Completato enviroment & C
[gapil.git] / intro.tex
index 34950b5ded552bdc8e96438b8d629664acf444db..baa8f716090885c81fa6e72d77214b0e17dcedce 100644 (file)
--- a/intro.tex
+++ b/intro.tex
@@ -6,18 +6,18 @@ cui 
 fornire una base di comprensione mirata a sottolineare le peculiarità del
 sistema che sono più rilevanti per quello che riguarda la programmazione.
 
-Dopo un introduzione sulle caratteristiche principali di un sistema di tipo
-unix passeremo ad illustrare alcuni dei concetti basi dell'architettura di
+Dopo una introduzione sulle caratteristiche principali di un sistema di tipo
+unix passeremo ad illustrare alcuni dei concetti base dell'architettura di
 GNU/Linux (che sono comunque comuni a tutti i sistemi \textit{unix-like}) ed
 introdurremo alcuni degli standard principali a cui viene fatto riferimento.
 
 
-\section{Una panoramica sulla struttura}
+\section{Una panoramica}
 \label{sec:intro_unix_struct}
 
-In questa prima sezione faremo una panoramica sulla struttura di un sistema
-\textit{unix-like} come GNU/Linux.  Chi avesse già una conoscenza di questa
-materia può tranquillamente saltare questa sezione.
+In questa prima sezione faremo una breve panoramica sull'architettura del
+sistema.  Chi avesse già una conoscenza di questa materia può tranquillamente
+saltare questa sezione.
 
 Il concetto base di un sistema unix-like è quello di un nucleo del sistema (il
 cosiddetto \textit{kernel}) a cui si demanda la gestione delle risorse
@@ -28,7 +28,7 @@ tramite delle richieste a quest'ultimo.
 
 Fin dall'inizio uno unix si presenta come un sistema operativo
 \textit{multitasking}, cioè in grado di eseguire contemporaneamente più
-programmi, e multiutente, in cui é possibile che più utenti siano connessi ad
+programmi, e multiutente, in cui è possibile che più utenti siano connessi ad
 una macchina eseguendo più programmi ``in contemporanea'' (in realtà, almeno
 per macchine a processore singolo, i programmi vengono eseguiti singolarmente
 a rotazione).
@@ -42,7 +42,7 @@ Gli unix pi
 caratteristiche dei processori moderni come la gestione hardware della memoria
 e la modalità protetta. In sostanza con i processori moderni si può
 disabilitare temporaneamente l'uso di certe istruzioni e l'accesso a certe
-zone di memoria fisica.  Quello che succede é che il kernel é il solo
+zone di memoria fisica.  Quello che succede è che il kernel è il solo
 programma ad essere eseguito in modalità privilegiata, con il completo accesso
 all'hardware, mentre i programmi normali vengono eseguiti in modalità protetta
 (e non possono accedere direttamente alle zone di memoria riservate o alle
@@ -56,7 +56,7 @@ protetta; quando necessario il processo potr
 soltanto attraverso delle opportune chiamate al sistema che restituiranno il
 controllo al kernel.
 
-La memoria viene sempre gestita del kernel attraverso il meccanismo della
+La memoria viene sempre gestita dal kernel attraverso il meccanismo della
 \textsl{memoria virtuale}, che consente di assegnare a ciascun processo uno
 spazio di indirizzi ``virtuale'' (vedi \secref{sec:proc_memory}) che il kernel
 stesso, con l'ausilio della unità di gestione della memoria, si incaricherà di
@@ -67,7 +67,7 @@ eccedenza.
 Le periferiche infine vengono viste in genere attraverso un'interfaccia
 astratta che permette di trattarle come fossero file, secondo il concetto per
 cui \textit{everything is a file}, su cui torneremo in dettaglio in
-\capref{cha:files_intro}, (questo non è vero per le interfacce di rete, che
+\capref{cha:file_intro}, (questo non è vero per le interfacce di rete, che
 hanno un'interfaccia diversa, ma resta valido il concetto generale che tutto
 il lavoro di accesso e gestione a basso livello è effettuato dal kernel).
 
@@ -75,10 +75,10 @@ il lavoro di accesso e gestione a basso livello 
 \section{User space e kernel space}
 \label{sec:intro_user_kernel_space}
 
-Uno dei concetti fondamentale su cui si basa l'architettura dei sistemi unix è
+Uno dei concetti fondamentali su cui si basa l'architettura dei sistemi unix è
 quello della distinzione fra il cosiddetto \textit{user space}, che
 contraddistingue l'ambiente in cui vengono eseguiti i programmi, e il
-\textit{kernel space} che é l'ambiente in cui viene eseguito il kernel. Ogni
+\textit{kernel space}, che è l'ambiente in cui viene eseguito il kernel. Ogni
 programma vede se stesso come se avesse la piena disponibilità della CPU e
 della memoria ed è, salvo i meccanismi di comunicazione previsti
 dall'architettura, completamente ignaro del fatto che altri programmi possono
@@ -102,31 +102,31 @@ fornisce allo user space.
 Per capire meglio la distinzione fra kernel space e user space si può prendere
 in esame la procedura di avvio di un sistema unix; all'avvio il BIOS (o in
 generale il software di avvio posto nelle EPROM) eseguirà la procedura di
-avvio del sistema (il cosiddetto \textit{boot}) incaricandosi di caricare il
+avvio del sistema (il cosiddetto \textit{boot}), incaricandosi di caricare il
 kernel in memoria e di farne partire l'esecuzione; quest'ultimo, dopo aver
-inizializzato le periferiche farà partire il primo processo, \cmd{init} che è
-quello che a sua volta farà partire tutti i processi successivi,fra i quali
-c'è pure quello che si occupa di dialogare con la tastiera e lo schermo della
-console, e quello che mette a disposizione dell'utente che si vuole collegare
-un terminale e la stessa \textit{shell} da cui inviare i comandi.
+inizializzato le periferiche, farà partire il primo processo, \cmd{init}, che
+è quello che a sua volta farà partire tutti i processi successivi. Fra questi
+ci sarà pure quello che si occupa di dialogare con la tastiera e lo schermo
+della console, e quello che mette a disposizione dell'utente che si vuole
+collegare, un terminale e la \textit{shell} da cui inviare i comandi.
 
 E' da rimarcare come tutto ciò, che usualmente viene visto come parte del
 sistema, non abbia in realtà niente a che fare con il kernel, ma sia
 effettuato da opportuni programmi che vengono eseguiti, allo stesso modo di un
 qualunque programma di scrittura o di disegno, in user space.
 
-Questo significa ad esempio che il sistema di per sé non dispone di primitive
-per tutta una serie di operazioni (come la copia di un file) che altri sistemi
-(come Windows) hanno invece al loro interno. Pertanto buona parte delle
-operazioni di normale amministrazione di un sistema, come quella in esempio,
-sono implementate come normali programmi.
+Questo significa, ad esempio, che il sistema di per sé non dispone di
+primitive per tutta una serie di operazioni (come la copia di un file) che
+altri sistemi (come Windows) hanno invece al loro interno. Pertanto buona
+parte delle operazioni di normale amministrazione di un sistema, come quella
+in esempio, sono implementate come normali programmi.
 
 %Una delle caratteristiche base di unix \`e perci\`o che \`e possibile
 %realizzare un sistema di permessi e controlli che evitano che i programmi
 %eseguano accessi non autorizzati. 
 
-Per questo motivo è più corretto parlare di sistema GNU/Linux, in quanto da
-solo il kernel è assolutamente inutile, quello che costruisce un sistema
+Per questo motivo è più corretto parlare di un sistema GNU/Linux, in quanto da
+solo il kernel è assolutamente inutile; quello che costruisce un sistema
 operativo utilizzabile è la presenza di tutta una serie di librerie e
 programmi di utilità che permettono di eseguire le normali operazioni che ci
 si aspetta da un sistema operativo.
@@ -138,41 +138,41 @@ si aspetta da un sistema operativo.
 Come accennato le interfacce con cui i programmi possono accedere all'hardware
 vanno sotto il nome di chiamate al sistema (le cosiddette \textit{system
   call}), si tratta di un insieme di funzioni, che un programma può chiamare,
-per le quali viene generata una interruzione processo e il controllo è passato
+per le quali viene generata una interruzione processo ed il controllo passa
 dal programma al kernel. Sarà poi quest'ultimo che (oltre a compiere una serie
-di operazioni interne come la gestione del multitasking e il l'allocazione
-della memoria) eseguirà la funzione richiesta in kernel space restituendo i
+di operazioni interne come la gestione del multitasking e l'allocazione della
+memoria) eseguirà la funzione richiesta in \textit{kernel space} restituendo i
 risultati al chiamante.
 
 Ogni versione unix ha storicamente sempre avuto un certo numero di queste
 chiamate, che sono riportate nella seconda sezione del \textsl{Manuale della
-  programmazione di unix} (quella che si accede con il comando \cmd{man 2
-  nome}) e GNU/Linux non fa eccezione. Queste sono poi state codificate da vari
-standard, che esamineremo brevemente in \secref{sec:intro_standard}.
+  programmazione di unix} (quella cui si accede con il comando \cmd{man 2
+  nome}) e GNU/Linux non fa eccezione. Queste sono poi state codificate da
+vari standard, che esamineremo brevemente in \secref{sec:intro_standard}.
 
 Normalmente ciascuna di queste chiamate al sistema viene rimappata in
 opportune funzioni con lo stesso nome definite dentro la Libreria Standard del
-C, che oltre alle interfacce alle system call contiene anche tutta una serie
-di ulteriori funzioni usate comunemente nella programmazione.
+C, che, oltre alle interfacce alle system call, contiene anche tutta una serie
+di ulteriori funzioni, comunemente usate nella programmazione.
 
 Questo è importante da capire perché programmare in Linux significa anzitutto
-essere in grado di usare la Libreria Standard del C, in quanto né il kernel né
-il linguaggio C implementano direttamente operazioni comuni come la
+essere in grado di usare la Libreria Standard del C, in quanto né il kernel,
+né il linguaggio C, implementano direttamente operazioni comuni come la
 allocazione dinamica della memoria, l'input/output bufferizzato o la
-manipolazione delle stringhe presenti in qualunque programma.
+manipolazione delle stringhe, presenti in qualunque programma.
 
 Anche per questo in Linux è in effetti GNU/Linux, in quanto una parte
 essenziale del sistema (senza la quale niente può funzionare) è la
 realizzazione fatta dalla Free Software Foundation della suddetta libreria (la
-GNU Standard C Library, in breve \textit{glibc}), in cui sono state
+GNU Standard C Library, detta in breve \textit{glibc}), in cui sono state
 implementate tutte le funzioni essenziali definite negli standard POSIX e ANSI
 C, che vengono utilizzate da qualunque programma.
 
 Le funzioni di questa libreria sono quelle riportate dalla terza sezione del
-Manuale di Programmazione di Unix (cioè accessibili con il comando \cmd{man 2
-  nome}), e sono costruite sulla base delle chiamate al sistema del kernel; è
+Manuale di Programmazione di Unix (cioè accessibili con il comando \cmd{man 3
+  nome}) e sono costruite sulla base delle chiamate al sistema del kernel; è
 importante avere presente questa distinzione, fondamentale dal punto di vista
-dell'implementazione, anche se poi nella realizzazione di normali programmi
+dell'implementazione, anche se poi, nella realizzazione di normali programmi,
 non si hanno differenze pratiche fra l'uso di una funzione di libreria e
 quello di una chiamata al sistema.
 
@@ -182,18 +182,18 @@ quello di una chiamata al sistema.
 
 Linux, come gli altri unix, nasce fin dall'inizio come sistema multiutente,
 cioè in grado di fare lavorare più persone in contemporanea. Per questo
-esistono una serie di meccanismi di sicurezza che non sono previsti in sistemi
-operativi monoutente e che occorre tenere presente.
+esistono una serie di meccanismi di sicurezza, che non sono previsti in
+sistemi operativi monoutente, e che occorre tenere presente.
 
-Il concetto base è quello di utente (\textit{user}) del sistema, utente che ha
-dei ben definiti limiti e capacità rispetto a quello che può fare. Sono così
-previsti una serie di meccanismi per identificare i singoli utenti ed una
-serie di permessi e protezioni per impedire che utenti diversi possano
+Il concetto base è quello di utente (\textit{user}) del sistema, le cui
+capacità rispetto a quello che può fare sono sottoposte a ben precisi limiti.
+Sono così previsti una serie di meccanismi per identificare i singoli utenti
+ed una serie di permessi e protezioni per impedire che utenti diversi possano
 danneggiarsi a vicenda o danneggiare il sistema.
 
 Ad ogni utente è dato un nome \textit{username}, che è quello che viene
 richiesto all'ingresso nel sistema dalla procedura di \textit{login}. Questa
-procedura si incarica di verificare la identità dell'utente (in genere
+procedura si incarica di verificare la identità dell'utentein genere
 attraverso la richiesta di una parola d'ordine, anche se sono possibili
 meccanismi diversi\footnote{Ad esempio usando la libreria PAM
   (\textit{Pluggable Autentication Methods}) è possibile astrarre
@@ -212,10 +212,10 @@ accesso ai file e quindi anche alle periferiche, in maniera pi
 definendo gruppi di lavoro, di accesso a determinate risorse, etc.
 
 L'utente e il gruppo sono identificati da due numeri (la cui corrispondenza ad
-un nome in espresso in caratteri è inserita nei due files \file{/etc/passwd}
-e \file{/etc/groups}). Questi numeri sono l'\textit{user identifier}, detto
-in breve \acr{uid} e il \textit{group identifier}, detto in breve \acr{gid}
-che sono quelli che poi vengono usati dal kernel per riconoscere l'utente.
+un nome espresso in caratteri è inserita nei due file \file{/etc/passwd} e
+\file{/etc/groups}). Questi numeri sono l'\textit{user identifier}, detto in
+breve \acr{uid}, e il \textit{group identifier}, detto in breve \acr{gid}, che
+sono quelli che poi vengono usati dal kernel per identificare l'utente.
  
 In questo modo il sistema è in grado di tenere traccia per ogni processo
 dell'utente a cui appartiene ed impedire ad altri utenti di interferire con
@@ -224,238 +224,197 @@ sicurezza interna in quanto anche l'accesso ai file (vedi
 \secref{sec:file_access_control}) è regolato da questo meccanismo di
 identificazione.
 
-Infine in ogni unix è presente un utente speciale privilegiato, di norma
-chiamato \textit{root}, il cui \acr{uid} è zero. Esso identifica
-l'amministratore del sistema, che deve essere in grado di fare qualunque
-operazione; per l'utente \textit{root} infatti i meccanismi di controllo
-descritti in precedenza sono disattivati\footnote{i controlli infatti vengono
-  sempre eseguiti da un codice del tipo \texttt{if (uid) \{ ... \}}}.
+Infine in ogni unix è presente un utente speciale privilegiato, il cosiddetto
+\textit{superuser}, il cui username è di norma \textit{root}, ed il cui
+\acr{uid} è zero. Esso identifica l'amministratore del sistema, che deve
+essere in grado di fare qualunque operazione; per l'utente \textit{root}
+infatti i meccanismi di controllo descritti in precedenza sono
+disattivati\footnote{i controlli infatti vengono sempre eseguiti da un codice
+  del tipo \texttt{if (uid) \{ ... \}}}.
 
 
 \section{Gli standard di unix e GNU/Linux}
 \label{sec:intro_standard}
 
-In questa sezione prenderemo in esame alcune caratteristiche generali del
-sistema e gli standard adottati per le funzioni, i prototipi, gli errori, i
-tipi di dati.
-
-\subsection{Prototipi e puntatori}
-\label{sec:intro_function}
-
-\subsection{La misura del tempo in unix}
-\label{sec:intro_unix_time}
-
-Storicamente i sistemi unix-like hanno sempre mantenuto due distinti valori
-per i tempi all'interno del sistema, essi sono rispettivamente chiamati
-\textit{calendar time} e \textit{process time}, secondo le definizioni:
-\begin{itemize}
-\item \textit{calendar time}: è il numero di secondi dalla mezzanotte del
-  primo gennaio 1970, in tempo universale coordinato (o UTC), data che viene
-  usualmente indicata con 00:00:00 Jan, 1 1970 (UTC) e chiamata \textit{the
-    Epoch}. Questo tempo viene anche chiamato anche GMT (Greenwich Mean Time)
-  dato che l'UTC corrisponde all'ora locale di Greenwich.  È il tempo su cui
-  viene mantenuto l'orologio del calcolatore, e viene usato ad esempio per
-  indicare le date di modifica dei file o quelle di avvio dei processi. Per
-  memorizzare questo tempo è stato riservato il tipo primitivo \func{time\_t}.
-\item \textit{process time}: talvolta anche detto tempo di CPU. Viene misurato
-  in \textit{clock tick}, corrispondenti al numero di interruzioni effettuate
-  dal timer di sistema, e che per Linux avvengono ogni centesimo di
-  secondo\footnote{eccetto per la piattaforma alpha dove avvengono ogni
-    millesimo di secondo}. Il dato primitivo usato per questo tempo è
-  \func{clock\_t}, inoltre la costante \macro{HZ} restituisce la frequenza di
-  operazione del timer, e corrisponde dunque al numero di tick al secondo.  Lo
-  standard POSIX definisce allo stesso modo la costante \macro{CLK\_TCK});
-  questo valore può comunque essere ottenuto con \func{sysconf} (vedi
-  \secref{sec:intro_limits}).
-\end{itemize}
-
-In genere si usa il \textit{calendar time} per tenere le date dei file e le
-informazioni analoghe che riguardano i tempi di ``orologio'', usati ad esempio
-per i demoni che compiono lavori amministrativi ad ore definite, come
-\cmd{cron}. Di solito questo vene convertito automaticamente dal valore in UTC
-al tempo locale, utilizzando le opportune informazioni di localizzazione
-(specificate in \file{/etc/timezone}). E da tenere presente che questo tempo è
-mantenuto dal sistema e non corrisponde all'orologio hardware del calcolatore.
-
-Il \textit{process time} di solito si esprime in secondi e viene usato appunto
-per tenere conto dei tempi di esecuzione dei processi. Per ciascun processo il
-kernel tiene tre di questi tempi: 
-\begin{itemize}
-\item \textit{clock time}
-\item \textit{user time}
-\item \textit{system time}
-\end{itemize}
-il primo è il tempo ``reale'' (viene anche chiamato \textit{wall clock time})
-dall'avvio del processo, e misura il tempo trascorso fino alla sua
-conclusione; chiaramente un tale tempo dipende anche dal carico del sistema e
-da quanti altri processi stavano girando nello stesso periodo. Il secondo
-tempo è quello che la CPU ha speso nell'esecuzione delle istruzioni del
-processo in user space. Il terzo è il tempo impiegato dal kernel per eseguire
-delle system call per conto del processo medesimo (tipo quello usato per
-eseguire una \func{write} su un file). In genere la somma di user e system
-time viene chiamato \textit{CPU time}. 
+In questa sezione faremo una breve panoramica relativa ai vari standard che
+nel tempo sono stati formalizzati da enti, associazioni, consorzi e
+organizzazioni varie al riguardo del sistema o alle caratteristiche che si
+sono stabilite come standard di fatto in quanto facenti parte di alcune
+implementazioni molto diffuse come BSD o SVr4.
+
+Ovviamente prenderemo in considerazione solo gli aspetti riguardanti
+interfacce di programmazione e le altre caratteristiche di un sistema
+unix-like ed in particolare a come e in che modo essi sono supportati da
+GNU/Linux (sia per quanto riguarda il kernel che le \acr{glibc}).
+
 
 \subsection{Lo standard ANSI C}
 \label{sec:intro_ansiC}
 
-\subsection{Lo standard POSIX}
+Lo standard ANSI C è stato definito nel 1989 dall'\textit{American National
+  Standard Institute}, come standard del linguaggio C ed è stato
+successivamente adottato dalla \textit{International Standard Organisation}
+come standard internazionale con la sigla ISO/IEC 9899:1990, e va anche sotto
+il nome di standard ISO C.
+
+Scopo dello standard è quello di garantire la portabilità dei programmi C fra
+sistemi operativi diversi, ma oltre alla sintassi e alla semantica del
+linguaggio C (operatori, parole chiave, tipi di dati) lo standard prevede
+anche una libreria di funzioni che devono poter essere implementate su
+qualunque sistema operativo.
+
+Per questo motivo, anche se lo standard non ha alcun riferimento ad un sistema
+di tipo unix, GNU/Linux (per essere precisi le glibc), come molti unix
+moderni, provvede la compatibilità con questo standard, fornendo le funzioni
+di libreria da esso previste. Queste sono dichiarate in quindici header file
+(anch'essi provvisti dalla \acr{glibc}), uno per ciascuna delle quindici aree
+in cui è stata suddivisa una libreria standard. In \ntab\ si sono riportati
+questi header, insieme a quelli definiti negli altri standard descritti nelle
+sezioni successive.
+
+In realtà \acr{glibc} ed i relativi header file definiscono un insieme di
+funzionalità in cui sono incluse come sottoinsieme anche quelle previste dallo
+standard ANSI C. È possibile ottenere una conformità stretta allo standard
+(scartando le funzionalità addizionali) usando il \cmd{gcc} con l'opzione
+\cmd{-ansi}. Questa opzione istruisce il compilatore a definire nei vari
+header file soltanto le funzionalità previste dallo standard ANSI C e a non
+usare le varie estensioni al linguaggio e al preprocessore da esso supportate.
+
+
+\subsection{Lo standard IEEE -- POSIX}
 \label{sec:intro_posix}
 
-\subsection{Valori e limiti del sistema}
-\label{sec:intro_limits}
+Uno standard più attinente al sistema nel suo complesso (e che concerne sia il
+kernel che le librerie e` lo standard POSIX. Esso prende origine dallo
+standard ANSI C, che contiene come sottoinsieme, prevedendo ulteriori capacità
+per le funzioni in esso definite, ed aggiungendone di nuove. Le estensioni
+principali sono 
+
+In realtà POSIX è una famiglia di standard diversi, il cui nome, suggerito da
+Richard Stallman, sta per \textit{Portable Operating System Interface}, ma la
+X finale denuncia la sua stretta relazione con i sistemi unix. Esso nasce dal
+lavoro dell'IEEE (\textit{Institute of Electrical and Electronics Engeneers})
+che ne produsse una prima versione, nota come IEEE 1003.1-1988, mirante a
+standardizzare l'interfaccia con il sistema operativo.
+
+Ma gli standard POSIX non si limitano alla standardizzazione delle funzioni di
+libreria, e in seguito sono stati prodotti anche altri standard per la shell e
+le utilities di sistema (1003.2), per le estensioni realtime e per i thread
+(1003.1d e 1003.1c) e vari altri. 
 
+Benché lo standard POSIX sia basato sui sistemi unix esso definisce comunque
+una interfaccia e non fa riferimento ad una specifica implementazione (ad
+esempio esiste anche una implementazione di questo standard pure sotto Windows
+NT). Lo standard si è evoluto nel tempo ed una versione più aggiornata (quella
+che viene normalmente denominata POSIX.1) è stata rilasciata come standard
+internazionale con la sigla ISO/IEC 9945-1:1996. 
 
-\subsection{Tipi di dati primitivi}
-\label{sec:intro_data_types}
+Le \acr{glibc} implementano tutte le funzioni definite nello standard POSIX.1,
+e Linux; 
+
+
+\subsection{Lo standard X/Open -- XPG3}
+\label{sec:intro_xopen}
+
+Il consorzio X/Open nacque nel 1984 come consorzio di venditori di sistemi
+unix per giungere ad una armonizzazione delle varie implementazioni.  Per far
+questo iniziò a pubblicare una serie di documentazioni e specifiche sotto il
+nome di \textit{X/Open Portability Guide} (a cui di norma si fa riferimento
+con l'abbreviazione XPGn).
+
+Nel 1989 produsse una terza versione di questa guida particolarmente
+voluminosa (la \textit{X/Open Portability Guide, Issue 3}), contenente una
+ulteriore standardizzazione dell'interfaccia sistema unix, che venne presa
+come riferimento da vari produttori.
+
+Questo standard, detto anche XPG3 dal nome della suddetta guida, è sempre
+basato sullo standard POSIX.1, ma prevede una serie di funzionalità aggiuntive
+fra cui le specifiche delle API per l'interfaccia grafica (X11).
+
+Nel 1992 lo standard venne rivisto con una nuova versione della guida, la
+Issue 4 (da cui la sigla XPG4) che aggiungeva l'interfaccia XTI (\textit{X
+  transport Interface}) mirante a soppiantare (senza molto successo)
+l'interfaccia dei socket derivata da BSD. Una seconda versione della guida fu
+rilasciata nel 1994, questa è nota con il nome di Spec 1170 (dal numero delle
+interfacce, header e comandi definiti). 
+
+Nel 1993 il marchio Unix passò di proprietà dalla Novell (che a sua volta lo
+aveva comprato dalla AT\&T) al consorzio X/Open che iniziò a pubblicare le sue
+specifiche sotto il nome di \textit{Single UNIX Specification}, l'ultima
+versione di Spec 1170 diventò così la prima versione delle \textit{Single UNIX
+  Specification}, SUSv2, più comunemente nota come \textit{Unix 95}.
+
+
+\subsection{Gli standard UNIX  -- Open Group}
+\label{sec:intro_opengroup}
+
+Nel 1996 la fusione del consorzio X/Open con la Open Software Foundation (nata
+da un gruppo di aziende concorrenti rispetto ai fondatori di X/Open) portò
+alla costituzione dell'Open Group, un consorzio internazionale che raccoglie
+produttori, utenti industriali, entità accademiche e governative.
+
+Attualmente il consorzio è detentore del marchio depositato Unix, e prosegue
+il lavoro di standardizzazione delle varie implementazioni, rilasciando
+periodicamente nuove specifiche e strumenti per la verifica della conformità
+alle stesse.
+
+Nel 1997 fu annunciata la seconda versione delle \textit{Single UNIX
+  Specification}, nota con la sigla SUSv2, in queste versione le interfacce
+specificate salgono a 1434 (e 3030 se si considerano le stazioni di lavoro
+grafiche, per le quali sono inserite pure le interfacce usate da CDE che
+richiede sia X11 che Motif). La conformità a questa versione permette l'uso
+del nome \textit{Unix 98}, usato spesso anche per riferirsi allo standard.
+
+
+\subsection{Lo ``standard'' BSD}
+\label{sec:intro_bsd}
 
+Lo sviluppo di BSD iniziò quando la fine della collaborazione fra l'Università
+di Berkley e la AT/T generò una delle prime e più importanti fratture del
+mondo Unix.  L'Università di Berkley proseguì nello sviluppo della base di
+codice di cui disponeva, e che presentava parecchie migliorie rispetto alle
+allora versioni disponibili, fino ad arrivare al rilascio di una versione
+completa di unix, chiamata appunto BSD, del tutto indipendente dal codice
+della AT/T.
 
+Benchè BSD non sia uno standard formalizzato, l'implementazione di unix
+dell'Università di Berkley, ha provveduto nel tempo una serie di estensioni e
+di API grande rilievo, come il link simbolici (vedi \secref{sec:file_symlink},
+la funzione \func{select}, i socket.
+
+Queste estensioni sono state via via aggiunte al sistema nelle varie release
+del sistema (BSD 4.2, BSD 4.3 e BSD 4.4) come pure in alcuni derivati
+commerciali come SunOS. Le \acr{glibc} provvedono tutte queste estensioni che
+sono state in gran parte incorporate negli standard successivi.
+
+
+\subsection{Lo standard System V}
+\label{sec:intro_sysv}
+
+Come noto Unix nasce nei laboratori della AT/T, che per molti anni ne detiene
+il marchio depositato; le varie versioni 
+
+
+System V è la denominazione dello Unix sviluppato ufficialmente dalla AT/T; la
+sua interfaccia è descritta in un documento dal titolo \textit{System V
+  Interface Description}, a cui si fa spesso riferimento con la sigla
+SVID. Anche questo costituisce un sovrainsieme delle interfacce definite dallo
+standard POSIX.
+
+
+
+\subsection{Il comportamento standard del \cmd{gcc}}
+\label{sec:intro_gcc}
+
+
+
+\subsection{Gli standard nelle \acr{glibc}}
+\label{sec:intro_glibc_std}
+
+
+
+\subsection{Gli standard di Linux}
+\label{sec:intro_data_types}
 
 
-\section{La gestione degli errori}
-\label{sec:intro_errors}
-
-La gestione degli errori è in genere una materia complessa. Inoltre il modello
-utilizzato dai sistema unix-like è basato sull'architettura a processi, e
-presenta una serie di problemi nel caso lo si debba usare con i thread.
-Esamineremo in questa sezione le sue caratteristiche principali.
-
-
-\subsection{La variabile \func{errno}}
-\label{sec:intro_errno}
-
-Quasi tutte le funzioni delle librerie del C sono in grado di individuare e
-riportare condizioni di errore, ed è una buona norma di programmazione
-controllare sempre che le funzioni chiamate si siano concluse correttamente.
-
-In genere le funzioni di libreria usano un valore speciale per indicare che
-c'è stato un errore. Di solito questo valore è -1 o un puntatore nullo o la
-costante \macro{EOF} (a seconda della funzione); ma questo valore segnala solo
-che c'è stato un errore, non il tipo di errore. 
-
-Per riportare il tipo di errore il sistema usa la variabile globale
-\var{errno}\footnote{L'uso di una variabile globale può comportare alcuni
-  problemi (ad esempio nel caso dei thread) ma lo standard ISO C consente
-  anche di definire \var{errno} come un \textit{modifiable lvalue}, quindi si
-  può anche usare una macro, e questo è infatti il modo usato da Linux per
-  renderla locale ai singoli thread }, definita nell'header \file{errno.h}, la
-variabile è in genere definita come \var{volatile} dato che può essere
-cambiata in modo asincrono da un segnale (per una descrizione dei segnali si
-veda \secref{cha:signals}), ma dato che un manipolatore di segnale scritto
-bene salva e ripristina il valore della variabile, di questo non è necessario
-preoccuparsi nella programmazione normale.
-
-I valori che può assumere \var{errno} sono riportati in \capref{cha:errors},
-nell'header \file{errno.h} sono anche definiti i nomi simbolici per le
-costanti numeriche che identificano i vari errori; essi iniziano tutti per
-\macro{E} e si possono considerare come nomi riservati. In seguito faremo
-sempre rifermento a tali valori, quando descriveremo i possibili errori
-restituiti dalle funzioni. Il programma di esempio \cmd{errcode} stampa il
-codice relativo ad un valore numerico con l'opzione \cmd{-l}.
-
-Il valore di \var{errno} viene sempre settato a zero all'avvio di un
-programma, gran parte delle funzioni di libreria settano \var{errno} ad un
-valore diverso da zero in caso di errore. Il valore è invece indefinito in
-caso di successo, perché anche se una funzione ha successo, può chiamarne
-altre al suo interno che falliscono, modificando così \var{errno}.
-
-Pertanto un valore non nullo di \var{errno} non è sintomo di errore (potrebbe
-essere il risultato di un errore precedente) e non lo si può usare per
-determinare quando o se una chiamata a funzione è fallita.  La procedura da
-seguire è sempre quella di controllare \var{errno} immediatamente dopo aver
-verificato il fallimento della funzione attraverso il suo codice di ritorno.
-
-
-\subsection{Le funzioni \func{strerror} e \func{perror}}
-\label{sec:intro_strerror}
-
-Benché gli errori siano identificati univocamente dal valore numerico di
-\var{errno} le librerie provvedono alcune funzioni e variabili utili per
-riportare in opportuni messaggi le condizioni di errore verificatesi.  La
-prima funzione che si può usare per ricavare i messaggi di errore è
-\func{strerror}, il cui prototipo è:
-\begin{prototype}{string.h}{char * strerror(int errnum)} 
-  La funzione ritorna una stringa (statica) che descrive l'errore il cui
-  codice è passato come parametro.
-\end{prototype}
-
-In generale \func{strerror} viene usata passando \var{errno} come parametro;
-nel caso si specifichi un codice sbagliato verrà restituito un messaggio di
-errore sconosciuto. La funzione utilizza una stringa statica che non deve
-essere modificata dal programma e che è utilizzabile solo fino ad una chiamata
-successiva a \func{strerror}; nel caso si usino i thread è
-provvista\footnote{questa funzione è una estensione GNU, non fa parte dello
-  standard POSIX} una versione apposita:
-\begin{prototype}{string.h}
-{char * strerror\_r(int errnum, char * buff, size\_t size)} 
-  La funzione è analoga a \func{strerror} ma ritorna il messaggio in un buffer
-  specificato da \var{buff} di lunghezza massima (compreso il terminatore)
-  \var{size}.
-\end{prototype}
-che utilizza un buffer che il singolo thread deve allocare, per evitare i
-problemi connessi alla condivisione del buffer statico. Infine, per completare
-la caratterizzazione dell'errore, si può usare anche la variabile
-globale\footnote{anche questa è una estensione GNU}
-\var{program\_invocation\_short\_name} che riporta il nome del programma
-attualmente in esecuzione.
-
-Una seconda funzione usata per riportare i codici di errore in maniera
-automatizzata sullo standard error (vedi \secref{sec:file_stdfiles}) è
-\func{perror}, il cui prototipo è:
-\begin{prototype}{stdio.h}{void perror (const char *message)} 
-  La funzione stampa il messaggio di errore relativo al valore corrente di
-  \var{errno} sullo standard error; preceduto dalla stringa \var{message}.
-\end{prototype}
-i messaggi di errore stampati sono gli stessi di \func{strerror}, (riportati
-in \capref{cha:errors}), e, usando il valore corrente di \var{errno}, si
-riferiscono all'ultimo errore avvenuto. La stringa specificata con
-\var{message} viene stampato prime del messaggio d'errore, seguita dai due
-punti e da uno spazio, il messaggio è terminato con un a capo.
-
-Il messaggio può essere riportato anche usando altre variabili globali
-dichiarate in \file{errno.h}:
-\begin{verbatim}
-   const char *sys_errlist[];
-   int sys_nerr;
-\end{verbatim}
-la prima contiene i puntatori alle stringhe di errore indicizzati da
-\var{errno}; la seconda esprime il valore più alto per un codice di errore,
-l'utilizzo di questa stringa è sostanzialmente equivalente a quello di
-\func{strerror}.
-
-In \nfig\ è riportata la sezione attinente del codice del programma
-\cmd{errcode}, che può essere usato per stampare i messaggi di errore e le
-costanti usate per identificare i singoli errori; il sorgente completo del
-programma è allegato nel file \file{ErrCode.c} e contiene pure la gestione
-delle opzioni e tutte le definizioni necessarie ad associare il valore
-numerico alla costante simbolica. In particolare si è riportata la sezione che
-converte la stringa passata come parametro in un intero (\texttt{\small
-  1--2}), controllando con i valori di ritorno di \func{strtol} che la
-conversione sia avvenuta correttamente (\texttt{\small 4--10}), e poi stampa,
-a seconda dell'opzione scelta il messaggio di errore (\texttt{\small 11--14})
-o la macro (\texttt{\small 15--17}) associate a quel codice.
-
-\begin{figure}[!htb]
-  \footnotesize
-  \begin{lstlisting}{}
-    /* convert string to number */
-    err = strtol(argv[optind], NULL, 10);
-    /* testing error condition on conversion */
-    if (err==LONG_MIN) {
-        perror("Underflow on error code");
-        return 1;
-    } else if (err==LONG_MIN) {
-        perror("Overflow on error code");
-        return 1;
-    }
-    /* conversion is fine */
-    if (message) {
-        printf("Error message for %d is %s\n", err, strerror(err));
-    }
-    if (label) {
-        printf("Error label for %d is %s\n", err, err_code[err]);
-    }
-  \end{lstlisting}
-  \caption{Codice per la stampa del messaggio di errore standard.}
-  \label{fig:intro_err_mess}
-\end{figure}