Nuova vesione divisa in due parti.
[gapil.git] / fileadv.tex
index 2f16a2759b42799018f3275428c967a6cee3ae0e..75bc689c8237e264686baaf65720a0b69211c13d 100644 (file)
@@ -1,3 +1,13 @@
+%% fileadv.tex
+%%
+%% Copyright (C) 2000-2002 Simone Piccardi.  Permission is granted to
+%% copy, distribute and/or modify this document under the terms of the GNU Free
+%% Documentation License, Version 1.1 or any later version published by the
+%% Free Software Foundation; with the Invariant Sections being "Prefazione",
+%% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
+%% license is included in the section entitled "GNU Free Documentation
+%% License".
+%%
 \chapter{La gestione avanzata dei file}
 \label{cha:file_advanced}
 
@@ -23,49 +33,52 @@ mappato in memoria.
 Abbiamo visto in \secref{sec:sig_gen_beha}, affrontando la suddivisione fra
 \textit{fast} e \textit{slow} system call, che in certi casi le funzioni di
 I/O possono bloccarsi indefinitamente.\footnote{si ricordi però che questo può
-  accadere solo per le pipe, i socket ed alcuni file di dispositivo; sui file
-  normali le funzioni di lettura e scrittura ritornano sempre subito.}  Ad
-esempio le operazioni di lettura possono bloccarsi quando non ci sono dati
-disponibili sul descrittore su cui si sta operando.
+  accadere solo per le pipe, i socket\index{socket} ed alcuni file di
+  dispositivo\index{file!di dispositivo}; sui file normali le funzioni di
+  lettura e scrittura ritornano sempre subito.}  Ad esempio le operazioni di
+lettura possono bloccarsi quando non ci sono dati disponibili sul descrittore
+su cui si sta operando.
 
 Questo comportamento causa uno dei problemi più comuni che ci si trova ad
 affrontare nelle operazioni di I/O, che è quello che si verifica quando si
 devono eseguire operazioni che possono bloccarsi su più file descriptor:
 mentre si è bloccati su uno di essi su di un'altro potrebbero essere presenti
 dei dati; così che nel migliore dei casi si avrebbe una lettura ritardata
-inutilmente, e nel peggiore si potrebbe addirittura arrivare ad un deadlock.
+inutilmente, e nel peggiore si potrebbe addirittura arrivare ad un
+\textit{deadlock}\index{deadlock}.
 
 Abbiamo già accennato in \secref{sec:file_open} che è possibile prevenire
 questo tipo di comportamento aprendo un file in modalità
-\textsl{non-bloccante}, attraverso l'uso del flag \macro{O\_NONBLOCK} nella
+\textsl{non-bloccante}, attraverso l'uso del flag \const{O\_NONBLOCK} nella
 chiamata di \func{open}. In questo caso le funzioni di input/output che
 altrimenti si sarebbero bloccate ritornano immediatamente, restituendo
-l'errore \macro{EAGAIN}.
+l'errore \errcode{EAGAIN}.
 
 L'utilizzo di questa modalità di I/O permette di risolvere il problema
 controllando a turno i vari file descriptor, in un ciclo in cui si ripete
 l'accesso fintanto che esso non viene garantito.  Ovviamente questa tecnica,
-detta \textit{polling}, è estremamente inefficiente: si tiene costantemente
-impiegata la CPU solo per eseguire in continuazione delle system call che
-nella gran parte dei casi falliranno. Per evitare questo, come vedremo in
-\secref{sec:file_multiplexing}, è stata introdotta una nuova interfaccia di
-programmazione, che comporta comunque l'uso della modalità di I/O non
-bloccante.
+detta \textit{polling}\index{polling}, è estremamente inefficiente: si tiene
+costantemente impiegata la CPU solo per eseguire in continuazione delle system
+call che nella gran parte dei casi falliranno. Per evitare questo, come
+vedremo in \secref{sec:file_multiplexing}, è stata introdotta una nuova
+interfaccia di programmazione, che comporta comunque l'uso della modalità di
+I/O non bloccante.
 
 
 
 \subsection{L'I/O multiplexing}
 \label{sec:file_multiplexing}
 
-Per superare il problema di dover usare il \textit{polling} per controllare la
-possibilità di effettuare operazioni su un file aperto in modalità non
-bloccante, sia BSD che System V hanno introdotto delle nuove funzioni in grado
-di sospendere l'esecuzione di un processo in attesa che l'accesso diventi
-possibile.  Il primo ad introdurre questa modalità di operazione, chiamata
-usualmente \textit{I/O multiplexing}, è stato BSD,\footnote{la funzione è
-  apparsa in BSD4.2 e standardizzata in BSD4.4, ma è stata portata su tutti i
-  sistemi che supportano i \textit{socket}, compreso le varianti di System V.}
-con la funzione \func{select}, il cui prototipo è:
+Per superare il problema di dover usare il \textit{polling}\index{polling} per
+controllare la possibilità di effettuare operazioni su un file aperto in
+modalità non bloccante, sia BSD che System V hanno introdotto delle nuove
+funzioni in grado di sospendere l'esecuzione di un processo in attesa che
+l'accesso diventi possibile.  Il primo ad introdurre questa modalità di
+operazione, chiamata usualmente \textit{I/O multiplexing}, è stato
+BSD,\footnote{la funzione è apparsa in BSD4.2 e standardizzata in BSD4.4, ma è
+  stata portata su tutti i sistemi che supportano i
+  \textit{socket}\index{socket}, compreso le varianti di System V.}  con la
+funzione \funcd{select}, il cui prototipo è:
 \begin{functions}
   \headdecl{sys/time.h}
   \headdecl{sys/types.h}
@@ -78,20 +91,20 @@ con la funzione \func{select}, il cui prototipo 
   
   \bodydesc{La funzione in caso di successo restituisce il numero di file
     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
-    caso \var{errno} viene settata ai valori:
+    caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
-  \item[\macro{EBADF}] Si è specificato un file descriptor sbagliato in uno
+  \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
   degli insiemi.
-  \item[\macro{EINTR}] La funzione è stata interrotta da un segnale.
-  \item[\macro{EINVAL}] Si è specificato per \param{n} un valore negativo.
+  \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
+  \item[\errcode{EINVAL}] Si è specificato per \param{n} un valore negativo.
   \end{errlist}
-  ed inoltre \macro{ENOMEM}.
+  ed inoltre \errval{ENOMEM}.
 }
 \end{functions}
 
 La funzione mette il processo in stato di \textit{sleep} (vedi
 \tabref{tab:proc_proc_states}) fintanto che almeno uno dei file descriptor
-degli insiemo specificati (\param{readfds}, \param{writefds} e
+degli insiemi specificati (\param{readfds}, \param{writefds} e
 \param{exceptfds}), non diventa attivo, per un tempo massimo specificato da
 \param{timeout}.
 
@@ -120,7 +133,7 @@ opportune macro di preprocessore:
 \end{functions}
 
 In genere un \textit{file descriptor set} può contenere fino ad un massimo di
-\macro{FD\_SETSIZE} file descriptor.  Questo valore in origine corrispondeva
+\const{FD\_SETSIZE} file descriptor.  Questo valore in origine corrispondeva
 al limite per il numero massimo di file aperti\footnote{ad esempio in Linux,
   fino alla serie 2.0.x, c'era un limite di 256 file per processo.}, ma
 quando, come nelle versioni più recenti del kernel, non c'è più un limite
@@ -136,39 +149,41 @@ un \textit{socket}\index{socket}, vedi \secref{sec:xxx_urgent}).
 
 La funzione inoltre richiede anche di specificare, tramite l'argomento
 \param{n}, un valore massimo del numero dei file descriptor usati
-nell'insieme; si può usare il già citato \macro{FD\_SETSIZE}, oppure il numero
+nell'insieme; si può usare il già citato \const{FD\_SETSIZE}, oppure il numero
 più alto dei file descriptor usati nei tre insiemi, aumentato di uno.
 
 Infine l'argomento \param{timeout}, specifica un tempo massimo di
 attesa\footnote{il tempo è valutato come \textit{elapsed time}.} prima che la
-funzione ritorni; se settato a \macro{NULL} la funzione attende
-indefinitamente. Si può specificare anche un tempo nullo (cioè una \var{struct
-  timeval} con i campi settati a zero), qualora si voglia semplicemente
-controllare lo stato corrente dei file descriptor.
+funzione ritorni; se impostato a \val{NULL} la funzione attende
+indefinitamente. Si può specificare anche un tempo nullo (cioè una struttura
+\struct{timeval} con i campi impostati a zero), qualora si voglia
+semplicemente controllare lo stato corrente dei file descriptor.
 
 La funzione restituisce il totale dei file descriptor pronti nei tre insiemi,
 il valore zero indica sempre che si è raggiunto un timeout. Ciascuno dei tre
 insiemi viene sovrascritto per indicare quale file descriptor è pronto per le
 operazioni ad esso relative, in modo da poterlo controllare con la macro
-\macro{FD\_ISSET}. In caso di errore la funzione restituisce -1 e gli insiemi
+\const{FD\_ISSET}. In caso di errore la funzione restituisce -1 e gli insiemi
 non vengono toccati.
 
-In Linux \func{select} modifica anche il valore di \param{timeout}, settandolo
-al tempo restante; questo è utile quando la funzione viene interrotta da un
-segnale, in tal caso infatti si ha un errore di \macro{EINTR}, ed occorre
-rilanciare la funzione; in questo modo non è necessario ricalcolare tutte le
-volte il tempo rimanente.\footnote{questo può causare problemi di portabilità
-  sia quando si trasporta codice scritto su Linux che legge questo valore, sia
-  quando si usano programmi scritti per altri sistemi che non dispongono di
-  questa caratteristica e ricalcolano \param{timeout} tutte le volte. In
-  genere la caratteristica è disponibile nei sistemi che derivano da System V
-  e non disponibile per quelli che derivano da BSD.}
+In Linux \func{select} modifica anche il valore di \param{timeout},
+impostandolo al tempo restante; questo è utile quando la funzione viene
+interrotta da un segnale, in tal caso infatti si ha un errore di
+\errcode{EINTR}, ed occorre rilanciare la funzione; in questo modo non è
+necessario ricalcolare tutte le volte il tempo rimanente.\footnote{questo può
+  causare problemi di portabilità sia quando si trasporta codice scritto su
+  Linux che legge questo valore, sia quando si usano programmi scritti per
+  altri sistemi che non dispongono di questa caratteristica e ricalcolano
+  \param{timeout} tutte le volte. In genere la caratteristica è disponibile
+  nei sistemi che derivano da System V e non disponibile per quelli che
+  derivano da BSD.}
 
 Come accennato l'interfaccia di \func{select} è una estensione di BSD; anche
 System V ha introdotto una sua interfaccia per gestire l'\textit{I/O
-  multiplexing}, basata sulla funzione \func{poll},\footnote{la funzione è
+  multiplexing}, basata sulla funzione \funcd{poll},\footnote{la funzione è
   prevista dallo standard XPG4, ed è stata introdotta in Linux come system
-  call a partire dal kernel 2.1.23 e dalle libc 5.4.28.} il cui prototipo è:
+  call a partire dal kernel 2.1.23 e dalle \acr{libc} 5.4.28.} il cui
+prototipo è:
 \begin{prototype}{sys/poll.h}
   {int poll(struct pollfd *ufds, unsigned int nfds, int timeout)}
 
@@ -177,21 +192,21 @@ specificati da \param{ufds}.
   
 \bodydesc{La funzione restituisce il numero di file descriptor con attività in
   caso di successo, o 0 se c'è stato un timeout; in caso di errore viene
-  restituito  -1 ed \var{errno} viene settata ai valori:
+  restituito  -1 ed \var{errno} assumerà uno dei valori:
   \begin{errlist}
-  \item[\macro{EBADF}] Si è specificato un file descriptor sbagliato in uno
+  \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
   degli insiemi.
-  \item[\macro{EINTR}] La funzione è stata interrotta da un segnale.
+  \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
   \end{errlist}
-  ed inoltre \macro{EFAULT} e \macro{ENOMEM}.}
+  ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
 \end{prototype}
 
 La funzione tiene sotto controllo un numero \param{ndfs} di file descriptor
-specificati attraverso un vettore di puntatori a strutture di tipo
-\type{pollfd}, la cui definizione è riportata in \figref{fig:file_pollfd}.
-Come \func{select} anche \func{poll} permette di interrompere l'attesa dopo un
-certo tempo, che va specificato attraverso \param{timeout} in numero di
-millesecondi (un valore negativo indica un'attesa indefinita).
+specificati attraverso un vettore di puntatori a strutture \struct{pollfd}, la
+cui definizione è riportata in \figref{fig:file_pollfd}.  Come \func{select}
+anche \func{poll} permette di interrompere l'attesa dopo un certo tempo, che
+va specificato attraverso \param{timeout} in numero di millisecondi (un valore
+negativo indica un'attesa indefinita).
 
 \begin{figure}[!htb]
   \footnotesize \centering
@@ -205,13 +220,13 @@ struct pollfd {
     \end{lstlisting}
   \end{minipage} 
   \normalsize 
-  \caption{La struttura \type{pollfd}, utilizzata per specificare le modalità
+  \caption{La struttura \struct{pollfd}, utilizzata per specificare le modalità
     di controllo di un file descriptor alla funzione \func{poll}.}
   \label{fig:file_pollfd}
 \end{figure}
 
 Per ciascun file da controllare deve essere opportunamente predisposta una
-struttura \type{pollfd}; nel campo \var{fd} deve essere specificato il file
+struttura \struct{pollfd}; nel campo \var{fd} deve essere specificato il file
 descriptor, mentre nel campo \var{events} il tipo di evento su cui si vuole
 attendere; quest'ultimo deve essere specificato come maschera binaria dei
 primi tre valori riportati in \tabref{tab:file_pollfd_flags} (gli altri
@@ -225,33 +240,33 @@ vengono utilizzati solo per \var{revents} come valori in uscita).
     \textbf{Flag} & \textbf{Valore} & \textbf{Significato} \\
     \hline
     \hline
-    \macro{POLLIN}    & 0x001 & È possibile la lettura immediata.\\
-    \macro{POLLPRI}   & 0x002 & Sono presenti dati urgenti.\\
-    \macro{POLLOUT}   & 0x004 & È possibile la scrittura immediata.\\
+    \const{POLLIN}    & 0x001 & È possibile la lettura immediata.\\
+    \const{POLLPRI}   & 0x002 & Sono presenti dati urgenti.\\
+    \const{POLLOUT}   & 0x004 & È possibile la scrittura immediata.\\
     \hline
-    \macro{POLLERR}   & 0x008 & C'è una condizione di errore.\\
-    \macro{POLLHUP}   & 0x010 & Si è vericato un hung-up.\\
-    \macro{POLLNVAL}  & 0x020 & Il file descriptor non è aperto.\\
+    \const{POLLERR}   & 0x008 & C'è una condizione di errore.\\
+    \const{POLLHUP}   & 0x010 & Si è verificato un hung-up.\\
+    \const{POLLNVAL}  & 0x020 & Il file descriptor non è aperto.\\
     \hline
-    \macro{POLLRDNORM}& 0x040 & Sono disponibili in lettura dati normali.\\ 
-    \macro{POLLRDBAND}& 0x080 & Sono disponibili in lettura dati ad alta 
+    \const{POLLRDNORM}& 0x040 & Sono disponibili in lettura dati normali.\\ 
+    \const{POLLRDBAND}& 0x080 & Sono disponibili in lettura dati ad alta 
                                 priorità. \\
-    \macro{POLLWRNORM}& 0x100 & È possibile la scrittura di dati normali.  \\ 
-    \macro{POLLWRBAND}& 0x200 & È possibile la scrittura di dati ad 
+    \const{POLLWRNORM}& 0x100 & È possibile la scrittura di dati normali.  \\ 
+    \const{POLLWRBAND}& 0x200 & È possibile la scrittura di dati ad 
                                 alta priorità. \\
-    \macro{POLLMSG}   & 0x400 & Estensione propria di Linux.\\
+    \const{POLLMSG}   & 0x400 & Estensione propria di Linux.\\
     \hline    
   \end{tabular}
   \caption{Costanti per l'identificazione dei vari bit dei campi
-    \var{events} e \var{revents} di \type{pollfd}.}
+    \var{events} e \var{revents} di \struct{pollfd}.}
   \label{tab:file_pollfd_flags}
 \end{table}
 
 La funzione ritorna, restituendo il numero di file per i quali si è verificata
-una delle condizioni di attesa richieste o un errore. Lo stato dei file
+una delle condizioni di attesa richieste od un errore. Lo stato dei file
 all'uscita della funzione viene restituito nel campo \var{revents} della
-relativa struttura \type{pollfd}, che viene settato alla maschera binaria dei
-valori riportati in \tabref{tab:file_pollfd_flags}, ed oltre alle tre
+relativa struttura \struct{pollfd}, che viene impostato alla maschera binaria
+dei valori riportati in \tabref{tab:file_pollfd_flags}, ed oltre alle tre
 condizioni specificate tramite \var{events} può riportare anche l'occorrere di
 una condizione di errore.
 
@@ -260,9 +275,9 @@ Lo standard POSIX 
 (POSIX 1003.1g-2000 e POSIX 1003.1-2001). Esso prevede che tutte le funzioni
 ad esso relative vengano dichiarate nell'header \file{sys/select.h}, che
 sostituisce i precedenti, ed aggiunge a \func{select} una nuova funzione
-\func{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
+\funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
   l'header \file{sys/select.h}, compaiono in Linux a partire dalle \acr{glibc}
-  2.0. Le \acr{libc4} e \acr{libc5} non contengono questo header, le
+  2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header, le
   \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
   senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
   \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
@@ -277,18 +292,18 @@ sostituisce i precedenti, ed aggiunge a \func{select} una nuova funzione
   
   \bodydesc{La funzione in caso di successo restituisce il numero di file
     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
-    caso \var{errno} viene settata ai valori:
+    caso \var{errno} assumerà uno dei valori:
   \begin{errlist}
-  \item[\macro{EBADF}] Si è specificato un file descriptor sbagliato in uno
+  \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
   degli insiemi.
-  \item[\macro{EINTR}] La funzione è stata interrotta da un segnale.
-  \item[\macro{EINVAL}] Si è specificato per \param{n} un valore negativo.
+  \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
+  \item[\errcode{EINVAL}] Si è specificato per \param{n} un valore negativo.
   \end{errlist}
-  ed inoltre \macro{ENOMEM}.}
+  ed inoltre \errval{ENOMEM}.}
 \end{prototype}
 
 La funzione è sostanzialmente identica a \func{select}, solo che usa una
-struttura \type{timespec} per indicare con maggiore precisione il timeout e
+struttura \struct{timespec} per indicare con maggiore precisione il timeout e
 non ne aggiorna il valore in caso di interruzione, inoltre prende un argomento
 aggiuntivo \param{sigmask} che è il puntatore ad una maschera di segnali (si
 veda \secref{sec:sig_sigmask}). La maschera corrente viene sostituita da
@@ -298,16 +313,17 @@ della funzione.
 L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
 race condition\footnote{in Linux però, non esistendo una system call apposita,
   la funzione è implementata nelle \acr{glibc} usando \func{select}, e la
-  possibilità di una race condition resta.} quando si deve eseguire un test su
-una variabile settata da un manipolatore sulla base dell'occorrenza di un
-segnale per decidere se lanciare \func{select}. Fra il test e l'esecuzione è
-presente una finestra in cui potrebbe arrivare il segnale che non sarebbe
-rilevato; la race condition diventa superabile disabilitando il segnale prima
-del test e riabilitandolo poi grazie all'uso di \param{sigmask}.
+  possibilità di una race condition\index{race condition} resta.} quando si
+deve eseguire un test su una variabile assegnata da un gestore sulla base
+dell'occorrenza di un segnale per decidere se lanciare \func{select}. Fra il
+test e l'esecuzione è presente una finestra in cui potrebbe arrivare il
+segnale che non sarebbe rilevato; la race condition\index{race condition}
+diventa superabile disabilitando il segnale prima del test e riabilitandolo
+poi grazie all'uso di \param{sigmask}.
 
 
 
-\subsection{L'\textsl{I/O asincrono}}
+\subsection{L'I/O asincrono}
 \label{sec:file_asyncronous_io}
 
 Una modalità alternativa all'uso dell'\textit{I/O multiplexing} è quella di
@@ -319,46 +335,46 @@ richiesta preventiva di dati, in modo da poter effettuare in contemporanea le
 operazioni di calcolo e quelle di I/O.
 
 Abbiamo accennato in \secref{sec:file_open} che è possibile, attraverso l'uso
-del flag \macro{O\_ASYNC},\footnote{l'uso del flag di \macro{O\_ASYNC} e dei
-  comandi \macro{F\_SETOWN} e \macro{F\_GETOWN} per \func{fcntl} è specifico
+del flag \const{O\_ASYNC},\footnote{l'uso del flag di \const{O\_ASYNC} e dei
+  comandi \const{F\_SETOWN} e \const{F\_GETOWN} per \func{fcntl} è specifico
   di Linux e BSD.} aprire un file in modalità asincrona, così come è possibile
-attivare in un secondo tempo questa modalità settando questo flag attraverso
-l'uso di \func{fcntl} con il comando \macro{F\_SETFL} (vedi
-\secref{sec:file_fcntl}). 
+attivare in un secondo tempo questa modalità impostando questo flag attraverso
+l'uso di \func{fcntl} con il comando \const{F\_SETFL} (vedi
+\secref{sec:file_fcntl}).
 
 In realtà in questo caso non si tratta di I/O asincrono vero e proprio, quanto
 di un meccanismo asincrono di notifica delle variazione dello stato del file
 descriptor; quello che succede è che il sistema genera un segnale (normalmente
-\macro{SIGIO}, ma è possibile usarne altri) tutte le volte che diventa
+\const{SIGIO}, ma è possibile usarne altri) tutte le volte che diventa
 possibile leggere o scrivere dal file descriptor che si è posto in questa
-modalità. Si può inoltre selezionare, con il comando \macro{F\_SETOWN} di
+modalità. Si può inoltre selezionare, con il comando \const{F\_SETOWN} di
 \func{fcntl}, quale processo (o gruppo di processi) riceverà il segnale. 
 
 In questo modo si può evitare l'uso delle funzioni \func{poll} o \func{select}
 che, quando vengono usate con un numero molto grande di file descriptor, non
 hanno buone prestazioni. In tal caso infatti la maggior parte del loro tempo
-di esecuzione è impegato per eseguire uno scan su tutti i file descriptor
-tenuti sotto controllo per determinare quali sono quelli (in genere un piccola
-percentuale) che sono diventati attivi.
+di esecuzione è impegnato ad eseguire una scansione su tutti i file descriptor
+tenuti sotto controllo per determinare quali di essi (in genere una piccola
+percentuale) sono diventati attivi.
 
 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
 presenta notevoli problemi, dato che non è possibile determinare, quando sono
 più di uno, qual'è il file descriptor responsabile dell'emissione del segnale.
 Linux però supporta le estensioni POSIX.1b dei segnali che permettono di
 superare il problema facendo ricorso alle informazioni aggiuntive restituite
-attraverso la struttura \type{siginfo\_t}, utilizzando la forma estesa
-\var{sa\_sigaction} del manipolatore (si riveda quanto illustrato in
+attraverso la struttura \struct{siginfo\_t}, utilizzando la forma estesa
+\var{sa\_sigaction} del gestore (si riveda quanto illustrato in
 \secref{sec:sig_sigaction}).
 
 Per far questo però occorre utilizzare le funzionalità dei segnali real-time
-(vedi \secref{sec:sig_real_time}) settando esplicitamente con il comando
-\macro{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
-I/O asincrono (il segnale di default è \macro{SIGIO}). In questo caso il
-manipolatorem tutte le volte che riceverà \macro{SI\_SIGIO} come valore del
-campo \var{si\_code}\footnote{il valore resta \macro{SI\_SIGIO} qualunque sia
+(vedi \secref{sec:sig_real_time}) impostando esplicitamente con il comando
+\const{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
+I/O asincrono (il segnale predefinito è \const{SIGIO}). In questo caso il
+gestore tutte le volte che riceverà \const{SI\_SIGIO} come valore del
+campo \var{si\_code}\footnote{il valore resta \const{SI\_SIGIO} qualunque sia
   il segnale che si è associato all'I/O asincrono, ed indica appunto che il
   segnale è stato generato a causa di attività nell'I/O asincrono.} di
-\type{siginfo\_t}, troverà nel campo \var{si\_fd} il valore del file
+\struct{siginfo\_t}, troverà nel campo \var{si\_fd} il valore del file
 descriptor che ha generato il segnale.
 
 Un secondo vantaggio dell'uso dei segnali real-time è che essendo dotati di
@@ -369,61 +385,850 @@ cui l'accesso 
 come \func{poll} e \func{select}, almeno fintanto che non si satura la coda;
 si eccedono le dimensioni di quest'ultima; in tal caso infatti il kernel, non
 potendo più assicurare il comportamento corretto per un segnale real-time,
-invierà al suo posto un \var{SIGIO}, su cui si accumuleranno tutti i segnali
-in eccesso, e si dovra determinare al solito modo quali sono i file diventati
+invierà al suo posto un \const{SIGIO}, su cui si accumuleranno tutti i segnali
+in eccesso, e si dovrà determinare al solito modo quali sono i file diventati
 attivi.
 
-
-
 Benché la modalità di apertura asincrona di un file possa risultare utile in
-varie occasioni (in particolar modo con i socket e gli altri file per i quali
-le funzioni di I/O sono system call lente), essa è comunque limitata alla
-notifica della disponibilità del file descriptor per le operazioni di I/O, e
-non ad uno svolgimento asincrono delle medesime.  Lo standard POSIX.1b
-definisce anche una interfaccia apposita per l'I/O asincrono, che prevede un
-insieme di funzioni dedicate, completamente separate rispetto a quelle usate
-normalmente.
+varie occasioni (in particolar modo con i socket\index{socket} e gli altri
+file per i quali le funzioni di I/O sono system call lente), essa è comunque
+limitata alla notifica della disponibilità del file descriptor per le
+operazioni di I/O, e non ad uno svolgimento asincrono delle medesime.  Lo
+standard POSIX.1b definisce anche una interfaccia apposita per l'I/O
+asincrono, che prevede un insieme di funzioni dedicate, completamente separate
+rispetto a quelle usate normalmente.
 
 In generale questa interfaccia è completamente astratta e può essere
 implementata sia direttamente nel kernel, che in user space attraverso l'uso
 di thread. Al momento\footnote{fino ai kernel della serie 2.4.x, nella serie
   2.5.x è però iniziato un lavoro completo di riscrittura di tutto il sistema
   di I/O, che prevede anche l'introduzione di un nuovo layer per l'I/O
-  asincrono.} esiste una sola versione stabile di questa interfaccia, quella
-delle \acr{glibc}, che è realizzata completamente in user space.  Esistono
-comunque vari progetti sperimentali (come il KAIO della SGI, o i patch di
-Benjamin La Haise) che prevedono una interfaccia che utilizza un supporto
-diretto da parte del kernel.
+  asincrono (effettuato a partire dal 2.5.32).} esiste una sola versione
+stabile di questa interfaccia, quella delle \acr{glibc}, che è realizzata
+completamente in user space.  Esistono comunque vari progetti sperimentali
+(come il KAIO della SGI, o i patch di Benjamin La Haise) che prevedono un
+supporto diretto da parte del kernel.
+
+Lo standard prevede che tutte le operazioni di I/O asincrono siano controllate
+attraverso l'uso di una apposita struttura \struct{aiocb} (il cui nome sta per
+\textit{asyncronous I/O control block}), che viene passata come argomento a
+tutte le funzioni dell'interfaccia. La sua definizione, come effettuata in
+\file{aio.h}, è riportata in \figref{fig:file_aiocb}. Nello steso file è
+definita la macro \macro{\_POSIX\_ASYNCHRONOUS\_IO}, che dichiara la
+disponibilità dell'interfaccia per l'I/O asincrono.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct aiocb
+{
+    int aio_fildes;               /* File descriptor.  */
+    off_t aio_offset;             /* File offset */
+    int aio_lio_opcode;           /* Operation to be performed.  */
+    int aio_reqprio;              /* Request priority offset.  */
+    volatile void *aio_buf;       /* Location of buffer.  */
+    size_t aio_nbytes;            /* Length of transfer.  */
+    struct sigevent aio_sigevent; /* Signal number and value.  */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \struct{aiocb}, usata per il controllo dell'I/O
+    asincrono.}
+  \label{fig:file_aiocb}
+\end{figure}
+
+Le operazioni di I/O asincrono possono essere effettuate solo su un file già
+aperto; il file deve inoltre supportare la funzione \func{lseek},
+pertanto terminali e pipe sono esclusi. Non c'è limite al numero di operazioni
+contemporanee effettuabili su un singolo file.
+
+Ogni operazione deve inizializzare opportunamente un \textit{control block}.
+Il file descriptor su cui operare deve essere specificato tramite il campo
+\var{aio\_fildes}; dato che più operazioni possono essere eseguita in maniera
+asincrona, il concetto di posizione corrente sul file viene a mancare;
+pertanto si deve sempre specificare nel campo \var{aio\_offset} la posizione
+sul file da cui i dati saranno letti o scritti.  Nel campo \var{aio\_buf} deve
+essere specificato l'indirizzo del buffer usato per l'I/O, ed in
+\var{aio\_nbytes} la lunghezza del blocco di dati da trasferire.
+
+Il campo \var{aio\_reqprio} permette di impostare la priorità delle operazioni
+di I/O.\footnote{in generale perché ciò sia possibile occorre che la
+  piattaforma supporti questa caratteristica, questo viene indicato definendo
+  le macro \macro{\_POSIX\_PRIORITIZED\_IO}, e
+  \macro{\_POSIX\_PRIORITY\_SCHEDULING}.} La priorità viene impostata a
+partire da quella del processo chiamante (vedi \secref{sec:proc_priority}),
+cui viene sottratto il valore di questo campo.
+
+Il campo \var{aio\_lio\_opcode} è usato soltanto dalla funzione
+\func{lio\_listio}, che, come vedremo più avanti, permette di eseguire con una
+sola chiamata una serie di operazioni, usando un vettore di \textit{control
+  block}. Tramite questo campo si specifica quale è la natura di ciascuna di
+esse.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct sigevent
+{
+    sigval_t sigev_value;
+    int sigev_signo;
+    int sigev_notify;
+    void (*sigev_notify_function)(sigval_t);
+    pthread_attr_t *sigev_notify_attributes;
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \struct{sigevent}, usata per specificare le modalità di
+    notifica degli eventi relativi alle operazioni di I/O asincrono.}
+  \label{fig:file_sigevent}
+\end{figure}
+
+Infine il campo \var{aio\_sigevent} è una struttura di tipo \struct{sigevent}
+che serve a specificare il modo in cui si vuole che venga effettuata la
+notifica del completamento delle operazioni richieste. La struttura è
+riportata in \secref{fig:file_sigevent}; il campo \var{sigev\_notify} è quello
+che indica le modalità della notifica, esso può assumere i tre valori:
+\begin{basedescript}{\desclabelwidth{3.0cm}}
+\item[\const{SIGEV\_NONE}]  Non viene inviata nessuna notifica.
+\item[\const{SIGEV\_SIGNAL}] La notifica viene effettuata inviando al processo
+  chiamante il segnale specificato da \var{sigev\_signo}; se il gestore di
+  questo è stato installato con \const{SA\_SIGINFO} gli verrà restituito il
+  valore di \var{sigev\_value} (la cui definizione è in
+  \figref{fig:sig_sigval}) come valore del campo \var{si\_value} di
+  \struct{siginfo\_t}.
+\item[\const{SIGEV\_THREAD}] La notifica viene effettuata creando un nuovo
+  thread che esegue la funzione specificata da \var{sigev\_notify\_function}
+  con argomento \var{sigev\_value}, e con gli attributi specificati da
+  \var{sigev\_notify\_attribute}.
+\end{basedescript}
+
+Le due funzioni base dell'interfaccia per l'I/O asincrono sono
+\funcd{aio\_read} ed \funcd{aio\_write}.  Esse permettono di richiedere una
+lettura od una scrittura asincrona di dati, usando la struttura \struct{aiocb}
+appena descritta; i rispettivi prototipi sono:
+\begin{functions}
+  \headdecl{aio.h}
+
+  \funcdecl{int aio\_read(struct aiocb *aiocbp)}
+  Richiede una lettura asincrona secondo quanto specificato con \param{aiocbp}.
+
+  \funcdecl{int aio\_write(struct aiocb *aiocbp)}
+  Richiede una scrittura asincrona secondo quanto specificato con
+  \param{aiocbp}.
+  
+  \bodydesc{Le funzioni restituiscono 0 in caso di successo, e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+  \begin{errlist}
+  \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato.
+  \item[\errcode{ENOSYS}] La funzione non è implementata.
+  \item[\errcode{EINVAL}] Si è specificato un valore non valido per i campi
+    \var{aio\_offset} o \var{aio\_reqprio} di \param{aiocbp}.
+  \item[\errcode{EAGAIN}] La coda delle richieste è momentaneamente piena.
+  \end{errlist}
+}
+\end{functions}
+
+Entrambe le funzioni ritornano immediatamente dopo aver messo in coda la
+richiesta, o in caso di errore. Non è detto che gli errori \errcode{EBADF} ed
+\errcode{EINVAL} siano rilevati immediatamente al momento della chiamata,
+potrebbero anche emergere nelle fasi successive delle operazioni. Lettura e
+scrittura avvengono alla posizione indicata da \var{aio\_offset}, a meno che
+il file non sia stato aperto in \textit{append mode} (vedi
+\secref{sec:file_open}), nel qual caso le scritture vengono effettuate
+comunque alla fine de file, nell'ordine delle chiamate a \func{aio\_write}.
+
+Si tenga inoltre presente che deallocare la memoria indirizzata da
+\param{aiocbp} o modificarne i valori prima della conclusione di una
+operazione può dar luogo a risultati impredicibili, perché l'accesso ai vari
+campi per eseguire l'operazione può avvenire in un momento qualsiasi dopo la
+richiesta.  Questo comporta che occorre evitare di usare per \param{aiocbp}
+variabili automatiche e che non si deve riutilizzare la stessa struttura per
+un ulteriore operazione fintanto che la precedente non sia stata ultimata. In
+generale per ogni operazione di I/O asincrono si deve utilizzare una diversa
+struttura \struct{aiocb}.
+
+Dato che si opera in modalità asincrona, il successo di \func{aio\_read} o
+\func{aio\_write} non implica che le operazioni siano state effettivamente
+eseguite in maniera corretta; per verificarne l'esito l'interfaccia prevede
+altre due funzioni, che permettono di controllare lo stato di esecuzione. La
+prima è \funcd{aio\_error}, che serve a determinare un eventuale stato di
+errore; il suo prototipo è:
+\begin{prototype}{aio.h}
+  {int aio\_error(const struct aiocb *aiocbp)}  
+
+  Determina lo stato di errore delle operazioni di I/O associate a
+  \param{aiocbp}.
+  
+  \bodydesc{La funzione restituisce 0 se le operazioni si sono concluse con
+    successo, altrimenti restituisce il codice di errore relativo al loro
+    fallimento.}
+\end{prototype}
 
+Se l'operazione non si è ancora completata viene restituito l'errore di
+\errcode{EINPROGRESS}. La funzione ritorna zero quando l'operazione si è
+conclusa con successo, altrimenti restituisce il codice dell'errore
+verificatosi, ed esegue la corrispondente impostazione di \var{errno}. Il
+codice può essere sia \errcode{EINVAL} ed \errcode{EBADF}, dovuti ad un valore
+errato per \param{aiocbp}, che uno degli errori possibili durante l'esecuzione
+dell'operazione di I/O richiesta, nel qual caso saranno restituiti, a seconda
+del caso, i codici di errore delle system call \func{read}, \func{write} e
+\func{fsync}.
+
+Una volta che si sia certi che le operazioni siano state concluse (cioè dopo
+che una chiamata ad \func{aio\_error} non ha restituito \errcode{EINPROGRESS},
+si potrà usare la seconda funzione dell'interfaccia, \funcd{aio\_return}, che
+permette di verificare il completamento delle operazioni di I/O asincrono; il
+suo prototipo è:
+\begin{prototype}{aio.h}
+{ssize\_t aio\_return(const struct aiocb *aiocbp)} 
+
+Recupera il valore dello stato di ritorno delle operazioni di I/O associate a
+\param{aiocbp}.
+  
+\bodydesc{La funzione restituisce lo stato di uscita dell'operazione
+  eseguita.}
+\end{prototype}
+
+La funzione deve essere chiamata una sola volte per ciascuna operazione
+asincrona, essa infatti fa sì che il sistema rilasci le risorse ad essa
+associate. É per questo motivo che occorre chiamare la funzione solo dopo che
+l'operazione cui \param{aiocbp} fa riferimento si è completata. Una chiamata
+precedente il completamento delle operazioni darebbe risultati indeterminati.
+
+La funzione restituisce il valore di ritorno relativo all'operazione eseguita,
+così come ricavato dalla sottostante system call (il numero di byte letti,
+scritti o il valore di ritorno di \func{fsync}).  É importante chiamare sempre
+questa funzione, altrimenti le risorse disponibili per le operazioni di I/O
+asincrono non verrebbero liberate, rischiando di arrivare ad un loro
+esaurimento.
+
+Oltre alle operazioni di lettura e scrittura l'interfaccia POSIX.1b mette a
+disposizione un'altra operazione, quella di sincronizzazione dell'I/O, essa è
+compiuta dalla funzione \func{aio\_fsync}, che ha lo stesso effetto della
+analoga \func{fsync}, ma viene eseguita in maniera asincrona; il suo prototipo
+è:
+\begin{prototype}{aio.h}
+{ssize\_t aio\_return(int op, struct aiocb *aiocbp)} 
+
+Richiede la sincronizzazione dei dati per il file indicato da \param{aiocbp}.
+  
+\bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
+  errore, che può essere, con le stesse modalità di \func{aio\_read},
+  \errval{EAGAIN}, \errval{EBADF} o \errval{EINVAL}.}
+\end{prototype}
+
+La funzione richiede la sincronizzazione delle operazioni di I/O, ritornando
+immediatamente. L'esecuzione effettiva della sincronizzazione dovrà essere
+verificata con \func{aio\_error} e \func{aio\_return} come per le operazioni
+di lettura e scrittura. L'argomento \param{op} permette di indicare la
+modalità di esecuzione, se si specifica il valore \const{O\_DSYNC} le
+operazioni saranno completate con una chiamata a \func{fdatasync}, se si
+specifica \const{O\_SYNC} con una chiamata a \func{fsync} (per i dettagli vedi
+\secref{sec:file_sync}).
+
+Il successo della chiamata assicura la sincronizzazione delle operazioni fino
+allora richieste, niente è garantito riguardo la sincronizzazione dei dati
+relativi ad eventuali operazioni richieste successivamente. Se si è
+specificato un meccanismo di notifica questo sarà innescato una volta che le
+operazioni di sincronizzazione dei dati saranno completate.
+
+In alcuni casi può essere necessario interrompere le operazioni (in genere
+quando viene richiesta un'uscita immediata dal programma), per questo lo
+standard POSIX.1b prevede una funzioni apposita, \funcd{aio\_cancel}, che
+permette di cancellare una operazione richiesta in precedenza; il suo
+prototipo è:
+\begin{prototype}{aio.h}
+{int aio\_cancel(int fildes, struct aiocb *aiocbp)} 
+
+Richiede la cancellazione delle operazioni sul file \param{fildes} specificate
+da \param{aiocbp}.
+  
+\bodydesc{La funzione restituisce il risultato dell'operazione con un codice
+  di positivo, e -1 in caso di errore, che avviene qualora si sia specificato
+  un valore non valido di \param{fildes}, imposta \var{errno} al valore
+  \errval{EBADF}.}
+\end{prototype}
 
+La funzione permette di cancellare una operazione specifica sul file
+\param{fildes}, o tutte le operazioni pendenti, specificando \val{NULL} come
+valore di \param{aiocbp}.  Quando una operazione viene cancellata una
+successiva chiamata ad \func{aio\_error} riporterà \errcode{ECANCELED} come
+codice di errore, ed il suo codice di ritorno sarà -1, inoltre il meccanismo
+di notifica non verrà invocato. Se si specifica una operazione relativa ad un
+altro file descriptor il risultato è indeterminato.
+
+In caso di successo, i possibili valori di ritorno per \func{aio\_cancel} sono
+tre (anch'essi definiti in \file{aio.h}):
+\begin{basedescript}{\desclabelwidth{3.0cm}}
+\item[\const{AIO\_ALLDONE}] indica che le operazioni di cui si è richiesta la
+  cancellazione sono state già completate,
+  
+\item[\const{AIO\_CANCELED}] indica che tutte le operazioni richieste sono
+  state cancellate,  
+  
+\item[\const{AIO\_NOTCANCELED}] indica che alcune delle operazioni erano in
+  corso e non sono state cancellate.
+\end{basedescript}
+
+Nel caso si abbia \const{AIO\_NOTCANCELED} occorrerà chiamare
+\func{aio\_error} per determinare quali sono le operazioni effettivamente
+cancellate. Le operazioni che non sono state cancellate proseguiranno il loro
+corso normale, compreso quanto richiesto riguardo al meccanismo di notifica
+del loro avvenuto completamento.
+
+Benché l'I/O asincrono preveda un meccanismo di notifica, l'interfaccia
+fornisce anche una apposita funzione, \funcd{aio\_suspend}, che permette di
+sospendere l'esecuzione del processo chiamante fino al completamento di una
+specifica operazione; il suo prototipo è:
+\begin{prototype}{aio.h}
+{int aio\_suspend(const struct aiocb * const list[], int nent, const struct
+    timespec *timeout)}
+  
+  Attende, per un massimo di \param{timeout}, il completamento di una delle
+  operazioni specificate da \param{list}.
+  
+  \bodydesc{La funzione restituisce 0 se una (o più) operazioni sono state
+    completate, e -1 in caso di errore nel qual caso \var{errno} assumerà uno
+    dei valori:
+    \begin{errlist}
+    \item[\errcode{EAGAIN}] Nessuna operazione è stata completata entro
+      \param{timeout}.
+    \item[\errcode{ENOSYS}] La funzione non è implementata.
+    \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
+    \end{errlist}
+  }
+\end{prototype}
 
+La funzione permette di bloccare il processo fintanto che almeno una delle
+\param{nent} operazioni specificate nella lista \param{list} è completata, per
+un tempo massimo specificato da \param{timout}, o fintanto che non arrivi un
+segnale.\footnote{si tenga conto che questo segnale può anche essere quello
+  utilizzato come meccanismo di notifica.} La lista deve essere inizializzata
+con delle strutture \struct{aiocb} relative ad operazioni effettivamente
+richieste, ma può contenere puntatori nulli, che saranno ignorati. In caso si
+siano specificati valori non validi l'effetto è indefinito.  Un valore
+\val{NULL} per \param{timout} comporta l'assenza di timeout.
+
+Lo standard POSIX.1b infine ha previsto pure una funzione, \funcd{lio\_listio},
+che permette di effettuare la richiesta di una intera lista di operazioni di
+lettura o scrittura; il suo prototipo è:
+\begin{prototype}{aio.h}
+  {int lio\_listio(int mode, struct aiocb * const list[], int nent, struct
+    sigevent *sig)}
+  
+  Richiede l'esecuzione delle operazioni di I/O elencata da \param{list},
+  secondo la modalità \param{mode}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EAGAIN}] Nessuna operazione è stata completata entro
+      \param{timeout}.
+    \item[\errcode{ENOSYS}] La funzione non è implementata.
+    \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
+    \end{errlist}
+  }
+\end{prototype}
 
-\subsection{I/O multiplo}
+La funzione esegue la richiesta delle \param{nent} operazioni indicate dalla
+lista \param{list}; questa deve contenere gli indirizzi di altrettanti
+\textit{control block}, opportunamente inizializzati; in particolare nel caso
+dovrà essere specificato il tipo di operazione tramite il campo
+\var{aio\_lio\_opcode}, che può prendere i tre valori:
+\begin{basedescript}{\desclabelwidth{2.0cm}}
+\item[\const{LIO\_READ}]  si richiede una operazione di lettura.
+\item[\const{LIO\_WRITE}] si richiede una operazione di scrittura.
+\item[\const{LIO\_NOP}] non si effettua nessuna operazione.
+\end{basedescript}
+l'ultimo valore viene usato quando si ha a che fare con un vettore di
+dimensione fissa, per poter specificare solo alcune operazioni, o quando si è
+dovuto cancellare delle operazioni e si deve ripetere la richiesta per quelle
+non completate.
+
+L'argomento \param{mode} permette di stabilire il comportamento della
+funzione, se viene specificato il valore \const{LIO\_WAIT} la funzione si
+blocca fino al completamento di tutte le operazioni richieste; se invece si
+specifica \const{LIO\_NOWAIT} la funzione ritorna immediatamente dopo aver
+messo in coda tutte le richieste. In questo caso il chiamante può richiedere
+la notifica del completamento di tutte le richieste, impostando l'argomento
+\param{sig} in maniera analoga a come si fa per il campo \var{aio\_sigevent}
+di \struct{aiocb}.
+
+
+
+\subsection{I/O vettorizzato}
 \label{sec:file_multiple_io}
 
-Un caso abbastanza comune è quello in cui ci si trova a dover affrontare una
+Un caso abbastanza comune è quello in cui ci si trova a dover eseguire una
 serie multipla di operazioni di I/O, come una serie di letture o scritture di
-vari buffer. In questo caso 
+vari buffer. Un esempio tipico è quando i dati sono strutturati nei campi di
+una struttura ed essi devono essere caricati o salvati su un file.  Benché
+l'operazione sia facilmente eseguibile attraverso una serie multipla di
+chiamate, ci sono casi in cui si vuole poter contare sulla atomicità delle
+operazioni.
+
+Per questo motivo BSD 4.2\footnote{Le due funzioni sono riprese da BSD4.4 ed
+  integrate anche dallo standard Unix 98. Fino alle libc5, Linux usava
+  \type{size\_t} come tipo dell'argomento \param{count}, una scelta logica,
+  che però è stata dismessa per restare aderenti allo standard.} ha introdotto
+due nuove system call, \funcd{readv} e \funcd{writev}, che permettono di
+effettuare con una sola chiamata una lettura o una scrittura su una serie di
+buffer (quello che viene chiamato \textsl{I/O vettorizzato}. I relativi
+prototipi sono:
+\begin{functions}
+  \headdecl{sys/uio.h}
+  
+  \funcdecl{int readv(int fd, const struct iovec *vector, int count)} Esegue
+  una lettura vettorizzata da \param{fd} nei \param{count} buffer specificati
+  da \param{vector}.
+  
+  \funcdecl{int writev(int fd, const struct iovec *vector, int count)} Esegue
+  una scrittura vettorizzata da \param{fd} nei \param{count} buffer
+  specificati da \param{vector}.
+  
+  \bodydesc{Le funzioni restituiscono il numero di byte letti o scritti in
+    caso di successo, e -1 in caso di errore, nel qual caso \var{errno}
+    assumerà uno dei valori:
+  \begin{errlist}
+  \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato.
+  \item[\errcode{EINVAL}] si è specificato un valore non valido per uno degli
+    argomenti (ad esempio \param{count} è maggiore di \const{MAX\_IOVEC}).
+  \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima di
+    di avere eseguito una qualunque lettura o scrittura.
+  \item[\errcode{EAGAIN}] \param{fd} è stato aperto in modalità non bloccante e
+  non ci sono dati in lettura.
+  \item[\errcode{EOPNOTSUPP}] La coda delle richieste è momentaneamente piena.
+  \end{errlist}
+  ed inoltre \errval{EISDIR}, \errval{ENOMEM}, \errval{EFAULT} (se non sono
+  stato allocati correttamente i buffer specificati nei campi
+  \func{iov\_base}), più tutti gli ulteriori errori che potrebbero avere le
+  usuali funzioni di lettura e scrittura eseguite su \param{fd}.}
+\end{functions}
+
+Entrambe le funzioni usano una struttura \struct{iovec}, definita in
+\figref{fig:file_iovec}, che definisce dove i dati devono essere letti o
+scritti. Il primo campo, \var{iov\_base}, contiene l'indirizzo del buffer ed
+il secondo, \var{iov\_len}, la dimensione dello stesso. 
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct iovec {
+    __ptr_t iov_base;    /* Starting address */
+    size_t iov_len;      /* Length in bytes  */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \struct{iovec}, usata dalle operazioni di I/O
+    vettorizzato.} 
+  \label{fig:file_iovec}
+\end{figure}
 
+I buffer da utilizzare sono indicati attraverso l'argomento \param{vector} che
+è un vettore di strutture \struct{iovec}, la cui lunghezza è specificata da
+\param{count}.  Ciascuna struttura dovrà essere inizializzata per
+opportunamente per indicare i vari buffer da/verso i quali verrà eseguito il
+trasferimento dei dati. Essi verranno letti (o scritti) nell'ordine in cui li
+si sono specificati nel vettore \param{vector}.
 
 
 \subsection{File mappati in memoria}
 \label{sec:file_memory_map}
 
 Una modalità alternativa di I/O, che usa una interfaccia completamente diversa
-rispetto a quella classica, è quella dei file \textsl{mappati in memoria}. In
-sostanza quello che si fa è usare il meccanismo della
-\textsl{paginazione}\index{paginazione} usato per la memoria virtuale (vedi
-\secref{sec:proc_mem_gen}) per trasformare vedere il file in una sezione dello
-spazio di indirizzi del processo, in modo che l'accesso a quest'ultimo con le
-normali operazioni di lettura e scrittura delle variabili in memoria, si
-trasformi in I/O sul file stesso.
+rispetto a quella classica vista in \capref{cha:file_unix_interface}, è il
+cosiddetto \textit{memory-mapped I/O}, che, attraverso il meccanismo della
+\textsl{paginazione}\index{paginazione} usato dalla memoria virtuale (vedi
+\secref{sec:proc_mem_gen}), permette di \textsl{mappare} il contenuto di un
+file in una sezione dello spazio di indirizzi del processo. Il meccanismo è
+illustrato in \figref{fig:file_mmap_layout}, una sezione del file viene
+riportata direttamente nello spazio degli indirizzi del programma. Tutte le
+operazioni su questa zona verranno riportate indietro sul file dal meccanismo
+della memoria virtuale che trasferirà il contenuto di quel segmento sul file
+invece che nella swap, per cui si può parlare tanto di file mappato in
+memoria, quanto di memoria mappata su file.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=9.5cm]{img/mmap_layout}
+  \caption{Disposizione della memoria di un processo quando si esegue la
+  mappatura in memoria di un file.}
+  \label{fig:file_mmap_layout}
+\end{figure}
+
+Tutto questo comporta una notevole semplificazione delle operazioni di I/O, in
+quanto non sarà più necessario utilizzare dei buffer intermedi su cui
+appoggiare i dati da traferire, ma questi potranno essere acceduti
+direttamente nella sezione di memoria mappata; inoltre questa interfaccia è
+più efficiente delle usuali funzioni di I/O, in quanto permette di caricare in
+memoria solo le parti del file che sono effettivamente usate ad un dato
+istante.
+
+Infatti, dato che l'accesso è fatto direttamente attraverso la memoria
+virtuale, la sezione di memoria mappata su cui si opera sarà a sua volta letta
+o scritta sul file una pagina alla volta e solo per le parti effettivamente
+usate, il tutto in maniera completamente trasparente al processo; l'accesso
+alle pagine non ancora caricate avverrà allo stesso modo con cui vengono
+caricate in memoria le pagine che sono state salvate sullo swap.
+
+Infine in situazioni in cui la memoria è scarsa, le pagine che mappano un
+file vengono salvate automaticamente, così come le pagine dei programmi
+vengono scritte sulla swap; questo consente di accedere ai file su dimensioni
+il cui solo limite è quello dello spazio di indirizzi disponibile, e non della
+memoria su cui possono esserne lette delle porzioni.
+
+L'interfaccia prevede varie funzioni per la gestione del \textit{memory mapped
+  I/O}, la prima di queste è \funcd{mmap}, che serve ad eseguire la mappatura
+in memoria di un file; il suo prototipo è:
+\begin{functions}
+  
+  \headdecl{unistd.h}
+  \headdecl{sys/mman.h} 
+
+  \funcdecl{void * mmap(void * start, size\_t length, int prot, int flags, int
+    fd, off\_t offset)}
+  
+  Esegue la mappatura in memoria del file \param{fd}.
+  
+  \bodydesc{La funzione restituisce il puntatore alla zona di memoria mappata
+    in caso di successo, e \const{MAP\_FAILED} (-1) in caso di errore, nel
+    qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EBADF}] Il file descriptor non è valido, e non si è usato
+      \const{MAP\_ANONYMOUS}.
+    \item[\errcode{EACCES}] Il file descriptor non si riferisce ad un file
+      regolare, o si è richiesto \const{MAP\_PRIVATE} ma \param{fd} non è
+      aperto in lettura, o si è richiesto \const{MAP\_SHARED} e impostato
+      \const{PROT\_WRITE} ed \param{fd} non è aperto in lettura/scrittura, o
+      si è impostato \const{PROT\_WRITE} ed \param{fd} è in
+      \textit{append-only}.
+    \item[\errcode{EINVAL}] I valori di \param{start}, \param{length} o
+      \param{offset} non sono validi (o troppo grandi o non allineati sulla
+      dimensione delle pagine).
+    \item[\errcode{ETXTBSY}] Si è impostato \const{MAP\_DENYWRITE} ma
+      \param{fd} è aperto in scrittura.
+    \item[\errcode{EAGAIN}] Il file è bloccato, o si è bloccata troppa memoria.
+    \item[\errcode{ENOMEM}] Non c'è memoria o si è superato il limite sul
+      numero di mappature possibili.
+    \item[\errcode{ENODEV}] Il filesystem di \param{fd} non supporta il memory
+      mapping.
+    \end{errlist}
+  }
+\end{functions}
 
+La funzione richiede di mappare in memoria la sezione del file \param{fd} a
+partire da \param{offset} per \param{lenght} byte, preferibilmente
+all'indirizzo \param{start}. Il valore di \param{offset} deve essere un
+multiplo della dimensione di una pagina di memoria. 
+
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{PROT\_EXEC}  & Le pagine possono essere eseguite.\\
+    \const{PROT\_READ}  & Le pagine possono essere lette.\\
+    \const{PROT\_WRITE} & Le pagine possono essere scritte.\\
+    \const{PROT\_NONE}  & L'accesso alle pagine è vietato.\\
+    \hline    
+  \end{tabular}
+  \caption{Valori dell'argomento \param{prot} di \func{mmap}, relativi alla
+    protezione applicate alle pagine del file mappate in memoria.}
+  \label{tab:file_mmap_prot}
+\end{table}
+
+
+Il valore dell'argomento \param{prot} indica la protezione\footnote{in Linux
+  la memoria reale è divisa in pagine: ogni processo vede la sua memoria
+  attraverso uno o più segmenti lineari di memoria virtuale.  Per ciascuno di
+  questi segmenti il kernel mantiene nella \textit{page table} la mappatura
+  sulle pagine di memoria reale, ed le modalità di accesso (lettura,
+  esecuzione, scrittura); una loro violazione causa quella che si chiama una
+  \textit{segment violation}, e la relativa emissione del segnale
+  \const{SIGSEGV}.} da applicare al segmento di memoria e deve essere
+specificato come maschera binaria ottenuta dall'OR di uno o più dei valori
+riportati in \tabref{tab:file_mmap_flag}; il valore specificato deve essere
+compatibile con la modalità di accesso con cui si è aperto il file.
+
+L'argomento \param{flags} specifica infine qual'è il tipo di oggetto mappato,
+le opzioni relative alle modalità con cui è effettuata la mappatura e alle
+modalità con cui le modifiche alla memoria mappata vengono condivise o
+mantenute private al processo che le ha effettuate. Deve essere specificato
+come maschera binaria ottenuta dall'OR di uno o più dei valori riportati in
+\tabref{tab:file_mmap_flag}.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|p{10cm}|}
+    \hline
+    \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{MAP\_FIXED}     & Non permette di restituire un indirizzo diverso
+                             da \param{start}, se questo non può essere usato
+                             \func{mmap} fallisce. Se si imposta questo flag il
+                             valore di \param{start} deve essere allineato
+                             alle dimensioni di una pagina. \\
+    \const{MAP\_SHARED}    & I cambiamenti sulla memoria mappata vengono
+                             riportati sul file e saranno immediatamente
+                             visibili agli altri processi che mappano lo stesso
+                             file.\footnotemark Il file su disco però non sarà
+                             aggiornato fino alla chiamata di \func{msync} o
+                             \func{unmap}), e solo allora le modifiche saranno
+                             visibili per l'I/O convenzionale. Incompatibile
+                             con \const{MAP\_PRIVATE}. \\ 
+    \const{MAP\_PRIVATE}   & I cambiamenti sulla memoria mappata non vengono
+                             riportati sul file. Ne viene fatta una copia
+                             privata cui solo il processo chiamante ha
+                             accesso.  Le modifiche sono mantenute attraverso
+                             il meccanismo del 
+                             \textit{copy on write}\index{copy on write} e
+                             salvate su swap in caso di necessità. Non è
+                             specificato se i cambiamenti sul file originale
+                             vengano riportati sulla regione
+                             mappata. Incompatibile con \const{MAP\_SHARED}. \\
+    \const{MAP\_DENYWRITE} & In Linux viene ignorato per evitare
+                             \textit{DoS}\index{DoS} (veniva usato per
+                             segnalare che tentativi di scrittura sul file
+                             dovevano fallire con \errcode{ETXTBSY}).\\
+    \const{MAP\_EXECUTABLE}& Ignorato. \\
+    \const{MAP\_NORESERVE} & Si usa con \const{MAP\_PRIVATE}. Non riserva
+                             delle pagine di swap ad uso del meccanismo di
+                             \textit{copy on write}\index{copy on write}
+                             per mantenere le
+                             modifiche fatte alla regione mappata, in
+                             questo caso dopo una scrittura, se non c'è più
+                             memoria disponibile, si ha l'emissione di
+                             un \const{SIGSEGV}. \\
+    \const{MAP\_LOCKED}    & Se impostato impedisce lo swapping delle pagine
+                             mappate. \\
+    \const{MAP\_GROWSDOWN} & Usato per gli stack. Indica 
+                             che la mappatura deve essere effettuata con gli
+                             indirizzi crescenti verso il basso.\\
+    \const{MAP\_ANONYMOUS} & La mappatura non è associata a nessun file. Gli
+                             argomenti \param{fd} e \param{offset} sono
+                             ignorati.\footnotemark\\
+    \const{MAP\_ANON}      & Sinonimo di \const{MAP\_ANONYMOUS}, deprecato.\\
+    \const{MAP\_FILE}      & Valore di compatibilità, deprecato.\\
+    \hline
+  \end{tabular}
+  \caption{Valori possibili dell'argomento \param{flag} di \func{mmap}.}
+  \label{tab:file_mmap_flag}
+\end{table}
+
+\footnotetext{Dato che tutti faranno riferimento alle stesse pagine di
+  memoria.}  
+\footnotetext{L'uso di questo flag con \const{MAP\_SHARED} è
+  stato implementato in Linux a partire dai kernel della serie 2.4.x.}
+
+Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
+piuttosto complessi, essi si possono comprendere solo tenendo presente che
+tutto quanto è comunque basato sul basato sul meccanismo della memoria
+virtuale. Questo comporta allora una serie di conseguenze. La più ovvia è che
+se si cerca di scrivere su una zona mappata in sola lettura si avrà
+l'emissione di un segnale di violazione di accesso (\const{SIGSEGV}), dato che
+i permessi sul segmento di memoria relativo non consentono questo tipo di
+accesso.
+
+È invece assai diversa la questione relativa agli accessi al di fuori della
+regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
+ritenere che anch'essi debbano generare un segnale di violazione di accesso;
+questo però non tiene conto del fatto che, essendo basata sul meccanismo della
+paginazione\index{paginazione}, la mappatura in memoria non può che essere
+eseguita su un segmento di dimensioni rigorosamente multiple di quelle di una
+pagina, ed in generale queste potranno non corrispondere alle dimensioni
+effettive del file o della sezione che si vuole mappare. Il caso più comune è
+quello illustrato in \figref{fig:file_mmap_boundary}, in cui la sezione di
+file non rientra nei confini di una pagina: in tal caso verrà il file sarà
+mappato su un segmento di memoria che si estende fino al bordo della pagina
+successiva.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=10cm]{img/mmap_boundary}
+  \caption{Schema della mappatura in memoria di una sezione di file di
+    dimensioni non corrispondenti al bordo di una pagina.}
+  \label{fig:file_mmap_boundary}
+\end{figure}
+
+
+In questo caso è possibile accedere a quella zona di memoria che eccede le
+dimensioni specificate da \param{lenght}, senza ottenere un \const{SIGSEGV}
+poiché essa è presente nello spazio di indirizzi del processo, anche se non è
+mappata sul file. Il comportamento del sistema è quello di restituire un
+valore nullo per quanto viene letto, e di non riportare su file quanto viene
+scritto.
+
+Un caso più complesso è quello che si viene a creare quando le dimensioni del
+file mappato sono più corte delle dimensioni della mappatura, oppure quando il
+file è stato troncato, dopo che è stato mappato, ad una dimensione inferiore a
+quella della mappatura in memoria.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=13cm]{img/mmap_exceed}
+  \caption{Schema della mappatura in memoria di file di dimensioni inferiori
+    alla lunghezza richiesta.}
+  \label{fig:file_mmap_exceed}
+\end{figure}
+
+In questa situazione, per la sezione di pagina parzialmente coperta dal
+contenuto del file, vale esattamente quanto visto in precedenza; invece per la
+parte che eccede, fino alle dimensioni date da \param{length}, l'accesso non
+sarà più possibile, ma il segnale emesso non sarà \const{SIGSEGV}, ma
+\const{SIGBUS}, come illustrato in \figref{fig:file_mmap_exceed}.
+
+Non tutti i file possono venire mappati in memoria, dato che, come illustrato
+in \figref{fig:file_mmap_layout}, la mappatura introduce una corrispondenza
+biunivoca fra una sezione di un file ed una sezione di memoria. Questo
+comporta che ad esempio non è possibile mappare in memoria file descriptor
+relativi a pipe, socket e fifo, per i quali non ha senso parlare di
+\textsl{sezione}. Lo stesso vale anche per alcuni file di dispositivo, che non
+dispongono della relativa operazione \func{mmap} (si ricordi quanto esposto in
+\secref{sec:file_vfs_work}). Si tenga presente però che esistono anche casi di
+dispositivi (un esempio è l'interfaccia al ponte PCI-VME del chip Universe)
+che sono utilizzabili solo con questa interfaccia.
+
+Dato che passando attraverso una \func{fork} lo spazio di indirizzi viene
+copiato integralmente, i file mappati in memoria verranno ereditati in maniera
+trasparente dal processo figlio, mantenendo gli stessi attributi avuti nel
+padre; così se si è usato \const{MAP\_SHARED} padre e figlio accederanno allo
+stesso file in maniera condivisa, mentre se si è usato \const{MAP\_PRIVATE}
+ciascuno di essi manterrà una sua versione privata indipendente. Non c'è
+invece nessun passaggio attraverso una \func{exec}, dato che quest'ultima
+sostituisce tutto lo spazio degli indirizzi di un processo con quello di un
+nuovo programma.
+
+Quando si effettua la mappatura di un file vengono pure modificati i tempi ad
+esso associati (di cui si è trattato in \secref{sec:file_file_times}). Il
+valore di \var{st\_atime} può venir cambiato in qualunque istante a partire
+dal momento in cui la mappatura è stata effettuata: il primo riferimento ad
+una pagina mappata su un file aggiorna questo tempo.  I valori di
+\var{st\_ctime} e \var{st\_mtime} possono venir cambiati solo quando si è
+consentita la scrittura sul file (cioè per un file mappato con
+\const{PROT\_WRITE} e \const{MAP\_SHARED}) e sono aggiornati dopo la scrittura
+o in corrispondenza di una eventuale \func{msync}.
+
+Dato per i file mappati in memoria le operazioni di I/O sono gestite
+direttamente dalla memoria virtuale, occorre essere consapevoli delle
+interazioni che possono esserci con operazioni effettuate con l'interfaccia
+standard dei file di \capref{cha:file_unix_interface}. Il problema è che una
+volta che si è mappato un file, le operazioni di lettura e scrittura saranno
+eseguite sulla memoria, e riportate su disco in maniera autonoma dal sistema
+della memoria virtuale.
+
+Pertanto se si modifica un file con l'interfaccia standard queste modifiche
+potranno essere visibili o meno a seconda del momento in cui la memoria
+virtuale trasporterà dal disco in memoria quella sezione del file, perciò è
+del tutto imprevedibile il risultato della modifica di un file nei confronti
+del contenuto della memoria su cui è mappato.
+
+Per questo, è sempre sconsigliabile eseguire scritture su file attraverso
+l'interfaccia standard, quando lo si è mappato in memoria, è invece possibile
+usare l'interfaccia standard per leggere un file mappato in memoria, purché si
+abbia una certa cura; infatti l'interfaccia dell'I/O mappato in memoria mette
+a disposizione la funzione \funcd{msync} per sincronizzare il contenuto della
+memoria mappata con il file su disco; il suo prototipo è:
+\begin{functions}  
+  \headdecl{unistd.h}
+  \headdecl{sys/mman.h} 
+
+  \funcdecl{int msync(const void *start, size\_t length, int flags)}
+  
+  Sincronizza i contenuti di una sezione di un file mappato in memoria.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
+    errore nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EINVAL}] O \param{start} non è multiplo di \const{PAGESIZE},
+    o si è specificato un valore non valido per \param{flags}.
+    \item[\errcode{EFAULT}] L'intervallo specificato non ricade in una zona
+      precedentemente mappata.
+    \end{errlist}
+  }
+\end{functions}
+
+La funzione esegue la sincronizzazione di quanto scritto nella sezione di
+memoria indicata da \param{start} e \param{offset}, scrivendo le modifiche sul
+file (qualora questo non sia già stato fatto).  Provvede anche ad aggiornare i
+relativi tempi di modifica. In questo modo si è sicuri che dopo l'esecuzione
+di \func{msync} le funzioni dell'interfaccia standard troveranno un contenuto
+del file aggiornato.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{MS\_ASYNC}     & Richiede la sincronizzazione.\\
+    \const{MS\_SYNC}      & Attende che la sincronizzazione si eseguita.\\
+    \const{MS\_INVALIDATE}& Richiede che le altre mappature dello stesso file
+                            siano invalidate.\\
+    \hline    
+  \end{tabular}
+  \caption{Valori dell'argomento \param{flag} di \func{msync}.}
+  \label{tab:file_mmap_rsync}
+\end{table}
+
+L'argomento \param{flag} è specificato come maschera binaria composta da un OR
+dei valori riportati in \tabref{tab:file_mmap_rsync}, di questi però
+\const{MS\_ASYNC} e \const{MS\_SYNC} sono incompatibili; con il primo valore
+infatti la funzione si limita ad inoltrare la richiesta di sincronizzazione al
+meccanismo della memoria virtuale, ritornando subito, mentre con il secondo
+attende che la sincronizzazione sia stata effettivamente eseguita. Il terzo
+flag fa invalidare le pagine di cui si richiede la sincronizzazione per tutte
+le mappature dello stesso file, così che esse possano essere immediatamente
+aggiornate ai nuovi valori.
+
+Una volta che si sono completate le operazioni di I/O si può eliminare la
+mappatura della memoria usando la funzione \funcd{munmap}, il suo prototipo è:
+\begin{functions}  
+  \headdecl{unistd.h}
+  \headdecl{sys/mman.h} 
+
+  \funcdecl{int munmap(void *start, size\_t length)}
+  
+  Rilascia la mappatura sulla sezione di memoria specificata.
+
+  \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
+    errore nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EINVAL}] L'intervallo specificato non ricade in una zona
+      precedentemente mappata.
+    \end{errlist}
+  }
+\end{functions}
+
+La funzione cancella la mappatura per l'intervallo specificato attraverso
+\param{start} e \param{length}, ed ogni successivo accesso a tale regione
+causerà un errore di accesso in memoria. L'argomento \param{start} deve essere
+allineato alle dimensioni di una pagina di memoria, e la mappatura di tutte le
+pagine contenute (anche parzialmente) nell'intervallo indicato, verrà rimossa.
+Indicare un intervallo che non contiene pagine mappate non è un errore.
+
+Alla conclusione del processo, ogni pagina mappata verrà automaticamente
+rilasciata, mentre la chiusura del file descriptor usato per effettuare la
+mappatura in memoria non ha alcun effetto sulla stessa.
 
 
 \section{Il file locking}
 \label{sec:file_locking}
 
+\index{file!locking|(}
 In \secref{sec:file_sharing} abbiamo preso in esame le modalità in cui un
 sistema unix-like gestisce la condivisione dei file da parte di processi
 diversi. In quell'occasione si è visto come, con l'eccezione dei file aperti
@@ -438,28 +1243,875 @@ processi scrivono, mescolando in maniera imprevedibile il loro output sul
 file.
 
 In tutti questi casi il \textit{file locking} è la tecnica che permette di
-evitare le race condition, attraverso una serie di funzioni che permettono di
-bloccare l'accesso al file da parte di altri processi, così da evitare le
-sovrapposizioni, e garantire la atomicità delle operazioni di scrittura.
+evitare le race condition\index{race condition}, attraverso una serie di
+funzioni che permettono di bloccare l'accesso al file da parte di altri
+processi, così da evitare le sovrapposizioni, e garantire la atomicità delle
+operazioni di scrittura.
+
 
 
 \subsection{L'\textit{advisory locking}}
 \label{sec:file_record_locking}
 
-La prima modalità di file locking che è stata implementata nei sistemi
-unix-like è quella che viene usualmente chiamata \textit{advisory locking}, in
-quanto è il processo, e non il sistema, che si incarica di verificare se
-esiste una condizione di blocco per l'accesso ai file.
+La prima modalità di \textit{file locking} che è stata implementata nei
+sistemi unix-like è quella che viene usualmente chiamata \textit{advisory
+  locking},\footnote{Stevens in \cite{APUE} fa riferimento a questo argomento
+  come al \textit{record locking}, dizione utilizzata anche dal manuale delle
+  \acr{glibc}; nelle pagine di manuale si parla di \textit{discretionary file
+    lock} per \func{fcntl} e di \textit{advisory locking} per \func{flock},
+  mentre questo nome viene usato da Stevens per riferirsi al \textit{file
+    locking} POSIX. Dato che la dizione \textit{record locking} è quantomeno
+  ambigua, in quanto in un sistema Unix non esiste niente che possa fare
+  riferimento al concetto di \textit{record}, alla fine si è scelto di
+  mantenere il nome \textit{advisory locking}.} in quanto sono i singoli
+processi, e non il sistema, che si incaricano di asserire e verificare se
+esistono delle condizioni di blocco per l'accesso ai file.  Questo significa
+che le funzioni \func{read} o \func{write} non risentono affatto della
+presenza di un eventuale \textit{lock}, e che sta ai vari processi controllare
+esplicitamente lo stato dei file condivisi prima di accedervi, implementando
+un opportuno protocollo.
+
+In generale si distinguono due tipologie di \textit{file lock}:\footnote{di
+  seguito ci riferiremo sempre ai blocchi di accesso ai file con la
+  nomenclatura inglese di \textit{file lock}, o più brevemente con
+  \textit{lock}, per evitare confusioni linguistiche con il blocco di un
+  processo (cioè la condizione in cui il processo viene posto in stato di
+  \textit{sleep}).} la prima è il cosiddetto \textit{shared lock}, detto anche
+\textit{read lock} in quanto serve a bloccare l'accesso in scrittura su un
+file affinché non venga modificato mentre lo si legge. Si parla appunto di
+\textsl{blocco condiviso} in quanto più processi possono richiedere
+contemporaneamente uno \textit{shared lock} su un file per proteggere il loro
+accesso in lettura.
+
+La seconda tipologia è il cosiddetto \textit{exclusive lock}, detto anche
+\textit{write lock} in quanto serve a bloccare l'accesso su un file (sia in
+lettura che in scrittura) da parte di altri processi mentre lo si sta
+scrivendo. Si parla di \textsl{blocco esclusivo} appunto perché un solo
+processo alla volta può richiedere un \textit{exclusive lock} su un file per
+proteggere il suo accesso in scrittura. 
 
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|c|c|c|}
+    \hline
+    \textbf{Richiesta} & \multicolumn{3}{|c|}{\textbf{Stato del file}}\\
+    \cline{2-4}
+                       &Nessun lock&\textit{Read lock}&\textit{Write lock}\\
+    \hline
+    \hline
+    \textit{Read lock} & SI & SI & NO \\
+    \textit{Write lock}& SI & NO & NO \\
+    \hline    
+  \end{tabular}
+  \caption{Tipologie di file locking.}
+  \label{tab:file_file_lock}
+\end{table}
 
+In Linux sono disponibili due interfacce per utilizzare l'\textit{advisory
+  locking}, la prima è quella derivata da BSD, che è basata sulla funzione
+\func{flock}, la seconda è quella standardizzata da POSIX.1 (derivata da
+System V), che è basata sulla funzione \func{fcntl}.  I \textit{file lock}
+sono implementati in maniera completamente indipendente nelle due interfacce,
+che pertanto possono coesistere senza interferenze.
+
+Entrambe le interfacce prevedono la stessa procedura di funzionamento: si
+inizia sempre con il richiedere l'opportuno \textit{file lock} (un
+\textit{exclusive lock} per una scrittura, uno \textit{shared lock} per una
+lettura) prima di eseguire l'accesso ad un file.  Se il lock viene acquisito
+il processo prosegue l'esecuzione, altrimenti (a meno di non aver richiesto un
+comportamento non bloccante) viene posto in stato di sleep. Una volta finite
+le operazioni sul file si deve provvedere a rimuovere il lock. La situazione
+delle varie possibilità è riassunta in \tabref{tab:file_file_lock}.
+
+Si tenga presente infine che il controllo di accesso è effettuato quando si
+apre un file, l'unico controllo residuo è che il tipo di lock che si vuole
+ottenere deve essere compatibile con le modalità di apertura dello stesso (di
+lettura per un read lock e di scrittura per un write lock).
+
+%%  Si ricordi che
+%% la condizione per acquisire uno \textit{shared lock} è che il file non abbia
+%% già un \textit{exclusive lock} attivo, mentre per acquisire un
+%% \textit{exclusive lock} non deve essere presente nessun tipo di blocco.
+
+
+\subsection{La funzione \func{flock}}
+\label{sec:file_flock}
+
+La prima interfaccia per il file locking, quella derivata da BSD, permette di
+eseguire un blocco solo su un intero file; la funzione usata per richiedere e
+rimuovere un \textit{file lock} è \funcd{flock}, ed il suo prototipo è:
+\begin{prototype}{sys/file.h}{int flock(int fd, int operation)}
+  
+  Applica o rimuove un \textit{file lock} sul file \param{fd}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EWOULDBLOCK}] Il file ha già un blocco attivo, e si è
+      specificato \const{LOCK\_NB}.
+    \end{errlist}
+  }
+\end{prototype}
 
+La funzione può essere usata per acquisire o rilasciare un \textit{file lock}
+a seconda di quanto specificato tramite il valore dell'argomento
+\param{operation}, questo viene interpretato come maschera binaria, e deve
+essere passato utilizzando le costanti riportate in
+\tabref{tab:file_flock_operation}.
 
-\subsection{Il \textit{mandatory locking}}
-\label{sec:file_mand_locking}
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{LOCK\_SH} & Asserisce uno \textit{shared lock} sul file.\\ 
+    \const{LOCK\_EX} & Asserisce un \textit{esclusive lock} sul file.\\
+    \const{LOCK\_UN} & Rilascia il \textit{file lock}.\\
+    \const{LOCK\_NB} & Impedisce che la funzione si blocchi nella
+                       richiesta di un \textit{file lock}.\\
+    \hline    
+  \end{tabular}
+  \caption{Valori dell'argomento \param{operation} di \func{flock}.}
+  \label{tab:file_flock_operation}
+\end{table}
+
+I primi due valori, \const{LOCK\_SH} e \const{LOCK\_EX} permettono di
+richiedere un \textit{file lock}, ed ovviamente devono essere usati in maniera
+alternativa. Se si specifica anche \const{LOCK\_NB} la funzione non si
+bloccherà qualora il lock non possa essere acquisito, ma ritornerà subito con
+un errore di \errcode{EWOULDBLOCK}. Per rilasciare un lock si dovrà invece
+usare \const{LOCK\_UN}.
+
+La semantica del file locking di BSD è diversa da quella del file locking
+POSIX, in particolare per quanto riguarda il comportamento dei lock nei
+confronti delle due funzioni \func{dup} e \func{fork}.  Per capire queste
+differenze occorre descrivere con maggiore dettaglio come viene realizzato il
+file locking nel kernel in entrambe le interfacce.
+
+In \figref{fig:file_flock_struct} si è riportato uno schema essenziale
+dell'implementazione del file locking in stile BSD in Linux; il punto
+fondamentale da capire è che un lock, qualunque sia l'interfaccia che si usa,
+anche se richiesto attraverso un file descriptor, agisce sempre su un file;
+perciò le informazioni relative agli eventuali \textit{file lock} sono
+mantenute a livello di inode\index{inode},\footnote{in particolare, come
+  accennato in \figref{fig:file_flock_struct}, i \textit{file lock} sono
+  mantenuti un una \textit{linked list}\index{linked list} di strutture
+  \struct{file\_lock}. La lista è referenziata dall'indirizzo di partenza
+  mantenuto dal campo \var{i\_flock} della struttura \struct{inode} (per le
+  definizioni esatte si faccia riferimento al file \file{fs.h} nei sorgenti
+  del kernel).  Un bit del campo \var{fl\_flags} di specifica se si tratta di
+  un lock in semantica BSD (\const{FL\_FLOCK}) o POSIX (\const{FL\_POSIX}).}
+dato che questo è l'unico riferimento in comune che possono avere due processi
+diversi che aprono lo stesso file.
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=12.5cm]{img/file_flock}
+  \caption{Schema dell'architettura del file locking, nel caso particolare  
+    del suo utilizzo da parte dalla funzione \func{flock}.}
+  \label{fig:file_flock_struct}
+\end{figure}
+
+La richiesta di un file lock prevede una scansione della lista per determinare
+se l'acquisizione è possibile, ed in caso positivo l'aggiunta di un nuovo
+elemento.\footnote{cioè una nuova struttura \struct{file\_lock}.}  Nel caso
+dei lock creati con \func{flock} la semantica della funzione prevede che sia
+\func{dup} che \func{fork} non creino ulteriori istanze di un file lock quanto
+piuttosto degli ulteriori riferimenti allo stesso. Questo viene realizzato dal
+kernel secondo lo schema di \figref{fig:file_flock_struct}, associando ad ogni
+nuovo \textit{file lock} un puntatore\footnote{il puntatore è mantenuto nel
+  campo \var{fl\_file} di \struct{file\_lock}, e viene utilizzato solo per i
+  lock creati con la semantica BSD.} alla voce nella \textit{file table} da
+cui si è richiesto il lock, che così ne identifica il titolare.
+
+Questa struttura prevede che, quando si richiede la rimozione di un file lock,
+il kernel acconsenta solo se la richiesta proviene da un file descriptor che
+fa riferimento ad una voce nella file table corrispondente a quella registrata
+nel lock.  Allora se ricordiamo quanto visto in \secref{sec:file_dup} e
+\secref{sec:file_sharing}, e cioè che i file descriptor duplicati e quelli
+ereditati in un processo figlio puntano sempre alla stessa voce nella file
+table, si può capire immediatamente quali sono le conseguenze nei confronti
+delle funzioni \func{dup} e \func{fork}.
+
+Sarà così possibile rimuovere un file lock attraverso uno qualunque dei file
+descriptor che fanno riferimento alla stessa voce nella file table, anche se
+questo è diverso da quello con cui lo si è creato,\footnote{attenzione, questo
+  non vale se il file descriptor fa riferimento allo stesso file, ma
+  attraverso una voce diversa della file table, come accade tutte le volte che
+  si apre più volte lo stesso file.} o se si esegue la rimozione in un
+processo figlio; inoltre una volta tolto un file lock, la rimozione avrà
+effetto su tutti i file descriptor che condividono la stessa voce nella file
+table, e quindi, nel caso di file descriptor ereditati attraverso una
+\func{fork}, anche su processi diversi.
+
+Infine, per evitare che la terminazione imprevista di un processo lasci attivi
+dei file lock, quando un file viene chiuso il kernel provveda anche a
+rimuovere tutti i lock ad esso associati. Anche in questo caso occorre tenere
+presente cosa succede quando si hanno file descriptor duplicati; in tal caso
+infatti il file non verrà effettivamente chiuso (ed il lock rimosso) fintanto
+che non viene rilasciata la relativa voce nella file table; e questo avverrà
+solo quando tutti i file descriptor che fanno riferimento alla stessa voce
+sono stati chiusi.  Quindi, nel caso ci siano duplicati o processi figli che
+mantengono ancora aperto un file descriptor, il lock non viene rilasciato.
+
+Si tenga presente infine che \func{flock} non è in grado di funzionare per i
+file mantenuti su NFS, in questo caso, se si ha la necessità di eseguire il
+\textit{file locking}, occorre usare l'interfaccia basata su \func{fcntl} che
+può funzionare anche attraverso NFS, a condizione che sia il client che il
+server supportino questa funzionalità.
+
+\subsection{Il file locking POSIX}
+\label{sec:file_posix_lock}
+
+La seconda interfaccia per l'\textit{advisory locking} disponibile in Linux è
+quella standardizzata da POSIX, basata sulla funzione \func{fcntl}. Abbiamo
+già trattato questa funzione nelle sue molteplici possibilità di utilizzo in
+\secref{sec:file_fcntl}. Quando la si impiega per il \textit{file locking}
+essa viene usata solo secondo il prototipo:
+\begin{prototype}{fcntl.h}{int fcntl(int fd, int cmd, struct flock *lock)}
+  
+  Applica o rimuove un \textit{file lock} sul file \param{fd}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EACCES}] L'operazione è proibita per la presenza di
+      \textit{file lock} da parte di altri processi.
+    \item[\errcode{ENOLCK}] Il sistema non ha le risorse per il locking: ci
+      sono troppi segmenti di lock aperti, si è esaurita la tabella dei lock,
+      o il protocollo per il locking remoto è fallito.
+    \item[\errcode{EDEADLK}] Si è richiesto un lock su una regione bloccata da
+      un altro processo che è a sua volta in attesa dello sblocco di un lock
+      mantenuto dal processo corrente; si avrebbe pertanto un
+      \textit{deadlock}\index{deadlock}. Non è garantito che il sistema
+      riconosca sempre questa situazione.
+    \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale prima
+      di poter acquisire un lock.
+    \end{errlist}
+    ed inoltre \errval{EBADF}, \errval{EFAULT}.
+  }
+\end{prototype}
+
+Al contrario di quanto avviene con l'interfaccia basata su \func{flock} con
+\func{fcntl} è possibile bloccare anche delle singole sezioni di un file, fino
+al singolo byte. Inoltre la funzione permette di ottenere alcune informazioni
+relative agli eventuali lock preesistenti.  Per poter fare tutto questo la
+funzione utilizza come terzo argomento una apposita struttura \struct{flock}
+(la cui definizione è riportata in \figref{fig:struct_flock}) nella quale
+inserire tutti i dati relativi ad un determinato lock. Si tenga presente poi
+che un lock fa sempre riferimento ad una regione, per cui si potrà avere un
+conflitto anche se c'è soltanto una sovrapposizione parziale con un'altra
+regione bloccata.
+
+\begin{figure}[!bht]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}[labelstep=0]{}%,frame=,indent=1cm]{}
+struct flock {
+    short int l_type;   /* Type of lock: F_RDLCK, F_WRLCK, or F_UNLCK.  */
+    short int l_whence; /* Where `l_start' is relative to (like `lseek').  */
+    off_t l_start;      /* Offset where the lock begins.  */
+    off_t l_len;        /* Size of the locked area; zero means until EOF.  */
+    pid_t l_pid;        /* Process holding the lock.  */
+};
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{La struttura \struct{flock}, usata da \func{fcntl} per il file
+    locking.} 
+  \label{fig:struct_flock}
+\end{figure}
+
+
+I primi tre campi della struttura, \var{l\_whence}, \var{l\_start} e
+\var{l\_len}, servono a specificare la sezione del file a cui fa riferimento
+il lock: \var{l\_start} specifica il byte di partenza, \var{l\_len} la
+lunghezza della sezione e infine \var{l\_whence} imposta il riferimento da cui
+contare \var{l\_start}. Il valore di \var{l\_whence} segue la stessa semantica
+dell'omonimo argomento di \func{lseek}, coi tre possibili valori
+\const{SEEK\_SET}, \const{SEEK\_CUR} e \const{SEEK\_END}, (si vedano le
+relative descrizioni in \secref{sec:file_lseek}). 
+
+Si tenga presente che un lock può essere richiesto anche per una regione al di
+là della corrente fine del file, così che una eventuale estensione dello
+stesso resti coperta dal blocco. Inoltre se si specifica un valore nullo per
+\var{l\_len} il blocco si considera esteso fino alla dimensione massima del
+file; in questo modo è possibile bloccare una qualunque regione a partire da
+un certo punto fino alla fine del file, coprendo automaticamente quanto
+eventualmente aggiunto in coda allo stesso.
+
+Il tipo di file lock richiesto viene specificato dal campo \var{l\_type}, esso
+può assumere i tre valori definiti dalle costanti riportate in
+\tabref{tab:file_flock_type}, che permettono di richiedere rispettivamente uno
+\textit{shared lock}, un \textit{esclusive lock}, e la rimozione di un lock
+precedentemente acquisito. Infine il campo \var{l\_pid} viene usato solo in
+caso di lettura, quando si chiama \func{fcntl} con \const{F\_GETLK}, e riporta
+il \acr{pid} del processo che detiene il lock.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|l|}
+    \hline
+    \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{F\_RDLCK} & Richiede un blocco condiviso (\textit{read lock}).\\
+    \const{F\_WRLCK} & Richiede un blocco esclusivo (\textit{write lock}).\\
+    \const{F\_UNLCK} & Richiede l'eliminazione di un file lock.\\
+    \hline    
+  \end{tabular}
+  \caption{Valori possibili per il campo \var{l\_type} di \struct{flock}.}
+  \label{tab:file_flock_type}
+\end{table}
+
+Oltre a quanto richiesto tramite i campi di \struct{flock}, l'operazione
+effettivamente svolta dalla funzione è stabilita dal valore dall'argomento
+\param{cmd} che, come già riportato in \secref{sec:file_fcntl}, specifica
+l'azione da compiere; i valori relativi al file locking sono tre:
+\begin{basedescript}{\desclabelwidth{2.0cm}}
+\item[\const{F\_GETLK}] verifica se il file lock specificato dalla struttura
+  puntata da \param{lock} può essere acquisito: in caso negativo sovrascrive
+  la struttura \param{flock} con i valori relativi al lock già esistente che
+  ne blocca l'acquisizione, altrimenti si limita a impostarne il campo
+  \var{l\_type} con il valore \const{F\_UNLCK}. 
+\item[\const{F\_SETLK}] se il campo \var{l\_type} della struttura puntata da
+  \param{lock} è \const{F\_RDLCK} o \const{F\_WRLCK} richiede il
+  corrispondente file lock, se è \const{F\_UNLCK} lo rilascia. Nel caso la
+  richiesta non possa essere soddisfatta a causa di un lock preesistente la
+  funzione ritorna immediatamente con un errore di \errcode{EACCES} o di
+  \errcode{EAGAIN}.
+\item[\const{F\_SETLKW}] è identica a \const{F\_SETLK}, ma se la richiesta di
+  non può essere soddisfatta per la presenza di un altro lock, mette il
+  processo in stato di attesa fintanto che il lock precedente non viene
+  rilasciato. Se l'attesa viene interrotta da un segnale la funzione ritorna
+  con un errore di \errcode{EINTR}.
+\end{basedescript}
+
+Si noti che per quanto detto il comando \const{F\_GETLK} non serve a rilevare
+una presenza generica di lock su un file, perché se ne esistono altri
+compatibili con quello richiesto, la funzione ritorna comunque impostando
+\var{l\_type} a \const{F\_UNLCK}.  Inoltre a seconda del valore di
+\var{l\_type} si potrà controllare o l'esistenza di un qualunque tipo di lock
+(se è \const{F\_WRLCK}) o di write lock (se è \const{F\_RDLCK}). Si consideri
+poi che può esserci più di un lock che impedisce l'acquisizione di quello
+richiesto (basta che le regioni si sovrappongano), ma la funzione ne riporterà
+sempre soltanto uno, impostando \var{l\_whence} a \const{SEEK\_SET} ed i
+valori \var{l\_start} e \var{l\_len} per indicare quale è la regione bloccata.
+
+Infine si tenga presente che effettuare un controllo con il comando
+\const{F\_GETLK} e poi tentare l'acquisizione con \const{F\_SETLK} non è una
+operazione atomica (un altro processo potrebbe acquisire un lock fra le due
+chiamate) per cui si deve sempre verificare il codice di ritorno di
+\func{fcntl}\footnote{controllare il codice di ritorno delle funzioni invocate
+  è comunque una buona norma di programmazione, che permette di evitare un
+  sacco di errori difficili da tracciare proprio perché non vengono rilevati.}
+quando la si invoca con \const{F\_SETLK}, per controllare che il lock sia
+stato effettivamente acquisito.
+
+\begin{figure}[htb]
+  \centering \includegraphics[width=9cm]{img/file_lock_dead}
+  \caption{Schema di una situazione di \textit{deadlock}\index{deadlock}.}
+  \label{fig:file_flock_dead}
+\end{figure}
+
+Non operando a livello di interi file, il file locking POSIX introduce
+un'ulteriore complicazione; consideriamo la situazione illustrata in
+\figref{fig:file_flock_dead}, in cui il processo A blocca la regione 1 e il
+processo B la regione 2. Supponiamo che successivamente il processo A richieda
+un lock sulla regione 2 che non può essere acquisito per il preesistente lock
+del processo 2; il processo 1 si bloccherà fintanto che il processo 2 non
+rilasci il blocco. Ma cosa accade se il processo 2 nel frattempo tenta a sua
+volta di ottenere un lock sulla regione A? Questa è una tipica situazione che
+porta ad un \textit{deadlock}\index{deadlock}, dato che a quel punto anche il
+processo 2 si bloccherebbe, e niente potrebbe sbloccare l'altro processo. Per
+questo motivo il kernel si incarica di rilevare situazioni di questo tipo, ed
+impedirle restituendo un errore di \errcode{EDEADLK} alla funzione che cerca
+di acquisire un lock che porterebbe ad un \textit{deadlock}.
+
+\begin{figure}[!bht]
+  \centering \includegraphics[width=13cm]{img/file_posix_lock}
+  \caption{Schema dell'architettura del file locking, nel caso particolare  
+    del suo utilizzo secondo l'interfaccia standard POSIX.}
+  \label{fig:file_posix_lock}
+\end{figure}
 
-Il \textit{mandatory locking} è una opzione introdotta inizialmente in SVr4, 
 
+Per capire meglio il funzionamento del file locking in semantica POSIX (che
+differisce alquanto rispetto da quello di BSD, visto \secref{sec:file_flock})
+esaminiamo più in dettaglio come viene gestito dal kernel. Lo schema delle
+strutture utilizzate è riportato in \figref{fig:file_posix_lock}; come si vede
+esso è molto simile all'analogo di \figref{fig:file_flock_struct}:\footnote{in
+  questo caso nella figura si sono evidenziati solo i campi di
+  \struct{file\_lock} significativi per la semantica POSIX, in particolare
+  adesso ciascuna struttura contiene, oltre al \acr{pid} del processo in
+  \var{fl\_pid}, la sezione di file che viene bloccata grazie ai campi
+  \var{fl\_start} e \var{fl\_end}.  La struttura è comunque la stessa, solo
+  che in questo caso nel campo \var{fl\_flags} è impostato il bit
+  \const{FL\_POSIX} ed il campo \var{fl\_file} non viene usato.} il lock è
+sempre associato all'inode\index{inode}, solo che in questo caso la titolarità
+non viene identificata con il riferimento ad una voce nella file table, ma con
+il valore del \acr{pid} del processo.
+
+Quando si richiede un lock il kernel effettua una scansione di tutti i lock
+presenti sul file\footnote{scandisce cioè la linked list delle strutture
+  \struct{file\_lock}, scartando automaticamente quelle per cui
+  \var{fl\_flags} non è \const{FL\_POSIX}, così che le due interfacce restano
+  ben separate.}  per verificare se la regione richiesta non si sovrappone ad
+una già bloccata, in caso affermativo decide in base al tipo di lock, in caso
+negativo il nuovo lock viene comunque acquisito ed aggiunto alla lista.
+
+Nel caso di rimozione invece questa viene effettuata controllando che il
+\acr{pid} del processo richiedente corrisponda a quello contenuto nel lock.
+Questa diversa modalità ha delle conseguenze precise riguardo il comportamento
+dei lock POSIX. La prima conseguenza è che un lock POSIX non viene mai
+ereditato attraverso una \func{fork}, dato che il processo figlio avrà un
+\acr{pid} diverso, mentre passa indenne attraverso una \func{exec} in quanto
+il \acr{pid} resta lo stesso.  Questo comporta che, al contrario di quanto
+avveniva con la semantica BSD, quando processo termina tutti i file lock da
+esso detenuti vengono immediatamente rilasciati.
+
+La seconda conseguenza è che qualunque file descriptor che faccia riferimento
+allo stesso file (che sia stato ottenuto con una \func{dup} o con una
+\func{open} in questo caso non fa differenza) può essere usato per rimuovere
+un lock, dato che quello che conta è solo il \acr{pid} del processo. Da questo
+deriva una ulteriore sottile differenza di comportamento: dato che alla
+chiusura di un file i lock ad esso associati vengono rimossi, nella semantica
+POSIX basterà chiudere un file descriptor qualunque per cancellare tutti i
+lock relativi al file cui esso faceva riferimento, anche se questi fossero
+stati creati usando altri file descriptor che restano aperti.
+
+Dato che il controllo sull'accesso ai lock viene eseguito sulla base del
+\acr{pid} del processo, possiamo anche prendere in considerazione un'altro
+degli aspetti meno chiari di questa interfaccia e cioè cosa succede quando si
+richiedono dei lock su regioni che si sovrappongono fra loro all'interno
+stesso processo. Siccome il controllo, come nel caso della rimozione, si basa
+solo sul \acr{pid} del processo che chiama la funzione, queste richieste
+avranno sempre successo.
+
+Nel caso della semantica BSD, essendo i lock relativi a tutto un file e non
+accumulandosi,\footnote{questa ultima caratteristica è vera in generale, se
+  cioè si richiede più volte lo stesso file lock, o più lock sulla stessa
+  sezione di file, le richieste non si cumulano e basta una sola richiesta di
+  rilascio per cancellare il lock.}  la cosa non ha alcun effetto; la funzione
+ritorna con successo, senza che il kernel debba modificare la lista dei lock.
+In questo caso invece si possono avere una serie di situazioni diverse: ad
+esempio è possibile rimuovere con una sola chiamata più lock distinti
+(indicando in una regione che si sovrapponga completamente a quelle di questi
+ultimi), o rimuovere solo una parte di un lock preesistente (indicando una
+regione contenuta in quella di un altro lock), creando un buco, o coprire con
+un nuovo lock altri lock già ottenuti, e così via, a secondo di come si
+sovrappongono le regioni richieste e del tipo di operazione richiesta.  Il
+comportamento seguito in questo caso che la funzione ha successo ed esegue
+l'operazione richiesta sulla regione indicata; è compito del kernel
+preoccuparsi di accorpare o dividere le voci nella lista dei lock per far si
+che le regioni bloccate da essa risultanti siano coerenti con quanto
+necessario a soddisfare l'operazione richiesta.
+
+\begin{figure}[!htb]
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \begin{lstlisting}{}
+int main(int argc, char *argv[])
+{
+    int type = F_UNLCK;            /* lock type: default to unlock (invalid) */
+    off_t start = 0;             /* start of the locked region: default to 0 */
+    off_t len = 0;              /* length of the locked region: default to 0 */
+    int fd, res, i;                                    /* internal variables */
+    int bsd = 0;                          /* semantic type: default to POSIX */
+    int cmd = F_SETLK;              /* lock command: default to non-blocking */
+    struct flock lock;                                /* file lock structure */
+    ...
+    if ((argc - optind) != 1) {          /* There must be remaing parameters */
+        printf("Wrong number of arguments %d\n", argc - optind);
+        usage();
+    }
+    if (type == F_UNLCK) {            /* There must be a -w or -r option set */
+        printf("You should set a read or a write lock\n");
+        usage();
+    }
+    fd = open(argv[optind], O_RDWR);           /* open the file to be locked */
+    if (fd < 0) {                                           /* on error exit */
+        perror("Wrong filename");
+        exit(1);
+    }
+    /* do lock */
+    if (bsd) {                                             /* if BSD locking */
+        /* rewrite cmd for suitables flock operation values */ 
+        if (cmd == F_SETLKW) {                             /* if no-blocking */
+            cmd = LOCK_NB;              /* set the value for flock operation */
+        } else {                                                     /* else */
+            cmd = 0;                                      /* default is null */
+        }
+        if (type == F_RDLCK) cmd |= LOCK_SH;          /* set for shared lock */
+        if (type == F_WRLCK) cmd |= LOCK_EX;       /* set for exclusive lock */
+        res = flock(fd, cmd);                                /* esecute lock */
+    } else {                                             /* if POSIX locking */
+        /* setting flock structure */
+        lock.l_type = type;                       /* set type: read or write */
+        lock.l_whence = SEEK_SET;    /* start from the beginning of the file */
+        lock.l_start = start;          /* set the start of the locked region */
+        lock.l_len = len;             /* set the length of the locked region */
+        res = fcntl(fd, cmd, &lock);                              /* do lock */
+    }
+    /* check lock results */
+    if (res) {                                              /* on error exit */
+        perror("Failed lock");
+        exit(1);
+    } else {                                           /* else write message */
+        printf("Lock acquired\n");
+    }
+    pause();                       /* stop the process, use a signal to exit */
+    return 0;
+}
+    \end{lstlisting}
+  \end{minipage} 
+  \normalsize 
+  \caption{Sezione principale del codice del programma \file{Flock.c}.}
+  \label{fig:file_flock_code}
+\end{figure}
+
+Per fare qualche esempio sul file locking si è scritto un programma che
+permette di bloccare una sezione di un file usando la semantica POSIX, o un
+intero file usando la semantica BSD; in \figref{fig:file_flock_code} è
+riportata il corpo principale del codice del programma, (il testo completo è
+allegato nella directory dei sorgenti).
+
+La sezione relativa alla gestione delle opzioni al solito si è omessa, come la
+funzione che stampa le istruzioni per l'uso del programma, essa si cura di
+impostare le variabili \var{type}, \var{start} e \var{len}; queste ultime due
+vengono inizializzate al valore numerico fornito rispettivamente tramite gli
+switch \code{-s} e \cmd{-l}, mentre il valore della prima viene impostato con
+le opzioni \cmd{-w} e \cmd{-r} si richiede rispettivamente o un write lock o
+read lock (i due valori sono esclusivi, la variabile assumerà quello che si è
+specificato per ultimo). Oltre a queste tre vengono pure impostate la
+variabile \var{bsd}, che abilita la semantica omonima quando si invoca
+l'opzione \cmd{-f} (il valore preimpostato è nullo, ad indicare la semantica
+POSIX), e la variabile \var{cmd} che specifica la modalità di richiesta del
+lock (bloccante o meno), a seconda dell'opzione \cmd{-b}.
+
+Il programma inizia col controllare (\texttt{\small 11--14}) che venga passato
+un parametro (il file da bloccare), che sia stato scelto (\texttt{\small
+  15--18}) il tipo di lock, dopo di che apre (\texttt{\small 19}) il file,
+uscendo (\texttt{\small 20--23}) in caso di errore. A questo punto il
+comportamento dipende dalla semantica scelta; nel caso sia BSD occorre
+reimpostare il valore di \var{cmd} per l'uso con \func{flock}; infatti il
+valore preimpostato fa riferimento alla semantica POSIX e vale rispettivamente
+\const{F\_SETLKW} o \const{F\_SETLK} a seconda che si sia impostato o meno la
+modalità bloccante.
+
+Nel caso si sia scelta la semantica BSD (\texttt{\small 25--34}) prima si
+controlla (\texttt{\small 27--31}) il valore di \var{cmd} per determinare se
+si vuole effettuare una chiamata bloccante o meno, reimpostandone il valore
+opportunamente, dopo di che a seconda del tipo di lock al valore viene
+aggiunta la relativa opzione (con un OR aritmetico, dato che \func{flock}
+vuole un argomento \param{operation} in forma di maschera binaria.  Nel caso
+invece che si sia scelta la semantica POSIX le operazioni sono molto più
+immediate, si prepara (\texttt{\small 36--40}) la struttura per il lock, e lo
+esegue (\texttt{\small 41}).
+
+In entrambi i casi dopo aver richiesto il lock viene controllato il risultato
+uscendo (\texttt{\small 44--46}) in caso di errore, o stampando un messaggio
+(\texttt{\small 47--49}) in caso di successo. Infine il programma si pone in
+attesa (\texttt{\small 50}) finché un segnale (ad esempio un \cmd{C-c} dato da
+tastiera) non lo interrompa; in questo caso il programma termina, e tutti i
+lock vengono rilasciati.
+
+Con il programma possiamo fare varie verifiche sul funzionamento del file
+locking; cominciamo con l'eseguire un read lock su un file, ad esempio usando
+all'interno di un terminale il seguente comando:
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[piccardi@gont sources]$ ./flock -r Flock.c
+Lock acquired
+\end{verbatim}%$
+\end{minipage}\vspace{1mm}
+\par\noindent
+il programma segnalerà di aver acquisito un lock e si bloccherà; in questo
+caso si è usato il file locking POSIX e non avendo specificato niente riguardo
+alla sezione che si vuole bloccare sono stati usati i valori preimpostati che
+bloccano tutto il file. A questo punto se proviamo ad eseguire lo stesso
+comando in un altro terminale, e avremo lo stesso risultato. Se invece
+proviamo ad eseguire un write lock avremo:
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[piccardi@gont sources]$ ./flock -w Flock.c
+Failed lock: Resource temporarily unavailable
+\end{verbatim}%$
+\end{minipage}\vspace{1mm}
+\par\noindent
+come ci aspettiamo il programma terminerà segnalando l'indisponibilità del
+lock, dato che il file è bloccato dal precedente read lock. Si noti che il
+risultato è lo stesso anche se si richiede il blocco su una sola parte del
+file con il comando:
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
+Failed lock: Resource temporarily unavailable
+\end{verbatim}%$
+\end{minipage}\vspace{1mm}
+\par\noindent
+se invece blocchiamo una regione con: 
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[piccardi@gont sources]$ ./flock -r -s0 -l10 Flock.c
+Lock acquired
+\end{verbatim}%$
+\end{minipage}\vspace{1mm}
+\par\noindent
+una volta che riproviamo ad acquisire il write lock i risultati dipenderanno
+dalla regione richiesta; ad esempio nel caso in cui le due regioni si
+sovrappongono avremo che:
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[piccardi@gont sources]$ ./flock -w -s5 -l15  Flock.c
+Failed lock: Resource temporarily unavailable
+\end{verbatim}%$
+\end{minipage}\vspace{1mm}
+\par\noindent
+ed il lock viene rifiutato, ma se invece si richiede una regione distinta
+avremo che:
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[piccardi@gont sources]$ ./flock -w -s11 -l15  Flock.c
+Lock acquired
+\end{verbatim}%$
+\end{minipage}\vspace{1mm}
+\par\noindent
+ed il lock viene acquisito. Se a questo punto si prova ad eseguire un read
+lock che comprende la nuova regione bloccata in scrittura:
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[piccardi@gont sources]$ ./flock -r -s10 -l20 Flock.c
+Failed lock: Resource temporarily unavailable
+\end{verbatim}%$
+\end{minipage}\vspace{1mm}
+\par\noindent
+come ci aspettiamo questo non sarà consentito.
+
+Il programma di norma esegue il tentativo di acquisire il lock in modalità non
+bloccante, se però usiamo l'opzione \cmd{-b} possiamo impostare la modalità
+bloccante, riproviamo allora a ripetere le prove precedenti con questa
+opzione:
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[piccardi@gont sources]$ ./flock -r -b -s0 -l10 Flock.c Lock acquired
+\end{verbatim}%$
+\end{minipage}\vspace{1mm}
+\par\noindent
+il primo comando acquisisce subito un read lock, e quindi non cambia nulla, ma
+se proviamo adesso a richiedere un write lock che non potrà essere acquisito
+otterremo:
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
+\end{verbatim}%$
+\end{minipage}\vspace{1mm}
+\par\noindent
+il programma cioè si bloccherà nella chiamata a \func{fcntl}; se a questo
+punto rilasciamo il precedente lock (terminando il primo comando un
+\texttt{C-c} sul terminale) potremo verificare che sull'altro terminale il
+lock viene acquisito, con la comparsa di una nuova riga:
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
+Lock acquired
+\end{verbatim}%$
+\end{minipage}\vspace{3mm}
+\par\noindent
+
+Un'altra cosa che si può controllare con il nostro programma è l'interazione
+fra i due tipi di lock; se ripartiamo dal primo comando con cui si è ottenuto
+un lock in lettura sull'intero file, possiamo verificare cosa succede quando
+si cerca di ottenere un lock in scrittura con la semantica BSD:
+
+\vspace{1mm}
+\begin{minipage}[c]{12cm}
+\begin{verbatim}
+[root@gont sources]# ./flock -f -w Flock.c
+Lock acquired
+\end{verbatim}
+\end{minipage}\vspace{1mm}
+\par\noindent
+che ci mostra come i due tipi di lock siano assolutamente indipendenti; per
+questo motivo occorre sempre tenere presente quale fra le due semantiche
+disponibili stanno usando i programmi con cui si interagisce, dato che i lock
+applicati con l'altra non avrebbero nessun effetto.
+
+
+
+\subsection{La funzione \func{lockf}}
+\label{sec:file_lockf}
+
+Abbiamo visto come l'interfaccia POSIX per il file locking sia molto più
+potente e flessibile di quella di BSD, questo comporta anche una maggiore
+complessità per via delle varie opzioni da passare a \func{fcntl}. Per questo
+motivo è disponibile anche una interfaccia semplificata (ripresa da System V)
+che utilizza la funzione \funcd{lockf}, il cui prototipo è:
+\begin{prototype}{sys/file.h}{int lockf(int fd, int cmd, off\_t len)}
+  
+  Applica, controlla o rimuove un \textit{file lock} sul file \param{fd}.
+  
+  \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
+    errore, nel qual caso \var{errno} assumerà uno dei valori:
+    \begin{errlist}
+    \item[\errcode{EWOULDBLOCK}] Non è possibile acquisire il lock, e si è
+      selezionato \const{LOCK\_NB}, oppure l'operazione è proibita perché il
+      file è mappato in memoria.
+    \item[\errcode{ENOLCK}] Il sistema non ha le risorse per il locking: ci
+      sono troppi segmenti di lock aperti, si è esaurita la tabella dei lock.
+    \end{errlist}
+    ed inoltre \errval{EBADF}, \errval{EINVAL}.
+  }
+\end{prototype}
+
+Il comportamento della funzione dipende dal valore dell'argomento \param{cmd},
+che specifica quale azione eseguire; i valori possibili sono riportati in
+\tabref{tab:file_lockf_type}.
+
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|p{7cm}|}
+    \hline
+    \textbf{Valore} & \textbf{Significato} \\
+    \hline
+    \hline
+    \const{LOCK\_SH}& Richiede uno \textit{shared lock}. Più processi possono
+                      mantenere un lock condiviso sullo stesso file.\\
+    \const{LOCK\_EX}& Richiede un \textit{exclusive lock}. Un solo processo
+                      alla volta può mantenere un lock esclusivo su un file. \\
+    \const{LOCK\_UN}& Sblocca il file.\\
+    \const{LOCK\_NB}& Non blocca la funzione quando il lock non è disponibile,
+                      si specifica sempre insieme ad una delle altre operazioni
+                      con un OR aritmetico dei valori.\\ 
+    \hline    
+  \end{tabular}
+  \caption{Valori possibili per l'argomento \param{cmd} di \func{lockf}.}
+  \label{tab:file_lockf_type}
+\end{table}
+
+Qualora il lock non possa essere acquisito, a meno di non aver specificato
+\const{LOCK\_NB}, la funzione si blocca fino alla disponibilità dello stesso.
+Dato che la funzione è implementata utilizzando \func{fcntl} la semantica
+delle operazioni è la stessa di quest'ultima (pertanto la funzione non è
+affatto equivalente a \func{flock}).
+
+
+
+\subsection{Il \textit{mandatory locking}}
+\label{sec:file_mand_locking}
 
+Il \textit{mandatory locking} è una opzione introdotta inizialmente in SVr4,
+per introdurre un file locking che, come dice il nome, fosse effettivo
+indipendentemente dai controlli eseguiti da un processo. Con il
+\textit{mandatory locking} infatti è possibile far eseguire il blocco del file
+direttamente al sistema, così che, anche qualora non si predisponessero le
+opportune verifiche nei processi, questo verrebbe comunque rispettato.
+
+Per poter utilizzare il \textit{mandatory locking} è stato introdotto un
+utilizzo particolare del bit \acr{sgid}. Se si ricorda quanto esposto in
+\secref{sec:file_suid_sgid}), esso viene di norma utilizzato per cambiare il
+group-ID effettivo con cui viene eseguito un programma, ed è pertanto sempre
+associato alla presenza del permesso di esecuzione per il gruppo. Impostando
+questo bit su un file senza permesso di esecuzione in un sistema che supporta
+il \textit{mandatory locking}, fa sì che quest'ultimo venga attivato per il
+file in questione. In questo modo una combinazione dei permessi
+originariamente non contemplata, in quanto senza significato, diventa
+l'indicazione della presenza o meno del \textit{mandatory
+  locking}.\footnote{un lettore attento potrebbe ricordare quanto detto in
+  \secref{sec:file_chmod} e cioè che il bit \acr{sgid} viene cancellato (come
+  misura di sicurezza) quando di scrive su un file, questo non vale quando
+  esso viene utilizzato per attivare il \textit{mandatory locking}.}
+
+L'uso del \textit{mandatory locking} presenta vari aspetti delicati, dato che
+neanche root può passare sopra ad un lock; pertanto un processo che blocchi un
+file cruciale può renderlo completamente inaccessibile, rendendo completamente
+inutilizzabile il sistema\footnote{il problema si potrebbe risolvere
+  rimuovendo il bit \acr{sgid}, ma non è detto che sia così facile fare questa
+  operazione con un sistema bloccato.} inoltre con il \textit{mandatory
+  locking} si può bloccare completamente un server NFS richiedendo una lettura
+su un file su cui è attivo un lock. Per questo motivo l'abilitazione del
+mandatory locking è di norma disabilitata, e deve essere attivata filesystem
+per filesystem in fase di montaggio (specificando l'apposita opzione di
+\func{mount} riportata in \tabref{tab:sys_mount_flags}, o con l'opzione
+\cmd{mand} per il comando).
+
+Si tenga presente inoltre che il \textit{mandatory locking} funziona solo
+sull'interfaccia POSIX di \func{fcntl}. Questo ha due conseguenze: che non si
+ha nessun effetto sui lock richiesti con l'interfaccia di \func{flock}, e che
+la granularità del lock è quella del singolo byte, come per \func{fcntl}.
+
+La sintassi di acquisizione dei lock è esattamente la stessa vista in
+precedenza per \func{fcntl} e \func{lockf}, la differenza è che in caso di
+mandatory lock attivato non è più necessario controllare la disponibilità di
+accesso al file, ma si potranno usare direttamente le ordinarie funzioni di
+lettura e scrittura e sarà compito del kernel gestire direttamente il file
+locking.
+
+Questo significa che in caso di read lock la lettura dal file potrà avvenire
+normalmente con \func{read}, mentre una \func{write} si bloccherà fino al
+rilascio del lock, a meno di non aver aperto il file con \const{O\_NONBLOCK},
+nel qual caso essa ritornerà immediatamente con un errore di \errcode{EAGAIN}.
+
+Se invece si è acquisito un write lock tutti i tentativi di leggere o scrivere
+sulla regione del file bloccata fermeranno il processo fino al rilascio del
+lock, a meno che il file non sia stato aperto con \const{O\_NONBLOCK}, nel
+qual caso di nuovo si otterrà un ritorno immediato con l'errore di
+\errcode{EAGAIN}.
+
+Infine occorre ricordare che le funzioni di lettura e scrittura non sono le
+sole ad operare sui contenuti di un file, e che sia \func{creat} che
+\func{open} (quando chiamata con \const{O\_TRUNC}) effettuano dei cambiamenti,
+così come \func{truncate}, riducendone le dimensioni (a zero nei primi due
+casi, a quanto specificato nel secondo). Queste operazioni sono assimilate a
+degli accessi in scrittura e pertanto non potranno essere eseguite (fallendo
+con un errore di \errcode{EAGAIN}) su un file su cui sia presente un qualunque
+lock (le prime due sempre, la terza solo nel caso che la riduzione delle
+dimensioni del file vada a sovrapporsi ad una regione bloccata).
+
+L'ultimo aspetto della interazione del \textit{mandatory locking} con le
+funzioni di accesso ai file è quello relativo ai file mappati in memoria (che
+abbiamo trattato in \secref{sec:file_memory_map}); anche in tal caso infatti,
+quando si esegue la mappatura con l'opzione \const{MAP\_SHARED}, si ha un
+accesso al contenuto del file. Lo standard SVID prevede che sia impossibile
+eseguire il memory mapping di un file su cui sono presenti dei
+lock\footnote{alcuni sistemi, come HP-UX, sono ancora più restrittivi e lo
+  impediscono anche in caso di \textit{advisory locking}, anche se questo
+  comportamento non ha molto senso, dato che comunque qualunque accesso
+  diretto al file è consentito.} in Linux è stata però fatta la scelta
+implementativa\footnote{per i dettagli si possono leggere le note relative
+  all'implementazione, mantenute insieme ai sorgenti del kernel nel file
+  \file{Documentation/mandatory.txt}.}  di seguire questo comportamento
+soltanto quando si chiama \func{mmap} con l'opzione \const{MAP\_SHARED} (nel
+qual caso la funzione fallisce con il solito \errcode{EAGAIN}) che comporta la
+possibilità di modificare il file.
+\index{file!locking|)}