Altra roba connessa con le pipe
[gapil.git] / fileunix.tex
index b9d72195ec213c26ea4f5ca78bc3e4151e1b4f0d..40d022815a8fcd909a6e729af3538ed765c63f81 100644 (file)
@@ -1,22 +1,23 @@
-\chapter{I file: l'interfaccia standard unix}
+\chapter{I file: l'interfaccia standard Unix}
 \label{cha:file_unix_interface}
 
+
 Esamineremo in questo capitolo la prima delle due interfacce di programmazione
-per i file, quella dei \textit{file descriptor}, nativa di unix. Questa è
+per i file, quella dei \textit{file descriptor}, nativa di Unix. Questa è
 l'interfaccia di basso livello provvista direttamente dalle system call, che
 non prevede funzionalità evolute come la bufferizzazione o funzioni di lettura
 o scrittura formattata, e sulla quale è costruita anche l'interfaccia definita
-dallo standard ANSI C che affronteremo in \capref{cha:files_std_interface}.
+dallo standard ANSI C che affronteremo al \capref{cha:files_std_interface}.
 
 
 
 \section{L'architettura di base}
 \label{sec:file_base_arch}
 
-In questa sezione faremo una breve introduzione sullarchitettura su cui è
+In questa sezione faremo una breve introduzione sull'architettura su cui è
 basata dell'interfaccia dei \textit{file descriptor}, che, sia pure con
 differenze nella realizzazione pratica, resta sostanzialmente la stessa in
-ogni implementazione di unix.
+tutte le implementazione di un sistema unix-like.
 
 
 \subsection{L'architettura dei \textit{file descriptor}}
@@ -26,15 +27,16 @@ Per poter accedere al contenuto di un file occorre creare un canale di
 comunicazione con il kernel che renda possibile operare su di esso (si ricordi
 quanto visto in \secref{sec:file_vfs_work}). Questo si fa aprendo il file con
 la funzione \func{open} che provvederà a localizzare l'inode del file e
-inizializzare le funzioni che il VFS mette a disposizione (riportate in
-\tabref{tab:file_file_operations}). Una volta terminate le operazioni, il file
-dovrà essere chiuso, e questo chiuderà il canale di comunicazione impedendo
-ogni ulteriore operazione.
+inizializzare i puntatori che rendono disponibili le funzioni che il VFS mette
+a disposizione (riportate in \tabref{tab:file_file_operations}). Una volta
+terminate le operazioni, il file dovrà essere chiuso, e questo chiuderà il
+canale di comunicazione impedendo ogni ulteriore operazione.
 
 All'interno di ogni processo i file aperti sono identificati da un intero non
-negativo, chiamato appunto \textit{file descriptor}, quando un file viene
-aperto la funzione restituisce il file descriptor, e tutte le successive
-operazioni devono passare il \textit{file descriptor} come argomento.
+negativo, chiamato appunto \textit{file descriptor}. Quando un file viene
+aperto la funzione \func{open} restituisce questo numero, tutte le ulteriori
+operazioni saranno compiute specificando questo stesso valore come argomento
+alle varie funzioni dell'interfaccia.
 
 Per capire come funziona il meccanismo occorre spiegare a grandi linee come è
 che il kernel gestisce l'interazione fra processi e file.  Il kernel mantiene
@@ -67,24 +69,24 @@ file, fra cui:
   campo \var{f\_pos}).
 \item un puntatore all'inode\footnote{nel kernel 2.4.x si è in realtà passati
     ad un puntatore ad una struttura \var{dentry} che punta a sua volta
-    all'inode passando per la nuova struttura del VFS} del file.
+    all'inode passando per la nuova struttura del VFS.} del file.
 %\item un puntatore alla tabella delle funzioni \footnote{la struttura
 %    \var{f\_op} descritta in \secref{sec:file_vfs_work}} che si possono usare
 %  sul file.
 \end{itemize*}
 
 In \figref{fig:file_proc_file} si è riportato uno schema in cui è illustrata
-questa architettura, in cui si sono evidenziate le interrelazioni fra le varie
-strutture di dati sulla quale essa è basata. 
+questa architettura, ed in cui si sono evidenziate le interrelazioni fra le
+varie strutture di dati sulla quale essa è basata.
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=14cm]{img/procfile}
+  \includegraphics[width=13cm]{img/procfile}
   \caption{Schema della architettura dell'accesso ai file attraverso
-  l'interfaccia dei \textit{file descriptor}}
+  l'interfaccia dei \textit{file descriptor}.}
   \label{fig:file_proc_file}
 \end{figure}
 Ritorneremo su questo schema più volte, dato che esso è fondamentale per
-capire i dettagli del funzionamento delle dell'interfaccia dei \textit{file
+capire i dettagli del funzionamento dell'interfaccia dei \textit{file
   descriptor}.
 
 
@@ -93,25 +95,27 @@ capire i dettagli del funzionamento delle dell'interfaccia dei \textit{file
 
 Come accennato i \textit{file descriptor} non sono altro che un indice nella
 tabella dei file aperti di ciascun processo; per questo motivo essi vengono
-assegnati in successione tutte le volte che si apre un nuovo file (se non se
-ne è chiuso nessuno in precedenza).
+assegnati in successione tutte le volte che si apre un nuovo file (se non ne è
+stato chiuso nessuno in precedenza).
 
 In tutti i sistemi unix-like esiste una convenzione generale per cui ogni
-processo viene lanciato con almeno tre file aperti. Questi, per quanto
-dicevamo prima, avranno come \textit{file descriptor} i valori 0, 1 e 2.
-Benché questa sia soltanto una convenzione, essa è seguita dalla gran parte
-delle applicazioni, e non aderirvi potrebbe portare a gravi problemi di
+processo viene lanciato con almeno tre file aperti. Questi, per quanto appena
+detto, avranno come \textit{file descriptor} i valori 0, 1 e 2.  Benché questa
+sia soltanto una convenzione, essa è seguita dalla gran parte delle
+applicazioni, e non aderirvi potrebbe portare a gravi problemi di
 interoperabilità.
 
 Il primo file è sempre associato a quello che viene chiamato \textit{standard
-  input}, è cioè il file da cui il processo si aspetta di ricevere i dati in
-ingresso (nel caso della shell, è associato alla lettura della tastiera); il
-secondo file è il cosiddetto \textit{standard output}, cioè il file su cui ci
-si aspetta debbano essere inviati i dati in uscita (sempre nel caso della
-shell, è il terminale su cui si sta scrivendo), il terzo è lo \textit{standard
-  error}, su cui viene inviato l'output relativo agli errori.
-Lo standard POSIX.1 provvede tre costanti simboliche, definite nell'header
-\file{unistd.h}, al posto di questi valori numerici: 
+  input}. È cioè il file da cui il processo si aspetta di ricevere i dati in
+ingresso (nel caso della shell, è associato all'ingresso dal terminale, e
+quindi alla lettura della tastiera). Il secondo file è il cosiddetto
+\textit{standard output}, cioè il file su cui ci si aspetta debbano essere
+inviati i dati in uscita (sempre nel caso della shell, è associato all'uscita
+del terminale, e quindi alla scrittura sullo schermo). Il terzo è lo
+\textit{standard error}, su cui viene inviato l'output relativo agli errori,
+ed è anch'esso associato all'uscita del termininale.  Lo standard POSIX.1
+provvede tre costanti simboliche, definite nell'header \file{unistd.h}, al
+posto di questi valori numerici:
 \begin{table}[htb]
   \centering
   \footnotesize
@@ -138,20 +142,20 @@ riferimento ad un programma in cui lo \textit{standard input} 
 un file mentre lo \textit{standard output} e lo \textit{standard error} sono
 entrambi associati ad un altro file (e quindi utilizzano lo stesso inode).
 
-Nelle vecchie versioni di unix (ed anche in Linux fino al kernel 2.0.x) il
+Nelle vecchie versioni di Unix (ed anche in Linux fino al kernel 2.0.x) il
 numero di file aperti era anche soggetto ad un limite massimo dato dalle
 dimensioni del vettore di puntatori con cui era realizzata la tabella dei file
-descriptor dentro \var{file\_struct}; questo limite intrinseco non sussiste
-più, dato che si è passati da un vettore ad una linked list, ma restano i
-limiti imposti dall'amministratore (vedi \secref{sec:sys_limits}).
+descriptor dentro \var{file\_struct}; questo limite intrinseco nei kernel più
+recenti non sussiste più, dato che si è passati da un vettore ad una lista, ma
+restano i limiti imposti dall'amministratore (vedi \secref{sec:sys_limits}).
 
 
 
 \section{Le funzioni base}
 \label{sec:file_base_func}
 
-L'interfaccia standard unix per l'input/output sui file è basata su cinque
-funzioni fondamentali \func{open}, \func{read}, \func{write}, \func{lseek} e
+L'interfaccia standard Unix per l'input/output sui file è basata su cinque
+funzioni fondamentali: \func{open}, \func{read}, \func{write}, \func{lseek} e
 \func{close}, usate rispettivamente per aprire, leggere, scrivere, spostarsi e
 chiudere un file. 
 
@@ -165,7 +169,7 @@ system call del kernel.
 \label{sec:file_open}
 
 La funzione \func{open} è la funzione fondamentale per accedere ai file, ed è
-quella che crea l'associazione fra un pathname ed un file descriptor; il suo
+quella che crea l'associazione fra un pathname ed un file descriptor, il suo
 prototipo è:
 \begin{functions}
   \headdecl{sys/types.h}
@@ -177,30 +181,30 @@ prototipo 
   \var{flags}, e, nel caso il file sia creato, con gli eventuali permessi
   specificati da \var{mode}.
   
-  La funzione ritorna il file descriptor in caso di successo e -1 in caso di
-  errore. In questo caso la variabile \var{errno} viene settata ad uno dei
-  valori:
+  \bodydesc{La funzione ritorna il file descriptor in caso di successo e -1 in
+    caso di errore. In questo caso la variabile \var{errno} viene settata ad
+    uno dei valori:
   \begin{errlist}
-  \item \macro{EEXIST} \var{pathname} esiste e si è specificato
+  \item[\macro{EEXIST}] \var{pathname} esiste e si è specificato
     \macro{O\_CREAT} e \macro{O\_EXCL}.  
-  \item \macro{EISDIR} \var{pathname} indica una directory e si è tentato
+  \item[\macro{EISDIR}] \var{pathname} indica una directory e si è tentato
     l'accesso in scrittura. 
-  \item \macro{ENOTDIR} si è specificato \macro{O\_DIRECTORY} e \var{pathname}
+  \item[\macro{ENOTDIR}] si è specificato \macro{O\_DIRECTORY} e \var{pathname}
     non è una directory.
-  \item \macro{ENXIO} si sono settati \macro{O\_NOBLOCK} o \macro{O\_WRONLY}
+  \item[\macro{ENXIO}] si sono settati \macro{O\_NOBLOCK} o \macro{O\_WRONLY}
     ed il file è una fifo che non viene letta da nessun processo o
     \var{pathname} è un file di dispositivo ma il dispositivo è assente.
-  \item \macro{ENODEV} \var{pathname} si riferisce a un file di dispositivo
+  \item[\macro{ENODEV}] \var{pathname} si riferisce a un file di dispositivo
     che non esiste.  
-  \item \macro{ETXTBSY} si è cercato di accedere in scrittura all'immagine di
+  \item[\macro{ETXTBSY}] si è cercato di accedere in scrittura all'immagine di
     un programma in esecuzione.
-  \item \macro{ELOOP} si sono incontrati troppi link simbolici nel risolvere
+  \item[\macro{ELOOP}] si sono incontrati troppi link simbolici nel risolvere
     pathname o si è indicato \macro{O\_NOFOLLOW} e \var{pathname} è un link
     simbolico.
   \end{errlist}
   ed inoltre \macro{EACCES}, \macro{ENAMETOOLONG}, \macro{ENOENT},
   \macro{EROFS}, \macro{EFAULT}, \macro{ENOSPC}, \macro{ENOMEM},
-  \macro{EMFILE} e \macro{ENFILE}.
+  \macro{EMFILE} e \macro{ENFILE}.}
 \end{functions}
 
 La funzione apre il file, usando il primo file descriptor libero, e crea
@@ -242,7 +246,7 @@ sempre il file descriptor con il valore pi
     zero. Se il file è un terminale o una fifo il flag verrà ignorato, negli
     altri casi il comportamento non è specificato. \\
     \macro{O\_NOFOLLOW} & se \var{pathname} è un link simbolico la chiamata
-    fallisce. Questa è unestensione BSD aggiunta in Linux dal kernel 2.1.126.
+    fallisce. Questa è un'estensione BSD aggiunta in Linux dal kernel 2.1.126.
     Nelle versioni precedenti i link simbolici sono sempre seguiti, e questa
     opzione è ignorata. \\
     \macro{O\_DIRECTORY} & se \var{pathname} non è una directory la chiamata
@@ -259,17 +263,18 @@ sempre il file descriptor con il valore pi
     \macro{O\_APPEND} & il file viene aperto in append mode. Prima di ciascuna
     scrittura la posizione corrente viene sempre settata alla fine del
     file. Può causare corruzione del file con NFS se più di un processo scrive
-    allo stesso tempo\footnotemark.\\
+    allo stesso tempo.\footnotemark\\
     \macro{O\_NONBLOCK} & il file viene aperto in modalità non bloccante per
-    le operazioni di I/O: questo significa il fallimento di una \func{read} in
-    assenza di dati da leggere e quello di una \func{write} in caso di 
+    le operazioni di I/O: questo significa il fallimento di  \func{read} in
+    assenza di dati da leggere e quello di \func{write} in caso di 
     impossibilità di scrivere immediatamente. L'opzione è effettiva solo per
     le fifo e per alcuni file di dispositivo. \\
     \macro{O\_NDELAY} & in Linux\footnotemark\ è sinonimo di 
     \macro{O\_NONBLOCK}.\\
-    \macro{O\_ASYNC} & apre il file per l'input/output in modalità
-    asincrona. Quando è settato viene generato un segnale di \macro{SIGIO}
-    tutte le volte che è disponibile dell'input sul file. \\
+    \macro{O\_ASYNC} & apre il file per l'I/O in modalità
+    asincrona (vedi \secref{sec:file_asyncronous_io}). Quando è settato viene
+    generato il segnale \macro{SIGIO} tutte le volte che sono disponibili
+    dati in input sul file. \\ 
     \macro{O\_SYNC} & apre il file per l'input/output sincrono, ogni
     \func{write} bloccherà fino al completamento della scrittura di tutti dati
     sul sull'hardware sottostante.\\
@@ -300,33 +305,32 @@ sempre il file descriptor con il valore pi
 
 \footnotetext[5]{l'opzione origina da SVr4, dove però causava il ritorno da
   una \func{read} con un valore nullo e non con un errore, questo introduce
-  unambiguità, dato che come vedremo in \secref{sec:file_read} il ritorno di
+  un'ambiguità, dato che come vedremo in \secref{sec:file_read} il ritorno di
   zero da parte di \func{read} ha il significato di una end-of-file.}
 
 Questa caratteristica permette di prevedere qual'è il valore del file
 descriptor che si otterrà al ritorno di \func{open}, e viene talvolta usata da
-alcune applicazioni per sostituire i file corrispondenti ai file standard di
-\secref{sec:file_std_descr}: se ad esempio si chiude lo standard input e si
-apre subito dopo un nuovo file questo diventerà il nuovo standard input (avrà
-cioè il file descriptor 0).
-
+alcune applicazioni per sostituire i file corrispondenti ai file standard
+visti in \secref{sec:file_std_descr}: se ad esempio si chiude lo standard
+input e si apre subito dopo un nuovo file questo diventerà il nuovo standard
+input (avrà cioè il file descriptor 0).
 
 Il nuovo file descriptor non è condiviso con nessun altro processo, (torneremo
 sulla condivisione dei file, in genere accessibile dopo una \func{fork}, in
 \secref{sec:file_sharing}). Il nuovo file descriptor è settato di default per
 restare aperto attraverso una \func{exec} (come accennato in
-\secref{sec:proc_exec}) ed l'offset è settato all'inizio del file.
+\secref{sec:proc_exec}) e l'offset è settato all'inizio del file.
 
-Il parametro \var{mode} specifica i permessi con cui il file viene
+L'argomento \param{mode} specifica i permessi con cui il file viene
 eventualmente creato; i valori possibili sono gli stessi già visti in
 \secref{sec:file_perm_overview} e possono essere specificati come OR binario
-delle costanti descritte in \tabref{tab:file_bit_perm}. Questi permessi
-filtrati dal valore di \file{umask} (vedi \secref{sec:file_umask}) per il
+delle costanti descritte in \tabref{tab:file_bit_perm}. Questi permessi sono
+filtrati dal valore di \var{umask} (vedi \secref{sec:file_umask}) per il
 processo.
 
 La funzione prevede diverse opzioni, che vengono specificate usando vari bit
-del parametro \var{flags}.  Alcuni di questi bit vanno anche a costituire il
-flag di stato del file (o \textit{file status flag}), che è mantenuto nel
+dell'argomento \param{flags}.  Alcuni di questi bit vanno anche a costituire
+il flag di stato del file (o \textit{file status flag}), che è mantenuto nel
 campo \var{f\_flags} della struttura \var{file} (al solito si veda lo schema
 di \curfig).  Essi sono divisi in tre categorie principali:
 \begin{itemize}
@@ -335,11 +339,11 @@ di \curfig).  Essi sono divisi in tre categorie principali:
   lettura/scrittura.  Uno di questi bit deve essere sempre specificato quando
   si apre un file.  Vengono settati alla chiamata da \func{open}, e possono
   essere riletti con una \func{fcntl} (fanno parte del \textit{file status
-    flag}), ma non modificati.
+    flag}), ma non possono essere modificati.
 \item \textsl{i bit delle modalità di apertura}: permettono di specificare
   alcune delle caratteristiche del comportamento di \func{open} quando viene
   eseguita. Hanno effetto solo al momento della chiamata della funzione e non
-  sono memorizzati nè possono essere riletti.
+  sono memorizzati né possono essere riletti.
 \item \textsl{i bit delle modalità di operazione}: permettono di specificare
   alcune caratteristiche del comportamento delle future operazioni sul file
   (come la \func{read} o la \func{write}). Anch'essi fanno parte del
@@ -350,19 +354,21 @@ di \curfig).  Essi sono divisi in tre categorie principali:
 
 In \tabref{tab:file_open_flags} si sono riportate, ordinate e divise fra loro
 secondo le tre modalità appena elencate, le costanti mnemoniche associate a
-ciascuno di questi bit, dette costanti possono essere combinate fra di loro
+ciascuno di questi bit. Dette costanti possono essere combinate fra di loro
 con un OR aritmetico per costruire il valore (in forma di maschera binaria)
-del parametro \var{flags} da passare alla \func{open} per specificarne il
-comportamento.
-
-Nelle prime versioni di unix i flag specificabili per \func{open} erano solo
-quelli relativi alle modalità di accesso del file.  Per questo motivo per
-creare un nuovo file c'era una system call apposita, \func{creat}, il cui
-prototipo è:
+dell'argomento \param{flags} da passare alla \func{open} per specificarne il
+comportamento. I due flag \macro{O\_NOFOLLOW} e \macro{O\_DIRECTORY} sono
+estensioni specifiche di Linux, e deve essere usata definita la macro
+\macro{\_GNU\_SOURCE} per poterli usare.
+
+Nelle prime versioni di Unix i valori di \param{flag} specificabili per
+\func{open} erano solo quelli relativi alle modalità di accesso del file.  Per
+questo motivo per creare un nuovo file c'era una system call apposita,
+\func{creat}, il cui prototipo è:
 \begin{prototype}{fcntl.h}
   {int creat(const char *pathname, mode\_t mode)}
   Crea un nuovo file vuoto, con i permessi specificati da \var{mode}. É del
-  tutto equivalente a \func{open(filedes, O\_CREAT|O\_WRONLY|O\_TRUNC, mode)}. 
+  tutto equivalente a \code{open(filedes, O\_CREAT|O\_WRONLY|O\_TRUNC, mode)}. 
 \end{prototype}
 \noindent adesso questa funzione resta solo per compatibilità con i vecchi 
 programmi.
@@ -376,23 +382,23 @@ descriptor ritorna disponibile; il suo prototipo 
 \begin{prototype}{unistd.h}{int close(int fd)}
   Chiude il descrittore \var{fd}. 
   
-  La funzione ritorna 0 in caso di successo e -1 n caso di errore. In questo
-  caso \var{errno} è settata ai valori:
+  \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
+    ed in questo caso \var{errno} è settata ai valori:
   \begin{errlist}
-    \item \macro{EBADF}  \var{fd} non è un descrittore valido.
-    \item \macro{EINTR} la funzione è stata interrotta da un segnale.
+    \item[\macro{EBADF}]  \var{fd} non è un descrittore valido.
+    \item[\macro{EINTR}] la funzione è stata interrotta da un segnale.
   \end{errlist}
-  ed inoltre \macro{EIO}.
+  ed inoltre \macro{EIO}.}
 \end{prototype}
 
 La chiusura di un file rilascia ogni blocco (il \textit{file locking} è
 trattato in \secref{sec:file_locking}) che il processo poteva avere acquisito
-su di esso; se \var{fd} è ultimo (di eventuali copie) riferimento ad un file
+su di esso; se \var{fd} è l'ultimo riferimento (di eventuali copie) ad un file
 aperto, tutte le risorse nella file table vengono rilasciate. Infine se il
 file descriptor era l'ultimo riferimento ad un file su disco quest'ultimo
 viene cancellato.
 
-Si ricordi che quando un processo termina anche tutti i sui file descriptor
+Si ricordi che quando un processo termina anche tutti i suoi file descriptor
 vengono chiusi, molti programmi sfruttano questa caratteristica e non usano
 esplicitamente \func{close}. In genere comunque chiudere un file senza
 controllarne lo stato di uscita è errore; infatti molti filesystem
@@ -400,15 +406,17 @@ implementano la tecnica del \textit{write-behind}, per cui una \func{write}
 può avere successo anche se i dati non sono stati scritti, un eventuale errore
 di I/O allora può sfuggire, ma verrà riportato alla chiusura del file: per
 questo motivo non effettuare il controllo può portare ad una perdita di dati
-inavvertita; in Linux questo comportamento è stato osservato con NFS e le
-quote su disco.
+inavvertita.\footnote{in Linux questo comportamento è stato osservato con NFS
+  e le quote su disco.}
 
 In ogni caso una \func{close} andata a buon fine non garantisce che i dati
 siano stati effettivamente scritti su disco, perché il kernel può decidere di
 ottimizzare l'accesso a disco ritardandone la scrittura. L'uso della funzione
-\func{sync} effettua esplicitamente il \emph{flush} dei dati, ma anche in
-questo caso resta l'incertezza dovuta al comportamento dell'hardware (che a
-sua volta può introdurre ottimizzazioni dell'accesso al disco).
+\func{sync} (vedi \secref{sec:file_sync}) effettua esplicitamente il
+\emph{flush} dei dati, ma anche in questo caso resta l'incertezza dovuta al
+comportamento dell'hardware (che a sua volta può introdurre ottimizzazioni
+dell'accesso al disco che ritardano la scrittura dei dati, da cui l'abitudine
+di ripetere tre volte il comando prima di eseguire lo shutdown).
 
 
 \subsection{La funzione \func{lseek}}
@@ -428,27 +436,28 @@ un valore qualsiasi con la funzione \func{lseek}, il cui prototipo 
   \headdecl{sys/types.h}
   \headdecl{unistd.h}
   \funcdecl{off\_t lseek(int fd, off\_t offset, int whence)}
-  La funzione setta la posizione attuale nel file. 
-
-  La funzione ritorna valore della posizione corrente in caso di successo e -1
-  in caso di errore nel qual caso \var{errno} viene settata ad uno dei valori:
+  Setta la posizione attuale nel file. 
+  
+  \bodydesc{La funzione ritorna valore della posizione corrente in caso di
+    successo e -1 in caso di errore nel qual caso \var{errno} viene settata ad
+    uno dei valori:
   \begin{errlist}
-    \item \macro{ESPIPE} \var{fd} è una pipe, un socket o una fifo.
-    \item \macro{EINVAL} \var{whence} non è un valore valido.
+    \item[\macro{ESPIPE}] \param{fd} è una pipe, un socket o una fifo.
+    \item[\macro{EINVAL}] \param{whence} non è un valore valido.
   \end{errlist}
-  ed inoltre \macro{EBADF}.
+  ed inoltre \macro{EBADF}.}
 \end{functions}
 
-La nuova posizione è settata usando il valore specificato da \var{offset},
-sommato al riferimento dato da \var{whence}; quest'ultimo può assumere i
+La nuova posizione è settata usando il valore specificato da \param{offset},
+sommato al riferimento dato da \param{whence}; quest'ultimo può assumere i
 seguenti valori\footnote{per compatibilità con alcune vecchie notazioni
   questi valori possono essere rimpiazzati rispettivamente con 0, 1 e 2 o con
-  \macro{L\_SET}, \macro{L\_INCR} e \macro{L\_XTND}}:
+  \macro{L\_SET}, \macro{L\_INCR} e \macro{L\_XTND}.}:
 \begin{basedescript}{\desclabelwidth{2.0cm}}
 \item[\macro{SEEK\_SET}] si fa riferimento all'inizio del file: il valore di
   \var{offset} è la nuova posizione.
 \item[\macro{SEEK\_CUR}] si fa riferimento alla posizione corrente del file:
-  \var{offset} che può essere negativo e positivo.
+  \var{offset} può essere negativo e positivo.
 \item[\macro{SEEK\_END}] si fa riferimento alla fine del file: il valore di
   \var{offset} può essere negativo e positivo.
 \end{basedescript}
@@ -460,8 +469,8 @@ attivit
 kernel (cioè \var{f\_pos} in \var{file}, vedi \figref{fig:file_proc_file}).
 
 Dato che la funzione ritorna la nuova posizione, usando il valore zero per
-\func{offset} si può riottenere la posizione corrente nel file chiamando la
-funzione con \func{lseek(fd, 0, SEEK\_CUR}. 
+\param{offset} si può riottenere la posizione corrente nel file chiamando la
+funzione con \code{lseek(fd, 0, SEEK\_CUR)}. 
 
 Si tenga presente inoltre che usare \macro{SEEK\_END} non assicura affatto che
 successiva scrittura avvenga alla fine del file, infatti se questo è stato
@@ -473,9 +482,9 @@ essersi spostata, ma noi scriveremo alla posizione settata in precedenza.
 Non tutti i file supportano la capacità di eseguire una \func{lseek}, in
 questo caso la funzione ritorna l'errore \macro{EPIPE}. Questo, oltre che per
 i tre casi citati nel prototipo, vale anche per tutti quei dispositivi che non
-supportano questa funzione, come ad esempio per le \acr{tty}\footnote{altri
-  sistemi, usando \macro{SEEK\_SET} in questo caso ritornano il numero di
-  caratteri che vi sono stati scritti}. Lo standard POSIX però non specifica
+supportano questa funzione, come ad esempio per le \acr{tty}.\footnote{altri
+  sistemi, usando \macro{SEEK\_SET}, in questo caso ritornano il numero di
+  caratteri che vi sono stati scritti.} Lo standard POSIX però non specifica
 niente al proposito. Infine alcuni device, ad esempio \file{/dev/null}, non
 causano un errore ma restituiscono un valore indefinito.
 
@@ -488,93 +497,102 @@ Una volta che un file 
 utilizzando la funzione \func{read}, il cui prototipo è:
 \begin{prototype}{unistd.h}{ssize\_t read(int fd, void * buf, size\_t count)}
   
-  La funzione cerca di leggere \var{count} byte dal file \var{fd} al buffer
-  \var{buf}.
+  Cerca di leggere \var{count} byte dal file \var{fd} al buffer \var{buf}.
   
-  La funzione ritorna il numero di byte letti in caso di successo e -1 in
-  caso di errore, nel qual caso \var{errno} viene settata ad uno dei valori:
+  \bodydesc{La funzione ritorna il numero di byte letti in caso di successo e
+    -1 in caso di errore, nel qual caso \var{errno} viene settata ad uno dei
+    valori:
   \begin{errlist}
-  \item \macro{EINTR} la funzione è stata interrotta da un segnale prima di
+  \item[\macro{EINTR}] la funzione è stata interrotta da un segnale prima di
     aver potuto leggere qualsiasi dato.
-    \item \macro{EAGAIN} la funzione non aveva nessun dato da restituire e si
-      era aperto il file in modalità \macro{O\_NONBLOCK}.
+  \item[\macro{EAGAIN}] la funzione non aveva nessun dato da restituire e si
+    era aperto il file in modalità \macro{O\_NONBLOCK}.
   \end{errlist}
   ed inoltre \macro{EBADF}, \macro{EIO}, \macro{EISDIR}, \macro{EBADF},
   \macro{EINVAL} e \macro{EFAULT} ed eventuali altri errori dipendenti dalla
-  natura dell'oggetto connesso a \var{fd}.
+  natura dell'oggetto connesso a \var{fd}.}
 \end{prototype}
 
 La funzione tenta di leggere \var{count} byte a partire dalla posizione
-corrente nel file; dopo la lettura la posizione è spostata automaticamente in
-avanti del numero di byte letti. Se \var{count} è zero la funzione
-restituisce zero senza nessun altro risultato.
+corrente nel file. Dopo la lettura la posizione sul file è spostata
+automaticamente in avanti del numero di byte letti. Se \var{count} è zero la
+funzione restituisce zero senza nessun altro risultato.
 
 Si deve sempre tener presente che non è detto che la funzione \func{read}
-restituisca il numero di byte richiesto, ci sono infatti varie ragioni per cui
-la funzione può restituire un numero di byte inferiore. Questo è un
-comportamento normale e non un errore, che però bisogna sempre tenere
-presente.
+restituisca sempre il numero di byte richiesto, ci sono infatti varie ragioni
+per cui la funzione può restituire un numero di byte inferiore; questo è un
+comportamento normale, e non un errore, che bisogna sempre tenere presente.
 
 La prima e più ovvia di queste ragioni è che si è chiesto di leggere più byte
 di quanto il file ne contenga. In questo caso il file viene letto fino alla
 sua fine, e la funzione ritorna regolarmente il numero di byte letti
-effettivamente. Se ripetessimo la lettura \func{read} restituirebbe uno zero.
-La condizione raggiungimento della fine del file non è un errore, e viene
-segnalata appunto da un valore di ritorno di \func{read} nullo, ripetere la
+effettivamente. 
+
+Raggiunta la fine del file, alla ripetizione di un'operazione di lettura,
+otterremmo il ritorno immediato di \func{read} con uno zero.  La condizione
+raggiungimento della fine del file non è un errore, e viene segnalata appunto
+da un valore di ritorno di \func{read} nullo. Ripetere ulteriormente la
 lettura non avrebbe nessun effetto se non quello di continuare a ricevere zero
 come valore di ritorno.
 
 Con i \textsl{file regolari} questa è l'unica situazione in cui si può avere
-un numero di byte letti inferiore a quello richiesto, ma la situazione è
-invece normale quando si legge da un terminale, o su una pipe. In tal caso
-infatti, se non ci sono dati in ingresso, la \func{read} si blocca e ritorna
-solo quando ne arrivano; se il numero di byte richiesti eccede quelli
-disponibili la funzione ritorna comunque, ma con un numero di byte inferiore.
+un numero di byte letti inferiore a quello richiesto, ma questo non è vero
+quando si legge da un terminale, da una fifo o da una pipe. In tal caso
+infatti, se non ci sono dati in ingresso, la \func{read} si blocca (a meno di
+non aver selezionato la modalità non bloccante, vedi
+\secref{sec:file_noblocking}) e ritorna solo quando ne arrivano; se il numero
+di byte richiesti eccede quelli disponibili la funzione ritorna comunque, ma
+con un numero di byte inferiore a quelli richiesti.
 
 Lo stesso comportamento avviene caso di lettura dalla rete (cioè su un socket,
-come vedremo in \secref{sec:sock_io_behav}), o per certi dispositivi come le
-unità a nastro che restituiscono un singolo blocco di dati alla volta.
+come vedremo in \secref{sec:sock_io_behav}), o per la lettura da certi file di
+dispositivo, come le unità a nastro, che restituiscono sempre i dati ad un
+singolo blocco alla volta.
 
-In realtà anche le due condizioni segnalate dagli errori \func{EINTR} e
-\func{EAGAIN} non sono errori. La prima si verifica quando la \func{read} è
+In realtà anche le due condizioni segnalate dagli errori \macro{EINTR} e
+\macro{EAGAIN} non sono errori. La prima si verifica quando la \func{read} è
 bloccata in attesa di dati in ingresso e viene interrotta da un segnale; in
-tal caso l'azione da prendere è quella di rieseguire la funzione. Torneremo
-sull'argomento in \secref{sec:signal_xxx}. 
-
-La seconda si verifica quando il file è in modalità non bloccante e non ci
-sono dati in ingresso: la funzione allora ritorna immediatamente con un errore
-\macro{EAGAIN}\footnote{sotto BSD questo per questo errore viene usata la
-  costante \macro{EWOULDBLOCK}, in GNU/Linux questa è sinonima di
-  \macro{EAGAIN}.} indicando che occorrerà provare a ripetere la lettura.
-
-
-Lo standard Unix98\footnote{questa funzione, e l'analoga \func{pwrite} sono
+tal caso l'azione da prendere è quella di rieseguire la funzione. Torneremo in
+dettaglio sull'argomento in \secref{sec:sig_gen_beha}.
+
+La seconda si verifica quando il file è in modalità non bloccante (vedi
+\secref{sec:file_noblocking}) e non ci sono dati in ingresso: la funzione
+allora ritorna immediatamente con un errore \macro{EAGAIN}\footnote{sotto BSD
+  questo per questo errore viene usata la costante \macro{EWOULDBLOCK}, in
+  Linux, con le glibc, questa è sinonima di \macro{EAGAIN}.} che nel caso
+indica soltanto che occorrerà provare a ripetere la lettura.
+
+La funzione \func{read} è una delle system call fondamentali, esistenti fin
+dagli albori di Unix, ma nella seconda versione delle \textit{Single Unix
+  Specification}\footnote{questa funzione, e l'analoga \func{pwrite} sono
   state aggiunte nel kernel 2.1.60, il supporto nelle \acr{glibc}, compresa
   l'emulazione per i vecchi kernel che non hanno la system call, è stato
-  aggiunto con la versione 2.1} (vedi \secref{sec:intro_opengroup}) prevede la
-definizione di un'altra funzione di lettura, \func{pread}, che diventa
-accessibile con la definizione:
-\begin{verbatim}
-       #define _XOPEN_SOURCE 500
-\end{verbatim}
-il prototipo di questa funzione è:
+  aggiunto con la versione 2.1, in versioni precedenti sia del kernel che
+  delle librerie la funzione non è disponibile.} (quello che viene chiamato
+normalmente Unix98, vedi \secref{sec:intro_opengroup}) è stata introdotta la
+definizione di un'altra funzione di lettura, \func{pread}, il cui prototipo è:
 \begin{prototype}{unistd.h}
 {ssize\_t pread(int fd, void * buf, size\_t count, off\_t offset)}
+
+Cerca di leggere \var{count} byte dal file \var{fd}, a partire dalla posizione
+\var{offset}, nel buffer \var{buf}.
   
-La funzione cerca di leggere \var{count} byte dal file \var{fd}, a partire
-dalla posizione \var{offset}, nel buffer \var{buf}.
-  
-La funzione ritorna il numero di byte letti in caso di successo e -1 in caso
-di errore, nel qual caso \var{errno} viene settata secondo i valori già visti
-per \func{read} e \func{lseek}.
+\bodydesc{La funzione ritorna il numero di byte letti in caso di successo e -1
+  in caso di errore, nel qual caso \var{errno} viene settata secondo i valori
+  già visti per \func{read} e \func{lseek}.}
 \end{prototype}
+\noindent che però diventa accessibile solo con la definizione della macro:
+\begin{verbatim}
+       #define _XOPEN_SOURCE 500
+\end{verbatim}
 
 Questa funzione serve quando si vogliono leggere dati dal file senza
-modificarne la posizione corrente. È sostanzialmente equivalente alla
-esecuzione di una \func{read} e una \func{lseek}, ma dato che la posizione sul
-file può essere condivisa fra vari processi (vedi \secref{sec:file_sharing}),
-essa permette di eseguire l'operazione atomicamente. Il valore di \var{offset}
-fa sempre riferimento all'inizio del file.
+modificarne la posizione corrente. È equivalente alla esecuzione di una
+\func{read} seguita da una \func{lseek} che riporti al valore precedente la
+posizione corrente sul file, ma permette di eseguire l'operazione
+atomicamente. Questo può essere importante quando la posizione sul file viene
+condivisa da processi diversi (vedi \secref{sec:file_sharing}).  Il valore di
+\var{offset} fa sempre riferimento all'inizio del file.
 
 
 \subsection{La funzione \func{write}}
@@ -584,28 +602,29 @@ Una volta che un file 
 funzione \func{write}, il cui prototipo è:
 \begin{prototype}{unistd.h}{ssize\_t write(int fd, void * buf, size\_t count)}
   
-  La funzione scrive \var{count} byte dal buffer \var{buf} sul file \var{fd}.
+  Scrive \var{count} byte dal buffer \var{buf} sul file \var{fd}.
   
-  La funzione ritorna il numero di byte scritti in caso di successo e -1 in
-  caso di errore, nel qual caso \var{errno} viene settata ad uno dei valori:
+  \bodydesc{La funzione ritorna il numero di byte scritti in caso di successo
+    e -1 in caso di errore, nel qual caso \var{errno} viene settata ad uno dei
+    valori:
   \begin{errlist}
-  \item \macro{EINVAL} \var{fd} è connesso ad un oggetto che non consente la
+  \item[\macro{EINVAL}] \var{fd} è connesso ad un oggetto che non consente la
     scrittura.
-  \item \macro{EFBIG} si è cercato di scrivere oltre la dimensione massima
+  \item[\macro{EFBIG}] si è cercato di scrivere oltre la dimensione massima
     consentita dal filesystem o il limite per le dimensioni dei file del
     processo o su una posizione oltre il massimo consentito.
-  \item \macro{EPIPE} \var{fd} è connesso ad una pipe il cui altro capo è
+  \item[\macro{EPIPE}] \var{fd} è connesso ad una pipe il cui altro capo è
     chiuso in lettura; in questo caso viene anche generato il segnale
     \macro{SIGPIPE}, se questo viene gestito (o bloccato o ignorato) la
     funzione ritorna questo errore.
-  \item \macro{EINTR} la funzione è stata interrotta da un segnale prima di
+  \item[\macro{EINTR}] la funzione è stata interrotta da un segnale prima di
     aver potuto scrivere qualsiasi dato.
-  \item \macro{EAGAIN} la funzione non aveva nessun dato da restituire e si
+  \item[\macro{EAGAIN}] la funzione non aveva nessun dato da restituire e si
     era aperto il file in modalità \macro{O\_NONBLOCK}.
   \end{errlist}
   ed inoltre \macro{EBADF}, \macro{EIO}, \macro{EISDIR}, \macro{EBADF},
   \macro{ENOSPC}, \macro{EINVAL} e \macro{EFAULT} ed eventuali altri errori
-  dipendenti dalla natura dell'oggetto connesso a \var{fd}.
+  dipendenti dalla natura dell'oggetto connesso a \var{fd}.}
 \end{prototype}
 
 Come nel caso di \func{read} la funzione tenta di scrivere \var{count} byte a
@@ -622,20 +641,20 @@ i file ordinari il numero di byte scritti 
 da \var{count}, a meno di un errore. Negli altri casi si ha lo stesso
 comportamento di \func{read}.
 
-Anche per \func{write} lo standard Unix98 definisce una analoga per scrivere
-alla posizione indicata senza modificare la posizione corrente nel file, il
-suo prototipo è:
+Anche per \func{write} lo standard Unix98 definisce un'analoga \func{pwrite}
+per scrivere alla posizione indicata senza modificare la posizione corrente
+nel file, il suo prototipo è:
 \begin{prototype}{unistd.h}
 {ssize\_t pwrite(int fd, void * buf, size\_t count, off\_t offset)}
   
-La funzione cerca di scrivere sul file \var{fd}, a partire dalla posizione
-\var{offset}, \var{count} byte dal buffer \var{buf}.
+Cerca di scrivere sul file \var{fd}, a partire dalla posizione \var{offset},
+\var{count} byte dal buffer \var{buf}.
   
-La funzione ritorna il numero di byte letti in caso di successo e -1 in caso
-di errore, nel qual caso \var{errno} viene settata secondo i valori già visti
-per \func{write} e \func{lseek}.
+\bodydesc{La funzione ritorna il numero di byte letti in caso di successo e -1
+  in caso di errore, nel qual caso \var{errno} viene settata secondo i valori
+  già visti per \func{write} e \func{lseek}.}
 \end{prototype}
-
+\noindent e per essa valgono le stesse considerazioni fatte per \func{pread}.
 
 
 \section{Caratteristiche avanzate}
@@ -643,8 +662,9 @@ per \func{write} e \func{lseek}.
 
 In questa sezione approfondiremo alcune delle caratteristiche più sottili
 della gestione file in un sistema unix-like, esaminando in dettaglio il
-comportamento delle funzioni base, inoltre tratteremo alcune funzioni che
-permettono di eseguire operazioni avanzate con i file.
+comportamento delle funzioni base, inoltre tratteremo le funzioni che
+permettono di eseguire alcune operazioni avanzate con i file (il grosso
+dell'argomento sarà comunque affrontato in \capref{cha:file_advanced}).
 
 
 \subsection{La condivisione dei files}
@@ -658,7 +678,7 @@ confronti dell'accesso allo stesso file da parte di processi diversi.
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=14cm]{img/filemultacc}
+  \includegraphics[width=13cm]{img/filemultacc}
   \caption{Schema dell'accesso allo stesso file da parte di due processi 
     diversi}
   \label{fig:file_mult_acc}
@@ -693,18 +713,18 @@ stesso file, in particolare occorre tenere presente che:
 
 \begin{figure}[htb]
   \centering
-  \includegraphics[width=14cm]{img/fileshar}
+  \includegraphics[width=13cm]{img/fileshar}
   \caption{Schema dell'accesso ai file da parte di un processo figlio}
   \label{fig:file_acc_child}
 \end{figure}
 
-È comunque possibile che due file descriptor di due processi diversi puntino
-alla stessa voce nella \textit{file table}; questo è ad esempio il caso dei
-file aperti che vengono ereditati dal processo figlio all'esecuzione di una
-\func{fork} (si ricordi quanto detto in \secref{sec:proc_fork}). La situazione
-è illustrata in \figref{fig:file_acc_child}; dato che il processo figlio
-riceve una copia dello spazio di indirizzi del padre, riceverà anche una copia
-di \var{file\_struct} e relativa tabella dei file aperti. 
+Il secondo caso è quello in cui due file descriptor di due processi diversi
+puntino alla stessa voce nella \textit{file table}; questo è ad esempio il
+caso dei file aperti che vengono ereditati dal processo figlio all'esecuzione
+di una \func{fork} (si ricordi quanto detto in \secref{sec:proc_fork}). La
+situazione è illustrata in \figref{fig:file_acc_child}; dato che il processo
+figlio riceve una copia dello spazio di indirizzi del padre, riceverà anche
+una copia di \var{file\_struct} e relativa tabella dei file aperti.
 
 In questo modo padre e figlio avranno gli stessi file descriptor che faranno
 riferimento alla stessa voce nella \textit{file table}, condividendo così la
@@ -713,14 +733,15 @@ posizione corrente sul file. Questo ha le conseguenze descritte a suo tempo in
 corrente nel file varierà per entrambi i processi (in quanto verrà modificato
 \var{f\_pos} che è la stesso per entrambi).
 
-Si noti inoltre che anche i flag di stato del file (quelli settati dal
-parametro \var{flag} di \func{open}) essendo tenuti nella voce della
-\textit{file table} (il campo \var{f\_flag} di \var{file}), vengono in questo
-caso condivisi. Ai file però sono associati anche altri flag (l'unico usato al
-momento è \macro{FD\_CLOEXEC}), detti \textit{file descriptor flags}, tenuti
-invece in \var{file\_struct}; questi sono specifici di ciascun processo, e non
-vengono toccati anche in caso di condivisione della voce della \textit{file
-  table}.
+Si noti inoltre che anche i flag di stato del file (quelli settati
+dall'argomento \param{flag} di \func{open}) essendo tenuti nella voce della
+\textit{file table}\footnote{per la precisione nel campo \var{f\_flags} di
+  \var{file}.}, vengono in questo caso condivisi. Ai file però sono associati
+anche altri flag, dei quali l'unico usato al momento è \macro{FD\_CLOEXEC},
+detti \textit{file descriptor flags}. Questi ultimi sono tenuti invece in
+\var{file\_struct}, e perciò sono specifici di ciascun processo e non vengono
+modificati dalle azioni degli altri anche in caso di condivisione della stessa
+voce della \textit{file table}.
 
 
 
@@ -749,13 +770,13 @@ file sar
 corrente settata con la \func{lseek} che non corrisponde più alla fine del
 file, e la successiva \func{write} sovrascriverà i dati del secondo processo.
 
-Il problema è che usare due system call in successione non è unoperazione
+Il problema è che usare due system call in successione non è un'operazione
 atomica; il problema è stato risolto introducendo la modalità
-\macro{O\_APPEND}, in questo caso infatti, come abbiamo visto, è il kernel che
-aggiorna automaticamente la posizione alla fine del file prima di effettuare
-la scrittura, e poi estende il file. Tutto questo avviene all'interno di una
-singola system call (la \func{write}) che non essendo interrompibile da un
-altro processo costituisce una operazione atomica.
+\macro{O\_APPEND}. In questo caso infatti, come abbiamo descritto in
+precedenza, è il kernel che aggiorna automaticamente la posizione alla fine
+del file prima di effettuare la scrittura, e poi estende il file. Tutto questo
+avviene all'interno di una singola system call (la \func{write}) che non
+essendo interrompibile da un altro processo costituisce un'operazione atomica.
 
 Un altro caso tipico in cui è necessaria l'atomicità è quello in cui si vuole
 creare un file di lock, bloccandosi se il file esiste. In questo caso la
@@ -764,12 +785,76 @@ sequenza logica porterebbe a verificare prima l'esistenza del file con una
 possibilità di una race condition da parte di un altro processo che crea lo
 stesso file fra il controllo e la creazione. 
 
-Per questo motivo sono stati introdotti i due flag \macro{O\_CREAT} e
-\macro{O\_EXCL}, in questo modo l'operazione di controllo dell'esistenza del
-file (con relativa uscita dalla funzione con un errore) e creazione in caso di
-assenza, diventa atomica essendo svolta tutta all'interno di una singola
-\func{open}.
+Per questo motivo sono stati introdotti pe \func{open} i due flag
+\macro{O\_CREAT} e \macro{O\_EXCL}. In questo modo l'operazione di controllo
+dell'esistenza del file (con relativa uscita dalla funzione con un errore) e
+creazione in caso di assenza, diventa atomica essendo svolta tutta all'interno
+di una singola system call.
+
+
+\subsection{La funzioni \func{sync} e \func{fsync}}
+\label{sec:file_sync}
+
+Come accennato in \secref{sec:file_close} tutte le operazioni di scrittura
+sono in genere bufferizzate dal kernel, che provvede ad effettuarle in maniera
+asincrona (ad esempio accorpando gli accessi alla stessa zona del disco) in un
+secondo tempo rispetto al momento della esecuzione della \func{write}.
+
+Per questo motivo, quando è necessaria una sincronizzazione dei dati, il
+sistema mette a disposizione delle funzioni che provvedono a forzare lo
+scarico dei dati dai buffer del kernel.\footnote{come già accennato neanche
+  questo da la garanzia assoluta che i dati siano integri dopo la chiamata,
+  l'hardware dei dischi è in genere dotato di un suo meccanismo interno che
+  può ritardare ulteriormente la scrittura effettiva.} La prima di queste
+funzioni è \func{sync} il cui prototipo è:
+\begin{prototype}{unistd.h}{int sync(void)}
+  
+  Sincronizza il buffer della cache dei file col disco.
+  
+  \bodydesc{La funzione ritorna sempre zero.}
+\end{prototype}
+\noindent  i vari standard prevedono che la funzione si limiti a far partire
+le operazioni, ritornando immediatamente; in Linux (dal kernel 1.3.20) invece
+la funzione aspetta la conclusione delle operazioni di sincronizzazione del
+kernel.
+
+La funzione viene usata dal comando \cmd{sync} quando si vuole forzare
+esplicitamente lo scarico dei dati su disco, o dal demone di sistema
+\cmd{update} che esegue lo scarico dei dati ad intervalli di tempo fissi: il
+valore tradizionale per l'update dei dati è ogni 30 secondi, ma in Linux era
+di 5 secondi; con le nuove versioni poi, è il kernel che si occupa
+direttamente di tutto quanto.
+
+Quando si vogliono scaricare soltanto i dati di un file (ad esempio essere
+sicuri che i dati di un database sono stati registrati su disco) si possono
+usare le due funzioni \func{fsync} e \func{fdatasync}, i cui prototipi sono:
+\begin{functions}
+  \headdecl{unistd.h}
+  \funcdecl{int fsync(int fd)}
+  Sincronizza dati e metadati del file \param{fd}
+  \funcdecl{int fdatasync(int fd)}
+  Sincronizza i dati del file \param{fd}.
+  
+  \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
+    nel qual caso i codici restituiti in \var{errno} sono:
+  \begin{errlist}
+  \item[\macro{EINVAL}] \param{fd} è un file speciale che non supporta la
+    sincronizzazione.
+  \end{errlist}
+  ed inoltre \macro{EBADF}, \macro{EROFS} e \macro{EIO}.}
+\end{functions}
+
+Entrambe le funzioni forzano la sincronizzazione col disco di tutti i dati del
+file specificato, ed attendono fino alla conclusione delle operazioni;
+\func{fsync} forza anche la sincronizzazione dei metadata dell'inode (i dati
+di \var{fstat} come i tempi del file). 
 
+Si tenga presente che questo non comporta la sincronizzazione della
+directory che contiene il file (e scrittura della relativa voce su
+disco) che deve essere effettuata esplicitamente.\footnote{in realtà per
+  il filesystem \acr{ext2}, quando lo si monta con l'opzione \cmd{sync},
+  il kernel provvede anche alla sincronizzazione automatica delle voci
+  delle directory.}
 
 
 \subsection{La funzioni \func{dup} e \func{dup2}}
@@ -781,16 +866,16 @@ comportamento analogo all'interno di uno stesso processo \textit{duplicando}
 un file descriptor. Per far questo si usa la funzione \func{dup} il cui
 prototipo è:
 \begin{prototype}{unistd.h}{int dup(int oldfd)}
+  Crea una copia del file descriptor \param{oldfd}.
   
-  La funzione crea una copia del file descriptor \param{oldfd}.
-  
-  La funzione ritorna il nuovo file descriptor in caso di successo e -1 in
-  caso di errore, nel qual caso \var{errno} viene settata ad uno dei valori:
+  \bodydesc{La funzione ritorna il nuovo file descriptor in caso di successo e
+    -1 in caso di errore, nel qual caso \var{errno} viene settata ad uno dei
+    valori:
   \begin{errlist}
-  \item \macro{EBADF} \param{oldfd} non è un file aperto.
-  \item \macro{EMFILE} si è raggiunto il numero massimo consentito di file
+  \item[\macro{EBADF}] \param{oldfd} non è un file aperto.
+  \item[\macro{EMFILE}] si è raggiunto il numero massimo consentito di file
     descriptor aperti.
-  \end{errlist}
+  \end{errlist}}
 \end{prototype}
 
 La funzione ritorna, come \func{open}, il primo file descriptor libero. Il
@@ -799,58 +884,68 @@ interscambiati nell'uso. Per capire meglio il funzionamento della funzione si
 può fare riferimento a \figref{fig:file_dup}: l'effetto della funzione è
 semplicemente quello di copiare il valore nella struttura \var{file\_struct},
 cosicché anche il nuovo file descriptor fa riferimento alla stessa voce
-nella \textit{file table}.
+nella \textit{file table}; per questo si dice che il nuovo file descriptor è
+\textsl{duplicato}, da cui il nome della funzione.
 
 \begin{figure}[htb]
-  \centering \includegraphics[width=14cm]{img/filedup}
+  \centering \includegraphics[width=13cm]{img/filedup}
   \caption{Schema dell'accesso ai file duplicati}
   \label{fig:file_dup}
 \end{figure}
 
-In questo modo entrambi i file condivideranno eventuali lock, \textit{file
-  status flag}, e posizione corrente: se ad esempio \func{lseek} modifica la
-posizione su uno dei due file descriptor essa sarà modificata anche sull'altro
-(al solito viene modificato lo stesso campo nella voce della \textit{file
-  table} a cui entrambi fanno riferimento).
-
-L'unica differenza fra i due file descriptor è che ciascuno avrà il suo
-\textit{file descriptor flag}; nel caso di \func{dup} il flag di \textit{close
-  on exec} viene sempre cancellato nella copia.  
-
-Una diversa versione della funzione, \func{dup2} viene utilizzata per
-specificare esplicitamente il nuovo file descriptor; il suo prototipo è:
+Si noti che per quanto illustrato in\figref{fig:file_dup} i file descriptor
+duplicati condivideranno eventuali lock, \textit{file status flag}, e
+posizione corrente. Se ad esempio si esegue una \func{lseek} per modificare la
+posizione su uno dei due file descriptor, essa risulterà modificata anche
+sull'altro (dato che quello che viene modificato è lo stesso campo nella voce
+della \textit{file table} a cui entrambi fanno riferimento). L'unica
+differenza fra due file descriptor duplicati è che ciascuno avrà il suo
+\textit{file descriptor flag}; a questo proposito va specificato che nel caso
+di \func{dup} il flag di \textit{close on exec} viene sempre cancellato nella
+copia.
+
+L'uso principale di questa funzione è per la redirezione dell'input e
+dell'output fra l'esecuzione di una \func{fork} e la successiva \func{exec};
+diventa così possibile associare un file (o una pipe) allo standard input o
+allo standard output (torneremo sull'argomento in \secref{sec:ipc_pipe_use},
+quando tratteremo le pipe). Per fare questo in genere occorre prima chiudere
+il file che si vuole sostituire, cossicché il suo file descriptor possa esser
+restituito alla chiamata di \func{dup}, come primo file descriptor
+disponibile.
+
+Dato che questa è l'operazione più comune, è prevista una diversa versione
+della funzione, \func{dup2}, che permette di specificare esplicitamente qual'è
+il valore di file descriptor che si vuole avere come duplicato; il suo
+prototipo è:
 \begin{prototype}{unistd.h}{int dup2(int oldfd, int newfd)}
   
-  La funzione rende \param{newfd} una copia del file descriptor \param{oldfd}.
+  Rende \param{newfd} una copia del file descriptor \param{oldfd}.
   
-  La funzione ritorna il nuovo file descriptor in caso di successo e -1 in
-  caso di errore, nel qual caso \var{errno} viene settata ad uno dei valori:
+  \bodydesc{La funzione ritorna il nuovo file descriptor in caso di successo e
+    -1 in caso di errore, nel qual caso \var{errno} viene settata ad uno dei
+    valori:
   \begin{errlist}
-  \item \macro{EBADF} \param{oldfd} non è un file aperto o \param{newfd} ha un
+  \item[\macro{EBADF}] \param{oldfd} non è un file aperto o \param{newfd} ha un
     valore fuori dall'intervallo consentito per i file descriptor.
-  \item \macro{EMFILE} si è raggiunto il numero massimo consentito di file
+  \item[\macro{EMFILE}] si è raggiunto il numero massimo consentito di file
     descriptor aperti.
-  \end{errlist}
+  \end{errlist}}
 \end{prototype}
-\noindent la funzione chiude il file descriptor \param{newfd} se è aperto.
+\noindent e qualora il file descriptor \param{newfd} sia già aperto (come
+avviene ad esempio nel caso della duplicazione di uno dei file standard) esso
+sarà prima chiuso e poi duplicato.
 
 La duplicazione dei file descriptor può essere effettuata anche usando la
 funzione di controllo dei file \func{fnctl} (che esamineremo in
-\secref{sec:file_fcntl}) con il parametro \macro{F\_DUPFD}. 
+\secref{sec:file_fcntl}) con il parametro \macro{F\_DUPFD}.
 
-L'operazione ha la sintassi \func{fnctl(oldfd, F\_DUPFD, newfd)} e se si usa 0
+L'operazione ha la sintassi \code{fnctl(oldfd, F\_DUPFD, newfd)} e se si usa 0
 come valore per \param{newfd} diventa equivalente a \func{dup}. La sola
 differenza, a parte i codici di errore, è che \func{dup2} chiude il nuovo file
 se è già aperto mentre \func{fcntl} apre il primo disponibile con un valore
 superiore, per cui per poterla usare come \func{dup2} occorrerebbe prima
 effettuare una \func{close}, perdendo l'atomicità dell'operazione.
 
-L'uso principale di queste funzioni è per la redirezione dell'input e
-dell'output fra l'esecuzione di una \func{fork} e la successiva \func{exec};
-diventa così possibile associare un file (o una pipe) allo standard input o
-allo standard output, torneremo su questo uso più avanti quando tratteremo le
-pipe.
-
 
 \subsection{La funzione \func{fcntl}}
 \label{sec:file_fcntl}
@@ -865,15 +960,16 @@ file descriptor viene usata la funzione \func{fcntl} il cui prototipo 
   \funcdecl{int fcntl(int fd, int cmd)}
   \funcdecl{int fcntl(int fd, int cmd, long arg)}
   \funcdecl{int fcntl(int fd, int cmd, struct flock * lock)}
-  La funzione esegue una delle possibili operazioni specificate da \param{cmd}
+  Esegue una delle possibili operazioni specificate da \param{cmd}
   sul file \param{fd}.
   
-  La funzione ha valori di ritorno diversi a seconda dell'operazione. In caso
-  di errore il valore di ritorno è -1 e la variabile \var{errno} viene settata
-  ad un opportuno codice, quelli validi in generale sono:
+  \bodydesc{La funzione ha valori di ritorno diversi a seconda
+    dell'operazione. In caso di errore il valore di ritorno è -1 e la
+    variabile \var{errno} viene settata ad un opportuno codice, quelli validi
+    in generale sono:
   \begin{errlist}
-  \item \macro{EBADF} \param{oldfd} non è un file aperto.
-  \end{errlist}
+  \item[\macro{EBADF}] \param{oldfd} non è un file aperto.
+  \end{errlist}}
 \end{functions}
 
 Il comportamento di questa funzione è determinato dal valore del comando
@@ -900,7 +996,8 @@ valori 
   di \tabref{tab:file_open_flags}). 
 \item[\macro{F\_SETFL}] setta il \textit{file status flag} al valore
   specificato da \param{arg}, possono essere settati solo i bit riportati
-  nella terza sezione di \tabref{tab:file_open_flags} (da verificare).
+  nella terza sezione di \tabref{tab:file_open_flags}.\footnote{NdA da
+    verificare.}
 \item[\macro{F\_GETLK}] se un file lock è attivo restituisce nella struttura
   \param{lock} la struttura \type{flock} che impedisce l'acquisizione del
   blocco, altrimenti setta il campo \var{l\_type} a \macro{F\_UNLCK} (per i
@@ -923,24 +1020,36 @@ valori 
 \item[\macro{F\_SETOWN}] setta il processo o process group che riceverà i
   segnali \macro{SIGIO} e \macro{SIGURG} per gli eventi associati al file
   descriptor \var{fd}.  I process group sono settati usando valori negativi.
-\item[\macro{F\_GETSIG}] restituisce il segnale mandato quando ci sono dati
-  disponibili in input sul file descriptor. Il valore 0 indica il default (che
-  è \macro{SIGIO}), un valore diverso da zero indica il segnale richiesto,
-  (che può essere lo stesso \macro{SIGIO}), nel qual caso al manipolatore del
-  segnale, se installato con \macro{SA\_SIGINFO}, vengono rese disponibili
-  informazioni ulteriori informazioni.
+\item[\macro{F\_GETSIG}] restituisce il valore del segnale mandato quando ci
+  sono dati disponibili in input su un file descriptor aperto o settato in I/O
+  asincrono. Il valore 0 indica il valore default (che è \macro{SIGIO}), un
+  valore diverso da zero indica il segnale richiesto, (che può essere lo
+  stesso \macro{SIGIO}).
 \item[\macro{F\_SETSIG}] setta il segnale da inviare quando diventa possibile
-  effettuare I/O sul file descriptor. Il valore zero indica il default
-  (\macro{SIGIO}), ogni altro valore permette di rendere disponibile al
-  manipolatore del segnale ulteriori informazioni se si è usata
-  \macro{SA\_SIGINFO}.
+  effettuare I/O sul file descriptor in caso di I/O asincrono. Il valore zero
+  indica di usare il segnale di default, \macro{SIGIO}. Un altro valore
+  (compreso lo stesso \macro{SIGIO}) specifica il segnale voluto; l'uso di un
+  valore diverso da zero permette inoltre, se si è installato il manipolatore
+  del segnale come \var{sa\_sigaction} usando \macro{SA\_SIGINFO}, (vedi
+  \secref{sec:sig_sigaction}), di rendere disponibili al manipolatore
+  informazioni ulteriori informazioni riguardo il file che ha generato il
+  segnale attraverso i valori restituiti in \var{siginfo\_t} (come vedremo in
+  \secref{sec:file_asyncronous_io}).
 \end{basedescript}
 
 La maggior parte delle funzionalità di \func{fcntl} sono troppo avanzate per
 poter essere affrontate in dettaglio a questo punto; saranno riprese più
 avanti quando affronteremo le problematiche ad esse relative.
 
-Per determinare le modalità di accesso inoltre può essere necessario usare la 
+Per determinare le modalità di accesso inoltre è necessario estrarre i bit di
+accesso (ottenuti con il comando \macro{F\_GETFL}); infatti la definizione
+corrente non assegna bit separati a \macro{O\_RDONLY}, \macro{O\_WRONLY} e
+\macro{O\_RDWR},\footnote{posti rispettivamente ai valori 0, 1 e 2.} per cui il
+valore si ottiene eseguendo un AND binario del valore di ritorno di
+\func{fcntl} con la maschera \macro{O\_ACCMODE} anch'essa definita in
+\file{fcntl.h}.
+
+
 
 \subsection{La funzione \func{ioctl}}
 \label{sec:file_ioctl}
@@ -956,29 +1065,69 @@ una porta seriale, o le dimensioni di un framebuffer).
 Per questo motivo l'architettura del sistema ha previsto l'esistenza di una
 funzione speciale, \func{ioctl}, con cui poter compiere operazioni specifiche
 per ogni singolo dispositivo.  Il prototipo di questa funzione è:
-
-\begin{prototype}{sys/ioctl.h}{int ioctl(int fd, int request, ...)}
-  
-  La funzione manipola il sottostante dispositivo, usando il parametro
-  \param{request} per specificare l'operazione richiesta e il terzo parametro
-  (che usualmente è di tipo \param{char * argp}) per passare o ricevere
-  l'informazione necessaria al dispositivo.
+\begin{prototype}{sys/ioctl.h}{int ioctl(int fd, int request, ...)}  
+  Manipola il dispositivo sottostante, usando il parametro \param{request} per
+  specificare l'operazione richiesta e il terzo parametro (usualmente di tipo
+  \param{char * argp} o \param{int argp}) per il trasferimento
+  dell'informazione necessaria.
   
-  La funzione nella maggior parte dei casi ritorna 0, alcune operazioni usano
-  però il valore di ritorno per restituire informazioni. In caso di errore
-  viene sempre restituito -1 e \var{errno} viene settata ad uno dei valori
-  seguenti:
+  \bodydesc{La funzione nella maggior parte dei casi ritorna 0, alcune
+    operazioni usano però il valore di ritorno per restituire informazioni. In
+    caso di errore viene sempre restituito -1 e \var{errno} viene settata ad
+    uno dei valori seguenti:
   \begin{errlist}
-  \item \macro{ENOTTY} il file \param{fd} non è associato con un device.
-  \item \macro{EINVAL} gli argomenti \param{request} o \param{argp} non sono
+  \item[\macro{ENOTTY}] il file \param{fd} non è associato con un device, o la
+    richiesta non è applicabile all'oggetto a cui fa riferimento \param{fd}.
+  \item[\macro{EINVAL}] gli argomenti \param{request} o \param{argp} non sono
     validi.
   \end{errlist}
-  ed inoltre \macro{EBADF} e \macro{EFAULT}.
+  ed inoltre \macro{EBADF} e \macro{EFAULT}.}
 \end{prototype}
 
 La funzione serve in sostanza per fare tutte quelle operazioni che non si
-adattano all'architettura di I/O di unix e che non è possibile effettuare con
-le funzioni esaminate finora. Per questo motivo non è possibile fare altro che
-una descrizione generica; torneremo ad esaminarla in seguito, quando si
-tratterà di applicarla ad alcune problematiche specifiche.
+adattano al design dell'architettura dei file e che non è possibile effettuare
+con le funzioni esaminate finora. Esse vengono selezionate attraverso il
+valore di \param{request} e gli eventuali risultati possono essere restituiti
+sia attraverso il valore di ritorno che attraverso il terzo argomento
+\param{argp}. Sono esempi delle operazioni gestite con una \func{ioctl}:
+\begin{itemize*}
+\item il cambiamento dei font di un terminale.
+\item l'esecuzione di una traccia audio di un CDROM.
+\item i comandi di avanti veloce e riavvolgimento di un nastro.
+\item il comando di espulsione di un dispositivo rimovibile.
+\item il settaggio della velocità trasmissione di una linea seriale.
+\item il settaggio della frequenza e della durata dei suoni emessi dallo
+  speaker.
+\end{itemize*}
+
+In generale ogni dispositivo ha un suo insieme di possibili diverse operazioni
+effettuabili attraverso \func{ioctl}, che sono definite nell'header file
+\file{sys/ioctl.h}, e devono essere usate solo sui dispositivi cui fanno
+riferimento. Infatti anche se in genere i valori di \param{request} sono
+opportunamente differenziati a seconda del dispositivo\footnote{il kernel usa
+  un apposito \textit{magic number} per distinguere ciascun dispositivo nella
+  definizione delle macro da usare per \param{request}, in modo da essere
+  sicuri che essi siano sempre diversi, ed il loro uso causi al più un errore.
+  Si veda il capitolo quinto di \cite{LinDevDri} per una trattazione
+  dettagliata dell'argomento.} in alcuni casi, relativi a valori assegnati
+prima che questa differenziazione diventasse pratica corrente si potrebbe
+avere
+
+Per questo motivo non è possibile fare altro che darne una descrizione
+generica; torneremo ad esaminare in seguito quelle relative ad alcuni casi
+specifici (ad esempio la gestione dei terminali è effettuata attraverso
+\func{ioctl} in quasi tutte le implementazioni di Unix), qui riportiamo solo i
+valori che sono definiti per ogni file:
+\begin{basedescript}{\desclabelwidth{2.0cm}}
+\item[\macro{FIOCLEX}] Setta il bit di \textit{close on exec}.
+\item[\macro{FIONCLEX}] Cancella il bit di \textit{close on exec}.
+\item[\macro{FIOASYNC}] Abilita l'I/O asincrono.
+\item[\macro{FIONBIO}] Abilità l'I/O in modalità non bloccante.
+\end{basedescript}
+relativi ad operazioni comunque eseguibili anche attraverso \func{fcntl}.
+
 
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: