Nuova figura sui processi e rifiniture varie
[gapil.git] / fileintro.tex
index a2735a7dd2e5473902dfe5b9c949deffe8c4de82..927dc4da827076a43c36d233593b5aa7e2d8d5cd 100644 (file)
-\chapter{I files: introduzione}
-\label{cha:files_intro}
-Uno dei concetti fondamentali della architettura di unix è il cosiddetto
-\textit{everything is a file}, cioè il fatto che l'accesso ai vari dispositivi
-di input/output del computer viene effettuato attraverso un'interfaccia
-astratta che tratta le periferiche allo stesso modo degli usuali file di
-dati.
-
-Questo significa che si può accedere cioè a qualunque periferica del computer,
+\chapter{L'architettura dei file}
+\label{cha:file_intro}
+
+Uno dei concetti fondamentali dell'architettura di un sistema Unix è il
+cosiddetto \textit{everything is a file}, cioè il fatto che l'accesso ai vari
+dispositivi di input/output del computer viene effettuato attraverso
+un'interfaccia astratta che tratta le periferiche allo stesso modo dei normali
+file di dati.
+
+Questo significa che si può accedere a qualunque periferica del computer,
 dalla seriale, alla parallela, alla console, e agli stessi dischi attraverso i
-cosiddetti file di dispositivo (i \textit{device files}). Questi sono dei file
+cosiddetti file di dispositivo (i \textit{device file}). Questi sono dei file
 speciali agendo sui quali i programmi possono leggere, scrivere e compiere
 operazioni direttamente sulle periferiche, usando le stesse funzioni che si
 usano per i normali file di dati.
 
-In questo capitolo forniremo un'introduzione alle principali caratteristiche
-di questa interfaccia, su come essa viene implementata in Linux e su come sono
-organizzati i file nel sistema.
+In questo capitolo forniremo una descrizione dell'architettura dei file in
+Linux, iniziando da una panoramica sulle caratteristiche principali delle
+interfacce con cui i processi accedono ai file (che tratteremo in dettaglio
+nei capitoli seguenti), per poi passare ad una descrizione più dettagliata
+delle modalità con cui detto accesso viene realizzato dal sistema.
+
 
 
-\section{I file in un sistema unix-like}
-\label{sec:fileintr_overview}
+\section{L'architettura dell'accesso}
+\label{sec:file_access_arch}
 
-Visto il ruolo fondamentale che i files vengono ad assumere in un sistema
-unix, è anzitutto opportuno fornire un'introduzione dettagliata su come essi
-vengono trattati dal sistema. In particolare occorre tenere presente dov'è che
-si situa il limite fondamentale fra kernel space e user space che tracciavamo
-al \capref{cha:intro_unix}.
+Per poter accedere ai file il kernel deve mettere a disposizione dei programmi
+le opportune interfacce che consentano di leggerne il contenuto; il sistema
+cioè deve provvedere ad organizzare e rendere accessibile in maniera opportuna
+l'informazione tenuta sullo spazio grezzo disponibile sui dischi. Questo viene
+fatto strutturando l'informazione sul disco attraverso quello che si chiama un
+\textit{filesystem}, essa poi viene resa disponibile ai processi attraverso
+quello che viene chiamato il \textsl{montaggio} del filesystem.
+% (approfondiremo tutto ciò in \secref{sec:file_arch_func}).
 
-Partiamo allora da come viene strutturata nel sistema la disposizione dei
-file: per potervi accedere il kernel usa una apposita interfaccia che permetta
-di strutturare l'informazione tenuta sullo spazio grezzo disponibile sui
-dischi, cioè quello che si chiama un \textit{filesystem} (useremo per brevità
-questo nome al posto della più prolissa traduzione italiana sistema di file). 
+In questa sezione faremo una panormamica generica su come il sistema presenta
+i file ai processi, trattando l'organizzazione di file e directory, i tipi di
+file ed introducendo le interfacce disponibili e le loro caratteristiche.
 
-Sarà attraverso quest'ultimo che il kernel andrà a gestire l'accesso ai dati
-memorizzati all'interno del disco stesso, strutturando l'informazione in files
-e directory (su questo aspetto torneremo con maggiori dettagli in
-\secref{sec:filedir_filesystem}).  Per poter accedere ai file contenuti in un
-disco occorrerà perciò attivare il filesystem, questo viene fatto
-\textsl{montando} il disco (o la partizione del disco).
 
-%In generale un filesystem piazzerà opportunamente sul disco dei blocchi di
-%informazioni riservate che tengono conto degli inodes allocati, di quelli
-%liberi, e delle posizioni fisiche su disco dei dati contenuti nei files, per
+\subsection{L'organizzazione di file e directory}
+\label{sec:file_organization}
 
-In unix, a differenza di quanto avviene in altri sistemi operativi, tutti i
-file vengono tenuti all'interno di un unico albero la cui radice (la directory
-di \textit{root}) viene montata all'avvio. Pertanto un file viene identificato
-dall'utente usando quello che viene chiamato \textit{pathname}, cioè il
-percorso che si deve fare per accedere al file.
+In Unix, a differenza di quanto avviene in altri sistemi operativi, tutti i
+file vengono tenuti all'interno di un unico albero la cui radice (quella che
+viene chiamata \textit{root directory}) viene montata all'avvio.  Un file
+viene identificato dall'utente usando quello che viene chiamato
+\textit{pathname}\footnote{anche se il manuale della \acr{glibc} depreca
+  questa nomenclatura, poiché genererebbe confusione, dato che con
+  \textit{path} si indica anche un insieme di directory su cui effettuare una
+  ricerca (come quello in cui si cercano i comandi) non seguiremo questa
+  scelta dato che l'uso della parola \textit{pathname} è ormai così comune che
+  mantenerne l'uso è senz'altro più chiaro dell'alternativa proposta.}, cioè
+il percorso che si deve fare per accedere al file, che è composto da una serie
+di nomi separati da una \file{/}.
 
 Dopo la fase di inizializzazione il kernel riceve dal boot loader
 l'indicazione di quale dispositivo contiene il filesystem da usare come punto
 di partenza e questo viene montato come radice dell'albero (cioè nella
-directory \texttt{/}); tutti gli ulteriori dischi devono poi essere inseriti
-nell'albero utilizzando opportune subdirectory.
+directory \file{/}); tutti gli ulteriori filesystem che possono essere su
+altri dispositivi devono poi essere inseriti nell'albero montandoli su
+opportune directory del filesystem montato come radice.
 
-Alcuni filesystem speciali (come \texttt{/proc} che contiene un'interfaccia ad
+Alcuni filesystem speciali (come \file{/proc} che contiene un'interfaccia ad
 alcune strutture interne del kernel) sono generati automaticamente dal kernel
-stesso, ma anche essi devono essere montati all'interno dell'albero.
-
-All'interno dello stesso albero si potranno poi inserire anche gli altri
-oggetti visti attraverso l'interfaccia che manipola i files come le FIFO, i
-link, i socket e gli stessi i file di dispositivo (questi ultimi, per
-convenzione, sono inseriti nella directory \texttt{/dev}).
-
-\subsection{Il \textit{virtual filesystem} di Linux}
-\label{sec:fileintr_vfs}
-
-Esamineremo adesso come viene implementato l'accesso ai files in Linux. Questa
-sezione riporta informazioni sui dettagli di come il kernel gestisce i files,
-ed è basata sul documento di Richard Goochs distribuito coi sorgenti del
-kernel (nella directory \texttt{linux/Documentation/vfs.txt}).
-
-L'argomento è abbastanza ``esoterico'' e questa sezione può essere saltata ad
-una prima lettura; è bene però tenere presente che vengono introdotti qui
-alcuni termini che potranno comparire in seguito, come \textit{inode},
-\textit{dentry}, \textit{dcache}.
-
-In Linux il concetto di \textit{everything is a file} è stato implementato
-attraverso il \textit{virtual filesystem} (da qui in avanti VFS) che è
-l'interfaccia astratta che il kernel rende disponibile ai programmi in user
-space attraverso la quale vengono manipolati i files; esso provvede anche
-un'astrazione delle operazioni di manipolazione sui files che permette la
-coesistenza di diversi filesystem all'interno dello stesso albero.
-
-La funzione più importante implementata dal VFS è la system call \texttt{open}
-che permette di aprire un file. Dato un pathname viene eseguita una ricerca
-dentro la \textit{directory entry cache} (in breve \textit{dcache}),
-una tabella di hash che contiene tutte le \textit{directory entry} (in breve
-\textit{dentry}) che permette di associare in maniera rapida ed efficiente il
-pathname a una specifica dentry.
-
-Una singola dentry contiene in genere il puntatore ad un \textit{inode};
-quest'ultimo è la struttura base che sta sul disco e che identifica un singolo
-oggetto del VFS sia esso un file ordinario, una directory, una FIFO, un file
-di dispositivo, o una qualsiasi altra cosa che possa essere rappresentata dal
-VFS (sui tipi di ``files'' possibili torneremo in seguito). A ciascuno di essi
-è associata pure una struttura che sta in memoria, e che oltre alle
-informazioni sullo specifico file contiene pure il riferimento alle funzioni
-(i \textsl{metodi}) da usare per poterlo manipolare.
-
-Le dentries ``vivono'' in memoria e non vengono mai salvate su disco, vengono
-usate per motivi di velocità, gli inodes invece stanno su disco e vengono
-copiati in memoria quando serve, ed ogni cambiamento viene copiato
-all'indietro sul disco, gli inodes che stanno in memoria sono inodes del VFS
-ed è ad essi che puntano le singole dentry.
-
-La dcache costituisce perciò una sorta di vista completa di tutto l'albero dei
-files, ovviamente per non riempire tutta la memoria questa vista è parziale
-(la dcache cioè contiene solo le dentry per i file per i quali è stato
-richiesto l'accesso), quando si vuole risolvere un nuovo pathname il VFS deve
-creare una nuova dentry e caricare l'inode corrispondente in memoria. 
-
-Questo procedimento viene eseguito dal metodo \texttt{lookup()} dell'inode
-della directory che contiene il file; questo viene installato nelle relative
-strutture in memoria quando si effettua il montaggio lo specifico filesystem
-su cui l'inode va a vivere.
-
-Una volta che il VFS ha a disposizione la dentry (ed il relativo inode)
-diventa possibile accedere alle varie operazioni sul file come la
-\texttt{open} per aprire il file o la \texttt{stat} per leggere i dati
-dell'inode e passarli in user space.
-
-L'apertura di un file richiede comunque un'altra operazione, l'allocazione di
-una struttura di tipo \texttt{file} in cui viene inserito un puntatore alla
-dentry e una struttura \verb|f_ops| che contiene i puntatori ai metodi che
-implementano le operazioni disponibili sul file. In questo modo i processi in
-user space possono accedere alle operazioni attraverso detti metodi, che
-saranno diversi a seconda del tipo di file (o dispositivo) aperto (su questo
-torneremo in dettaglio in \secref{sec:fileunix_fd}). Un elenco delle operazioni
-previste dal kernel è riportato in \ntab.
+stesso, ma anche essi devono essere montati all'interno dell'albero dei file.
+
+Una directory, come vedremo in maggior dettaglio in
+\secref{sec:file_vfs_work}, è anch'essa un file, solo che è un file
+particolare che il kernel riconosce come tale. Il suo scopo è quello di
+contenere una lista di nomi di file e le informazioni che associano ciascun
+nome al contenuto. Dato che questi nomi possono corrispondere ad un qualunque
+oggetto del filesystem, compresa un'altra directory, si ottiene naturalmente
+un'organizzazione ad albero inserendo directory in altre directory.
+
+Un file può essere indicato rispetto alla directory corrente semplicemente
+specificandone il nome\footnote{Il manuale delle \acr{glibc} chiama i nomi
+  contenuti nelle directory \textsl{componenti} (in inglese \textit{file name
+    components}), noi li chiameremo più semplicemente \textit{nomi}.} da essa
+contenuto.  All'interno dello stesso albero si potranno poi inserire anche
+tutti gli altri oggetti visti attraverso l'interfaccia che manipola i file
+come le fifo, i link, i socket e gli stessi i file di dispositivo (questi
+ultimi, per convenzione, sono inseriti nella directory \file{/dev}).
+
+Il nome completo di un file viene chiamato \textit{pathname} ed il
+procedimento con cui si individua il file a cui esso fa riferimento è chiamato
+risoluzione del nome (\textit{file name resolution} o \textit{pathname
+  resolution}).  La risoluzione viene fatta esaminando il \textit{pathname} da
+destra a sinistra e localizzando ogni nome nella directory indicata dal nome
+precedente usando \file{/} come separatore\footnote{nel caso di nome vuoto, il
+  costrutto \file{//} viene considerato equivalente a \file{/}.}: ovviamente
+perché il procedimento funzioni occorre che i nomi indicati come directory
+esistano e siano effettivamente directory, inoltre i permessi (si veda
+\secref{sec:file_access_control}) devono consentire l'accesso.
+
+Se il \textit{pathname} comincia per \file{/} la ricerca parte dalla directory
+radice del processo; questa, a meno di un \func{chroot} (su cui torneremo in
+\secref{sec:file_chroot}) è la stessa per tutti i processi ed equivale alla
+directory radice dell'albero dei file: in questo caso si parla di un
+\textsl{pathname assoluto}\index{pathname assoluto}. Altrimenti la ricerca
+parte dalla directory corrente (su cui torneremo in
+\secref{sec:file_work_dir}) ed il pathname è detto \textsl{pathname
+  relativo}\index{pathname relativo}.
+
+I nomi \file{.} e \file{..} hanno un significato speciale e vengono inseriti
+in ogni directory, il primo fa riferimento alla directory corrente e il
+secondo alla directory \textsl{genitrice} (o \textit{parent directory}) cioè
+la directory che contiene il riferimento alla directory corrente; nel caso
+questa sia la directory radice allora il riferimento è a se stessa.
+
+
+\subsection{I tipi di file}
+\label{sec:file_file_types}
+
+Come detto in precedenza in unix esistono vari tipi di file, in Linux questi
+sono implementati come oggetti del \textit{Virtual File System} (vedi
+\secref{sec:file_vfs_work}) e sono presenti in tutti i filesystem unix-like
+utilizzabili con Linux. L'elenco dei vari tipi di file definiti dal
+\textit{Virtual File System}\index{Virtual File System} è riportato in \ntab.
+
+Si tenga ben presente che questa classificazione non ha nulla a che fare con
+la classificazione sui tipi di file (che in questo caso sono sempre file di
+dati) in base al loro contenuto, o tipo di accesso.
 
 \begin{table}[htb]
+  \footnotesize
   \centering
-  \begin{tabular}[c]{c p{7cm}}
-    \textbf{funzione} & \textbf{operazione} \\
+    \begin{tabular}[c]{|l|l|p{7cm}|}
     \hline
-    \textit{open}    & apre il file \\
-    \textit{read}    & legge dal file \\
-    \textit{write}   & scrive sul file \\ 
-    \textit{llseek}  & sposta la posizione corrente sul file \\
-    \textit{ioctl}   & accede alle operazioni di controllo 
-                       (tramite la \texttt{ioctl})\\
-    \textit{readdir} & per leggere il contenuto di una directory \\
-    \textit{poll}    & \\
-    \textit{mmap}    & chiamata dalla system call \texttt{mmap}. 
-                       mappa il file in memoria\\
-    \textit{release} & chiamata quando l'ultima referenza a un file 
-                       aperto è chiusa\\
-    \textit{fsync}   & chiamata dalla system call \texttt{fsync} \\
-    \textit{fasync}  & chiamate da \texttt{fcntl} quando è abilitato 
-                       il modo asincrono per l'I/O su file. \\
+    \multicolumn{2}{|c|}{\textbf{Tipo di file}} & \textbf{Descrizione} \\
     \hline
-  \end{tabular}
-  \caption{Operazioni sui file definite nel VFS.}
-  \label{tab:fileintr_file_operations}
-\end{table}
-
-In questo modo per ciascun file diventano utilizzabili una serie di operazioni
-(non è dette che tutte siano disponibili), che costituiscono l'interfaccia
-astratta del VFS, e qualora se ne voglia eseguire una il kernel andrà ad
-utilizzare la opportuna routine dichiarata in \verb|f_ops| appropriata al tipo
-di file in questione. 
-
-Così sarà possibile scrivere sulla porta seriale come su un file di dati
-normale; ovviamente certe operazioni (nel caso della seriale ad esempio la
-\textit{seek}) non saranno disponibili, però con questo sistema l'utilizzo di
-diversi filesystem (come quelli usati da Windows o MacOs) è immediato e
-(relativamente) trasparente per l'utente ed il programmatore.
-
-\subsection{Il controllo di accesso}
-\label{sec:fileintr_access_ctrl}
-
-In unix è implementata da qualunque filesystem standard una forma elementare
-(ma adatta alla maggior parte delle esigenze) di controllo di accesso ai
-files. Torneremo sull'argomento in dettaglio più avanti (vedi
-\secref{sec:filedir_access_control}), qui ci limitiamo ad una introduzione dei
-concetti essenziali.
-
-Si tenga conto poi che quanto diremo è vero solo per filesystem di tipo Unix,
-e non è detto che sia applicabile (ed infatti non è vero per il filesystem di
-Windows) a un filesystem qualunque. Esistono inoltre estensioni che permettono
-di implementare le ACL (\textit{Access Control List}) che sono un meccanismo
-di controllo di accesso molto più sofisticato.
-
-Ad ogni file Unix associa sempre l'utente che ne è proprietario (il cosiddetto
-\textit{owner}) e il gruppo di appartenenza, secondo il meccanismo degli uid e
-gid accennato in \secref{sec:intro_usergroup}, e un insieme di permessi che
-sono divisi in tre classi, e cioè attribuiti rispettivamente al proprietario,
-a qualunque utente faccia parte del gruppo cui appartiene il file, e a tutti
-gli altri utenti.
-
-I permessi sono espressi da un insieme di 12 bit: di questi i nove meno
-significativi sono usati a gruppi di tre per indicare i permessi base di
-lettura, scrittura ed esecuzione (indicati rispettivamente con le lettere
-\textit{w}, \textit{r} \textit{x}) applicabili rispettivamente al
-proprietario, al gruppo, a tutti (una descrizione più dettagliata dei vari
-permessi associati ai file è riportata in \secref{sec:filedir_suid_sgid}).  I
-restanti tre bit sono usati per indicare alcune caratteristiche più complesse
-(\textit{suid}, \textit{sgid}, e \textit{sticky}) su cui pure torneremo in
-seguito (vedi \secref{sec:filedir_suid_sgid} e \secref{sec:filedir_sticky}).
-
-Tutte queste informazioni sono tenute per ciascun file nell'inode. Quando un
-processo cerca l'accesso al file esso controlla i propri uid e gid
-confrontandoli con quelli del file e se l'operazione richiesta è compatibile
-con i permessi associati al file essa viene eseguita, altrimenti viene
-bloccata ed è restituito un errore di \texttt{EPERM}. Questo procedimento non
-viene eseguito per l'amministratore di sistema (il cui uid è zero) il quale ha
-pertanto accesso senza restrizione a qualunque file del sistema.
-
-In realtà il procedimento è più complesso di quanto descritto in maniera
-elementare qui; inoltre ad un processo sono associati diversi identificatori,
-torneremo su questo in maggiori dettagli in seguito in \secref{sec:proc_perms}.
-
-\subsection{I tipi di files}
-\label{sec:fileintr_file_types}
-
-Come detto in precedenza esistono vari tipi di oggetti implementati del VFS
-per i quali è disponibile l'interfaccia astratta da esso provveduta. Un elenco
-dei vari tipi di file è il seguente:
-\begin{table}[htb]
-  \begin{center}
-    \begin{tabular}[c]{l l p{7cm}}
-    \multicolumn{2}{c}{\textbf{Nome}} & \textbf{Descrizione} \\
     \hline
       \textit{regular file} & \textsl{file normale} &
       un file che contiene dei dati (l'accezione normale di file) \\
       \textit{directory} & \textsl{cartella o direttorio} &
-      un file che contiene una lista di nomi associati a degli inodes \\
+      un file che contiene una lista di nomi associati a degli \textit{inodes}
+      (vedi \secref{sec:file_vfs}).  \\
       \textit{symbolic link} & \textsl{collegamento simbolico} &
       un file che contiene un riferimento ad un altro file/directory \\
       \textit{char device} & \textsl{dispositivo a caratteri} &
@@ -246,101 +151,97 @@ dei vari tipi di file 
     \hline
     \end{tabular}
     \caption{Tipologia dei file definiti nel VFS}
-    \label{tab:fileintr_file_types}
-  \end{center}
+    \label{tab:file_file_types}
 \end{table}
 
-Tutto ciò non ha ovviamente nulla a che fare con la classificazione sui tipi
-di file (in questo caso file di dati) in base al loro contenuto, o tipo di
-accesso.  Una delle differenze principali con altri sistemi operativi (come il
+Infatti una delle differenze principali con altri sistemi operativi (come il
 VMS o Windows) è che per Unix tutti i file di dati sono identici e contengono
-un flusso continuo di bytes; non esiste cioè differenza per come vengono visti
+un flusso continuo di byte. Non esiste cioè differenza per come vengono visti
 dal sistema file di diverso contenuto o formato (come nel caso di quella fra
 file di testo e binari che c'è in Windows) né c'è una strutturazione a record
-per il cosiddetto ``accesso diretto'' come nel caso del VMS.
-%  (con i kernel
-% della serie 2.4 è disponibile una forma di accesso diretto ai dischi il
-% \textit{raw access} che però non ha nulla a che fare con questo).
+per il cosiddetto ``accesso diretto'' come nel caso del VMS\footnote{con i
+  kernel della serie 2.4 è disponibile una forma di accesso diretto ai dischi
+  (il \textit{raw access}) attraverso dei device file appositi, che però non
+  ha nulla a che fare con questo}.
 
 Una seconda differenza è nel formato dei file ASCII; in Unix la fine riga è
-codificata in maniera diversa da Windows o MacIntosh, in particolare il fine
+codificata in maniera diversa da Windows o Mac, in particolare il fine
 riga è il carattere \texttt{LF} (o \verb|\n|) al posto del \texttt{CR}
-(\verb|\r|) del mac e del \texttt{CR LF} di Windows. Questo può causare alcuni
-problemi qualora si facciano assunzioni sul terminatore della riga.
+(\verb|\r|) del Mac e del \texttt{CR LF} di Windows. Questo può causare alcuni
+problemi qualora nei programmi si facciano assunzioni sul terminatore della
+riga.
 
 
-\section{Una panoramica sull'uso dei file}
-\label{sec:fileintr_io_overview}
-
-Per poter accedere al contenuto dei file occorre anzitutto aprirlo. Questo
-crea un canale di comunicazione che permette di eseguire una serie di
-operazioni. Una volta terminate le operazioni, il file dovrà essere chiuso, e
-questo chiuderà il canale di comunicazione impedendo ogni ulteriore
-operazione.
-
 \subsection{Le due interfacce ai file}
-\label{sec:fileintr_io_api}
+\label{sec:file_io_api}
 
 In unix le modalità di accesso ai file e le relative interfacce di
-programmazione sono due, basate su due diversi meccanismi di connessione. 
+programmazione sono due, basate su due diversi meccanismi con cui è possibile
+accedere al loro contenuto.
+
+La prima è l'interfaccia standard di unix, quella che il manuale delle
+\acr{glibc} chiama interfaccia dei descrittori di file (o \textit{file
+  descriptor}).  È un'interfaccia specifica di unix e provvede un accesso non
+bufferizzato, la tratteremo in dettaglio in \capref{cha:file_unix_interface}.
 
-La prima è l'interfaccia standard di unix, quella che il manuale delle glibc
-chiama interfaccia dei descrittore di file (o \textit{file descriptor}).  È
-un'interfaccia specifica di unix e provvede un accesso non bufferizzato.
 L'interfaccia è primitiva ed essenziale, l'accesso viene detto non
 bufferizzato in quanto la lettura e la scrittura vengono eseguite chiamando
 direttamente le system call del kernel (in realtà il kernel effettua al suo
 interno alcune bufferizzazioni per aumentare l'efficienza nell'accesso ai
-dispositivi); i file descriptors sono rappresentati da numeri interi (cioè
-semplici variabili di tipo \texttt{int}).  L'interfaccia è definita
-nell'header \texttt{unistd.h}.
-
-La seconda interfaccia è quella che il manuale della glibc chiama degli
-\textit{stream}, essa provvede funzioni più evolute e un accesso bufferizzato
-(controllato dalla implementazione fatta dalle librerie del C).  Questa è
-l'interfaccia standard usata dal linguaggio C e perciò si trova anche su tutti
-i sistemi non Unix. Gli stream sono oggetti complessi e sono rappresentati da
-puntatori ad un opportuna struttura definita dalle librerie del C, si accede
-ad essi sempre in maniera indiretta utilizzando il tipo \texttt{FILE *}.
-L'interfaccia è definita nell'header \texttt{stdio.h}.
+dispositivi); i \textit{file descriptor}\index{file descriptor} sono
+rappresentati da numeri interi (cioè semplici variabili di tipo \type{int}).
+L'interfaccia è definita nell'header \file{unistd.h}.
+
+La seconda interfaccia è quella che il manuale della \acr{glibc} chiama degli
+\textit{stream}\index{stream}, essa provvede funzioni più evolute e un accesso
+bufferizzato (controllato dalla implementazione fatta dalle librerie del C),
+la tratteremo in dettaglio in \capref{cha:files_std_interface}.
+
+Questa è l'interfaccia standard specificata dall'ANSI C e perciò si trova
+anche su tutti i sistemi non Unix. Gli \textit{stream} sono oggetti complessi
+e sono rappresentati da puntatori ad un opportuna struttura definita dalle
+librerie del C, si accede ad essi sempre in maniera indiretta utilizzando il
+tipo \type{FILE *}.  L'interfaccia è definita nell'header \type{stdio.h}.
 
 Entrambe le interfacce possono essere usate per l'accesso ai file come agli
-altri oggetti del VFS (pipes, socket, device), ma per poter accedere alle
-operazioni di controllo sul particolare tipo di oggetto del VFS scelto occorre
-usare l'interfaccia standard di unix coi file descriptors. Allo stesso modo
-devono essere usati i file descriptor se si vuole ricorrere a modalità
-speciali di I/O come il polling o il non-bloccante (vedi
-\secref{sec:file_xxx}).
-
-Gli stream forniscono un'interfaccia di alto livello costruita sopra quella
-dei file descriptor, che tratta tutti i file nello stesso modo, con
-l'eccezione di poter scegliere tra diversi stili di bufferizzazione.  Il
-maggior vantaggio degli stream è che l'interfaccia per le operazioni di
-input/output è enormemente più ricca di quella dei file descriptor, che
-provvedono solo funzioni elementari per la lettura/scrittura diretta di
-blocchi di bytes.  In particolare gli stream dispongono di tutte le funzioni
-di formattazione per l'input e l'output adatte per manipolare anche i dati in
-forma di linee o singoli caratteri.
+altri oggetti del VFS (pipe, socket, device, sui quali torneremo in dettaglio
+a tempo opportuno), ma per poter accedere alle operazioni di controllo sul
+particolare tipo di oggetto del VFS scelto occorre usare l'interfaccia
+standard di Unix coi \textit{file descriptor}. Allo stesso modo devono essere
+usati i \textit{file descriptor} se si vuole ricorrere a modalità speciali di
+I/O come il polling o il non-bloccante (vedi \capref{cha:file_advanced}).
+
+Gli \textit{stream} forniscono un'interfaccia di alto livello costruita sopra
+quella dei \textit{file descriptor}, che tratta tutti i file nello stesso
+modo, con l'eccezione di poter scegliere tra diversi stili di bufferizzazione.
+Il maggior vantaggio degli \textit{stream} è che l'interfaccia per le
+operazioni di input/output è enormemente più ricca di quella dei \textit{file
+  descriptor}, che provvedono solo funzioni elementari per la
+lettura/scrittura diretta di blocchi di byte.  In particolare gli
+\textit{stream} dispongono di tutte le funzioni di formattazione per l'input e
+l'output adatte per manipolare anche i dati in forma di linee o singoli
+caratteri.
 
 In ogni caso, dato che gli stream sono implementati sopra l'interfaccia
-standard di unix, è sempre possibile estrarre il file descriptor da uno stream
-ed eseguirvi operazioni di basso livello, o associare in un secondo tempo uno
-stream ad un file descriptor.
+standard di Unix, è sempre possibile estrarre il \textit{file descriptor} da
+uno stream ed eseguirvi operazioni di basso livello, o associare in un secondo
+tempo uno \textit{stream} ad un \textit{file descriptor}.
 
 In generale, se non necessitano specificatamente le funzionalità di basso
-livello, è opportuno usare sempre gli stream per la loro maggiore portabilità
-essendo questi ultimi definiti nello standard ANSI C; l'interfaccia con i file
-descriptor invece segue solo lo standard POSIX.1 dei sistemi unix ed è
-pertanto di portabilità più limitata.
+livello, è opportuno usare sempre gli \textit{stream} per la loro maggiore
+portabilità essendo questi ultimi definiti nello standard ANSI C;
+l'interfaccia con i \textit{file descriptor} invece segue solo lo standard
+POSIX.1 dei sistemi unix ed è pertanto di portabilità più limitata.
+
 
-\subsection{Caratteristiche specifiche dei file in unix}
+\subsection{Caratteristiche specifiche dei file in Unix}
 \label{sec:fileint_unix_spec}
 
 Essendo un sistema multitasking e multiutente esistono alcune caratteristiche
-specifiche di Unix che devono essere tenute in conto nell'accesso ai file. È
-infatti normale che più processi o programmi possano accedere
-contemporaneamente allo stesso file e devono poter eseguire le loro operazioni
-indipendentemente da quello che fanno gli altri processi.
+specifiche di un sistema unix-like che devono essere tenute in conto
+nell'accesso ai file. È infatti normale che più processi o programmi possano
+accedere contemporaneamente allo stesso file e devono poter eseguire le loro
+operazioni indipendentemente da quello che fanno gli altri processi.
 
 Per questo motivo le strutture usate per all'accesso ai file sono relative al
 processo che effettua l'accesso.  All'apertura di ogni file infatti viene
@@ -355,7 +256,7 @@ Questo ha delle conseguenze di cui 
 sistemi POSIX uno degli attributi di un file aperto è la posizione corrente nel
 file, cioè il punto nel file in cui verrebbe letto o scritto alla operazione
 successiva. Essa è rappresentata da un numero intero che indica il numero di
-bytes dall'inizio del file, che viene (a meno che non si apra il file in
+byte dall'inizio del file, che viene (a meno che non si apra il file in
 append) inizializzato a zero all'apertura del medesimo.
 
 Questo è uno dei dati che viene mantenuto nella suddetta struttura, per cui
@@ -371,17 +272,383 @@ accesso 
 cancellato da un altro processo, sarà sempre possibile mantenere l'accesso ai
 dati, e lo spazio su disco non verrà rilasciato fintanto che il file non sarà
 chiuso e l'ultimo riferimento cancellato. È pertanto possibile (come vedremo
-in dettaglio in \secref{sec:filedir_link}) aprire un file provvisorio per
+in dettaglio in \secref{sec:file_link}) aprire un file provvisorio per
 cancellarlo immediatamente dopo; in questo modo all'uscita del programma il
 file scomparirà definitivamente dal disco, ma il file ed il suo contenuto
 saranno disponibili per tutto il tempo in cui il processo è attivo.
 
-Ritorneremo su questo più avanti, quando tratteremo l'input/output sui file,
-esaminando in dettaglio come tutto ciò viene realizzato.
+Ritorneremo su questo più avanti in \secref{sec:file_fd}, quando tratteremo
+l'input/output sui file, esaminando in dettaglio come tutto ciò viene
+realizzato.
+
+Si ricordi infine che in ambiente unix non esistono i tipi di file e che non
+c'è nessun supporto per le estensioni come parte del filesystem. Ciò non
+ostante molti programmi adottano delle convenzioni per i nomi dei file, ad
+esempio il codice C normalmente si mette in file con l'estensione .c, ma
+questa è, appunto, solo una convenzione.
+
+
+\section{L'architettura di funzionamento}
+\label{sec:file_arch_func}
+
+Per capire fino in fondo le proprietà di file e directory in un sistema
+unix-like ed il comportamento delle relative funzioni di manipolazione occorre
+una breve introduzione al funzionamento gestione dei file da parte del kernel
+e sugli oggetti su cui è basato un filesystem di tipo unix. In particolare
+occorre tenere presente dov'è che si situa la divisione fondamentale fra
+kernel space e user space che tracciavamo al \capref{cha:intro_unix}.
+
+In questa sezione esamineremo come viene implementato l'accesso ai file in
+Linux, come il kernel può gestire diversi tipi di filesystem, descrivendo
+prima le caratteristiche generali di un filesystem Unix, per poi trattare in
+maniera un po' più dettagliata il filesystem standard di Linux, l'\acr{ext2}.
+
+
+% in particolare si riprenderà, approfondendolo sul piano
+% dell'uso nelle funzioni di libreria, il concetto di \textit{inode} di cui
+% abbiamo brevemente accennato le caratteristiche (dal lato dell'implementazione
+% nel kernel) in \secref{sec:file_vfs}.
+
+
+\subsection{Il \textit{virtual filesystem} di Linux}
+\label{sec:file_vfs}
+
+% Questa sezione riporta informazioni sui dettagli di come il kernel gestisce i
+% file.  L'argomento è abbastanza ``esoterico'' e questa sezione può essere
+% saltata ad una prima lettura; è bene però tenere presente che vengono
+% introdotti qui alcuni termini che potranno comparire in seguito, come
+% \textit{inode}, \textit{dentry}, \textit{dcache}.
+
+In Linux il concetto di \textit{everything is a file} è stato implementato
+attraverso il \textit{Virtual File System} (da qui in avanti VFS) che è
+l'interfaccia che il kernel rende disponibile ai programmi in user space
+attraverso la quale vengono manipolati i file; esso provvede un livello di
+indirezione che permette di collegare le operazioni di manipolazione sui file
+alle operazioni di I/O e gestisce l'organizzazione di questi ultimi nei vari
+modi in cui diversi filesystem la effettuano, permettendo la coesistenza
+di filesystem differenti all'interno dello stesso albero delle directory
+
+Quando un processo esegue una system call che opera su un file il kernel
+chiama sempre una funzione implementata nel VFS; la funzione eseguirà le
+manipolazioni sulle strutture generiche e utilizzerà poi la chiamata alla
+opportune routine del filesystem specifico a cui si fa riferimento. Saranno
+queste a chiamare le funzioni di più basso livello che eseguono le operazioni
+di I/O sul dispositivo fisico, secondo lo schema riportato in \nfig.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=7cm]{img/vfs}
+  \caption{Schema delle operazioni del VFS}
+  \label{fig:file_VFS_scheme}
+\end{figure}
+
+Il VFS definisce un insieme di funzioni che tutti i filesystem devono
+implementare. L'interfaccia comprende tutte le funzioni che riguardano i file;
+le operazioni sono suddivise su tre tipi di oggetti: \textit{filesystem},
+\textit{inode} e \textit{file}, corrispondenti a tre apposite strutture
+definite nel kernel.
+
+Il VFS usa una tabella mantenuta dal kernel che contiene il nome di ciascun
+filesystem supportato: quando si vuole inserire il supporto di un nuovo
+filesystem tutto quello che occorre è chiamare la funzione
+\code{register\_filesystem} passandole un'apposita struttura
+(\var{file\_system\_type}) che contiene i dettagli per il riferimento
+all'implementazione del medesimo, che sarà aggiunta alla citata tabella.
+
+In questo modo quando viene effettuata la richiesta di montare un nuovo disco
+(o qualunque altro \textit{block device} che può contenere un filesystem), il
+VFS può ricavare dalla citata tabella il puntatore alle funzioni da chiamare
+nelle operazioni di montaggio. Quest'ultima è responsabile di leggere da disco
+il superblock (vedi \ref{sec:file_ext2}), inizializzare tutte le
+variabili interne e restituire uno speciale descrittore dei filesystem montati
+al VFS; attraverso quest'ultimo diventa possibile accedere alle routine
+specifiche per l'uso di quel filesystem.
+
+Il primo oggetto usato dal VFS è il descrittore di filesystem, un puntatore ad
+una apposita struttura che contiene vari dati come le informazioni comuni ad
+ogni filesystem, i dati privati relativi a quel filesystem specifico, e i
+puntatori alle funzioni del kernel relative al filesystem. Il VFS può così
+usare le funzioni contenute nel filesystem descriptor per accedere alle routine
+specifiche di quel filesystem.
+
+Gli altri due descrittori usati dal VFS sono relativi agli altri due oggetti
+su cui è strutturata l'interfaccia. Ciascuno di essi contiene le informazioni
+relative al file in uso, insieme ai puntatori alle funzioni dello specifico
+filesystem usate per l'accesso dal VFS; in particolare il descrittore
+dell'inode contiene i puntatori alle funzioni che possono essere usate su
+qualunque file (come \func{link}, \func{stat} e \func{open}), mentre il
+descrittore di file contiene i puntatori alle funzioni che vengono usate sui
+file già aperti.
+
+
+\subsection{Il funzionamento del VFS}
+\label{sec:file_vfs_work}
+
+La funzione più fondamentale implementata dal VFS è la system call
+\func{open} che permette di aprire un file. Dato un pathname viene eseguita
+una ricerca dentro la \textit{directory entry cache} (in breve
+\textit{dcache}), una tabella di hash che contiene tutte le \textit{directory
+  entry} (in breve \textit{dentry}) che permette di associare in maniera
+rapida ed efficiente il pathname a una specifica dentry.
+
+Una singola \textit{dentry} contiene in genere il puntatore ad un
+\textit{inode}; quest'ultimo è la struttura base che sta sul disco e che
+identifica un singolo oggetto del VFS sia esso un file ordinario, una
+directory, un link simbolico, una FIFO, un file di dispositivo, o una
+qualsiasi altra cosa che possa essere rappresentata dal VFS (sui tipi di
+``file'' possibili torneremo in seguito). A ciascuno di essi è associata pure
+una struttura che sta in memoria, e che oltre alle informazioni sullo
+specifico file contiene pure il riferimento alle funzioni (i \textsl{metodi})
+da usare per poterlo manipolare.
+
+Le \textit{dentry} ``vivono'' in memoria e non vengono mai salvate su disco,
+vengono usate per motivi di velocità, gli inode invece stanno su disco e
+vengono copiati in memoria quando serve, ed ogni cambiamento viene copiato
+all'indietro sul disco, gli inode che stanno in memoria sono inode del VFS ed
+è ad essi che puntano le singole \textit{dentry}.
+
+La \textit{dcache} costituisce perciò una sorta di vista completa di tutto
+l'albero dei file, ovviamente per non riempire tutta la memoria questa vista è
+parziale (la \textit{dcache} cioè contiene solo le \textit{dentry} per i file
+per i quali è stato richiesto l'accesso), quando si vuole risolvere un nuovo
+pathname il VFS deve creare una nuova \textit{dentry} e caricare l'inode
+corrispondente in memoria.
+
+Questo procedimento viene eseguito dal metodo \code{lookup()} dell'inode
+della directory che contiene il file; questo viene installato nelle relative
+strutture in memoria quando si effettua il montaggio lo specifico filesystem
+su cui l'inode va a vivere.
+
+Una volta che il VFS ha a disposizione la dentry (ed il relativo inode)
+diventa possibile accedere alle varie operazioni sul file come la
+\func{open} per aprire il file o la \func{stat} per leggere i dati
+dell'inode e passarli in user space.
+
+L'apertura di un file richiede comunque un'altra operazione, l'allocazione di
+una struttura di tipo \var{file} in cui viene inserito un puntatore alla
+\textit{dentry} e una struttura \var{f\_ops} che contiene i puntatori ai
+metodi che implementano le operazioni disponibili sul file. In questo modo i
+processi in user space possono accedere alle operazioni attraverso detti
+metodi, che saranno diversi a seconda del tipo di file (o dispositivo) aperto
+(su questo torneremo in dettaglio in \secref{sec:file_fd}). Un elenco delle
+operazioni previste dal kernel è riportato in \ntab.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|p{7cm}|}
+    \hline
+    \textbf{Funzione} & \textbf{Operazione} \\
+    \hline
+    \hline
+    \textsl{\code{open}}   & apre il file \\
+    \textsl{\code{read}}   & legge dal file \\
+    \textsl{\code{write}}  & scrive sul file \\ 
+    \textsl{\code{llseek}} & sposta la posizione corrente sul file \\
+    \textsl{\code{ioctl}}  & accede alle operazioni di controllo 
+                       (tramite la \func{ioctl})\\
+    \textsl{\code{readdir}}& per leggere il contenuto di una directory \\
+    \textsl{\code{poll}}   & \\
+    \textsl{\code{mmap}}   & chiamata dalla system call \func{mmap}. 
+                       mappa il file in memoria\\
+    \textsl{\code{release}}& chiamata quando l'ultima referenza a un file 
+                       aperto è chiusa\\
+    \textsl{\code{fsync}}  & chiamata dalla system call \func{fsync} \\
+    \textsl{\code{fasync}} & chiamate da \func{fcntl} quando è abilitato 
+                           il modo asincrono per l'I/O su file. \\
+    \hline
+  \end{tabular}
+  \caption{Operazioni sui file definite nel VFS.}
+  \label{tab:file_file_operations}
+\end{table}
+
+In questo modo per ciascun file diventano utilizzabili una serie di operazioni
+(non è dette che tutte siano disponibili), che costituiscono l'interfaccia
+astratta del VFS, e qualora se ne voglia eseguire una il kernel andrà ad
+utilizzare la opportuna routine dichiarata in \var{f\_ops} appropriata al tipo
+di file in questione. 
+
+Così sarà possibile scrivere sulla porta seriale come su un file di dati
+normale; ovviamente certe operazioni (nel caso della seriale ad esempio la
+\code{seek}) non saranno disponibili, però con questo sistema l'utilizzo di
+diversi filesystem (come quelli usati da Windows o MacOs) è immediato e
+(relativamente) trasparente per l'utente ed il programmatore.
+
+
+\subsection{Il funzionamento di un filesystem unix}
+\label{sec:file_filesystem}
+
+Come già accennato in \secref{sec:file_organization} Linux (ed ogni unix
+in generale) organizza i dati che tiene su disco attraverso l'uso di un
+filesystem. Una delle caratteristiche di Linux rispetto agli altri Unix è
+quella di poter supportare grazie al VFS una enorme quantità di filesystem
+diversi, ognuno dei quali ha una sua particolare struttura e funzionalità
+proprie; per questo non entreremo nei dettagli di un filesystem specifico, ma
+daremo una descrizione a grandi linee che si adatta alle caratteristiche
+comuni di un qualunque filesystem standard unix.
+
+Dato un disco lo spazio fisico viene usualmente diviso in partizioni; ogni
+partizione può contenere un filesystem; la strutturazione tipica
+dell'informazione su un disco è riportata in \nfig; in essa si fa riferimento
+alla struttura del filesystem \acr{ext2}, che prevede una separazione dei dati
+in \textit{blocks group} che replicano il superblock (ma sulle caratteristiche
+di \acr{ext2} torneremo in \secref{sec:file_ext2}). È comunque caratteristica
+comune di tutti i filesystem unix, indipendentemente da come poi viene
+strutturata nei dettagli questa informazione, prevedere una divisione fra la
+lista degli inodes e lo spazio a disposizione per i dati e le directory.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=9cm]{img/disk_struct}
+  \caption{Organizzazione dello spazio su un disco in partizioni e filesystem}
+  \label{fig:file_disk_filesys}
+\end{figure}
+
+Se si va ad esaminare con maggiore dettaglio la strutturazione
+dell'informazione all'interno del singolo filesystem (tralasciando i dettagli
+relativi al funzionamento del filesystem stesso come la strutturazione in
+gruppi dei blocchi, il superblock e tutti i dati di gestione) possiamo
+esemplificare la situazione con uno schema come quello esposto in \nfig.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=11cm]{img/filesys_struct}
+  \caption{Strutturazione dei dati all'interno di un filesystem}
+  \label{fig:file_filesys_detail}
+\end{figure}
+
+Da \curfig\ si evidenziano alcune caratteristiche base di ogni filesystem su
+cui è bene porre attenzione in quanto sono fondamentali per capire il
+funzionamento delle funzioni che manipolano i file e le directory su cui
+torneremo in seguito; in particolare è opportuno ricordare sempre che:
+
+\begin{enumerate}
+  
+\item L'\textit{inode} contiene tutte le informazioni riguardanti il file: il
+  tipo di file, i permessi di accesso, le dimensioni, i puntatori ai blocchi
+  fisici che contengono i dati e così via; le informazioni che la funzione
+  \func{stat} fornisce provengono dall'\textit{inode}; dentro una directory si
+  troverà solo il nome del file e il numero dell'\textit{inode} ad esso
+  associato, cioè quella che da qui in poi chiameremo una \textsl{voce}
+  (traduzione approssimata dell'inglese \textit{directory entry}, che non
+  useremo anche per evitare confusione con le \textit{dentry} del kernel di
+  cui si parlava in \secref{sec:file_vfs}).
+  
+\item Come mostrato in \curfig si possono avere più voci che puntano allo
+  stesso \textit{inode}. Ogni \textit{inode} ha un contatore che contiene il
+  numero di riferimenti (\textit{link count}) che sono stati fatti ad esso;
+  solo quando questo contatore si annulla i dati del file vengono
+  effettivamente rimossi dal disco. Per questo la funzione per cancellare un
+  file si chiama \func{unlink}, ed in realtà non cancella affatto i dati del
+  file, ma si limita a eliminare la relativa voce da una directory e
+  decrementare il numero di riferimenti nell'\textit{inode}.
+  
+\item Il numero di \textit{inode} nella voce si riferisce ad un \textit{inode}
+  nello stesso filesystem e non ci può essere una directory che contiene
+  riferimenti ad \textit{inodes} relativi ad altri filesystem. Questo limita
+  l'uso del comando \cmd{ln} (che crea una nuova voce per un file
+  esistente, con la funzione \func{link}) al filesystem corrente.
+  
+\item Quando si cambia nome ad un file senza cambiare filesystem il contenuto
+  del file non deve essere spostato, viene semplicemente creata una nuova voce
+  per l'\textit{inode} in questione e rimossa la vecchia (questa è la modalità
+  in cui opera normalmente il comando \cmd{mv} attraverso la funzione
+  \func{rename}).
+
+\end{enumerate}
+
+Infine è bene avere presente che essendo file pure loro, esiste un numero di
+riferimenti anche per le directory; per cui se ad esempio a partire dalla
+situazione mostrata in \curfig\ creiamo una nuova directory \file{img} nella
+directory \file{gapil}: avremo una situazione come quella in \nfig, dove per
+chiarezza abbiamo aggiunto dei numeri di inode.
+
+\begin{figure}[htb]
+  \centering 
+  \includegraphics[width=11cm]{img/dir_links}
+  \caption{Organizzazione dei link per le directory}
+  \label{fig:file_dirs_link}
+\end{figure}
+
+La nuova directory avrà allora un numero di riferimenti pari a due, in quanto
+è referenziata dalla directory da cui si era partiti (in cui è inserita la
+nuova voce che fa riferimento a \file{img}) e dalla voce \file{.}
+che è sempre inserita in ogni directory; questo vale sempre per ogni directory
+che non contenga a sua volta altre directory. Al contempo la directory da
+cui si era partiti avrà un numero di riferiementi di almeno tre, in quanto
+adesso sarà referenziata anche dalla voce \file{..} di \file{img}.
+
+
+\subsection{Il filesystem \textsl{ext2}}
+\label{sec:file_ext2}
+
+Il filesystem standard usato da Linux è il cosiddetto \textit{second extended
+  filesystem}, identificato dalla sigla \acr{ext2}. Esso supporta tutte le
+caratteristiche di un filesystem standard unix, è in grado di gestire
+filename lunghi (256 caratteri, estendibili a 1012), una dimensione fino a
+4~Tb. 
+
+Oltre alle caratteristiche standard \acr{ext2} fornisce alcune estensioni
+che non sono presenti sugli altri filesystem unix, le cui principali sono le
+seguenti:
+\begin{itemize}
+\item i \textit{file attributes} consentono di modificare il comportamento del
+  kernel quando agisce su gruppi di file. Possono essere settati su file e
+  directory e in quest'ultimo caso i nuovi file creati nella directory
+  ereditano i suoi attributi.
+\item sono supportate entrambe le semantiche di BSD e SVr4 come opzioni di
+  montaggio. La semantica BSD comporta che i file in una directory sono creati
+  con lo stesso identificatore di gruppo della directory che li contiene. La
+  semantica SVr4 comporta che i file vengono creati con l'identificatore del
+  gruppo primario del processo, eccetto il caso in cui la directory ha il bit
+  di \acr{sgid} settato (per una descrizione dettagliata del significato di
+  questi termini si veda \secref{sec:file_access_control}), nel qual caso file
+  e subdirectory ereditano sia il \acr{gid} che lo \acr{sgid}.
+\item l'amministratore può scegliere la dimensione dei blocchi del filesystem
+  in fase di creazione, a seconda delle sue esigenze (blocchi più grandi
+  permettono un accesso più veloce, ma sprecano più spazio disco).
+\item il filesystem implementa link simbolici veloci, in cui il nome del file
+  non è salvato su un blocco, ma tenuto all'interno dell'inode (evitando
+  letture multiple e spreco di spazio), non tutti i nomi però possono essere
+  gestiti così per limiti di spazio (il limite è 60 caratteri). 
+\item vengono supportati i file immutabili (che possono solo essere letti) per
+  la protezione di file di configurazione sensibili, o file
+  \textit{append-only} che possono essere aperti in scrittura solo per
+  aggiungere dati (caratteristica utilizzabile per la protezione dei file di
+  log).
+\end{itemize}
+
+La struttura di \acr{ext2} è stata ispirata a quella del filesystem di BSD,
+un filesystem è composto da un insieme di blocchi, la struttura generale è
+quella riportata in \figref{fig:file_filesys_detail}, in cui la partizione
+è divisa in gruppi di blocchi.
+
+Ciascun gruppo di blocchi contiene una copia delle informazioni essenziali del
+filesystem (superblock e descrittore del filesystem sono quindi ridondati) per
+una maggiore affidabilità e possibilità di recupero in caso di corruzione del
+superblock principale.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=9cm]{img/dir_struct}  
+  \caption{Struttura delle directory nel \textit{second extented filesystem}.}
+  \label{fig:file_ext2_dirs}
+\end{figure}
+
+L'utilizzo di raggruppamenti di blocchi ha inoltre degli effetti positivi nelle
+prestazioni dato che viene ridotta la distanza fra i dati e la tabella degli
+inode. 
+
+Le directory sono implementate come una linked list con voci di dimensione
+variabile. Ciascuna voce della lista contiene il numero di inode, la sua
+lunghezza, il nome del file e la sua lunghezza, secondo lo schema in \curfig;
+in questo modo è possibile implementare nomi per i file anche molto lunghi
+(fino a 1024 caratteri) senza sprecare spazio disco.
+
+
 
-Si ricordi infine che in unix non esistono i tipi di file e che non c'è nessun
-supporto per le estensioni come parte del filesystem. Ciò non ostante molti
-programmi adottano delle convenzioni per i nomi dei file, ad esempio il codice
-C normalmente si mette in file con l'estensione .c, ma questa è, appunto, solo
-una convenzione.
 
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: