Correzioni per l'introduzione
[gapil.git] / elemtcp.tex
index 111b0f2b1ccd921039faea854401365e804ce404..ba1760aea3ca9009c2ed08ff282d43f5c7cee225 100644 (file)
 \label{cha:elem_TCP_sock}
 
 In questo capitolo iniziamo ad approfondire la conoscenza dei socket TCP,
-tratteremo qui dunque il funzionamento delle varie funzioni che si sono usate
-nei due esempi elementari forniti in precedenza (vedi
-\secref{sec:net_cli_sample} e \secref{sec:net_serv_sample}), previa una
-descrizione delle principali caratteristiche del funzionamento di una
-connessione TCP.
+tratteremo qui dunque le varie funzioni che si sono usate nei due esempi
+elementari forniti nel capitolo precedente (vedi \secref{sec:net_cli_sample} e
+\secref{sec:net_serv_sample}), previa una descrizione delle principali
+caratteristiche del funzionamento di una connessione TCP.
 
 
 \section{Il funzionamento di una connessione TCP}
 \label{sec:TCPel_connession}
 
 Prima di entrare nei dettagli delle funzioni usate nelle applicazioni che
-utilizzano i socket TCP, è fondamentale spiegare alcune basi del funzionamento
-del TCP; la conoscenza del funzionamento del protocollo è infatti essenziale
-per capire il modello di programmazione ed il funzionamento delle API.
-
-In particolare ci concentreremo sulle modalità con le quali il protocollo dà
-inizio e conclude una connessione; faremo inoltre anche un breve accenno al
-significato di alcuni dei vari stati che il protocollo assume durante la vita
-di una connessione, che possono essere osservati per ciascun socket attivo con
-l'uso del programma \cmd{netstat}.
+utilizzano i socket TCP, è fondamentale spiegare alcune delle basi del
+funzionamento del protocollo poiché questa conoscenza è essenziale per
+comprendere il comportamento di dette funzioni per questi socket, ed il
+relativo modello di programmazione.
+
+Il protocollo TCP serve a creare degli \textit{stream socket}, cioè un canale
+di comunicazione che stabilisce una connessione fra due stazioni, in modo che
+queste possano scambiarsi i dati. In questo capitolo ci concentreremo sulle
+modalità con le quali il protocollo dà inizio e conclude una connessione e
+faremo inoltre un breve accenno al significato di alcuni dei vari stati che
+questa viene ad assumere durante la sua vita.
 
 \subsection{La creazione della connessione: il \textit{three way handshake}}
 \label{sec:TCPel_conn_cre}
@@ -55,7 +56,7 @@ creazione di una connessione 
   \textsl{apertura attiva}, dall'inglese \textit{active open}. La chiamata di
   \func{connect} blocca il processo e causa l'invio da parte del client di un
   segmento SYN,\footnote{Si ricordi che il segmento è l'unità elementare di
-    dati trasmessa dal protocollo TCP al livello superiore; tutti i segmenti
+    dati trasmessa dal protocollo TCP al livello successivo; tutti i segmenti
     hanno un header che contiene le informazioni che servono allo
     \textit{stack TCP} (così viene di solito chiamata la parte del kernel che
     implementa il protocollo) per realizzare la comunicazione, fra questi dati
@@ -141,7 +142,7 @@ regolare la connessione. Normalmente vengono usate le seguenti opzioni:
   indicare un massimo di 65535 byte (anche se Linux usa come massimo 32767 per
   evitare problemi con alcuni stack bacati che usano l'aritmetica con segno
   per implementare lo stack TCP); ma alcuni tipi di connessione come quelle ad
-  alta velocità (sopra i 45Mbits/sec) e quelle che hanno grandi ritardi nel
+  alta velocità (sopra i 45Mbit/sec) e quelle che hanno grandi ritardi nel
   cammino dei pacchetti (come i satelliti) richiedono una finestra più grande
   per poter ottenere il massimo dalla trasmissione, per questo esiste questa
   opzione che indica un fattore di scala da applicare al valore della finestra
@@ -150,7 +151,7 @@ regolare la connessione. Normalmente vengono usate le seguenti opzioni:
     attiva prevede come negoziazione che l'altro capo della connessione
     riconosca esplicitamente l'opzione inserendola anche lui nel suo SYN di
     risposta dell'apertura della connessione.} per la connessione corrente
-  (espresso come numero di bit cui shiftare a sinistra il valore della
+  (espresso come numero di bit cui spostare a sinistra il valore della
   finestra annunciata inserito nel pacchetto).
 
 \item \textit{timestamp option}, è anche questa una nuova opzione necessaria
@@ -253,10 +254,9 @@ nel campo \textit{State}.
 Una descrizione completa del funzionamento del protocollo va al di là degli
 obiettivi di questo libro; un approfondimento sugli aspetti principali si
 trova in \capref{cha:tcp_protocol}, ma per una trattazione esauriente il
-miglior riferimento resta (FIXME citare lo Stevens); qui ci limiteremo a
-descrivere brevemente un semplice esempio di connessione e le transizioni che
-avvengono nei due casi appena citati (creazione e terminazione della
-connessione).
+miglior riferimento resta \cite{TCPIll1}; qui ci limiteremo a descrivere
+brevemente un semplice esempio di connessione e le transizioni che avvengono
+nei due casi appena citati (creazione e terminazione della connessione).
 
 In assenza di connessione lo stato del TCP è \texttt{CLOSED}; quando una
 applicazione esegue una apertura attiva il TCP emette un SYN e lo stato
@@ -325,10 +325,9 @@ dati rispondono meglio alle esigenze che devono essere affrontate.
 
 Come riportato da Stevens in \cite{UNP1} lo stato \texttt{TIME\_WAIT} è
 probabilmente uno degli aspetti meno compresi del protocollo TCP, è infatti
-comune trovare nei newsgroup domande su come sia possibile evitare che
-un'applicazione resti in questo stato lasciando attiva una connessione ormai
-conclusa; la risposta è che non deve essere fatto, ed il motivo cercheremo di
-spiegarlo adesso.
+comune trovare domande su come sia possibile evitare che un'applicazione resti
+in questo stato lasciando attiva una connessione ormai conclusa; la risposta è
+che non deve essere fatto, ed il motivo cercheremo di spiegarlo adesso.
 
 Come si è visto nell'esempio precedente (vedi \figref{fig:TPCel_conn_example})
 \texttt{TIME\_WAIT} è lo stato finale in cui il capo di una connessione che
@@ -340,12 +339,12 @@ La MSL 
 sulla rete; questo tempo è limitato perché ogni pacchetto IP può essere
 ritrasmesso dai router un numero massimo di volte (detto \textit{hop limit}).
 Il numero di ritrasmissioni consentito è indicato dal campo TTL dell'header di
-IP (per maggiori dettagli vedi \secref{sec:IP_xxx}), e viene decrementato
-ad ogni passaggio da un router; quando si annulla il pacchetto viene scartato.
-Siccome il numero è ad 8 bit il numero massimo di ``salti'' è di 255, pertanto
-anche se il TTL (da \textit{time to live}) non è propriamente un limite sul
-tempo di vita, si stima che un pacchetto IP non possa restare nella rete per
-più di MSL secondi.
+IP (per maggiori dettagli vedi \secref{sec:IP_xxx}), e viene decrementato ad
+ogni passaggio da un router; quando si annulla il pacchetto viene scartato.
+Siccome il numero è ad 8 bit il numero massimo di ``\textsl{salti}'' è di 255,
+pertanto anche se il TTL (da \textit{time to live}) non è propriamente un
+limite sul tempo di vita, si stima che un pacchetto IP non possa restare nella
+rete per più di MSL secondi.
 
 Ogni implementazione del TCP deve scegliere un valore per la MSL (l'RFC~1122
 raccomanda 2 minuti, Linux usa 30 secondi), questo comporta una durata dello
@@ -507,12 +506,15 @@ dal lato client come parte dell'autenticazione. Questo viene fatto tramite la
 funzione \func{rresvport} assegnando al socket una porta libera
 nell'intervallo fra 512 e 1023.
 
-Data una connessione TCP si suole chiamare \textit{socket pair} la
-combinazione dei quattro numeri che definiscono i due capi della connessione e
-cioè l'indirizzo IP locale e la porta TCP locale, e l'indirizzo IP remoto e la
-porta TCP remota; questa combinazione, che scriveremo usando una notazione del
-tipo (195.110.112.152:22, 192.84.146.100:20100), identifica univocamente una
-connessione su internet. Questo concetto viene di solito esteso anche a UDP,
+Data una connessione TCP si suole chiamare \textit{socket pair}\footnote{da
+  non confondere con la coppia di socket della omonima funzione
+  \func{socketpair} che fanno riferimento ad una coppia di socket sulla stessa
+  macchina, non ai capi di una connessione TCP.} la combinazione dei quattro
+numeri che definiscono i due capi della connessione e cioè l'indirizzo IP
+locale e la porta TCP locale, e l'indirizzo IP remoto e la porta TCP remota;
+questa combinazione, che scriveremo usando una notazione del tipo
+(195.110.112.152:22, 192.84.146.100:20100), identifica univocamente una
+connessione su internet.  Questo concetto viene di solito esteso anche a UDP,
 benché in questo caso non abbia senso parlare di connessione. L'utilizzo del
 programma \cmd{netstat} permette di visualizzare queste informazioni nei campi
 \textit{Local Address} e \textit{Foreing Address}.
@@ -642,7 +644,7 @@ Useremo questo schema anche per l'esempio di reimplementazione del servizio
 \subsection{La funzione \func{bind}}
 \label{sec:TCPel_func_bind}
 
-La funzione \func{bind} assegna un indirizzo locale ad un socket. È usata
+La funzione \funcd{bind} assegna un indirizzo locale ad un socket. È usata
 cioè per specificare la prima parte dalla socket pair. Viene usata sul lato
 server per specificare la porta (e gli eventuali indirizzi locali) su cui poi
 ci si porrà in ascolto. Il prototipo della funzione è il seguente:
@@ -658,7 +660,7 @@ ci si porr
   \item[\errcode{EBADF}] il file descriptor non è valido.
   \item[\errcode{EINVAL}] il socket ha già un indirizzo assegnato.
   \item[\errcode{ENOTSOCK}] il file descriptor non è associato ad un socket.
-  \item[\errcode{EACCESS}] si è cercato di usare una porta riservata senza
+  \item[\errcode{EACCES}] si è cercato di usare una porta riservata senza
     sufficienti privilegi.
   \end{errlist}}
 \end{prototype}
@@ -699,10 +701,7 @@ Per specificare un indirizzo generico con IPv4 si usa il valore
 \const{INADDR\_ANY}, il cui valore, come visto anche negli esempi precedenti
 è pari a zero, nell'esempio \figref{fig:net_serv_code} si è usata
 un'assegnazione immediata del tipo:
-
-\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-serv_add.sin_addr.s_addr = htonl(INADDR_ANY);   /* connect from anywhere */
-\end{lstlisting}
+\includecodesnip{listati/serv_addr_sin_addr.c}
 
 Si noti che si è usato \func{htonl} per assegnare il valore
 \const{INADDR\_ANY}, benché essendo questo pari a zero il riordinamento sia
@@ -737,19 +736,20 @@ con una struttura, perch
 costante come operando a destra in una assegnazione.
 
 Per questo motivo nell'header \file{netinet/in.h} è definita una variabile
-\type{in6addr\_any} (dichiarata come \ctyp{extern}, ed inizializzata dal
+\const{in6addr\_any} (dichiarata come \direct{extern}, ed inizializzata dal
 sistema al valore \const{IN6ADRR\_ANY\_INIT}) che permette di effettuare una
 assegnazione del tipo:
+\includecodesnip{listati/serv_addr_sin6_addr.c}
+in maniera analoga si può utilizzare la variabile \const{in6addr\_loopback}
+per indicare l'indirizzo di \textit{loopback}, che a sua volta viene
+inizializzata staticamente a \const{IN6ADRR\_LOOPBACK\_INIT}.
 
-\begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
-serv_add.sin6_addr = in6addr_any;   /* connect from anywhere */
-\end{lstlisting}
 
 
 \subsection{La funzione \func{connect}}
 \label{sec:TCPel_func_connect}
 
-La funzione \func{connect} è usata da un client TCP per stabilire la
+La funzione \funcd{connect} è usata da un client TCP per stabilire la
 connessione con un server TCP, il prototipo della funzione è il seguente:
 \begin{prototype}{sys/socket.h}
 {int connect(int sockfd, const struct sockaddr *servaddr, socklen\_t addrlen)}
@@ -773,9 +773,9 @@ connessione con un server TCP, il prototipo della funzione 
   \item[\errcode{EAGAIN}] non ci sono più porte locali libere. 
   \item[\errcode{EAFNOSUPPORT}] l'indirizzo non ha una famiglia di indirizzi
     corretta nel relativo campo.
-  \item[\errcode{EACCESS, EPERM}] si è tentato di eseguire una connessione ad
-    un indirizzo broadcast senza che il socket fosse stato abilitato per il
-    broadcast.
+  \item[\errcode{EACCES}, \errcode{EPERM}] si è tentato di eseguire una
+    connessione ad un indirizzo broadcast senza che il socket fosse stato
+    abilitato per il broadcast.
   \end{errlist}
   altri errori possibili sono: \errval{EFAULT}, \errval{EBADF},
   \errval{ENOTSOCK}, \errval{EISCONN} e \errval{EADDRINUSE}.}
@@ -786,7 +786,6 @@ Il primo argomento 
 l'indirizzo e la dimensione della struttura che contiene l'indirizzo del
 socket, già descritta in \secref{sec:sock_sockaddr}.
 
-
 La struttura dell'indirizzo deve essere inizializzata con l'indirizzo IP e il
 numero di porta del server a cui ci si vuole connettere, come mostrato
 nell'esempio \secref{sec:net_cli_sample} usando le funzioni illustrate in
@@ -852,7 +851,7 @@ necessario effettuare una \func{bind}.
 \subsection{La funzione \func{listen}}
 \label{sec:TCPel_func_listen}
 
-La funzione \func{listen} è usata per usare un socket in modalità passiva,
+La funzione \funcd{listen} è usata per usare un socket in modalità passiva,
 cioè, come dice il nome, per metterlo in ascolto di eventuali connessioni; in
 sostanza l'effetto della funzione è di portare il socket dallo stato
 \texttt{CLOSED} a quello \texttt{LISTEN}. In genere si chiama la funzione in
@@ -860,28 +859,29 @@ un server dopo le chiamate a \func{socket} e \func{bind} e prima della
 chiamata ad \func{accept}. Il prototipo della funzione come definito dalla
 pagina di manuale è:
 \begin{prototype}{sys/socket.h}{int listen(int sockfd, int backlog)}
-  La funzione pone il socket specificato da \var{sockfd} in modalità
-  passiva e predispone una coda per le connessioni in arrivo di lunghezza pari
-  a \var{backlog}. La funzione si può applicare solo a socket di tipo
-  \const{SOCK\_STREAM} o \const{SOCK\_SEQPACKET}.
+  Pone un socket in attesa di una connessione.
   
   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
     errore. I codici di errore restituiti in \var{errno} sono i seguenti:
   \begin{errlist}
-  \item[\errcode{EBADF}] l'argomento \var{sockfd} non è un file descriptor
+  \item[\errcode{EBADF}] l'argomento \param{sockfd} non è un file descriptor
     valido.
-  \item[\errcode{ENOTSOCK}] l'argomento \var{sockfd} non è un socket.
+  \item[\errcode{ENOTSOCK}] l'argomento \param{sockfd} non è un socket.
   \item[\errcode{EOPNOTSUPP}] il socket è di un tipo che non supporta questa
     operazione.
   \end{errlist}}
 \end{prototype}
 
+La funzione pone il socket specificato da \param{sockfd} in modalità passiva e
+predispone una coda per le connessioni in arrivo di lunghezza pari a
+\param{backlog}. La funzione si può applicare solo a socket di tipo
+\const{SOCK\_STREAM} o \const{SOCK\_SEQPACKET}.
 
-Il parametro \var{backlog} indica il numero massimo di connessioni pendenti
-accettate; se esso viene ecceduto il client riceverà una errore di tipo
-\errcode{ECONNREFUSED}, o se il protocollo, come nel caso del TCP, supporta la
-ritrasmissione, la richiesta sarà ignorata in modo che la connessione possa
-essere ritentata.
+L'argomento \param{backlog} indica il numero massimo di connessioni pendenti
+accettate; se esso viene ecceduto il client al momento della richiesta della
+connessione riceverà un errore di tipo \errcode{ECONNREFUSED}, o se il
+protocollo, come accade nel caso del TCP, supporta la ritrasmissione, la
+richiesta sarà ignorata in modo che la connessione possa venire ritentata.
 
 Per capire meglio il significato di tutto ciò occorre approfondire la modalità
 con cui il kernel tratta le connessioni in arrivo. Per ogni socket in ascolto
@@ -908,7 +908,7 @@ processo chiama la funzione \func{accept} (vedi
 complete è passata al programma, o, se la coda è vuota, il processo viene
 posto in attesa e risvegliato all'arrivo della prima connessione completa.
 
-Storicamente il valore del parametro \var{backlog} era corrispondente al
+Storicamente il valore del parametro \param{backlog} era corrispondente al
 massimo valore della somma del numero di entrate possibili per ciascuna di
 dette code. Stevens riporta che BSD ha sempre applicato un fattore di 1.5 al
 valore, e provvede una tabella con i risultati ottenuti con vari kernel,
@@ -922,7 +922,7 @@ indirizzati verso una porta forgiati con indirizzo IP fasullo\footnote{con la
 perduti e la coda delle connessioni incomplete viene saturata, impedendo di
 fatto ulteriori connessioni.
 
-Per ovviare a questo il significato del \var{backlog} è stato cambiato a
+Per ovviare a questo il significato del \param{backlog} è stato cambiato a
 indicare la lunghezza della coda delle connessioni complete. La lunghezza
 della coda delle connessioni incomplete può essere ancora controllata usando
 la \func{sysctl} o scrivendola direttamente in
@@ -930,7 +930,7 @@ la \func{sysctl} o scrivendola direttamente in
 protezione dei syncookies però (con l'opzione da compilare nel kernel e da
 attivare usando \file{/proc/sys/net/ipv4/tcp\_syncookies}) questo valore
 viene ignorato e non esiste più un valore massimo.  In ogni caso in Linux il
-valore di \var{backlog} viene troncato ad un massimo di \const{SOMAXCONN}
+valore di \param{backlog} viene troncato ad un massimo di \const{SOMAXCONN}
 se è superiore a detta costante (che di default vale 128).
 
 La scelta storica per il valore di questo parametro è di 5, e alcuni vecchi
@@ -965,37 +965,33 @@ trasparente dal protocollo TCP.
 \subsection{La funzione \func{accept}}
 \label{sec:TCPel_func_accept}
 
-La funzione \func{accept} è chiamata da un server TCP per gestire la
+La funzione \funcd{accept} è chiamata da un server TCP per gestire la
 connessione una volta che sia stato completato il three way handshake, la
 funzione restituisce un nuovo socket descriptor su cui si potrà operare per
 effettuare la comunicazione. Se non ci sono connessioni completate il processo
 viene messo in attesa. Il prototipo della funzione è il seguente:
 \begin{prototype}{sys/socket.h}
 {int accept(int sockfd, struct sockaddr *addr, socklen\_t *addrlen)} 
-  Estrae la prima connessione relativa al socket \var{sockfd}
-  in attesa sulla coda delle connessioni complete, che associa ad nuovo socket
-  con le stesse caratteristiche di \var{sockfd} (restituito dalla funzione
-  stessa).  Il socket originale non viene toccato. Nella struttura
-  \var{addr} e nella variabile \var{addrlen} vengono restituiti
-  indirizzo e relativa lunghezza del client che si è connesso.
  
+  Accetta una connessione sul socket specificato.
+
   \bodydesc{La funzione restituisce un numero di socket descriptor positivo in
     caso di successo e -1 in caso di errore, nel qual caso la variabile
     \var{errno} viene impostata ai seguenti valori:
 
   \begin{errlist}
-  \item[\errcode{EBADF}] l'argomento \var{sockfd} non è un file descriptor
+  \item[\errcode{EBADF}] l'argomento \param{sockfd} non è un file descriptor
     valido.
-  \item[\errcode{ENOTSOCK}] l'argomento \var{sockfd} non è un socket.
+  \item[\errcode{ENOTSOCK}] l'argomento \param{sockfd} non è un socket.
   \item[\errcode{EOPNOTSUPP}] il socket è di un tipo che non supporta questa
     operazione.
   \item[\errcode{EAGAIN} o \errcode{EWOULDBLOCK}] il socket è stato impostato
     come non bloccante (vedi \secref{sec:file_noblocking}), e non ci sono
     connessioni in attesa di essere accettate.
   \item[\errcode{EPERM}] Le regole del firewall non consentono la connessione.
-  \item[\errcode{ENOBUFS, ENOMEM}] questo spesso significa che l'allocazione
-    della memoria è limitata dai limiti sui buffer dei socket, non dalla
-    memoria di sistema.
+  \item[\errcode{ENOBUFS}, \errcode{ENOMEM}] questo spesso significa che
+    l'allocazione della memoria è limitata dai limiti sui buffer dei socket,
+    non dalla memoria di sistema.
   \end{errlist}
   Inoltre possono essere restituiti gli errori di rete relativi al nuovo
   socket come: \errval{EMFILE}, \errval{EINVAL}, \errval{ENOSR},
@@ -1004,6 +1000,13 @@ viene messo in attesa. Il prototipo della funzione 
   \errval{ERESTARTSYS}.}
 \end{prototype}
 
+Estrae la prima connessione relativa al socket \param{sockfd} in attesa sulla
+coda delle connessioni complete, che associa ad nuovo socket con le stesse
+caratteristiche di \param{sockfd} (restituito dalla funzione stessa).  Il
+socket originale non viene toccato. Nella struttura \param{addr} e nella
+variabile \param{addrlen} vengono restituiti indirizzo e relativa lunghezza del
+client che si è connesso.
+
 La funzione può essere usata solo con socket che supportino la connessione
 (cioè di tipo \const{SOCK\_STREAM}, \const{SOCK\_SEQPACKET} o
 \const{SOCK\_RDM}). Per alcuni protocolli che richiedono una conferma
@@ -1021,23 +1024,23 @@ socket flag come \const{O\_NONBLOCK}, che devono essere rispecificati volta
 volta, questo è un comportamento diverso rispetto a quanto accade con BSD e
 deve essere tenuto in conto per scrivere programmi portabili.
 
-I due argomenti \var{cliaddr} e \var{addrlen} (si noti che quest'ultimo
-è passato per indirizzo per avere indietro il valore) sono usati per ottenere
+I due argomenti \param{cliaddr} e \param{addrlen} (si noti che quest'ultimo è
+passato per indirizzo per avere indietro il valore) sono usati per ottenere
 l'indirizzo del client da cui proviene la connessione. Prima della chiamata
-\var{addrlen} deve essere inizializzato alle dimensioni della struttura il
-cui indirizzo è passato come argomento in \var{cliaddr}, al ritorno della
-funzione \var{addrlen} conterrà il numero di byte scritti dentro
-\var{cliaddr}. Se questa informazione non interessa basterà inizializzare a
+\param{addrlen} deve essere inizializzato alle dimensioni della struttura il
+cui indirizzo è passato come argomento in \param{cliaddr}, al ritorno della
+funzione \param{addrlen} conterrà il numero di byte scritti dentro
+\param{cliaddr}. Se questa informazione non interessa basterà inizializzare a
 \val{NULL} detti puntatori.
 
 Se la funzione ha successo restituisce il descrittore di un nuovo socket
 creato dal kernel (detto \textit{connected socket}) a cui viene associata la
 prima connessione completa (estratta dalla relativa coda, vedi
 \secref{sec:TCPel_func_listen}) che il client TCP ha effettuato verso il
-socket \var{sockfd}. Quest'ultimo (detto \textit{listening socket}) è quello
+socket \param{sockfd}. Quest'ultimo (detto \textit{listening socket}) è quello
 creato all'inizio e messo in ascolto con \func{listen}, e non viene toccato
 dalla funzione.  Se non ci sono connessioni pendenti da accettare la funzione
-mette in attesa il processo\footnote{a meno che non si sia imopstato il socket
+mette in attesa il processo\footnote{a meno che non si sia impostato il socket
   per essere non bloccante (vedi \secref{sec:file_noblocking}), nel qual caso
   ritorna con l'errore \errcode{EAGAIN}.  Torneremo su questa modalità di
   operazione in \secref{sec:xxx_sock_noblock}.}  fintanto che non ne arriva
@@ -1114,61 +1117,11 @@ rispetto al precedente esempio. Al solito il sorgente completo del server
 \file{ElemDaytimeTCPCuncServ.c} è allegato nella directory dei sorgenti.
 
 \begin{figure}[!htb]
-  \footnotesize
-  \begin{lstlisting}{}
-#include <sys/types.h>   /* predefined types */
-#include <unistd.h>      /* include unix standard library */
-#include <arpa/inet.h>   /* IP addresses conversion utiliites */
-#include <sys/socket.h>  /* socket library */
-#include <stdio.h>       /* include standard I/O library */
-#include <time.h>
-
-int main(int argc, char *argv[])
-{
-    int list_fd, conn_fd;
-    int i;
-    struct sockaddr_in serv_add, client;
-    char buffer[MAXLINE];
-    socklen_t len;
-    time_t timeval;
-    pid_t pid;
-    int logging=0;
-     ...
-    /* write daytime to client */
-    while (1) {
-        if ( (conn_fd = accept(list_fd, (struct sockaddr *)&client, &len)) 
-             <0 ) {
-            perror("accept error");
-            exit(-1);
-        }
-        /* fork to handle connection */
-        if ( (pid = fork()) < 0 ){
-            perror("fork error");
-            exit(-1);
-        }
-        if (pid == 0) {                 /* child */
-            close(list_fd);
-            timeval = time(NULL);
-            snprintf(buffer, sizeof(buffer), "%.24s\r\n", ctime(&timeval));
-            if ( (write(conn_fd, buffer, strlen(buffer))) < 0 ) {
-                perror("write error");
-                exit(-1);
-            }
-            if (logging) {
-                inet_ntop(AF_INET, &client.sin_addr, buffer, sizeof(buffer));
-                printf("Request from host %s, port %d\n", buffer,
-                       ntohs(client.sin_port));
-            }
-            close(conn_fd);
-            exit(0);
-        } else {                        /* parent */
-            close(conn_fd);
-        }
-    }
-    /* normal exit, never reached */
-    exit(0);
-}
-  \end{lstlisting}
+  \footnotesize \centering
+  \begin{minipage}[c]{15cm}
+    \includecodesample{listati/ElemDaytimeTCPCuncServ.c}
+  \end{minipage} 
+  \normalsize
   \caption{Esempio di codice di un server concorrente elementare per il 
     servizio daytime.}
   \label{fig:TCPel_serv_code}
@@ -1217,10 +1170,9 @@ chiusa.
 \subsection{Le funzioni \func{getsockname} e \func{getpeername}}
 \label{sec:TCPel_get_names}
 
-Queste due funzioni vengono usate per ottenere la socket pair associata ad un
-certo socket; la prima restituisce l'indirizzo locale, la seconda quello
-remoto. 
-
+Queste due funzioni vengono usate per ottenere i dati relativi alla socket
+pair associata ad un certo socket; la prima è \funcd{getsockname} e
+restituisce l'indirizzo locale; il suo prototipo è:
 \begin{prototype}{sys/socket.h}
   {int getsockname(int sockfd, struct sockaddr * name, socklen\_t * namelen)}
   Legge l'indirizzo locale del socket \param{sockfd} nella struttura
@@ -1229,28 +1181,30 @@ remoto.
 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
   errore. I codici di errore restituiti in \var{errno} sono i seguenti:
   \begin{errlist}
-  \item[\errcode{EBADF}] l'argomento \var{sockfd} non è un file descriptor
+  \item[\errcode{EBADF}] l'argomento \param{sockfd} non è un file descriptor
     valido.
-  \item[\errcode{ENOTSOCK}] l'argomento \var{sockfd} non è un socket.
+  \item[\errcode{ENOTSOCK}] l'argomento \param{sockfd} non è un socket.
   \item[\errcode{ENOBUFS}] non ci sono risorse sufficienti nel sistema per
     eseguire l'operazione.
-  \item[\errcode{EFAULT}] l'argomento \var{name} punta al di fuori dello
+  \item[\errcode{EFAULT}] l'argomento \param{name} punta al di fuori dello
     spazio di indirizzi del processo.
   \end{errlist}}
 \end{prototype}
 
-La funzione \func{getsockname} si usa tutte le volte che si vuole avere
-l'indirizzo locale di un socket; ad esempio può essere usata da un client (che
-usualmente non chiama \func{bind}) per ottenere numero IP e porta locale
-associati al socket restituito da una \func{connect}, o da un server che ha
-chiamato \func{bind} su un socket usando 0 come porta locale per ottenere il
-numero di porta effimera assegnato dal kernel. 
+La funzione si usa tutte le volte che si vuole avere l'indirizzo locale di un
+socket; ad esempio può essere usata da un client (che usualmente non chiama
+\func{bind}) per ottenere numero IP e porta locale associati al socket
+restituito da una \func{connect}, o da un server che ha chiamato \func{bind}
+su un socket usando 0 come porta locale per ottenere il numero di porta
+effimera assegnato dal kernel.
 
 Inoltre quando un server esegue una \func{bind} su un indirizzo generico, se
 chiamata dopo il completamento di una connessione sul socket restituito da
 \func{accept}, restituisce l'indirizzo locale che il kernel ha assegnato a
 quella connessione.
 
+Tutte le volte che si vuole avere l'indirizzo remoto di un socket si usa la
+funzione \funcd{getpeername}, il cui prototipo è:
 \begin{prototype}{sys/socket.h}
   {int getpeername(int sockfd, struct sockaddr * name, socklen\_t * namelen)}
   Legge l'indirizzo remoto del socket \param{sockfd} nella struttura
@@ -1259,21 +1213,17 @@ quella connessione.
   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
     errore. I codici di errore restituiti in \var{errno} sono i seguenti:
   \begin{errlist}
-  \item[\errcode{EBADF}] l'argomento \var{sockfd} non è un file descriptor
+  \item[\errcode{EBADF}] l'argomento \param{sockfd} non è un file descriptor
     valido.
-  \item[\errcode{ENOTSOCK}] l'argomento \var{sockfd} non è un socket.
+  \item[\errcode{ENOTSOCK}] l'argomento \param{sockfd} non è un socket.
   \item[\errcode{ENOTCONN}] il socket non è connesso.
   \item[\errcode{ENOBUFS}] non ci sono risorse sufficienti nel sistema per
     eseguire l'operazione.
-  \item[\errcode{EFAULT}] l'argomento \var{name} punta al di fuori dello
+  \item[\errcode{EFAULT}] l'argomento \param{name} punta al di fuori dello
     spazio di indirizzi del processo.
   \end{errlist}}
 \end{prototype}
 
-
-La funzione \func{getpeername} si usa tutte le volte che si vuole avere
-l'indirizzo remoto di un socket. 
-
 Ci si può chiedere a cosa serva questa funzione dato che dal lato client
 l'indirizzo remoto è sempre noto quando si esegue la \func{connect} mentre
 dal lato server si possono usare, come si è fatto nell'esempio precedente, i