file{/proc/sys/kernel/sem}.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|r|p{8cm}|}
+    \hline
+    \textbf{Costante} & \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \macro{SEMMNI}&          128 & Numero massimo di insiemi di semafori. \\
+    \macro{SEMMSL}&          250 & Numero massimo di semafori per insieme.\\
+    \macro{SEMMNS}&\macro{SEMMNI}*\macro{SEMMSL}& Numero massimo di semafori
+                                   nel sistema .\\
+    \macro{SEMVMX}&        32767 & Massimo valore per un semaforo.\\
+    \macro{SEMOPM}&           32 & Massimo numero di operazioni per chiamata a
+                                   \func{semop}. \\
+    \macro{SEMMNU}&\macro{SEMMNS}& Massimo numero di strutture di ripristino.\\
+    \macro{SEMUME}&\macro{SEMOPM}& Massimo numero di voci di ripristino.\\
+    \macro{SEMAEM}&\macro{SEMVMX}& valore massimo per l'aggiustamento
+                                   all'uscita. \\
+    \hline
+  \end{tabular}
+  \caption{Valori delle costanti associate ai limiti degli insiemi di
+    semafori, definite in \file{linux/sem.h}.} 
+  \label{tab:ipc_sem_limits}
+\end{table}
+
+La funzione che permette di effettuare le varie operazioni di controllo sui
+semafori (fra le quali, come accennato, è impropriamente compresa anche la
+loro inizializzazione) è \func{semctl}; il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/sem.h} 
+  
+  \funcdecl{int semctl(int semid, int semnum, int cmd)}
+  \funcdecl{int semctl(int semid, int semnum, int cmd, union semun arg)}
+  
+  Esegue le operazioni di controllo su un semaforo o un insieme di semafori.
+  
+  \bodydesc{La funzione restituisce in caso di successo un valore positivo
+    quanto usata con tre argomenti ed un valore nullo quando usata con
+    quattro. In caso di errore restituisce -1, ed \var{errno} assumerà uno dei
+    valori:
+    \begin{errlist}
+    \item[\macro{EACCES}] Il processo non ha i privilegi per eseguire
+      l'operazione richiesta.
+    \item[\macro{EIDRM}] L'insieme di semafori è stato cancellato.
+    \item[\macro{EPERM}] Si è richiesto \macro{IPC\_SET} o \macro{IPC\_RMID} ma
+      il processo non ha  privilegi sufficienti ad eseguire l'operazione.
+    \item[\macro{ERANGE}] Si è richiesto \macro{SETALL} \macro{SETVAL} ma il
+      valore a cui si vuole impostare il semaforo è minore di zero o maggiore
+      di \macro{SEMVMX}.
+  \end{errlist}
+  ed inoltre \macro{EFAULT} ed \macro{EINVAL}.
+}
+\end{functions}
+
+La funzione può avere tre o quattro parametri, a seconda dell'operazione
+specificata con \param{cmd}, ed opera o sull'intero insieme specificato da
+\param{semid} o sul singolo semaforo di un insieme, specificato da
+\param{semnum}. 
+
+Qualora la funzione operi con quattro argomenti \param{arg} è
+un argomento generico, che conterrà un dato diverso a seconda dell'azione
+richiesta; per unificare l'argomento esso deve essere passato come una
+\var{union semun}, la cui definizione, con i possibili valori che può
+assumere, è riportata in \figref{fig:ipc_semun}.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}
+union semun {
+      int val;                  /* value for SETVAL */
+      struct semid_ds *buf;     /* buffer for IPC_STAT, IPC_SET */
+      unsigned short *array;    /* array for GETALL, SETALL */
+                                /* Linux specific part: */
+      struct seminfo *__buf;    /* buffer for IPC_INFO */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La definizione dei possibili valori di una \var{union semun}, usata
+    come quarto argomento della funzione \func{semctl}.}
+  \label{fig:ipc_semun}
+\end{figure}
+
+Come già accennato sia il comportamento della funzione che il numero di
+parametri con cui deve essere invocata, dipendono dal valore dell'argomento
+\param{cmd}, che specifica l'azione da intraprendere; i valori validi (che
+cioè non causano un errore di \macro{EINVAL}) per questo argomento sono i
+seguenti:
+\begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
+\item[\macro{IPC\_STAT}] Legge i dati dell'insieme di semafori, copiando il
+  contenuto della relativa struttura \var{semid\_ds} all'indirizzo specificato
+  con \var{arg.buf}. Occorre avere il permesso di lettura. L'argomento
+  \param{semnum} viene ignorato.
+\item[\macro{IPC\_RMID}] Rimuove l'insieme di semafori e le relative strutture
+  dati, con effetto immediato. Tutti i processi che erano stato di
+  \textit{sleep} vengono svegliati, ritornando con un errore di \macro{EIDRM}.
+  L'userid effettivo del processo deve corrispondere o al creatore o al
+  proprietario dell'insieme, o all'amministratore. L'argomento \param{semnum}
+  viene ignorato.
+\item[\macro{IPC\_SET}] Permette di modificare i permessi ed il proprietario
+  dell'insieme. I valori devono essere passati in una struttura
+  \var{semid\_ds} puntata da \param{arg.buf} di cui saranno usati soltanto i
+  campi \var{sem\_perm.uid}, \var{sem\_perm.gid} e i nove bit meno
+  significativi di \var{sem\_perm.mode}. L'userid effettivo del processo deve
+  corrispondere o al creatore o al proprietario dell'insieme, o
+  all'amministratore.  L'argomento \param{semnum} viene ignorato.
+\item[\macro{GETALL}] Restituisce il valore corrente di ciascun semaforo
+  dell'insieme (corrispondente al campo \var{semval} di \var{sem}) nel vettore
+  indicato da \param{arg.array}. Occorre avere il permesso di lettura.
+  L'argomento \param{semnum} viene ignorato.
+\item[\macro{GETNCNT}] Restituisce come valore di ritorno della funzione il
+  numero di processi in attesa che il semaforo \param{semnum} dell'insieme
+  \param{semid} venga incrementato (corrispondente al campo \var{semncnt} di
+  \var{sem}); va invocata con tre argomenti.  Occorre avere il permesso di
+  lettura.
+\item[\macro{GETPID}] Restituisce come valore di ritorno della funzione il
+  \acr{pid} dell'ultimo processo che ha compiuto una operazione sul semaforo
+  \param{semnum} dell'insieme \param{semid} (corrispondente al campo
+  \var{sempid} di \var{sem}); va invocata con tre argomenti.  Occorre avere il
+  permesso di lettura.
+\item[\macro{GETVAL}] Restituisce come valore di ritorno della funzione il il
+  valore corrente del semaforo \param{semnum} dell'insieme \param{semid}
+  (corrispondente al campo \var{semval} di \var{sem}); va invocata con tre
+  argomenti.  Occorre avere il permesso di lettura.
+\item[\macro{GETZCNT}] Restituisce come valore di ritorno della funzione il
+  numero di processi in attesa che il valore del semaforo \param{semnum}
+  dell'insieme \param{semid} diventi nullo (corrispondente al campo
+  \var{semncnt} di \var{sem}); va invocata con tre argomenti.  Occorre avere
+  il permesso di lettura.
+\item[\macro{SETALL}] Inizializza il valore di tutti i semafori dell'insieme,
+  aggiornando il campo \var{sem\_ctime} di \var{semid\_ds}. I valori devono
+  essere passati nel vettore indicato da \param{arg.array}.  Si devono avere i
+  privilegi di scrittura sul semaforo.  L'argomento \param{semnum} viene
+  ignorato.
+\item[\macro{SETVAL}] Inizializza il semaforo \param{semnum} al valore passato
+  dall'argomento \param{arg.val}, aggiornando il campo \var{sem\_ctime} di
+  \var{semid\_ds}.  Si devono avere i privilegi di scrittura sul semaforo.
+\end{basedescript}
+
+Quando si imposta il valore di un semaforo (sia che lo si faccia per tutto
+l'insieme con \macro{SETALL}, che per un solo semaforo con \macro{SETVAL}), i
+processi in attesa su di esso reagiscono di conseguenza al cambiamento di
+valore.  Inoltre la coda delle operazioni di ripristino viene cancellata per
+tutti i semafori il cui valore viene modificato.
+
+\begin{table}[htb]
+  \footnotesize
+  \centering
+  \begin{tabular}[c]{|c|l|}
+    \hline
+    \textbf{Operazione}  & \textbf{Valore restituito} \\
+    \hline
+    \hline
+    \macro{GETNCNT}& valore di \var{semncnt}.\\
+    \macro{GETPID} & valore di \var{sempid}.\\
+    \macro{GETVAL} & valore di \var{semval}.\\
+    \macro{GETZCNT}& valore di \var{semzcnt}.\\
+    \hline
+  \end{tabular}
+  \caption{Valori di ritorno della funzione \func{semctl}.} 
+  \label{tab:ipc_semctl_returns}
+\end{table}
+
+Il valore di ritorno della funzione in caso di successo dipende
+dall'operazione richiesta; per tutte le operazioni che richiedono quattro
+argomenti esso è sempre nullo, per le altre operazioni, elencate in
+\tabref{tab:ipc_semctl_returns} viene invece restituito il valore richiesto,
+corrispondente al campo della struttura \var{sem} indicato nella seconda
+colonna della tabella.
+
+Le operazioni ordinarie sui semafori, come l'acquisizione o il rilascio degli
+stessi (in sostanza tutte quelle non comprese nell'uso di \func{semctl})
+vengono effettuate con la funzione \func{semop}, il cui prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/ipc.h} 
+  \headdecl{sys/sem.h} 
+  
+  \funcdecl{int semop(int semid, struct sembuf *sops, unsigned nsops)}
+  
+  Esegue le operazioni ordinarie su un semaforo o un insieme di semafori.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\macro{EACCES}] Il processo non ha i privilegi per eseguire
+      l'operazione richiesta.
+    \item[\macro{EIDRM}] L'insieme di semafori è stato cancellato.
+    \item[\macro{ENOMEM}] Si è richiesto un \macro{SEM\_UNDO} ma il sistema
+      non ha le risorse per allocare la struttura di ripristino.
+    \item[\macro{EAGAIN}] Un'operazione comporterebbe il blocco del processo,
+      ma si è specificato \macro{IPC\_NOWAIT} in \var{sem\_flg}.
+    \item[\macro{EINTR}] La funzione, bloccata in attesa dell'esecuzione
+      dell'operazione, viene interrotta da un segnale.
+    \item[\macro{E2BIG}] L'argomento \param{nsops} è maggiore del numero
+      massimo di operazioni \macro{SEMOPM}.
+    \item[\macro{ERANGE}] Per alcune operazioni il valore risultante del
+      semaforo viene a superare il limite massimo \macro{SEMVMX}.
+  \end{errlist}
+  ed inoltre \macro{EFAULT} ed \macro{EINVAL}.
+}
+\end{functions}
+
+La funzione permette di eseguire operazioni multiple sui singoli semafori di
+un insieme. La funzione richiede come primo argomento l'identificatore
+\param{semid} dell'insieme su cui si vuole operare. Il numero di operazioni da
+effettuare viene specificato con l'argomento \param{nsop}, mentre il loro
+contenuto viene passato con un puntatore ad un vettore di strutture
+\var{sembuf} nell'argomento \param{sops}. Le operazioni richieste vengono
+effettivamente eseguite se e soltanto se è possibile effettuarle tutte quante.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}
+struct sembuf
+{
+  unsigned short int sem_num;   /* semaphore number */
+  short int sem_op;             /* semaphore operation */
+  short int sem_flg;            /* operation flag */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{sembuf}, usata per le operazioni sui
+    semafori.}
+  \label{fig:ipc_sembuf}
+\end{figure}
+
+Il contenuto di ciascuna operazione deve essere specificato attraverso una
+opportuna struttura \var{sembuf} (la cui definizione è riportata in
+\figref{fig:ipc_sembuf}) che il programma chiamante deve avere cura di
+allocare in un opportuno vettore. La struttura permette di indicare il
+semaforo su cui operare, il tipo di operazione, ed un flag di controllo.
+
+Il campo \var{sem\_num} serve per indicare a quale semaforo dell'insieme fa
+riferimento l'operazione; si ricordi che i semafori sono numerati come in un
+vettore, per cui il primo semaforo corrisponde ad un valore nullo di
+\var{sem\_num}.
+
+Il campo \var{sem\_flg} è un flag, mantenuto come maschera binaria, per il
+quale possono essere impostati i due valori \macro{IPC\_NOWAIT} e
+\macro{SEM\_UNDO}.  Impostando \macro{IPC\_NOWAIT} si fa si che, invece di
+bloccarsi (in tutti quei casi in cui l'esecuzione di una operazione richiede
+che il processo vada in stato di \textit{sleep}), \func{semop} ritorni
+immediatamente con un errore di \macro{EAGAIN}.  Impostando \macro{SEM\_UNDO}
+si richiede invece che l'operazione venga registrata in modo che il valore del
+semaforo possa essere ripristinato all'uscita del processo.
+
+Infine \var{sem\_op} è il campo che controlla l'operazione che viene eseguita
+e determina il comportamento della chiamata a \func{semop}; tre sono i casi
+possibili:
+\begin{basedescript}{\desclabelwidth{2.0cm}}
+\item[\var{sem\_op}$>0$] In questo caso il valore di \var{sem\_op} viene
+  aggiunto al valore corrente di \var{semval}. La funzione ritorna
+  immediatamente (con un errore di \macro{ERANGE} qualora si sia superato il
+  limite \macro{SEMVMX}) ed il processo non viene bloccato in nessun caso.
+  Specificando \macro{SEM\_UNDO} si aggiorna il contatore per il ripristino
+  del valore del semaforo. Al processo chiamante è richiesto il privilegio di
+  alterazione (scrittura) sull'insieme di semafori.
+  
+\item[\var{sem\_op}$=0$] Nel caso \var{semval} sia zero l'esecuzione procede
+  immediatamente. Se \var{semval} è diverso da zero il comportamento è
+  controllato da \var{sem\_flg}, se è stato impostato \macro{IPC\_NOWAIT} la
+  funzione ritorna con un errore di \macro{EAGAIN}, altrimenti viene
+  incrementato \var{semzcnt} di uno ed il processo resta in stato di
+  \textit{sleep} fintanto che non si ha una delle condizioni seguenti:
+  \begin{itemize*}
+  \item \var{semval} diventa zero, nel qual caso \var{semzcnt} viene
+    decrementato di uno.
+  \item l'insieme di semafori viene rimosso, nel qual caso \func{semop} ritorna
+    un errore di \macro{EIDRM}.
+  \item il processo chiamante riceve un segnale, nel qual caso \var{semzcnt}
+    viene decrementato di uno e \func{semop} ritorna un errore di
+    \macro{EINTR}.
+  \end{itemize*}
+  Al processo chiamante è richiesto il privilegio di lettura dell'insieme dei
+  semafori.
+  
+\item[\var{sem\_op}$<0$] Nel caso in cui \var{semval} è maggiore o uguale del
+  valore assoluto di \var{sem\_op} (se cioè la somma dei due valori resta
+  positiva o nulla) i valori vengono sommati e la funzione ritorna
+  immediatamente; qualora si sia impostato \macro{SEM\_UNDO} viene anche
+  aggiornato il contatore per il ripristino del valore del semaforo. In caso
+  contrario (quando cioè la somma darebbe luogo ad un valore di \var{semval}
+  negativo) se si è impostato \macro{IPC\_NOWAIT} la funzione ritorna con un
+  errore di \macro{EAGAIN}, altrimenti viene incrementato di uno \var{semncnt}
+  ed il processo resta in stato di \textit{sleep} fintanto che non si ha una
+  delle condizioni seguenti:
+  \begin{itemize*}
+  \item \var{semval} diventa maggiore o uguale del valore assoluto di
+    \var{sem\_op}, nel qual caso \var{semncnt} viene decrementato di uno, il
+    valore di \var{sem\_op} viene sommato a \var{semval}, e se era stato
+    impostato \macro{SEM\_UNDO} viene aggiornato il contatore per il
+    ripristino del valore del semaforo.
+  \item l'insieme di semafori viene rimosso, nel qual caso \func{semop} ritorna
+    un errore di \macro{EIDRM}.
+  \item il processo chiamante riceve un segnale, nel qual caso \var{semncnt}
+    viene decrementato di uno e \func{semop} ritorna un errore di
+    \macro{EINTR}.
+  \end{itemize*}    
+  Al processo chiamante è richiesto il privilegio di alterazione (scrittura)
+  sull'insieme di semafori.
+\end{basedescript}
+
+In caso di successo della funzione viene aggiornato di \var{sempid} per ogni
+semaforo modificato al valore del \acr{pid} del processo chiamante; inoltre
+vengono pure aggiornati al tempo corrente i campi \var{sem\_otime} e
+\var{sem\_ctime}.
+
+Dato che, come già accennato in precedenza, in caso di uscita inaspettata i
+semafori possono restare occupati, abbiamo visto come \func{semop} permetta di
+attivare un meccanismo di ripristino attraverso l'uso del flag
+\macro{SEM\_UNDO}. Il meccanismo è implementato tramite una apposita struttura
+\var{sem\_undo}, associata ad ogni processo per ciascun semaforo che esso ha
+modificato; all'uscita i semafori modificati vengono ripristinati, e le
+strutture disallocate.  Per mantenere coerente il comportamento queste
+strutture non vengono ereditate attraverso una \func{fork} (altrimenti si
+avrebbe un doppio ripristino), mentre passano inalterate nell'esecuzione di
+una \func{exec} (altrimenti non si avrebbe ripristino).
+
+Resta comunque insoluto il problema di fondo di questo meccanismo, che non si
+adatta al concetto di operazioni atomiche su un semaforo. Infatti siccome le
+richieste di ripristino si accumulano attraverso diverse chiamate a
+\func{semop}, si pone il problema di cosa fare all'uscita del processo quando
+viene eseguito il ripristino.  Il punto è se si deve porre il processo in
+stato di \textit{sleep} se non si può accedere al semaforo o andare avanti
+come se fosse stato impostato \macro{IPC\_NOWAIT}. La scelta del kernel è
+quella di effettuare le operazioni che non prevedono un blocco del processo ed
+ignorare silenziosamente le altre.  Questo comporta che un comportamento senza
+problemi può essere garantito solo per i semafori privati.
 
 
 \subsection{Memoria condivisa}
@@ -1141,8 +2370,8 @@ prototipo 
   Restituisce l'identificatore di una memoria condivisa.
   
   \bodydesc{La funzione restituisce l'identificatore (un intero positivo) o -1
-    in caso di errore, nel qual caso \var{errno} viene settato agli stessi
-    valori visti per \func{msgget}.}
+    in caso di errore, nel qual caso \var{errno} assumerà gli stessi valori
+    visti per \func{msgget}.}
 \end{functions}
 
 La funzione, come \func{semget}, è del tutto analoga a \func{msgget}, ed
@@ -1174,7 +2403,7 @@ evitasse i principali problemi evidenziati in coda a
 
 
 \subsection{Memoria condivisa}
-\label{sec:ipc_sysv_shm}
+\label{sec:ipc_posix_shm}
 
 %%% Local Variables: 
 %%% mode: latex