modifiche varie + aggiunte sull'environment
[gapil.git] / fileunix.tex
index bc94a0e2f6d650fd91e539f008df2717964cf47b..8c33fa3b90613f16c9c6f499451c957cb6b2ddc7 100644 (file)
@@ -34,7 +34,7 @@ ogni ulteriore operazione.
 All'interno di ogni processo i file aperti sono identificati da un intero non
 negativo, chiamato appunto \textit{file descriptor}, quando un file viene
 aperto la funzione restituisce il file descriptor, e tutte le successive
-operazioni devono passare il \textit{file descriptors} come argomento.
+operazioni devono passare il \textit{file descriptor} come argomento.
 
 Per capire come funziona il meccanismo occorre spiegare a grandi linee come è
 che il kernel gestisce l'interazione fra processi e file.  Il kernel mantiene
@@ -78,9 +78,9 @@ questa architettura, in cui si sono evidenziate le interrelazioni fra le varie
 strutture di dati sulla quale essa è basata. 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=14cm]{img/procfile.eps}
+  \includegraphics[width=14cm]{img/procfile}
   \caption{Schema della architettura dell'accesso ai file attraverso
-  l'interfaccia dei \textit{file descroptor}}
+  l'interfaccia dei \textit{file descriptor}}
   \label{fig:file_proc_file}
 \end{figure}
 Ritorneremo su questo schema più volte, dato che esso è fondamentale per
@@ -194,7 +194,7 @@ prototipo 
     che non esiste.  
   \item \macro{ETXTBSY} si è cercato di accedere in scrittura all'immagine di
     un programma in esecuzione.
-  \item \macro{ELOOP} si sono incotrati troppi link simbolici nel risolvere
+  \item \macro{ELOOP} si sono incontrati troppi link simbolici nel risolvere
     pathname o si è indicato \macro{O\_NOFOLLOW} e \var{pathname} è un link
     simbolico.
   \end{errlist}
@@ -205,14 +205,13 @@ prototipo 
 
 La funzione apre il file, usando il primo file descriptor libero, e crea
 l'opportuna voce (cioè la struttura \var{file}) nella file table.  Viene usato
-sempre il file descriptor con il valore più basso, questa caratteristica
-permette di prevedere qual'è il valore che si otterrà e viene talvolta usata
+sempre il file descriptor con il valore più basso. Questa caratteristica
+permette di prevedere qual'è il valore che si otterrà, e viene talvolta usata
 da alcune applicazioni per sostituire i file corrispondenti ai file standard
 di \secref{sec:file_std_descr}: se ad esempio si chiude lo standard input e si
 apre subito dopo un nuovo file questo diventerà il nuovo standard input (avrà
 cioè il file descriptor 0).
 
-
 \begin{table}[!htb]
   \centering
   \footnotesize
@@ -220,22 +219,18 @@ cio
     \hline
     \textbf{Flag} & \textbf{Descrizione} \\
     \hline
-    \hline % modailtà di accesso al file
+    \hline % modalità di accesso al file
     \macro{O\_RDONLY} & apre il file in sola lettura. \\
     \macro{O\_WRONLY} & apre il file in sola scrittura. \\
     \macro{O\_RDWR} & apre il file lettura/scrittura. \\
-    \hline % modalita di apertura del file
+    \hline % modalità di apertura del file
     \hline
     \macro{O\_CREAT} & se il file non esiste verrà creato, con le regole di
     titolarità del file viste in \secref{sec:file_ownership}. Il parametro
     \var{mode} deve essere specificato. \\
     \macro{O\_EXCL} & usato in congiunzione con \macro{O\_CREAT} fa sì che
-    l'esistenza del file diventi un errore\footnote{la man page di \func{open}
-    segnala che questa opzione è difettosa su NFS, e che i programmi che la
-    usano per stabilire un file di lock possono incorrere in una race
-    condition.  Si consiglia come alternativa di usare un file con un nome
-    univoco e la funzione \func{link} per verificarne l'esistenza.} che fa
-    fallire \func{open} con \macro{EEXIST}. \\
+    l'esistenza del file diventi un errore\protect\footnotemark\ che fa fallire
+    \func{open} con \macro{EEXIST}. \\
     \macro{O\_NONBLOCK} & apre il file in modalità non bloccante. Questo
     valore specifica anche una modalità di operazione (vedi sotto), e 
     comporta che \func{open} ritorni immediatamente (torneremo su
@@ -257,12 +252,10 @@ cio
     opzione è ignorata. \\
     \macro{O\_DIRECTORY} & se \var{pathname} non è una directory la chiamata
     fallisce. Questo flag è specifico di Linux ed è stato introdotto con il
-    kernel 2.1.126 per evitare dei DoS\footnote{Denial of Service, si chiamano
-    così attacchi miranti ad impedire un servizio causando una qualche forma
-    di carico eccessivo per il sistema, che resta bloccato nelle risposte
-    all'attacco} quando \func{opendir} viene chiamata su una fifo o su un
-    device di unità a nastri, non deve essere utilizzato al di fuori
-    dell'implementazione di \func{opendir}. \\
+    kernel 2.1.126 per evitare dei DoS\protect\footnotemark\ quando 
+    \func{opendir} viene chiamata su una 
+    fifo o su un device di unità a nastri, non deve essere utilizzato al di 
+    fuori dell'implementazione di \func{opendir}. \\
     \macro{O\_LARGEFILE} & nel caso di sistemi a 32 bit che supportano file di
     grandi dimensioni consente di aprire file le cui dimensioni non possono
     essere rappresentate da numeri a 31 bit. \\
@@ -271,21 +264,17 @@ cio
     \macro{O\_APPEND} & il file viene aperto in append mode. Prima di ciascuna
     scrittura la posizione corrente viene sempre settata alla fine del
     file. Può causare corruzione del file con NFS se più di un processo scrive
-    allo stesso tempo\footnote{il problema è che NFS non supporta la scrittura
-    in append, ed il kernel deve simularla, ma questo comporta la possibilità
-    di una race condition}.\\
+    allo stesso tempo\footnotemark.\\
     \macro{O\_NONBLOCK} & il file viene aperto in modalità non bloccante per
     le operazioni di I/O: questo significa il fallimento di una \func{read} in
     assenza di dati da leggere e quello di una \func{write} in caso di 
     impossibilità di scrivere immediatamente. L'opzione è effettiva solo per
     le fifo e per alcuni file di dispositivo. \\
-    \macro{O\_NDELAY} & in Linux\footnote{l'opzione origina da SVr4, dove però
-    causava il ritorno da una \func{read} con un valore nullo e non con un
-    errore, questo introduce una ambiguità, dato che come vedremo in
-    \secref{sec:file_read} il ritorno di zero da parte di \func{read} ha il
-    significato di una end-of-file} è sinonimo di \macro{O\_NONBLOCK}.\\
+    \macro{O\_NDELAY} & in Linux\footnotemark\ è sinonimo di 
+    \macro{O\_NONBLOCK}.\\
     \macro{O\_ASYNC} & apre il file per l'input/output in modalità
-    asincrona. Non è supportato in Linux. \\
+    asincrona. Quando è settato viene generato un segnale di \macro{SIGIO}
+    tutte le volte che è disponibile dell'input sul file. \\
     \macro{O\_SYNC} & apre il file per l'input/output sincrono, ogni
     \func{write} bloccherà fino al completamento della scrittura di tutti dati
     sul sull'hardware sottostante.\\
@@ -296,11 +285,30 @@ cio
     di montaggio.\\
     \hline
   \end{tabular}
-  \caption{Costanti definite in \file{fcntl.h} per indicare i vari bit 
-    usabili per il specificare parametro \var{flags} di \func{open}.}
+  \caption{Valori e significato dei vari bit del \textit{file status flag}.}
   \label{tab:file_open_flags}
 \end{table}
 
+\footnotetext[2]{la man page di \func{open} segnala che questa opzione è
+  difettosa su NFS, e che i programmi che la usano per stabilire un file di
+  lock possono incorrere in una race condition.  Si consiglia come alternativa
+  di usare un file con un nome univoco e la funzione \func{link} per
+  verificarne l'esistenza.}  
+
+\footnotetext[3]{Denial of Service, si chiamano così attacchi miranti ad
+  impedire un servizio causando una qualche forma di carico eccessivo per il
+  sistema, che resta bloccato nelle risposte all'attacco.}
+
+\footnotetext[4]{il problema è che NFS non supporta la scrittura in append, ed
+  il kernel deve simularla, ma questo comporta la possibilità di una race
+  condition, vedi \secref{sec:file_atomic}.}
+
+\footnotetext[5]{l'opzione origina da SVr4, dove però causava il ritorno da
+  una \func{read} con un valore nullo e non con un errore, questo introduce
+  una ambiguità, dato che come vedremo in \secref{sec:file_read} il ritorno di
+  zero da parte di \func{read} ha il significato di una end-of-file.}
+
+
 Il nuovo file descriptor non è condiviso con nessun altro processo, (torneremo
 sulla condivisione dei file, in genere accessibile dopo una \func{fork}, in
 \secref{sec:file_sharing}). Il nuovo file descriptor è settato di default per
@@ -354,8 +362,8 @@ prototipo 
   Crea un nuovo file vuoto, con i permessi specificati da \var{mode}. É del
   tutto equivalente a \func{open(filedes, O\_CREAT|O\_WRONLY|O\_TRUNC, mode)}. 
 \end{prototype}
-
-adesso questa funzione resta solo per compatibilità con i vecchi programmi.
+\noindent adesso questa funzione resta solo per compatibilità con i vecchi 
+programmi.
 
 
 \subsection{La funzione \func{close}}
@@ -372,7 +380,7 @@ descriptor ritorna disponibile; il suo prototipo 
     \item \macro{EBADF}  \var{fd} non è un descrittore valido.
     \item \macro{EINTR} la funzione è stata interrotta da un segnale.
   \end{errlist}
-  ed \macro{EIO}.
+  ed inoltre \macro{EIO}.
 \end{prototype}
 
 La chiusura di un file rilascia ogni blocco (il \textit{file locking} è
@@ -407,7 +415,7 @@ sua volta pu
 Come già accennato in \secref{sec:file_fd} a ciascun file aperto è associata
 una \textsl{posizione corrente nel file} (il cosiddetto \textit{file offset},
 mantenuto nel campo \var{f\_pos} di \var{file}) espressa da un numero intero
-positivo come numero di bytes dall'inizio del file. Tutte le operazioni di
+positivo come numero di byte dall'inizio del file. Tutte le operazioni di
 lettura e scrittura avvengono a partire da questa posizione che viene
 automaticamente spostata in avanti del numero di byte letti o scritti.
 
@@ -426,7 +434,7 @@ un valore qualsiasi con la funzione \func{lseek}, il cui prototipo 
     \item \macro{ESPIPE} \var{fd} è una pipe, un socket o una fifo.
     \item \macro{EINVAL} \var{whence} non è un valore valido.
   \end{errlist}
-  e \macro{EBADF}.
+  ed inoltre \macro{EBADF}.
 \end{functions}
 
 La nuova posizione è settata usando il valore specificato da \var{offset},
@@ -434,14 +442,14 @@ sommato al riferimento dato da \var{whence}; quest'ultimo pu
 seguenti valori\footnote{per compatibilità con alcune vecchie notazioni
   questi valori possono essere rimpiazzati rispettivamente con 0, 1 e 2 o con
   \macro{L\_SET}, \macro{L\_INCR} e \macro{L\_XTND}}:
-\begin{description}
-\item \macro{SEEK\_SET} si fa riferimento all'inizio del file: il valore di
+\begin{basedescript}{\desclabelwidth{2.0cm}}
+\item[\macro{SEEK\_SET}] si fa riferimento all'inizio del file: il valore di
   \var{offset} è la nuova posizione.
-\item \macro{SEEK\_CUR} si fa riferimento alla posizione corrente del file:
+\item[\macro{SEEK\_CUR}] si fa riferimento alla posizione corrente del file:
   \var{offset} che può essere negativo e positivo.
-\item \macro{SEEK\_END} si fa riferimento alla fine del file: il valore di
+\item[\macro{SEEK\_END}] si fa riferimento alla fine del file: il valore di
   \var{offset} può essere negativo e positivo.
-\end{description}
+\end{basedescript}
 
 Come accennato in \secref{sec:file_file_size} con \func{lseek} è possibile
 settare la posizione corrente anche al di la della fine del file, e alla
@@ -457,9 +465,8 @@ Si tenga presente inoltre che usare \macro{SEEK\_END} non assicura affatto che
 successiva scrittura avvenga alla fine del file, infatti se questo è stato
 aperto anche da un altro processo che vi ha scritto, la fine del file può
 essersi spostata, ma noi scriveremo alla posizione settata in precedenza.
-Questa è una potenziale sorgente di \textit{race condition}, e quando si vuole
-essere sicuri di scrivere alla fine del file questo deve essere posto in
-modalità \macro{O\_APPEND}.
+(questa è una potenziale sorgente di \textit{race condition}, vedi
+\secref{sec:file_atomic}).
 
 Non tutti i file supportano la capacità di eseguire una \func{lseek}, in
 questo caso la funzione ritorna l'errore \macro{EPIPE}. Questo, oltre che per
@@ -476,55 +483,498 @@ causano un errore ma restituiscono un valore indefinito.
 
 Per leggere da un file precedentemente aperto, si può la funzione \func{read},
 il cui prototipo è:
-\begin{prototype}
-  \headdecl{unistd.h}
-  \funcdecl{ssize\_t read(int fd, void * buf, size\_t count)}
+\begin{prototype}{unistd.h}{ssize\_t read(int fd, void * buf, size\_t count)}
   
-  La funzione cerca di leggere \var{count} bytes dal file \var{fd} al buffer
+  La funzione cerca di leggere \var{count} byte dal file \var{fd} al buffer
   \var{buf}.
   
   La funzione ritorna il numero di byte letti in caso di successo e -1 in
   caso di errore, nel qual caso \var{errno} viene settata ad uno dei valori:
   \begin{errlist}
   \item \macro{EINTR} la funzione è stata interrotta da un segnale prima di
-    aver letto quasiasi dato.
+    aver potuto leggere qualsiasi dato.
     \item \macro{EAGAIN} la funzione non aveva nessun dato da restituire e si
       era aperto il file in modalità \macro{O\_NONBLOCK}.
   \end{errlist}
   ed inoltre \macro{EBADF}, \macro{EIO}, \macro{EISDIR}, \macro{EBADF},
-  \macro{EINVAL} e \macro{EFAULT}.
+  \macro{EINVAL} e \macro{EFAULT} ed eventuali altri errori dipendenti dalla
+  natura dell'oggetto connesso a \var{fd}.
+\end{prototype}
+
+La funzione tenta di leggere \var{count} byte a partire dalla posizione
+corrente nel file; dopo la lettura la posizione è spostata automaticamente in
+avanti del numero di byte letti. Se \var{count} è zero la funzione
+restituisce zero senza nessun altro risultato.
+
+Si deve sempre tener presente che non è detto che la funzione \func{read}
+restituisca il numero di byte richiesto, ci sono infatti varie ragioni per cui
+la funzione può restituire un numero di byte inferiore. Questo è un
+comportamento normale e non un errore, che però bisogna sempre tenere
+presente.
+
+La prima e più ovvia di queste ragioni è che si è chiesto di leggere più byte
+di quanto il file ne contenga. In questo caso il file viene letto fino alla
+sua fine, e la funzione ritorna regolarmente il numero di byte letti
+effettivamente. Se ripetessimo la lettura \func{read} restituirebbe uno zero.
+La condizione raggiungimento della fine del file non è un errore, e viene
+segnalata appunto da un valore di ritorno di \func{read} nullo, ripetere la
+lettura non avrebbe nessun effetto se non quello di continuare a ricevere zero
+come valore di ritorno.
+
+Con i \textsl{file regolari} questa è l'unica situazione in cui si può avere
+un numero di byte letti inferiore a quello richiesto, ma la situazione è
+invece normale quando si legge da un terminale, o su una pipe. In tal caso
+infatti, se non ci sono dati in ingresso, la \func{read} si blocca e ritorna
+solo quando ne arrivano; se il numero di byte richiesti eccede quelli
+disponibili la funzione ritorna comunque, ma con un numero di byte inferiore.
+
+Lo stesso comportamento avviene caso di lettura dalla rete (cioè su un socket,
+come vedremo in \secref{sec:sock_io_behav}), o per certi dispositivi come le
+unità a nastro che restituiscono un singolo blocco di dati alla volta.
+
+In realtà anche le due condizioni segnalate dagli errori \func{EINTR} e
+\func{EAGAIN} non sono errori. La prima si verifica quando la \func{read} è
+bloccata in attesa di dati in ingresso e viene interrotta da un segnale; in
+tal caso l'azione da prendere è quella di rieseguire la funzione. Torneremo
+sull'argomento in \secref{sec:signal_xxx}. 
+
+La seconda si verifica quando il file è in modalità non bloccante e non ci
+sono dati in ingresso: la funzione allora ritorna immediatamente con un errore
+\macro{EAGAIN}\footnote{sotto BSD questo per questo errore viene usata la
+  costante \macro{EWOULDBLOCK}, in GNU/Linux questa è sinonima di
+  \macro{EAGAIN}.} indicando che occorrerà provare a ripetere la lettura.
+
+
+Lo standard Unix98\footnote{questa funzione, e l'analoga \func{pwrite} sono
+  state aggiunte nel kernel 2.1.60, il supporto nelle \acr{glibc}, compresa
+  l'emulazione per i vecchi kernel che non hanno la system call, è stato
+  aggiunto con la versione 2.1} (vedi \secref{sec:intro_opengroup}) prevede la
+definizione di un'altra funzione di lettura, \func{pread}, che diventa
+accessibile con la definizione:
+\begin{verbatim}
+       #define _XOPEN_SOURCE 500
+\end{verbatim}
+il prototipo di questa funzione è:
+\begin{prototype}{unistd.h}
+{ssize\_t pread(int fd, void * buf, size\_t count, off\_t offset)}
+  
+La funzione cerca di leggere \var{count} byte dal file \var{fd}, a partire
+dalla posizione \var{offset}, nel buffer \var{buf}.
+  
+La funzione ritorna il numero di byte letti in caso di successo e -1 in caso
+di errore, nel qual caso \var{errno} viene settata secondo i valori già visti
+per \func{read} e \func{lseek}.
 \end{prototype}
 
+Questa funzione serve quando si vogliono leggere dati dal file senza
+modificarne la posizione corrente. È equivalente alla esecuzione di una
+\func{read} e una \func{lseek}, ma dato che la posizione sul file può essere
+condivisa fra vari processi (vedi \secref{sec:file_sharing}), essa permette di
+eseguire l'operazione atomicamente. Il valore di \var{offset} fa riferimento
+all'inizio del file.
+
 
 \subsection{La funzione \func{write}}
 \label{sec:file_write}
 
+Per scrivere su un file si usa la funzione \func{write}, il cui prototipo è:
+\begin{prototype}{unistd.h}{ssize\_t write(int fd, void * buf, size\_t count)}
+  
+  La funzione scrive \var{count} byte dal buffer \var{buf} sul file \var{fd}.
+  
+  La funzione ritorna il numero di byte scritti in caso di successo e -1 in
+  caso di errore, nel qual caso \var{errno} viene settata ad uno dei valori:
+  \begin{errlist}
+  \item \macro{EINVAL} \var{fd} è connesso ad un oggetto che non consente la
+    scrittura.
+  \item \macro{EFBIG} si è cercato di scrivere oltre la dimensione massima
+    consentita dal filesystem o il limite per le dimensioni dei file del
+    processo o su una posizione oltre il massimo consentito.
+  \item \macro{EPIPE} \var{fd} è connesso ad una pipe il cui altro capo è
+    chiuso in lettura; in questo caso viene anche generato il segnale
+    \macro{SIGPIPE}, se questo viene gestito (o bloccato o ignorato) la
+    funzione ritorna questo errore.
+  \item \macro{EINTR} la funzione è stata interrotta da un segnale prima di
+    aver potuto scrivere qualsiasi dato.
+  \item \macro{EAGAIN} la funzione non aveva nessun dato da restituire e si
+    era aperto il file in modalità \macro{O\_NONBLOCK}.
+  \end{errlist}
+  ed inoltre \macro{EBADF}, \macro{EIO}, \macro{EISDIR}, \macro{EBADF},
+  \macro{ENOSPC}, \macro{EINVAL} e \macro{EFAULT} ed eventuali altri errori
+  dipendenti dalla natura dell'oggetto connesso a \var{fd}.
+\end{prototype}
+
+Come nel caso di \func{read} la funzione tenta di scrivere \var{count} byte a
+partire dalla posizione corrente nel file e sposta automaticamente la
+posizione in avanti del numero di byte scritti. Se il file è aperto in
+modalità \macro{O\_APPEND} i dati vengono sempre scritti alla fine del file.
+Lo standard POSIX richiede che i dati scritti siano immediatamente disponibili
+ad una \func{read} chiamata dopo che la \func{write} che li ha scritti è
+ritornata; ma dati i meccanismi di caching non è detto che tutti i filesystem
+supportino questa capacità.
+
+Se \var{count} è zero la funzione restituisce zero senza fare nient'altro. Per
+i file ordinari il numero di byte scritti è sempre uguale a quello indicato
+da \var{count}, a meno di un errore. Negli altri casi si ha lo stesso
+comportamento di \func{read}.
+
+Anche per \func{write} lo standard Unix98 definisce una analoga per scrivere
+alla posizione indicata senza modificare la posizione corrente nel file, il
+suo prototipo è:
+\begin{prototype}{unistd.h}
+{ssize\_t pwrite(int fd, void * buf, size\_t count, off\_t offset)}
+  
+La funzione cerca di scrivere sul file \var{fd}, a partire dalla posizione
+\var{offset}, \var{count} byte dal buffer \var{buf}.
+  
+La funzione ritorna il numero di byte letti in caso di successo e -1 in caso
+di errore, nel qual caso \var{errno} viene settata secondo i valori già visti
+per \func{write} e \func{lseek}.
+\end{prototype}
 
-\section{Funzioni avanzate}
+
+
+\section{Caratteristiche avanzate}
 \label{sec:file_adv_func}
 
+In questa sezione approfondiremo alcune delle caratteristiche più sottili
+della gestione file in un sistema unix-like, esaminando in dettaglio il
+comportamento delle funzioni base, inoltre tratteremo alcune funzioni che
+permettono di eseguire operazioni avanzate con i file.
+
 
 \subsection{La condivisione dei files}
 \label{sec:file_sharing}
 
-Si noti che i flag di stato del file, quelli settati dal parametro \var{flag}
-di \func{open}, essendo tenuti nella vode sulla file table, vengono condivisi,
-ai file sono però associati anche altri flag, (tenuti invece nella struttura
-\var{file\_struct} interna alla process table) che sono unici per ciascun file
-descriptor, e sono pertanto detti \textit{file descriptor flags} (l'unico
-usato al momento è \macro{FD\_CLOEXEC}).
+In \secref{sec:file_fd} abbiamo descritto brevemente l'architettura
+dell'interfaccia coi file da parte di un processo, mostrando in
+\figref{fig:file_proc_file} le principali strutture usate dal kernel;
+esamineremo ora in dettaglio le conseguenze che questa architettura ha nei
+confronti dell'accesso allo stesso file da parte di processi diversi.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=14cm]{img/filemultacc}
+  \caption{Schema dell'accesso allo stesso file da parte di due processi 
+    diversi}
+  \label{fig:file_mult_acc}
+\end{figure}
+
+Il primo caso è quello in cui due processi diversi che aprono lo stesso file
+su disco; sulla base di quanto visto in \secref{sec:file_fd} avremo una
+situazione come quella illustrata in \figref{fig:file_mult_acc}: ciascun
+processo avrà una sua voce nella \textit{file table} referenziata da un
+diverso file descriptor nella sua \var{file\_struct}. Entrambe le voci nella
+\textit{file table} faranno però riferimento allo stesso inode su disco.
+
+Questo significa che ciascun processo avrà la sua posizione corrente sul file,
+la sua modalità di accesso e versioni proprie di tutte le proprietà che
+vengono mantenute nella sua voce della \textit{file table}. Questo ha
+conseguenze specifiche sugli effetti della possibile azione simultanea sullo
+stesso file, in particolare occorre tenere presente che:
+\begin{itemize}
+\item ciascun processo può scrivere indipendentemente; dopo ciascuna
+  \func{write} la posizione corrente sarà cambiata solo nel processo. Se la
+  scrittura eccede la dimensione corrente del file questo verrà esteso
+  automaticamente con l'aggiornamento del campo \var{i\_size} nell'inode.
+\item se un file è in modalità \macro{O\_APPEND} tutte le volte che viene
+  effettuata una scrittura la posizione corrente viene prima settata alla
+  dimensione corrente del file letta dall'inode. Dopo la scrittura il file
+  viene automaticamente esteso.
+\item l'effetto di \func{lseek} è solo quello di cambiare il campo \var{f\_pos}
+  nella struttura \var{file} della \textit{file table}, non c'è nessuna
+  operazione sul file su disco. Quando la si usa per porsi alla fine del file
+  la posizione viene settata leggendo la dimensione corrente dall'inode.
+\end{itemize}
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=14cm]{img/fileshar}
+  \caption{Schema dell'accesso ai file da parte di un processo figlio}
+  \label{fig:file_acc_child}
+\end{figure}
+
+È comunque possibile che due file descriptor di due processi diversi puntino
+alla stessa voce nella \textit{file table}; questo è ad esempio il caso dei
+file aperti che vengono ereditati dal processo figlio all'esecuzione di una
+\func{fork} (si ricordi quanto detto in \secref{sec:proc_fork}). La situazione
+è illustrata in \figref{fig:file_acc_child}; dato che il processo figlio
+riceve una copia dello spazio di indirizzi del padre, riceverà anche una copia
+di \var{file\_struct} e relativa tabella dei file aperti. 
+
+In questo modo padre e figlio avranno gli stessi file descriptor che faranno
+riferimento alla stessa voce nella \textit{file table}, condividendo così la
+posizione corrente sul file. Questo ha le conseguenze descritte a suo tempo in
+\secref{sec:proc_fork}: in caso di scrittura contemporanea la posizione
+corrente nel file varierà per entrambi i processi (in quanto verrà modificato
+\var{f\_pos} che è la stesso per entrambi).
+
+Si noti inoltre che anche i flag di stato del file (quelli settati dal
+parametro \var{flag} di \func{open}) essendo tenuti nella voce della
+\textit{file table} (il campo \var{f\_flag} di \var{file}), vengono in questo
+caso condivisi. Ai file però sono associati anche altri flag (l'unico usato al
+momento è \macro{FD\_CLOEXEC}), detti \textit{file descriptor flags}, tenuti
+invece in \var{file\_struct}; questi sono specifici di ciascun processo, e non
+vengono toccati anche in caso di condivisione della voce della \textit{file
+  table}.
+
 
 
 \subsection{Operazioni atomiche coi file}
 \label{sec:file_atomic}
 
+Come si è visto in un sistema unix è sempre possibile per più processi
+accedere in contemporanea allo stesso file, e che le operazioni di lettura e
+scrittura possono essere fatte da ogni processo in maniera autonoma in base
+ad una posizione corrente nel file che è locale a ciascuno di essi.
+
+Se dal punto di vista della lettura dei dati questo non comporta nessun
+problema, quando si andrà a scrivere le operazioni potranno mescolarsi in
+maniera imprevedibile.  Il sistema però fornisce in alcuni casi la possibilità
+di eseguire alcune operazioni di scrittura in maniera coordinata anche senza
+utilizzare meccanismi di sincronizzazione più complessi (come il \textit{file
+  locking}, che esamineremo in \secref{cha:file_advanced}).
+
+Un caso tipico di necessità di accesso condiviso in scrittura è quello in cui
+vari processi devono scrivere alla fine di un file (ad esempio un file di
+log). Come accennato in \secref{sec:file_lseek} settare la posizione alla fine
+del file e poi scrivere può condurre ad una \textit{race condition}: infatti
+può succedere che un secondo processo scriva alla fine del file fra la
+\func{lseek} e la \func{write}; in questo caso, come abbiamo appena visto, il
+file sarà esteso, ma il nostro primo processo avrà ancora la posizione
+corrente settata con la \func{lseek} che non corrisponde più alla fine del
+file, e la successiva \func{write} sovrascriverà i dati del secondo processo.
+
+Il problema è che usare due system call in successione non è una operazione
+atomica; il problema è stato risolto introducendo la modalità
+\macro{O\_APPEND}, in questo caso infatti, come abbiamo visto, è il kernel che
+aggiorna automaticamente la posizione alla fine del file prima di effettuare
+la scrittura, e poi estende il file. Tutto questo avviene all'interno di una
+singola system call (la \func{write}) che non essendo interrompibile da un
+altro processo costituisce una operazione atomica.
+
+Un altro caso tipico in cui è necessaria l'atomicità è quello in cui si vuole
+creare un file di lock, bloccandosi se il file esiste. In questo caso la
+sequenza logica porterebbe a verificare prima l'esistenza del file con una
+\func{stat} per poi crearlo con una \func{creat}; di nuovo avremmo la
+possibilità di una race condition da parte di un altro processo che crea lo
+stesso file fra il controllo e la creazione. 
+
+Per questo motivo sono stati introdotti i due flag \macro{O\_CREAT} e
+\macro{O\_EXCL}, in questo modo l'operazione di controllo dell'esistenza del
+file (con relativa uscita dalla funzione con un errore) e creazione in caso di
+assenza, diventa atomica essendo svolta tutta all'interno di una singola
+\func{open}.
+
+
 
 \subsection{La funzioni \func{dup} e \func{dup2}}
 \label{sec:file_dup}
 
+Abbiamo già visto in \secref{sec:file_sharing} come un processo figlio
+condivida gli stessi file descriptor del padre; è possibile però ottenere un
+comportamento analogo all'interno di uno stesso processo \textit{duplicando}
+un file descriptor. Per far questo si usa la funzione \func{dup} il cui
+prototipo è:
+\begin{prototype}{unistd.h}{int dup(int oldfd)}
+  
+  La funzione crea una copia del file descriptor \param{oldfd}.
+  
+  La funzione ritorna il nuovo file descriptor in caso di successo e -1 in
+  caso di errore, nel qual caso \var{errno} viene settata ad uno dei valori:
+  \begin{errlist}
+  \item \macro{EBADF} \param{oldfd} non è un file aperto.
+  \item \macro{EMFILE} si è raggiunto il numero massimo consentito di file
+    descriptor aperti.
+  \end{errlist}
+\end{prototype}
+
+La funzione ritorna, come \func{open}, il primo file descriptor libero. Il
+file descriptor è una copia esatta del precedente ed entrambi possono essere
+interscambiati nell'uso. Per capire meglio il funzionamento della funzione si
+può fare riferimento a \figref{fig:file_dup}: l'effetto della funzione è
+semplicemente quello di copiare il valore nella struttura \var{file\_struct},
+cosicché anche il nuovo file descriptor fa riferimento alla stessa voce
+nella \textit{file table}.
+
+\begin{figure}[htb]
+  \centering \includegraphics[width=14cm]{img/filedup}
+  \caption{Schema dell'accesso ai file duplicati}
+  \label{fig:file_dup}
+\end{figure}
+
+In questo modo entrambi i file condivideranno eventuali lock, \textit{file
+  status flag}, e posizione corrente: se ad esempio \func{lseek} modifica la
+posizione su uno dei due file descriptor essa sarà modificata anche sull'altro
+(al solito viene modificato lo stesso campo nella voce della \textit{file
+  table} a cui entrambi fanno riferimento).
+
+L'unica differenza fra i due file descriptor è che ciascuno avrà il suo
+\textit{file descriptor flag}; nel caso di \func{dup} il flag di \textit{close
+  on exec} viene sempre cancellato nella copia.  
+
+Una diversa versione della funzione, \func{dup2} viene utilizzata per
+specificare esplicitamente il nuovo file descriptor; il suo prototipo è:
+\begin{prototype}{unistd.h}{int dup2(int oldfd, int newfd)}
+  
+  La funzione rende \param{newfd} una copia del file descriptor \param{oldfd}.
+  
+  La funzione ritorna il nuovo file descriptor in caso di successo e -1 in
+  caso di errore, nel qual caso \var{errno} viene settata ad uno dei valori:
+  \begin{errlist}
+  \item \macro{EBADF} \param{oldfd} non è un file aperto o \param{newfd} ha un
+    valore fuori dall'intervallo consentito per i file descriptor.
+  \item \macro{EMFILE} si è raggiunto il numero massimo consentito di file
+    descriptor aperti.
+  \end{errlist}
+\end{prototype}
+\noindent la funzione chiude il file descriptor \param{newfd} se è aperto.
+
+La duplicazione dei file descriptor può essere effettuata anche usando la
+funzione di controllo dei file \func{fnctl} (che esamineremo in
+\secref{sec:file_fcntl}) con il parametro \macro{F\_DUPFD}. 
+
+L'operazione ha la sintassi \func{fnctl(oldfd, F\_DUPFD, newfd)} e se si usa 0
+come valore per \param{newfd} diventa equivalente a \func{dup}. La sola
+differenza, a parte i codici di errore, è che \func{dup2} chiude il nuovo file
+se è già aperto mentre \func{fcntl} apre il primo disponibile con un valore
+superiore, per cui per poterla usare come \func{dup2} occorrerebbe prima
+effettuare una \func{close}, perdendo l'atomicità dell'operazione.
+
+L'uso principale di queste funzioni è per la redirezione dell'input e
+dell'output fra l'esecuzione di una \func{fork} e la successiva \func{exec};
+diventa così possibile associare un file (o una pipe) allo standard input o
+allo standard output, torneremo su questo uso più avanti quando tratteremo le
+pipe.
+
+
 \subsection{La funzione \func{fcntl}}
 \label{sec:file_fcntl}
 
+Oltre alle operazioni base esaminate in \secref{sec:file_base_func} esistono
+tutta una serie di operazioni ausiliarie che è possibile eseguire su un file
+descriptor. Per queste operazioni di manipolazione delle varie proprietà di un
+file descriptor viene usata la funzione \func{fcntl} il cui prototipo è:
+\begin{functions}
+  \headdecl{unistd.h}
+  \headdecl{fcntl.h}
+  \funcdecl{int fcntl(int fd, int cmd)}
+  \funcdecl{int fcntl(int fd, int cmd, long arg)}
+  \funcdecl{int fcntl(int fd, int cmd, struct flock * lock)}
+  La funzione esegue una delle possibili operazioni specificate da \param{cmd}
+  sul file \param{fd}.
+  
+  La funzione ha valori di ritorno diversi a seconda dell'operazione. In caso
+  di errore il valore di ritorno è -1 e la variabile \var{errno} viene settata
+  ad un opportuno codice, quelli validi in generale sono:
+  \begin{errlist}
+  \item \macro{EBADF} \param{oldfd} non è un file aperto.
+  \end{errlist}
+\end{functions}
+
+Il comportamento di questa funzione è determinato dal valore del comando
+\param{cmd} che le viene fornito; in \secref{sec:file_dup} abbiamo incontrato
+un esempio per la duplicazione dei file descriptor, una lista dei possibili
+valori è riportata di seguito:
+\begin{basedescript}{\desclabelwidth{2.0cm}}
+\item[\macro{F\_DUPFD}] trova il primo file descriptor disponibile di valore
+  maggiore o uguale ad \param{arg} e ne fa una copia di \var{fd}. In caso di
+  successo ritorna il nuovo file descriptor. Gli errori possibili sono
+  \macro{EINVAL} se \param{arg} è negativo o maggiore del massimo consentito o
+  \macro{EMFILE} se il processo ha già raggiunto il massimo numero di
+  descrittori consentito.
+\item[\macro{F\_SETFD}] setta il valore del \textit{file descriptor flag}
+  al valore specificato con \param{arg}. Al momento l'unico bit usato è
+  quello di \textit{close on exec}, identificato dalla costante
+  \macro{FD\_CLOEXEC}.
+\item[\macro{F\_GETFD}] ritorna il valore del \textit{file descriptor flag} di
+  \var{fd}, se \macro{FD\_CLOEXEC} è settato i file descriptor aperti vengono
+  chiusi attraverso una \func{exec} altrimenti (il default) restano aperti.
+\item[\macro{F\_GETFL}] ritorna il valore del \textit{file status flag},
+  permette cioè di rileggere quei bit settati da \func{open} all'apertura del
+  file che vengono memorizzati (quelli riportati nella prima e terza sezione
+  di \tabref{tab:file_open_flags}). 
+\item[\macro{F\_SETFL}] setta il \textit{file status flag} al valore
+  specificato da \param{arg}, possono essere settati solo i bit riportati
+  nella terza sezione di \tabref{tab:file_open_flags} (da verificare).
+\item[\macro{F\_GETLK}] se un file lock è attivo restituisce nella struttura
+  \param{lock} la struttura \type{flock} che impedisce l'acquisizione del
+  blocco, altrimenti setta il campo \var{l\_type} a \macro{F\_UNLCK} (per i
+  dettagli sul \textit{file locking} vedi \secref{sec:file_locking}).
+\item[\macro{F\_SETLK}] richiede il file lock specificato da \param{lock} se
+  \var{l\_type} è \macro{F\_RDLCK} o \macro{F\_WRLLCK} o lo rilascia se
+  \var{l\_type} è \macro{F\_UNLCK}. Se il lock è tenuto da qualcun'altro
+  ritorna immediatamente restituendo -1 e setta \var{errno} a \macro{EACCES} o
+  \macro{EAGAIN} (per i dettagli sul \textit{file locking} vedi
+  \secref{sec:file_locking}).
+\item[\macro{F\_SETLKW}] identica a \macro{F\_SETLK} eccetto per il fatto che
+  la funzione non ritorna subito ma attende che il blocco sia rilasciato. Se
+  l'attesa viene interrotta da un segnale la funzione restituisce -1 e setta
+  \var{errno} a \macro{EINTR} (per i dettagli sul \textit{file locking} vedi
+  \secref{sec:file_locking}).
+\item[\macro{F\_GETOWN}] restituisce il \acr{pid} del processo o il process
+  group che è preposto alla ricezione dei segnali \macro{SIGIO} e
+  \macro{SIGURG} per gli eventi associati al file descriptor \var{fd}. Il
+  process group è restituito come valore negativo.
+\item[\macro{F\_SETOWN}] setta il processo o process group che riceverà i
+  sengali \macro{SIGIO} e \macro{SIGURG} per gli eventi associati al file
+  descriptor \var{fd}.  I process group sono settati usando valori negativi.
+\item[\macro{F\_GETSIG}] restituisce il segnale mandato quando ci sono dati
+  disponibili in input sul file descriptor. Il valore 0 indica il default (che
+  è \macro{SIGIO}), un valore diverso da zero indica il segnale richiesto,
+  (che può essere lo stesso \macro{SIGIO}), nel qual caso al manipolatore del
+  segnale, se installato con \macro{SA\_SIGINFO}, vengono rese disponibili
+  informazioni ulteriori informazioni.
+\item[\macro{F\_SETSIG}] setta il segnale da inviare quando diventa possibile
+  effettuare I/O sul file descriptor. Il valore zero indica il default
+  (\macro{SIGIO}), ogni altro valore permette di rendere disponibile al
+  manipolatore del segnale ulteriori informazioni se si è usata
+  \macro{SA\_SIGINFO}.
+\end{basedescript}
+
+La maggior parte delle funzionalità di \func{fcntl} sono troppo avanzate per
+poter essere affrontate in dettaglio a questo punto; saranno riprese più
+avanti quando affronteremo le problematiche ad esse relative.
+
+Per determinare le modalità di accesso inoltre può essere necessario usare la 
+
 \subsection{La funzione \func{ioctl}}
 \label{sec:file_ioctl}
 
+Benché il concetto di \textit{everything is a file} si sia dimostratato molto
+valido anche per l'interazione con i più vari dispositivi, con cui si può
+interagire con le stesse funzioni usate per i normali file di dati,
+esisteranno sempre caratteristiche peculiari, specifiche dell'hardware e della
+funzionalità che ciascuno di essi provvede, che non possono venire comprese in
+questa interfaccia astratta (un caso tipico è il settaggio della velocità di
+una porta seriale, o le dimensioni di un framebuffer).
+
+Per questo motivo l'architettura del sistema ha previsto l'esistenza di una
+funzione speciale, \func{ioctl}, con cui poter compiere operazioni specifiche
+per ogni singolo dispositivo.  Il prototipo di questa funzione è:
+
+\begin{prototype}{sys/ioctl.h}{int ioctl(int fd, int request, ...)}
+  
+  La funzione manipola il sottostante dispositivo, usando il parametro
+  \param{request} per specificare l'operazione richiesta e il terzo parametro
+  (che usualmente è di tipo \param{char * argp}) per passare o ricevere
+  l'informazione necessaria al dispositivo.
+  
+  La funzione nella maggior parte dei casi ritorna 0, alcune operazioni usano
+  però il valore di ritorno per restituire informazoni. In caso di errore
+  viene sempre restituito -1 e \var{errno} viene settata ad uno dei valori
+  seguenti:
+  \begin{errlist}
+  \item \macro{ENOTTY} il file \param{fd} non è associato con un device.
+  \item \macro{EINVAL} gli argomenti \param{request} o \param{argp} non sono
+    validi.
+  \end{errlist}
+  ed inoltre \macro{EBADF} e \macro{EFAULT}.
+\end{prototype}
+
+La funzione serve in sostanza per fare tutte quelle operazioni che non si
+adattano all'architettura di I/O di unix e che non è possibile effettuare con
+le funzioni esaminate finora. Per questo motivo non è possibile fare altro che
+una descrizione generica; torneremo ad esaminarla in seguito, quando si
+tratterà di applicarla ad alcune problematiche specifiche.
+