Correzioni e aggiunte secondo le indicazioni di D. Masini, terza e
[gapil.git] / filedir.tex
index daf947a8ced46053c5df9ae3c25effc427526c86..ac0a3bc57b47947d33708bf115c07ebdde9236a7 100644 (file)
-\chapter{Files e directories}
+\chapter{File e directory}
 \label{cha:files_and_dirs}
 
 In questo capitolo tratteremo in dettaglio le modalità con cui si gestiscono
-files e directories, ed in particolare esamineremo come è strutturato il
-sistema base di protezioni e controllo di accesso ai files, e tutta
-l'interfaccia che permette la manipolazione dei vari attributi di files e
-directories. Tutto quello che riguarda invece la manipolazione dei contenuti è
-lasciato ai capitoli successivi.
+file e directory, iniziando dalle funzioni di libreria che si usano per
+copiarli, spostarli e cambiarne i nomi. Esamineremo poi l'interfaccia che
+permette la manipolazione dei vari attributi di file e directory ed alla fine
+faremo una trattazione dettagliata su come è strutturato il sistema base di
+protezioni e controllo dell'accesso ai file e sulle funzioni che ne permettono
+la gestione. Tutto quello che riguarda invece la manipolazione del contenuto
+dei file è lasciato ai capitoli successivi.
 
 
-\section{La manipolazione delle caratteristiche dei files}
-\label{sec:filedir_infos}
 
-Come spiegato in \secref{sec:filedir_file_handling} tutte le informazioni
-generali relative alle caratteristiche di ciascun file sono mantenute
-nell'inode. Vedremo in questa sezione come sia possibile accedervi usando la
-funzione \texttt{stat} ed esamineremo alcune funzioni utilizzabili per
-manipolare una parte di questa informazione. Tutto quello che invece riguarda
-il meccanismo di controllo di accesso ad i file e le relative funzioni di
-manipolazione sarà invece esaminanto in \secref{sec:filedir_access_control}.
+\section{La gestione di file e directory}
+\label{sec:file_dir}
 
+Come già accennato in \secref{sec:file_filesystem} in un sistema unix-like la
+gestione dei file ha delle caratteristiche specifiche che derivano
+direttamente dall'architettura del sistema; in questa sezione esamineremo le
+funzioni usate per manipolazione nel filesytem di file e directory, per la
+creazione di link simbolici e diretti, per la gestione e la lettura delle
+directory; il tutto mettendo in evidenza le conseguenze della struttura
+standard della gestione dei file in un sistema unix-like, introdotta nel
+capitolo precedente.
 
-\subsection{Le funzioni \texttt{stat}, \texttt{fstat} e \texttt{lstat}}
-\label{sec:filedir_stat}
 
-La lettura delle informazioni relative ai file è fatta attraverso la famiglia
-delle funzioni \texttt{stat}, questa è la funzione che il comando \texttt{ls}
-usa per poter stampare tutti i dati dei files; il prototipo della funzione è
-il seguente;
+\subsection{Le funzioni \func{link} e \func{unlink}}
+\label{sec:file_link}
+
+Una caratteristica comune a diversi sistemi operativi è quella di poter creare
+dei nomi fittizi (come gli alias del MacOS o i collegamenti di Windows) che
+permettono di fare riferimento allo stesso file chiamandolo con nomi diversi
+o accedendovi da directory diverse.
+
+Questo è possibile anche in ambiente Unix, dove tali collegamenti sono
+usualmente chiamati \textit{link}; ma data la struttura del sistema di
+gestione dei file (ed in particolare quanto trattato in
+\secref{sec:file_arch_func}) ci sono due metodi sostanzialmente diversi per
+fare questa operazione.
+
+Come spiegato in \secref{sec:file_filesystem} l'accesso al contenuto di un
+file su disco avviene attraverso il suo inode\index{inode}, e il nome che si
+trova in una directory è solo un'etichetta associata ad un puntatore a che fa
+riferimento al suddetto inode.
+
+Questo significa che la realizzazione di un link è immediata in quanto uno
+stesso file può avere tanti nomi diversi allo stesso tempo, dati da
+altrettante diverse associazioni allo stesso inode; si noti poi che nessuno di
+questi nomi viene ad assumere una particolare preferenza o originalità
+rispetto agli altri.
+
+Per aggiungere un nome ad un inode si utilizza la funzione \func{link}; si
+suole chiamare questo tipo di associazione un collegamento diretto (o
+\textit{hard link}).  Il prototipo della funzione e le sue caratteristiche
+principali, come risultano dalla pagina di manuale, sono le seguenti:
 \begin{prototype}{unistd.h}
-{int stat(const char *file\_name, struct stat *buf)}
+{int link(const char *oldpath, const char *newpath)}
+  Crea un nuovo collegamento diretto al file indicato da \var{oldpath}
+  dandogli nome \var{newpath}.
   
-  La funzione restituisce zero in caso di successo e -1 per un errore, in caso
-  di errore \texttt{errno} viene settato ai valori:
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 in
+    caso di errore. La variabile \var{errno} viene impostata
+    opportunamente, i principali codici di errore sono:
   \begin{errlist}
-  \item \texttt{EACCESS} Non c'è il permesso di accedere al file.
-  \item \texttt{ENOTDIR} Una componente del pathname non è una directory.
-  \item \texttt{EMLOOP} Ci sono troppi link simbolici nel pathname.
-  \item \texttt{EFAULT} I puntatori usati sono fuori dallo spazio di indirizzi
-    del processo.
-  \item \texttt{ENOMEM} il kernel non ha a disposizione memoria sufficiente a
-    completare l'operazione. 
-  \item \texttt{ENAMETOOLONG} Il filename è troppo lungo.
+  \item[\macro{EXDEV}] \var{oldpath} e \var{newpath} non sono sullo
+    stesso filesystem.
+  \item[\macro{EPERM}] il filesystem che contiene \var{oldpath} e
+    \macro{newpath} non supporta i link diretti o è una directory.
+  \item[\macro{EEXIST}] un file (o una directory) con quel nome esiste di
+    già.
+  \item[\macro{EMLINK}] ci sono troppi link al file \var{oldpath} (il
+    numero massimo è specificato dalla variabile \macro{LINK\_MAX}, vedi
+    \secref{sec:sys_limits}).
   \end{errlist}
+  ed inoltre \macro{EACCES}, \macro{ENAMETOOLONG}, \macro{ENOTDIR},
+  \macro{EFAULT}, \macro{ENOMEM}, \macro{EROFS}, \macro{ELOOP},
+  \macro{ENOSPC}, \macro{EIO}.}
 \end{prototype}
 
-La struttura \texttt{stat} è definita nell'header \texttt{sys/stat.h} e in
-generale dipende dall'implementazione, la versione usata da Linux è mostrata
-in \nfig, così come riportata dalla man page (in realtà la definizione
-effettivamente usata nel kernel dipende dall'archietettura e ha altri campi
-riservati per estensioni come tempo più precisi, o per il padding dei campi).
+La creazione di un nuovo collegamento diretto non copia il contenuto del file,
+ma si limita a creare una voce nella directory specificata con \var{newpath} e
+ad aumentare di uno il numero di riferimenti al file (riportato nel campo
+\var{st\_nlink} della struttura \var{stat}, vedi \secref{sec:file_stat})
+aggiungendo il nuovo nome ai precedenti. Si noti che uno stesso file può
+essere così chiamato con vari nomi in diverse directory.
+Per quanto dicevamo in \secref{sec:file_filesystem} la creazione di un
+collegamento diretto è possibile solo se entrambi i pathname sono nello stesso
+filesystem; inoltre il filesystem deve supportare i collegamenti diretti (il
+meccanismo non è disponibile ad esempio con il filesystem \acr{vfat} di
+Windows). 
 
-\begin{figure}[!htb]
-  \footnotesize
-  \centering
-  \begin{minipage}[c]{15cm}
-    \begin{lstlisting}[]{}
-struct stat {
-    dev_t         st_dev;      /* device */
-    ino_t         st_ino;      /* inode */
-    mode_t        st_mode;     /* protection */
-    nlink_t       st_nlink;    /* number of hard links */
-    uid_t         st_uid;      /* user ID of owner */
-    gid_t         st_gid;      /* group ID of owner */
-    dev_t         st_rdev;     /* device type (if inode device) */
-    off_t         st_size;     /* total size, in bytes */
-    unsigned long st_blksize;  /* blocksize for filesystem I/O */
-    unsigned long st_blocks;   /* number of blocks allocated */
-    time_t        st_atime;    /* time of last access */
-    time_t        st_mtime;    /* time of last modification */
-    time_t        st_ctime;    /* time of last change */
-};
-    \end{lstlisting}
-  \end{minipage} 
-  \normalsize 
-  \caption{La struttura \texttt{stat} per la lettura delle informazioni dei 
-    file}
-  \label{fig:sock_sa_gen_struct}
-\end{figure}
+La funzione inoltre opera sia sui file ordinari che sugli altri oggetti del
+filesystem, con l'eccezione delle directory. In alcune versioni di Unix solo
+l'amministratore è in grado di creare un collegamento diretto ad un'altra
+directory: questo viene fatto perché con una tale operazione è possibile
+creare dei circoli nel filesystem (vedi l'esempio mostrato in
+\secref{sec:file_symlink}, dove riprenderemo il discorso) che molti programmi
+non sono in grado di gestire e la cui rimozione diventerebbe estremamente
+complicata (in genere per questo tipo di errori occorre far girare il
+programma \cmd{fsck} per riparare il filesystem).
 
-Si noti come i vari membri della struttura siano specificati come tipi nativi
-del sistema (di quelli definiti in \tabref{tab:xxx_sys_types}, e dichiarati in
-\texttt{sys/types.h}) 
+Data la pericolosità di questa operazione e la disponibilità dei link
+simbolici che possono fornire la stessa funzionalità senza questi problemi,
+nei filesystem usati in Linux questa caratteristica è stata completamente
+disabilitata, e al tentativo di creare un link diretto ad una directory la
+funzione restituisce l'errore \macro{EPERM}.
 
+La rimozione di un file (o più precisamente della voce che lo referenzia
+all'interno di una directory) si effettua con la funzione \func{unlink}; il
+suo prototipo è il seguente:
+\begin{prototype}{unistd.h}{int unlink(const char *pathname)}
+  Cancella il nome specificato dal pathname nella relativa directory e
+  decrementa il numero di riferimenti nel relativo inode. Nel caso di link
+  simbolico cancella il link simbolico; nel caso di socket, fifo o file di
+  dispositivo rimuove il nome, ma come per i file i processi che hanno aperto
+  uno di questi oggetti possono continuare ad utilizzarlo.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso il file non viene toccato. La variabile
+    \var{errno} viene impostata secondo i seguenti codici di errore:
+  \begin{errlist}
+  \item[\macro{EISDIR}] \var{pathname} si riferisce ad una directory
+    (valore specifico ritornato da Linux che non consente l'uso di
+    \var{unlink} con le directory, e non conforme allo standard POSIX, che
+    prescrive invece l'uso di \macro{EPERM} in caso l'operazione non sia
+    consentita o il processo non abbia privilegi sufficienti).
+  \item[\macro{EROFS}] \var{pathname} è su un filesystem montato in sola
+  lettura.
+  \item[\macro{EISDIR}] \var{pathname} fa riferimento a una directory.
+  \end{errlist}
+  ed inoltre: \macro{EACCES}, \macro{EFAULT}, \macro{ENOENT}, \macro{ENOTDIR},
+  \macro{ENOMEM}, \macro{EROFS}, \macro{ELOOP}, \macro{EIO}.}
+\end{prototype}
 
+Per cancellare una voce in una directory è necessario avere il permesso di
+scrittura su di essa (dato che si va a rimuovere una voce dal suo contenuto) e
+il diritto di esecuzione sulla directory che la contiene (torneremo in
+dettaglio sui permessi e gli attributi in \secref{sec:file_access_control}),
+se inoltre lo \textit{sticky} bit è impostato occorrerà anche essere
+proprietari del file o proprietari della directory (o root, per cui nessuna
+delle restrizioni è applicata).
 
+Una delle caratteristiche di queste funzioni è che la creazione/rimozione
+del nome dalla directory e l'incremento/decremento del numero di riferimenti
+nell'inode devono essere effettuati in maniera atomica (si veda
+\secref{sec:proc_atom_oper}) senza possibili interruzioni fra le due
+operazioni. Per questo entrambe queste funzioni sono realizzate tramite una
+singola system call.
 
-\subsection{I tipi di file}
-\label{sec:filedir_file_types}
+Si ricordi infine che il file non viene eliminato dal disco fintanto che tutti
+i riferimenti ad esso sono stati cancellati: solo quando il \textit{link
+  count} mantenuto nell'inode diventa zero lo spazio occupato viene rimosso. A
+questo però si aggiunge un'altra condizione, e cioè che non ci siano processi
+che abbiano detto file aperto.  
 
-Come riportato in \tabref{tab:fileintr_file_types} in linux oltre ai file e
-alle directory esistono vari altri oggetti che possono stare su un filesystem;
-il tipo di file è ritornato dalla \texttt{stat} nel campo \texttt{st\_mode},
-dato che il valore numerico può variare a seconda delle implementazioni
+Questa proprietà viene spesso usata per essere sicuri di non lasciare file
+temporanei su disco in caso di crash dei programmi; la tecnica è quella di
+aprire il file e chiamare \func{unlink} subito dopo, in questo modo il
+contenuto del file è sempre disponibile all'interno del processo attraverso il
+suo file descriptor (vedi \secref{sec:file_fd}) fintanto che il processo non
+chiude il file, ma non ne resta traccia in nessuna directory, e lo spazio
+occupato su disco viene immediatamente rilasciato alla conclusione del
+processo (quando tutti i file vengono chiusi).
 
 
-\subsection{La dimensione dei file}
-\label{sec:filedir_file_size}
+\subsection{Le funzioni \func{remove} e \func{rename}}
+\label{sec:file_remove}
 
-\subsection{I tempi dei file}
-\label{sec:filedir_file_times}
+Al contrario di quanto avviene con altri Unix, in Linux non è possibile usare
+\func{unlink} sulle directory; per cancellare una directory si può usare la
+funzione \func{rmdir} (vedi \secref{sec:file_dir_creat_rem}), oppure la
+funzione \func{remove}. Questa è la funzione prevista dallo standard ANSI C
+per cancellare un file o una directory (e funziona anche per i sistemi che non
+supportano i link diretti). Per i file è identica a \func{unlink} e per le
+directory è identica a \func{rmdir}:
+\begin{prototype}{stdio.h}{int remove(const char *pathname)}
+  Cancella un nome dal filesystem. Usa \func{unlink} per i file e
+  \func{rmdir} per le directory.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso il file non viene toccato. Per i codici di
+    errore vedi quanto riportato nelle descrizioni di \func{unlink} e
+    \func{rmdir}.}
+\end{prototype}
 
-\subsection{La funzione \texttt{utime}}
-\label{sec:filedir_utime}
+Per cambiare nome ad un file o a una directory (che devono comunque essere
+nello stesso filesystem) si usa invece la funzione \func{rename},\footnote{la
+  funzione è definita dallo standard ANSI C solo per i file, POSIX estende la
+  funzione anche alle directory.} il cui prototipo è:
+\begin{prototype}{stdio.h}
+  {int rename(const char *oldpath, const char *newpath)} 
+  
+  Rinomina \var{oldpath} in \var{newpath}, eseguendo se necessario lo
+  spostamento di un file fra directory diverse. Eventuali altri link diretti
+  allo stesso file non vengono influenzati.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso il file non viene toccato. La variabile
+    \var{errno} viene impostata secondo i seguenti codici di errore:
+  \begin{errlist} 
+  \item[\macro{EISDIR}] \var{newpath} è una directory mentre \var{oldpath} non
+    è una directory.
+  \item[\macro{EXDEV}] \var{oldpath} e \var{newpath} non sono sullo stesso
+    filesystem.
+  \item[\macro{ENOTEMPTY}] \var{newpath} è una directory già esistente e non
+    vuota.
+  \item[\macro{EBUSY}] o \var{oldpath} o \var{newpath} sono in uso da parte di
+    qualche processo (come directory di lavoro o come radice) o del sistema
+    (come mount point).
+  \item[\macro{EINVAL}] \var{newpath} contiene un prefisso di \var{oldpath} o
+    più in generale si è cercato di creare una directory come sottodirectory
+    di se stessa.
+  \item[\macro{ENOTDIR}] Uno dei componenti dei pathname non è una directory o
+    \var{oldpath} è una directory e \var{newpath} esiste e non è una
+    directory.
+  \end{errlist} 
+  ed inoltre \macro{EACCESS}, \macro{EPERM}, \macro{EMLINK}, \macro{ENOENT},
+  \macro{ENOMEM}, \macro{EROFS}, \macro{ELOOP} e \macro{ENOSPC}.}
+\end{prototype}
 
+Il comportamento della funzione è diverso a seconda che si voglia rinominare
+un file o una directory; se ci riferisce a un file allora \var{newpath}, se
+esiste, non deve essere una directory (altrimenti si ha l'errore
+\macro{EISDIR}). Nel caso \var{newpath} indichi un file esistente questo viene
+cancellato e rimpiazzato (atomicamente).
 
+Se \var{oldpath} è una directory allora \var{newpath}, se esiste, deve essere
+una directory vuota, altrimenti si avranno gli errori \macro{ENOTDIR} (se non
+è una directory) o \macro{ENOTEMPTY} (se non è vuota). Chiaramente
+\var{newpath} non può contenere \var{oldpath} altrimenti si avrà un errore
+\macro{EINVAL}.
 
+Se \var{oldpath} si riferisce a un link simbolico questo sarà rinominato; se
+\var{newpath} è un link simbolico verrà cancellato come qualunque altro file.
+Infine qualora \var{oldpath} e \var{newpath} siano due nomi dello stesso file
+lo standard POSIX prevede che la funzione non dia errore, e non faccia nulla,
+lasciando entrambi i nomi; Linux segue questo standard, anche se, come fatto
+notare dal manuale delle \textit{glibc}, il comportamento più ragionevole
+sarebbe quello di cancellare \var{oldpath}.
 
-\section{Il controllo di accesso ai file}
-\label{sec:filedir_access_control}
+Il vantaggio nell'uso di questa funzione al posto della chiamata successiva di
+\func{link} e \func{unlink} è che l'operazione è eseguita atomicamente, non
+può esistere cioè nessun istante in cui un altro processo può trovare attivi
+entrambi i nomi dello stesso file, o, in caso di sostituzione di un file
+esistente, non trovare quest'ultimo prima che la sostituzione sia stata
+eseguita.
 
+In ogni caso se \var{newpath} esiste e l'operazione fallisce per un qualche
+motivo (come un crash del kernel), \func{rename} garantisce di lasciare
+presente un'istanza di \var{newpath}. Tuttavia nella sovrascrittura potrà
+esistere una finestra in cui sia \var{oldpath} che \var{newpath} fanno
+riferimento allo stesso file.
 
-In unix è implementata da qualunque filesystem standard una forma elementare
-(ma adatta alla maggior parte delle esigenze) di controllo di accesso ai
-files. Torneremo sull'argomento in dettaglio più avanti (vedi
-\secref{sec:filedir_access_control}), qui ci limitiamo ad una introduzione dei
-concetti essenziali.
 
-Si tenga conto poi che quanto diremo è vero solo per filesystem di tipo Unix,
-e non è detto che sia applicabile (ed infatti non è vero per il filesystem di
-Windows) a un filesystem qualunque. Esistono inoltre estensioni che permettono
-di implementare le ACL (\textit{Access Control List}) che sono un meccanismo
-di controllo di accesso molto più sofisticato.
+\subsection{I link simbolici}
+\label{sec:file_symlink}
 
-Ad ogni file Unix associa sempre l'utente che ne è proprietario (il cosiddetto
-\textit{owner}) e il gruppo di appartenenza, secondo il meccanismo degli uid e
-gid accennato in \secref{sec:intro_multiuser}, e un insieme di permessi che
-sono divisi in tre classi, e cioè attribuiti rispettivamente al proprietario,
-a qualunque utente faccia parte del gruppo cui appartiene il file, e a tutti
-gli altri utenti.
+Come abbiamo visto in \secref{sec:file_link} la funzione \func{link} crea
+riferimenti agli inodes, pertanto può funzionare soltanto per file che
+risiedono sullo stesso filesystem e solo per un filesystem di tipo Unix.
+Inoltre abbiamo visto che in Linux non è consentito eseguire un link diretto
+ad una directory.
 
-I permessi sono espressi da un insieme di 12 bit: di questi i nove meno
-significativi sono usati a gruppi di tre per indicare i permessi base di
-lettura, scrittura ed esecuzione (indicati rispettivamente con le lettere
-\textit{w}, \textit{r} \textit{x}) applicabili rispettivamente al
-proprietario, al gruppo, a tutti (una descrizione più dettagliata dei vari
-permessi associati ai file è riportata in \secref{sec:filedir_suid_sgid}).  I
-restanti tre bit sono usati per indicare alcune caratteristiche più complesse
-(\textit{suid}, \textit{sgid}, e \textit{sticky}) su cui pure torneremo in
-seguito (vedi \secref{sec:filedir_suid_sgid} e \secref{sec:filedir_sticky}).
+Per ovviare a queste limitazioni i sistemi Unix supportano un'altra forma di
+link (i cosiddetti \textit{soft link} o \textit{symbolic link}), che sono,
+come avviene in altri sistemi operativi, dei file speciali che contengono
+semplicemente il riferimento ad un altro file (o directory). In questo modo è
+possibile effettuare link anche attraverso filesystem diversi, a file posti in
+filesystem che non supportano i link diretti, a delle directory, ed anche a
+file che non esistono ancora.
 
-Tutte queste informazioni sono tenute per ciascun file nell'inode. Quando un
-processo cerca l'accesso al file esso controlla i propri uid e gid
-confrontandoli con quelli del file e se l'operazione richiesta è compatibile
-con i permessi associati al file essa viene eseguita, altrimenti viene
-bloccata ed è restituito un errore di \texttt{EPERM}. Questo procedimento non
-viene eseguito per l'amministratore di sistema (il cui uid è zero) il quale ha
-pertanto accesso senza restrizione a qualunque file del sistema.
-
-% In realtà il procedimento è più complesso di quanto descritto in maniera
-% elementare qui; inoltre ad un processo sono associati diversi identificatori,
-% torneremo su questo in maggiori dettagli in seguito in \secref{sec:proc_perms}.
+Il sistema funziona in quanto i link simbolici sono contrassegnati come tali
+al kernel (analogamente a quanto avviene per le directory) per cui per alcune
+funzioni di libreria (come \func{open} o \func{stat}) dare come parametro un
+link simbolico comporta l'applicazione della funzione al file da esso
+specificato. La funzione che permette di creare un nuovo link simbolico è
+\func{symlink}; il suo prototipo è:
+\begin{prototype}{unistd.h}
+  {int symlink(const char *oldpath, const char *newpath)} 
+  Crea un nuovo link simbolico di nome \param{newpath} il cui contenuto è
+  \param{oldpath}.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso la variabile \var{errno} assumerà i valori:
+  \begin{errlist}
+  \item[\macro{EPERM}] il filesystem che contiene \param{newpath} non supporta
+    i link simbolici.
+  \item[\macro{ENOENT}] una componente di \param{newpath} non esiste o
+    \param{oldpath} è una stringa vuota.
+  \item[\macro{EEXIST}] esiste già un file \param{newpath}.
+  \item[\macro{EROFS}] \param{newpath} è su un filesystem montato in sola
+    lettura.
+  \end{errlist}
+  ed inoltre \macro{EFAULT}, \macro{EACCES}, \macro{ENAMETOOLONG},
+  \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP}, \macro{ENOSPC} e
+  \macro{EIO}.}
+\end{prototype}
 
+Si tenga presente che la funzione non effettua nessun controllo sull'esistenza
+di un file di nome \param{oldpath}, ma si limita ad inserire quella stringa
+nel link simbolico. Pertanto un link simbolico può anche riferirsi ad un file
+che non esiste: in questo caso si ha quello che viene chiamato un
+\textit{dangling link}, letteralmente un \textsl{link ciondolante}.
 
+Come accennato i link simbolici sono risolti automaticamente dal kernel
+all'invocazione delle varie system call; in \tabref{tab:file_symb_effect} si è
+riportato un elenco dei comportamenti delle varie funzioni di libreria che
+operano sui file nei confronti della risoluzione dei link simbolici,
+specificando quali seguono il link simbolico e quali invece possono operare
+direttamente sul suo contenuto.
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|c|c|}
+    \hline
+    \textbf{Funzione} & \textbf{Segue il link} & \textbf{Non segue il link} \\
+    \hline 
+    \hline 
+    \func{access}   & $\bullet$ &           \\
+    \func{chdir}    & $\bullet$ &           \\
+    \func{chmod}    & $\bullet$ &           \\
+    \func{chown}    &           & $\bullet$ \\
+    \func{creat}    & $\bullet$ &           \\
+    \func{exec}     & $\bullet$ &           \\
+    \func{lchown}   & $\bullet$ & $\bullet$ \\
+    \func{link}     &           &           \\
+    \func{lstat}    &           & $\bullet$ \\
+    \func{mkdir}    & $\bullet$ &           \\
+    \func{mkfifo}   & $\bullet$ &           \\
+    \func{mknod}    & $\bullet$ &           \\
+    \func{open}     & $\bullet$ &           \\
+    \func{opendir}  & $\bullet$ &           \\
+    \func{pathconf} & $\bullet$ &           \\
+    \func{readlink} &           & $\bullet$ \\
+    \func{remove}   &           & $\bullet$ \\
+    \func{rename}   &           & $\bullet$ \\
+    \func{stat}     & $\bullet$ &           \\
+    \func{truncate} & $\bullet$ &           \\
+    \func{unlink}   &           & $\bullet$ \\
+    \hline 
+  \end{tabular}
+  \caption{Uso dei link simbolici da parte di alcune funzioni.}
+  \label{tab:file_symb_effect}
+\end{table}
 
-\subsection{I flag \texttt{suid} e \texttt{sgid}}
-\label{sec:filedir_suid_sgid}
+Si noti che non si è specificato il comportamento delle funzioni che operano
+con i file descriptor, in quanto la risoluzione del link simbolico viene in
+genere effettuata dalla funzione che restituisce il file descriptor
+(normalmente la \func{open}) e tutte le operazioni seguenti fanno riferimento
+solo a quest'ultimo.
 
-\subsection{La titolarità di nuovi files e directory}
-\label{sec:filedir_ownership}
+Dato che, come indicato in \tabref{tab:file_symb_effect}, funzioni come la
+\func{open} seguono i link simbolici, occorrono funzioni apposite per accedere
+alle informazioni del link invece che a quelle del file a cui esso fa
+riferimento. Quando si vuole leggere il contenuto di un link simbolico si usa
+la funzione \func{readlink}, il cui prototipo è:
+\begin{prototype}{unistd.h}
+{int readlink(const char *path, char *buff, size\_t size)} 
+  Legge il contenuto del link simbolico indicato da \var{path} nel buffer
+  \var{buff} di dimensione \var{size}.
+  
+  \bodydesc{La funzione restituisce il numero di caratteri letti dentro
+    \var{buff} o -1 per un errore, nel qual caso la variabile
+    \var{errno} assumerà i valori:
+  \begin{errlist}
+  \item[\macro{EINVAL}] \param{path} non è un link simbolico o \param{size}
+    non è positiva.
+  \end{errlist}
+  ed inoltre \macro{ENOTDIR}, \macro{ENAMETOOLONG}, \macro{ENOENT},
+  \macro{EACCES}, \macro{ELOOP}, \macro{EIO}, \macro{EFAULT} e
+  \macro{ENOMEM}.}
+\end{prototype}
 
-\subsection{La funzione \texttt{access}}
-\label{sec:filedir_access}
+La funzione apre il link simbolico, ne legge il contenuto, lo scrive nel
+buffer, e lo richiude. Si tenga presente che la funzione non termina la
+stringa con un carattere nullo e la tronca alla dimensione specificata da
+\var{size} per evitare di sovrascrivere oltre le dimensioni del buffer.
 
-\subsection{La funzione \texttt{umask}}
-\label{sec:filedir_umask}
 
-\subsection{Le funzioni \texttt{chmod} e \texttt{fchmod}}
-\label{sec:filedir_chmod}
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=9cm]{img/link_loop}
+  \caption{Esempio di loop nel filesystem creato con un link simbolico.}
+  \label{fig:file_link_loop}
+\end{figure}
 
-\subsection{Il flag \texttt{sticky}}
-\label{sec:filedir_sticky}
+Un caso comune che si può avere con i link simbolici è la creazione dei
+cosiddetti \textit{loop}. La situazione è illustrata in
+\figref{fig:file_link_loop}, che riporta la struttura della directory
+\file{/boot}. Come si vede si è creato al suo interno un link simbolico che
+punta di nuovo a \file{/boot}.\footnote{Questo tipo di loop è stato effettuato
+  per poter permettere a \cmd{grub} (un bootloader in grado di leggere
+  direttamente da vari filesystem il file da lanciare come sistema operativo)
+  di vedere i file in questa directory con lo stesso path con cui verrebbero
+  visti dal sistema operativo, anche se essi si trovano, come è solito, su una
+  partizione separata (e che \cmd{grub} vedrebbe come radice).}
 
-\subsection{Le funzioni \texttt{chown}, \texttt{fchown} e \texttt{lchown}}
-\label{sec:filedir_chown}
+Questo può causare problemi per tutti quei programmi che effettuano la
+scansione di una directory senza tener conto dei link simbolici, ad esempio se
+lanciassimo un comando del tipo \code{grep -r linux *}, il loop nella
+directory porterebbe il comando ad esaminare \file{/boot}, \file{/boot/boot},
+\file{/boot/boot/boot} e così via.
 
+Per questo motivo il kernel e le librerie prevedono che nella risoluzione di
+un pathname possano essere seguiti un numero limitato di link simbolici, il
+cui valore limite è specificato dalla costante \macro{MAXSYMLINKS}. Qualora
+questo limite venga superato viene generato un errore ed \var{errno} viene
+impostata al valore \macro{ELOOP}.
 
-\section{La manipolazione delle directories}
-\label{sec:filedir_dir_handling}
+Un punto da tenere sempre presente è che, come abbiamo accennato, un link
+simbolico può fare riferimento anche ad un file che non esiste; ad esempio
+possiamo creare un file temporaneo nella nostra directory con un link del
+tipo:
+\begin{verbatim}
+$ ln -s /tmp/tmp_file temporaneo
+\end{verbatim}%$
+anche se \file{/tmp/tmp\_file} non esiste. Questo può generare confusione, in
+quanto aprendo in scrittura \file{temporaneo} verrà creato
+\file{/tmp/tmp\_file} e scritto; ma accedendo in sola lettura a
+\file{temporaneo}, ad esempio con \cmd{cat}, otterremmo:
+\begin{verbatim}
+$ cat temporaneo
+cat: temporaneo: No such file or directory
+\end{verbatim}%$
+con un errore che può sembrare sbagliato, dato che un'ispezione con \cmd{ls}
+ci mostrerebbe invece l'esistenza di \file{temporaneo}.
 
-\subsection{Le funzioni \texttt{mkdir} e \texttt{rmdir}} 
-\label{sec:filedir_dir_creat_rem}
 
-Per creare una nuova directory si può usare la seguente funzione, omonima
-dell'analogo comando di shell \texttt{mkdir}; per accedere ai tipi usati
-programma deve includere il file \texttt{sys/types.h}.
+\subsection{La creazione e la cancellazione delle directory} 
+\label{sec:file_dir_creat_rem}
 
+Per creare e cancellare delle directory si usano le due funzioni (omonime
+degli analoghi comandi di shell) \func{mkdir} e \func{rmdir}.  Per poter
+accedere ai tipi usati da queste funzioni si deve includere il file
+\file{sys/types.h}, il prototipo della prima è:
 \begin{prototype}{sys/stat.h}
-{int mkdir (const char * dirname, mode\_t mode)}
-  Questa funzione crea una nuova directory vuota con il nome indicato da
-  \texttt{dirname}, assegnandole i permessi indicati da \texttt{mode}. Il nome
-  può essere indicato con il pathname assoluto o relativo.
-  
-  La funzione restituisce zero in caso di successo e -1 per un errore, in caso
-  di errore \texttt{errno} viene settata secondo i codici di errore standard
-  di accesso ai files (trattati in dettaglio in
-  \secref{sec:filedir_access_control}) ai quali si aggiungono i seguenti:
+  {int mkdir(const char *dirname, mode\_t mode)} 
+  Crea una nuova directory vuota con il nome indicato da \var{dirname},
+  assegnandole i permessi indicati da \var{mode}. Il nome può essere indicato
+  con il pathname assoluto o relativo.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} assumerà i valori:
   \begin{errlist}
-  \item \texttt{EACCESS} 
+  \item[\macro{EEXIST}] Un file (o una directory) con quel nome esiste di già. 
+  \item[\macro{EACCESS}] 
     Non c'è il permesso di scrittura per la directory in cui si vuole inserire
     la nuova directory.
-  \item \texttt{EEXIST} Un file (o una directory) con quel nome esiste di già. 
-  \item \texttt{EMLINK} La directory in cui si vuole creare la nuova directory
+  \item[\macro{EMLINK}] La directory in cui si vuole creare la nuova directory
     contiene troppi file. Sotto Linux questo normalmente non avviene perché il
     filesystem standard consente la creazione di un numero di file maggiore di
-    quelli che possono essere contenuti nell'hard-disk, ma potendo avere a che
+    quelli che possono essere contenuti nel disco, ma potendo avere a che
     fare anche con filesystem di altri sistemi questo errore può presentarsi.
-  \item \texttt{ENOSPC} Non c'è abbastanza spazio sul file system per creare
-    la nuova directory.
-  \item \texttt{EROFS} La directory su cui si vuole inserire la nuova
-    directory è su un filesystem montato readonly.
+  \item[\macro{ENOSPC}] Non c'è abbastanza spazio sul file system per creare
+    la nuova directory o si è esaurita la quota disco dell'utente.
   \end{errlist}
+  ed inoltre anche \macro{EPERM}, \macro{EFAULT}, \macro{ENAMETOOLONG},
+  \macro{ENOENT}, \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP},
+  \macro{EROFS}.}
 \end{prototype}
+
+La funzione crea una nuova directory vuota (che contiene solo le due voci
+standard \file{.} e \file{..}). I permessi di accesso (vedi la trattazione in
+\secref{sec:file_access_control}) specificati da \var{mode} (i cui possibili
+valori sono riportati in \tabref{tab:file_permission_const}) sono modificati
+dalla maschera di creazione dei file (si veda \secref{sec:file_umask}).  La
+titolarità della nuova directory è impostata secondo quanto riportato in
+\secref{sec:file_ownership}.
+
+La seconda funzione serve ad eliminare una directory già vuota (la directory
+deve cioè contenere soltanto le due voci standard \file{.} e \file{..}); il
+suo prototipo è:
+\begin{prototype}{sys/stat.h}{int rmdir(const char *dirname)} 
+  Cancella la directory \var{dirname}, che deve essere vuota.  Il nome può
+  essere indicato con il pathname assoluto o relativo.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} assumerà i valori:
+  \begin{errlist}
+  \item[\macro{EPERM}] Il filesystem non supporta la cancellazione di
+    directory, oppure la directory che contiene \var{dirname} ha lo sticky bit
+    impostato e l'userid effettivo del processo non corrisponde al
+    proprietario della directory.
+  \item[\macro{EACCESS}] Non c'è il permesso di scrittura per la directory che
+    contiene la directory che si vuole cancellare, o non c'è il permesso di
+    attraversare (esecuzione) una delle directory specificate in
+    \var{dirname}.
+  \item[\macro{EBUSY}] La directory specificata è la directory di lavoro o la
+    radice di qualche processo.
+  \item[\macro{ENOTEMPTY}] La directory non è vuota.
+  \end{errlist}
+  ed inoltre anche \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT},
+  \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP}, \macro{EROFS}.}
+\end{prototype}
+
+La modalità con cui avviene la cancellazione è analoga a quella di
+\func{unlink}: fintanto che il numero di link all'inode della directory non
+diventa nullo e nessun processo ha la directory aperta lo spazio occupato su
+disco non viene rilasciato. Se un processo ha la directory aperta la funzione
+rimuove il link all'inode e nel caso sia l'ultimo, pure le voci standard
+\file{.} e \file{..}, a questo punto il kernel non consentirà di creare più
+nuovi file nella directory.
+
+
+\subsection{La creazione di file speciali}
+\label{sec:file_mknod}
+
+Finora abbiamo parlato esclusivamente di file, directory e link simbolici; in
+\secref{sec:file_file_types} abbiamo visto però che il sistema prevede pure
+degli altri tipi di file speciali, come i file di dispositivo e le fifo (i
+socket sono un caso a parte, che vedremo in \capref{cha:socket_intro}).
+
+La manipolazione delle caratteristiche di questi file e la loro cancellazione
+può essere effettuata con le stesse funzioni che operano sui file regolari; ma
+quando li si devono creare sono necessarie delle funzioni apposite. La prima
+di queste funzioni è \func{mknod}, il suo prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h}
+  \headdecl{sys/stat.h}
+  \headdecl{fnctl.h}
+  \headdecl{unistd.h}
+  \funcdecl{int mknod(const char *pathname, mode\_t mode, dev\_t dev)} Crea un
+  inode, si usa per creare i file speciali.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} assumerà i valori:
+  \begin{errlist}
+  \item[\macro{EPERM}] Non si hanno privilegi sufficienti a creare l'inode, o
+    il filesystem su cui si è cercato di creare \func{pathname} non supporta
+    l'operazione.
+  \item[\macro{EINVAL}] Il valore di \var{mode} non indica un file, una fifo o
+    un dipositivo.
+  \item[\macro{EEXIST}] \param{pathname} esiste già o è un link simbolico.
+  \end{errlist}
+  ed inoltre anche \macro{EFAULT}, \macro{EACCESS}, \macro{ENAMETOOLONG},
+  \macro{ENOENT}, \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP},
+  \macro{ENOSPC}, \macro{EROFS}.}
+\end{functions}
+
+La funzione permette di creare un file speciale, ma si può usare anche per
+creare file regolari e fifo; l'argomento \param{mode} specifica il tipo di
+file che si vuole creare ed i relativi permessi, secondo i valori riportati in
+\tabref{tab:file_mode_flags}, che vanno combinati con un OR binario. I
+permessi sono comunque modificati nella maniera usuale dal valore di
+\var{umask} (si veda \secref{sec:file_umask}).
+
+Per il tipo di file può essere specificato solo uno fra: \macro{S\_IFREG} per
+un file regolare (che sarà creato vuoto), \macro{S\_IFBLK} per un device a
+blocchi, \macro{S\_IFCHR} per un device a caratteri e \macro{S\_IFIFO} per una
+fifo. Un valore diverso comporterà l'errore \macro{EINVAL}. Qualora si sia
+specificato in \param{mode} un file di dispositivo, il valore di \param{dev}
+viene usato per indicare a quale dispositivo si fa riferimento.
+
+Solo l'amministratore può creare un file di dispositivo o un file regolare
+usando questa funzione; ma in Linux\footnote{la funzione non è prevista dallo
+  standard POSIX, e deriva da SVr4, con appunto questa differenza e diversi
+  codici di errore.} l'uso per la creazione di una fifo è consentito anche
+agli utenti normali.
+
+I nuovi inode creati con \func{mknod} apparterranno al proprietario e al
+gruppo del processo che li ha creati, a meno che non si sia attivato il bit
+\acr{sgid} per la directory o sia stata attivata la semantica BSD per il
+filesystem (si veda \secref{sec:file_ownership}) in cui si va a creare
+l'inode.
+
+Per creare una fifo (un file speciale, su cui torneremo in dettaglio in
+\secref{sec:ipc_named_pipe}) lo standard POSIX specifica l'uso della funzione
+\func{mkfifo}, il cui prototipo è:
+\begin{functions}
+  \headdecl{sys/types.h} \headdecl{sys/stat.h} 
+  
+  \funcdecl{int mkfifo(const char *pathname, mode\_t mode)} Crea una fifo.
+  
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} assumerà i valori \macro{EACCESS},
+    \macro{EEXIST}, \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOSPC},
+    \macro{ENOTDIR} e \macro{EROFS}.}
+\end{functions}
+\noindent come per \func{mknod} il file \param{pathname} non deve esistere
+(neanche come link simbolico); al solito i permessi specificati da
+\param{mode} vengono modificati dal valore di \var{umask}.
+
+
 
 \subsection{Accesso alle directory}
-\label{sec:filedir_dir_read}
+\label{sec:file_dir_read}
 
 Benché le directory siano oggetti del filesystem come tutti gli altri non ha
 ovviamente senso aprirle come fossero dei file di dati. Può però essere utile
 poterne leggere il contenuto ad esempio per fare la lista dei file che esse
-contengono o ricerche sui medesimi.
+contengono o ricerche sui medesimi. Solo il kernel può scrivere direttamente
+in una directory (onde evitare inconsistenze all'interno del filesystem), i
+processi devono creare i file usando le apposite funzioni.
 
 Per accedere al contenuto delle directory si usano i cosiddetti
-\textit{directory streams} (chiamati così per l'analogia con i file stream);
-la funzione \texttt{opendir} apre uno di questi stream e la funzione
-\texttt{readdir} legge il contenuto della directory, i cui elementi sono le
-\textit{directory entries} (da distinguersi da quelle della cache di cui
-parlavamo in \secref{sec:fileintr_vfs}) in una opportuna struttura
-\texttt{struct dirent}.
+\textit{directory streams} (chiamati così per l'analogia con i file stream di
+\capref{cha:files_std_interface}); la funzione \func{opendir} apre uno di
+questi stream e la funzione \func{readdir} legge il contenuto della directory,
+i cui elementi sono le \textit{directory entry} (da distinguersi da quelle
+della cache di cui parlavamo in \secref{sec:file_vfs}) in un'opportuna
+struttura \var{struct dirent}.
+
+(NdA Il resto va scritto!!! É noioso e lo farò più avanti).
 
 
 \subsection{La directory di lavoro}
-\label{sec:filedir_work_dir}
+\label{sec:file_work_dir}
 
-A ciascun processo è associato ad una directory nel filesystem che è chiamata
+A ciascun processo è associata una directory nel filesystem che è chiamata
 directory corrente o directory di lavoro (\textit{current working directory})
 che è quella a cui si fa riferimento quando un filename è espresso in forma
-relativa (relativa appunto a questa directory).
+relativa, dove il ``relativa'' fa riferimento appunto a questa directory.
 
-Quando un utente effettua il login questa directory viene settata alla
-cosiddetta \textit{home directory} del suo account, il comando \texttt{cd}
-della shell consente di cambiarla a piacere, spostandosi da una directory ad
-un'altra.  Siccome la directory corrente resta la stessa quando viene creato
-un processo figlio, la directory corrente della shell diventa anche la
+Quando un utente effettua il login, questa directory viene impostata alla
+\textit{home directory} del suo account. Il comando \cmd{cd} della shell
+consente di cambiarla a piacere, spostandosi da una directory ad un'altra, il
+comando \cmd{pwd} la stampa sul terminale.  Siccome la directory corrente
+resta la stessa quando viene creato un processo figlio (vedi
+\secref{sec:proc_fork}), la directory corrente della shell diventa anche la
 directory corrente di qualunque comando da essa lanciato.
 
-Le funzioni qui descritte servono esaminare e cambiare la directory di lavoro
-corrente. 
-
-\begin{prototype}{unistd.h}{char * getcwd (char * buffer, size\_t size)}
+In genere il kernel tiene traccia per ciascun processo dell'inode della
+directory di lavoro corrente, per ottenere il pathname occorre usare una
+apposita funzione di libreria,  \func{getcwd}, il cui prototipo è:
+\begin{prototype}{unistd.h}{char *getcwd(char *buffer, size\_t size)}
   Restituisce il filename completo della directory di lavoro corrente nella
-  stringa puntata da \texttt{buffer}, che deve essere precedentemente
-  allocata, per una dimensione massima di \texttt{size}. Si può anche
-  specificare un puntatore nullo come \textit{buffer}, nel qual caso la
-  stringa sarà allocata automaticamente per una dimensione pari a
-  \texttt{size} qualora questa sia diversa da zero, o della lunghezza esatta
-  del pathname altrimenti. In questo caso si deve ricordare di disallocare la
-  stringa una volta cessato il suo utilizzo.
-  
-  La funzione restituisce il puntatore \texttt{buffer} se riesce,
-  \texttt{NULL} se fallisce, in quest'ultimo caso la variabile
-  \texttt{errno} è settata con i seguenti codici di errore:
+  stringa puntata da \var{buffer}, che deve essere precedentemente
+  allocata, per una dimensione massima di \var{size}.
+  
+  \bodydesc{La funzione restituisce il puntatore \var{buffer} se riesce,
+    \macro{NULL} se fallisce, in quest'ultimo caso la variabile
+    \var{errno} è impostata con i seguenti codici di errore:
   \begin{errlist}
-  \item \texttt{EINVAL} L'argomento \texttt{size} è zero e \texttt{buffer} non
+  \item[\macro{EINVAL}] L'argomento \var{size} è zero e \var{buffer} non
     è nullo.
-  \item \texttt{ERANGE} L'argomento \texttt{size} è più piccolo della
+  \item[\macro{ERANGE}] L'argomento \var{size} è più piccolo della
     lunghezza del pathname. 
-  \item \texttt{EACCESS} Manca il permesso di lettura o di ricerca su uno dei
+  \item[\macro{EACCESS}] Manca il permesso di lettura o di ricerca su uno dei
     componenti del pathname (cioè su una delle directory superiori alla
     corrente).
-  \end{errlist}
+  \end{errlist}}
 \end{prototype}
 
-Di questa funzione esiste una versione \texttt{char * getwd(char * buffer)}
+Il buffer deve essere sufficientemente lungo da poter contenere il pathname
+completo più lo zero di terminazione della stringa. Qualora esso ecceda le
+dimensioni specificate con \var{size} la funzione restituisce un errore.  Si
+può anche specificare un puntatore nullo come \var{buffer},\footnote{questa è
+  un'estensione allo standard POSIX.1, supportata da Linux.} nel qual caso la
+stringa sarà allocata automaticamente per una dimensione pari a \var{size}
+qualora questa sia diversa da zero, o della lunghezza esatta del pathname
+altrimenti. In questo caso ci si deve ricordare di disallocare la stringa una
+volta cessato il suo utilizzo.
+
+Di questa funzione esiste una versione \code{char *getwd(char *buffer)}
 fatta per compatibilità all'indietro con BSD, che non consente di specificare
 la dimensione del buffer; esso deve essere allocato in precedenza ed avere una
-dimensione superiore a \texttt{PATH\_MAX} (di solito 256 bytes, vedi
-\secref{sec:xxx_limits}; il problema è che in Linux non esiste una dimensione
+dimensione superiore a \macro{PATH\_MAX} (di solito 256 byte, vedi
+\secref{sec:sys_limits}); il problema è che in Linux non esiste una dimensione
 superiore per un pathname, per cui non è detto che il buffer sia sufficiente a
 contenere il nome del file, e questa è la ragione principale per cui questa
 funzione è deprecata.
 
-Una seconda funzione simile è \texttt{char * get\_current\_dir\_name(void)}
-che è sostanzialmente equivalente ad una \texttt{getcwd(NULL, 0)}, con la sola
-differenza che essa ritorna il valore della variabile di ambiente
-\texttt{PWD}, che essendo costruita dalla shell può contenere anche dei
-riferimenti simbolici.
-
-Come già detto in unix anche le directory sono file, è possibile pertanto
-riferirsi ad esse tramite il file descriptor dell'interfaccia a basso livello,
-e non solo tramite il filename; per questo motivo ci sono due diverse funzioni
-per cambiare directory di lavoro.
-
-\begin{prototype}{unistd.h}{int chdir (const char * pathname)}
-  Come dice il nome (che significa \textit{change directory}) questa funzione
-  serve a cambiare la directory di lavoro a quella specificata dal pathname
-  contenuto nella stringa \texttt{pathname}.
+Una seconda funzione simile è \code{char *get\_current\_dir\_name(void)} che è
+sostanzialmente equivalente ad una \code{getcwd(NULL, 0)}, con la sola
+differenza che essa ritorna il valore della variabile di ambiente \macro{PWD},
+che essendo costruita dalla shell può contenere un pathname comprendente anche
+dei link simbolici. Usando \func{getcwd} infatti, essendo il pathname ricavato
+risalendo all'indietro l'albero della directory, si perderebbe traccia di ogni
+passaggio attraverso eventuali link simbolici.
+
+Per cambiare la directory di lavoro corrente si può usare la funzione
+\func{chdir} (equivalente del comando di shell \cmd{cd}) il cui nome sta
+appunto per \textit{change directory}, il suo prototipo è:
+\begin{prototype}{unistd.h}{int chdir(const char *pathname)} 
+  Cambia la directory di lavoro corrente in \param{pathname}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo e -1 per un errore,
+    nel qual caso \var{errno} assumerà i valori:
+  \begin{errlist}
+  \item[\macro{ENOTDIR}] Non si è specificata una directory.
+  \item[\macro{EACCESS}] Manca il permesso di ricerca su uno dei componenti di
+    \param{path}.
+  \end{errlist}
+  ed inoltre \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT},
+  \macro{ENOMEM}, \macro{ELOOP} e \macro{EIO}.}
 \end{prototype}
+\noindent ed ovviamente \param{pathname} deve indicare una directory per la
+quale si hanno i permessi di accesso.
+
+Dato che anche le directory sono file, è possibile riferirsi ad esse anche
+tramite il file descriptor, e non solo tramite il filename, per fare questo si
+usa \func{fchdir}, il cui prototipo è:
+\begin{prototype}{unistd.h}{int fchdir(int fd)} 
+  Identica a \func{chdir}, ma usa il file descriptor \param{fd} invece del
+  pathname.
   
-\begin{prototype}{unistd.h}{int fchdir (int filedes)} 
-  Analoga alla precedente, ma usa un file descriptor invece del pathname.
+  \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
+    errore, in caso di errore \var{errno} assumerà i valori \macro{EBADF} o
+    \macro{EACCES}.}
+\end{prototype}
+\noindent anche in questo caso \param{fd} deve essere un file descriptor
+valido che fa riferimento ad una directory. Inoltre l'unico errore di accesso
+possibile (tutti gli altri sarebbero occorsi all'apertura di \func{fd}), è
+quello in cui il processo non ha il permesso di accesso alla directory
+specificata da \param{fd}.
+
+
+
+\subsection{I file temporanei}
+\label{sec:file_temp_file}
+
+In molte occasioni è utile poter creare dei file temporanei; benché la cosa
+sembri semplice, in realtà il problema è più sottile di quanto non appaia a
+prima vista. Infatti anche se sembrerebbe banale generare un nome a caso e
+creare il file dopo aver controllato che questo non esista, nel momento fra il
+controllo e la creazione si ha giusto lo spazio per una possibile \textit{race
+  condition} (si ricordi quanto visto in \secref{sec:proc_race_cond}).
+
+Le \acr{glibc} provvedono varie funzioni per generare nomi di file temporanei,
+di cui si abbia certezza di unicità (al momento della generazione); la prima
+di queste funzioni è \func{tmpnam} il cui prototipo è:
+\begin{prototype}{stdio.h}{char *tmpnam(char *string)}
+  Restituisce il puntatore ad una stringa contente un nome di file valido e
+  non esistente al momento dell'invocazione. 
+
+  \bodydesc{La funzione ritorna il puntatore alla stringa con il nome o
+  \macro{NULL} in caso di fallimento. Non sono definiti errori.}
+\end{prototype}
+\noindent se si è passato un puntatore \param{string} non nullo questo deve
+essere di dimensione \macro{L\_tmpnam} (costante definita in \file{stdio.h},
+come \macro{P\_tmpdir} e \macro{TMP\_MAX}) ed il nome generato vi verrà
+copiato automaticamente; altrimenti il nome sarà generato in un buffer statico
+interno che verrà sovrascritto ad una chiamata successiva.  Successive
+invocazioni della funzione continueranno a restituire nomi unici fino ad un
+massimo di \macro{TMP\_MAX} volte. Al nome viene automaticamente aggiunto come
+prefisso la directory specificata da \macro{P\_tmpdir}.
+
+Di questa funzione esiste una versione rientrante, \func{tmpnam\_r}, che non
+fa nulla quando si passa \macro{NULL} come parametro. Una funzione simile,
+\func{tempnam}, permette di specificare un prefisso per il file
+esplicitamente, il suo prototipo è:
+\begin{prototype}{stdio.h}{char *tempnam(const char *dir, const char *pfx)}
+  Restituisce il puntatore ad una stringa contente un nome di file valido e
+  non esistente al momento dell'invocazione.
+
+  \bodydesc{La funzione ritorna il puntatore alla stringa con il nome o
+  \macro{NULL} in caso di fallimento, \var{errno} viene impostata a
+  \macro{ENOMEM} qualora fallisca l'allocazione della stringa.}
+\end{prototype}
+
+La funzione alloca con \code{malloc} la stringa in cui restituisce il nome,
+per cui è sempre rientrante, occorre però ricordarsi di disallocare il
+puntatore che restituisce.  L'argomento \param{pfx} specifica un prefisso di
+massimo 5 caratteri per il nome provvisorio. La funzione assegna come
+directory per il file temporaneo (verificando che esista e sia accessibili),
+la prima valida delle seguenti:
+\begin{itemize*}
+\item La variabile di ambiente \macro{TMPNAME} (non ha effetto se non è
+  definita o se il programma chiamante è \acr{suid} o \acr{sgid}, vedi
+  \secref{sec:file_suid_sgid}).
+\item il valore dell'argomento \param{dir} (se diverso da \macro{NULL}).
+\item Il valore della costante \macro{P\_tmpdir}.
+\item la directory \file{/tmp}.
+\end{itemize*}
+
+In ogni caso, anche se la generazione del nome è casuale, ed è molto difficile
+ottenere un nome duplicato, nulla assicura che un altro processo non possa
+avere creato, fra l'ottenimento del nome e l'apertura del file, un altro file
+con lo stesso nome; per questo motivo quando si usa il nome ottenuto da una di
+queste funzioni occorre sempre aprire il nuovo file in modalità di esclusione
+(cioè con l'opzione \macro{O\_EXCL} per i file descriptor o con il flag
+\code{x} per gli stream) che fa fallire l'apertura in caso il file sia già
+esistente.
+
+Per evitare di dovere effettuare a mano tutti questi controlli, lo standard
+POSIX definisce la funzione \func{tempfile}, il cui prototipo è:
+\begin{prototype}{stdio.h}{FILE *tmpfile (void)}
+  Restituisce un file temporaneo aperto in lettura/scrittura.
   
-  Entrambe le funzioni restituiscono zero in caso di successo e -1 per un
-  errore, in caso di errore \texttt{errno} viene settata secondo i codici di
-  errore standard di accesso ai files (trattati in dettaglio in
-  \secref{sec:filedir_access_control}) ai quali si aggiunge il codice
-  \texttt{ENOTDIR} nel caso il \texttt{filename} indichi un file che non sia
-  una directory.
+  \bodydesc{La funzione ritorna il puntatore allo stream associato al file
+    temporaneo in caso di successo e \macro{NULL} in caso di errore, nel qual
+    caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\macro{EINTR}] La funzione è stata interrotta da un segnale.
+    \item[\macro{EEXIST}] Non è stato possibile generare un nome univoco.
+    \end{errlist}
+    ed inoltre \macro{EFAULT}, \macro{EMFILE}, \macro{ENFILE}, \macro{ENOSPC},
+    \macro{EROFS} e \macro{EACCESS}.}
 \end{prototype}
+\noindent essa restituisce direttamente uno stream già aperto (in modalità
+\code{r+b}, si veda \secref{sec:file_fopen}) e pronto per l'uso, che viene
+automaticamente cancellato alla sua chiusura o all'uscita dal programma. Lo
+standard non specifica in quale directory verrà aperto il file, ma le
+\acr{glibc} prima tentano con \macro{P\_tmpdir} e poi con \file{/tmp}. Questa
+funzione è rientrante e non soffre di problemi di \textit{race
+  condition}\index{race condition}.
+
+Alcune versioni meno recenti di Unix non supportano queste funzioni; in questo
+caso si possono usare le vecchie funzioni \func{mktemp} e \func{mkstemp} che
+modificano una stringa di input che serve da modello e che deve essere
+conclusa da 6 caratteri \code{X} che verranno sostituiti da un codice
+unico. La prima delle due è analoga a \func{tmpnam} e genera un nome casuale,
+il suo prototipo è:
+\begin{prototype}{stlib.h}{char *mktemp(char *template)}
+  Genera un filename univoco sostituendo le \code{XXXXXX} finali di
+  \param{template}.
+  
+  \bodydesc{La funzione ritorna il puntatore \param{template} in caso di
+    successo e \macro{NULL} in caso di errore, nel qual caso \var{errno}
+    assumerà i valori:
+    \begin{errlist}
+    \item[\macro{EINVAL}] \param{template} non termina con \code{XXXXXX}.
+    \end{errlist}}
+\end{prototype}
+\noindent dato che \param{template} deve poter essere modificata dalla
+funzione non si può usare una stringa costante.  Tutte le avvertenze riguardo
+alle possibili \textit{race condition}\index{race condition} date per
+\func{tmpnam} continuano a valere; inoltre in alcune vecchie implementazioni
+il valore di usato per sostituire le \code{XXXXXX} viene formato con il
+\acr{pid} del processo più una lettera, il che mette a disposizione solo 26
+possibilità diverse per il nome del file, e rende il nome temporaneo facile da
+indovinare. Per tutti questi motivi la funzione è deprecata e non dovrebbe mai
+essere usata.
+
+
+
+La seconda funzione, \func{mkstemp} è sostanzialmente equivalente a
+\func{tmpfile}, ma restituisce un file descriptor invece di uno stream; il suo
+prototipo è:
+\begin{prototype}{stlib.h}{int mkstemp(char *template)}
+  Genera un file temporaneo con un nome ottenuto sostituendo le \code{XXXXXX}
+  finali di \param{template}.
+  
+  \bodydesc{La funzione ritorna il file descriptor in caso successo e
+    -1 in caso di errore, nel qual caso \var{errno} assumerà i valori:
+    \begin{errlist}
+    \item[\macro{EINVAL}] \param{template} non termina con \code{XXXXXX}.
+    \item[\macro{EEXIST}] non è riuscita a creare un file temporano, il
+      contenuto di \param{template} è indefinito.
+    \end{errlist}}
+\end{prototype}
+\noindent come per \func{mktemp} anche in questo caso \param{template} non può
+essere una stringa costante. La funzione apre un file in lettura/scrittura con
+la funzione \func{open}, usando l'opzione \macro{O\_EXCL} (si veda
+\secref{sec:file_open}), in questo modo al ritorno della funzione si ha la
+certezza di essere i soli utenti del file. I permessi sono impostati al valore
+\code{0600}\footnote{questo è vero a partire dalle \acr{glibc} 2.0.7, le
+  versioni precedenti delle \acr{glibc} e le vecchie \acr{libc5} e \acr{libc4}
+  usavano il valore \code{0666} che permetteva a chiunque di leggere i
+  contenuti del file.} (si veda \secref{sec:file_perm_overview}).
+
+In OpenBSD è stata introdotta un'altra funzione\footnote{introdotta anche in
+  Linux a partire dalle \acr{glibc} 2.1.91.} simile alle precedenti,
+\func{mkdtemp}, che crea una directory temporanea; il suo prototipo è:
+\begin{prototype}{stlib.h}{char *mkdtemp(char *template)}
+  Genera una directory temporaneo il cui nome è ottenuto sostituendo le
+  \code{XXXXXX} finali di \param{template}.
+  
+  \bodydesc{La funzione ritorna il puntatore al nome della directory in caso
+    successo e \macro{NULL} in caso di errore, nel qual caso \var{errno}
+    assumerà i valori:
+    \begin{errlist}
+    \item[\macro{EINVAL}] \param{template} non termina con \code{XXXXXX}.
+    \end{errlist}
+    più gli altri eventuali codici di errore di \func{mkdir}.}
+\end{prototype}
+\noindent la directory è creata con permessi \code{0700} (al solito si veda
+\capref{cha:file_unix_interface} per i dettagli); dato che la creazione della
+directory è sempre esclusiva i precedenti problemi di \textit{race
+  condition}\index{race condition} non si pongono.
+
+
+\section{La manipolazione delle caratteristiche dei files}
+\label{sec:file_infos}
+
+Come spiegato in \secref{sec:file_filesystem} tutte le informazioni
+generali relative alle caratteristiche di ciascun file, a partire dalle
+informazioni relative al controllo di accesso, sono mantenute nell'inode.
+
+Vedremo in questa sezione come sia possibile leggere tutte queste informazioni
+usando la funzione \func{stat}, che permette l'accesso a tutti i dati
+memorizzati nell'inode; esamineremo poi le varie funzioni usate per manipolare
+tutte queste informazioni (eccetto quelle che riguardano la gestione del
+controllo di accesso, trattate in in \secref{sec:file_access_control}).
+
+
+\subsection{Le funzioni \func{stat}, \func{fstat} e \func{lstat}}
+\label{sec:file_stat}
+
+La lettura delle informazioni relative ai file è fatta attraverso la famiglia
+delle funzioni \func{stat}; questa è la funzione che ad esempio usa il comando
+\cmd{ls} per poter ottenere e mostrare tutti i dati dei files. I prototipi di
+queste funzioni sono i seguenti:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/stat.h} 
+  \headdecl{unistd.h}
+
+  \funcdecl{int stat(const char *file\_name, struct stat *buf)} Legge le
+  informazione del file specificato da \var{file\_name} e le inserisce in
+  \var{buf}.
+  
+  \funcdecl{int lstat(const char *file\_name, struct stat *buf)} Identica a
+  \func{stat} eccetto che se il \var{file\_name} è un link simbolico vengono
+  lette le informazioni relativa ad esso e non al file a cui fa riferimento.
+  
+  \funcdecl{int fstat(int filedes, struct stat *buf)} Identica a \func{stat}
+  eccetto che si usa con un file aperto, specificato tramite il suo file
+  descriptor \var{filedes}.
+  
+  \bodydesc{Le funzioni restituiscono 0 in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} assumerà uno dei valori: \macro{EBADF},
+    \macro{ENOENT}, \macro{ENOTDIR}, \macro{ELOOP}, \macro{EFAULT},
+    \macro{EACCESS}, \macro{ENOMEM}, \macro{ENAMETOOLONG}.}
+\end{functions}
+\noindent il loro comportamento è identico, solo che operano rispettivamente
+su un file, su un link simbolico e su un file descriptor.
+
+La struttura \var{stat} usata da queste funzioni è definita nell'header
+\file{sys/stat.h} e in generale dipende dall'implementazione; la versione
+usata da Linux è mostrata in \figref{fig:file_stat_struct}, così come
+riportata dalla pagina di manuale di \func{stat} (in realtà la definizione
+effettivamente usata nel kernel dipende dall'architettura e ha altri campi
+riservati per estensioni come tempi più precisi, o per il padding dei campi).
+
+\begin{figure}[!htb]
+  \footnotesize
+  \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct stat {
+    dev_t         st_dev;      /* device */
+    ino_t         st_ino;      /* inode */
+    mode_t        st_mode;     /* protection */
+    nlink_t       st_nlink;    /* number of hard links */
+    uid_t         st_uid;      /* user ID of owner */
+    gid_t         st_gid;      /* group ID of owner */
+    dev_t         st_rdev;     /* device type (if inode device) */
+    off_t         st_size;     /* total size, in bytes */
+    unsigned long st_blksize;  /* blocksize for filesystem I/O */
+    unsigned long st_blocks;   /* number of blocks allocated */
+    time_t        st_atime;    /* time of last access */
+    time_t        st_mtime;    /* time of last modification */
+    time_t        st_ctime;    /* time of last change */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \var{stat} per la lettura delle informazioni dei 
+    file}
+  \label{fig:file_stat_struct}
+\end{figure}
+
+Si noti come i vari membri della struttura siano specificati come tipi
+primitivi del sistema (di quelli definiti in
+\tabref{tab:intro_primitive_types}, e dichiarati in \file{sys/types.h}).
+
+
+\subsection{I tipi di file}
+\label{sec:file_types}
+
+Come riportato in \tabref{tab:file_file_types} in Linux oltre ai file e alle
+directory esistono altri oggetti che possono stare su un filesystem.  Il tipo
+di file è ritornato dalla \func{stat} come maschera binaria nel campo
+\var{st\_mode} (che che contiene anche le informazioni relative ai permessi).
+
+Dato che il valore numerico può variare a seconda delle implementazioni, lo
+standard POSIX definisce un insieme di macro per verificare il tipo di file,
+queste vengono usate anche da Linux che supporta pure le estensioni allo
+standard per i link simbolici e i socket definite da BSD; l'elenco completo
+delle macro con cui è possibile estrarre l'informazione da \var{st\_mode} è
+riportato in \tabref{tab:file_type_macro}.
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Macro} & \textbf{Tipo del file} \\
+    \hline
+    \hline
+    \macro{S\_ISREG(m)}  & file regolare \\
+    \macro{S\_ISDIR(m)}  & directory \\
+    \macro{S\_ISCHR(m)}  & device a caratteri \\
+    \macro{S\_ISBLK(m)}  & device a blocchi\\
+    \macro{S\_ISFIFO(m)} & fifo \\
+    \macro{S\_ISLNK(m)}  & link simbolico \\
+    \macro{S\_ISSOCK(m)} & socket \\
+    \hline    
+  \end{tabular}
+  \caption{Macro per i tipi di file (definite in \texttt{sys/stat.h}).}
+  \label{tab:file_type_macro}
+\end{table}
+
+Oltre alle macro di \tabref{tab:file_type_macro} è possibile usare
+direttamente il valore di \var{st\_mode} per ricavare il tipo di file
+controllando direttamente i vari bit in esso memorizzati. Per questo sempre in
+\file{sys/stat.h} sono definite le costanti numeriche riportate in
+\tabref{tab:file_mode_flags}.
+
+Il primo valore dell'elenco di \tabref{tab:file_mode_flags} è la maschera
+binaria che permette di estrarre i bit nei quali viene memorizzato il tipo di
+file, i valori successivi sono le costanti corrispondenti ai singoli bit, e
+possono essere usati per effettuare la selezione sul tipo di file voluto, con
+un'opportuna combinazione.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|c|l|}
+    \hline
+    \textbf{Flag} & \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \macro{S\_IFMT}   &  0170000 & bitmask per i bit del tipo di file \\
+    \macro{S\_IFSOCK} &  0140000 & socket             \\
+    \macro{S\_IFLNK}  &  0120000 & link simbolico     \\
+    \macro{S\_IFREG}  &  0100000 & file regolare      \\ 
+    \macro{S\_IFBLK}  &  0060000 & device a blocchi   \\
+    \macro{S\_IFDIR}  &  0040000 & directory          \\ 
+    \macro{S\_IFCHR}  &  0020000 & device a caratteri \\
+    \macro{S\_IFIFO}  &  0010000 & fifo               \\
+    \hline
+    \macro{S\_ISUID}  &  0004000 & set UID bit   \\
+    \macro{S\_ISGID}  &  0002000 & set GID bit   \\
+    \macro{S\_ISVTX}  &  0001000 & sticky bit    \\
+    \hline
+%    \macro{S\_IRWXU}  &  00700   & bitmask per i permessi del proprietario  \\
+    \macro{S\_IRUSR}  &  00400   & il proprietario ha permesso di lettura   \\
+    \macro{S\_IWUSR}  &  00200   & il proprietario ha permesso di scrittura \\
+    \macro{S\_IXUSR}  &  00100   & il proprietario ha permesso di esecuzione\\
+    \hline
+%    \macro{S\_IRWXG}  &  00070   & bitmask per i permessi del gruppo        \\
+    \macro{S\_IRGRP}  &  00040   & il gruppo ha permesso di lettura         \\
+    \macro{S\_IWGRP}  &  00020   & il gruppo ha permesso di scrittura       \\
+    \macro{S\_IXGRP}  &  00010   & il gruppo ha permesso di esecuzione      \\
+    \hline
+%    \macro{S\_IRWXO}  &  00007   & bitmask per i permessi di tutti gli altri\\
+    \macro{S\_IROTH}  &  00004   & gli altri hanno permesso di lettura      \\
+    \macro{S\_IWOTH}  &  00002   & gli altri hanno permesso di esecuzione   \\
+    \macro{S\_IXOTH}  &  00001   & gli altri hanno permesso di esecuzione   \\
+    \hline    
+  \end{tabular}
+  \caption{Costanti per l'identificazione dei vari bit che compongono il campo
+    \var{st\_mode} (definite in \file{sys/stat.h}).}
+  \label{tab:file_mode_flags}
+\end{table}
+
+Ad esempio se si volesse impostare una condizione che permetta di controllare
+se un file è una directory o un file ordinario si potrebbe definire la macro
+di preprocessore:
+\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
+#define IS_FILE_DIR(x) (((x) & S_IFMT) & (S_IFDIR | S_IFREG))
+\end{lstlisting}
+in cui prima si estraggono da \var{st\_mode} i bit relativi al tipo di file e
+poi si effettua il confronto con la combinazione di tipi scelta.
 
 
+\subsection{Le dimensioni dei file}
+\label{sec:file_file_size}
 
+Il membro \var{st\_size} contiene la dimensione del file in byte (se si tratta
+di un file regolare, nel caso di un link simbolico la dimensione è quella del
+pathname che contiene, per le fifo è sempre nullo).
+
+Il campo \var{st\_blocks} definisce la lunghezza del file in blocchi di 512
+byte. Il campo \var{st\_blksize} infine definisce la dimensione preferita per
+i trasferimenti sui file (che è la dimensione usata anche dalle librerie del C
+per l'interfaccia degli stream); scrivere sul file a blocchi di dati di
+dimensione inferiore sarebbe inefficiente.
+
+Si tenga conto che la lunghezza del file riportata in \var{st\_size} non è
+detto che corrisponda all'occupazione dello spazio su disco per via della
+possibile esistenza dei cosiddetti \textit{holes} (letteralmente
+\textsl{buchi}) che si formano tutte le volte che si va a scrivere su un file
+dopo aver eseguito una \func{lseek} (vedi \secref{sec:file_lseek}) oltre la
+sua fine.
+
+In questo caso si avranno risultati differenti a seconda del modo in cui si
+calcola la lunghezza del file, ad esempio il comando \cmd{du}, (che riporta il
+numero di blocchi occupati) potrà dare una dimensione inferiore, mentre se si
+legge dal file (ad esempio usando il comando \cmd{wc -c}), dato che in tal
+caso per le parti non scritte vengono restituiti degli zeri, si avrà lo stesso
+risultato di \cmd{ls}.
+
+Se è sempre possibile allargare un file, scrivendoci sopra od usando la
+funzione \func{lseek} per spostarsi oltre la sua fine, esistono anche casi in
+cui si può avere bisogno di effettuare un troncamento, scartando i dati
+presenti al di là della dimensione scelta come nuova fine del file.
+
+Un file può sempre essere troncato a zero aprendolo con il flag
+\macro{O\_TRUNC}, ma questo è un caso particolare; per qualunque altra
+dimensione si possono usare le due funzioni \func{truncate} e
+\func{ftruncate}, i cui prototipi sono:
+\begin{functions}
+  \headdecl{unistd.h} \funcdecl{int truncate(const char *file\_name, off\_t
+    length)} Fa si che la dimensione del file \var{file\_name} sia troncata ad
+    un valore massimo specificato da \var{lenght}. 
+  
+  \funcdecl{int ftruncate(int fd, off\_t length))} Identica a \func{truncate}
+  eccetto che si usa con un file aperto, specificato tramite il suo file
+  descriptor \var{fd}.
+  
+  \bodydesc{Le funzioni restituiscono zero in caso di successo e -1 per un
+    errore, nel qual caso \var{errno} viene impostata opportunamente; per
+    \func{ftruncate} si hanno i valori:
+  \begin{errlist}
+  \item[\macro{EBADF}] \var{fd}  non è un file descriptor.
+  \item[\macro{EINVAL}] \var{fd} è un riferimento ad un socket, non a un file
+    o non è aperto in scrittura.
+  \end{errlist}
+  per \func{truncate} si hanno:
+  \begin{errlist}
+  \item[\macro{EACCES}] il file non ha permesso di scrittura o non si ha il
+    permesso di esecuzione una delle directory del pathname. 
+  \item[\macro{ETXTBSY}] Il file è un programma in esecuzione.
+  \end{errlist}
+  ed anche \macro{ENOTDIR}, \macro{ENAMETOOLONG}, \macro{ENOENT},
+  \macro{EROFS}, \macro{EIO}, \macro{EFAULT}, \macro{ELOOP}.}
+\end{functions}
+
+Se il file è più lungo della lunghezza specificata i dati in eccesso saranno
+perduti; il comportamento in caso di lunghezza inferiore non è specificato e
+dipende dall'implementazione: il file può essere lasciato invariato o esteso
+fino alla lunghezza scelta; in quest'ultimo caso lo spazio viene riempito con
+zeri (e in genere si ha la creazione di un \textit{hole} nel file).
+
+
+\subsection{I tempi dei file}
+\label{sec:file_file_times}
+
+Il sistema mantiene per ciascun file tre tempi. Questi sono registrati
+nell'inode insieme agli altri attributi del file e possono essere letti
+tramite la funzione \func{stat}, che li restituisce attraverso tre campi della
+struttura \var{stat} di \figref{fig:file_stat_struct}. Il significato di detti
+tempi e dei relativi campi è riportato nello schema in
+\tabref{tab:file_file_times}, dove è anche riportato un esempio delle funzioni
+che effettuano cambiamenti su di essi.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|c|l|l|c|}
+    \hline
+    \textbf{Membro} & \textbf{Significato} & \textbf{Funzione} 
+    & \textbf{Opzione di \cmd{ls}} \\
+    \hline
+    \hline
+    \var{st\_atime}& ultimo accesso ai dati del file &\func{read}, 
+    \func{utime} & \cmd{-u}\\ 
+    \var{st\_mtime}& ultima modifica ai dati del file &\func{write}, 
+    \func{utime} & default\\ 
+    \var{st\_ctime}& ultima modifica ai dati dell'inode&\func{chmod}, 
+    \func{utime} & \cmd{-c} \\ 
+    \hline
+  \end{tabular}
+  \caption{I tre tempi associati a ciascun file.}
+  \label{tab:file_file_times}
+\end{table}
+
+Il primo punto da tenere presente è la differenza fra il cosiddetto tempo di
+modifica (il \textit{modification time} \var{st\_mtime}) e il tempo di
+cambiamento di stato (il \textit{change time} \var{st\_ctime}). Il primo
+infatti fa riferimento ad una modifica del contenuto di un file, mentre il
+secondo ad una modifica dell'inode; siccome esistono molte operazioni (come la
+funzione \func{link} e molte altre che vedremo in seguito) che modificano solo
+le informazioni contenute nell'inode senza toccare il file, diventa necessario
+l'utilizzo di un altro tempo.
+
+Il sistema non tiene conto dell'ultimo accesso all'inode, pertanto funzioni
+come \func{access} o \func{stat} non hanno alcuna influenza sui tre tempi. Il
+tempo di ultimo accesso (ai dati) viene di solito usato per cancellare i file
+che non servono più dopo un certo lasso di tempo (ad esempio \cmd{leafnode}
+cancella i vecchi articoli sulla base di questo tempo).
+
+Il tempo di ultima modifica invece viene usato da \cmd{make} per decidere
+quali file necessitano di essere ricompilati o (talvolta insieme anche al
+tempo di cambiamento di stato) per decidere quali file devono essere
+archiviati per il backup. Il comando \cmd{ls} (quando usato con le opzioni
+\cmd{-l} o \cmd{-t}) mostra i tempi dei file secondo lo schema riportato
+nell'ultima colonna di \tabref{tab:file_file_times}.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|c|c|c|c|c|c|l|}
+    \hline
+    \multicolumn{1}{|p{3cm}|}{\centering{\vspace{6pt}\textbf{Funzione}}} &
+    \multicolumn{3}{|p{3.6cm}|}{\centering{
+        \textbf{File o directory del riferimento}}}&
+    \multicolumn{3}{|p{3.6cm}|}{\centering{
+        \textbf{Directory contenente il riferimento}}} 
+    &\multicolumn{1}{|p{3.6cm}|}{\centering{\vspace{6pt}\textbf{Note}}} \\
+    \cline{2-7}
+    \cline{2-7}
+    \multicolumn{1}{|p{3cm}|}{} 
+    &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(a)}}}
+    &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(m)}}}
+    &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(c)}}}
+    &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(a)}}}
+    &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(m)}}}
+    &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(c)}}}
+    &\multicolumn{1}{|p{3cm}|}{} \\
+    \hline
+    \hline
+    \func{chmod}, \func{fchmod} 
+    &         &         &$\bullet$&         &         &         & \\
+    \func{chown}, \func{fchown} 
+    &         &         &$\bullet$&         &         &         & \\
+    \func{creat}  
+    &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$&  con 
+    \macro{O\_CREATE} \\    \func{creat}  
+    &         &$\bullet$&$\bullet$&         &$\bullet$&$\bullet$&   
+    con \macro{O\_TRUNC} \\    \func{exec}  
+    &$\bullet$&         &         &         &         &         & \\
+    \func{lchown}  
+    &         &         &$\bullet$&         &         &         & \\
+    \func{link}
+    &         &         &$\bullet$&         &$\bullet$&$\bullet$& \\
+    \func{mkdir}
+    &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$& \\
+    \func{mkfifo}
+    &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$& \\
+    \func{open}
+    &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$& con 
+    \macro{O\_CREATE} \\    \func{open}
+    &         &$\bullet$&$\bullet$&         &         &         & con 
+    \macro{O\_TRUNC}  \\    \func{pipe}
+    &$\bullet$&$\bullet$&$\bullet$&         &         &         & \\
+    \func{read}
+    &$\bullet$&         &         &         &         &         & \\
+    \func{remove}
+    &         &         &$\bullet$&         &$\bullet$&$\bullet$& se esegue 
+    \func{unlink}\\    \func{remove}
+    &         &         &         &         &$\bullet$&$\bullet$& se esegue 
+    \func{rmdir}\\ \func{rename}
+    &         &         &$\bullet$&         &$\bullet$&$\bullet$& per entrambi
+    gli argomenti\\ \func{rmdir}
+    &         &         &         &         &$\bullet$&$\bullet$& \\ 
+    \func{truncate}, \func{ftruncate}
+    &         &$\bullet$&$\bullet$&         &         &         & \\ 
+    \func{unlink}
+    &         &         &$\bullet$&         &$\bullet$&$\bullet$& \\ 
+    \func{utime}
+    &$\bullet$&$\bullet$&$\bullet$&         &         &         & \\ 
+    \func{write}
+    &         &$\bullet$&$\bullet$&         &         &         & \\ 
+    \hline
+  \end{tabular}
+  \caption{Prospetto dei cambiamenti effettuati sui tempi di ultimo 
+    accesso \textsl{(a)}, ultima modifica \textsl{(m)} e ultimo cambiamento
+    \textsl{(c)} dalle varie funzioni operanti su file e directory.}
+  \label{tab:file_times_effects}  
+\end{table}
+
+L'effetto delle varie funzioni di manipolazione dei file sui tempi è
+illustrato in \tabref{tab:file_times_effects}. Si sono riportati gli effetti
+sia per il file a cui si fa riferimento, sia per la directory che lo contiene;
+questi ultimi possono essere capiti se si tiene conto di quanto già detto, e
+cioè che anche le directory sono file (che contengono una lista di nomi) che
+il sistema tratta in maniera del tutto analoga a tutti gli altri.
+
+Per questo motivo tutte le volte che compiremo un'operazione su un file che
+comporta una modifica del nome contenuto nella directory, andremo anche a
+scrivere sulla directory che lo contiene cambiandone il tempo di modifica. Un
+esempio di questo può essere la cancellazione di un file, invece leggere o
+scrivere o cambiare i permessi di un file ha effetti solo sui tempi di
+quest'ultimo.
+
+Si noti infine come \var{st\_ctime} non abbia nulla a che fare con il tempo di
+creazione del file, usato in molti altri sistemi operativi, ma che in Unix non
+esiste. Per questo motivo quando si copia un file, a meno di preservare
+esplicitamente i tempi (ad esempio con l'opzione \cmd{-p} di \cmd{cp}) esso
+avrà sempre il tempo corrente come data di ultima modifica.
+
+
+\subsection{La funzione \func{utime}}
+\label{sec:file_utime}
+
+I tempi di ultimo accesso e modifica possono essere cambiati usando la
+funzione \func{utime}, il cui prototipo è:
+\begin{prototype}{utime.h}
+{int utime(const char *filename, struct utimbuf *times)} 
+
+Cambia i tempi di ultimo accesso e modifica dell'inode specificato da
+\param{filename} secondo i campi \var{actime} e \var{modtime} di
+\param{times}. Se questa è \macro{NULL} allora viene usato il tempo corrente.
+
+\bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  errore, nel qual caso \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\macro{EACCESS}] non si ha il permesso di scrittura sul file.
+  \item[\macro{ENOENT}] \param{filename} non esiste.
+  \end{errlist}}
+\end{prototype}
+La funzione prende come argomento \param{times} una struttura \var{utimebuf},
+la cui definizione è riportata in \figref{fig:struct_utimebuf}, con la quale
+si possono specificare i nuovi valori che si vogliono impostare per tempi.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct utimbuf {
+        time_t actime;  /* access time */
+        time_t modtime; /* modification time */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \type{utimbuf}, usata da \func{utime} per modificare i
+    tempi dei file.} 
+  \label{fig:struct_utimebuf}
+\end{figure}
+
+L'effetto della funzione e i privilegi necessari per eseguirla dipendono da
+cosa è l'argomento \param{times}; se è \macro{NULL} la funzione imposta il
+tempo corrente ed è sufficiente avere accesso in scrittura al file; se invece
+si è specificato un valore la funzione avrà successo solo se si è proprietari
+del file (o si hanno i privilegi di amministratore).
+
+Si tenga presente che non è comunque possibile specificare il tempo di
+cambiamento di stato del file, che viene comunque cambiato dal kernel tutte le
+volte che si modifica l'inode (quindi anche alla chiamata di \func{utime}).
+Questo serve anche come misura di sicurezza per evitare che si possa
+modificare un file nascondendo completamente le proprie tracce.  In realtà la
+cosa resta possibile, se si è in grado di accedere al file di dispositivo,
+scrivendo direttamente sul disco senza passare attraverso il filesystem, ma
+ovviamente in questo modo la cosa è molto più complicata da realizzare.
+
+
+
+\section{Il controllo di accesso ai file}
+\label{sec:file_access_control}
+
+Una delle caratteristiche fondamentali di tutti i sistemi unix-like è quella
+del controllo di accesso ai file, che viene implementato per qualunque
+filesystem standard.\footnote{per standard si intende che implementa le
+  caratteristiche previste dallo standard POSIX. In Linux sono disponibili
+  anche una serie di altri filesystem, come quelli di Windiws e del Mac, che
+  non supportano queste caratteristiche.} In questa sezione ne esamineremo i
+concetti essenziali e le funzioni usate per gestirne i vari aspetti.
+
+
+\subsection{I permessi per l'accesso ai file}
+\label{sec:file_perm_overview}
+
+Ad ogni file Linux associa sempre l'utente che ne è proprietario (il
+cosiddetto \textit{owner}) ed un gruppo di appartenenza, secondo il meccanismo
+degli identificatori di utente e gruppo (\acr{uid} e \acr{gid}). Questi valori
+sono accessibili da programma tramite la funzione \func{stat}, e sono
+mantenuti nei campi \var{st\_uid} e \var{st\_gid} della struttura \var{stat}
+(si veda \secref{sec:file_stat}).\footnote{Questo è vero solo per filesystem
+  di tipo Unix, ad esempio non è vero per il filesystem vfat di Windows, che
+  non fornisce nessun supporto per l'accesso multiutente, e per il quale i
+  permessi vengono assegnati in maniera fissa con un opzione in fase di
+  montaggio.}
+
+Il controllo di accesso ai file segue un modello abbastanza semplice che
+prevede tre permessi fondamentali strutturati su tre livelli di accesso.
+Esistono varie estensioni a questo modello,\footnote{come le \textit{Access
+    Control List} che possono essere aggiunte al filesystem standard con
+  opportune patch, la cui introduzione nei kernel ufficiali è iniziata con la
+  serie 2.5.x. per arrivare a meccanismi di controllo ancora più sofisticati
+  come il \textit{mandatory access control} di SE-Linux.} ma nella maggior
+parte dei casi il meccanismo standard è più che sufficiente a soddisfare tutte
+le necessità più comuni.  I tre permessi di base associati ad ogni file sono:
+\begin{itemize*}
+\item il permesso di lettura (indicato con la lettera \texttt{r}, dall'inglese
+  \textit{read}).
+\item il permesso di scrittura (indicato con la lettera \texttt{w},
+  dall'inglese \textit{write}).
+\item il permesso di esecuzione (indicato con la lettera \texttt{x},
+  dall'inglese \textit{execute}).
+\end{itemize*}
+mentre i tre livelli su cui sono divisi i privilegi sono:
+\begin{itemize*}
+\item i privilegi per l'utente proprietario del file.
+\item i privilegi per un qualunque utente faccia parte del gruppo cui
+  appartiene il file.
+\item i privilegi per tutti gli altri utenti.
+\end{itemize*}
+
+L'insieme dei permessi viene espresso con un numero a 12 bit; di questi i nove
+meno significativi sono usati a gruppi di tre per indicare i permessi base di
+lettura, scrittura ed esecuzione e sono applicati rispettivamente
+rispettivamente al proprietario, al gruppo, a tutti gli altri.
+
+I restanti tre bit (noti come \acr{suid}, \acr{sgid}, e \textsl{sticky}) sono
+usati per indicare alcune caratteristiche più complesse del meccanismo del
+controllo di accesso su cui torneremo in seguito (in
+\secref{sec:file_suid_sgid} e \secref{sec:file_sticky}); lo schema di
+allocazione dei bit è riportato in \figref{fig:file_perm_bit}.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=6cm]{img/fileperm}
+  \caption{Lo schema dei bit utilizzati per specificare i permessi di un file
+    contenuti nel campo \var{st\_mode} di \var{fstat}.}
+  \label{fig:file_perm_bit}
+\end{figure}
+
+Anche i permessi, come tutte le altre informazioni pertinenti al file, sono
+memorizzati nell'inode; in particolare essi sono contenuti in alcuni bit del
+campo \var{st\_mode} della struttura \func{stat} (si veda di nuovo
+\figref{fig:file_stat_struct}).
+
+In genere ci si riferisce ai tre livelli dei privilegi usando le lettere
+\cmd{u} (per \textit{user}), \cmd{g} (per \textit{group}) e \cmd{o} (per
+\textit{other}), inoltre se si vuole indicare tutti i raggruppamenti insieme
+si usa la lettera \cmd{a} (per \textit{all}). Si tenga ben presente questa
+distinzione dato che in certi casi, mutuando la terminologia in uso nel VMS,
+si parla dei permessi base come di permessi per \textit{owner}, \textit{group}
+ed \textit{all}, le cui iniziali possono dar luogo a confusione.  Le costanti
+che permettono di accedere al valore numerico di questi bit nel campo
+\var{st\_mode} sono riportate in \tabref{tab:file_bit_perm}.
+
+\begin{table}[htb]
+  \centering
+    \footnotesize
+  \begin{tabular}[c]{|c|l|}
+    \hline
+    \textbf{\var{st\_mode}} bit & \textbf{Significato} \\
+    \hline 
+    \hline 
+    \macro{S\_IRUSR}  &  \textit{user-read}, l'utente può leggere     \\
+    \macro{S\_IWUSR}  &  \textit{user-write}, l'utente può scrivere   \\
+    \macro{S\_IXUSR}  &  \textit{user-execute}, l'utente può eseguire \\ 
+    \hline              
+    \macro{S\_IRGRP}  &  \textit{group-read}, il gruppo può leggere    \\
+    \macro{S\_IWGRP}  &  \textit{group-write}, il gruppo può scrivere  \\
+    \macro{S\_IXGRP}  &  \textit{group-execute}, il gruppo può eseguire\\
+    \hline              
+    \macro{S\_IROTH}  &  \textit{other-read}, tutti possono leggere    \\
+    \macro{S\_IWOTH}  &  \textit{other-write}, tutti possono scrivere  \\
+    \macro{S\_IXOTH}  &  \textit{other-execute}, tutti possono eseguire\\
+    \hline              
+  \end{tabular}
+  \caption{I bit dei permessi di accesso ai file, come definiti in 
+    \texttt{<sys/stat.h>}}
+  \label{tab:file_bit_perm}
+\end{table}
+
+I permessi vengono usati in maniera diversa dalle varie funzioni, e a seconda
+che si riferiscano a dei file, dei link simbolici o delle directory; qui ci
+limiteremo ad un riassunto delle regole generali, entrando nei dettagli più
+avanti.
+
+La prima regola è che per poter accedere ad un file attraverso il suo pathname
+occorre il permesso di esecuzione in ciascuna delle directory che compongono
+il pathname; lo stesso vale per aprire un file nella directory corrente (per
+la quale appunto serve il diritto di esecuzione).
+
+Per una directory infatti il permesso di esecuzione significa che essa può
+essere attraversata nella risoluzione del pathname, ed è distinto dal permesso
+di lettura che invece implica che si può leggere il contenuto della directory.
+Questo significa che se si ha il permesso di esecuzione senza permesso di
+lettura si potrà lo stesso aprire un file in una directory (se si hanno i
+permessi opportuni per il medesimo) ma non si potrà vederlo con \cmd{ls}
+(mentre per crearlo occorrerà anche il permesso di scrittura per la
+directory).
+
+Avere il permesso di lettura per un file consente di aprirlo con le opzioni
+(si veda quanto riportato in \tabref{tab:file_open_flags}) di sola lettura o
+di lettura/scrittura e leggerne il contenuto. Avere il permesso di scrittura
+consente di aprire un file in sola scrittura o lettura/scrittura e modificarne
+il contenuto, lo stesso permesso è necessario per poter troncare il file.
+
+Non si può creare un file fintanto che non si disponga del permesso di
+esecuzione e di quello di scrittura per la directory di destinazione; gli
+stessi permessi occorrono per cancellare un file da una directory (si ricordi
+che questo non implica necessariamente la rimozione del contenuto del file dal
+disco), non è necessario nessun tipo di permesso per il file stesso (infatti
+esso non viene toccato, viene solo modificato il contenuto della directory,
+rimuovendo la voce che ad esso fa riferimento).
+
+Per poter eseguire un file (che sia un programma compilato od uno script di
+shell, od un altro tipo di file eseguibile riconosciuto dal kernel), occorre
+avere il permesso di esecuzione, inoltre solo i file regolari possono essere
+eseguiti.
+
+I permessi per un link simbolico sono ignorati, contano quelli del file a cui
+fa riferimento; per questo in genere il comando \cmd{ls} riporta per un link
+simbolico tutti i permessi come concessi; utente e gruppo a cui esso
+appartiene vengono pure ignorati quando il link viene risolto, vengono
+controllati solo quando viene richiesta la rimozione del link e quest'ultimo è
+in una directory con lo \textsl{sticky bit} impostato (si veda
+\secref{sec:file_sticky}).
+
+La procedura con cui il kernel stabilisce se un processo possiede un certo
+permesso (di lettura, scrittura o esecuzione) si basa sul confronto fra
+l'utente e il gruppo a cui il file appartiene (i valori di \var{st\_uid} e
+\var{st\_gid} accennati in precedenza) e l'userid effettivo, il groupid
+effettivo e gli eventuali groupid supplementari del processo.\footnote{in
+  realtà Linux, per quanto riguarda l'accesso ai file, utilizza gli gli
+  identificatori del gruppo \textit{filesystem} (si ricordi quanto esposto in
+  \secref{sec:proc_perms}), ma essendo questi del tutto equivalenti ai primi,
+  eccetto il caso in cui si voglia scrivere un server NFS, ignoreremo questa
+  differenza.}
+
+Per una spiegazione dettagliata degli identificatori associati ai processi si
+veda \secref{sec:proc_perms}; normalmente, a parte quanto vedremo in
+\secref{sec:file_suid_sgid}, l'userid effettivo e il groupid effectivo
+corrispondono ai valori dell'\acr{uid} e del \acr{gid} dell'utente che ha
+lanciato il processo, mentre i groupid supplementari sono quelli dei gruppi
+cui l'utente appartiene.
+
+I passi attraverso i quali viene stabilito se il processo possiede il diritto
+di accesso sono i seguenti:
+\begin{enumerate}
+\item Se l'userid effettivo del processo è zero (corrispondente
+  all'amministratore) l'accesso è sempre garantito senza nessun ulteriore
+  controllo. Per questo motivo \textsl{root} ha piena libertà di accesso a
+  tutti i file.
+\item Se l'userid effettivo del processo è uguale all'\acr{uid} del
+  proprietario del file (nel qual caso si dice che il processo è proprietario
+  del file) allora:
+  \begin{itemize*}
+  \item se il relativo\footnote{per relativo si intende il bit di user-read se
+      il processo vuole accedere in scrittura, quello di user-write per
+      l'accesso in scrittura, etc.} bit dei permessi d'accesso dell'utente è
+    impostato, l'accesso è consentito
+  \item altrimenti l'accesso è negato
+  \end{itemize*}
+\item Se il groupid effettivo del processo o uno dei groupid supplementari dei
+  processi corrispondono al \acr{gid} del file allora:
+  \begin{itemize*}
+  \item se il bit dei permessi d'accesso del gruppo è impostato, l'accesso è
+    consentito, 
+  \item altrimenti l'accesso è negato
+  \end{itemize*}
+\item se il bit dei permessi d'accesso per tutti gli altri è impostato,
+  l'accesso è consentito, altrimenti l'accesso è negato.
+\end{enumerate}
+
+Si tenga presente che questi passi vengono eseguiti esattamente in
+quest'ordine. Questo vuol dire che se un processo è il proprietario di un file,
+l'accesso è consentito o negato solo sulla base dei permessi per l'utente; i
+permessi per il gruppo non vengono neanche controllati. Lo stesso vale se il
+processo appartiene ad un gruppo appropriato, in questo caso i permessi per
+tutti gli altri non vengono controllati.
+
+
+\subsection{I bit \acr{suid} e \acr{sgid}}
+\label{sec:file_suid_sgid}
+
+Come si è accennato (in \secref{sec:file_perm_overview}) nei dodici bit del
+campo \var{st\_mode} di \var{stat} che vengono usati per il controllo di
+accesso oltre ai bit dei permessi veri e propri, ci sono altri tre bit che
+vengono usati per indicare alcune proprietà speciali dei file.  Due di questi
+sono i bit detti \acr{suid} (da \textit{set-user-ID bit}) e \acr{sgid} (da
+\textit{set-group-ID bit}) che sono identificati dalle costanti
+\macro{S\_ISUID} e \macro{S\_ISGID}.
+
+Come spiegato in dettaglio in \secref{sec:proc_exec}, quando si lancia un
+programma il comportamento normale del kernel è quello di impostare gli
+identificatori del gruppo \textit{effective} del nuovo processo al valore dei
+corrispondenti del gruppo \textit{real} del processo corrente, che normalmente
+corrispondono dell'utente con cui si è entrati nel sistema.
+
+Se però il file del programma (che ovviamente deve essere
+eseguibile\footnote{per motivi di sicurezza il kernel ignora i bit \acr{suid}
+  e \acr{sgid} per gli script eseguibili.}) ha il bit \acr{suid} impostato, il
+kernel assegnerà come userid effettivo al nuovo processo l'\acr{uid} del
+proprietario del file al posto dell'\acr{uid} del processo originario.  Avere
+il bit \acr{sgid} impostato ha lo stesso effetto sul groupid effettivo del
+processo.
+
+I bit \acr{suid} e \acr{sgid} vengono usati per permettere agli utenti normali
+di usare programmi che abbisognano di privilegi speciali; l'esempio classico è
+il comando \cmd{passwd} che ha la necessità di modificare il file delle
+password, quest'ultimo ovviamente può essere scritto solo dall'amministratore,
+ma non è necessario chiamare l'amministratore per cambiare la propria
+password. Infatti il comando \cmd{passwd} appartiene a root ma ha il bit
+\acr{suid} impostato per cui quando viene lanciato da un utente normale parte
+con i privilegi di root.
+
+Chiaramente avere un processo che ha privilegi superiori a quelli che avrebbe
+normalmente l'utente che lo ha lanciato comporta vari rischi, e questo tipo di
+programmi devono essere scritti accuratamente per evitare che possano essere
+usati per guadagnare privilegi non consentiti (l'argomento è affrontato in
+dettaglio in \secref{sec:proc_perms}).
+
+La presenza dei bit \acr{suid} e \acr{sgid} su un file può essere rilevata con
+il comando \cmd{ls -l}, che visualizza una lettera \cmd{s} al posto della
+\cmd{x} in corrispondenza dei permessi di utente o gruppo. La stessa lettera
+\cmd{s} può essere usata nel comando \cmd{chmod} per impostare questi bit.
+Infine questi bit possono essere controllati all'interno di \var{st\_mode} con
+l'uso delle due costanti \macro{S\_ISUID} e \macro{S\_IGID}, i cui valori sono
+riportati in \tabref{tab:file_mode_flags}.
+
+Gli stessi bit vengono ad assumere in significato completamente diverso per le
+directory, normalmente infatti Linux usa la convenzione di SVr4 per indicare
+con questi bit l'uso della semantica BSD nella creazione di nuovi file (si
+veda \secref{sec:file_ownership} per una spiegazione dettagliata al
+proposito).
+
+Infine Linux utilizza il bit \acr{sgid} per una ulteriore estensione mutuata
+da SVr4. Il caso in cui un file ha il bit \acr{sgid} impostato senza che lo
+sia anche il corrispondente bit di esecuzione viene utilizzato per attivare
+per quel file il \textit{mandatory locking} (affronteremo questo argomento in
+dettaglio più avanti, in \secref{sec:file_mand_locking}).
+
+
+\subsection{Il bit \textsl{sticky}}
+\label{sec:file_sticky}
+
+L'ultimo dei bit rimanenti, identificato dalla costante \macro{S\_ISVTX}, è in
+parte un rimasuglio delle origini dei sistemi Unix. A quell'epoca infatti la
+memoria virtuale e l'accesso ai files erano molto meno sofisticati e per
+ottenere la massima velocità possibile per i programmi usati più comunemente
+si poteva impostare questo bit.
+
+L'effetto di questo bit era che il segmento di testo del programma (si veda
+\secref{sec:proc_mem_layout} per i dettagli) veniva scritto nella swap la
+prima volta che questo veniva lanciato, e vi permaneva fino al riavvio della
+macchina (da questo il nome di \textsl{sticky bit}); essendo la swap un file
+continuo indicizzato direttamente in questo modo si poteva risparmiare in
+tempo di caricamento rispetto alla ricerca del file su disco. Lo
+\textsl{sticky bit} è indicato usando la lettera \cmd{t} al posto della
+\cmd{x} nei permessi per gli altri.
+
+Ovviamente per evitare che gli utenti potessero intasare la swap solo
+l'amministratore era in grado di impostare questo bit, che venne chiamato
+anche con il nome di \textit{saved text bit}, da cui deriva quello della
+costante.  Le attuali implementazioni di memoria virtuale e filesystem rendono
+sostanzialmente inutile questo procedimento.
+
+Benché ormai non venga più utilizzato per i file, lo \textsl{sticky bit} ha
+invece assunto un uso importante per le directory;\footnote{lo \textsl{sticky
+    bit} per le directory è un'estensione non definita nello standard POSIX,
+  Linux però la supporta, così come BSD e SVr4.} in questo caso se tale bit è
+impostato un file potrà essere rimosso dalla directory soltanto se l'utente ha
+il permesso di scrittura su di essa ed inoltre è vera una delle seguenti
+condizioni:
+\begin{itemize*}
+\item l'utente è proprietario del file
+\item l'utente è proprietario della directory
+\item l'utente è l'amministratore 
+\end{itemize*}
+un classico esempio di directory che ha questo bit impostato è \file{/tmp}, i
+permessi infatti di solito sono impostati come:
+\begin{verbatim}
+$ ls -ld /tmp
+drwxrwxrwt    6 root     root         1024 Aug 10 01:03 /tmp
+\end{verbatim}%$
+in questo modo chiunque può creare file in questa directory (che infatti è
+normalmente utilizzata per la creazione di file temporanei), ma solo l'utente
+che ha creato un certo file potrà cancellarlo o rinominarlo. In questo modo si
+evita che un utente possa, più o meno consapevolmente, cancellare i file degli
+altri.
+
+
+\subsection{La titolarità di nuovi file e directory}
+\label{sec:file_ownership}
+
+Vedremo in \secref{sec:file_base_func} con quali funzioni si possono creare
+nuovi file, in tale occasione vedremo che è possibile specificare in sede di
+creazione quali permessi applicare ad un file, però non si può indicare a
+quale utente e gruppo esso deve appartenere.  Lo stesso problema di presenta
+per la creazione di nuove directory (procedimento descritto in
+\secref{sec:file_dir_creat_rem}).
+
+Lo standard POSIX prescrive che l'\acr{uid} del nuovo file corrisponda
+all'userid effettivo del processo che lo crea; per il \acr{gid} invece prevede
+due diverse possibilità:
+\begin{itemize*}
+\item il \acr{gid} del file corrisponde al groupid effettivo del processo.
+\item il \acr{gid} del file corrisponde al \acr{gid} della directory in cui
+  esso è creato.
+\end{itemize*}
+in genere BSD usa sempre la seconda possibilità, che viene per questo chiamata
+semantica BSD. Linux invece segue quella che viene chiamata semantica SVr4; di
+norma cioè il nuovo file viene creato, seguendo la prima opzione, con il
+\acr{gid} del processo, se però la directory in cui viene creato il file ha il
+bit \acr{sgid} impostato allora viene usata la seconda opzione.
+
+Usare la semantica BSD ha il vantaggio che il \acr{gid} viene sempre
+automaticamente propagato, restando coerente a quello della directory di
+partenza, in tutte le sottodirectory. La semantica SVr4 offre la possibilità
+di scegliere, ma per ottenere lo stesso risultato di coerenza che si ha con
+BSD necessita che per le nuove directory venga anche propagato anche il bit
+\acr{sgid}. Questo è il comportamento predefinito di \cmd{mkdir}, ed è in
+questo modo ad esempio che Debian assicura che le sottodirectory create nella
+home di un utente restino sempre con il \acr{gid} del gruppo primario dello
+stesso.
+
+
+\subsection{La funzione \func{access}}
+\label{sec:file_access}
+
+Come visto in \secref{sec:file_access_control} il controllo di accesso ad un
+file viene fatto utilizzando l'userid ed il groupid effettivo del processo; ci
+sono casi però in cui si può voler effettuare il controllo con l'userid reale
+ed il groupid reale, vale a dire usando i valori di \acr{uid} e \acr{gid}
+relativi all'utente che ha lanciato il programma, e che, come accennato in
+\secref{sec:file_suid_sgid} e spiegato in dettaglio in
+\secref{sec:proc_perms}, non è detto siano uguali a quelli effettivi.  Per far
+questo si può usare la funzione \func{access}, il cui prototipo è:
+\begin{prototype}{unistd.h}
+{int access(const char *pathname, int mode)}
+
+Verifica i permessi di accesso, indicati da \param{mode}, per il file indicato
+da \param{pathname}.
+  
+\bodydesc{La funzione ritorna 0 se l'accesso è consentito, -1 se l'accesso non
+  è consentito ed in caso di errore; nel qual caso la variabile \var{errno}
+  assumerà i valori:
+  \begin{errlist}
+  \item[\macro{EINVAL}] il valore di \param{mode} non è valido.
+  \item[\macro{EACCES}] l'accesso al file non è consentito, o non si ha il
+    permesso di attraversare una delle directory di \param{pathname}.
+  \item[\macro{EROFS}] si è richiesto l'accesso in scrittura per un file su un
+    filesystem montato in sola lettura.
+  \end{errlist}
+  ed inoltre \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT},
+  \macro{ENOTDIR}, \macro{ELOOP}, \macro{EIO}.}
+\end{prototype}
+
+I valori possibili per l'argomento \param{mode} sono esprimibili come
+combinazione delle costanti numeriche riportate in
+\tabref{tab:file_access_mode_val} (attraverso un OR binario delle stesse). I
+primi tre valori implicano anche la verifica dell'esistenza del file, se si
+vuole verificare solo quest'ultima si può usare \macro{F\_OK}, o anche
+direttamente \func{stat}. Nel caso in cui \var{pathname} si riferisca ad un
+link simbolico, questo viene seguito ed il controllo è fatto sul file a cui
+esso fa riferimento.
+
+La funzione controlla solo i bit dei permessi di accesso, si ricordi che il
+fatto che una directory abbia permesso di scrittura non significa che ci si
+possa scrivere come in un file, e il fatto che un file abbia permesso di
+esecuzione non comporta che contenga un programma eseguibile. La funzione
+ritorna zero solo se tutte i permessi controllati sono disponibili, in caso
+contrario (o di errore) ritorna -1.
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}{|c|l|}
+    \hline
+    \textbf{\var{mode}} & \textbf{Significato} \\
+    \hline
+    \hline
+    \macro{R\_OK} & verifica il permesso di lettura \\
+    \macro{W\_OK} & verifica il permesso di scritture \\
+    \macro{X\_OK} & verifica il permesso di esecuzione \\
+    \macro{F\_OK} & verifica l'esistenza del file \\
+    \hline
+  \end{tabular}
+  \caption{Valori possibile per il parametro \var{mode} della funzione 
+    \func{access}.}
+  \label{tab:file_access_mode_val}
+\end{table}
+
+Un esempio tipico per l'uso di questa funzione è quello di un processo che sta
+eseguendo un programma coi privilegi di un altro utente (ad esempio attraverso
+l'uso del \acr{suid} bit) che vuole controllare se l'utente originale ha i
+permessi per accedere ad un certo file.
+
+
+\subsection{Le funzioni \func{chmod} e \func{fchmod}}
+\label{sec:file_chmod}
+
+Per cambiare i permessi di un file il sistema mette ad disposizione due
+funzioni \func{chmod} e \func{fchmod}, che operano rispettivamente su un
+filename e su un file descriptor, i loro prototipi sono:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/stat.h} 
+  
+  \funcdecl{int chmod(const char *path, mode\_t mode)} Cambia i permessi del
+  file indicato da \var{path} al valore indicato da \var{mode}.
+  
+  \funcdecl{int fchmod(int fd, mode\_t mode)} Analoga alla precedente, ma usa
+  il file descriptor \var{fd} per indicare il file.
+  
+  \bodydesc{Le funzioni restituiscono zero in caso di successo e -1 per
+    un errore, in caso di errore \var{errno} può assumere i valori:
+  \begin{errlist}
+  \item[\macro{EPERM}] L'userid effettivo non corrisponde a quello del
+    proprietario del file o non è zero.
+    \item[\macro{EROFS}] Il file è su un filesystem in sola lettura.
+  \end{errlist}
+  ed inoltre \macro{EIO}; \func{chmod} restituisce anche \macro{EFAULT},
+  \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOMEM}, \macro{ENOTDIR},
+  \macro{EACCES}, \macro{ELOOP}; \func{fchmod} anche \macro{EBADF}.}
+\end{functions}
+
+Entrambe le funzioni utilizzano come secondo argomento \param{mode}, una
+variabile dell'apposito tipo primitivo \type{mode\_t} (vedi
+\tabref{tab:intro_primitive_types}) utilizzato per specificare i permessi sui
+file.
+
+\begin{table}[!htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|c|c|l|}
+    \hline
+    \textbf{\var{mode}} & \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \macro{S\_ISUID} & 04000 & set user ID \\
+    \macro{S\_ISGID} & 02000 & set group ID \\
+    \macro{S\_ISVTX} & 01000 & sticky bit \\
+    \hline
+    \macro{S\_IRWXU} & 00700 & l'utente ha tutti i permessi \\
+    \macro{S\_IRUSR} & 00400 & l'utente ha il permesso di lettura  \\
+    \macro{S\_IWUSR} & 00200 & l'utente ha il permesso di scrittura \\
+    \macro{S\_IXUSR} & 00100 & l'utente ha il permesso di esecuzione \\
+    \hline
+    \macro{S\_IRWXG} & 00070 & il gruppo ha tutti i permessi  \\
+    \macro{S\_IRGRP} & 00040 & il gruppo ha il permesso di lettura  \\
+    \macro{S\_IWGRP} & 00020 & il gruppo ha il permesso di scrittura \\
+    \macro{S\_IXGRP} & 00010 & il gruppo ha il permesso di esecuzione \\
+    \hline
+    \macro{S\_IRWXO} & 00007 & gli altri hanno tutti i permessi \\
+    \macro{S\_IROTH} & 00004 & gli altri hanno il permesso di lettura  \\
+    \macro{S\_IWOTH} & 00002 & gli altri hanno il permesso di scrittura \\
+    \macro{S\_IXOTH} & 00001 & gli altri hanno il permesso di esecuzione \\
+    \hline
+  \end{tabular}
+  \caption{Valori delle costanti usate per indicare i vari bit di
+    \param{mode} utilizzato per impostare i permessi dei file.}
+  \label{tab:file_permission_const}
+\end{table}
+
+Le costanti con cui specificare i singoli bit di \param{mode} sono riportate
+in \tabref{tab:file_permission_const}. Il valore di \param{mode} può essere
+ottenuto combinando fra loro con un OR binario le costanti simboliche relative
+ai vari bit, o specificato direttamente, come per l'omonimo comando di shell,
+con un valore numerico (la shell lo vuole in ottale, dato che i bit dei
+permessi sono divisibili in gruppi di tre), che si può calcolare direttamente
+usando lo schema si utilizzo dei bit illustrato in \figref{fig:file_perm_bit}.
+
+Ad esempio i permessi standard assegnati ai nuovi file (lettura e scrittura
+per il proprietario, sola lettura per il gruppo e gli altri) sono
+corrispondenti al valore ottale $0644$, un programma invece avrebbe anche il
+bit di esecuzione attivo, con un valore di $0755$, se si volesse attivare il
+bit \acr{suid} il valore da fornire sarebbe $4755$.
+
+Il cambiamento dei permessi di un file eseguito attraverso queste funzioni ha
+comunque alcune limitazioni, previste per motivi di sicurezza. L'uso delle
+funzioni infatti è possibile solo se l'userid effettivo del processo
+corrisponde a quello del proprietario del file o dell'amministratore,
+altrimenti esse falliranno con un errore di \macro{EPERM}.
+
+Ma oltre a questa regola generale, di immediata comprensione, esistono delle
+limitazioni ulteriori. Per questo motivo, anche se si è proprietari del file,
+non tutti i valori possibili di \param{mode} sono permessi o hanno effetto;
+in particolare accade che:
+\begin{enumerate}
+\item siccome solo l'amministratore può impostare lo \textit{sticky bit}, se
+  l'userid effettivo del processo non è zero esso viene automaticamente
+  cancellato (senza notifica di errore) qualora sia stato indicato in
+  \param{mode}.
+\item per quanto detto in \secref{sec:file_ownership} riguardo la creazione
+  dei nuovi file, si può avere il caso in cui il file creato da un processo è
+  assegnato a un gruppo per il quale il processo non ha privilegi. Per evitare
+  che si possa assegnare il bit \acr{sgid} ad un file appartenente a un gruppo
+  per cui non si hanno diritti, questo viene automaticamente cancellato da
+  \param{mode} (senza notifica di errore) qualora il gruppo del file non
+  corrisponda a quelli associati al processo (la cosa non avviene quando
+  l'userid effettivo del processo è zero).
+\end{enumerate}
+
+Per alcuni filesystem\footnote{il filesystem \acr{ext2} supporta questa
+  caratteristica, che è mutuata da BSD.} è inoltre prevista una ulteriore
+misura di sicurezza, volta a scongiurare l'abuso dei bit \acr{suid} e
+\acr{sgid}; essa consiste nel cancellare automaticamente questi bit dai
+permessi di un file qualora un processo che non appartenga all'amministratore
+effettui una scrittura. In questo modo anche se un utente malizioso scopre un
+file \acr{suid} su cui può scrivere, un'eventuale modifica comporterà la
+perdita di questo privilegio.
+
+\subsection{La funzione \func{umask}}
+\label{sec:file_umask}
+
+Oltre che dai valori indicati in sede di creazione, i permessi assegnati ai
+nuovi file sono controllati anche da una maschera di bit impostata con la
+funzione \func{umask}, il cui prototipo è:
+\begin{prototype}{stat.h}
+{mode\_t umask(mode\_t mask)}
+
+  Imposta la maschera dei permessi dei bit al valore specificato da \var{mask}
+  (di cui vengono presi solo i 9 bit meno significativi).
+  
+  \bodydesc{La funzione ritorna il precedente valore della maschera. È una
+    delle poche funzioni che non restituisce codici di errore.}
+\end{prototype}
+
+Questa maschera è una caratteristica di ogni processo\footnote{è infatti
+  contenuta nel campo \var{umask} di \var{fs\_struct}, vedi
+  \figref{fig:proc_task_struct}.} e viene utilizzata per impedire che alcuni
+permessi possano essere assegnati ai nuovi file in sede di creazione. I bit
+indicati nella maschera vengono infatti esclusi quando un nuovo file viene
+creato.
+
+In genere questa maschera serve per impostare un valore predefinito dei
+permessi che ne escluda alcuni (usualmente quello di scrittura per il gruppo e
+gli altri, corrispondente ad un valore di $022$). Essa è utile perché le
+routine dell'interfaccia ANSI C degli stream non prevedono l'esistenza dei
+permessi, e pertanto tutti i nuovi file vengono sempre creati con un valore di
+$666$ (cioè permessi di lettura e scrittura per tutti, si veda
+\tabref{tab:file_permission_const} per un confronto); in questo modo è
+possibile cancellare automaticamente i permessi non voluti, senza doverlo fare
+esplicitamente.
+
+In genere il valore di \func{umask} viene stabilito una volta per tutte al
+login a $022$, e di norma gli utenti non hanno motivi per modificarlo. Se però
+si vuole che un processo possa creare un file che chiunque possa leggere
+allora occorrerà cambiare il valore di \func{umask}.
+
+
+\subsection{Le funzioni \func{chown}, \func{fchown} e \func{lchown}}
+\label{sec:file_chown}
+
+Come per i permessi, il sistema fornisce anche delle funzioni che permettano
+di cambiare utente e gruppo cui il file appartiene; le funzioni in questione
+sono tre e i loro prototipi sono i seguenti:
+\begin{functions}
+  \headdecl{sys/types.h} 
+  \headdecl{sys/stat.h} 
+  
+  \funcdecl{int chown(const char *path, uid\_t owner, gid\_t group)}
+  \funcdecl{int fchown(int fd, uid\_t owner, gid\_t group)}
+  \funcdecl{int lchown(const char *path, uid\_t owner, gid\_t group)}
+
+  Le funzioni cambiano utente e gruppo di appartenenza di un file ai valori
+  specificati dalle variabili \var{owner} e \var{group}. 
+  
+  \bodydesc{Le funzioni restituiscono zero in caso di successo e -1 per
+    un errore, in caso di errore \var{errno} può assumere i valori:
+  \begin{errlist}
+  \item[\macro{EPERM}] L'userid effettivo non corrisponde a quello del
+    proprietario del file o non è zero, o utente e gruppo non sono validi
+  \end{errlist}
+  Oltre a questi entrambe restituiscono gli errori \macro{EROFS} e
+  \macro{EIO}; \func{chown} restituisce anche \macro{EFAULT},
+  \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOMEM}, \macro{ENOTDIR},
+  \macro{EACCES}, \macro{ELOOP}; \func{fchown} anche \macro{EBADF}.}
+\end{functions}
+
+In Linux soltanto l'amministratore può cambiare il proprietario di un file,
+seguendo la semantica di BSD che non consente agli utenti di assegnare i loro
+file ad altri (per evitare eventuali aggiramenti delle quote).
+L'amministratore può cambiare il gruppo di un file, il proprietario può
+cambiare il gruppo dei file che gli appartengono solo se il nuovo gruppo è il
+suo gruppo primario o uno dei gruppi a cui appartiene.
+
+La funzione \func{chown} segue i link simbolici, per operare direttamente su
+un link simbolico si deve usare la funzione \func{lchown}.\footnote{fino alla
+  versione 2.1.81 in Linux \func{chown} non seguiva i link simbolici, da
+  allora questo comportamento è stato assegnato alla funzione \func{lchown},
+  introdotta per l'occasione, ed è stata creata una nuova system call per
+  \func{chown} che seguisse i link simbolici.} La funzione \func{fchown} opera
+su un file aperto, essa è mutuata da BSD, ma non è nello standard POSIX.
+Un'altra estensione rispetto allo standard POSIX è che specificando -1 come
+valore per \var{owner} e \var{group} i valori restano immutati.
+
+Quando queste funzioni sono chiamate con successo da un processo senza i
+privilegi di root entrambi i bit \acr{suid} e \acr{sgid} vengono
+cancellati. Questo non avviene per il bit \acr{sgid} nel caso in cui esso
+sia usato (in assenza del corrispondente permesso di esecuzione) per indicare
+che per il file è attivo il \textit{mandatory locking}.
 
 %La struttura fondamentale che contiene i dati essenziali relativi ai file è il
 %cosiddetto \textit{inode}; questo conterrà informazioni come il
@@ -319,3 +1970,165 @@ per cambiare directory di lavoro.
 %completo vedi \ntab), i permessi (vedi \secref{sec:file_perms}), le date (vedi
 %\secref{sec:file_times}).
 
+
+\subsection{Un quadro d'insieme sui permessi}
+\label{sec:file_riepilogo}
+
+Avendo affrontato in maniera separata il comportamento delle varie funzioni ed
+il significato dei singoli bit dei permessi sui file, vale la pena fare un
+riepilogo in cui si riassumono le caratteristiche di ciascuno di essi, in modo
+da poter fornire un quadro d'insieme.
+
+In \tabref{tab:file_fileperm_bits} si sono riassunti gli effetti dei vari bit
+per un file; per quanto riguarda l'applicazione dei permessi per proprietario,
+gruppo ed altri si ricordi quanto illustrato in
+\secref{sec:file_perm_overview}. Si rammenti che il valore dei permessi non ha
+alcun effetto qualora il processo possieda i privilegi di amministratore.
+
+\begin{table}[!htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|c|c|c|c|c|c|c|c|c|c|c|c|l|}
+    \hline
+    \multicolumn{3}{|c|}{}&
+    \multicolumn{3}{|c|}{user}&
+    \multicolumn{3}{|c|}{group}&
+    \multicolumn{3}{|c|}{other}&
+    \multirow{2}{*}{\textbf{Operazioni possibili}} \\
+    \cline{1-12}
+    \acr{s}&\acr{s}&\acr{t}&r&w&x&r&w&x&r&w&x& \\
+    \hline
+    \hline
+    1&-&-&-&-&-&-&-&-&-&-&-&Se eseguito ha i permessi del propritario\\
+    -&1&-&-&-&1&-&-&-&-&-&-&Se eseguito ha i permessi del gruppo propritario\\
+    -&1&-&-&-&0&-&-&-&-&-&-&Il \textit{mandatory locking} è abilitato\\
+    -&-&1&-&-&-&-&-&-&-&-&-&Non utilizzato\\
+    -&-&-&1&-&-&-&-&-&-&-&-&Permesso di lettura per il proprietario\\
+    -&-&-&-&1&-&-&-&-&-&-&-&Permesso di lettura per il gruppo proprietario\\
+    -&-&-&-&-&1&-&-&-&-&-&-&Permesso di lettura per tutti gli altri\\
+    -&-&-&-&-&-&1&-&-&-&-&-&Permesso di scrittura per il proprietario\\
+    -&-&-&-&-&-&-&1&-&-&-&-&Permesso di scrittura per il gruppo proprietario\\
+    -&-&-&-&-&-&-&-&1&-&-&-&Permesso di scrittura per tutti gli altri \\
+    -&-&-&-&-&-&-&-&-&1&-&-&Permesso di esecuzione per il proprietario\\
+    -&-&-&-&-&-&-&-&-&-&1&-&Permesso di esecuzione per il gruppo proprietario\\
+    -&-&-&-&-&-&-&-&-&-&-&1&Permesso di esecuzione per tutti gli altri\\
+    \hline
+  \end{tabular}
+  \caption{Tabella riassuntiva del significato dei bit dei permessi per un
+    file.} 
+  \label{tab:file_fileperm_bits}
+\end{table}
+
+Per compattezza, nella tabella si sono specificati i bit di \acr{suid},
+\acr{sgid} e \acr{stiky} con la notazione illustrata anche in
+\figref{fig:file_perm_bit}. 
+
+In \tabref{tab:file_dirperm_bits} si sono invece riassunti gli effetti dei
+vari bit dei permessi per una directory; anche in questo caso si sono
+specificati i bit di \acr{suid}, \acr{sgid} e \acr{stiky} con la notazione
+compatta illustrata in \figref{fig:file_perm_bit}.
+
+\begin{table}[!htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|c|c|c|c|c|c|c|c|c|c|c|c|l|}
+    \hline
+    \multicolumn{3}{|c|}{}&
+    \multicolumn{3}{|c|}{user}&
+    \multicolumn{3}{|c|}{group}&
+    \multicolumn{3}{|c|}{other}&
+    \multirow{2}{*}{\textbf{Operazioni possibili}} \\
+    \cline{1-12}
+    \acr{s}&\acr{s}&\acr{t}&r&w&x&r&w&x&r&w&x& \\
+    \hline
+    \hline
+    1&-&-&-&-&-&-&-&-&-&-&-&Non utilizzato\\
+    -&1&-&-&-&-&-&-&-&-&-&-&Propaga il gruppo proprietario ai nuovi file creati\\
+    -&-&1&-&-&-&-&-&-&-&-&-&Limita l'accesso in scrittura dei file nella directory\\
+    -&-&-&1&-&-&-&-&-&-&-&-&Permesso di visualizzazione per il proprietario\\
+    -&-&-&-&1&-&-&-&-&-&-&-&Permesso di visualizzazione per il gruppo proprietario\\
+    -&-&-&-&-&1&-&-&-&-&-&-&Permesso di visualizzazione per tutti gli altri\\
+    -&-&-&-&-&-&1&-&-&-&-&-&Permesso di aggiornamento per il proprietario\\
+    -&-&-&-&-&-&-&1&-&-&-&-&Permesso di aggiornamento per il gruppo proprietario\\
+    -&-&-&-&-&-&-&-&1&-&-&-&Permesso di aggiornamento per tutti gli altri \\
+    -&-&-&-&-&-&-&-&-&1&-&-&Permesso di attraversamento per il proprietario\\
+    -&-&-&-&-&-&-&-&-&-&1&-&Permesso di attraversamento per il gruppo proprietario\\
+    -&-&-&-&-&-&-&-&-&-&-&1&Permesso di attraversamento per tutti gli altri\\
+    \hline
+  \end{tabular}
+  \caption{Tabella riassuntiva del significato dei bit dei permessi per una
+    directory.} 
+  \label{tab:file_dirperm_bits}
+\end{table}
+
+Nelle tabelle si è indicato con $-$ il fatto che il valore degli altri bit non
+è influente rispetto a quanto indicato in ciascuna riga; l'operazione fa
+riferimento soltanto alla combinazione di bit per i quali il valore è
+riportato esplicitamente.
+
+
+\subsection{La funzione \func{chroot}}
+\label{sec:file_chroot}
+
+Benché non abbia niente a che fare con permessi, utenti e gruppi, la funzione
+\func{chroot} viene usata spesso per restringere le capacità di acccesso di un
+programma ad una sezione limitata del filesystem, per cui ne parleremo in
+questa sezione.
+
+Come accennato in \secref{sec:proc_fork} ogni processo oltre ad una directory
+di lavoro corrente, ha anche una directory radice,\footnote{entrambe sono
+  contenute in due campi di \var{fs\_struct}, vedi
+  \figref{fig:proc_task_struct}.} che è la directory che per il processo
+costituisce la radice dell'albero dei file e rispetto alla quale vengono
+risolti i pathname assoluti (si ricordi quanto detto in
+\secref{sec:file_organization}). La radice viene eredidata dal padre per ogni
+processo figlio, e quindi di norma coincide con la \file{/} del sistema.
+
+In certe situazioni però per motivi di sicurezza non si vuole che un processo
+possa accedere a tutto il filesystem; per questo si può cambiare la directory
+radice con la funzione \func{chroot}, il cui prototipo è:
+\begin{prototype}{unistd.h}{int chroot(const char *path)}
+  Cambia la directory radice del processo a quella specificata da
+  \param{path}.
+  
+\bodydesc{La funzione restituisce zero in caso di successo e -1 per
+    un errore, in caso di errore \var{errno} può assumere i valori:
+  \begin{errlist}
+  \item[\macro{EPERM}] L'userid effettivo del processo non è zero.
+  \end{errlist}
+  ed inoltre \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT},
+  \macro{ENOMEM}, \macro{ENOTDIR}, \macro{EACCES}, \macro{ELOOP};
+  \macro{EROFS} e \macro{EIO}.}
+\end{prototype}
+\noindent in questo modo la directory radice del processo diventerà
+\param{path} (che ovviamente deve esistere) ed ogni pathname assoluto sarà
+risolto a partire da essa, rendendo impossibile accedere alla parte di albero
+sovrastante; si ha cioè quella che viene chiamata una \textit{chroot jail}.
+
+Solo l'amministratore può usare questa funzione, e la nuova radice, per quanto
+detto in \secref{sec:proc_fork}, sarà ereditata da tutti i processi figli. Si
+tenga presente che la funzione non cambia la directory di lavoro corrente, che
+potrebbe restare fuori dalla \textit{chroot jail}.
+
+Questo è il motivo per cui la funzione è efficace solo se dopo averla eseguita
+si cedono i privilegi di root. Infatti se in qualche modo il processo ha una
+directory di lavoro corrente fuori dalla \textit{chroot jail}, potrà comunque
+accedere a tutto il filesystem usando pathname relativi.
+
+Ma quando ad un processo restano i privilegi di root esso potrà sempre portare
+la directory di lavoro corrente fuori dalla \textit{chroot jail} creando una
+sottodirectory ed eseguendo una \func{chroot} su di essa. Per questo motivo
+l'uso di questa funzione non ha molto senso quando un processo necessita dei
+privilegi di root per le sue normali operazioni.
+
+Un caso tipico di uso di \func{chroot} è quello di un server ftp anonimo, in
+questo caso infatti si vuole che il server veda solo i file che deve
+trasferire, per cui in genere si esegue una \func{chroot} sulla directory che
+contiene i file.  Si tenga presente però che in questo caso occorrerà
+replicare all'interno della \textit{chroot jail} tutti i file (in genere
+programmi e librerie) di cui il server potrebbe avere bisogno.
+
+%%% Local Variables: 
+%%% mode: latex
+%%% TeX-master: "gapil"
+%%% End: