Aggiunte funzioni di gestione per le varibili di ambiente
[gapil.git] / filedir.tex
index b16e2dc7b549f2f01a4d1276785025da5ed6fb07..c9884c4f4e6acf56a9c851ade4307375581f011d 100644 (file)
-\chapter{Files e directories}
+\chapter{File e directory}
 \label{cha:files_and_dirs}
 
-In questo capitolo tratteremo in dettaglio le varie caratteristiche di files e
-directories, ed in particolare approfondiremo i dettagli su come è organizzata
-la struttura dei files in un sistema unix, esamineremo come è strutturato il
-sistema base di protezioni e controllo di accesso ai files, e tutta
-l'interfaccia che permette la manipolazione dei vari attributi di files e
-directories. Tutto quello che riguarda invece la manipolazione dei contenuti è
-lasciato ai capitoli successivi.
-
-
-\section{L'organizzazione di files e directories}
-\label{sec:filedir_org}
-
-L'organizzazione dei nomi dei file deriva direttamente dall'organizzazione dei
-medesimi nell'albero descritto brevemente in \secref{sec:fileintr_overview};
-una directory comunque, come già specificato in \secref{sec:fileintr_vfs}, è
-solo un particolare tipo di file che contiene le informazioni che associano un
-nome al contenuto. Per questo, anche se è usuale parlare di ``file in una
-directory'' in realtà una directory contiene solo delle etichette per fare
-riferimento ai file stessi.
-
-I manuale delle librerie del C chiama i nomi contenuti nelle directory
-\textsl{componenti} (in inglese \textit{file name components}), noi li
-chiameremo più semplicemente nomi. Un file può essere indicato rispetto alla
-directory corrente semplicemente specificando il nome da essa contenuto. Una
-directory contiene semplicemente un elenco di questi nomi, che possono
-corrispondere a un qualunque oggetto del filesystem, compresa un'altra
-directory; l'albero viene appunto creato inserendo directory in altre
-directory.
-
-Il nome completo di file generico è composto da una serie di questi
-\textsl{componenti} separati da una \texttt{/} (in Linux più \texttt{/}
-consecutive sono considerate equivalenti ad una sola). Il nome completo di un
-file viene usualmente chiamato \textit{pathname}, e anche se il manuale della
-glibc depreca questo nome (poiché genererebbe confusione, dato che con
-\textit{path} si indica anche un insieme di directory su cui effettuare una
-ricerca, come quello in cui si cercano i comandi) l'uso è ormai così comune
-che è senz'altro più chiaro dell'alternativa proposta.
-
-Il processo con cui si associa ad un pathname uno specifico file è chiamato
-risoluzione del nome (\textit{file name resolution} o \textit{pathname
-  resolution}).  La risoluzione viene fatta esaminando il pathname da destra a
-sinistra e localizzando ogni nome nella directory indicata dal nome
-precedente: ovviamente perché il procedimento funzioni occorre che i nomi
-indicati come directory esistano e siano effettivamente directory, inoltre i
-permessi devono consentire l'accesso.
-
-Se il pathname comincia per \texttt{/} la ricerca parte dalla directory radice
-del processo; questa, a meno di un \textit{chroot} (su cui torneremo in
-seguito, vedi \secref{sec:xxx_chroot}) è la stessa per tutti i processi ed
-equivale alla directory radice dell'albero (come descritto in
-\secref{sec:fileintr_overview}): in questo caso si parla di un pathname
-\textsl{assoluto}. Altrimenti la ricerca parte dalla directory corrente (su
-cui torneremo più avanti in \secref{sec:filedir_work_dir}) ed il pathname è
-detto \textsl{relativo}.
-
-I nomi \texttt{.} e \texttt{..} hanno un significato speciale e vengono
-inseriti in ogni directory, il primo fa riferimento alla directory corrente e
-il secondo alla directory \textsl{genitore} (\textit{parent directory}) cioè
-la directory che contiene il riferimento alla directory corrente; nel caso
-questa sia la directory radice allora il riferimento è a se stessa.
-
-
-\section{L'architettura di gestione dei file}
-\label{sec:filedir_file_handling}
-
-Per capire fino in fondo le proprietà di files e directories in un sistema
-unix ed il funzionamento delle relative funzioni di manipolazione occorre una
-breve introduzione sulla gestione dei medesimo e sugli oggetti su cui è basato
-un filesystem unix; in particolare si riprenderà, approfondendolo sul piano
-dell'uso nelle funzioni di libreria, il concetto di \textit{inode} di cui
-abbiamo brevemente accennato le caratteristiche (dal lato dell'implementazione
-nel kernel) in \secref{sec:fileintr_vfs}.
-
-
-\subsection{Il funzionamento di un filesystem unix}
-\label{sec:filedir_filesystem}
-
-Come già accennato in \secref{sec:fileintr_overview} Linux (ed ogni unix in
-generale) organizza i dati che tiene su disco attraverso l'uso di un
-filesystem. Una delle caratteristiche di Linux rispetto agli altri unix è
-quella di poter supportare grazie al VFS una enorme quantità di filesystem
-diversi, ognuno dei quali ha una sua particolare struttura e funzionalità
-proprie; per questo non entreremo nei dettagli di un filesystem specifico, ma
-daremo una descrizione a grandi linee che si adatta alle caratteristiche
-comuni di un qualunque filesystem standard unix.
-
-Dato un disco lo spazio fisico viene usualmente diviso in partizioni; ogni
-partizione può contenere un filesystem; quest'ultimo è in genere strutturato
-secondo \nfig, con una lista di inodes all'inizio e il resto dello spazio a
-disposizione per i dati e le directory.
+In questo capitolo tratteremo in dettaglio le modalità con cui si gestiscono
+file e directory, iniziando dalle funzioni di libreria che si usano per
+copiarli, spostarli e cambiarne i nomi. Esamineremo poi l'interfaccia che
+permette la manipolazione dei vari attributi di file e directory ed alla
+fine faremo una trattazione dettagliata su come è strutturato il sistema base
+di protezioni e controllo di accesso ai file e sulle funzioni che ne
+permettono la gestione. Tutto quello che riguarda invece la manipolazione del
+contenuto dei file è lasciato ai capitoli successivi.
 
-\begin{figure}[htb]
-  \centering
-  
-  \caption{Organizzazione dello spazio su un disco in partizioni e filesystem}
-  \label{fig:filedir_disk_filesys}
-\end{figure}
 
-Se si va ad esaminare come è strutturata l'informazione all'interno di un
-singolo filesystem (tralasciando le parti connesse alla strutturazione e al
-funzionamento del filesystem stesso come il super-block) avremo una situazione
-del tipo di quella esposta in \nfig.
-\begin{figure}[htb]
-  \centering
-  
-  \caption{Organizzazione di un filesystem}
-  \label{fig:filedir_filesys_detail}
-\end{figure}
-da questa figura si evidenziano alcune caratteristiche su cui è bene porre
-attenzione in quanto sono fondamentali per capire il funzionamento delle
-funzioni che manipolano i file e le directory su cui torneremo fra poco; in
-particolare è opportuno ricordare sempre che:
 
-\begin{enumerate}
-  
-\item L'\textit{inode} contiene tutte le informazioni riguardanti il file: il
-  tipo di file, i permessi di accesso, le dimensioni, i puntatori ai blocchi
-  fisici che contengono i dati e così via; le informazioni che la funzione
-  \texttt{stat} fornisce provengono dall'\textit{inode}; dentro una directory
-  si troverà solo il nome del file e il numero dell'\textit{inode} ad esso
-  associato, cioè quella che da qui in poi chiameremo una \textsl{voce}
-  (traduzione approssimata dell'inglese \textit{directory entry}, che non
-  useremo anche per evitare confusione con le \textit{dentries} del kernel di
-  cui si parlava in \secref{sec:fileintr_vfs}).
-  
-\item Come mostrato in \curfig si possono avere più voci che puntano allo
-  stesso \textit{inode}. Ogni \textit{inode} ha un contatore che contiene il
-  numero di riferimenti (\textit{link count}) che sono stati fatti ad esso;
-  solo quando questo contatore si annulla i dati del file vengono
-  effettivamente rimossi dal disco. Per questo la funzione per cancellare un
-  file si chiama \texttt{unlink}, ed in realtà non cancella affatto i dati del
-  file, ma si limita a eliminare la relativa voce da una directory e
-  decrementare il numero di riferimenti nell'\textit{inode}.
-  
-\item Il numero di \textit{inode} nella voce si riferisce ad un \textit{inode}
-  nello stesso filesystem e non ci può essere una directory che contiene
-  riferimenti ad \textit{inodes} relativi ad altri filesystem. Questo limita
-  l'uso del comando \texttt{ln} (che crea una nuova voce per un file
-  esistente, con la funzione \texttt{link}) al filesystem corrente.
-  
-\item Quando si cambia nome ad un file senza cambiare filesystem il contenuto
-  del file non deve essere spostato, viene semplicemente creata una nuova voce
-  per l'\textit{inode} in questione e rimossa la vecchia (questa è la modalità
-  in cui opera normalmente il comando \texttt{mv} attraverso la funzione
-  \texttt{rename}).
-
-\end{enumerate}
-
-Infine è bene avere presente che essendo file pure loro, esiste un numero di
-riferimenti anche per le directories; per cui se ad esempio a partire dalla
-situazione mostrata in \curfig\ creiamo una nuova directory \texttt{textdir}
-nella directory corrente avremo una situazione come quella in \nfig, dove per
-chiarezza abbiamo aggiunto dei numeri di inode.
-
-La nuova directory avrà allora un numero di riferimenti pari a due, in quanto
-è referenziata dalla directory da cui si era partiti (in cui è inserita la
-nuova voce che fa riferimento a \texttt{textdir}) e dalla voce \texttt{.}
-che è sempre inserita in ogni directory; questo vale sempre per ogni directory
-che non contenga a sua volta altre directories. Al contempo la directory da
-cui si era partiti avrà un numero di riferiementi di almeno tre, in quanto
-adesso sarà referenziata anche dalla voce \texttt{..} di \texttt{textdir}.
-
-
-\subsection{Le funzioni \texttt{link} e \texttt{unlink}}
-\label{sec:filedir_link}
-
-Una delle caratteristiche usate quando si opera con i file è quella di poter
-creare dei nomi fittizi (alias o collegamenti) per potersi riferire allo
-stesso file accedendovi da directory diverse. Questo è possibile anche in
-ambiente unix, dove tali collegamenti sono usualmente chiamati \textit{link},
-ma data la struttura del sistema ci sono due metodi sostanzialmente diversi
-per fare questa operazione.
-
-Come si è appena detto l'accesso al contenuto di un file su disco avviene
-attraverso il suo inode, e il nome che si trova in una directory è solo una
-etichetta associata ad un puntatore a detto inode.  Questo significa che la
-realizzazione di un link è immediata in quanto uno stesso file può avere tanti
-nomi diversi allo stesso tempo, dati da altrettante diverse associazioni allo
-stesso inode; si noti poi che nessuno di questi nomi viene ad assumere una
-particolare preferenza rispetto agli altri.
-
-Per aggiungere un nome ad un inode si utilizza la funzione \texttt{link}; si
+\section{La gestione di file e directory}
+
+Come già accennato in \secref{sec:file_filesystem} in un sistema unix-like la
+gestione dei file ha delle caratteristiche specifiche che derivano
+direttamente dall'architettura del sistema; in questa sezione esamineremo le
+funzioni usate per manipolazione nel filesytem di file e directory, per la
+creazione di link simbolici e diretti, per la gestione e la lettura delle
+directory; il tutto mettendo in evidenza le conseguenze della struttura
+standard della gestione dei file in un sistema unix-like, già accennate al
+capitolo precedente.
+
+
+\subsection{Le funzioni \func{link} e \func{unlink}}
+\label{sec:file_link}
+
+Una caratteristica comune a diversi sistemi operativi è quella di poter creare
+dei nomi fittizi (come gli alias del MacOS o i collegamenti di Windows) che
+permettono di fare riferimento allo stesso file chiamandolo con nomi diversi
+o accedendovi da directory diverse.
+
+Questo è possibile anche in ambiente unix, dove tali collegamenti sono
+usualmente chiamati \textit{link}; ma data la struttura del sistema di
+gestione dei file (ed in particolare quanto trattato in
+\secref{sec:file_architecture}) ci sono due metodi sostanzialmente diversi per
+fare questa operazione.
+
+Come spiegato in \secref{sec:file_filesystem} l'accesso al contenuto di
+un file su disco avviene attraverso il suo inode, e il nome che si trova in
+una directory è solo una etichetta associata ad un puntatore a che fa
+riferimento al suddetto inode.
+
+Questo significa che la realizzazione di un link è immediata in quanto uno
+stesso file può avere tanti nomi diversi allo stesso tempo, dati da
+altrettante diverse associazioni allo stesso inode; si noti poi che nessuno di
+questi nomi viene ad assumere una particolare preferenza rispetto agli altri.
+
+Per aggiungere un nome ad un inode si utilizza la funzione \func{link}; si
 suole chiamare questo tipo di associazione un collegamento diretto (o
 \textit{hard link}).  Il prototipo della funzione e le sue caratteristiche
 principali, come risultano dalla man page, sono le seguenti:
 \begin{prototype}{unistd.h}
 {int link(const char * oldpath, const char * newpath)}
-  Crea un nuovo collegamento diretto al file indicato da \texttt{oldpath}
-  dandogli nome \texttt{newpath}.
+  Crea un nuovo collegamento diretto al file indicato da \var{oldpath}
+  dandogli nome \var{newpath}.
   
-  La funzione restituisce zero in caso di successo e -1 per un errore, in caso
-  di errore. La variabile \texttt{errno} viene settata secondo i seguenti
-  codici di errore:
+  La funzione restituisce zero in caso di successo e -1 in caso di errore. La
+  variabile \var{errno} viene settata opportunamente, i principali codici di
+  errore sono:
   \begin{errlist}
-  \item \texttt{EXDEV} \texttt{oldpath} e \texttt{newpath} non sono sullo
+  \item \macro{EXDEV} \var{oldpath} e \var{newpath} non sono sullo
     stesso filesystem.
-  \item \texttt{EPERM} il filesystem che contiene \texttt{oldpath} e
-    \texttt{newpath} non supporta i link diretti, oppure \texttt{oldpath} è
-    una directory.
-  \item \texttt{EFAULT} una delle stringhe passate come parametri è fuori
-    dello spazio di indirizzi del processo.
-  \item \texttt{EACCESS} errore di accesso (mancano i permessi per scrivere o
-    per attraversare le directories), vedi \secref{sec:filedir_access_control}
-    per i dettagli.
-  \item \texttt{ENAMETOOLONG} una dei due pathname è troppo lungo.
-  \item \texttt{ENOENT} un componente di \texttt{oldpath} o \texttt{newpath}
-    non esiste o è un link simbolico spezzato.
-  \item \texttt{ENOTDIR} un componente di \texttt{oldpath} o \texttt{newpath}
-    non è una directory.
-  \item \texttt{ENOMEM} il kernel non ha a disposizione memoria sufficiente a
-    completare l'operazione. 
-  \item \texttt{EROFS} la directory su cui si vuole inserire il nuovo link è
-    su un filesystem montato readonly.
-  \item \texttt{EEXIST} un file (o una directory) con quel nome esiste di
+  \item \macro{EPERM} il filesystem che contiene \var{oldpath} e
+    \macro{newpath} non supporta i link diretti o è una directory.
+  \item \macro{EEXIST} un file (o una directory) con quel nome esiste di
     già.
-  \item \texttt{EMLINK} ci sono troppi link al file \texttt{oldpath} (il
-    numero massimo è specificato dalla variabile \texttt{LINK\_MAX}, vedi
-    \secref{sec:xxx_limits}).
-  \item \texttt{ELOOP} si incontrati troppi link simbolici nella risoluzione
-    di \texttt{oldpath} o \texttt{newpath}.
-  \item \texttt{ENOSPC} la directory in cui si vuole creare il link non ha
-    spazio per ulteriori voci.
-  \item \texttt{EIO} c'è stato un errore di input/output.
+  \item \macro{EMLINK} ci sono troppi link al file \var{oldpath} (il
+    numero massimo è specificato dalla variabile \macro{LINK\_MAX}, vedi
+    \secref{sec:sys_limits}).
   \end{errlist}
+  ed inoltre \macro{EACCES}, \macro{ENAMETOOLONG}, \macro{ENOTDIR},
+  \macro{EFAULT}, \macro{ENOMEM}, \macro{EROFS}, \macro{ELOOP},
+  \macro{ENOSPC}, \macro{EIO}.
 \end{prototype}
 
 La creazione di un nuovo collegamento diretto non copia il contenuto del file,
-ma si limita ad aumentare di uno il numero di referenze al file aggiungendo il
-nuovo nome ai precedenti. Si noti che uno stesso file può essere così
-richiamato in diverse directory.
+ma si limita a creare una voce nella directory specificata con \var{newpath} e
+ad aumentare di uno il numero di referenze al file (riportato nel campo
+\var{st\_nlink} della struttura \var{stat}, vedi \secref{sec:file_stat})
+aggiungendo il nuovo nome ai precedenti. Si noti che uno stesso file può
+essere così chiamato con vari nomi in diverse directory.
  
-Per quanto dicevamo in \secref{sec:filedir_filesystem} la creazione del
+Per quanto dicevamo in \secref{sec:file_filesystem} la creazione di un
 collegamento diretto è possibile solo se entrambi i pathname sono nello stesso
-filesystem; inoltre il filesystem deve supportare i collegamenti diretti (non è
-il caso ad esempio del filesystem \texttt{vfat} di windows).
-
-La funzione opera sui file ordinari, come sugli altri oggetti del filesystem,
-ma solo l'amministratore è in grado di creare un collegamento diretto ad
-un'altra directory, questo lo si fa perché in questo caso è possibile creare
-dei circoli nel filesystem (vedi \secref{sec:filedir_symlink}) che molti
-programmi non sono in grado di gestire e la cui rimozione diventa estremamente
-complicata (in genere occorre far girare il programma \texttt{fsck} per
-riparare il filesystem); data la sua pericolosità in Linux questa
-caratteristica è stata disabilitata, e la funzione restituisce l'errore
-\texttt{EPERM}.
-
-La rimozione di un file (o più precisamente della voce che lo referenzia) si
-effettua con la funzione \texttt{unlink}; il suo prototipo è il seguente:
-
+filesystem; inoltre il filesystem deve supportare i collegamenti diretti (il
+meccanismo non è disponibile ad esempio con il filesystem \acr{vfat} di
+Windows). 
+
+La funzione inoltre opera sia sui file ordinari che sugli altri oggetti del
+filesystem, con l'eccezione delle directory. In alcuni versioni di unix solo
+l'amministratore è in grado di creare un collegamento diretto ad un'altra
+directory, questo viene fatto perché con una tale operazione è possibile
+creare dei circoli nel filesystem (vedi l'esempio mostrato in
+\secref{sec:file_symlink}, dove riprenderemo il discorso) che molti programmi
+non sono in grado di gestire e la cui rimozione diventerebbe estremamente
+complicata (in genere per questo tipo di errori occorre far girare il
+programma \cmd{fsck} per riparare il filesystem).
+
+Data la pericolosità di questa operazione e la disponibilità dei link
+simbolici che possono fornire la stessa funzionalità senza questi problemi,
+nei filesystem usati in Linux questa caratteristica è stata completamente
+disabilitata, e al tentativo di creare un link diretto ad una directory la
+funzione restituisce l'errore \macro{EPERM}.
+
+La rimozione di un file (o più precisamente della voce che lo referenzia
+all'interno di una directory) si effettua con la funzione \func{unlink}; il
+suo prototipo è il seguente:
 \begin{prototype}{unistd.h}{int unlink(const char * pathname)}
   Cancella il nome specificato dal pathname nella relativa directory e
   decrementa il numero di riferimenti nel relativo inode. Nel caso di link
@@ -258,405 +116,1509 @@ effettua con la funzione \texttt{unlink}; il suo prototipo 
   uno di questi oggetti possono continuare ad utilizzarlo.
   
   La funzione restituisce zero in caso di successo e -1 per un errore, nel
-  qual caso il file non viene toccato. La variabile \texttt{errno} viene
+  qual caso il file non viene toccato. La variabile \var{errno} viene
   settata secondo i seguenti codici di errore:
   \begin{errlist}
-  \item \texttt{EACCESS} errore di accesso (mancano i permessi per scrivere o
-    per attraversare le directories), vedi \secref{sec:filedir_access_control}
-    per i dettagli.
-  \item \texttt{EPERM} il filesystem che contiene \texttt{pathname} non
-    consente l'operazione.
-  \item \texttt{EFAULT} la stringa passata come parametro è fuori dello spazio
-    di indirizzi del processo.
-  \item \texttt{ENAMETOOLONG} il pathname troppo lungo.
-  \item \texttt{ENOENT} uno dei componenti del pathname non esiste o è un link
-    simbolico spezzato.
-  \item \texttt{ENOTDIR} uno dei componenti del pathname non è una directory.
-  \item \texttt{EISDIR} \texttt{pathname} fa riferimento a una directory.
-  \item \texttt{ENOMEM} il kernel non ha a disposizione memoria sufficiente a
-    completare l'operazione. 
-  \item \texttt{EROFS} \texttt{pathname} è su un filesystem montato in sola
-    lettura.
-  \item \texttt{ELOOP} ci sono troppi link simbolici nella risoluzione del
-    pathname.
-  \item \texttt{EIO} errore di input/output.
+  \item \macro{EISDIR} \var{pathname} si riferisce ad una directory
+    (valore specifico ritornato da Linux che non consente l'uso di
+    \var{unlink} con le directory, e non conforme allo standard POSIX, che
+    prescrive invece l'uso di \macro{EPERM} in caso l'operazione non sia
+    consentita o il processo non abbia privilegi sufficienti).
+  \item \macro{EROFS} \var{pathname} è su un filesystem montato in sola
+  lettura.
+  \item \macro{EISDIR} \var{pathname} fa riferimento a una directory.
   \end{errlist}
+  ed inoltre: \macro{EACCES}, \macro{EFAULT}, \macro{ENOENT}, \macro{ENOTDIR},
+  \macro{ENOMEM}, \macro{EROFS}, \macro{ELOOP}, \macro{EIO}.
 \end{prototype}
 
 Per cancellare una voce in una directory è necessario avere il permesso di
 scrittura su di essa (dato che si va a rimuovere una voce dal suo contenuto) e
 il diritto di esecuzione sulla directory che la contiene (torneremo in
-dettaglio sui permessi e gli attributi fra poco), se inoltre lo
-\textit{sticky} bit è settato occorrerà anche essere proprietari del file o
-proprietari della directory (o root, per cui nessuna delle restrizioni è
-applicata).
+dettaglio sui permessi e gli attributi in \secref{sec:file_access_control}),
+se inoltre lo \textit{sticky} bit è settato occorrerà anche essere proprietari
+del file o proprietari della directory (o root, per cui nessuna delle
+restrizioni è applicata).
 
 Una delle caratteristiche di queste funzioni è che la creazione/rimozione
 della nome dalla directory e l'incremento/decremento del numero di riferimenti
-nell'inode deve essere una operazione atomica (cioè non interrompibile da
-altri) processi, per questo entrambe queste funzioni sono realizzate tramite
-una singola system call.
+nell'inode deve essere una operazione atomica (si veda
+\secref{sec:proc_atom_oper}), per questo entrambe queste funzioni sono
+realizzate tramite una singola system call.
 
 Si ricordi infine che il file non viene eliminato dal disco fintanto che tutti
 i riferimenti ad esso sono stati cancellati, solo quando il \textit{link
   count} mantenuto nell'inode diventa zero lo spazio occupato viene rimosso. A
 questo però si aggiunge una altra condizione, e cioè che non ci siano processi
-che abbiano detto file aperto. Come accennato questa proprietà viene spesso
-usata per essere sicuri di non lasciare file temporanei su disco in caso di
-crash dei programmi; la tecnica è quella di aprire il file e chiamare
-\texttt{unlink} subito dopo.
+che abbiano detto file aperto.  
+
+Questa proprietà viene spesso usata per essere sicuri di non lasciare file
+temporanei su disco in caso di crash dei programmi; la tecnica è quella di
+aprire il file e chiamare \func{unlink} subito dopo, in questo modo il
+contenuto del file è sempre disponibile all'interno del processo attraverso il
+suo file descriptor (vedi \secref{sec:file_fd}) fintanto che il processo non
+chiude il file, ma non ne resta traccia in nessuna directory, e lo spazio
+occupato su disco viene immediatamente rilasciato alla conclusione del
+processo (quando tutti i file vengono chiusi).
+
 
-\subsection{Le funzioni \texttt{remove} e \texttt{rename}}
-\label{sec:filedir_cre_canc}
+\subsection{Le funzioni \func{remove} e \func{rename}}
+\label{sec:file_remove}
 
 Al contrario di quanto avviene con altri unix in Linux non è possibile usare
-\texttt{unlink} sulle directory, per cancellare una directory si può usare la
-funzione \texttt{rmdir} (vedi \secref{sec:filedir_dir_creat_rem}), oppure la
-funzione \texttt{remove}. Questa è la funzione prevista dallo standard ANSI C
+\func{unlink} sulle directory; per cancellare una directory si può usare la
+funzione \func{rmdir} (vedi \secref{sec:file_dir_creat_rem}), oppure la
+funzione \func{remove}. Questa è la funzione prevista dallo standard ANSI C
 per cancellare un file o una directory (e funziona anche per i sistemi che non
-supportano i link diretti), che per i file è identica alla \texttt{unlink} e
-per le directory è identica alla \texttt{rmdir}:
-
+supportano i link diretti). Per i file è identica a \func{unlink} e per le
+directory è identica a \func{rmdir}:
 \begin{prototype}{stdio.h}{int remove(const char *pathname)}
-  Cancella un nome dal filesystem. Usa \texttt{unlink} per i file e
-  \texttt{rmdir} per le directory.
+  Cancella un nome dal filesystem. Usa \func{unlink} per i file e
+  \func{rmdir} per le directory.
   
   La funzione restituisce zero in caso di successo e -1 per un errore, nel
-  qual caso il file non viene toccato. Per i codici di errori vedi quanto
-  riportato nella descrizione di \texttt{unlink} e \texttt{rmdir}.
+  qual caso il file non viene toccato. Per i codici di errore vedi quanto
+  riportato nelle descrizioni di \func{unlink} e \func{rmdir}.
 \end{prototype}
 
-Per cambiare nome ad un file si usa invece la funzione \texttt{rename}, il
-vantaggio nell'uso di questa funzione al posto della chiamata successiva di
-\texttt{unlink} e \texttt{link} è che l'operazione è eseguita atomicamente, in
-questo modo non c'è la possibilità che un processo che cerchi di accedere al
-nuovo nome dopo che il vecchio è stato cambiato lo trovi mancante.
-
+Per cambiare nome ad un file o a una directory (che devono comunque essere
+nello stesso filesystem) si usa invece la funzione \func{rename}\footnote{la
+  funzione è definita dallo standard ANSI C solo per i file, POSIX estende la
+  funzione anche alle directory}, il cui prototipo è:
 \begin{prototype}{stdio.h}
-{int rename(const char *oldpath, const char *newpath)}
-  Rinomina un file, spostandolo fra directory diverse quando richiesto.
-
+  {int rename(const char *oldpath, const char *newpath)} 
+  
+  Rinomina \var{oldpath} in \var{newpath}, eseguendo se necessario lo
+  spostamento di un file fra directory diverse. Eventuali altri link diretti
+  allo stesso file non vengono influenzati.
+  
   La funzione restituisce zero in caso di successo e -1 per un errore, nel
-  qual caso il file non viene toccato. La variabile \texttt{errno} viene
-  settata secondo i seguenti codici di errore:
+  qual caso il file non viene toccato. La variabile \var{errno} viene settata
+  secondo i seguenti codici di errore:
   \begin{errlist} 
-  \item \texttt{EFAULT} la stringa \texttt{filename} è fuori dello spazio di
-    indirizzi del processo.
-  \item \texttt{EACCESS} Non c'è il permesso di scrittura per la directory in
-    cui si vuole creare il nuovo link o una delle directory del pathname non
-    consente la ricerca (permesso di esecuzione).
-  \item \texttt{EPERM} il pathname indica una directory o il filesystem che
-    contiene \texttt{filename} non consente l'operazione.
-  \item \texttt{EROFS} I file sono su un filesystem montato in sola lettura.
-  \item \texttt{ENAMETOOLONG} il pathname è troppo lungo.
-  \item \texttt{ENOENT} Uno dei componenti del pathname non esiste o è un link
-    simbolico spezzato.
-  \item \texttt{ENOTDIR} Uno dei componenti del pathname non è una directory.
-  \item \texttt{ENOMEM} il kernel non ha a disposizione memoria sufficiente a
-    completare l'operazione. 
-  \item \texttt{ELOOP} Ci sono troppi link simbolici nella risoluzione del
-    pathname.
-  \item \texttt{EISDIR} 
-  \item \texttt{EXDEV} 
-  \item \texttt{ENOTEMPTY} 
-  \item \texttt{EBUSY} 
-  \item \texttt{EINVAL} 
-  \item \texttt{EMLINK} 
-  \item \texttt{ENOSPC} 
-
-  \end{errlist}    
+  \item \macro{EISDIR} \var{newpath} è una directory mentre \var{oldpath} non
+    è una directory.
+  \item \macro{EXDEV} \var{oldpath} e \var{newpath} non sono sullo stesso
+    filesystem.
+  \item \macro{ENOTEMPTY} \var{newpath} è una directory già esistente e non
+    vuota.
+  \item \macro{EBUSY} o \var{oldpath} o \var{newpath} sono in uso da parte di
+    qualche processo (come directory di lavoro o come radice) o del sistema
+    (come mount point).
+  \item \macro{EINVAL} \var{newpath} contiene un prefisso di \var{oldpath} o
+    più in generale si è cercato di creare una directory come sottodirectory
+    di se stessa.
+  \item \macro{ENOTDIR} Uno dei componenti dei pathname non è una directory o
+    \var{oldpath} è una directory e \var{newpath} esiste e non è una
+    directory.
+  \end{errlist} 
+  ed inoltre \macro{EACCESS}, \macro{EPERM}, \macro{EMLINK}, \macro{ENOENT},
+  \macro{ENOMEM}, \macro{EROFS}, \macro{ELOOP} e \macro{ENOSPC}.
 \end{prototype}
 
+Il comportamento della funzione è diverso a seconda che si voglia rinominare
+un file o una directory; se ci riferisce a un file allora \var{newpath}, se
+esiste, non deve essere una directory (altrimenti si ha l'errore
+\macro{EISDIR}). Nel caso \var{newpath} indichi un file esistente questo viene
+cancellato e rimpiazzato (atomicamente).
+
+Se \var{oldpath} è una directory allora \var{newpath} se esiste deve essere
+una directory vuota, altrimenti si avranno gli errori \macro{ENOTDIR} (se non
+è una directory) o \macro{ENOTEMPTY} (se non è vuota). Chiaramente
+\var{newpath} non può contenere \var{oldpath} altrimenti si avrà un errore
+\macro{EINVAL}.
+
+Se \var{oldpath} si riferisce a un link simbolico questo sarà rinominato; se
+\var{newpath} è un link simbolico verrà cancellato come qualunque altro file.
+Infine qualora \var{oldpath} e \var{newpath} siano due nomi dello stesso file
+lo standard POSIX prevede che la funzione non dia errore, e non faccia nulla,
+lasciando entrambi i nomi; Linux segue questo standard, anche se come fatto
+notare dal manuale delle glibc, il comportamento più ragionevole sarebbe
+quello di cancellare \var{oldpath}.
+
+Il vantaggio nell'uso di questa funzione al posto della chiamata successiva di
+\func{link} e \func{unlink} è che l'operazione è eseguita atomicamente, non
+può esistere cioè nessun istante in cui un altro processo può trovare attivi
+entrambi i nomi dello stesso file, o, in caso di sostituzione di un file
+esistente, non trovare quest'ultimo prima che la sostituzione sia stata
+eseguita.
+
+In ogni caso se \var{newpath} esiste e l'operazione fallisce per un qualche
+motivo (come un crash del kernel), \func{rename} garantisce di lasciare
+presente una istanza di \var{newpath}, tuttavia nella sovrascrittura potrà
+esistere una finestra in cui sia \var{oldpath} che \var{newpath} fanno
+riferimento allo stesso file.
+
+
 \subsection{I link simbolici}
-\label{sec:filedir_sym_link}
+\label{sec:file_symlink}
 
-Siccome la funzione \texttt{link} crea riferimenti agli inodes, essa può
-funzionare soltanto per file che risiedono sullo stesso filesystem, dato che
-in questo caso è garantita l'unicità dell'inode, e solo per un filesystem di
-tipo unix.  Inoltre in Linux non è consentito eseguire un link diretto ad una
-directory.
+Come abbiamo visto in \secref{sec:file_link} la funzione \func{link} crea
+riferimenti agli inodes, pertanto può funzionare soltanto per file che
+risiedono sullo stesso filesystem e solo per un filesystem di tipo unix.
+Inoltre abbiamo visto che in Linux non è consentito eseguire un link diretto
+ad una directory.
 
 Per ovviare a queste limitazioni i sistemi unix supportano un'altra forma di
 link (i cosiddetti \textit{soft link} o \textit{symbolic link}), che sono,
-come avviene in altri sistemi operativi, dei file che contengono il
+come avviene in altri sistemi operativi, dei file speciali che contengono il
 semplicemente il riferimento ad un altro file (o directory). In questo modo è
-possibile effettuare link anche attraverso filesystem diversi e a directory, e
-pure a file che non esistono ancora.
+possibile effettuare link anche attraverso filesystem diversi, a file posti in
+filesystem che non supportano i link diretti, a delle directory, e anche a
+file che non esistono ancora.
 
 Il sistema funziona in quanto i link simbolici sono contrassegnati come tali
-al kernel (analogamente a quanto avviene per le directory) per cui la chiamata
-ad una \texttt{open} o una \texttt{stat} su un link simbolico comporta la
-lettura del contenuto del medesimo e l'applicazione della funzione al file
-specificato da quest'ultimo. Invece altre funzioni come quelle per cancellare
-o rinominare i file operano direttamente sul link simbolico. Inoltre esistono
-funzioni apposite, come la \texttt{readlink} e la \texttt{lstat} per accedere
-alle informazioni del link invece che a quelle del file a cui esso fa
-riferimento.
-
-Le funzioni per operare sui link simbolici sono le seguenti, esse sono tutte
-dichiarate nell'header file \texttt{unistd.h}.
-
+al kernel (analogamente a quanto avviene per le directory) per cui per alcune
+funzioni di libreria (come \func{open} o \func{stat}) dare come parametro un
+link simbolico comporta l'applicazione della funzione al file da esso
+specificato. La funzione che permette di creare un nuovo link simbolico è
+\func{symlink}; il suo prototipo è:
 \begin{prototype}{unistd.h}
-{int symlink(const char * oldname, const char * newname)}
-  Crea un nuovo link simbolico al file indicato da \texttt{oldname} dandogli
-  nome \texttt{newname}.
+  {int symlink(const char * oldpath, const char * newpath)} 
+  Crea un nuovo link simbolico di nome \func{newpath} il cui contenuto è
+  \func{oldpath}.
   
-  La funzione restituisce zero in caso di successo e -1 per un errore, in caso
-  di errore. La variabile \texttt{errno} viene settata secondo i codici di
-  errore standard di accesso ai files (trattati in dettaglio in
-  \secref{sec:filedir_access_control}) ai quali si aggiungono i seguenti:
+  La funzione restituisce zero in caso di successo e -1 per un errore, nel
+  qual caso la variabile \var{errno} restituisce i valori:
   \begin{errlist}
-  \item \texttt{EEXIST} Un file (o una directory) con quel nome esiste di
-    già.
-  \item \texttt{EROFS} La directory su cui si vuole inserire il nuovo link è
-    su un filesystem montato readonly.
-  \item \texttt{ENOSPC} La directory o il filesystem in cui si vuole creare il
-    link è piena e non c'è ulteriore spazio disponibile.
-  \item \texttt{ELOOP} Ci sono troppi link simbolici nella risoluzione di
-    \texttt{oldname} o di \texttt{newname}.
+  \item \macro{EPERM} il filesystem che contiene \var{newpath} non supporta i
+    link simbolici.
+  \item \macro{ENOENT} una componente di \var{newpath} non esiste o
+    \func{oldpath} è una stringa vuota.
+  \item \macro{EEXIST} esiste già un file \var{newpath}.
+  \item \macro{EROFS} \var{newpath} è su un filesystem montato in sola lettura.
   \end{errlist}
+  ed inoltre \macro{EFAULT}, \macro{EACCES}, \macro{ENAMETOOLONG},
+  \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP}, \macro{ENOSPC} e
+  \macro{EIO}.
 \end{prototype}
 
-Dato che la funzione \texttt{open} segue i link simbolici, è necessaria usare
-un'altra funzione quando si vuole leggere il contenuto di un link simbolico,
-questa funzione è la:
+Si tenga presente che la funzione non effettua nessun controllo sull'esistenza
+di un file di nome \var{oldpath}, ma si limita ad inserire quella stringa nel
+link simbolico. Pertanto un link simbolico può anche riferirsi ad un file che
+non esiste: quello che viene chiamato un \textit{dangling link}, letteralmente
+\textsl{link ciondolante}.
 
+
+Come accennato i link simbolici sono risolti automaticamente dal kernel
+all'invocazione delle varie system call; in \ntab\ si è riportato un elenco
+dei comportamenti delle varie funzioni di libreria che operano sui file nei
+confronti della risoluzione dei link simbolici, specificando quali seguono il
+link simbolico e quali invece possono operare direttamente sul suo contenuto.
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|c|c|}
+    \hline
+    \textbf{Funzione} & \textbf{Segue il link} & \textbf{Non segue il link} \\
+    \hline 
+    \hline 
+    \func{access}   & $\bullet$ &           \\
+    \func{chdir}    & $\bullet$ &           \\
+    \func{chmod}    & $\bullet$ &           \\
+    \func{chown}    &           & $\bullet$ \\
+    \func{creat}    & $\bullet$ &           \\
+    \func{exec}     & $\bullet$ &           \\
+    \func{lchown}   & $\bullet$ & $\bullet$ \\
+    \func{link}     &           &           \\
+    \func{lstat}    &           & $\bullet$ \\
+    \func{mkdir}    & $\bullet$ &           \\
+    \func{mkfifo}   & $\bullet$ &           \\
+    \func{mknod}    & $\bullet$ &           \\
+    \func{open}     & $\bullet$ &           \\
+    \func{opendir}  & $\bullet$ &           \\
+    \func{pathconf} & $\bullet$ &           \\
+    \func{readlink} &           & $\bullet$ \\
+    \func{remove}   &           & $\bullet$ \\
+    \func{rename}   &           & $\bullet$ \\
+    \func{stat}     & $\bullet$ &           \\
+    \func{truncate} & $\bullet$ &           \\
+    \func{unlink}   &           & $\bullet$ \\
+    \hline 
+  \end{tabular}
+  \caption{Uso dei link simbolici da parte di alcune funzioni.}
+  \label{tab:file_symb_effect}
+\end{table}
+
+Si noti che non si è specificato il comportamento delle funzioni che operano
+con i file descriptor, in quanto la risoluzione del link simbolico viene in
+genere effettuata dalla funzione che restituisce il file descriptor
+(normalmente la \func{open}) e tutte le operazioni seguenti fanno riferimento
+solo a quest'ultimo.
+
+Dato che, come indicato in \tabref{tab:file_symb_effect}, funzioni come la
+\func{open} seguono i link simbolici, occorrono funzioni apposite per accedere
+alle informazioni del link invece che a quelle del file a cui esso fa
+riferimento. Quando si vuole leggere il contenuto di un link simbolico si usa
+la funzione \func{readlink}, il cui prototipo è:
 \begin{prototype}{unistd.h}
 {int readlink(const char * path, char * buff, size\_t size)} 
-  Legge il contenuto del link simbolico indicato da \texttt{path} nel buffer
-  \texttt{buff} di dimensione \texttt{size}. Non chiude la stringa con un
-  carattere nullo e la tronca a \texttt{size} nel caso il buffer sia troppo
-  piccolo per contenerla.
+  Legge il contenuto del link simbolico indicato da \var{path} nel buffer
+  \var{buff} di dimensione \var{size}.
   
-  La funzione restituisce il numero di caratteri letti dentro \texttt{buff} o
-  -1 per un errore, in caso di errore. La variabile \texttt{errno} viene
-  settata secondo i codici di errore:
+  La funzione restituisce il numero di caratteri letti dentro \var{buff} o -1
+  per un errore, nel qual caso la variabile \var{errno} viene settata a:
   \begin{errlist}
-  \item \texttt{EEXIST} Un file (o una directory) con quel nome esiste di
-    già.
-  \item \texttt{EROFS} La directory su cui si vuole inserire il nuovo link è
-    su un filesystem montato readonly.
-  \item \texttt{ENOSPC} La directory o il filesystem in cui si vuole creare il
+  \item \macro{EINVAL} \var{file} non è un link simbolico o \var{size} non è
+    positiva. 
+  \item \macro{EROFS} La directory su cui si vuole inserire il nuovo link è
+    su un filesystem montato in sola lettura.
+  \item \macro{ENOSPC} La directory o il filesystem in cui si vuole creare il
     link è piena e non c'è ulteriore spazio disponibile.
-  \item \texttt{ELOOP} Ci sono troppi link simbolici nella risoluzione di
-    \texttt{oldname} o di \texttt{newname}.
-  \end{errlist}
-\end{prototype}
-
-
-\section{La manipolazione delle caratteristiche dei files}
-\label{sec:filedir_infos}
-
-Come spiegato in \secref{sec:filedir_file_handling} tutte le informazioni
-generali relative alle caratteristiche di ciascun file sono mantenute
-nell'inode. Vedremo in questa sezione come sia possibile accedervi usando la
-funzione \texttt{stat} ed esamineremo alcune funzioni utilizzabili per
-manipolare una parte di questa informazione. Tutto quello che invece riguarda
-il meccanismo di controllo di accesso ad i file e le relative funzioni di
-manipolazione sarà invece esaminanto in \secref{sec:filedir_access_control}.
-
-
-\subsection{Le funzioni \texttt{stat}, \texttt{fstat} e \texttt{lstat}}
-\label{sec:filedir_stat}
-
-La lettura delle informazioni relative ai file è fatta attraverso la famiglia
-delle funzioni \texttt{stat}, questa è la funzione che il comando \texttt{ls}
-usa per poter stampare tutti i dati dei files; il prototipo della funzione è
-il seguente;
-\begin{prototype}{sys/stat.h}
-{int stat(const char *file_name, struct stat *buf)}
-  
-  La funzione restituisce zero in caso di successo e -1 per un errore, in caso
-  di errore \texttt{errno} viene settato ai valori:
-  \begin{errlist}
-  \item \texttt{EACCESS} Non c'è il permesso di accedere al file.
-  \item \texttt{ENOTDIR} Una componente del pathname non è una directory.
-  \item \texttt{EMLOOP} Ci sono troppi link simbolici nel pathname.
-  \item \texttt{EFAULT} I puntatori usati sono fuori dallo spazio di indirizzi
-    del processo.
-  \item \texttt{ENOMEM} il kernel non ha a disposizione memoria sufficiente a
-    completare l'operazione. 
-  \item \texttt{ENAMETOOLONG} Il filename è troppo lungo.
   \end{errlist}
+  ed inoltre \macro{ENOTDIR}, \macro{ENAMETOOLONG}, \macro{ENOENT},
+  \macro{EACCES}, \macro{ELOOP}, \macro{EIO}, \macro{EFAULT} e \macro{ENOMEM}.
 \end{prototype}
 
-\subsection{I tipi di file}
-\label{sec:filedir_file_types}
-
-\subsection{La dimensione dei file}
-\label{sec:filedir_file_size}
-
-\subsection{I tempi dei file}
-\label{sec:filedir_file_times}
+La funzione apre il link simbolico, ne legge il contenuto, lo scrive nel
+buffer, e lo richiude. Si tenga presente che la funzione non termina la
+stringa con un carattere nullo e la tronca alla dimensione specificata da
+\var{size} per evitare di sovrascrivere oltre le dimensioni del buffer.
 
-\subsection{La funzione \texttt{utime}}
-\label{sec:filedir_utime}
 
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=5cm]{img/link_loop}
+  \caption{Esempio di loop nel filesystem creato con un link simbolico.}
+  \label{fig:file_link_loop}
+\end{figure}
 
-
-
-\section{Il controllo di accesso ai file}
-\label{sec:filedir_access_control}
-
-
-\subsection{I flag \texttt{suid} e \texttt{sgid}}
-\label{sec:filedir_suid_sgid}
-
-\subsection{La titolarità di nuovi files e directory}
-\label{sec:filedir_ownership}
-
-\subsection{La funzione \texttt{access}}
-\label{sec:filedir_access}
-
-\subsection{La funzione \texttt{umask}}
-\label{sec:filedir_umask}
-
-\subsection{Le funzioni \texttt{chmod} e \texttt{fchmod}}
-\label{sec:filedir_chmod}
-
-\subsection{Il flag \texttt{sticky}}
-\label{sec:filedir_sticky}
-
-\subsection{Le funzioni \texttt{chown}, \texttt{fchown} e \texttt{lchown}}
-\label{sec:filedir_chown}
-
-
-\section{La manipolazione delle directories}
-\label{sec:filedir_dir_handling}
-
-\subsection{Le funzioni \texttt{mkdir} e \texttt{rmdir}} 
-\label{sec:filedir_dir_creat_rem}
-
-Per creare una nuova directory si può usare la seguente funzione, omonima
-dell'analogo comando di shell \texttt{mkdir}; per accedere ai tipi usati
-programma deve includere il file \texttt{sys/types.h}.
-
+Un caso comune che si può avere con i link simbolici è la creazione dei
+cosiddetti \textit{loop}. La situazione è illustrata in \curfig, che riporta
+la struttura della directory \file{/boot}. Come si vede si è creato al suo
+interno un link simbolico che punta di nuovo a \file{/boot}\footnote{Questo
+  tipo di loop è stato effettuato per poter permettere a \cmd{grub} (un
+  bootloader estremamente avanzato in grado di accedere direttamente
+  attraverso vari filesystem al file da lanciare come sistema operativo) di
+  vedere i file in questa directory, che è montata su una partizione separata
+  (e che grub vedrebbe come radice), con lo stesso path con cui verrebbero
+  visti dal sistema operativo.}. 
+
+Questo può causare problemi per tutti quei programmi che effettuano la
+scansione di una directory senza tener conto dei link simbolici, ad esempio se
+lanciassimo un comando del tipo \cmd{grep -r linux *}, il loop nella directory
+porterebbe il comando ad esaminare \file{/boot}, \file/{boot/boot},
+\file/{boot/boot/boot} e così via.
+
+Per questo motivo il kernel e le librerie prevedono che nella risoluzione di
+un pathname possano essere seguiti un numero limitato di link simbolici, il
+cui valore limite è specificato dalla costante \macro{MAXSYMLINKS}; qualora
+questo limite venga superato viene generato un errore ed \var{errno} viene
+settata al valore \macro{ELOOP}.
+
+Un punto da tenere sempre presente è il fatto che un link simbolico può fare
+riferimento anche ad un file che non esiste; ad esempio possiamo creare un
+file temporaneo nella nostra directory con un link del tipo:
+\begin{verbatim}
+$ ln -s /tmp/tmp_file temporaneo
+\end{verbatim}%$
+anche se \file{/tmp/tmp\_file} non esiste. Questo può generare confusione, in
+quanto aprendo in scrittura \file{temporaneo} verrà creato
+\file{/tmp/tmp\_file} e scritto; ma accedendo in sola lettura a
+\file{temporaneo}, ad esempio con \cmd{cat}, otterremmo:
+\begin{verbatim}
+$ cat temporaneo
+cat: temporaneo: No such file or directory
+\end{verbatim}%$
+con un errore che può sembrare sbagliato, dato che invece \cmd{ls} ci
+mostrerebbe l'esistenza di \file{temporaneo}.
+
+
+\subsection{Le funzioni \func{mkdir} e \func{rmdir}} 
+\label{sec:file_dir_creat_rem}
+
+Queste due funzioni servono per creare e cancellare delle directory e sono
+omonime degli analoghi comandi di shell.  Per poter accedere ai tipi usati
+da queste funzioni si deve includere il file \file{sys/types.h}, il
+prototipo della prima è:
 \begin{prototype}{sys/stat.h}
-{int mkdir (const char * dirname, mode\_t mode)}
-  Questa funzione crea una nuova directory vuota con il nome indicato da
-  \texttt{dirname}, assegnandole i permessi indicati da \texttt{mode}. Il nome
-  può essere indicato con il pathname assoluto o relativo.
+  {int mkdir (const char * dirname, mode\_t mode)} 
+  Crea una nuova directory vuota con il nome indicato da \var{dirname},
+  assegnandole i permessi indicati da \var{mode}. Il nome può essere indicato
+  con il pathname assoluto o relativo.
   
-  La funzione restituisce zero in caso di successo e -1 per un errore, in caso
-  di errore \texttt{errno} viene settata secondo i codici di errore standard
-  di accesso ai files (trattati in dettaglio in
-  \secref{sec:filedir_access_control}) ai quali si aggiungono i seguenti:
+  La funzione restituisce zero in caso di successo e -1 per un errore, nel
+  qual caso \var{errno} assumerà i valori:
   \begin{errlist}
-  \item \texttt{EACCESS} 
+  \item \macro{EEXIST} Un file (o una directory) con quel nome esiste di già. 
+  \item \macro{EACCESS} 
     Non c'è il permesso di scrittura per la directory in cui si vuole inserire
     la nuova directory.
-  \item \texttt{EEXIST} Un file (o una directory) con quel nome esiste di già. 
-  \item \texttt{EMLINK} La directory in cui si vuole creare la nuova directory
+  \item \macro{EMLINK} La directory in cui si vuole creare la nuova directory
     contiene troppi file. Sotto Linux questo normalmente non avviene perché il
     filesystem standard consente la creazione di un numero di file maggiore di
-    quelli che possono essere contenuti nell'hard-disk, ma potendo avere a che
+    quelli che possono essere contenuti nel disco, ma potendo avere a che
     fare anche con filesystem di altri sistemi questo errore può presentarsi.
-  \item \texttt{ENOSPC} Non c'è abbastanza spazio sul file system per creare
-    la nuova directory.
-  \item \texttt{EROFS} La directory su cui si vuole inserire la nuova
-    directory è su un filesystem montato readonly.
+  \item \macro{ENOSPC} Non c'è abbastanza spazio sul file system per creare
+    la nuova directory o si è esaurita la quota disco dell'utente.
   \end{errlist}
+  ed inoltre anche \macro{EPERM}, \macro{EFAULT}, \macro{ENAMETOOLONG},
+  \macro{ENOENT}, \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP},
+  \macro{EROFS}.
 \end{prototype}
  
+La funzione crea una nuova directory vuota (che contiene solo le due voci
+standard \file{.} e \file{..}). I permessi di accesso (vedi la trattazione in
+\secref{sec:file_access_control}) specificati da \var{mode} (i cui possibili
+valori sono riportati in \tabref{tab:file_permission_const}) sono modificati
+dalla maschera di creazione dei file (si veda \secref{sec:file_umask}).  La
+titolarità della nuova directory è settata secondo quanto riportato in
+\secref{sec:file_ownership}.
+
+La seconda funzione serve ad eliminare una directory già vuota (la directory
+deve cioè contenere soltanto le due voci standard \file{.} e \file{..}); il
+suo prototipo è:
+\begin{prototype}{sys/stat.h}
+  {int rmdir (const char * dirname)} Cancella la directory \var{dirname}, che
+  deve essere vuota.  Il nome può essere indicato con il pathname assoluto o
+  relativo.
+  
+  La funzione restituisce zero in caso di successo e -1 per un errore, nel
+  qual caso \var{errno} assumerà i valori:
+  \begin{errlist}
+  \item \macro{EPERM} Il filesystem non supporta la cancellazione di
+    directory, oppure la directory che contiene \var{dirname} ha lo sticky bit
+    settato e l'\textit{effective user id} del processo non corrisponde al
+    proprietario della directory. 
+  \item \macro{EACCESS} Non c'è il permesso di scrittura per la directory che
+    contiene la directory che si vuole cancellare, o non c'è il permesso di
+    attraversare (esecuzione) una delle directory specificate in
+    \var{dirname}.
+  \item \macro{EBUSY} La directory specificata è la directory di lavoro o la
+    radice di qualche processo.
+  \item \macro{ENOTEMPTY} La directory non è vuota.
+  \end{errlist}
+  ed inoltre anche \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT},
+  \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP}, \macro{EROFS}.
+\end{prototype}
+
+La modalità con cui avviene la cancellazione è analoga a quella di
+\func{unlink}, fintanto che il numero di link all'inode della directory non
+diventa nullo e nessun processo ha la directory aperta lo spazio occupato su
+disco non viene rilasciato. Se un processo ha la directory aperta la funzione
+rimuove il link all'inode e nel caso sia l'ultimo, pure le voci standard
+\file{.} e \file{..}, ed il kernel non consentirà di creare più nuovi file
+nella directory.
+
 
 \subsection{Accesso alle directory}
-\label{sec:filedir_dir_read}
+\label{sec:file_dir_read}
 
 Benché le directory siano oggetti del filesystem come tutti gli altri non ha
 ovviamente senso aprirle come fossero dei file di dati. Può però essere utile
 poterne leggere il contenuto ad esempio per fare la lista dei file che esse
-contengono o ricerche sui medesimi.
+contengono o ricerche sui medesimi. Solo il kernel scrivere direttamente in
+una directory (onde evitare inconsistenze all'interno del filesystem), i
+processi devono creare i file usando le apposite funzioni.
 
 Per accedere al contenuto delle directory si usano i cosiddetti
 \textit{directory streams} (chiamati così per l'analogia con i file stream);
-la funzione \texttt{opendir} apre uno di questi stream e la funzione
-\texttt{readdir} legge il contenuto della directory, i cui elementi sono le
-\textit{directory entries} (da distinguersi da quelle della cache di cui
-parlavamo in \secref{sec:fileintr_vfs}) in una opportuna struttura
-\texttt{struct dirent}.
+la funzione \func{opendir} apre uno di questi stream e la funzione
+\func{readdir} legge il contenuto della directory, i cui elementi sono le
+\textit{directory entry} (da distinguersi da quelle della cache di cui
+parlavamo in \secref{sec:file_vfs}) in una opportuna struttura \var{struct
+  dirent}.
+
+(NdA Il resto va scritto!!! É noioso e lo farò più avanti).
 
 
 \subsection{La directory di lavoro}
-\label{sec:filedir_work_dir}
+\label{sec:file_work_dir}
 
 A ciascun processo è associato ad una directory nel filesystem che è chiamata
 directory corrente o directory di lavoro (\textit{current working directory})
 che è quella a cui si fa riferimento quando un filename è espresso in forma
-relativa (relativa appunto a questa directory).
+relativa, dove il relativa fa riferimento appunto a questa directory.
 
 Quando un utente effettua il login questa directory viene settata alla
-cosiddetta \textit{home directory} del suo account, il comando \texttt{cd}
-della shell consente di cambiarla a piacere, spostandosi da una directory ad
-un'altra.  Siccome la directory corrente resta la stessa quando viene creato
-un processo figlio, la directory corrente della shell diventa anche la
+\textit{home directory} del suo account. Il comando \cmd{cd} della shell
+consente di cambiarla a piacere, spostandosi da una directory ad un'altra, il
+comando \cmd{pwd} la stampa sul terminale.  Siccome la directory corrente
+resta la stessa quando viene creato un processo figlio (vedi
+\secref{sec:proc_fork}), la directory corrente della shell diventa anche la
 directory corrente di qualunque comando da essa lanciato.
 
-Le funzioni qui descritte servono esaminare e cambiare la directory di lavoro
-corrente. 
-
+In genere il kernel tiene traccia per ciascun processo dell'inode della
+directory di lavoro corrente, per ottenere il pathname occorre usare una
+apposita funzione di libreria,  \func{getcwd}, il cui prototipo è:
 \begin{prototype}{unistd.h}{char * getcwd (char * buffer, size\_t size)}
   Restituisce il filename completo della directory di lavoro corrente nella
-  stringa puntata da \texttt{buffer}, che deve essere precedentemente
-  allocata, per una dimensione massima di \texttt{size}. Si può anche
-  specificare un puntatore nullo come \textit{buffer}, nel qual caso la
-  stringa sarà allocata automaticamente per una dimensione pari a
-  \texttt{size} qualora questa sia diversa da zero, o della lunghezza esatta
-  del pathname altrimenti. In questo caso si deve ricordare di disallocare la
-  stringa una volta cessato il suo utilizzo.
+  stringa puntata da \var{buffer}, che deve essere precedentemente
+  allocata, per una dimensione massima di \var{size}.
   
-  La funzione restituisce il puntatore \texttt{buffer} se riesce,
-  \texttt{NULL} se fallisce, in quest'ultimo caso la variabile
-  \texttt{errno} è settata con i seguenti codici di errore:
+  La funzione restituisce il puntatore \var{buffer} se riesce, \macro{NULL} se
+  fallisce, in quest'ultimo caso la variabile \var{errno} è settata con i
+  seguenti codici di errore:
   \begin{errlist}
-  \item \texttt{EINVAL} L'argomento \texttt{size} è zero e \texttt{buffer} non
+  \item \macro{EINVAL} L'argomento \var{size} è zero e \var{buffer} non
     è nullo.
-  \item \texttt{ERANGE} L'argomento \texttt{size} è più piccolo della
+  \item \macro{ERANGE} L'argomento \var{size} è più piccolo della
     lunghezza del pathname. 
-  \item \texttt{EACCESS} Manca il permesso di lettura o di ricerca su uno dei
+  \item \macro{EACCESS} Manca il permesso di lettura o di ricerca su uno dei
     componenti del pathname (cioè su una delle directory superiori alla
     corrente).
   \end{errlist}
 \end{prototype}
 
-Di questa funzione esiste una versione \texttt{char * getwd(char * buffer)}
+Il buffer deve essere sufficientemente lungo da poter contenere il pathname
+completo più lo zero di terminazione della stringa. Qualora esso ecceda le
+dimensioni specificate con \var{size} la funzione restituisce un errore.  Si
+può anche specificare un puntatore nullo come \var{buffer}\footnote{questa è
+  una estensione allo standard POSIX.1, supportata da Linux}, nel qual caso la
+stringa sarà allocata automaticamente per una dimensione pari a \var{size}
+qualora questa sia diversa da zero, o della lunghezza esatta del pathname
+altrimenti. In questo caso ci si deve ricordare di disallocare la stringa una
+volta cessato il suo utilizzo.
+
+Di questa funzione esiste una versione \func{char * getwd(char * buffer)}
 fatta per compatibilità all'indietro con BSD, che non consente di specificare
 la dimensione del buffer; esso deve essere allocato in precedenza ed avere una
-dimensione superiore a \texttt{PATH\_MAX} (di solito 256 bytes, vedi
-\secref{sec:xxx_limits}; il problema è che in Linux non esiste una dimensione
+dimensione superiore a \macro{PATH\_MAX} (di solito 256 byte, vedi
+\secref{sec:sys_limits}); il problema è che in Linux non esiste una dimensione
 superiore per un pathname, per cui non è detto che il buffer sia sufficiente a
 contenere il nome del file, e questa è la ragione principale per cui questa
 funzione è deprecata.
 
-Una seconda funzione simile è \texttt{char * get\_current\_dir\_name(void)}
-che è sostanzialmente equivalente ad una \texttt{getcwd(NULL, 0)}, con la sola
-differenza che essa ritorna il valore della variabile di ambiente
-\texttt{PWD}, che essendo costruita dalla shell può contenere anche dei
-riferimenti simbolici.
-
-Come già detto in unix anche le directory sono file, è possibile pertanto
-riferirsi ad esse tramite il file descriptor dell'interfaccia a basso livello,
-e non solo tramite il filename; per questo motivo ci sono due diverse funzioni
-per cambiare directory di lavoro.
-
-\begin{prototype}{unistd.h}{int chdir (const char * pathname)}
-  Come dice il nome (che significa \textit{change directory}) questa funzione
-  serve a cambiare la directory di lavoro a quella specificata dal pathname
-  contenuto nella stringa \texttt{pathname}.
-\end{prototype}
+Una seconda funzione simile è \func{char * get\_current\_dir\_name(void)} che
+è sostanzialmente equivalente ad una \func{getcwd(NULL, 0)}, con la sola
+differenza che essa ritorna il valore della variabile di ambiente \macro{PWD},
+che essendo costruita dalla shell può contenere anche dei riferimenti
+simbolici; nel caso di  \func{getcwd} infatti, essendo il pathname ricavato
+risalendo all'indietro l'albero della directory, si perderebbe traccia di ogni
+passaggio attraverso eventuali pathname.
+
+Altre due funzioni, \func{chdir} e \func{fchdir}, vengono usate, come dice il
+nome (che deriva da \textit{change directory}), per cambiare la directory di
+lavoro corrente. Dato che anche le directory sono file, è possibile riferirsi
+ad esse anche tramite il file descriptor dell'interfaccia a basso livello, e
+non solo tramite il filename, i prototipi di queste funzioni sono:
+\begin{functions}
+  \headdecl{unistd.h} 
+  \funcdecl{int chdir (const char * path)} 
+  Cambia la directory di lavoro corrente a quella specificata dal pathname
+  contenuto nella stringa \var{path}.
   
-\begin{prototype}{unistd.h}{int fchdir (int filedes)} 
-  Analoga alla precedente, ma usa un file descriptor invece del pathname.
+  \funcdecl{int fchdir (int fd)} Analoga alla precedente, ma
+  usa un file descriptor invece del pathname.
   
   Entrambe le funzioni restituiscono zero in caso di successo e -1 per un
-  errore, in caso di errore \texttt{errno} viene settata secondo i codici di
-  errore standard di accesso ai files (trattati in dettaglio in
-  \secref{sec:filedir_access_control}) ai quali si aggiunge il codice
-  \texttt{ENOTDIR} nel caso il \texttt{filename} indichi un file che non sia
-  una directory.
+  errore, in caso di errore \var{errno} viene settata per \func{chdir} ai
+  valori:
+  \begin{errlist}
+  \item \macro{ENOTDIR} Uno dei componenti di \var{path} non è una directory. 
+  \item \macro{EACCESS} Manca il permesso di ricerca su uno dei componenti di
+    \func{path}.
+  \end{errlist}
+  ed inoltre \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT},
+  \macro{ENOMEM}, \macro{ELOOP} e \macro{EIO}. Per \func{fchdir} invece gli
+  errori sono \macro{EBADF} e \macro{EACCES}.
+\end{functions}
+
+
+
+\section{La manipolazione delle caratteristiche dei files}
+\label{sec:file_infos}
+
+Come spiegato in \secref{sec:file_filesystem} tutte le informazioni
+generali relative alle caratteristiche di ciascun file, a partire dalle
+informazioni relative al controllo di accesso, sono mantenute nell'inode.
+
+Vedremo in questa sezione come sia possibile leggere tutte queste informazioni
+usando la funzione \func{stat}, che permette l'accesso a tutti i dati
+memorizzati nell'inode; esamineremo poi le varie funzioni usate per manipolare
+tutte queste informazioni (eccetto quelle che riguardano la gestione del
+controllo di accesso, trattate in in \secref{sec:file_access_control}).
+
+
+\subsection{Le funzioni \func{stat}, \func{fstat} e \func{lstat}}
+\label{sec:file_stat}
+
+La lettura delle informazioni relative ai file è fatta attraverso la famiglia
+delle funzioni \func{stat}; questa è la funzione che ad esempio usa il comando
+\cmd{ls} per poter ottenere e mostrare tutti i dati dei files. I prototipi di
+queste funzioni sono i seguenti:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/stat.h} 
+  \headdecl{unistd.h}
+
+  \funcdecl{int stat(const char *file\_name, struct stat *buf)} Legge le
+  informazione del file specificato da \var{file\_name} e le inserisce in
+  \var{buf}.
+  
+  \funcdecl{int lstat(const char *file\_name, struct stat *buf)} Identica a
+  \func{stat} eccetto che se il \var{file\_name} è un link simbolico vengono
+  lette le informazioni relativa ad esso e non al file a cui fa riferimento.
+  
+  \funcdecl{int fstat(int filedes, struct stat *buf)} Identica a \func{stat}
+  eccetto che si usa con un file aperto, specificato tramite il suo file
+  descriptor \var{filedes}.
+  
+  Le funzioni restituiscono zero in caso di successo e -1 per un errore, in
+  caso di errore \var{errno} può assumere uno dei valori: \macro{EBADF},
+  \macro{ENOENT}, \macro{ENOTDIR}, \macro{ELOOP}, \macro{EFAULT},
+  \macro{EACCESS}, \macro{ENOMEM}, \macro{ENAMETOOLONG}.
+\end{functions}
+
+La struttura \var{stat} è definita nell'header \file{sys/stat.h} e in
+generale dipende dall'implementazione, la versione usata da Linux è mostrata
+in \nfig, così come riportata dalla man page (in realtà la definizione
+effettivamente usata nel kernel dipende dall'architettura e ha altri campi
+riservati per estensioni come tempi più precisi, o per il padding dei campi).
+
+\begin{figure}[!htb]
+  \footnotesize
+  \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+struct stat {
+    dev_t         st_dev;      /* device */
+    ino_t         st_ino;      /* inode */
+    mode_t        st_mode;     /* protection */
+    nlink_t       st_nlink;    /* number of hard links */
+    uid_t         st_uid;      /* user ID of owner */
+    gid_t         st_gid;      /* group ID of owner */
+    dev_t         st_rdev;     /* device type (if inode device) */
+    off_t         st_size;     /* total size, in bytes */
+    unsigned long st_blksize;  /* blocksize for filesystem I/O */
+    unsigned long st_blocks;   /* number of blocks allocated */
+    time_t        st_atime;    /* time of last access */
+    time_t        st_mtime;    /* time of last modification */
+    time_t        st_ctime;    /* time of last change */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{stat} per la lettura delle informazioni dei 
+    file}
+  \label{fig:file_stat_struct}
+\end{figure}
+
+Si noti come i vari membri della struttura siano specificati come tipi nativi
+del sistema (di quelli definiti in \tabref{tab:xxx_sys_types}, e dichiarati in
+\file{sys/types.h}). 
+
+
+\subsection{I tipi di file}
+\label{sec:file_types}
+
+Come riportato in \tabref{tab:file_file_types} in Linux oltre ai file e
+alle directory esistono vari altri oggetti che possono stare su un filesystem;
+il tipo di file è ritornato dalla \func{stat} nel campo \var{st\_mode}
+(che è quello che contiene anche le informazioni relative ai permessi).
+
+Dato che il valore numerico può variare a seconda delle implementazioni, lo
+standard POSIX definisce un insieme di macro per verificare il tipo di files,
+queste vengono usate anche da Linux che supporta pure le estensioni per link
+simbolici e socket definite da BSD, l'elenco completo di tutte le macro è
+riportato in \ntab.
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Macro} & \textbf{Tipo del file} \\
+    \hline
+    \hline
+    \macro{S\_ISREG(m)}  & file regolare \\
+    \macro{S\_ISDIR(m)}  & directory \\
+    \macro{S\_ISCHR(m)}  & device a caratteri \\
+    \macro{S\_ISBLK(m)}  & device a blocchi\\
+    \macro{S\_ISFIFO(m)} & fifo \\
+    \macro{S\_ISLNK(m)}  & link simbolico \\
+    \macro{S\_ISSOCK(m)} & socket \\
+    \hline    
+  \end{tabular}
+  \caption{Macro per i tipi di file (definite in \texttt{sys/stat.h})}
+  \label{tab:file_type_macro}
+\end{table}
+
+Oltre a queste macro è possibile usare direttamente il valore di
+\var{st\_mode} per ricavare il significato dei vari bit in esso memorizzati,
+per questo sempre in \file{sys/stat.h} sono definiti i flag riportati in
+\ntab:
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|c|l|}
+    \hline
+    \textbf{Flag} & \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \macro{S\_IFMT}   &  0170000 & bitmask per i bit del tipo di file \\
+    \macro{S\_IFSOCK} &  0140000 & socket             \\
+    \macro{S\_IFLNK}  &  0120000 & link simbolico     \\
+    \macro{S\_IFREG}  &  0100000 & file regolare      \\ 
+    \macro{S\_IFBLK}  &  0060000 & device a blocchi   \\
+    \macro{S\_IFDIR}  &  0040000 & directory          \\ 
+    \macro{S\_IFCHR}  &  0020000 & device a caratteri \\
+    \macro{S\_IFIFO}  &  0010000 & fifo               \\
+    \hline
+    \macro{S\_ISUID}  &  0004000 & set UID bit   \\
+    \macro{S\_ISGID}  &  0002000 & set GID bit   \\
+    \macro{S\_ISVTX}  &  0001000 & sticky bit    \\
+    \hline
+%    \macro{S\_IRWXU}  &  00700   & bitmask per i permessi del proprietario  \\
+    \macro{S\_IRUSR}  &  00400   & il proprietario ha permesso di lettura   \\
+    \macro{S\_IWUSR}  &  00200   & il proprietario ha permesso di scrittura \\
+    \macro{S\_IXUSR}  &  00100   & il proprietario ha permesso di esecuzione\\
+    \hline
+%    \macro{S\_IRWXG}  &  00070   & bitmask per i permessi del gruppo        \\
+    \macro{S\_IRGRP}  &  00040   & il gruppo ha permesso di lettura         \\
+    \macro{S\_IWGRP}  &  00020   & il gruppo ha permesso di scrittura       \\
+    \macro{S\_IXGRP}  &  00010   & il gruppo ha permesso di esecuzione      \\
+    \hline
+%    \macro{S\_IRWXO}  &  00007   & bitmask per i permessi di tutti gli altri\\
+    \macro{S\_IROTH}  &  00004   & gli altri hanno permesso di lettura      \\
+    \macro{S\_IWOTH}  &  00002   & gli altri hanno permesso di esecuzione   \\
+    \macro{S\_IXOTH}  &  00001   & gli altri hanno permesso di esecuzione   \\
+    \hline    
+  \end{tabular}
+  \caption{Costanti per l'identificazione dei vari bit che compongono il campo
+    \var{st\_mode} (definite in \file{sys/stat.h})}
+  \label{tab:file_mode_flags}
+\end{table}
+
+Il primo valore definisce la maschera dei bit usati nei quali viene
+memorizzato il tipo di files, mentre gli altri possono essere usati per
+effettuare delle selezioni sul tipo di file voluto, combinando opportunamente
+i vari flag; ad esempio se si volesse controllare se un file è una directory o
+un file ordinario si potrebbe definire la condizione:
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+#define IS_FILE_DIR(x) (((x) & S_IFMT) & (S_IFDIR | S_IFREG))
+\end{lstlisting}
+in cui prima si estraggono da \var{st\_mode} i bit relativi al tipo di file e
+poi si effettua il confronto con la combinazione di tipi scelta.
+
+
+\subsection{La dimensione dei file}
+\label{sec:file_file_size}
+
+Il membro \var{st\_size} contiene la dimensione del file in byte (se il file
+è un file normale, nel caso di un link simbolico al dimensione è quella del
+pathname che contiene). 
+
+Il campo \var{st\_blocks} definisce la lunghezza del file in blocchi di 512
+byte. Il campo \var{st\_blksize} infine definisce la dimensione preferita per
+i trasferimenti sui file (che è la dimensione usata anche dalle librerie del C
+per l'interfaccia degli stream); scrivere sul file a blocchi di dati di
+dimensione inferiore sarebbe inefficiente.
+
+Si tenga conto che lunghezza del file riportata in \var{st\_size} non è detto
+che corrisponda all'occupazione dello spazio su disco per via della possibile
+esistenza dei cosiddetti \textsl{buchi} (detti normalmente \textit{holes}) che
+si formano tutte le volte che si va a scrivere su un file dopo aver eseguito
+una \func{seek} (vedi \secref{sec:file_lseek}) oltre la sua conclusione
+corrente.
+
+In tal caso si avranno differenti risultati a seconda del modi in cui si
+calcola la lunghezza del file, ad esempio il comando \cmd{du}, (che riporta il
+numero di blocchi occupati) potrà dare una dimensione inferiore, mentre se si
+legge dal file (ad esempio usando il comando \cmd{wc -c}), dato che in tal
+caso per le parti non scritte vengono restituiti degli zeri, si avrà lo stesso
+risultato di \cmd{ls}.
+
+Se è sempre possibile allargare un file, scrivendoci sopra od usando la
+funzione \func{seek} per spostarsi oltre la sua fine, esistono anche casi in
+cui si può avere bisogno di effettuare un troncamento, scartando i dati
+presenti al di là della dimensione scelta come nuova fine del file.
+
+Un file può sempre essere troncato a zero aprendolo con il flag
+\macro{O\_TRUNC}, ma questo è un caso particolare; per qualunque altra
+dimensione si possono usare le due funzioni:
+\begin{functions}
+  \headdecl{unistd.h} \funcdecl{int truncate(const char *file\_name, off\_t
+    length)} Fa si che la dimensione del file \var{file\_name} sia troncata ad
+    un valore massimo specificato da \var{lenght}. 
+  
+  \funcdecl{int ftruncate(int fd, off\_t length))} Identica a \func{truncate}
+  eccetto che si usa con un file aperto, specificato tramite il suo file
+  descriptor \var{fd}.
+  
+  Le funzioni restituiscono zero in caso di successo e -1 per un errore, nel
+  qual caso \var{errno} viene settato opportunamente; per \func{ftruncate} si
+  hanno i valori:
+  \begin{errlist}
+  \item \macro{EBADF} \var{fd}  non è un file descriptor.
+  \item \macro{EINVAL} \var{fd} è un riferimento ad un socket, non a un file
+    o non è aperto in scrittura.
+  \end{errlist}
+  per \func{truncate} si hanno:
+  \begin{errlist}
+  \item \macro{EACCES} il file non ha permesso di scrittura o non si ha il
+    permesso di esecuzione una delle directory del pathname. 
+  \item \macro{ETXTBSY} Il file è un programma in esecuzione.
+  \end{errlist}
+  ed anche \macro{ENOTDIR}, \macro{ENAMETOOLONG}, \macro{ENOENT},
+  \macro{EROFS}, \macro{EIO}, \macro{EFAULT}, \macro{ELOOP}.
+\end{functions}
+
+Se il file è più lungo della lunghezza specificata i dati in eccesso saranno
+perduti; il comportamento in caso di lunghezza inferiore non è specificato e
+dipende dall'implementazione: il file può essere lasciato invariato o esteso
+fino alla lunghezza scelta; in quest'ultimo caso lo spazio viene riempito con
+zeri (e in genere si ha la creazione di un \textit{hole} nel file).
+
+
+\subsection{I tempi dei file}
+\label{sec:file_file_times}
+
+Il sistema mantiene per ciascun file tre tempi. Questi sono registrati
+nell'inode insieme agli altri attributi del file e possono essere letti
+tramite la funzione \func{stat}, che li restituisce attraverso tre campi della
+struttura \var{stat} di \figref{fig:file_stat_struct}. Il significato di detti
+tempi e dei relativi campi è riportato nello schema in \ntab:
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|c|l|l|c|}
+    \hline
+    \textbf{Membro} & \textbf{Significato} & \textbf{Funzione} 
+    & \textbf{Opzione} \\
+    \hline
+    \hline
+    \var{st\_atime}& ultimo accesso ai dati del file &\func{read}& \cmd{-u}\\ 
+    \var{st\_mtime}& ultima modifica ai dati del file &\func{write}& default\\ 
+    \var{st\_ctime}& ultima modifica ai dati dell'inode&\func{chmod}, 
+    \func{utime} & \cmd{-c} \\ 
+    \hline
+  \end{tabular}
+  \caption{I tre tempi associati a ciascun file}
+  \label{tab:file_file_times}
+\end{table}
+
+Il primo punto da tenere presente è la differenza fra il cosiddetto tempo di
+modifica (il \textit{modification time} \var{st\_mtime}) e il tempo di
+cambiamento di stato (il \textit{change time} \var{st\_ctime}). Il primo
+infatti fa riferimento ad una modifica del contenuto di un file, mentre il
+secondo ad una modifica dell'inode; siccome esistono molte operazioni (come la
+funzione \func{link} e molte altre che vedremo in seguito) che modificano solo
+le informazioni contenute nell'inode senza toccare il file, diventa necessario
+l'utilizzo di un altro tempo.
+
+Il sistema non tiene conto dell'ultimo accesso all'inode, pertanto funzioni
+come \func{access} o \func{stat} non hanno alcuna influenza sui tre tempi. Il
+tempo di ultimo accesso (ai dati) viene di solito usato per cancellare i file
+che non servono più dopo un certo lasso di tempo (ad esempio \cmd{leafnode}
+cancella i vecchi articoli sulla base di questo tempo).
+
+Il tempo di ultima modifica invece viene usato da \cmd{make} per decidere
+quali file necessitano di essere ricompilati o (talvolta insieme anche al
+tempo di cambiamento di stato) per decidere quali file devono essere
+archiviati per il backup. Il comando \cmd{ls} (quando usato con le opzioni
+\cmd{-l} o \cmd{-t}) mostra i tempi dei file secondo lo schema riportato
+nell'ultima colonna di \curtab.
+
+L'effetto delle varie funzioni di manipolazione dei file sui tempi è
+illustrato in \ntab. Si sono riportati gli effetti sia per il file a cui si fa
+riferimento, sia per la directory che lo contiene; questi ultimi possono
+essere capiti se si tiene conto di quanto già detto, e cioè che anche le
+directory sono file (che contengono una lista di nomi) che il sistema tratta
+in maniera del tutto analoga a tutti gli altri.
+
+Per questo motivo tutte le volte che compiremo una operazione su un file che
+comporta una modifica del nome contenuto nella directory, andremo anche a
+scrivere sulla directory che lo contiene cambiandone il tempo di modifica. Un
+esempio di questo può essere la cancellazione di un file, invece leggere o
+scrivere o cambiare i permessi di un file ha effetti solo sui tempi di
+quest'ultimo.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|c|c|c|c|c|c|l|}
+    \hline
+    \multicolumn{1}{|p{3cm}|}{\centering{\vspace{6pt}\textbf{Funzione}}} &
+    \multicolumn{3}{|p{3cm}|}{\centering{File o directory di riferimento}}&
+    \multicolumn{3}{|p{3cm}|}{\centering{Directory genitrice del riferimento}} 
+    &\multicolumn{1}{|p{3.6cm}|}{\centering{\vspace{6pt}\textbf{Note}}} \\
+    \cline{2-7}
+    \cline{2-7}
+    \multicolumn{1}{|p{3cm}|}{} 
+    &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(a)}}}
+    &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(m)}}}
+    &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(c)}}}
+    &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(a)}}}
+    &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(m)}}}
+    &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(c)}}}
+    &\multicolumn{1}{|p{3cm}|}{} \\
+    \hline
+    \hline
+    \func{chmod}, \func{fchmod} 
+    &         &         &$\bullet$&         &         &         & \\
+    \func{chown}, \func{fchown} 
+    &         &         &$\bullet$&         &         &         & \\
+    \func{creat}  
+    &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$&  con 
+    \macro{O\_CREATE} \\    \func{creat}  
+    &         &$\bullet$&$\bullet$&         &$\bullet$&$\bullet$&   
+    con \macro{O\_TRUNC} \\    \func{exec}  
+    &$\bullet$&         &         &         &         &         & \\
+    \func{lchown}  
+    &         &         &$\bullet$&         &         &         & \\
+    \func{link}
+    &         &         &$\bullet$&         &$\bullet$&$\bullet$& \\
+    \func{mkdir}
+    &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$& \\
+    \func{mkfifo}
+    &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$& \\
+    \func{open}
+    &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$& con 
+    \macro{O\_CREATE} \\    \func{open}
+    &         &$\bullet$&$\bullet$&         &         &         & con 
+    \macro{O\_TRUNC}  \\    \func{pipe}
+    &$\bullet$&$\bullet$&$\bullet$&         &         &         & \\
+    \func{read}
+    &$\bullet$&         &         &         &         &         & \\
+    \func{remove}
+    &         &         &$\bullet$&         &$\bullet$&$\bullet$& using 
+    \func{unlink}\\    \func{remove}
+    &         &         &         &         &$\bullet$&$\bullet$& using 
+    \func{rmdir}\\ \func{rename}
+    &         &         &$\bullet$&         &$\bullet$&$\bullet$& per entrambi
+    gli argomenti\\ \func{rmdir}
+    &         &         &         &         &$\bullet$&$\bullet$& \\ 
+    \func{truncate}, \func{ftruncate}
+    &         &$\bullet$&$\bullet$&         &         &         & \\ 
+    \func{unlink}
+    &         &         &$\bullet$&         &$\bullet$&$\bullet$& \\ 
+    \func{utime}
+    &$\bullet$&$\bullet$&$\bullet$&         &         &         & \\ 
+    \func{write}
+    &         &$\bullet$&$\bullet$&         &         &         & \\ 
+    \hline
+  \end{tabular}
+  \caption{Prospetto dei cambiamenti effettuati sui tempi di ultimo 
+    accesso \textsl{(a)}, ultima modifica \textsl{(m)} e ultimo cambiamento
+    \textsl{(c)} dalle varie funzioni operanti su file e directory.}
+  \label{tab:file_times_effects}  
+\end{table}
+
+Si noti infine come \var{st\_ctime} non abbia nulla a che fare con il tempo di
+creazione del file, usato in molti altri sistemi operativi, ma che in unix non
+esiste.
+
+
+\subsection{La funzione \func{utime}}
+\label{sec:file_utime}
+
+I tempi di ultimo accesso e modifica possono essere cambiati usando la
+funzione \func{utime}, il cui prototipo è:
+\begin{prototype}{utime.h}
+{int utime(const char * filename, struct utimbuf *times)} 
+
+Cambia i tempi di ultimo accesso e modifica dell'inode specificato da
+\var{filename} secondo i campi \var{actime} e \var{modtime} di \var{times}. Se
+questa è \macro{NULL} allora viene usato il tempo corrente.
+
+La funzione restituisce zero in caso di successo e -1 in caso di errore, nel
+qual caso \var{errno} è settata opportunamente.
+\begin{errlist}
+\item \macro{EACCESS} non si ha il permesso di scrittura sul file.
+\item \macro{ENOENT} \var{filename} non esiste.
+\end{errlist}
+\end{prototype}
+La struttura \var{utimebuf} usata da \func{utime} è definita come:
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+struct utimbuf {
+        time_t actime;  /* access time */
+        time_t modtime; /* modification time */
+};
+\end{lstlisting}
+
+L'effetto della funzione e i privilegi necessari per eseguirla dipendono da
+cosa è l'argomento \var{times}; se è \macro{NULL} la funzione setta il tempo
+corrente ed è sufficiente avere accesso in scrittura al file; se invece si è
+specificato un valore la funzione avrà successo solo se si è proprietari del
+file (o si hanno i privilegi di amministratore).
+
+Si tenga presente che non è comunque possibile specificare il tempo di
+cambiamento di stato del file, che viene comunque cambiato dal kernel tutte le
+volte che si modifica l'inode (quindi anche alla chiamata di \func{utime}).
+Questo serve anche come misura di sicurezza per evitare che si possa
+modificare un file nascondendo completamente le proprie tracce.  In realtà la
+cosa resta possibile, se si è in grado di accedere al device, scrivendo
+direttamente sul disco senza passare attraverso il filesystem, ma ovviamente
+in questo modo la cosa è molto più complicata da realizzare.
+
+
+
+\section{Il controllo di accesso ai file}
+\label{sec:file_access_control}
+
+Una delle caratteristiche fondamentali di tutti i sistemi unix-like è quella
+del controllo di accesso ai file, che viene implementato per qualunque
+filesystem standard. In questa sezione ne esamineremo i concetti essenziali e
+le funzioni usate per gestirne i vari aspetti.
+
+
+\subsection{I permessi per l'accesso ai file}
+\label{sec:file_perm_overview}
+
+Il controllo di accesso ai file in unix segue un modello abbastanza semplice
+(ma adatto alla gran parte delle esigenze) in cui si dividono i permessi su
+tre livelli. Si tenga conto poi che quanto diremo è vero solo per filesystem
+di tipo unix, e non è detto che sia applicabile a un filesystem
+qualunque\footnote{ed infatti non è vero per il filesystem vfat di Windows,
+  per il quale i permessi vengono assegnati in maniera fissa con un opzione in
+  fase di montaggio}.  Esistono inoltre estensioni che permettono di
+implementare le ACL (\textit{Access Control List}) che sono un meccanismo di
+controllo di accesso molto più sofisticato.
+
+Ad ogni file unix associa sempre l'utente che ne è proprietario (il cosiddetto
+\textit{owner}) e il gruppo di appartenenza, secondo il meccanismo degli
+identificatori di utenti e gruppi (\acr{uid} e \acr{gid}). Questi valori
+sono accessibili da programma tramite i campi \var{st\_uid} e \var{st\_gid}
+della struttura \var{stat} (si veda \secref{sec:file_stat}). Ad ogni file
+viene inoltre associato un insieme di permessi che sono divisi in tre classi,
+e cioè attribuiti rispettivamente all'utente proprietario del file, a un
+qualunque utente faccia parte del gruppo cui appartiene il file, e a tutti gli
+altri utenti.
+
+I permessi, così come vengono presi dai comandi e dalle routine di sistema,
+sono espressi da un numero di 12 bit; di questi i nove meno significativi sono
+usati a gruppi di tre per indicare i permessi base di lettura, scrittura ed
+esecuzione (indicati nei comandi di sistema con le lettere \cmd{w}, \cmd{r} e
+\cmd{x}) ed applicabili rispettivamente al proprietario, al gruppo, a tutti
+gli altri.  I restanti tre bit (\acr{suid}, \acr{sgid}, e
+\textsl{sticky}) sono usati per indicare alcune caratteristiche più complesse
+su cui torneremo in seguito (vedi \secref{sec:file_suid_sgid} e
+\secref{sec:file_sticky}).
+
+Anche i permessi, come tutte le altre informazioni generali, sono tenuti per
+ciascun file nell'inode; in particolare essi sono contenuti in alcuni bit
+del campo \var{st\_mode} della struttura letta da \func{stat} (di nuovo si veda
+\secref{sec:file_stat} per i dettagli).
+
+In genere ci si riferisce a questo raggruppamento dei permessi usando le
+lettere \cmd{u} (per \textit{user}), \cmd{g} (per \textit{group}) e \cmd{o}
+(per \textit{other}), inoltre se si vuole indicare tutti i raggruppamenti
+insieme si usa la lettera \cmd{a} (per \textit{all}). Si tenga ben presente
+questa distinzione dato che in certi casi, mutuando la terminologia in uso nel
+VMS, si parla dei permessi base come di permessi per \textit{owner},
+\textit{group} ed \textit{all}, le cui iniziali possono dar luogo a confusione.
+Le costanti che permettono di accedere al valore numerico di questi bit nel
+campo \var{st\_mode} sono riportate in \ntab.
+
+\begin{table}[htb]
+  \centering
+    \footnotesize
+  \begin{tabular}[c]{|c|l|}
+    \hline
+    \textbf{\var{st\_mode}} bit & \textbf{Significato} \\
+    \hline 
+    \hline 
+    \macro{S\_IRUSR}  &  \textit{user-read}, l'utente può leggere     \\
+    \macro{S\_IWUSR}  &  \textit{user-write}, l'utente può scrivere   \\
+    \macro{S\_IXUSR}  &  \textit{user-execute}, l'utente può eseguire \\ 
+    \hline              
+    \macro{S\_IRGRP}  &  \textit{group-read}, il gruppo può leggere    \\
+    \macro{S\_IWGRP}  &  \textit{group-write}, il gruppo può scrivere  \\
+    \macro{S\_IXGRP}  &  \textit{group-execute}, il gruppo può eseguire\\
+    \hline              
+    \macro{S\_IROTH}  &  \textit{other-read}, tutti possono leggere    \\
+    \macro{S\_IWOTH}  &  \textit{other-write}, tutti possono scrivere  \\
+    \macro{S\_IXOTH}  &  \textit{other-execute}, tutti possono eseguire\\
+    \hline              
+  \end{tabular}
+  \caption{I bit dei permessi di accesso ai file, come definiti in 
+    \texttt{<sys/stat.h>}}
+  \label{tab:file_bit_perm}
+\end{table}
+
+Questi permessi vengono usati in maniera diversa dalle varie funzioni, e a
+seconda che si riferiscano a file, link simbolici o directory, qui ci
+limiteremo ad un riassunto delle regole generali, entrando nei dettagli più
+avanti.
+
+La prima regola è che per poter accedere ad un file attraverso il suo pathname
+occorre il permesso di esecuzione in ciascuna delle directory che compongono
+il pathname, e lo stesso vale per aprire un file nella directory corrente (per
+la quale appunto serve il diritto di esecuzione).
+
+Per una directory infatti il permesso di esecuzione ha il significato
+specifico che essa può essere attraversata nella risoluzione del pathname, ed
+è distinto dal permesso di lettura che invece implica che si può leggere il
+contenuto della directory. Questo significa che se si ha il permesso di
+esecuzione senza permesso di lettura si potrà lo stesso aprire un file in una
+directory (se si hanno i permessi opportuni per il medesimo) ma non si potrà
+vederlo con \cmd{ls} (per crearlo occorrerà anche il permesso di scrittura per
+la directory).
+
+Avere il permesso di lettura per un file consente di aprirlo con le opzioni di
+sola lettura (\macro{O\_RDONLY}) o di lettura/scrittura (\macro{O\_RDWR}) e
+leggerne il contenuto. Avere il permesso di scrittura consente di aprire un
+file in sola scrittura (\macro{O\_WRONLY}) o lettura/scrittura
+(\macro{O\_RDWR}) e modificarne il contenuto, lo stesso permesso è necessario
+per poter troncare il file con l'opzione \macro{O\_TRUNC}.
+
+Non si può creare un file fintanto che non si disponga del permesso di
+esecuzione e di quello di scrittura per la directory di destinazione; gli
+stessi permessi occorrono per cancellare un file da una directory (si ricordi
+che questo non implica necessariamente la rimozione del contenuto del file dal
+disco), non è necessario nessun tipo di permesso per il file stesso (infatti
+esso non viene toccato, viene solo modificato il contenuto della directory,
+rimuovendo la voce che ad esso fa rifermento).
+
+Per poter eseguire un file (che sia un programma compilato od uno script di
+shell, od un altro tipo di file eseguibile riconosciuto dal kernel), occorre
+avere il permesso di esecuzione, inoltre solo i file regolari possono essere
+eseguiti.
+
+I permessi per un link simbolico sono ignorati, contano quelli del file a cui
+fa riferimento; per questo in genere \cmd{ls} per un link simbolico riporta
+tutti i permessi come concessi; utente e gruppo a cui esso appartiene vengono
+ignorati quando il link viene risolto, vengono controllati solo quando viene
+richiesta la rimozione del link e quest'ultimo è in una directory con lo
+\textsl{sticky bit} settato (si veda \secref{sec:file_sticky}).
+
+La procedura con cui il kernel stabilisce se un processo possiede un certo
+permesso (di lettura, scrittura o esecuzione) si basa sul confronto fra
+l'utente e il gruppo a cui il file appartiene (i valori di \var{st\_uid} e
+\var{st\_gid} accennati in precedenza) e l'\textit{effective user id},
+l'\textit{effective group id} e gli eventuali \textit{supplementary group id}
+del processo\footnote{in realtà Linux per quanto riguarda l'accesso ai file
+  utilizza al posto degli \textit{effective id} i \textit{filesystem id} (si
+  veda \secref{sec:proc_perms}), ma essendo questi del tutto equivalenti ai
+  primi, eccetto il caso in cui si voglia scrivere un server NFS, ignoreremo
+  questa differenza}.
+
+Per una spiegazione dettagliata degli identificatori associati ai processi si
+veda \secref{sec:proc_perms}; normalmente, a parte quanto vedremo in
+\secref{sec:file_suid_sgid}, l'\textit{effective user id} e
+l'\textit{effective group id} corrispondono a \acr{uid} e \acr{gid}
+dell'utente che ha lanciato il processo, mentre i \textit{supplementary group
+  id} sono quelli dei gruppi cui l'utente appartiene.
+
+I passi attraverso i quali viene stabilito se il processo possiede il diritto
+di accesso sono i seguenti:
+\begin{itemize}
+\item Se l'\textit{effective user id} del processo è zero (corrispondente
+  all'amministratore) l'accesso è sempre garantito senza nessun ulteriore
+  controllo. Per questo motivo \textsl{root} ha piena libertà di accesso a
+  tutti i file.
+\item Se l'\textit{effective user id} del processo è uguale all'\acr{uid} del
+  proprietario del file (nel qual caso si dice che il processo è proprietario
+  del file) allora:
+  \begin{itemize}
+  \item se il relativo\footnote{per relativo si intende il bit di user-read se
+      il processo vuole accedere in scrittura, quello di user-write per
+      l'accesso in scrittura, etc.} bit dei permessi d'accesso dell'utente è
+    settato, l'accesso è consentito
+  \item altrimenti l'accesso è negato
+  \end{itemize}
+\item Se l'\textit{effective group id} del processo o uno dei
+  \textit{supplementary group id} dei processi corrispondono al \acr{gid} del
+  file allora:
+  \begin{itemize}
+  \item se il bit dei permessi d'accesso del gruppo è settato, l'accesso è
+    consentito, 
+  \item altrimenti l'accesso è negato
+  \end{itemize}
+\item se il bit dei permessi d'accesso per tutti gli altri è settato,
+  l'accesso è consentito, altrimenti l'accesso è negato.
+\end{itemize}
+
+Si tenga presente che questi passi vengono eseguiti esattamente in
+quest'ordine. Questo vuol dire che se un processo è il proprietario di un file
+l'accesso è consentito o negato solo sulla base dei permessi per l'utente; i
+permessi per il gruppo non vengono neanche controllati; lo stesso vale se il
+processo appartiene ad un gruppo appropriato, in questo caso i permessi per
+tutti gli altri non vengono controllati.
+
+
+\subsection{I bit \acr{suid} e \acr{sgid}}
+\label{sec:file_suid_sgid}
+
+Come si è accennato (in \secref{sec:file_perm_overview}) nei dodici bit del
+campo \var{st\_mode} usati per il controllo di accesso oltre ai bit dei
+permessi veri e propri, ci sono altri tre bit che vengono usati per indicare
+alcune proprietà speciali dei file.  Due di questi sono i bit detti
+\acr{suid} (o \textit{set-user-ID bit}) e \acr{sgid} (o
+\textit{set-group-ID bit}) che sono identificati dalle costanti
+\macro{S\_ISUID} e \macro{S\_ISGID}.
+
+Come spiegato in dettaglio in \secref{sec:proc_exec}, quando si lancia un
+programma il comportamento normale del kernel è quello di settare
+l'\textit{effective user id} e l'\textit{effective group id} del nuovo
+processo all'\acr{uid} e al \acr{gid} del processo corrente, che normalmente
+corrispondono dell'utente con cui si è entrati nel sistema.
+
+Se però il file del programma\footnote{per motivi di sicurezza il kernel
+  ignora i bit \acr{suid} e \acr{sgid} per gli script eseguibili} (che
+ovviamente deve essere eseguibile) ha il bit \acr{suid} settato, il kernel
+assegnerà come \textit{effective user id} al nuovo processo l'\acr{uid} del
+proprietario del file al posto dell'\acr{uid} del processo originario.  Avere
+il bit \acr{sgid} settato ha lo stesso effetto sull'\textit{effective group
+  id} del processo.
+
+I bit \acr{suid} e \acr{sgid} vengono usati per permettere agli utenti normali
+di usare programmi che abbisognano di privilegi speciali; l'esempio classico è
+il comando \cmd{passwd} che ha la necessità di modificare il file delle
+password, quest'ultimo ovviamente può essere scritto solo dall'amministratore,
+ma non è necessario chiamare l'amministratore per cambiare la propria
+password. Infatti il comando \cmd{passwd} appartiene a root ma ha il bit
+\acr{suid} settato per cui quando viene lanciato da un utente normale parte
+con i privilegi di root.
+
+Chiaramente avere un processo che ha privilegi superiori a quelli che avrebbe
+normalmente l'utente che lo ha lanciato comporta vari rischi, e questo tipo di
+programmi devono essere scritti accuratamente per evitare che possano essere
+usati per guadagnare privilegi non consentiti (torneremo sull'argomento in
+\secref{sec:proc_perms}).
+
+La presenza dei bit \acr{suid} e \acr{sgid} su un file può essere
+rilevata con il comando \cmd{ls -l}, in tal caso comparirà la lettera \cmd{s}
+al posto della \cmd{x} in corrispondenza dei permessi di utente o gruppo. La
+stessa lettera \cmd{s} può essere usata nel comando \cmd{chmod} per settare
+questi bit. Infine questi bit possono essere controllati all'interno di
+\var{st\_mode} con l'uso delle due costanti \macro{S\_ISUID} e
+\macro{S\_IGID}, i cui valori sono riportati in
+\tabref{tab:file_mode_flags}.
+
+Gli stessi bit vengono ad assumere in significato completamente diverso per le
+directory, normalmente infatti Linux usa la convenzione di SVR4 per indicare
+con questi bit l'uso della semantica BSD nella creazione di nuovi file (si
+veda \secref{sec:file_ownership} per una spiegazione dettagliata al
+proposito).
+
+Infine Linux utilizza il bit \acr{sgid} per una ulteriore estensione
+mutuata da SVR4. Il caso in cui il file abbia il bit \acr{sgid} settato ma
+non il corrispondente bit di esecuzione viene utilizzato per attivare per
+quel file il \textit{mandatory locking} (argomento che affronteremo nei
+dettagli in \secref{sec:file_mand_locking}).
+
+
+\subsection{Il bit \textsl{sticky}}
+\label{sec:file_sticky}
+
+L'ultimo dei bit rimanenti, identificato dalla costante \macro{S\_ISVTX}, è in
+parte un rimasuglio delle origini dei sistemi unix. A quell'epoca infatti la
+memoria virtuale e l'accesso ai files erano molto meno sofisticati e per
+ottenere la massima velocità possibile per i programmi usati più comunemente
+si poteva settare questo bit.
+
+L'effetto di questo bit era che il segmento di testo del programma (si veda
+\secref{sec:proc_mem_layout} per i dettagli) veniva scritto nella swap la
+prima volta che questo veniva lanciato, e vi permaneva fino al riavvio della
+macchina (da questo il nome di \textsl{sticky bit}); essendo la swap un file
+continuo indicizzato direttamente in questo modo si poteva risparmiare in
+tempo di caricamento rispetto alla ricerca del file su disco. Lo
+\textsl{sticky bit} è indicato usando la lettera \cmd{t} al posto della
+\cmd{x} nei permessi per gli altri.
+
+Ovviamente per evitare che gli utenti potessero intasare la swap solo
+l'amministratore era in grado di settare questo bit, che venne chiamato anche
+con il nome di \textit{saved text bit}, da cui deriva quello della costante.
+Le attuali implementazioni di memoria virtuale e filesystem rendono
+sostanzialmente inutile questo procedimento.
+
+Benché ormai non venga più utilizzato per i file, lo \textsl{sticky bit} ha
+assunto un uso corrente per le directory\footnote{lo \textsl{sticky bit} per
+  le directory è una estensione non definita nello standard POSIX, Linux però
+  la supporta, così come BSD e SVR4}, in questo caso se il bit è settato un
+file potrà essere rimosso dalla directory soltanto se l'utente ha il permesso
+di scrittura ed inoltre è vera una delle seguenti condizioni:
+\begin{itemize}
+\item l'utente è proprietario del file
+\item l'utente è proprietario della directory
+\item l'utente è l'amministratore 
+\end{itemize}
+un classico esempio di directory che ha questo bit settato è \file{/tmp}, i
+permessi infatti di solito sono settati come:
+\begin{verbatim}
+$ ls -ld /tmp
+drwxrwxrwt    6 root     root         1024 Aug 10 01:03 /tmp
+\end{verbatim}%$
+in questo modo chiunque può leggere, scrivere ed eseguire i file temporanei
+ivi memorizzati, sia crearne di nuovi, ma solo l'utente che ha creato un file
+nella directory potrà cancellarlo o rinominarlo, così si può evitare che un
+utente possa, più o meno consapevolmente, cancellare i file degli altri.
+
+
+\subsection{La titolarità di nuovi file e directory}
+\label{sec:file_ownership}
+
+Vedremo in \secref{sec:file_base_func} come creare nuovi file, ma se è
+possibile specificare in sede di creazione quali permessi applicare ad un
+file, non si può indicare a quale utente e gruppo esso deve appartenere.  Lo
+stesso problema di presenta per la creazione di nuove directory (procedimento
+descritto in \secref{sec:file_dir_creat_rem}).
+
+Lo standard POSIX prescrive che l'\acr{uid} del nuovo file corrisponda
+all'\textit{effective user id} del processo che lo crea; per il \acr{gid}
+invece prevede due diverse possibilità:
+\begin{itemize}
+\item il \acr{gid} del file corrisponde all'\textit{effective group id} del
+  processo.
+\item il \acr{gid} del file corrisponde al \acr{gid} della directory in cui
+  esso è creato.
+\end{itemize}
+in genere BSD usa sempre la seconda possibilità, che viene per questo chiamata
+semantica BSD. Linux invece segue quella che viene chiamata semantica SVr4; di
+norma cioè il nuovo file viene creato, seguendo la prima opzione, con il
+\acr{gid} del processo, se però la directory in cui viene creato il file ha il
+bit \acr{sgid} settato allora viene usata la seconda opzione.
+
+Usare la semantica BSD ha il vantaggio che il \acr{gid} viene sempre
+automaticamente propagato, restando coerente a quello della directory di
+partenza, in tutte le sottodirectory. La semantica SVR4 offre una maggiore
+possibilità di scelta, ma per ottenere lo stesso risultato necessita che per
+le nuove directory venga anche propagato anche il bit \acr{sgid}. Questo è
+comunque il comportamento di default di \func{mkdir}, ed é in questo modo ad
+esempio che Debian assicura che le sottodirectory create nelle home di un
+utente restino sempre con il \acr{gid} del gruppo primario dello stesso.
+
+
+\subsection{La funzione \func{access}}
+\label{sec:file_access}
+
+Come detto in \secref{sec:file_access_control} il controllo di accesso ad
+un file viene fatto usando \textit{effective user id} e \textit{effective
+  group id} del processo, ma ci sono casi in cui si può voler effettuare il
+controllo usando il \textit{real user id} e il \textit{real group id} (cioè
+l'\acr{uid} dell'utente che ha lanciato il programma, che, come accennato in
+\secref{sec:file_suid_sgid} e spiegato in \secref{sec:proc_perms} non è
+detto sia uguale all'\textit{effective user id}). Per far questo si può usare
+la funzione \func{access}, il cui prototipo è:
+\begin{prototype}{unistd.h}
+{int access(const char *pathname, int mode)}
+
+  La funzione verifica i permessi di accesso, indicati da \var{mode}, per il
+  file indicato da \var{pathname}. 
+  
+  La funzione ritorna 0 se l'accesso è consentito, -1 altrimenti; in
+  quest'ultimo caso la variabile \var{errno} viene settata secondo i codici
+  di errore: \macro{EACCES}, \macro{EROFS}, \macro{EFAULT}, \macro{EINVAL},
+  \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOTDIR}, \macro{ELOOP},
+  \macro{EIO}.
 \end{prototype}
 
+I valori possibili per il parametro \var{mode} sono esprimibili come
+combinazione delle costanti numeriche riportate in \ntab\ (attraverso un OR
+binario). I primi tre valori implicano anche la verifica dell'esistenza del
+file, se si vuole verificare solo quest'ultima si può usare \macro{F\_OK}, o
+anche direttamente \func{stat}. In caso \var{pathname} si riferisca ad un link
+simbolico il controllo è fatto sul file a cui esso fa riferimento.
+
+La funzione controlla solo i bit dei permessi di accesso, si ricordi che il
+fatto che una directory abbia permesso di scrittura non significa che ci si
+possa scrivere come in un file, e il fatto che un file abbia permesso di
+esecuzione non comporta che contenga un programma eseguibile. La funzione
+ritorna zero solo se tutte i permessi controllati sono disponibili, in caso
+contrario (o di errore) ritorna -1.
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}{|c|l|}
+    \hline
+    \textbf{\var{mode}} & \textbf{Significato} \\
+    \hline
+    \hline
+    \macro{R\_OK} & verifica il permesso di lettura \\
+    \macro{W\_OK} & verifica il permesso di scritture \\
+    \macro{X\_OK} & verifica il permesso di esecuzione \\
+    \macro{F\_OK} & verifica l'esistenza del file \\
+    \hline
+  \end{tabular}
+  \caption{Valori possibile per il parametro \var{mode} della funzione 
+    \func{access}}
+  \label{tab:file_access_mode_val}
+\end{table}
+
+Un esempio tipico per l'uso di questa funzione è quello di un processo che sta
+eseguendo un programma coi privilegi di un altro utente (attraverso l'uso del
+\acr{suid} bit) che vuole controllare se l'utente originale ha i permessi per
+accedere ad un certo file.
+
+
+\subsection{Le funzioni \func{chmod} e \func{fchmod}}
+\label{sec:file_chmod}
+
+Per cambiare i permessi di un file il sistema mette ad disposizione due
+funzioni, che operano rispettivamente su un filename e su un file descriptor,
+i loro prototipi sono:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/stat.h} 
+  
+  \funcdecl{int chmod(const char *path, mode\_t mode)} Cambia i permessi del
+  file indicato da \var{path} al valore indicato da \var{mode}.
+  
+  \funcdecl{int fchmod(int fd, mode\_t mode)} Analoga alla precedente, ma usa
+  il file descriptor \var{fd} per indicare il file.
+  
+  Le funzioni restituiscono zero in caso di successo e -1 per un errore, in
+  caso di errore \var{errno} può assumere i valori:
+  \begin{errlist}
+  \item \macro{EPERM} L'\textit{effective user id} non corrisponde a quello
+    del proprietario del file o non è zero.
+  \end{errlist}
+  ed inoltre \macro{EROFS} e \macro{EIO}; \func{chmod} restituisce anche
+  \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOMEM},
+  \macro{ENOTDIR}, \macro{EACCES}, \macro{ELOOP}; \func{fchmod} anche
+  \macro{EBADF}.
+\end{functions}
+
+I valori possibili per \var{mode} sono indicati in \ntab. I valori possono
+esser combinati con l'OR binario delle relative costanti simboliche, o
+specificati direttamente, come per l'analogo comando di shell, con il valore
+numerico (la shell lo vuole in ottale, dato che i bit dei permessi sono
+divisibili in gruppi di tre). Ad esempio i permessi standard assegnati ai
+nuovi file (lettura e scrittura per il proprietario, sola lettura per il
+gruppo e gli altri) sono corrispondenti al valore ottale $0644$, un programma
+invece avrebbe anche il bit di esecuzione attivo, con un valore di $0755$, se
+si volesse attivare il bit \acr{suid} il valore da fornire sarebbe $4755$.
+
+\begin{table}[!htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|c|c|l|}
+    \hline
+    \textbf{\var{mode}} & \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \macro{S\_ISUID} & 04000 & set user ID \\
+    \macro{S\_ISGID} & 02000 & set group ID \\
+    \macro{S\_ISVTX} & 01000 & sticky bit \\
+    \hline
+    \macro{S\_IRWXU} & 00700 & l'utente ha tutti i permessi \\
+    \macro{S\_IRUSR} & 00400 & l'utente ha il permesso di lettura  \\
+    \macro{S\_IWUSR} & 00200 & l'utente ha il permesso di scrittura \\
+    \macro{S\_IXUSR} & 00100 & l'utente ha il permesso di esecuzione \\
+    \hline
+    \macro{S\_IRWXG} & 00070 & il gruppo ha tutti i permessi  \\
+    \macro{S\_IRGRP} & 00040 & il gruppo ha il permesso di lettura  \\
+    \macro{S\_IWGRP} & 00020 & il gruppo ha il permesso di scrittura \\
+    \macro{S\_IXGRP} & 00010 & il gruppo ha il permesso di esecuzione \\
+    \hline
+    \macro{S\_IRWXO} & 00007 & gli altri hanno tutti i permessi \\
+    \macro{S\_IROTH} & 00004 & gli altri hanno il permesso di lettura  \\
+    \macro{S\_IWOTH} & 00002 & gli altri hanno il permesso di scrittura \\
+    \macro{S\_IXOTH} & 00001 & gli altri hanno il permesso di esecuzione \\
+    \hline
+  \end{tabular}
+  \caption{I valori delle costanti usate per indicare i permessi dei file.}
+  \label{tab:file_permission_const}
+\end{table}
+
+Il cambiamento dei permessi di un file attraverso queste funzioni ha comunque
+alcune limitazioni, provviste per motivi di sicurezza. Questo significa che
+anche se si è proprietari del file non tutte le operazioni sono permesse, in
+particolare:
+\begin{itemize}
+\item siccome solo l'amministratore può settare lo \textit{sticky bit}; se
+  l'\textit{effective user id} del processo non è zero esso viene
+  automaticamente cancellato (senza notifica di errore) qualora sia stato
+  indicato in \var{mode}.
+\item per via della semantica SVR4 nella creazione dei nuovi file, si può
+  avere il caso in cui il file creato da un processo è assegnato a un gruppo
+  per il quale il processo non ha privilegi. Per evitare che si possa
+  assegnare il bit \acr{sgid} ad un file appartenente a un gruppo per cui
+  non si hanno diritti, questo viene automaticamente cancellato (senza
+  notifica di errore) da \var{mode} qualora il gruppo del file non corrisponda
+  a quelli associati al processo (la cosa non avviene quando
+  l'\textit{effective user id} del processo è zero).
+\end{itemize}
+
+Per alcuni filesystem\footnote{il filesystem \acr{ext2} supporta questa
+  caratteristica, che è mutuata da BSD.} è inoltre prevista una ulteriore
+misura di sicurezza, volta ad scongiurare l'abuso dei bit \acr{suid} e
+\acr{sgid}; essa consiste nel cancellare automaticamente questi bit qualora un
+processo che non appartenga all'amministratore scriva su un file. In questo
+modo anche se un utente malizioso scopre un file \acr{suid} su cui può
+scrivere, un eventuale modifica comporterà la perdita di ogni ulteriore
+privilegio.
+
+\subsection{La funzione \func{umask}}
+\label{sec:file_umask}
+
+Oltre che dai valori indicati in sede di creazione, i permessi assegnati ai
+nuovi file sono controllati anche da una maschera di bit settata con la
+funzione \func{umask}, il cui prototipo è:
+\begin{prototype}{stat.h}
+{mode\_t umask(mode\_t mask)}
+
+  Setta la maschera dei permessi dei bit al valore specificato da \var{mask}
+  (di cui vengono presi solo i 9 bit meno significativi).
+  
+  La funzione ritorna il precedente valore della maschera. È una delle poche
+  funzioni che non restituisce codici di errore.
+\end{prototype}
 
+Questa maschera è una caratteristica di ogni processo e viene utilizzata per
+impedire che alcuni permessi possano essere assegnati ai nuovi file in sede di
+creazione, i bit indicati nella maschera vengono infatti esclusi quando un
+nuovo file viene creato.
+
+In genere questa maschera serve per impostare un default che escluda alcuni
+permessi (usualmente quello di scrittura per il gruppo e gli altri,
+corrispondente ad un valore di $022$). Essa è utile perché le routine
+dell'interfaccia ANSI C degli stream non prevedono l'esistenza dei permessi, e
+pertanto tutti i nuovi file vengono sempre creati con un default di $666$
+(cioè permessi di lettura e scrittura per tutti, si veda
+\tabref{tab:file_permission_const} per un confronto); in questo modo è
+possibile cancellare automaticamente i permessi non voluti, senza doverlo fare
+esplicitamente.
+
+In genere il valore di \func{umask} viene stabilito una volta per tutte al
+login a $022$, e di norma gli utenti non hanno motivi per modificarlo. Se però
+si vuole che un processo possa creare un file che chiunque possa leggere
+allora occorrerà cambiare il valore di \func{umask}.
+
+\subsection{Le funzioni \func{chown}, \func{fchown} e \func{lchown}}
+\label{sec:file_chown}
+
+Come per i permessi, il sistema fornisce anche delle funzioni che permettano
+di cambiare utente e gruppo cui il file appartiene; le funzioni in questione
+sono tre e i loro prototipi sono i seguenti:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/stat.h} 
+  
+  \funcdecl{int chown(const char *path, uid\_t owner, gid\_t group)}
+  \funcdecl{int fchown(int fd, uid\_t owner, gid\_t group)}
+  \funcdecl{int lchown(const char *path, uid\_t owner, gid\_t group)}
 
+  Le funzioni cambiano utente e gruppo di appartenenza di un file ai valori
+  specificati dalle variabili \var{owner} e \var{group}. 
+
+  Le funzioni restituiscono zero in caso di successo e -1 per un errore, in
+  caso di errore \texttt{errno} viene settato ai valori:
+  \begin{errlist}
+  \item \macro{EPERM} L'\textit{effective user id} non corrisponde a quello
+    del proprietario del file o non è zero, o utente e gruppo non sono validi
+  \end{errlist}
+  Oltre a questi entrambe restituiscono gli errori \macro{EROFS} e
+  \macro{EIO}; \func{chown} restituisce anche \macro{EFAULT},
+  \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOMEM}, \macro{ENOTDIR},
+  \macro{EACCES}, \macro{ELOOP}; \func{fchown} anche \macro{EBADF}.
+\end{functions}
+
+In Linux soltanto l'amministratore può cambiare il proprietario di un file,
+seguendo la semantica di BSD che non consente agli utenti di assegnare i loro
+file ad altri (per evitare eventuali aggiramenti delle quote).
+L'amministratore può cambiare il gruppo di un file, il proprietario può
+cambiare il gruppo dei file che gli appartengono solo se il nuovo gruppo è il
+suo gruppo primario o uno dei gruppi a cui appartiene.
+
+La funzione \func{chown} segue i link simbolici, per operare direttamente su
+in link simbolico si deve usare la funzione \func{lchown}\footnote{fino alla
+  versione 2.1.81 in Linux \func{chown} non seguiva i link simbolici, da
+  allora questo comportamento è stato assegnato alla funzione \func{lchown},
+  introdotta per l'occasione, ed è stata creata una nuova system call per
+  \func{chown} che seguisse i link simbolici}. La funzione \func{fchown} opera
+su un file aperto, essa è mutuata da BSD, ma non è nello standard POSIX.
+Un'altra estensione rispetto allo standard POSIX è che specificando -1 come
+valore per \var{owner} e \var{group} i valori restano immutati. 
+
+Quando queste funzioni sono chiamate con successo da un processo senza i
+privilegi di root entrambi i bit \acr{suid} e \acr{sgid} vengono
+cancellati. Questo non avviene per il bit \acr{sgid} nel caso in cui esso
+sia usato (in assenza del corrispondente permesso di esecuzione) per indicare
+che per il file è attivo il \textit{mandatory locking}.
 
 %La struttura fondamentale che contiene i dati essenziali relativi ai file è il
 %cosiddetto \textit{inode}; questo conterrà informazioni come il
@@ -664,3 +1626,4 @@ per cambiare directory di lavoro.
 %completo vedi \ntab), i permessi (vedi \secref{sec:file_perms}), le date (vedi
 %\secref{sec:file_times}).
 
+