Aggiornamento note di copyright
[gapil.git] / system.tex
1 %% system.tex
2 %%
3 %% Copyright (C) 2000-2009 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione del sistema, del tempo e degli errori}
13 \label{cha:system}
14
15 In questo capitolo tratteremo varie interfacce che attengono agli aspetti più
16 generali del sistema, come quelle per la gestione dei parametri e della
17 configurazione dello stesso, quelle per la lettura dei limiti e delle
18 caratteristiche, quelle per il controllo dell'uso delle risorse dei processi,
19 quelle per la gestione ed il controllo dei filesystem, degli utenti, dei tempi
20 e degli errori.
21
22
23
24 \section{Capacità e caratteristiche del sistema}
25 \label{sec:sys_characteristics}
26
27 In questa sezione tratteremo le varie modalità con cui un programma può
28 ottenere informazioni riguardo alle capacità del sistema. Ogni sistema
29 unix-like infatti è contraddistinto da un gran numero di limiti e costanti che
30 lo caratterizzano, e che possono dipendere da fattori molteplici, come
31 l'architettura hardware, l'implementazione del kernel e delle librerie, le
32 opzioni di configurazione.
33
34 La definizione di queste caratteristiche ed il tentativo di provvedere dei
35 meccanismi generali che i programmi possono usare per ricavarle è uno degli
36 aspetti più complessi e controversi con cui le diverse standardizzazioni si
37 sono dovute confrontare, spesso con risultati spesso tutt'altro che chiari.
38 Daremo comunque una descrizione dei principali metodi previsti dai vari
39 standard per ricavare sia le caratteristiche specifiche del sistema, che
40 quelle della gestione dei file.
41
42
43 \subsection{Limiti e parametri di sistema}
44 \label{sec:sys_limits}
45
46 Quando si devono determinare le caratteristiche generali del sistema ci si
47 trova di fronte a diverse possibilità; alcune di queste infatti possono
48 dipendere dall'architettura dell'hardware (come le dimensioni dei tipi
49 interi), o dal sistema operativo (come la presenza o meno del gruppo degli
50 identificatori \textit{saved}), altre invece possono dipendere dalle opzioni
51 con cui si è costruito il sistema (ad esempio da come si è compilato il
52 kernel), o dalla configurazione del medesimo; per questo motivo in generale
53 sono necessari due tipi diversi di funzionalità:
54 \begin{itemize*}
55 \item la possibilità di determinare limiti ed opzioni al momento della
56   compilazione.
57 \item la possibilità di determinare limiti ed opzioni durante l'esecuzione.
58 \end{itemize*}
59
60 La prima funzionalità si può ottenere includendo gli opportuni header file che
61 contengono le costanti necessarie definite come macro di preprocessore, per la
62 seconda invece sono ovviamente necessarie delle funzioni. La situazione è
63 complicata dal fatto che ci sono molti casi in cui alcuni di questi limiti
64 sono fissi in un'implementazione mentre possono variare in un altra. Tutto
65 questo crea una ambiguità che non è sempre possibile risolvere in maniera
66 chiara; in generale quello che succede è che quando i limiti del sistema sono
67 fissi essi vengono definiti come macro di preprocessore nel file
68 \file{limits.h}, se invece possono variare, il loro valore sarà ottenibile
69 tramite la funzione \func{sysconf} (che esamineremo in
70 sez.~\ref{sec:sys_sysconf}).
71
72 Lo standard ANSI C definisce dei limiti che sono tutti fissi, pertanto questo
73 saranno sempre disponibili al momento della compilazione. Un elenco, ripreso
74 da \file{limits.h}, è riportato in tab.~\ref{tab:sys_ansic_macro}. Come si può
75 vedere per la maggior parte questi limiti attengono alle dimensioni dei dati
76 interi, che sono in genere fissati dall'architettura hardware (le analoghe
77 informazioni per i dati in virgola mobile sono definite a parte, ed
78 accessibili includendo \file{float.h}). Lo standard prevede anche un'altra
79 costante, \const{FOPEN\_MAX}, che può non essere fissa e che pertanto non è
80 definita in \file{limits.h}; essa deve essere definita in \file{stdio.h} ed
81 avere un valore minimo di 8.
82
83 \begin{table}[htb]
84   \centering
85   \footnotesize
86   \begin{tabular}[c]{|l|r|l|}
87     \hline
88     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
89     \hline
90     \hline
91     \const{MB\_LEN\_MAX}&       16  & Massima dimensione di un 
92                                       carattere esteso.\\
93     \const{CHAR\_BIT} &          8  & Numero di bit di \ctyp{char}.\\
94     \const{UCHAR\_MAX}&        255  & Massimo di \ctyp{unsigned char}.\\
95     \const{SCHAR\_MIN}&       -128  & Minimo di \ctyp{signed char}.\\
96     \const{SCHAR\_MAX}&        127  & Massimo di \ctyp{signed char}.\\
97     \const{CHAR\_MIN} &\footnotemark& Minimo di \ctyp{char}.\\
98     \const{CHAR\_MAX} &\footnotemark& Massimo di \ctyp{char}.\\
99     \const{SHRT\_MIN} &     -32768  & Minimo di \ctyp{short}.\\
100     \const{SHRT\_MAX} &      32767  & Massimo di \ctyp{short}.\\
101     \const{USHRT\_MAX}&      65535  & Massimo di \ctyp{unsigned short}.\\
102     \const{INT\_MAX}  & 2147483647  & Minimo di \ctyp{int}.\\
103     \const{INT\_MIN}  &-2147483648  & Minimo di \ctyp{int}.\\
104     \const{UINT\_MAX} & 4294967295  & Massimo di \ctyp{unsigned int}.\\
105     \const{LONG\_MAX} & 2147483647  & Massimo di \ctyp{long}.\\
106     \const{LONG\_MIN} &-2147483648  & Minimo di \ctyp{long}.\\
107     \const{ULONG\_MAX}& 4294967295  & Massimo di \ctyp{unsigned long}.\\
108     \hline                
109   \end{tabular}
110   \caption{Costanti definite in \file{limits.h} in conformità allo standard
111     ANSI C.}
112   \label{tab:sys_ansic_macro}
113 \end{table}
114
115 \footnotetext[1]{il valore può essere 0 o \const{SCHAR\_MIN} a seconda che il
116   sistema usi caratteri con segno o meno.} 
117
118 \footnotetext[2]{il valore può essere \const{UCHAR\_MAX} o \const{SCHAR\_MAX}
119   a seconda che il sistema usi caratteri con segno o meno.}
120
121 A questi valori lo standard ISO C90 ne aggiunge altri tre, relativi al tipo
122 \ctyp{long long} introdotto con il nuovo standard, i relativi valori sono in
123 tab.~\ref{tab:sys_isoc90_macro}.
124
125 \begin{table}[htb]
126   \centering
127   \footnotesize
128   \begin{tabular}[c]{|l|r|l|}
129     \hline
130     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
131     \hline
132     \hline
133     \const{LLONG\_MAX}& 9223372036854775807& Massimo di \ctyp{long long}.\\
134     \const{LLONG\_MIN}&-9223372036854775808& Minimo di \ctyp{long long}.\\
135     \const{ULLONG\_MAX}&18446744073709551615&
136                                     Massimo di \ctyp{unsigned long long}.\\
137     \hline                
138   \end{tabular}
139   \caption{Macro definite in \file{limits.h} in conformità allo standard
140     ISO C90.}
141   \label{tab:sys_isoc90_macro}
142 \end{table}
143
144 Ovviamente le dimensioni dei vari tipi di dati sono solo una piccola parte
145 delle caratteristiche del sistema; mancano completamente tutte quelle che
146 dipendono dalla implementazione dello stesso. Queste, per i sistemi unix-like,
147 sono state definite in gran parte dallo standard POSIX.1, che tratta anche i
148 limiti relativi alle caratteristiche dei file che vedremo in
149 sez.~\ref{sec:sys_file_limits}.
150
151 Purtroppo la sezione dello standard che tratta questi argomenti è una delle
152 meno chiare\footnote{tanto che Stevens, in \cite{APUE}, la porta come esempio
153   di ``\textsl{standardese}''.}. Lo standard prevede che ci siano 13 macro che
154 descrivono le caratteristiche del sistema (7 per le caratteristiche generiche,
155 riportate in tab.~\ref{tab:sys_generic_macro}, e 6 per le caratteristiche dei
156 file, riportate in tab.~\ref{tab:sys_file_macro}).
157
158 \begin{table}[htb]
159   \centering
160   \footnotesize
161   \begin{tabular}[c]{|l|r|p{7cm}|}
162     \hline
163     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
164     \hline
165     \hline
166     \const{ARG\_MAX} &131072& Dimensione massima degli argomenti
167                               passati ad una funzione della famiglia
168                               \func{exec}.\\ 
169     \const{CHILD\_MAX} & 999& Numero massimo di processi contemporanei
170                               che un utente può eseguire.\\
171     \const{OPEN\_MAX}  & 256& Numero massimo di file che un processo
172                               può mantenere aperti in contemporanea.\\
173     \const{STREAM\_MAX}&   8& Massimo numero di stream aperti per
174                               processo in contemporanea.\\
175     \const{TZNAME\_MAX}&   6& Dimensione massima del nome di una
176                               \texttt{timezone} (vedi
177                               sez.~\ref{sec:sys_time_base})).\\  
178     \const{NGROUPS\_MAX}& 32& Numero di gruppi supplementari per
179                               processo (vedi sez.~\ref{sec:proc_access_id}).\\
180     \const{SSIZE\_MAX}&32767& Valore massimo del tipo \type{ssize\_t}.\\
181     \hline
182   \end{tabular}
183   \caption{Costanti per i limiti del sistema.}
184   \label{tab:sys_generic_macro}
185 \end{table}
186
187 Lo standard dice che queste macro devono essere definite in \file{limits.h}
188 quando i valori a cui fanno riferimento sono fissi, e altrimenti devono essere
189 lasciate indefinite, ed i loro valori dei limiti devono essere accessibili
190 solo attraverso \func{sysconf}.  In realtà queste vengono sempre definite ad
191 un valore generico. Si tenga presente poi che alcuni di questi limiti possono
192 assumere valori molto elevati (come \const{CHILD\_MAX}), e non è pertanto il
193 caso di utilizzarli per allocare staticamente della memoria.
194
195 A complicare la faccenda si aggiunge il fatto che POSIX.1 prevede una serie di
196 altre costanti (il cui nome inizia sempre con \code{\_POSIX\_}) che
197 definiscono i valori minimi le stesse caratteristiche devono avere, perché una
198 implementazione possa dichiararsi conforme allo standard; detti valori sono
199 riportati in tab.~\ref{tab:sys_posix1_general}.
200
201 \begin{table}[htb]
202   \centering
203   \footnotesize
204   \begin{tabular}[c]{|l|r|p{7cm}|}
205     \hline
206     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
207     \hline
208     \hline
209     \const{\_POSIX\_ARG\_MAX}    & 4096& Dimensione massima degli argomenti
210                                          passati ad una funzione della famiglia
211                                          \func{exec}.\\ 
212     \const{\_POSIX\_CHILD\_MAX}  &    6& Numero massimo di processi
213                                          contemporanei che un utente può 
214                                          eseguire.\\
215     \const{\_POSIX\_OPEN\_MAX}   &   16& Numero massimo di file che un processo
216                                          può mantenere aperti in 
217                                          contemporanea.\\
218     \const{\_POSIX\_STREAM\_MAX} &    8& Massimo numero di stream aperti per
219                                          processo in contemporanea.\\
220     \const{\_POSIX\_TZNAME\_MAX} &     & Dimensione massima del nome di una
221                                          \textit{timezone} (vedi
222                                          sez.~\ref{sec:sys_date}). \\ 
223     \const{\_POSIX\_NGROUPS\_MAX}&    0& Numero di gruppi supplementari per
224                                          processo (vedi 
225                                          sez.~\ref{sec:proc_access_id}).\\
226     \const{\_POSIX\_SSIZE\_MAX}  &32767& Valore massimo del tipo 
227                                          \type{ssize\_t}.\\
228     \const{\_POSIX\_AIO\_LISTIO\_MAX}&2& \\
229     \const{\_POSIX\_AIO\_MAX}    &    1& \\
230     \hline                
231   \end{tabular}
232   \caption{Macro dei valori minimi delle caratteristiche generali del sistema
233     per la conformità allo standard POSIX.1.}
234   \label{tab:sys_posix1_general}
235 \end{table}
236
237 In genere questi valori non servono a molto, la loro unica utilità è quella di
238 indicare un limite superiore che assicura la portabilità senza necessità di
239 ulteriori controlli. Tuttavia molti di essi sono ampiamente superati in tutti
240 i sistemi POSIX in uso oggigiorno. Per questo è sempre meglio utilizzare i
241 valori ottenuti da \func{sysconf}.
242
243 \begin{table}[htb]
244   \centering
245   \footnotesize
246   \begin{tabular}[c]{|l|p{8cm}|}
247     \hline
248     \textbf{Macro}&\textbf{Significato}\\
249     \hline
250     \hline
251     \macro{\_POSIX\_JOB\_CONTROL}& Il sistema supporta il 
252                                    \textit{job control} (vedi 
253                                    sez.~\ref{sec:sess_job_control}).\\
254     \macro{\_POSIX\_SAVED\_IDS}  & Il sistema supporta gli identificatori del 
255                                    gruppo \textit{saved} (vedi 
256                                    sez.~\ref{sec:proc_access_id})
257                                    per il controllo di accesso dei processi\\
258     \const{\_POSIX\_VERSION}     & Fornisce la versione dello standard POSIX.1
259                                    supportata nel formato YYYYMML (ad esempio 
260                                    199009L).\\
261     \hline
262   \end{tabular}
263   \caption{Alcune macro definite in \file{limits.h} in conformità allo standard
264     POSIX.1.}
265   \label{tab:sys_posix1_other}
266 \end{table}
267
268 Oltre ai precedenti valori (e a quelli relativi ai file elencati in
269 tab.~\ref{tab:sys_posix1_file}), che devono essere obbligatoriamente definiti,
270 lo standard POSIX.1 ne prevede parecchi altri.  La lista completa si trova
271 dall'header file \file{bits/posix1\_lim.h} (da non usare mai direttamente, è
272 incluso automaticamente all'interno di \file{limits.h}). Di questi vale la
273 pena menzionare alcune macro di uso comune, (riportate in
274 tab.~\ref{tab:sys_posix1_other}), che non indicano un valore specifico, ma
275 denotano la presenza di alcune funzionalità nel sistema (come il supporto del
276 \textit{job control} o degli identificatori del gruppo \textit{saved}).
277
278 Oltre allo standard POSIX.1, anche lo standard POSIX.2 definisce una serie di
279 altre costanti. Siccome queste sono principalmente attinenti a limiti relativi
280 alle applicazioni di sistema presenti (come quelli su alcuni parametri delle
281 espressioni regolari o del comando \cmd{bc}), non li tratteremo
282 esplicitamente, se ne trova una menzione completa nell'header file
283 \file{bits/posix2\_lim.h}, e alcuni di loro sono descritti nella pagina di
284 manuale di \func{sysconf} e nel manuale delle \acr{glibc}.
285
286
287 \subsection{La funzione \func{sysconf}}
288 \label{sec:sys_sysconf}
289
290 Come accennato in sez.~\ref{sec:sys_limits} quando uno dei limiti o delle
291 caratteristiche del sistema può variare, per non dover essere costretti a
292 ricompilare un programma tutte le volte che si cambiano le opzioni con cui è
293 compilato il kernel, o alcuni dei parametri modificabili a run time, è
294 necessario ottenerne il valore attraverso la funzione \funcd{sysconf}. Il
295 prototipo di questa funzione è:
296 \begin{prototype}{unistd.h}{long sysconf(int name)}
297   Restituisce il valore del parametro di sistema \param{name}.
298   
299   \bodydesc{La funzione restituisce indietro il valore del parametro
300     richiesto, o 1 se si tratta di un'opzione disponibile, 0 se l'opzione non
301     è disponibile e -1 in caso di errore (ma \var{errno} non viene impostata).}
302 \end{prototype}
303
304 La funzione prende come argomento un intero che specifica quale dei limiti si
305 vuole conoscere; uno specchietto contenente i principali valori disponibili in
306 Linux è riportato in tab.~\ref{tab:sys_sysconf_par}; l'elenco completo è
307 contenuto in \file{bits/confname.h}, ed una lista più esaustiva, con le
308 relative spiegazioni, si può trovare nel manuale delle \acr{glibc}.
309
310 \begin{table}[htb]
311   \centering
312   \footnotesize
313     \begin{tabular}[c]{|l|l|p{9cm}|}
314       \hline
315       \textbf{Parametro}&\textbf{Macro sostituita} &\textbf{Significato}\\
316       \hline
317       \hline
318       \texttt{\_SC\_ARG\_MAX}   & \const{ARG\_MAX}&
319                                   La dimensione massima degli argomenti passati
320                                   ad una funzione della famiglia \func{exec}.\\
321       \texttt{\_SC\_CHILD\_MAX} & \const{\_CHILD\_MAX}&
322                                   Il numero massimo di processi contemporanei
323                                   che un utente può eseguire.\\
324       \texttt{\_SC\_OPEN\_MAX}  & \const{\_OPEN\_MAX}&
325                                   Il numero massimo di file che un processo può
326                                   mantenere aperti in contemporanea.\\
327       \texttt{\_SC\_STREAM\_MAX}& \const{STREAM\_MAX}&
328                                   Il massimo numero di stream che un processo
329                                   può mantenere aperti in contemporanea. Questo
330                                   limite previsto anche dallo standard ANSI C,
331                                   che specifica la macro {FOPEN\_MAX}.\\
332       \texttt{\_SC\_TZNAME\_MAX}& \const{TZNAME\_MAX}&
333                                   La dimensione massima di un nome di una
334                                   \texttt{timezone} (vedi
335                                   sez.~\ref{sec:sys_date}).\\
336       \texttt{\_SC\_NGROUPS\_MAX}&\const{NGROUP\_MAX}&
337                                   Massimo numero di gruppi supplementari che
338                                   può avere un processo (vedi
339                                   sez.~\ref{sec:proc_access_id}).\\
340       \texttt{\_SC\_SSIZE\_MAX} & \const{SSIZE\_MAX}& 
341                                   Valore massimo del tipo di dato
342                                   \type{ssize\_t}.\\ 
343       \texttt{\_SC\_CLK\_TCK}   & \const{CLK\_TCK} &
344                                   Il numero di \itindex{clock~tick}
345                                   \textit{clock tick} al secondo, 
346                                   cioè l'unità di misura del
347                                   \itindex{process~time} \textit{process
348                                     time} (vedi
349                                   sez.~\ref{sec:sys_unix_time}).\\  
350       \texttt{\_SC\_JOB\_CONTROL}&\macro{\_POSIX\_JOB\_CONTROL}&
351                                   Indica se è supportato il \textit{job
352                                     control} (vedi
353                                   sez.~\ref{sec:sess_job_control}) in stile
354                                   POSIX.\\ 
355       \texttt{\_SC\_SAVED\_IDS} & \macro{\_POSIX\_SAVED\_IDS}&
356                                   Indica se il sistema supporta i
357                                   \textit{saved id} (vedi
358                                   sez.~\ref{sec:proc_access_id}).\\  
359       \texttt{\_SC\_VERSION}    & \const{\_POSIX\_VERSION} &
360                                   Indica il mese e l'anno di approvazione
361                                   della revisione dello standard POSIX.1 a cui
362                                   il sistema fa riferimento, nel formato
363                                   YYYYMML, la revisione più recente è 199009L,
364                                   che indica il Settembre 1990.\\ 
365      \hline
366     \end{tabular}
367   \caption{Parametri del sistema leggibili dalla funzione \func{sysconf}.}
368   \label{tab:sys_sysconf_par}
369 \end{table}
370
371 In generale ogni limite o caratteristica del sistema per cui è definita una
372 macro, sia dagli standard ANSI C e ISO C90, che da POSIX.1 e POSIX.2, può
373 essere ottenuto attraverso una chiamata a \func{sysconf}. Il valore si otterrà
374 specificando come valore dell'argomento \param{name} il nome ottenuto
375 aggiungendo \code{\_SC\_} ai nomi delle macro definite dai primi due, o
376 sostituendolo a \code{\_POSIX\_} per le macro definite dagli gli altri due.
377
378 In generale si dovrebbe fare uso di \func{sysconf} solo quando la relativa
379 macro non è definita, quindi con un codice analogo al seguente:
380 \includecodesnip{listati/get_child_max.c}
381 ma in realtà in Linux queste macro sono comunque definite, indicando però un
382 limite generico. Per questo motivo è sempre meglio usare i valori restituiti
383 da \func{sysconf}.
384
385
386 \subsection{I limiti dei file}
387 \label{sec:sys_file_limits}
388
389 Come per le caratteristiche generali del sistema anche per i file esistono una
390 serie di limiti (come la lunghezza del nome del file o il numero massimo di
391 link) che dipendono sia dall'implementazione che dal filesystem in uso; anche
392 in questo caso lo standard prevede alcune macro che ne specificano il valore,
393 riportate in tab.~\ref{tab:sys_file_macro}.
394
395 \begin{table}[htb]
396   \centering
397   \footnotesize
398   \begin{tabular}[c]{|l|r|l|}
399     \hline
400     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
401     \hline
402     \hline                
403     \const{LINK\_MAX}   &8  & Numero massimo di link a un file.\\
404     \const{NAME\_MAX}&  14  & Lunghezza in byte di un nome di file. \\
405     \const{PATH\_MAX}& 256  & Lunghezza in byte di un
406                               \itindex{pathname} \textit{pathname}.\\
407     \const{PIPE\_BUF}&4096  & Byte scrivibili atomicamente in una pipe
408                               (vedi sez.~\ref{sec:ipc_pipes}).\\
409     \const{MAX\_CANON}&255  & Dimensione di una riga di terminale in modo 
410                               canonico (vedi sez.~\ref{sec:term_design}).\\
411     \const{MAX\_INPUT}&255  & Spazio disponibile nella coda di input 
412                               del terminale (vedi 
413                               sez.~\ref{sec:term_design}).\\
414     \hline                
415   \end{tabular}
416   \caption{Costanti per i limiti sulle caratteristiche dei file.}
417   \label{tab:sys_file_macro}
418 \end{table}
419
420 Come per i limiti di sistema, lo standard POSIX.1 detta una serie di valori
421 minimi anche per queste caratteristiche, che ogni sistema che vuole essere
422 conforme deve rispettare; le relative macro sono riportate in
423 tab.~\ref{tab:sys_posix1_file}, e per esse vale lo stesso discorso fatto per
424 le analoghe di tab.~\ref{tab:sys_posix1_general}.
425
426 \begin{table}[htb]
427   \centering
428   \footnotesize
429   \begin{tabular}[c]{|l|r|l|}
430     \hline
431     \textbf{Macro}&\textbf{Valore}&\textbf{Significato}\\
432     \hline
433     \hline
434     \const{\_POSIX\_LINK\_MAX}   &8  & Numero massimo di link a un file.\\
435     \const{\_POSIX\_NAME\_MAX}&  14  & Lunghezza in byte di un nome di file.\\
436     \const{\_POSIX\_PATH\_MAX}& 256  & Lunghezza in byte di un 
437                                        \itindex{pathname} \textit{pathname}.\\
438     \const{\_POSIX\_PIPE\_BUF}& 512  & Byte scrivibili atomicamente in una
439                                        pipe.\\
440     \const{\_POSIX\_MAX\_CANON}&255  & Dimensione di una riga di
441                                        terminale in modo canonico.\\
442     \const{\_POSIX\_MAX\_INPUT}&255  & Spazio disponibile nella coda di input 
443                                        del terminale.\\
444 %    \const{\_POSIX\_MQ\_OPEN\_MAX}&  8& \\
445 %    \const{\_POSIX\_MQ\_PRIO\_MAX}& 32& \\
446 %    \const{\_POSIX\_FD\_SETSIZE}& 16 & \\
447 %    \const{\_POSIX\_DELAYTIMER\_MAX}& 32 & \\
448     \hline
449   \end{tabular}
450   \caption{Costanti dei valori minimi delle caratteristiche dei file per la
451     conformità allo standard POSIX.1.}
452   \label{tab:sys_posix1_file}
453 \end{table}
454
455 Tutti questi limiti sono definiti in \file{limits.h}; come nel caso precedente
456 il loro uso è di scarsa utilità in quanto ampiamente superati in tutte le
457 implementazioni moderne.
458
459
460 \subsection{La funzione \func{pathconf}}
461 \label{sec:sys_pathconf}
462
463 In generale i limiti per i file sono molto più soggetti ad essere variabili
464 rispetto ai limiti generali del sistema; ad esempio parametri come la
465 lunghezza del nome del file o il numero di link possono variare da filesystem
466 a filesystem; per questo motivo questi limiti devono essere sempre controllati
467 con la funzione \funcd{pathconf}, il cui prototipo è:
468 \begin{prototype}{unistd.h}{long pathconf(char *path, int name)}
469   Restituisce il valore del parametro \param{name} per il file \param{path}.
470   
471   \bodydesc{La funzione restituisce indietro il valore del parametro
472     richiesto, o -1 in caso di errore (ed \var{errno} viene impostata ad uno
473     degli errori possibili relativi all'accesso a \param{path}).}
474 \end{prototype}
475
476 E si noti come la funzione in questo caso richieda un argomento che specifichi
477 a quale file si fa riferimento, dato che il valore del limite cercato può
478 variare a seconda del filesystem. Una seconda versione della funzione,
479 \funcd{fpathconf}, opera su un file descriptor invece che su un
480 \itindex{pathname} \textit{pathname}. Il suo prototipo è:
481 \begin{prototype}{unistd.h}{long fpathconf(int fd, int name)}
482   Restituisce il valore del parametro \param{name} per il file \param{fd}.
483   
484   \bodydesc{È identica a \func{pathconf} solo che utilizza un file descriptor
485     invece di un \itindex{pathname} \textit{pathname}; pertanto gli errori
486     restituiti cambiano di conseguenza.}
487 \end{prototype}
488 \noindent ed il suo comportamento è identico a quello di \func{pathconf}.
489
490
491 \subsection{La funzione \func{uname}}
492 \label{sec:sys_uname}
493
494 Un'altra funzione che si può utilizzare per raccogliere informazioni sia
495 riguardo al sistema che al computer su cui esso sta girando è \funcd{uname};
496 il suo prototipo è:
497 \begin{prototype}{sys/utsname.h}{int uname(struct utsname *info)}
498   Restituisce informazioni sul sistema nella struttura \param{info}.
499   
500   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
501     fallimento, nel qual caso \var{errno} assumerà il valore \errval{EFAULT}.}
502 \end{prototype}
503
504 La funzione, che viene usata dal comando \cmd{uname}, restituisce le
505 informazioni richieste nella struttura \param{info}; anche questa struttura è
506 definita in \file{sys/utsname.h}, secondo quanto mostrato in
507 fig.~\ref{fig:sys_utsname}, e le informazioni memorizzate nei suoi membri
508 indicano rispettivamente:
509 \begin{itemize*}
510 \item il nome del sistema operativo;
511 \item il nome della release del kernel;
512 \item il nome della versione del kernel;
513 \item il tipo di macchina in uso;
514 \item il nome della stazione;
515 \item il nome del domino.
516 \end{itemize*}
517 l'ultima informazione è stata aggiunta di recente e non è prevista dallo
518 standard POSIX, essa è accessibile, come mostrato in
519 fig.~\ref{fig:sys_utsname}, solo definendo \macro{\_GNU\_SOURCE}.
520
521 \begin{figure}[!htb]
522   \footnotesize \centering
523   \begin{minipage}[c]{15cm}
524     \includestruct{listati/ustname.h}
525   \end{minipage}
526   \normalsize 
527   \caption{La struttura \structd{utsname}.} 
528   \label{fig:sys_utsname}
529 \end{figure}
530
531 In generale si tenga presente che le dimensioni delle stringe di una
532 \struct{utsname} non è specificata, e che esse sono sempre terminate con NUL;
533 il manuale delle \acr{glibc} indica due diverse dimensioni,
534 \const{\_UTSNAME\_LENGTH} per i campi standard e
535 \const{\_UTSNAME\_DOMAIN\_LENGTH} per quello specifico per il nome di dominio;
536 altri sistemi usano nomi diversi come \const{SYS\_NMLN} o \const{\_SYS\_NMLN}
537 o \const{UTSLEN} che possono avere valori diversi.\footnote{nel caso di Linux
538   \func{uname} corrisponde in realtà a 3 system call diverse, le prime due
539   usano rispettivamente delle lunghezze delle stringhe di 9 e 65 byte; la
540   terza usa anch'essa 65 byte, ma restituisce anche l'ultimo campo,
541   \var{domainname}, con una lunghezza di 257 byte.}
542
543
544 \section{Opzioni e configurazione del sistema}
545 \label{sec:sys_config}
546
547 Come abbiamo accennato nella sezione precedente, non tutti i limiti che
548 caratterizzano il sistema sono fissi, o perlomeno non lo sono in tutte le
549 implementazioni. Finora abbiamo visto come si può fare per leggerli, ci manca
550 di esaminare il meccanismo che permette, quando questi possono variare durante
551 l'esecuzione del sistema, di modificarli.
552
553 Inoltre, al di la di quelli che possono essere limiti caratteristici previsti
554 da uno standard, ogni sistema può avere una sua serie di altri parametri di
555 configurazione, che, non essendo mai fissi e variando da sistema a sistema,
556 non sono stati inclusi nella standardizzazione della sezione precedente. Per
557 questi occorre, oltre al meccanismo di impostazione, pure un meccanismo di
558 lettura.  Affronteremo questi argomenti in questa sezione, insieme alle
559 funzioni che si usano per il controllo di altre caratteristiche generali del
560 sistema, come quelle per la gestione dei filesystem e di utenti e gruppi.
561
562
563 \subsection{La funzione \func{sysctl} ed il filesystem \file{/proc}}
564 \label{sec:sys_sysctl}
565
566 La funzione che permette la lettura ed l'impostazione dei parametri del
567 sistema è \funcd{sysctl}; è una funzione derivata da BSD4.4, ma
568 l'implementazione è specifica di Linux; il suo prototipo è:
569 \begin{functions}
570 \headdecl{unistd.h}
571 \funcdecl{int sysctl(int *name, int nlen, void *oldval, size\_t *oldlenp, void
572   *newval, size\_t newlen)}
573
574 Legge o scrive uno dei parametri di sistema.
575
576 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
577   errore, nel qual caso \var{errno} assumerà uno dei valori:
578   \begin{errlist}
579   \item[\errcode{EPERM}] non si ha il permesso di accedere ad uno dei
580     componenti nel cammino specificato per il parametro, o di accedere al
581     parametro nella modalità scelta.
582   \item[\errcode{ENOTDIR}] non esiste un parametro corrispondente al nome
583     \param{name}.
584 %  \item[\errcode{EFAULT}] si è specificato \param{oldlenp} zero quando
585 %    \param{oldval} è non nullo. 
586   \item[\errcode{EINVAL}] o si è specificato un valore non valido per il
587     parametro che si vuole impostare o lo spazio provvisto per il ritorno di un
588     valore non è delle giuste dimensioni.
589   \item[\errcode{ENOMEM}] talvolta viene usato più correttamente questo errore
590     quando non si è specificato sufficiente spazio per ricevere il valore di un
591     parametro.
592   \end{errlist}
593   ed inoltre \errval{EFAULT}.
594 }
595 \end{functions}
596
597 I parametri a cui la funzione permettere di accedere sono organizzati in
598 maniera gerarchica all'interno di un albero;\footnote{si tenga presente che
599   includendo solo \file{unistd.h}, saranno definiti solo i parametri generici;
600   dato che ce ne sono molti specifici dell'implementazione, nel caso di Linux
601   occorrerà includere anche i file \file{linux/unistd.h} e
602   \file{linux/sysctl.h}.} per accedere ad uno di essi occorre specificare un
603 cammino attraverso i vari nodi dell'albero, in maniera analoga a come avviene
604 per la risoluzione di un \itindex{pathname} \textit{pathname} (da cui l'uso
605 alternativo del filesystem \file{/proc}, che vedremo dopo).
606
607 Ciascun nodo dell'albero è identificato da un valore intero, ed il cammino che
608 arriva ad identificare un parametro specifico è passato alla funzione
609 attraverso l'array \param{name}, di lunghezza \param{nlen}, che contiene la
610 sequenza dei vari nodi da attraversare. Ogni parametro ha un valore in un
611 formato specifico che può essere un intero, una stringa o anche una struttura
612 complessa, per questo motivo i valori vengono passati come puntatori
613 \ctyp{void}.
614
615 L'indirizzo a cui il valore corrente del parametro deve essere letto è
616 specificato da \param{oldvalue}, e lo spazio ivi disponibile è specificato da
617 \param{oldlenp} (passato come puntatore per avere indietro la dimensione
618 effettiva di quanto letto); il valore che si vuole impostare nel sistema è
619 passato in \param{newval} e la sua dimensione in \param{newlen}.
620
621 Si può effettuare anche una lettura e scrittura simultanea, nel qual caso il
622 valore letto restituito dalla funzione è quello precedente alla scrittura.
623
624 I parametri accessibili attraverso questa funzione sono moltissimi, e possono
625 essere trovati in \file{sysctl.h}, essi inoltre dipendono anche dallo stato
626 corrente del kernel (ad esempio dai moduli che sono stati caricati nel
627 sistema) e in genere i loro nomi possono variare da una versione di kernel
628 all'altra; per questo è sempre il caso di evitare l'uso di \func{sysctl}
629 quando esistono modalità alternative per ottenere le stesse informazioni.
630 Alcuni esempi di parametri ottenibili sono:
631 \begin{itemize}
632 \item il nome di dominio
633 \item i parametri del meccanismo di \textit{paging}.
634 \item il filesystem montato come radice
635 \item la data di compilazione del kernel
636 \item i parametri dello stack TCP
637 \item il numero massimo di file aperti
638 \end{itemize}
639
640 Come accennato in Linux si ha una modalità alternativa per accedere alle
641 stesse informazioni di \func{sysctl} attraverso l'uso del filesystem
642 \file{/proc}. Questo è un filesystem virtuale, generato direttamente dal
643 kernel, che non fa riferimento a nessun dispositivo fisico, ma presenta in
644 forma di file alcune delle strutture interne del kernel stesso.
645
646 In particolare l'albero dei valori di \func{sysctl} viene presentato in forma
647 di file nella directory \file{/proc/sys}, cosicché è possibile accedervi
648 specificando un \itindex{pathname} \textit{pathname} e leggendo e scrivendo sul
649 file corrispondente al parametro scelto.  Il kernel si occupa di generare al
650 volo il contenuto ed i nomi dei file corrispondenti, e questo ha il grande
651 vantaggio di rendere accessibili i vari parametri a qualunque comando di shell
652 e di permettere la navigazione dell'albero dei valori.
653
654 Alcune delle corrispondenze dei file presenti in \file{/proc/sys} con i valori
655 di \func{sysctl} sono riportate nei commenti del codice che può essere trovato
656 in \file{linux/sysctl.h},\footnote{indicando un file di definizioni si fa
657   riferimento alla directory standard dei file di include, che in ogni
658   distribuzione che si rispetti è \file{/usr/include}.} la informazione
659 disponibile in \file{/proc/sys} è riportata inoltre nella documentazione
660 inclusa nei sorgenti del kernel, nella directory \file{Documentation/sysctl}.
661
662 Ma oltre alle informazioni ottenibili da \func{sysctl} dentro \file{proc} sono
663 disponibili moltissime altre informazioni, fra cui ad esempio anche quelle
664 fornite da \func{uname} (vedi sez.~\ref{sec:sys_config}) che sono mantenute
665 nei file \procrelfile{/proc/sys/kernel}{ostype},
666 \procrelfile{/proc/sys/kernel}{hostname},
667 \procrelfile{/proc/sys/kernel}{osrelease},
668 \procrelfile{/proc/sys/kernel}{version} e
669 \procrelfile{/proc/sys/kernel}{domainname} di \file{/proc/sys/kernel/}.
670
671
672
673 \subsection{La gestione delle proprietà dei filesystem}
674 \label{sec:sys_file_config}
675
676 Come accennato in sez.~\ref{sec:file_organization} per poter accedere ai file
677 occorre prima rendere disponibile al sistema il filesystem su cui essi sono
678 memorizzati; l'operazione di attivazione del filesystem è chiamata
679 \textsl{montaggio}, per far questo in Linux\footnote{la funzione è specifica
680   di Linux e non è portabile.} si usa la funzione \funcd{mount} il cui
681 prototipo è:
682 \begin{prototype}{sys/mount.h}
683 {mount(const char *source, const char *target, const char *filesystemtype, 
684   unsigned long mountflags, const void *data)}
685
686 Monta il filesystem di tipo \param{filesystemtype} contenuto in \param{source}
687 sulla directory \param{target}.
688   
689   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
690   fallimento, nel qual caso gli errori comuni a tutti i filesystem che possono
691   essere restituiti in \var{errno} sono:
692   \begin{errlist}
693   \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
694   \item[\errcode{ENODEV}] \param{filesystemtype} non esiste o non è configurato
695     nel kernel.
696   \item[\errcode{ENOTBLK}] non si è usato un \textit{block device} per
697     \param{source} quando era richiesto.
698   \item[\errcode{EBUSY}] \param{source} è già montato, o non può essere
699     rimontato in read-only perché ci sono ancora file aperti in scrittura, o
700     \param{target} è ancora in uso.
701   \item[\errcode{EINVAL}] il device \param{source} presenta un
702     \textit{superblock} non valido, o si è cercato di rimontare un filesystem
703     non ancora montato, o di montarlo senza che \param{target} sia un
704     \textit{mount point} o di spostarlo quando \param{target} non è un
705     \textit{mount point} o è \file{/}.
706   \item[\errcode{EACCES}] non si ha il permesso di accesso su uno dei
707     componenti del \itindex{pathname} \textit{pathname}, o si è cercato
708     di montare un filesystem disponibile in sola lettura senza averlo
709     specificato o il device \param{source} è su un filesystem montato con
710     l'opzione \const{MS\_NODEV}.
711   \item[\errcode{ENXIO}] il \itindex{major~number} \textit{major number} del
712     device \param{source} è sbagliato.
713   \item[\errcode{EMFILE}] la tabella dei device \textit{dummy} è piena.
714   \end{errlist}
715   ed inoltre \errval{ENOTDIR}, \errval{EFAULT}, \errval{ENOMEM},
716   \errval{ENAMETOOLONG}, \errval{ENOENT} o \errval{ELOOP}.}
717 \end{prototype}
718
719 La funzione monta sulla directory \param{target}, detta \textit{mount point},
720 il filesystem contenuto in \param{source}. In generale un filesystem è
721 contenuto su un disco, e l'operazione di montaggio corrisponde a rendere
722 visibile al sistema il contenuto del suddetto disco, identificato attraverso
723 il file di dispositivo ad esso associato.
724
725 Ma la struttura del virtual filesystem vista in sez.~\ref{sec:file_vfs} è molto
726 più flessibile e può essere usata anche per oggetti diversi da un disco. Ad
727 esempio usando il \textit{loop device} si può montare un file qualunque (come
728 l'immagine di un CD-ROM o di un floppy) che contiene un filesystem, inoltre
729 alcuni filesystem, come \file{proc} o \file{devfs} sono del tutto virtuali, i
730 loro dati sono generati al volo ad ogni lettura, e passati al kernel ad ogni
731 scrittura. 
732
733 Il tipo di filesystem è specificato da \param{filesystemtype}, che deve essere
734 una delle stringhe riportate nel file \procfile{/proc/filesystems}, che
735 contiene l'elenco dei filesystem supportati dal kernel; nel caso si sia
736 indicato uno dei filesystem virtuali, il contenuto di \param{source} viene
737 ignorato.
738
739 Dopo l'esecuzione della funzione il contenuto del filesystem viene resto
740 disponibile nella directory specificata come \textit{mount point}, il
741 precedente contenuto di detta directory viene mascherato dal contenuto della
742 directory radice del filesystem montato.
743
744 Dal kernel 2.4.x inoltre è divenuto possibile sia spostare atomicamente un
745 \textit{mount point} da una directory ad un'altra, sia montare in diversi
746 \textit{mount point} lo stesso filesystem, sia montare più filesystem sullo
747 stesso \textit{mount point} (nel qual caso vale quanto appena detto, e solo il
748 contenuto dell'ultimo filesystem montato sarà visibile).
749
750 Ciascun filesystem è dotato di caratteristiche specifiche che possono essere
751 attivate o meno, alcune di queste sono generali (anche se non è detto siano
752 disponibili in ogni filesystem), e vengono specificate come opzioni di
753 montaggio con l'argomento \param{mountflags}.  
754
755 In Linux \param{mountflags} deve essere un intero a 32 bit i cui 16 più
756 significativi sono un \textit{magic number}\footnote{cioè un numero speciale
757   usato come identificativo, che nel caso è \code{0xC0ED}; si può usare la
758   costante \const{MS\_MGC\_MSK} per ottenere la parte di \param{mountflags}
759   riservata al \textit{magic number}.} mentre i 16 meno significativi sono
760 usati per specificare le opzioni; essi sono usati come maschera binaria e
761 vanno impostati con un OR aritmetico della costante \const{MS\_MGC\_VAL} con i
762 valori riportati in tab.~\ref{tab:sys_mount_flags}.
763
764 \begin{table}[htb]
765   \footnotesize
766   \centering
767   \begin{tabular}[c]{|l|r|l|}
768     \hline
769     \textbf{Parametro} & \textbf{Valore}&\textbf{Significato}\\
770     \hline
771     \hline
772     \const{MS\_RDONLY}     &  1 & Monta in sola lettura.\\
773     \const{MS\_NOSUID}     &  2 & Ignora i bit \itindex{suid~bit} \acr{suid} e
774                                   \itindex{sgid~bit} \acr{sgid}.\\ 
775     \const{MS\_NODEV}      &  4 & Impedisce l'accesso ai file di dispositivo.\\
776     \const{MS\_NOEXEC}     &  8 & Impedisce di eseguire programmi.\\
777     \const{MS\_SYNCHRONOUS}& 16 & Abilita la scrittura sincrona.\\
778     \const{MS\_REMOUNT}    & 32 & Rimonta il filesystem cambiando le opzioni.\\
779     \const{MS\_MANDLOCK}   & 64 & Consente il \textit{mandatory locking} 
780                                   \itindex{mandatory~locking} (vedi
781                                   sez.~\ref{sec:file_mand_locking}).\\
782     \const{S\_WRITE}      & 128 & Scrive normalmente.\\
783     \const{S\_APPEND}     & 256 & Consente la scrittura solo in
784                                   \itindex{append~mode} \textit{append mode} 
785                                   (vedi sez.~\ref{sec:file_sharing}).\\
786     \const{S\_IMMUTABLE}  & 512 & Impedisce che si possano modificare i file.\\
787     \const{MS\_NOATIME}   &1024 & Non aggiorna gli \textit{access time} (vedi
788                                   sez.~\ref{sec:file_file_times}).\\
789     \const{MS\_NODIRATIME}&2048 & Non aggiorna gli \textit{access time} delle
790                                   directory.\\
791     \const{MS\_BIND}      &4096 & Monta il filesystem altrove.\\
792     \const{MS\_MOVE}      &8192 & Sposta atomicamente il punto di montaggio.\\
793     \hline
794   \end{tabular}
795   \caption{Tabella dei codici dei flag di montaggio di un filesystem.}
796   \label{tab:sys_mount_flags}
797 \end{table}
798
799 % TODO aggiornare con i nuovi flag di man mount
800 % gli S_* non esistono più come segnalato da Alessio...
801 % verificare i readonly mount bind del 2.6.26
802
803 Per l'impostazione delle caratteristiche particolari di ciascun filesystem si
804 usa invece l'argomento \param{data} che serve per passare le ulteriori
805 informazioni necessarie, che ovviamente variano da filesystem a filesystem.
806
807 La funzione \func{mount} può essere utilizzata anche per effettuare il
808 \textsl{rimontaggio} di un filesystem, cosa che permette di cambiarne al volo
809 alcune delle caratteristiche di funzionamento (ad esempio passare da sola
810 lettura a lettura/scrittura). Questa operazione è attivata attraverso uno dei
811 bit di \param{mountflags}, \const{MS\_REMOUNT}, che se impostato specifica che
812 deve essere effettuato il rimontaggio del filesystem (con le opzioni
813 specificate dagli altri bit), anche in questo caso il valore di \param{source}
814 viene ignorato.
815
816 Una volta che non si voglia più utilizzare un certo filesystem è possibile
817 \textsl{smontarlo} usando la funzione \funcd{umount}, il cui prototipo è:
818 \begin{prototype}{sys/mount.h}{umount(const char *target)}
819   
820   Smonta il filesystem montato sulla directory \param{target}.
821   
822   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
823     fallimento, nel qual caso \var{errno} assumerà uno dei valori:
824   \begin{errlist}
825   \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
826   \item[\errcode{EBUSY}]  \param{target} è la directory di lavoro di qualche
827   processo, o contiene dei file aperti, o un altro mount point.
828   \end{errlist}
829   ed inoltre \errval{ENOTDIR}, \errval{EFAULT}, \errval{ENOMEM},
830   \errval{ENAMETOOLONG}, \errval{ENOENT} o \errval{ELOOP}.}
831 \end{prototype}
832 \noindent la funzione prende il nome della directory su cui il filesystem è
833 montato e non il file o il dispositivo che è stato montato,\footnote{questo è
834   vero a partire dal kernel 2.3.99-pre7, prima esistevano due chiamate
835   separate e la funzione poteva essere usata anche specificando il file di
836   dispositivo.} in quanto con il kernel 2.4.x è possibile montare lo stesso
837 dispositivo in più punti. Nel caso più di un filesystem sia stato montato
838 sullo stesso \textit{mount point} viene smontato quello che è stato montato
839 per ultimo.
840
841 Si tenga presente che la funzione fallisce quando il filesystem è
842 \textsl{occupato}, questo avviene quando ci sono ancora file aperti sul
843 filesystem, se questo contiene la directory di lavoro corrente di un qualunque
844 processo o il mount point di un altro filesystem; in questo caso l'errore
845 restituito è \errcode{EBUSY}.
846
847 Linux provvede inoltre una seconda funzione, \funcd{umount2}, che in alcuni
848 casi permette di forzare lo smontaggio di un filesystem, anche quando questo
849 risulti occupato; il suo prototipo è:
850 \begin{prototype}{sys/mount.h}{umount2(const char *target, int flags)}
851   
852   La funzione è identica a \func{umount} per comportamento e codici di errore,
853   ma con \param{flags} si può specificare se forzare lo smontaggio.
854 \end{prototype}
855
856 Il valore di \param{flags} è una maschera binaria, e al momento l'unico valore
857 definito è il bit \const{MNT\_FORCE}; gli altri bit devono essere nulli.
858 Specificando \const{MNT\_FORCE} la funzione cercherà di liberare il filesystem
859 anche se è occupato per via di una delle condizioni descritte in precedenza. A
860 seconda del tipo di filesystem alcune (o tutte) possono essere superate,
861 evitando l'errore di \errcode{EBUSY}.  In tutti i casi prima dello smontaggio
862 viene eseguita una sincronizzazione dei dati. 
863
864 % TODO documentare MNT_DETACH e MNT_EXPIRE ...
865
866 Altre due funzioni specifiche di Linux,\footnote{esse si trovano anche su BSD,
867   ma con una struttura diversa.} utili per ottenere in maniera diretta
868 informazioni riguardo al filesystem su cui si trova un certo file, sono
869 \funcd{statfs} e \funcd{fstatfs}, i cui prototipi sono:
870 \begin{functions}
871   \headdecl{sys/vfs.h} 
872   \funcdecl{int statfs(const char *path, struct statfs *buf)} 
873
874   \funcdecl{int fstatfs(int fd, struct statfs *buf)} 
875   
876   Restituisce in \param{buf} le informazioni relative al filesystem su cui è
877   posto il file specificato.
878   
879   \bodydesc{Le funzioni ritornano 0 in caso di successo e -1 in caso di
880     errore, nel qual caso \var{errno} assumerà uno dei valori:
881   \begin{errlist}
882   \item[\errcode{ENOSYS}] il filesystem su cui si trova il file specificato non
883   supporta la funzione.
884   \end{errlist}
885   e \errval{EFAULT} ed \errval{EIO} per entrambe, \errval{EBADF} per
886   \func{fstatfs}, \errval{ENOTDIR}, \errval{ENAMETOOLONG}, \errval{ENOENT},
887   \errval{EACCES}, \errval{ELOOP} per \func{statfs}.}
888 \end{functions}
889
890 Queste funzioni permettono di ottenere una serie di informazioni generali
891 riguardo al filesystem su cui si trova il file specificato; queste vengono
892 restituite all'indirizzo \param{buf} di una struttura \struct{statfs} definita
893 come in fig.~\ref{fig:sys_statfs}, ed i campi che sono indefiniti per il
894 filesystem in esame sono impostati a zero.  I valori del campo \var{f\_type}
895 sono definiti per i vari filesystem nei relativi file di header dei sorgenti
896 del kernel da costanti del tipo \var{XXX\_SUPER\_MAGIC}, dove \var{XXX} in
897 genere è il nome del filesystem stesso.
898
899 \begin{figure}[!htb]
900   \footnotesize \centering
901   \begin{minipage}[c]{15cm}
902     \includestruct{listati/statfs.h}
903   \end{minipage}
904   \normalsize 
905   \caption{La struttura \structd{statfs}.} 
906   \label{fig:sys_statfs}
907 \end{figure}
908
909
910 Le \acr{glibc} provvedono infine una serie di funzioni per la gestione dei due
911 file \conffile{/etc/fstab} ed \conffile{/etc/mtab}, che convenzionalmente sono
912 usati in quasi tutti i sistemi unix-like per mantenere rispettivamente le
913 informazioni riguardo ai filesystem da montare e a quelli correntemente
914 montati. Le funzioni servono a leggere il contenuto di questi file in
915 opportune strutture \struct{fstab} e \struct{mntent}, e, per
916 \conffile{/etc/mtab} per inserire e rimuovere le voci presenti nel file.
917
918 In generale si dovrebbero usare queste funzioni (in particolare quelle
919 relative a \conffile{/etc/mtab}), quando si debba scrivere un programma che
920 effettua il montaggio di un filesystem; in realtà in questi casi è molto più
921 semplice invocare direttamente il programma \cmd{mount}, per cui ne
922 tralasceremo la trattazione, rimandando al manuale delle \acr{glibc}
923 \cite{glibc} per la documentazione completa.
924
925
926
927 % TODO scrivere relativamente alle varie funzioni (getfsent e getmntent &C)
928
929 \subsection{La gestione delle informazioni su utenti e gruppi}
930 \label{sec:sys_user_group}
931
932 Tradizionalmente le informazioni utilizzate nella gestione di utenti e gruppi
933 (password, corrispondenze fra nomi simbolici e user-id, home directory, ecc.)
934 venivano registrate all'interno dei due file di testo \conffile{/etc/passwd}
935 ed \conffile{/etc/group},\footnote{in realtà oltre a questi nelle
936   distribuzioni più recenti è stato introdotto il sistema delle \textit{shadow
937     password} che prevede anche i due file \conffile{/etc/shadow} e
938   \conffile{/etc/gshadow}, in cui sono state spostate le informazioni di
939   autenticazione (ed inserite alcune estensioni) per toglierle dagli altri
940   file che devono poter essere letti per poter effettuare l'associazione fra
941   username e \acr{uid}.} il cui formato è descritto dalle relative pagine del
942 manuale\footnote{nella quinta sezione, quella dei file di configurazione,
943   occorre cioè usare \cmd{man 5 passwd} dato che altrimenti si avrebbe la
944   pagina di manuale del comando \cmd{passwd}.} e tutte le funzioni che
945 richiedevano l'accesso a queste informazione andavano a leggere direttamente
946 il contenuto di questi file.
947
948 Col tempo però questa impostazione ha incominciato a mostrare dei limiti: da
949 una parte il meccanismo classico di autenticazione è stato ampliato, ed oggi
950 la maggior parte delle distribuzioni di GNU/Linux usa la libreria PAM (sigla
951 che sta per \textit{Pluggable Authentication Method}) che fornisce una
952 interfaccia comune per i processi di autenticazione,\footnote{il
953   \textit{Pluggable Authentication Method} è un sistema modulare, in cui è
954   possibile utilizzare anche più meccanismi insieme, diventa così possibile
955   avere vari sistemi di riconoscimento (biometria, chiavi hardware, ecc.),
956   diversi formati per le password e diversi supporti per le informazioni, il
957   tutto in maniera trasparente per le applicazioni purché per ciascun
958   meccanismo si disponga della opportuna libreria che implementa l'interfaccia
959   di PAM.}  svincolando completamente le singole applicazione dai dettagli del
960 come questa viene eseguita e di dove vengono mantenuti i dati relativi;
961 dall'altra con il diffondersi delle reti la necessità di centralizzare le
962 informazioni degli utenti e dei gruppi per insiemi di macchine, in modo da
963 mantenere coerenti i dati, ha portato anche alla necessità di poter recuperare
964 e memorizzare dette informazioni su supporti diversi, introducendo il sistema
965 del \itindex{Name~Service~Switch} \textit{Name Service Switch} che tratteremo
966 brevemente più avanti (in sez.~\ref{sec:sock_resolver}) dato che la maggior
967 parte delle sua applicazioni sono relative alla risoluzioni di nomi di rete.
968
969 In questo paragrafo ci limiteremo comunque a trattare le funzioni classiche
970 per la lettura delle informazioni relative a utenti e gruppi tralasciando
971 completamente quelle relative all'autenticazione. 
972 %  Per questo non tratteremo
973 % affatto l'interfaccia di PAM, ma approfondiremo invece il sistema del
974 % \textit{Name Service Switch}, un meccanismo messo a disposizione dalle
975 % \acr{glibc} per modularizzare l'accesso a tutti i servizi in cui sia
976 % necessario trovare una corrispondenza fra un nome ed un numero (od altra
977 % informazione) ad esso associato, come appunto, quella fra uno username ed un
978 % \acr{uid} o fra un \acr{gid} ed il nome del gruppo corrispondente.
979 Le prime funzioni che vedremo sono quelle previste dallo standard POSIX.1;
980 queste sono del tutto generiche e si appoggiano direttamente al \textit{Name
981   Service Switch}, per cui sono in grado di ricevere informazioni qualunque
982 sia il supporto su cui esse vengono mantenute.  Per leggere le informazioni
983 relative ad un utente si possono usare due funzioni, \funcd{getpwuid} e
984 \funcd{getpwnam}, i cui prototipi sono:
985 \begin{functions}
986   \headdecl{pwd.h} 
987   \headdecl{sys/types.h} 
988   \funcdecl{struct passwd *getpwuid(uid\_t uid)} 
989   
990   \funcdecl{struct passwd *getpwnam(const char *name)} 
991
992   Restituiscono le informazioni relative all'utente specificato.
993   
994   \bodydesc{Le funzioni ritornano il puntatore alla struttura contenente le
995     informazioni in caso di successo e \val{NULL} nel caso non sia stato
996     trovato nessun utente corrispondente a quanto specificato.}
997 \end{functions}
998
999 Le due funzioni forniscono le informazioni memorizzate nel registro degli
1000 utenti (che nelle versioni più recenti possono essere ottenute attraverso PAM)
1001 relative all'utente specificato attraverso il suo \acr{uid} o il nome di
1002 login. Entrambe le funzioni restituiscono un puntatore ad una struttura di
1003 tipo \struct{passwd} la cui definizione (anch'essa eseguita in \file{pwd.h}) è
1004 riportata in fig.~\ref{fig:sys_passwd_struct}, dove è pure brevemente
1005 illustrato il significato dei vari campi.
1006
1007 \begin{figure}[!htb]
1008   \footnotesize
1009   \centering
1010   \begin{minipage}[c]{15cm}
1011     \includestruct{listati/passwd.h}
1012   \end{minipage} 
1013   \normalsize 
1014   \caption{La struttura \structd{passwd} contenente le informazioni relative ad
1015     un utente del sistema.}
1016   \label{fig:sys_passwd_struct}
1017 \end{figure}
1018
1019 La struttura usata da entrambe le funzioni è allocata staticamente, per questo
1020 motivo viene sovrascritta ad ogni nuova invocazione, lo stesso dicasi per la
1021 memoria dove sono scritte le stringhe a cui i puntatori in essa contenuti
1022 fanno riferimento. Ovviamente questo implica che dette funzioni non possono
1023 essere \index{funzioni!rientranti} rientranti; per questo motivo ne esistono
1024 anche due versioni alternative (denotate dalla solita estensione \code{\_r}),
1025 i cui prototipi sono:
1026 \begin{functions}
1027   \headdecl{pwd.h} 
1028   
1029   \headdecl{sys/types.h} 
1030   
1031   \funcdecl{struct passwd *getpwuid\_r(uid\_t uid, struct passwd *password,
1032     char *buffer, size\_t buflen, struct passwd **result)}
1033   
1034   \funcdecl{struct passwd *getpwnam\_r(const char *name, struct passwd
1035     *password, char *buffer, size\_t buflen, struct passwd **result)}
1036
1037   Restituiscono le informazioni relative all'utente specificato.
1038   
1039   \bodydesc{Le funzioni ritornano 0 in caso di successo e un codice d'errore
1040     altrimenti, nel qual caso \var{errno} sarà impostata opportunamente.}
1041 \end{functions}
1042
1043 In questo caso l'uso è molto più complesso, in quanto bisogna prima allocare
1044 la memoria necessaria a contenere le informazioni. In particolare i valori
1045 della struttura \struct{passwd} saranno restituiti all'indirizzo
1046 \param{password} mentre la memoria allocata all'indirizzo \param{buffer}, per
1047 un massimo di \param{buflen} byte, sarà utilizzata per contenere le stringhe
1048 puntate dai campi di \param{password}. Infine all'indirizzo puntato da
1049 \param{result} viene restituito il puntatore ai dati ottenuti, cioè
1050 \param{buffer} nel caso l'utente esista, o \val{NULL} altrimenti.  Qualora i
1051 dati non possano essere contenuti nei byte specificati da \param{buflen}, la
1052 funzione fallirà restituendo \errcode{ERANGE} (e \param{result} sarà comunque
1053 impostato a \val{NULL}).
1054
1055 Del tutto analoghe alle precedenti sono le funzioni \funcd{getgrnam} e
1056 \funcd{getgrgid} (e le relative analoghe \index{funzioni!rientranti}
1057 rientranti con la stessa estensione \code{\_r}) che permettono di leggere le
1058 informazioni relative ai gruppi, i loro prototipi sono:
1059 \begin{functions}
1060   \headdecl{grp.h} 
1061   \headdecl{sys/types.h} 
1062
1063   \funcdecl{struct group *getgrgid(gid\_t gid)} 
1064   
1065   \funcdecl{struct group *getgrnam(const char *name)} 
1066   
1067   \funcdecl{struct group *getpwuid\_r(gid\_t gid, struct group *password,
1068     char *buffer, size\_t buflen, struct group **result)}
1069   
1070   \funcdecl{struct group *getpwnam\_r(const char *name, struct group
1071     *password, char *buffer, size\_t buflen, struct group **result)}
1072
1073   Restituiscono le informazioni relative al gruppo specificato.
1074   
1075   \bodydesc{Le funzioni ritornano 0 in caso di successo e un codice d'errore
1076     altrimenti, nel qual caso \var{errno} sarà impostata opportunamente.}
1077 \end{functions}
1078
1079 Il comportamento di tutte queste funzioni è assolutamente identico alle
1080 precedenti che leggono le informazioni sugli utenti, l'unica differenza è che
1081 in questo caso le informazioni vengono restituite in una struttura di tipo
1082 \struct{group}, la cui definizione è riportata in
1083 fig.~\ref{fig:sys_group_struct}.
1084
1085 \begin{figure}[!htb]
1086   \footnotesize
1087   \centering
1088   \begin{minipage}[c]{15cm}
1089     \includestruct{listati/group.h}
1090   \end{minipage} 
1091   \normalsize 
1092   \caption{La struttura \structd{group} contenente le informazioni relative ad
1093     un gruppo del sistema.}
1094   \label{fig:sys_group_struct}
1095 \end{figure}
1096
1097 Le funzioni viste finora sono in grado di leggere le informazioni sia
1098 direttamente dal file delle password in \conffile{/etc/passwd} che tramite il
1099 sistema del \itindex{Name~Service~Switch} \textit{Name Service Switch} e sono
1100 completamente generiche. Si noti però che non c'è una funzione che permetta di
1101 impostare direttamente una password.\footnote{in realtà questo può essere
1102   fatto ricorrendo a PAM, ma questo è un altro discorso.} Dato che POSIX non
1103 prevede questa possibilità esiste un'altra interfaccia che lo fa, derivata da
1104 SVID le cui funzioni sono riportate in tab.~\ref{tab:sys_passwd_func}. Questa
1105 però funziona soltanto quando le informazioni sono mantenute su un apposito
1106 file di \textsl{registro} di utenti e gruppi, con il formato classico di
1107 \conffile{/etc/passwd} e \conffile{/etc/group}.
1108
1109 \begin{table}[htb]
1110   \footnotesize
1111   \centering
1112   \begin{tabular}[c]{|l|p{8cm}|}
1113     \hline
1114     \textbf{Funzione} & \textbf{Significato}\\
1115     \hline
1116     \hline
1117     \func{fgetpwent}   & Legge una voce dal file di registro degli utenti
1118                          specificato.\\
1119     \func{fgetpwent\_r}& Come la precedente, ma \index{funzioni!rientranti}
1120                          rientrante.\\ 
1121     \func{putpwent}    & Immette una voce in un file di registro degli
1122                          utenti.\\ 
1123     \func{getpwent}    & Legge una voce da \conffile{/etc/passwd}.\\
1124     \func{getpwent\_r} & Come la precedente, ma \index{funzioni!rientranti}
1125                          rientrante.\\ 
1126     \func{setpwent}    & Ritorna all'inizio di \conffile{/etc/passwd}.\\
1127     \func{endpwent}    & Chiude \conffile{/etc/passwd}.\\
1128     \func{fgetgrent}   & Legge una voce dal file di registro dei gruppi 
1129                          specificato.\\
1130     \func{fgetgrent\_r}& Come la precedente, ma \index{funzioni!rientranti}
1131                          rientrante.\\
1132     \func{putgrent}    & Immette una voce in un file di registro dei gruppi.\\
1133     \func{getgrent}    & Legge una voce da \conffile{/etc/group}.\\ 
1134     \func{getgrent\_r} & Come la precedente, ma \index{funzioni!rientranti} 
1135                          rientrante.\\
1136     \func{setgrent}    & Ritorna all'inizio di \conffile{/etc/group}.\\
1137     \func{endgrent}    & Chiude \conffile{/etc/group}.\\
1138     \hline
1139   \end{tabular}
1140   \caption{Funzioni per la manipolazione dei campi di un file usato come
1141     registro per utenti o gruppi nel formato di \conffile{/etc/passwd} e
1142     \conffile{/etc/group}.} 
1143   \label{tab:sys_passwd_func}
1144 \end{table}
1145
1146 Dato che oramai la gran parte delle distribuzioni di GNU/Linux utilizzano
1147 almeno le \textit{shadow password} (quindi con delle modifiche rispetto al
1148 formato classico del file \conffile{/etc/passwd}), si tenga presente che le
1149 funzioni di questa interfaccia che permettono di scrivere delle voci in un
1150 \textsl{registro} degli utenti (cioè \func{putpwent} e \func{putgrent}) non
1151 hanno la capacità di farlo specificando tutti i contenuti necessari rispetto a
1152 questa estensione. Per questo motivo l'uso di queste funzioni è deprecato, in
1153 quanto comunque non funzionale, pertanto ci limiteremo a fornire soltanto
1154 l'elenco di tab.~\ref{tab:sys_passwd_func}, senza nessuna spiegazione
1155 ulteriore.  Chi volesse insistere ad usare questa interfaccia può fare
1156 riferimento alle pagine di manuale delle rispettive funzioni ed al manuale
1157 delle \acr{glibc} per i dettagli del funzionamento.
1158
1159
1160
1161 \subsection{Il registro della \textsl{contabilità} degli utenti}
1162 \label{sec:sys_accounting}
1163
1164 L'ultimo insieme di funzioni relative alla gestione del sistema che
1165 esamineremo è quello che permette di accedere ai dati del registro della
1166 cosiddetta \textsl{contabilità} (o \textit{accounting}) degli utenti.  In esso
1167 vengono mantenute una serie di informazioni storiche relative sia agli utenti
1168 che si sono collegati al sistema, (tanto per quelli correntemente collegati,
1169 che per la registrazione degli accessi precedenti), sia relative all'intero
1170 sistema, come il momento di lancio di processi da parte di \cmd{init}, il
1171 cambiamento dell'orologio di sistema, il cambiamento di runlevel o il riavvio
1172 della macchina.
1173
1174 I dati vengono usualmente\footnote{questa è la locazione specificata dal
1175   \textit{Linux Filesystem Hierarchy Standard}, adottato dalla gran parte
1176   delle distribuzioni.} memorizzati nei due file \file{/var/run/utmp} e
1177 \file{/var/log/wtmp}.\footnote{non si confonda quest'ultimo con il simile
1178   \file{/var/log/btmp} dove invece vengono memorizzati dal programma di login
1179   tutti tentativi di accesso fallito.} Quando un utente si collega viene
1180 aggiunta una voce a \file{/var/run/utmp} in cui viene memorizzato il nome di
1181 login, il terminale da cui ci si collega, l'\acr{uid} della shell di login,
1182 l'orario della connessione ed altre informazioni.  La voce resta nel file fino
1183 al logout, quando viene cancellata e spostata in \file{/var/log/wtmp}.
1184
1185 In questo modo il primo file viene utilizzato per registrare chi sta
1186 utilizzando il sistema al momento corrente, mentre il secondo mantiene la
1187 registrazione delle attività degli utenti. A quest'ultimo vengono anche
1188 aggiunte delle voci speciali per tenere conto dei cambiamenti del sistema,
1189 come la modifica del runlevel, il riavvio della macchina, ecc. Tutte queste
1190 informazioni sono descritte in dettaglio nel manuale delle \acr{glibc}.
1191
1192 Questi file non devono mai essere letti direttamente, ma le informazioni che
1193 contengono possono essere ricavate attraverso le opportune funzioni di
1194 libreria. Queste sono analoghe alle precedenti funzioni (vedi
1195 tab.~\ref{tab:sys_passwd_func}) usate per accedere al registro degli utenti,
1196 solo che in questo caso la struttura del registro della \textsl{contabilità} è
1197 molto più complessa, dato che contiene diversi tipi di informazione.
1198
1199 Le prime tre funzioni, \funcd{setutent}, \funcd{endutent} e \funcd{utmpname}
1200 servono rispettivamente a aprire e a chiudere il file che contiene il
1201 registro, e a specificare su quale file esso viene mantenuto. I loro prototipi
1202 sono:
1203 \begin{functions}
1204   \headdecl{utmp.h} 
1205   
1206   \funcdecl{void utmpname(const char *file)} Specifica il file da usare come
1207   registro.
1208   
1209   \funcdecl{void setutent(void)} Apre il file del registro, posizionandosi al
1210   suo inizio.
1211   
1212   \funcdecl{void endutent(void)} Chiude il file del registro.
1213   
1214   \bodydesc{Le funzioni non ritornano codici di errore.}
1215 \end{functions}
1216 e si tenga presente che le funzioni non restituiscono nessun valore, pertanto
1217 non è possibile accorgersi di eventuali errori (ad esempio se si è impostato
1218 un nome di file sbagliato con \func{utmpname}).
1219
1220 Nel caso non si sia utilizzata \func{utmpname} per specificare un file di
1221 registro alternativo, sia \func{setutent} che \func{endutent} operano usando
1222 il default che è \file{/var/run/utmp}. Il nome di questo file, così come una
1223 serie di altri valori di default per i \textit{pathname} di uso più comune,
1224 viene mantenuto nei valori di una serie di costanti definite includendo
1225 \file{paths.h}, in particolare quelle che ci interessano sono:
1226 \begin{basedescript}{\desclabelwidth{2.0cm}}
1227 \item[\const{\_PATH\_UTMP}] specifica il file che contiene il registro per gli
1228   utenti correntemente collegati; questo è il valore che viene usato se non si
1229   è utilizzato \func{utmpname} per modificarlo.
1230 \item[\const{\_PATH\_WTMP}] specifica il file che contiene il registro per
1231   l'archivio storico degli utenti collegati.
1232 \end{basedescript}
1233 che nel caso di Linux hanno un valore corrispondente ai file
1234 \file{/var/run/utmp} e \file{/var/log/wtmp} citati in precedenza.
1235
1236 Una volta aperto il file del registro degli utenti si può eseguire una
1237 scansione leggendo o scrivendo una voce con le funzioni \funcd{getutent},
1238 \funcd{getutid}, \funcd{getutline} e \funcd{pututline}, i cui prototipi sono:
1239 \begin{functions}
1240   \headdecl{utmp.h} 
1241
1242   \funcdecl{struct utmp *getutent(void)} 
1243   Legge una voce dalla posizione corrente nel registro.
1244   
1245   \funcdecl{struct utmp *getutid(struct utmp *ut)} Ricerca una voce sul
1246   registro in base al contenuto di \param{ut}.
1247
1248   \funcdecl{struct utmp *getutline(struct utmp *ut)} 
1249   Ricerca nel registro la prima voce corrispondente ad un processo sulla linea
1250   di terminale specificata tramite \param{ut}.
1251
1252   \funcdecl{struct utmp *pututline(struct utmp *ut)} 
1253   Scrive una voce nel registro.
1254   
1255   \bodydesc{Le funzioni ritornano il puntatore ad una struttura \struct{utmp}
1256     in caso di successo e \val{NULL} in caso di errore.}
1257 \end{functions}
1258
1259 Tutte queste funzioni fanno riferimento ad una struttura di tipo
1260 \struct{utmp}, la cui definizione in Linux è riportata in
1261 fig.~\ref{fig:sys_utmp_struct}. Le prime tre funzioni servono per leggere una
1262 voce dal registro; \func{getutent} legge semplicemente la prima voce
1263 disponibile; le altre due permettono di eseguire una ricerca.
1264
1265
1266 \begin{figure}[!htb]
1267   \footnotesize
1268   \centering
1269   \begin{minipage}[c]{15cm}
1270     \includestruct{listati/utmp.h}
1271   \end{minipage} 
1272   \normalsize 
1273   \caption{La struttura \structd{utmp} contenente le informazioni di una voce
1274     del registro di \textsl{contabilità}.}
1275   \label{fig:sys_utmp_struct}
1276 \end{figure}
1277
1278 Con \func{getutid} si può cercare una voce specifica, a seconda del valore del
1279 campo \var{ut\_type} dell'argomento \param{ut}.  Questo può assumere i valori
1280 riportati in tab.~\ref{tab:sys_ut_type}, quando assume i valori
1281 \const{RUN\_LVL}, \const{BOOT\_TIME}, \const{OLD\_TIME}, \const{NEW\_TIME},
1282 verrà restituito la prima voce che corrisponde al tipo determinato; quando
1283 invece assume i valori \const{INIT\_PROCESS}, \const{LOGIN\_PROCESS},
1284 \const{USER\_PROCESS} o \const{DEAD\_PROCESS} verrà restituita la prima voce
1285 corrispondente al valore del campo \var{ut\_id} specificato in \param{ut}.
1286
1287 \begin{table}[htb]
1288   \footnotesize
1289   \centering
1290   \begin{tabular}[c]{|l|p{8cm}|}
1291     \hline
1292     \textbf{Valore} & \textbf{Significato}\\
1293     \hline
1294     \hline
1295     \const{EMPTY}         & Non contiene informazioni valide.\\
1296     \const{RUN\_LVL}      & Identica il runlevel del sistema.\\
1297     \const{BOOT\_TIME}    & Identifica il tempo di avvio del sistema.\\
1298     \const{OLD\_TIME}     & Identifica quando è stato modificato l'orologio di
1299                             sistema.\\
1300     \const{NEW\_TIME}     & Identifica da quanto è stato modificato il 
1301                             sistema.\\
1302     \const{INIT\_PROCESS} & Identifica un processo lanciato da \cmd{init}.\\
1303     \const{LOGIN\_PROCESS}& Identifica un processo di login.\\
1304     \const{USER\_PROCESS} & Identifica un processo utente.\\
1305     \const{DEAD\_PROCESS} & Identifica un processo terminato.\\
1306 %    \const{ACCOUNTING}    & ??? \\
1307     \hline
1308   \end{tabular}
1309   \caption{Classificazione delle voci del registro a seconda dei
1310     possibili valori del campo \var{ut\_type}.} 
1311   \label{tab:sys_ut_type}
1312 \end{table}
1313
1314 La funzione \func{getutline} esegue la ricerca sulle voci che hanno
1315 \var{ut\_type} uguale a \const{LOGIN\_PROCESS} o \const{USER\_PROCESS},
1316 restituendo la prima che corrisponde al valore di \var{ut\_line}, che
1317 specifica il device\footnote{espresso senza il \file{/dev/} iniziale.} di
1318 terminale che interessa. Lo stesso criterio di ricerca è usato da
1319 \func{pututline} per trovare uno spazio dove inserire la voce specificata,
1320 qualora non sia trovata la voce viene aggiunta in coda al registro.
1321
1322 In generale occorre però tenere conto che queste funzioni non sono
1323 completamente standardizzate, e che in sistemi diversi possono esserci
1324 differenze; ad esempio \func{pututline} restituisce \code{void} in vari
1325 sistemi (compreso Linux, fino alle \acr{libc5}). Qui seguiremo la sintassi
1326 fornita dalle \acr{glibc}, ma gli standard POSIX 1003.1-2001 e XPG4.2 hanno
1327 introdotto delle nuove strutture (e relativi file) di tipo \code{utmpx}, che
1328 sono un sovrainsieme di \code{utmp}. 
1329
1330 Le \acr{glibc} utilizzano già una versione estesa di \code{utmp}, che rende
1331 inutili queste nuove strutture; pertanto esse e le relative funzioni di
1332 gestione (\func{getutxent}, \func{getutxid}, \func{getutxline},
1333 \func{pututxline}, \func{setutxent} e \func{endutxent}) sono ridefinite come
1334 sinonimi delle funzioni appena viste.
1335
1336 Come visto in sez.~\ref{sec:sys_user_group}, l'uso di strutture allocate
1337 staticamente rende le funzioni di lettura non \index{funzioni!rientranti}
1338 rientranti; per questo motivo le \acr{glibc} forniscono anche delle versioni
1339 \index{funzioni!rientranti} rientranti: \func{getutent\_r}, \func{getutid\_r},
1340 \func{getutline\_r}, che invece di restituire un puntatore restituiscono un
1341 intero e prendono due argomenti aggiuntivi. Le funzioni si comportano
1342 esattamente come le analoghe non \index{funzioni!rientranti} rientranti, solo
1343 che restituiscono il risultato all'indirizzo specificato dal primo argomento
1344 aggiuntivo (di tipo \code{struct utmp *buffer}) mentre il secondo (di tipo
1345 \code{struct utmp **result)} viene usato per restituire il puntatore allo
1346 stesso buffer.
1347
1348 Infine le \acr{glibc} forniscono come estensione per la scrittura delle voci
1349 in \file{wmtp} altre due funzioni, \funcd{updwtmp} e \funcd{logwtmp}, i cui
1350 prototipi sono:
1351 \begin{functions}
1352   \headdecl{utmp.h} 
1353   
1354   \funcdecl{void updwtmp(const char *wtmp\_file, const struct utmp *ut)}
1355   Aggiunge la voce \param{ut} nel registro \file{wmtp}.
1356   
1357   \funcdecl{void logwtmp(const char *line, const char *name, const char
1358     *host)} Aggiunge nel registro una voce con i valori specificati.
1359 \end{functions}
1360
1361 La prima funzione permette l'aggiunta di una voce a \file{wmtp} specificando
1362 direttamente una struttura \struct{utmp}, mentre la seconda utilizza gli
1363 argomenti \param{line}, \param{name} e \param{host} per costruire la voce che
1364 poi aggiunge chiamando \func{updwtmp}.
1365
1366
1367 \section{Il controllo dell'uso delle risorse}
1368 \label{sec:sys_res_limits}
1369
1370
1371 Dopo aver esaminato le funzioni che permettono di controllare le varie
1372 caratteristiche, capacità e limiti del sistema a livello globale, in questa
1373 sezione tratteremo le varie funzioni che vengono usate per quantificare le
1374 risorse (CPU, memoria, ecc.) utilizzate da ogni singolo processo e quelle che
1375 permettono di imporre a ciascuno di essi vincoli e limiti di
1376 utilizzo. 
1377
1378
1379 \subsection{L'uso delle risorse}
1380 \label{sec:sys_resource_use}
1381
1382 Come abbiamo accennato in sez.~\ref{sec:proc_wait} le informazioni riguardo
1383 l'utilizzo delle risorse da parte di un processo è mantenuto in una struttura
1384 di tipo \struct{rusage}, la cui definizione (che si trova in
1385 \file{sys/resource.h}) è riportata in fig.~\ref{fig:sys_rusage_struct}.
1386
1387 \begin{figure}[!htb]
1388   \footnotesize
1389   \centering
1390   \begin{minipage}[c]{15cm}
1391     \includestruct{listati/rusage.h}
1392   \end{minipage} 
1393   \normalsize 
1394   \caption{La struttura \structd{rusage} per la lettura delle informazioni dei 
1395     delle risorse usate da un processo.}
1396   \label{fig:sys_rusage_struct}
1397 \end{figure}
1398
1399 La definizione della struttura in fig.~\ref{fig:sys_rusage_struct} è ripresa
1400 da BSD 4.3,\footnote{questo non ha a nulla a che fare con il cosiddetto
1401   \textit{BSD accounting} (vedi sez. \ref{sec:sys_bsd_accounting}) che si trova
1402   nelle opzioni di compilazione del kernel (e di norma è disabilitato) che
1403   serve per mantenere una contabilità delle risorse usate da ciascun processo
1404   in maniera molto più dettagliata.} ma attualmente (con i kernel della serie
1405 2.4.x e 2.6.x) i soli campi che sono mantenuti sono: \var{ru\_utime},
1406 \var{ru\_stime}, \var{ru\_minflt}, \var{ru\_majflt}, e \var{ru\_nswap}. I
1407 primi due indicano rispettivamente il tempo impiegato dal processo
1408 nell'eseguire le istruzioni in user space, e quello impiegato dal kernel nelle
1409 system call eseguite per conto del processo.
1410
1411 Gli altri tre campi servono a quantificare l'uso della memoria
1412 virtuale\index{memoria~virtuale} e corrispondono rispettivamente al numero di
1413 \itindex{page~fault} \textit{page fault} (vedi sez.~\ref{sec:proc_mem_gen})
1414 avvenuti senza richiedere I/O su disco (i cosiddetti \textit{minor page
1415   fault}), a quelli che invece han richiesto I/O su disco (detti invece
1416 \textit{major page fault}) ed al numero di volte che il processo è stato
1417 completamente tolto dalla memoria per essere inserito nello swap.
1418
1419 In genere includere esplicitamente \file{<sys/time.h>} non è più strettamente
1420 necessario, ma aumenta la portabilità, e serve comunque quando, come nella
1421 maggior parte dei casi, si debba accedere ai campi di \struct{rusage} relativi
1422 ai tempi di utilizzo del processore, che sono definiti come strutture di tipo
1423 \struct{timeval}.
1424
1425 Questa è la stessa struttura utilizzata da \func{wait4} (si ricordi quando
1426 visto in sez.~\ref{sec:proc_wait}) per ricavare la quantità di risorse
1427 impiegate dal processo di cui si è letto lo stato di terminazione, ma essa può
1428 anche essere letta direttamente utilizzando la funzione \funcd{getrusage}, il
1429 cui prototipo è:
1430 \begin{functions}
1431   \headdecl{sys/time.h} 
1432   \headdecl{sys/resource.h} 
1433   \headdecl{unistd.h} 
1434   
1435   \funcdecl{int getrusage(int who, struct rusage *usage)} 
1436   Legge la quantità di risorse usate da un processo.
1437
1438
1439   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
1440   nel qual caso \var{errno} può essere \errval{EINVAL} o \errval{EFAULT}.}
1441 \end{functions}
1442
1443 L'argomento \param{who} permette di specificare il processo di cui si vuole
1444 leggere l'uso delle risorse; esso può assumere solo i due valori
1445 \const{RUSAGE\_SELF} per indicare il processo corrente e
1446 \const{RUSAGE\_CHILDREN} per indicare l'insieme dei processi figli di cui si è
1447 ricevuto lo stato di terminazione. 
1448
1449 % TODO previsto in futuro \const{RUSAGE\_THREAD}, verificare.
1450
1451 \subsection{Limiti sulle risorse}
1452 \label{sec:sys_resource_limit}
1453
1454 Come accennato nell'introduzione il kernel mette a disposizione delle
1455 funzionalità che permettono non solo di mantenere dati statistici relativi
1456 all'uso delle risorse, ma anche di imporre dei limiti precisi sul loro
1457 utilizzo da parte dei vari processi o degli utenti.
1458
1459 Per far questo esistono una serie di risorse e ad ogni processo vengono
1460 associati due diversi limiti per ciascuna di esse; questi sono il
1461 \textsl{limite corrente} (o \textit{current limit}) che esprime un valore
1462 massimo che il processo non può superare ad un certo momento, ed il
1463 \textsl{limite massimo} (o \textit{maximum limit}) che invece esprime il
1464 valore massimo che può assumere il \textsl{limite corrente}. In generale il
1465 primo viene chiamato anche \textit{soft limit} dato che il suo valore può
1466 essere aumentato dal processo stesso durante l'esecuzione, ciò può però essere
1467 fatto solo fino al valore del secondo, che per questo viene detto \textit{hard
1468   limit}.
1469
1470 \begin{table}[htb]
1471   \footnotesize
1472   \centering
1473   \begin{tabular}[c]{|l|p{12cm}|}
1474     \hline
1475     \textbf{Valore} & \textbf{Significato}\\
1476     \hline
1477     \hline
1478     \const{RLIMIT\_AS}     &  La dimensione massima della memoria virtuale di
1479                               un processo, il cosiddetto \textit{Address
1480                                 Space}, (vedi sez.~\ref{sec:proc_mem_gen}). Se
1481                               il limite viene superato dall'uso di funzioni
1482                               come \func{brk}, \func{mremap} o \func{mmap}
1483                               esse falliranno con un errore di
1484                               \errcode{ENOMEM}, mentre se il superamento viene
1485                               causato dalla crescita dello \itindex{stack}
1486                               \textit{stack} il processo riceverà un segnale di
1487                               \const{SIGSEGV}.\\  
1488     \const{RLIMIT\_CORE}   &  La massima dimensione per di un file di
1489                               \itindex{core~dump} \textit{core dump} (vedi
1490                               sez.~\ref{sec:sig_prog_error}) creato nella
1491                               terminazione di un processo; file di dimensioni 
1492                               maggiori verranno troncati a questo valore,
1493                               mentre con un valore si bloccherà la creazione
1494                               dei \itindex{core~dump} \textit{core dump}.\\ 
1495     \const{RLIMIT\_CPU}    &  Il massimo tempo di CPU (vedi
1496                               sez.~\ref{sec:sys_cpu_times}) che il processo può
1497                               usare. Il superamento del limite corrente
1498                               comporta l'emissione di un segnale di
1499                               \const{SIGXCPU} la cui azione predefinita (vedi
1500                               sez.~\ref{sec:sig_classification}) è terminare
1501                               il processo. Il superamento del limite massimo
1502                               comporta l'emissione di un segnale di
1503                               \const{SIGKILL}.\footnotemark\\
1504     \const{RLIMIT\_DATA}   &  La massima dimensione del \index{segmento!dati}
1505                               segmento dati di un 
1506                               processo (vedi sez.~\ref{sec:proc_mem_layout}).
1507                               Il tentativo di allocare più memoria di quanto
1508                               indicato dal limite corrente causa il fallimento
1509                               della funzione di allocazione (\func{brk} o
1510                               \func{sbrk}) con un errore di \errcode{ENOMEM}.\\
1511     \const{RLIMIT\_FSIZE}  &  La massima dimensione di un file che un processo
1512                               può creare. Se il processo cerca di scrivere
1513                               oltre questa dimensione riceverà un segnale di
1514                               \const{SIGXFSZ}, che di norma termina il
1515                               processo; se questo viene intercettato la
1516                               system call che ha causato l'errore fallirà con
1517                               un errore di \errcode{EFBIG}.\\
1518     \const{RLIMIT\_LOCKS}&    È un limite presente solo nelle prime versioni
1519                               del kernel 2.4 sul numero massimo di
1520                               \index{file!locking} \textit{file lock} (vedi
1521                               sez.~\ref{sec:file_locking}) che un
1522                               processo poteva effettuare.\\ 
1523     \const{RLIMIT\_MEMLOCK}&  L'ammontare massimo di memoria che può essere
1524                               bloccata in RAM da un processo (vedi
1525                               sez.~\ref{sec:proc_mem_lock}). Dal kernel 2.6.9
1526                               questo limite comprende anche la memoria che può
1527                               essere bloccata da ciascun utente nell'uso della
1528                               memoria condivisa (vedi
1529                               sez.~\ref{sec:ipc_sysv_shm}) che viene
1530                               contabilizzata separatamente ma sulla quale
1531                               viene applicato questo stesso limite.\\ 
1532     \const{RLIMIT\_NOFILE} &  Il numero massimo di file che il processo può
1533                               aprire. L'apertura di un ulteriore file farà
1534                               fallire la funzione (\func{open}, \func{dup} o
1535                               \func{pipe}) con un errore \errcode{EMFILE}.\\
1536     \const{RLIMIT\_NPROC}  &  Il numero massimo di processi che possono essere
1537                               creati sullo stesso user id real. Se il limite
1538                               viene raggiunto \func{fork} fallirà con un
1539                               \errcode{EAGAIN}.\\
1540     \const{RLIMIT\_SIGPENDING}& Il numero massimo di segnali che possono
1541                               essere mantenuti in coda per ciascun utente,
1542                               considerando sia i segnali normali che real-time
1543                               (vedi sez.~\ref{sec:sig_real_time}). Il limite è
1544                               attivo solo per \func{sigqueue}, con \func{kill}
1545                               si potrà sempre inviare un segnale che non sia
1546                               già presente su una coda.\footnotemark\\
1547     \const{RLIMIT\_STACK}  &  La massima dimensione dello \itindex{stack}
1548                               \textit{stack} del processo. Se il processo
1549                               esegue operazioni che estendano lo
1550                               \textit{stack} oltre questa dimensione 
1551                               riceverà un segnale di \const{SIGSEGV}.\\
1552     \const{RLIMIT\_RSS}    &  L'ammontare massimo di pagine di memoria dato al
1553                               \index{segmento!testo} testo del processo. Il
1554                               limite è solo una indicazione per il kernel,
1555                               qualora ci fosse un surplus di memoria questa
1556                               verrebbe assegnata.\\ 
1557 % TODO integrare con la roba di madvise
1558     \hline
1559   \end{tabular}
1560   \caption{Valori possibili dell'argomento \param{resource} delle funzioni
1561     \func{getrlimit} e \func{setrlimit}.} 
1562   \label{tab:sys_rlimit_values}
1563 \end{table}
1564
1565 \footnotetext[18]{questo è quanto avviene per i kernel dalla serie 2.2 fino ad
1566   oggi (la 2.6.x); altri kernel possono avere comportamenti diversi per quanto
1567   avviene quando viene superato il \textit{soft limit}; perciò per avere
1568   operazioni portabili è sempre opportuno intercettare \const{SIGXCPU} e
1569   terminare in maniera ordinata il processo.}
1570
1571 \footnotetext{il limite su questa risorsa è stato introdotto con il kernel
1572   2.6.8.}
1573
1574 % aggiungere i limiti che mancano come RLIMIT_RTTIME introdotto con il 2.6.25
1575 % vedi file include/asm-generic/resource.h
1576
1577 In generale il superamento di un limite corrente\footnote{di norma quanto
1578   riportato in tab.~\ref{tab:sys_rlimit_values} fa riferimento a quanto
1579   avviene al superamento del limite corrente, con l'eccezione
1580   \const{RLIMIT\_CPU} in cui si ha in comportamento diverso per il superamento
1581   dei due limiti.}  comporta o l'emissione di un segnale o il fallimento della
1582 system call che lo ha provocato;\footnote{si nuovo c'è una eccezione per
1583   \const{RLIMIT\_CORE} che influenza soltanto la dimensione (o l'eventuale
1584   creazione) dei file di \itindex{core~dump} \textit{core dump}.} per
1585 permettere di leggere e di impostare i limiti di utilizzo delle risorse da
1586 parte di un processo sono previste due funzioni, \funcd{getrlimit} e
1587 \funcd{setrlimit}, i cui prototipi sono:
1588 \begin{functions}
1589   \headdecl{sys/time.h} 
1590   \headdecl{sys/resource.h} 
1591   \headdecl{unistd.h} 
1592   
1593   \funcdecl{int getrlimit(int resource, struct rlimit *rlim)} 
1594
1595   Legge il limite corrente per la risorsa \param{resource}.
1596   
1597   \funcdecl{int setrlimit(int resource, const struct rlimit *rlim)} 
1598   
1599   Imposta il limite per la risorsa \param{resource}.
1600   
1601   \bodydesc{Le funzioni ritornano 0 in caso di successo e -1 in caso di
1602     errore, nel qual caso \var{errno} assumerà uno dei valori:
1603     \begin{errlist}
1604     \item[\errcode{EINVAL}] i valori per \param{resource} non sono validi.
1605     \item[\errcode{EPERM}] un processo senza i privilegi di amministratore ha
1606     cercato di innalzare i propri limiti.
1607     \end{errlist}
1608   ed \errval{EFAULT}.}
1609 \end{functions}
1610
1611
1612 Entrambe le funzioni permettono di specificare, attraverso l'argomento
1613 \param{resource}, su quale risorsa si vuole operare: i possibili valori di
1614 questo argomento sono elencati in tab.~\ref{tab:sys_rlimit_values}. L'acceso
1615 (rispettivamente in lettura e scrittura) ai valori effettivi dei limiti viene
1616 poi effettuato attraverso la struttura \struct{rlimit} puntata da
1617 \param{rlim}, la cui definizione è riportata in
1618 fig.~\ref{fig:sys_rlimit_struct}, ed i cui campi corrispondono appunto a
1619 limite corrente e limite massimo.
1620
1621
1622 \begin{figure}[!htb]
1623   \footnotesize
1624   \centering
1625   \begin{minipage}[c]{15cm}
1626     \includestruct{listati/rlimit.h}
1627   \end{minipage} 
1628   \normalsize 
1629   \caption{La struttura \structd{rlimit} per impostare i limiti di utilizzo 
1630     delle risorse usate da un processo.}
1631   \label{fig:sys_rlimit_struct}
1632 \end{figure}
1633
1634
1635 Nello specificare un limite, oltre a fornire dei valori specifici, si può
1636 anche usare la costante \const{RLIM\_INFINITY} che permette di sbloccare l'uso
1637 di una risorsa; ma si ricordi che solo un processo con i privilegi di
1638 amministratore\footnote{per essere precisi in questo caso quello che serve è
1639   la \itindex{capabilities} \textit{capability} \const{CAP\_SYS\_RESOURCE}.}
1640 può innalzare un limite al di sopra del valore corrente del limite massimo ed
1641 usare un valore qualsiasi per entrambi i limiti. Si tenga conto infine che
1642 tutti i limiti vengono ereditati dal processo padre attraverso una \func{fork}
1643 (vedi sez.~\ref{sec:proc_fork}) e mantenuti per gli altri programmi eseguiti
1644 attraverso una \func{exec} (vedi sez.~\ref{sec:proc_exec}).
1645
1646
1647 \subsection{Le risorse di memoria e processore}
1648 \label{sec:sys_memory_res}
1649
1650 La gestione della memoria è già stata affrontata in dettaglio in
1651 sez.~\ref{sec:proc_memory}; abbiamo visto allora che il kernel provvede il
1652 meccanismo della \index{memoria~virtuale} memoria virtuale attraverso la
1653 divisione della memoria fisica in pagine.
1654
1655 In genere tutto ciò è del tutto trasparente al singolo processo, ma in certi
1656 casi, come per l'I/O mappato in memoria (vedi sez.~\ref{sec:file_memory_map})
1657 che usa lo stesso meccanismo per accedere ai file, è necessario conoscere le
1658 dimensioni delle pagine usate dal kernel. Lo stesso vale quando si vuole
1659 gestire in maniera ottimale l'interazione della memoria che si sta allocando
1660 con il meccanismo della \index{paginazione} paginazione.
1661
1662 Di solito la dimensione delle pagine di memoria è fissata dall'architettura
1663 hardware, per cui il suo valore di norma veniva mantenuto in una costante che
1664 bastava utilizzare in fase di compilazione, ma oggi, con la presenza di alcune
1665 architetture (ad esempio Sun Sparc) che permettono di variare questa
1666 dimensione, per non dover ricompilare i programmi per ogni possibile modello e
1667 scelta di dimensioni, è necessario poter utilizzare una funzione.
1668
1669 Dato che si tratta di una caratteristica generale del sistema, questa
1670 dimensione può essere ottenuta come tutte le altre attraverso una chiamata a
1671 \func{sysconf}, \footnote{nel caso specifico si dovrebbe utilizzare il
1672   parametro \const{\_SC\_PAGESIZE}.}  ma in BSD 4.2 è stata introdotta una
1673 apposita funzione, \funcd{getpagesize}, che restituisce la dimensione delle
1674 pagine di memoria; il suo prototipo è:
1675 \begin{prototype}{unistd.h}{int getpagesize(void)}
1676   Legge le dimensioni delle pagine di memoria.
1677   
1678   \bodydesc{La funzione ritorna la dimensione di una pagina in byte, e non
1679     sono previsti errori.}
1680 \end{prototype}
1681
1682 La funzione è prevista in SVr4, BSD 4.4 e SUSv2, anche se questo ultimo
1683 standard la etichetta come obsoleta, mentre lo standard POSIX 1003.1-2001 la
1684 ha eliminata. In Linux è implementata come una system call nelle architetture
1685 in cui essa è necessaria, ed in genere restituisce il valore del simbolo
1686 \const{PAGE\_SIZE} del kernel, che dipende dalla architettura hardware, anche
1687 se le versioni delle librerie del C precedenti le \acr{glibc} 2.1
1688 implementavano questa funzione restituendo sempre un valore statico.
1689
1690 % TODO verificare meglio la faccenda di const{PAGE\_SIZE} 
1691
1692 Le \textsl{glibc} forniscono, come specifica estensione GNU, altre due
1693 funzioni, \funcd{get\_phys\_pages} e \funcd{get\_avphys\_pages} che permettono
1694 di ottenere informazioni riguardo la memoria; i loro prototipi sono:
1695 \begin{functions}
1696   \headdecl{sys/sysinfo.h} 
1697   
1698   \funcdecl{long int get\_phys\_pages(void)} 
1699
1700   Legge il numero totale di pagine di memoria disponibili per il sistema.
1701   
1702   \funcdecl{long int get\_avphys\_pages(void)} 
1703   
1704   Legge il numero di pagine di memoria disponibili nel sistema. 
1705   
1706   \bodydesc{Le funzioni restituiscono un numero di pagine.}
1707 \end{functions}
1708
1709 Queste funzioni sono equivalenti all'uso della funzione \func{sysconf}
1710 rispettivamente con i parametri \const{\_SC\_PHYS\_PAGES} e
1711 \const{\_SC\_AVPHYS\_PAGES}. La prima restituisce il numero totale di pagine
1712 corrispondenti alla RAM della macchina; la seconda invece la memoria
1713 effettivamente disponibile per i processi.
1714
1715 Le \acr{glibc} supportano inoltre, come estensioni GNU, due funzioni che
1716 restituiscono il numero di processori della macchina (e quello dei processori
1717 attivi); anche queste sono informazioni comunque ottenibili attraverso
1718 \func{sysconf} utilizzando rispettivamente i parametri
1719 \const{\_SC\_NPROCESSORS\_CONF} e \const{\_SC\_NPROCESSORS\_ONLN}.
1720
1721 Infine le \acr{glibc} riprendono da BSD la funzione \funcd{getloadavg} che
1722 permette di ottenere il carico di processore della macchina, in questo modo è
1723 possibile prendere decisioni su quando far partire eventuali nuovi processi.
1724 Il suo prototipo è:
1725 \begin{prototype}{stdlib.h}{int getloadavg(double loadavg[], int nelem)}
1726   Legge il carico medio della macchina.
1727   
1728   \bodydesc{La funzione ritorna il numero di elementi scritti o -1 in caso di
1729     errore.}
1730 \end{prototype}
1731
1732 La funzione restituisce in ciascun elemento di \param{loadavg} il numero medio
1733 di processi attivi sulla coda dello \itindex{scheduler} scheduler, calcolato
1734 su diversi intervalli di tempo.  Il numero di intervalli che si vogliono
1735 leggere è specificato da \param{nelem}, dato che nel caso di Linux il carico
1736 viene valutato solo su tre intervalli (corrispondenti a 1, 5 e 15 minuti),
1737 questo è anche il massimo valore che può essere assegnato a questo argomento.
1738
1739
1740 \subsection{La \textsl{contabilità} in stile BSD}
1741 \label{sec:sys_bsd_accounting}
1742
1743 Una ultima modalità per monitorare l'uso delle risorse è, se si è compilato il
1744 kernel con il relativo supporto,\footnote{se cioè si è abilitata l'opzione di
1745   compilazione \texttt{CONFIG\_BSD\_PROCESS\_ACCT}.} quella di attivare il
1746 cosiddetto \textit{BSD accounting}, che consente di registrare su file una
1747 serie di informazioni\footnote{contenute nella struttura \texttt{acct}
1748   definita nel file \texttt{include/linux/acct.h} dei sorgenti del kernel.}
1749 riguardo alla \textsl{contabilità} delle risorse utilizzate da ogni processo
1750 che viene terminato.
1751
1752 Linux consente di salvare la contabilità delle informazioni relative alle
1753 risorse utilizzate dai processi grazie alla funzione \funcd{acct}, il cui
1754 prototipo è:
1755 \begin{prototype}{unistd.h}{int acct(const char *filename)}
1756   Abilita il \textit{BSD accounting}.
1757   
1758   \bodydesc{La funzione ritorna 0 in caso di successo o $-1$ in caso di
1759     errore, nel qual caso \var{errno} assumerà uno dei valori:
1760     \begin{errlist}
1761     \item[\errcode{EACCESS}] non si hanno i permessi per accedere a
1762       \param{pathname}.
1763     \item[\errcode{EPERM}] il processo non ha privilegi sufficienti ad
1764       abilitare il \textit{BSD accounting}.
1765     \item[\errcode{ENOSYS}] il kernel non supporta il \textit{BSD accounting}.
1766     \item[\errcode{EUSER}] non sono disponibili nel kernel strutture per il
1767       file o si è finita la memoria.
1768     \end{errlist}
1769     ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{ELOOP},
1770     \errval{ENAMETOOLONG}, \errval{ENFILE}, \errval{ENOENT}, \errval{ENOMEM},
1771     \errval{ENOTDIR}, \errval{EROFS}.}
1772 \end{prototype}
1773
1774 La funzione attiva il salvataggio dei dati sul file indicato dal pathname
1775 contenuti nella stringa puntata da \param{filename}; la funzione richiede che
1776 il processo abbia i privilegi di amministratore (è necessaria la
1777 \itindex{capabilities} capability \const{CAP\_SYS\_PACCT}, vedi
1778 sez.~\ref{sec:proc_capabilities}). Se si specifica il valore \const{NULL} per
1779 \param{filename} il \textit{BSD accounting} viene invece disabilitato. Un
1780 semplice esempio per l'uso di questa funzione è riportato nel programma
1781 \texttt{AcctCtrl.c} dei sorgenti allegati alla guida.
1782
1783 Quando si attiva la contabilità, il file che si indica deve esistere; esso
1784 verrà aperto in sola scrittura;\footnote{si applicano al pathname indicato da
1785   \param{filename} tutte le restrizioni viste in cap.~\ref{cha:file_intro}.}
1786 le informazioni verranno registrate in \itindex{append~mode} \textit{append}
1787 in coda al file tutte le volte che un processo termina. Le informazioni
1788 vengono salvate in formato binario, e corrispondono al contenuto della
1789 apposita struttura dati definita all'interno del kernel.
1790
1791 Il funzionamento di \func{acct} viene inoltre modificato da uno specifico
1792 parametro di sistema, modificabile attraverso \procfile{/proc/sys/kernel/acct}
1793 (o tramite la corrispondente \func{sysctl}). Esso contiene tre valori interi,
1794 il primo indica la percentuale di spazio disco libero sopra il quale viene
1795 ripresa una registrazione che era stata sospesa per essere scesi sotto il
1796 minimo indicato dal secondo valore (sempre in percentuale di spazio disco
1797 libero). Infine l'ultimo valore indica la frequenza in secondi con cui deve
1798 essere controllata detta percentuale.
1799
1800
1801
1802
1803 \section{La gestione dei tempi del sistema}
1804 \label{sec:sys_time}
1805
1806 In questa sezione, una volta introdotti i concetti base della gestione dei
1807 tempi da parte del sistema, tratteremo le varie funzioni attinenti alla
1808 gestione del tempo in un sistema unix-like, a partire da quelle per misurare i
1809 veri tempi di sistema associati ai processi, a quelle per convertire i vari
1810 tempi nelle differenti rappresentazioni che vengono utilizzate, a quelle della
1811 gestione di data e ora.
1812
1813
1814 \subsection{La misura del tempo in Unix}
1815 \label{sec:sys_unix_time}
1816
1817 Storicamente i sistemi unix-like hanno sempre mantenuto due distinti tipi di
1818 dati per la misure dei tempi all'interno del sistema: essi sono
1819 rispettivamente chiamati \itindend{calendar~time} \textit{calendar time} e
1820 \itindex{process~time} \textit{process time}, secondo le definizioni:
1821 \begin{basedescript}{\desclabelwidth{1.5cm}\desclabelstyle{\nextlinelabel}}
1822 \item[\textit{calendar time}] \itindend{calendar~time} detto anche
1823   \textsl{tempo di calendario}. È il numero di secondi dalla mezzanotte del
1824   primo gennaio 1970, in tempo universale coordinato (o UTC), data che viene
1825   usualmente indicata con 00:00:00 Jan, 1 1970 (UTC) e chiamata \textit{the
1826     Epoch}. Questo tempo viene anche chiamato anche GMT (Greenwich Mean Time)
1827   dato che l'UTC corrisponde all'ora locale di Greenwich.  È il tempo su cui
1828   viene mantenuto l'orologio del kernel, e viene usato ad esempio per indicare
1829   le date di modifica dei file o quelle di avvio dei processi. Per memorizzare
1830   questo tempo è stato riservato il tipo primitivo \type{time\_t}.
1831 \item[\textit{process time}] \itindex{process~time} detto talvolta
1832   \textsl{tempo di processore}.  Viene misurato in \itindex{clock~tick}
1833   \textit{clock tick}. Un tempo questo corrispondeva al numero di interruzioni
1834   effettuate dal timer di sistema, adesso lo standard POSIX richiede che esso
1835   sia pari al valore della costante \const{CLOCKS\_PER\_SEC}, che deve essere
1836   definita come 1000000, qualunque sia la risoluzione reale dell'orologio di
1837   sistema e la frequenza delle interruzioni del timer.\footnote{quest'ultima,
1838     come accennato in sez.~\ref{sec:proc_hierarchy}, è invece data dalla
1839     costante \const{HZ}.}  Il dato primitivo usato per questo tempo è
1840   \type{clock\_t}, che ha quindi una risoluzione del microsecondo. Il numero
1841   di \itindex{clock~tick} \textit{tick} al secondo può essere ricavato anche
1842   attraverso \func{sysconf} (vedi sez.~\ref{sec:sys_sysconf}).  Il vecchio
1843   simbolo \const{CLK\_TCK} definito in \file{time.h} è ormai considerato
1844   obsoleto.
1845 \end{basedescript}
1846
1847 In genere si usa il \itindend{calendar~time} \textit{calendar time} per
1848 esprimere le date dei file e le informazioni analoghe che riguardano i
1849 cosiddetti \textsl{tempi di orologio}, che vengono usati ad esempio per i
1850 demoni che compiono lavori amministrativi ad ore definite, come \cmd{cron}.
1851
1852 Di solito questo tempo viene convertito automaticamente dal valore in UTC al
1853 tempo locale, utilizzando le opportune informazioni di localizzazione
1854 (specificate in \conffile{/etc/timezone}). E da tenere presente che questo
1855 tempo è mantenuto dal sistema e non è detto che corrisponda al tempo tenuto
1856 dall'orologio hardware del calcolatore.
1857
1858 Anche il \itindex{process~time} \textit{process time} di solito si esprime in
1859 secondi, ma fornisce una precisione ovviamente superiore al \textit{calendar
1860   time} (che è mantenuto dal sistema con una granularità di un secondo) e
1861 viene usato per tenere conto dei tempi di esecuzione dei processi. Per ciascun
1862 processo il kernel calcola tre tempi diversi:
1863 \begin{basedescript}{\desclabelwidth{1.5cm}\desclabelstyle{\nextlinelabel}}
1864 \item[\textit{clock time}] il tempo \textsl{reale} (viene chiamato anche
1865   \textit{wall clock time} o \textit{elapsed time}) passato dall'avvio del
1866   processo. Chiaramente tale tempo dipende anche dal carico del sistema e da
1867   quanti altri processi stavano girando nello stesso periodo.
1868   
1869 \item[\textit{user time}] il tempo effettivo che il processore ha impiegato
1870   nell'esecuzione delle istruzioni del processo in user space. È quello
1871   riportato nella risorsa \var{ru\_utime} di \struct{rusage} vista in
1872   sez.~\ref{sec:sys_resource_use}.
1873   
1874 \item[\textit{system time}] il tempo effettivo che il processore ha impiegato
1875   per eseguire codice delle system call nel kernel per conto del processo.  È
1876   quello riportato nella risorsa \var{ru\_stime} di \struct{rusage} vista in
1877   sez.~\ref{sec:sys_resource_use}.
1878 \end{basedescript}
1879
1880 In genere la somma di \textit{user time} e \textit{system time} indica il
1881 tempo di processore totale che il sistema ha effettivamente utilizzato per
1882 eseguire un certo processo, questo viene chiamato anche \textit{CPU time} o
1883 \textsl{tempo di CPU}. Si può ottenere un riassunto dei valori di questi tempi
1884 quando si esegue un qualsiasi programma lanciando quest'ultimo come argomento
1885 del comando \cmd{time}.
1886
1887
1888
1889 \subsection{La gestione del \textit{process time}}
1890 \label{sec:sys_cpu_times}
1891
1892 \itindbeg{process~time}
1893
1894 Di norma tutte le operazioni del sistema fanno sempre riferimento al
1895 \itindend{calendar~time} \textit{calendar time}, l'uso del \textit{process
1896   time} è riservato a quei casi in cui serve conoscere i tempi di esecuzione
1897 di un processo (ad esempio per valutarne l'efficienza). In tal caso infatti
1898 fare ricorso al \textit{calendar time} è inutile in quanto il tempo può essere
1899 trascorso mentre un altro processo era in esecuzione o in attesa del risultato
1900 di una operazione di I/O.
1901
1902 La funzione più semplice per leggere il \textit{process time} di un processo è
1903 \funcd{clock}, che da una valutazione approssimativa del tempo di CPU
1904 utilizzato dallo stesso; il suo prototipo è:
1905 \begin{prototype}{time.h}{clock\_t clock(void)}
1906   Legge il valore corrente del tempo di CPU.
1907   
1908   \bodydesc{La funzione ritorna il tempo di CPU usato dal programma e -1 in
1909     caso di errore.}
1910 \end{prototype}
1911
1912 La funzione restituisce il tempo in \itindex{clock~tick} \texttt{clock tick},
1913 quindi se si vuole il tempo in secondi occorre dividere il risultato per la
1914 costante \const{CLOCKS\_PER\_SEC}.\footnote{le \acr{glibc} seguono lo standard
1915   ANSI C, POSIX richiede che \const{CLOCKS\_PER\_SEC} sia definito pari a
1916   1000000 indipendentemente dalla risoluzione del timer di sistema.} In genere
1917 \type{clock\_t} viene rappresentato come intero a 32 bit, il che comporta un
1918 valore massimo corrispondente a circa 72 minuti, dopo i quali il contatore
1919 riprenderà lo stesso valore iniziale.
1920
1921 Come accennato in sez.~\ref{sec:sys_unix_time} il tempo di CPU è la somma di
1922 altri due tempi, l'\textit{user time} ed il \textit{system time} che sono
1923 quelli effettivamente mantenuti dal kernel per ciascun processo. Questi
1924 possono essere letti attraverso la funzione \funcd{times}, il cui prototipo è:
1925 \begin{prototype}{sys/times.h}{clock\_t times(struct tms *buf)}
1926   Legge in \param{buf} il valore corrente dei tempi di processore.
1927   
1928   \bodydesc{La funzione ritorna il numero di \itindex{clock~tick}
1929     \textit{clock tick} dall'avvio del sistema in caso di successo e -1 in
1930     caso di errore.}
1931 \end{prototype}
1932
1933 La funzione restituisce i valori di \textit{process time} del processo
1934 corrente in una struttura di tipo \struct{tms}, la cui definizione è riportata
1935 in fig.~\ref{fig:sys_tms_struct}. La struttura prevede quattro campi; i primi
1936 due, \var{tms\_utime} e \var{tms\_stime}, sono l'\textit{user time} ed il
1937 \textit{system time} del processo, così come definiti in
1938 sez.~\ref{sec:sys_unix_time}.
1939
1940 \begin{figure}[!htb]
1941   \footnotesize
1942   \centering
1943   \begin{minipage}[c]{15cm}
1944     \includestruct{listati/tms.h}
1945   \end{minipage} 
1946   \normalsize 
1947   \caption{La struttura \structd{tms} dei tempi di processore associati a un
1948     processo.} 
1949   \label{fig:sys_tms_struct}
1950 \end{figure}
1951
1952 Gli altri due campi mantengono rispettivamente la somma dell'\textit{user
1953   time} ed del \textit{system time} di tutti i processi figli che sono
1954 terminati; il kernel cioè somma in \var{tms\_cutime} il valore di
1955 \var{tms\_utime} e \var{tms\_cutime} per ciascun figlio del quale è stato
1956 ricevuto lo stato di terminazione, e lo stesso vale per \var{tms\_cstime}.
1957
1958 Si tenga conto che l'aggiornamento di \var{tms\_cutime} e \var{tms\_cstime}
1959 viene eseguito solo quando una chiamata a \func{wait} o \func{waitpid} è
1960 ritornata. Per questo motivo se un processo figlio termina prima di ricevere
1961 lo stato di terminazione di tutti i suoi figli, questi processi
1962 ``\textsl{nipoti}'' non verranno considerati nel calcolo di questi tempi.
1963
1964 \itindend{process~time}
1965
1966
1967 \subsection{Le funzioni per il \textit{calendar time}}
1968 \label{sec:sys_time_base}
1969
1970 \itindbeg{calendar~time}
1971
1972 Come anticipato in sez.~\ref{sec:sys_unix_time} il \textit{calendar time} è
1973 mantenuto dal kernel in una variabile di tipo \type{time\_t}, che usualmente
1974 corrisponde ad un tipo elementare (in Linux è definito come \ctyp{long int},
1975 che di norma corrisponde a 32 bit).  Il valore corrente del \textit{calendar
1976   time}, che indicheremo come \textsl{tempo di sistema}, può essere ottenuto
1977 con la funzione \funcd{time} che lo restituisce nel suddetto formato; il suo
1978 prototipo è:
1979 \begin{prototype}{time.h}{time\_t time(time\_t *t)}
1980   Legge il valore corrente del \textit{calendar time}.
1981   
1982   \bodydesc{La funzione ritorna il valore del \textit{calendar time} in caso
1983     di successo e -1 in caso di errore, che può essere solo \errval{EFAULT}.}
1984 \end{prototype}
1985 \noindent dove \param{t}, se non nullo, deve essere  l'indirizzo di una
1986 variabile su cui duplicare il valore di ritorno.
1987
1988 Analoga a \func{time} è la funzione \funcd{stime} che serve per effettuare
1989 l'operazione inversa, e cioè per impostare il tempo di sistema qualora questo
1990 sia necessario; il suo prototipo è:
1991 \begin{prototype}{time.h}{int stime(time\_t *t)}
1992   Imposta a \param{t} il valore corrente del \textit{calendar time}.
1993   
1994   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
1995     che può essere \errval{EFAULT} o \errval{EPERM}.}
1996 \end{prototype}
1997 \noindent dato che modificare l'ora ha un impatto su tutto il sistema 
1998 il cambiamento dell'orologio è una operazione privilegiata e questa funzione
1999 può essere usata solo da un processo con i privilegi di amministratore,
2000 altrimenti la chiamata fallirà con un errore di \errcode{EPERM}.
2001
2002 Data la scarsa precisione nell'uso di \type{time\_t} (che ha una risoluzione
2003 massima di un secondo) quando si devono effettuare operazioni sui tempi di
2004 norma l'uso delle funzioni precedenti è sconsigliato, ed esse sono di solito
2005 sostituite da \funcd{gettimeofday} e \funcd{settimeofday},\footnote{le due
2006   funzioni \func{time} e \func{stime} sono più antiche e derivano da SVr4,
2007   \func{gettimeofday} e \func{settimeofday} sono state introdotte da BSD, ed
2008   in BSD4.3 sono indicate come sostitute delle precedenti.} i cui prototipi
2009 sono:
2010 \begin{functions}
2011   \headdecl{sys/time.h}
2012   \headdecl{time.h}
2013   
2014   \funcdecl{int gettimeofday(struct timeval *tv, struct timezone *tz)} 
2015
2016   Legge il tempo corrente del sistema.
2017   
2018   \funcdecl{int settimeofday(const struct timeval *tv, const struct timezone
2019     *tz)}
2020   
2021   Imposta il tempo di sistema.
2022   
2023   \bodydesc{Entrambe le funzioni restituiscono 0 in caso di successo e -1 in
2024     caso di errore, nel qual caso \var{errno} può assumere i valori
2025     \errval{EINVAL} \errval{EFAULT} e per \func{settimeofday} anche
2026     \errval{EPERM}.}
2027 \end{functions}
2028
2029 Queste funzioni utilizzano una struttura di tipo \struct{timeval}, la cui
2030 definizione, insieme a quella della analoga \struct{timespec}, è riportata in
2031 fig.~\ref{fig:sys_timeval_struct}. Le \acr{glibc} infatti forniscono queste due
2032 rappresentazioni alternative del \textit{calendar time} che rispetto a
2033 \type{time\_t} consentono rispettivamente precisioni del microsecondo e del
2034 nanosecondo.\footnote{la precisione è solo teorica, la precisione reale della
2035   misura del tempo dell'orologio di sistema non dipende dall'uso di queste
2036   strutture.}
2037
2038 \begin{figure}[!htb]
2039   \footnotesize \centering
2040   \begin{minipage}[c]{15cm}
2041     \includestruct{listati/timeval.h}
2042   \end{minipage} 
2043   \normalsize 
2044   \caption{Le strutture \structd{timeval} e \structd{timespec} usate per una
2045     rappresentazione ad alta risoluzione del \textit{calendar time}.}
2046   \label{fig:sys_timeval_struct}
2047 \end{figure}
2048
2049 Come nel caso di \func{stime} anche \func{settimeofday} (la cosa continua a
2050 valere per qualunque funzione che vada a modificare l'orologio di sistema,
2051 quindi anche per quelle che tratteremo in seguito) può essere utilizzata solo
2052 da un processo coi privilegi di amministratore.
2053
2054 Il secondo argomento di entrambe le funzioni è una struttura
2055 \struct{timezone}, che storicamente veniva utilizzata per specificare appunto
2056 la \textit{time zone}, cioè l'insieme del fuso orario e delle convenzioni per
2057 l'ora legale che permettevano il passaggio dal tempo universale all'ora
2058 locale. Questo argomento oggi è obsoleto ed in Linux non è mai stato
2059 utilizzato; esso non è supportato né dalle vecchie \textsl{libc5}, né dalle
2060 \textsl{glibc}: pertanto quando si chiama questa funzione deve essere sempre
2061 impostato a \val{NULL}.
2062
2063 Modificare l'orologio di sistema con queste funzioni è comunque problematico,
2064 in quanto esse effettuano un cambiamento immediato. Questo può creare dei
2065 buchi o delle ripetizioni nello scorrere dell'orologio di sistema, con
2066 conseguenze indesiderate.  Ad esempio se si porta avanti l'orologio si possono
2067 perdere delle esecuzioni di \cmd{cron} programmate nell'intervallo che si è
2068 saltato. Oppure se si porta indietro l'orologio si possono eseguire due volte
2069 delle operazioni previste nell'intervallo di tempo che viene ripetuto. 
2070
2071 Per questo motivo la modalità più corretta per impostare l'ora è quella di
2072 usare la funzione \funcd{adjtime}, il cui prototipo è:
2073 \begin{prototype}{sys/time.h}
2074 {int adjtime(const struct timeval *delta, struct timeval *olddelta)} 
2075   
2076   Aggiusta del valore \param{delta} l'orologio di sistema.
2077   
2078   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2079     errore, nel qual caso \var{errno} assumerà il valore \errcode{EPERM}.}
2080 \end{prototype}
2081
2082 Questa funzione permette di avere un aggiustamento graduale del tempo di
2083 sistema in modo che esso sia sempre crescente in maniera monotona. Il valore
2084 di \param{delta} esprime il valore di cui si vuole spostare l'orologio; se è
2085 positivo l'orologio sarà accelerato per un certo tempo in modo da guadagnare
2086 il tempo richiesto, altrimenti sarà rallentato. Il secondo argomento viene
2087 usato, se non nullo, per ricevere il valore dell'ultimo aggiustamento
2088 effettuato.
2089
2090
2091 \begin{figure}[!htb]
2092   \footnotesize \centering
2093   \begin{minipage}[c]{15cm}
2094     \includestruct{listati/timex.h}
2095   \end{minipage} 
2096   \normalsize 
2097   \caption{La struttura \structd{timex} per il controllo dell'orologio di
2098     sistema.} 
2099   \label{fig:sys_timex_struct}
2100 \end{figure}
2101
2102 Linux poi prevede un'altra funzione, che consente un aggiustamento molto più
2103 dettagliato del tempo, permettendo ad esempio anche di modificare anche la
2104 velocità dell'orologio di sistema.  La funzione è \funcd{adjtimex} ed il suo
2105 prototipo è:
2106 \begin{prototype}{sys/timex.h}
2107 {int adjtimex(struct timex *buf)} 
2108   
2109   Aggiusta del valore \param{delta} l'orologio di sistema.
2110   
2111   \bodydesc{La funzione restituisce lo stato dell'orologio (un valore $>0$) in
2112     caso di successo e -1 in caso di errore, nel qual caso \var{errno}
2113     assumerà i valori \errval{EFAULT}, \errval{EINVAL} ed \errval{EPERM}.}
2114 \end{prototype}
2115
2116 La funzione richiede una struttura di tipo \struct{timex}, la cui definizione,
2117 così come effettuata in \file{sys/timex.h}, è riportata in
2118 fig.~\ref{fig:sys_timex_struct}. L'azione della funzione dipende dal valore del
2119 campo \var{mode}, che specifica quale parametro dell'orologio di sistema,
2120 specificato in un opportuno campo di \struct{timex}, deve essere impostato. Un
2121 valore nullo serve per leggere i parametri correnti; i valori diversi da zero
2122 devono essere specificati come OR binario delle costanti riportate in
2123 tab.~\ref{tab:sys_timex_mode}.
2124
2125 La funzione utilizza il meccanismo di David L. Mills, descritto
2126 nell'\href{http://www.ietf.org/rfc/rfc1305.txt}{RFC~1305}, che è alla base del
2127 protocollo NTP. La funzione è specifica di Linux e non deve essere usata se la
2128 portabilità è un requisito, le \acr{glibc} provvedono anche un suo omonimo
2129 \func{ntp\_adjtime}.  La trattazione completa di questa funzione necessita di
2130 una lettura approfondita del meccanismo descritto nell'RFC~1305, ci limitiamo
2131 a descrivere in tab.~\ref{tab:sys_timex_mode} i principali valori utilizzabili
2132 per il campo \var{mode}, un elenco più dettagliato del significato dei vari
2133 campi della struttura \struct{timex} può essere ritrovato in \cite{glibc}.
2134
2135 \begin{table}[!htb]
2136   \footnotesize
2137   \centering
2138   \begin{tabular}[c]{|l|c|p{8.5cm}|}
2139     \hline
2140     \textbf{Nome} & \textbf{Valore} & \textbf{Significato}\\
2141     \hline
2142     \hline
2143     \const{ADJ\_OFFSET}         & 0x0001 & Imposta la differenza fra il tempo
2144                                            reale e l'orologio di sistema: 
2145                                            deve essere indicata in microsecondi
2146                                            nel campo \var{offset} di
2147                                            \struct{timex}.\\ 
2148     \const{ADJ\_FREQUENCY}      & 0x0002 & Imposta la differenze in frequenza
2149                                            fra il tempo reale e l'orologio di
2150                                            sistema: deve essere indicata
2151                                            in parti per milione nel campo
2152                                            \var{frequency} di \struct{timex}.\\
2153     \const{ADJ\_MAXERROR}       & 0x0004 & Imposta il valore massimo 
2154                                            dell'errore
2155                                            sul tempo, espresso in microsecondi 
2156                                            nel campo \var{maxerror} di
2157                                            \struct{timex}.\\ 
2158     \const{ADJ\_ESTERROR}       & 0x0008 & Imposta la stima dell'errore
2159                                            sul tempo, espresso in microsecondi 
2160                                            nel campo \var{esterror} di
2161                                            \struct{timex}.\\
2162     \const{ADJ\_STATUS}         & 0x0010 & Imposta alcuni
2163                                            valori di stato interni usati dal
2164                                            sistema nella gestione
2165                                            dell'orologio specificati nel campo
2166                                            \var{status} di \struct{timex}.\\ 
2167     \const{ADJ\_TIMECONST}      & 0x0020 & Imposta la larghezza di banda del 
2168                                            PLL implementato dal kernel,
2169                                            specificato nel campo
2170                                            \var{constant} di \struct{timex}.\\ 
2171     \const{ADJ\_TICK}           & 0x4000 & Imposta il valore dei \textit{tick}
2172                                            \itindex{clock~tick} del timer in
2173                                            microsecondi, espresso nel campo
2174                                            \var{tick} di \struct{timex}.\\  
2175     \const{ADJ\_OFFSET\_SINGLESHOT}&0x8001&Imposta uno spostamento una tantum 
2176                                            dell'orologio secondo il valore del
2177                                            campo \var{offset} simulando il
2178                                            comportamento di \func{adjtime}.\\ 
2179     \hline
2180   \end{tabular}
2181   \caption{Costanti per l'assegnazione del valore del campo \var{mode} della
2182     struttura \struct{timex}.} 
2183   \label{tab:sys_timex_mode}
2184 \end{table}
2185
2186 Il valore delle costanti per \var{mode} può essere anche espresso, secondo la
2187 sintassi specificata per la forma equivalente di questa funzione definita come
2188 \func{ntp\_adjtime}, utilizzando il prefisso \code{MOD} al posto di
2189 \code{ADJ}.
2190
2191 \begin{table}[htb]
2192   \footnotesize
2193   \centering
2194   \begin{tabular}[c]{|l|c|l|}
2195     \hline
2196     \textbf{Nome} & \textbf{Valore} & \textbf{Significato}\\
2197     \hline
2198     \hline
2199     \const{TIME\_OK}   & 0 & L'orologio è sincronizzato.\\ 
2200     \const{TIME\_INS}  & 1 & Insert leap second.\\ 
2201     \const{TIME\_DEL}  & 2 & Delete leap second.\\ 
2202     \const{TIME\_OOP}  & 3 & Leap second in progress.\\ 
2203     \const{TIME\_WAIT} & 4 & Leap second has occurred.\\ 
2204     \const{TIME\_BAD}  & 5 & L'orologio non è sincronizzato.\\ 
2205     \hline
2206   \end{tabular}
2207   \caption{Possibili valori di ritorno di \func{adjtimex}.} 
2208   \label{tab:sys_adjtimex_return}
2209 \end{table}
2210
2211 La funzione ritorna un valore positivo che esprime lo stato dell'orologio di
2212 sistema; questo può assumere i valori riportati in
2213 tab.~\ref{tab:sys_adjtimex_return}.  Un valore di -1 viene usato per riportare
2214 un errore; al solito se si cercherà di modificare l'orologio di sistema
2215 (specificando un \var{mode} diverso da zero) senza avere i privilegi di
2216 amministratore si otterrà un errore di \errcode{EPERM}.
2217
2218
2219
2220 \subsection{La gestione delle date.}
2221 \label{sec:sys_date}
2222
2223 Le funzioni viste al paragrafo precedente sono molto utili per trattare le
2224 operazioni elementari sui tempi, però le rappresentazioni del tempo ivi
2225 illustrate, se han senso per specificare un intervallo, non sono molto
2226 intuitive quando si deve esprimere un'ora o una data.  Per questo motivo è
2227 stata introdotta una ulteriore rappresentazione, detta \textit{broken-down
2228   time}, che permette appunto di \textsl{suddividere} il \textit{calendar
2229   time} usuale in ore, minuti, secondi, ecc.
2230
2231 Questo viene effettuato attraverso una opportuna struttura \struct{tm}, la cui
2232 definizione è riportata in fig.~\ref{fig:sys_tm_struct}, ed è in genere questa
2233 struttura che si utilizza quando si deve specificare un tempo a partire dai
2234 dati naturali (ora e data), dato che essa consente anche di trattare la
2235 gestione del fuso orario e dell'ora legale.\footnote{in realtà i due campi
2236   \var{tm\_gmtoff} e \var{tm\_zone} sono estensioni previste da BSD e dalle
2237   \acr{glibc}, che, quando è definita \macro{\_BSD\_SOURCE}, hanno la forma in
2238   fig.~\ref{fig:sys_tm_struct}.}
2239
2240 Le funzioni per la gestione del \textit{broken-down time} sono varie e vanno
2241 da quelle usate per convertire gli altri formati in questo, usando o meno
2242 l'ora locale o il tempo universale, a quelle per trasformare il valore di un
2243 tempo in una stringa contenente data ed ora, i loro prototipi sono:
2244 \begin{functions}
2245   \headdecl{time.h}
2246   \funcdecl{char *\funcd{asctime}(const struct tm *tm)} 
2247   Produce una stringa con data e ora partendo da un valore espresso in
2248   \textit{broken-down time}.
2249
2250   \funcdecl{char *\funcd{ctime}(const time\_t *timep)} 
2251   Produce una stringa con data e ora partendo da un valore espresso in
2252   in formato \type{time\_t}.
2253   
2254   \funcdecl{struct tm *\funcd{gmtime}(const time\_t *timep)} 
2255   Converte il \textit{calendar time} dato in formato \type{time\_t} in un
2256   \textit{broken-down time} espresso in UTC.
2257
2258   \funcdecl{struct tm *\funcd{localtime}(const time\_t *timep)} 
2259   Converte il \textit{calendar time} dato in formato \type{time\_t} in un
2260   \textit{broken-down time} espresso nell'ora locale.
2261
2262   \funcdecl{time\_t \funcd{mktime}(struct tm *tm)}   
2263   Converte il \textit{broken-down time} in formato \type{time\_t}.
2264   
2265   \bodydesc{Tutte le funzioni restituiscono un puntatore al risultato in caso
2266   di successo e \val{NULL} in caso di errore, tranne che \func{mktime} che
2267   restituisce direttamente il valore o -1 in caso di errore.}
2268 \end{functions}
2269
2270 \begin{figure}[!htb]
2271   \footnotesize \centering
2272   \begin{minipage}[c]{15cm}
2273     \includestruct{listati/tm.h}
2274   \end{minipage} 
2275   \normalsize 
2276   \caption{La struttura \structd{tm} per una rappresentazione del tempo in
2277     termini di ora, minuti, secondi, ecc.}
2278   \label{fig:sys_tm_struct}
2279 \end{figure}
2280
2281
2282
2283 Le prime due funzioni, \func{asctime} e \func{ctime} servono per poter
2284 stampare in forma leggibile un tempo; esse restituiscono il puntatore ad una
2285 stringa, allocata staticamente, nella forma:
2286 \begin{verbatim}
2287 "Wed Jun 30 21:49:08 1993\n"
2288 \end{verbatim}
2289 e impostano anche la variabile \var{tzname} con l'informazione della
2290 \textit{time zone} corrente; \func{ctime} è banalmente definita in termini di
2291 \func{asctime} come \code{asctime(localtime(t)}. Dato che l'uso di una stringa
2292 statica rende le funzioni non \index{funzioni!rientranti} rientranti POSIX.1c
2293 e SUSv2 prevedono due sostitute \index{funzioni!rientranti} rientranti, il cui
2294 nome è al solito ottenuto aggiungendo un \code{\_r}, che prendono un secondo
2295 argomento \code{char *buf}, in cui l'utente deve specificare il buffer su cui
2296 la stringa deve essere copiata (deve essere di almeno 26 caratteri).
2297
2298 Le altre tre funzioni, \func{gmtime}, \func{localtime} e \func{mktime} servono
2299 per convertire il tempo dal formato \type{time\_t} a quello di \struct{tm} e
2300 viceversa; \func{gmtime} effettua la conversione usando il tempo coordinato
2301 universale (UTC), cioè l'ora di Greenwich; mentre \func{localtime} usa l'ora
2302 locale; \func{mktime} esegue la conversione inversa.  
2303
2304 Anche in questo caso le prime due funzioni restituiscono l'indirizzo di una
2305 struttura allocata staticamente, per questo sono state definite anche altre
2306 due versioni \index{funzioni!rientranti} rientranti (con la solita estensione
2307 \code{\_r}), che prevedono un secondo argomento \code{struct tm *result},
2308 fornito dal chiamante, che deve preallocare la struttura su cui sarà
2309 restituita la conversione.
2310
2311 Come mostrato in fig.~\ref{fig:sys_tm_struct} il \textit{broken-down time}
2312 permette di tenere conto anche della differenza fra tempo universale e ora
2313 locale, compresa l'eventuale ora legale. Questo viene fatto attraverso le tre
2314 variabili globali mostrate in fig.~\ref{fig:sys_tzname}, cui si accede quando
2315 si include \file{time.h}. Queste variabili vengono impostate quando si chiama
2316 una delle precedenti funzioni di conversione, oppure invocando direttamente la
2317 funzione \funcd{tzset}, il cui prototipo è:
2318 \begin{prototype}{sys/timex.h}
2319 {void tzset(void)} 
2320   
2321   Imposta le variabili globali della \textit{time zone}.
2322   
2323   \bodydesc{La funzione non ritorna niente e non dà errori.}
2324 \end{prototype}
2325
2326 La funzione inizializza le variabili di fig.~\ref{fig:sys_tzname} a partire dal
2327 valore della variabile di ambiente \const{TZ}, se quest'ultima non è definita
2328 verrà usato il file \conffile{/etc/localtime}.
2329
2330 \begin{figure}[!htb]
2331   \footnotesize
2332   \centering
2333   \begin{minipage}[c]{15cm}
2334     \includestruct{listati/time_zone_var.c}
2335   \end{minipage} 
2336   \normalsize 
2337   \caption{Le variabili globali usate per la gestione delle \textit{time
2338       zone}.}  
2339   \label{fig:sys_tzname}
2340 \end{figure}
2341
2342 La variabile \var{tzname} contiene due stringhe, che indicano i due nomi
2343 standard della \textit{time zone} corrente. La prima è il nome per l'ora
2344 solare, la seconda per l'ora legale.\footnote{anche se sono indicati come
2345   \code{char *} non è il caso di modificare queste stringhe.} La variabile
2346 \var{timezone} indica la differenza di fuso orario in secondi, mentre
2347 \var{daylight} indica se è attiva o meno l'ora legale. 
2348
2349 Benché la funzione \func{asctime} fornisca la modalità più immediata per
2350 stampare un tempo o una data, la flessibilità non fa parte delle sue
2351 caratteristiche; quando si vuole poter stampare solo una parte (l'ora, o il
2352 giorno) di un tempo si può ricorrere alla più sofisticata \funcd{strftime},
2353 il cui prototipo è:
2354 \begin{prototype}{time.h}
2355 {size\_t strftime(char *s, size\_t max, const char *format, 
2356   const struct tm *tm)}
2357   
2358 Stampa il tempo \param{tm} nella stringa \param{s} secondo il formato
2359 \param{format}.
2360   
2361   \bodydesc{La funzione ritorna il numero di caratteri stampati in \param{s},
2362   altrimenti restituisce 0.}
2363 \end{prototype}
2364
2365 La funzione converte opportunamente il tempo \param{tm} in una stringa di
2366 testo da salvare in \param{s}, purché essa sia di dimensione, indicata da
2367 \param{size}, sufficiente. I caratteri generati dalla funzione vengono
2368 restituiti come valore di ritorno, ma non tengono conto del terminatore
2369 finale, che invece viene considerato nel computo della dimensione; se
2370 quest'ultima è eccessiva viene restituito 0 e lo stato di \param{s} è
2371 indefinito.
2372
2373 \begin{table}[htb]
2374   \footnotesize
2375   \centering
2376   \begin{tabular}[c]{|c|l|p{6cm}|}
2377     \hline
2378     \textbf{Modificatore} & \textbf{Esempio} & \textbf{Significato}\\
2379     \hline
2380     \hline
2381     \var{\%a}&\texttt{Wed}        & Nome del giorno, abbreviato.\\ 
2382     \var{\%A}&\texttt{Wednesday}  & Nome del giorno, completo.\\ 
2383     \var{\%b}&\texttt{Apr}        & Nome del mese, abbreviato.\\ 
2384     \var{\%B}&\texttt{April}      & Nome del mese, completo.\\ 
2385     \var{\%c}&\texttt{Wed Apr 24 18:40:50 2002}& Data e ora.\\ 
2386     \var{\%d}&\texttt{24}         & Giorno del mese.\\ 
2387     \var{\%H}&\texttt{18}         & Ora del giorno, da 0 a 24.\\ 
2388     \var{\%I}&\texttt{06}         & Ora del giorno, da 0 a 12.\\ 
2389     \var{\%j}&\texttt{114}        & Giorno dell'anno.\\ 
2390     \var{\%m}&\texttt{04}         & Mese dell'anno.\\ 
2391     \var{\%M}&\texttt{40}         & Minuto.\\ 
2392     \var{\%p}&\texttt{PM}         & AM/PM.\\ 
2393     \var{\%S}&\texttt{50}         & Secondo.\\ 
2394     \var{\%U}&\texttt{16}         & Settimana dell'anno (partendo dalla
2395                                     domenica).\\ 
2396     \var{\%w}&\texttt{3}          & Giorno della settimana.  \\ 
2397     \var{\%W}&\texttt{16}         & Settimana dell'anno (partendo dal
2398                                     lunedì).\\ 
2399     \var{\%x}&\texttt{04/24/02}   & La data.\\ 
2400     \var{\%X}&\texttt{18:40:50}   & L'ora.\\ 
2401     \var{\%y}&\texttt{02}         & Anno nel secolo.\\ 
2402     \var{\%Y}&\texttt{2002}       & Anno.\\ 
2403     \var{\%Z}&\texttt{CEST}       & Nome della \textit{timezone}.\\ 
2404     \var{\%\%}&\texttt{\%}        & Il carattere \%.\\ 
2405     \hline
2406   \end{tabular}
2407   \caption{Valori previsti dallo standard ANSI C per modificatore della
2408     stringa di formato di \func{strftime}.}  
2409   \label{tab:sys_strftime_format}
2410 \end{table}
2411
2412 Il risultato della funzione è controllato dalla stringa di formato
2413 \param{format}, tutti i caratteri restano invariati eccetto \texttt{\%} che
2414 viene utilizzato come modificatore; alcuni\footnote{per la precisione quelli
2415   definiti dallo standard ANSI C, che sono anche quelli riportati da POSIX.1;
2416   le \acr{glibc} provvedono tutte le estensioni introdotte da POSIX.2 per il
2417   comando \cmd{date}, i valori introdotti da SVID3 e ulteriori estensioni GNU;
2418   l'elenco completo dei possibili valori è riportato nella pagina di manuale
2419   della funzione.} dei possibili valori che esso può assumere sono riportati
2420 in tab.~\ref{tab:sys_strftime_format}. La funzione tiene conto anche della
2421 presenza di una localizzazione per stampare in maniera adeguata i vari nomi.
2422
2423 \itindend{calendar~time}
2424
2425
2426 \section{La gestione degli errori}
2427 \label{sec:sys_errors}
2428
2429 In questa sezione esamineremo le caratteristiche principali della gestione
2430 degli errori in un sistema unix-like. Infatti a parte il caso particolare di
2431 alcuni segnali (che tratteremo in cap.~\ref{cha:signals}) in un sistema
2432 unix-like il kernel non avvisa mai direttamente un processo dell'occorrenza di
2433 un errore nell'esecuzione di una funzione, ma di norma questo viene riportato
2434 semplicemente usando un opportuno valore di ritorno della funzione invocata.
2435 Inoltre il sistema di classificazione degli errori è basato sull'architettura
2436 a processi, e presenta una serie di problemi nel caso lo si debba usare con i
2437 \itindex{thread} \textit{thread}.
2438
2439
2440 \subsection{La variabile \var{errno}}
2441 \label{sec:sys_errno}
2442
2443 Quasi tutte le funzioni delle librerie del C sono in grado di individuare e
2444 riportare condizioni di errore, ed è una norma fondamentale di buona
2445 programmazione controllare \textbf{sempre} che le funzioni chiamate si siano
2446 concluse correttamente.
2447
2448 In genere le funzioni di libreria usano un valore speciale per indicare che
2449 c'è stato un errore. Di solito questo valore è -1 o un puntatore nullo o la
2450 costante \val{EOF} (a seconda della funzione); ma questo valore segnala solo
2451 che c'è stato un errore, non il tipo di errore.
2452
2453 Per riportare il tipo di errore il sistema usa la variabile globale
2454 \var{errno},\footnote{l'uso di una variabile globale può comportare alcuni
2455   problemi (ad esempio nel caso dei \itindex{thread} \textit{thread}) ma lo
2456   standard ISO C consente anche di definire \var{errno} come un
2457   \textit{modifiable lvalue}, quindi si può anche usare una macro, e questo è
2458   infatti il modo usato da Linux per renderla locale ai singoli
2459   \itindex{thread} \textit{thread}.}  definita nell'header \file{errno.h}; la
2460 variabile è in genere definita come \direct{volatile} dato che può essere
2461 cambiata in modo asincrono da un segnale (si veda sez.~\ref{sec:sig_sigchld}
2462 per un esempio, ricordando quanto trattato in sez.~\ref{sec:proc_race_cond}),
2463 ma dato che un gestore di segnale scritto bene salva e ripristina il valore
2464 della variabile, di questo non è necessario preoccuparsi nella programmazione
2465 normale.
2466
2467 I valori che può assumere \var{errno} sono riportati in app.~\ref{cha:errors},
2468 nell'header \file{errno.h} sono anche definiti i nomi simbolici per le
2469 costanti numeriche che identificano i vari errori; essi iniziano tutti per
2470 \val{E} e si possono considerare come nomi riservati. In seguito faremo
2471 sempre riferimento a tali valori, quando descriveremo i possibili errori
2472 restituiti dalle funzioni. Il programma di esempio \cmd{errcode} stampa il
2473 codice relativo ad un valore numerico con l'opzione \cmd{-l}.
2474
2475 Il valore di \var{errno} viene sempre impostato a zero all'avvio di un
2476 programma, gran parte delle funzioni di libreria impostano \var{errno} ad un
2477 valore diverso da zero in caso di errore. Il valore è invece indefinito in
2478 caso di successo, perché anche se una funzione ha successo, può chiamarne
2479 altre al suo interno che falliscono, modificando così \var{errno}.
2480
2481 Pertanto un valore non nullo di \var{errno} non è sintomo di errore (potrebbe
2482 essere il risultato di un errore precedente) e non lo si può usare per
2483 determinare quando o se una chiamata a funzione è fallita.  La procedura da
2484 seguire è sempre quella di controllare \var{errno} immediatamente dopo aver
2485 verificato il fallimento della funzione attraverso il suo codice di ritorno.
2486
2487
2488 \subsection{Le funzioni \func{strerror} e \func{perror}}
2489 \label{sec:sys_strerror}
2490
2491 Benché gli errori siano identificati univocamente dal valore numerico di
2492 \var{errno} le librerie provvedono alcune funzioni e variabili utili per
2493 riportare in opportuni messaggi le condizioni di errore verificatesi.  La
2494 prima funzione che si può usare per ricavare i messaggi di errore è
2495 \funcd{strerror}, il cui prototipo è:
2496 \begin{prototype}{string.h}{char *strerror(int errnum)} 
2497   Restituisce una stringa con il messaggio di errore relativo ad
2498   \param{errnum}.
2499   
2500   \bodydesc{La funzione ritorna il puntatore ad una stringa di errore.}
2501 \end{prototype}
2502
2503
2504 La funzione ritorna il puntatore alla stringa contenente il messaggio di
2505 errore corrispondente al valore di \param{errnum}, se questo non è un valore
2506 valido verrà comunque restituita una stringa valida contenente un messaggio
2507 che dice che l'errore è sconosciuto, e \var{errno} verrà modificata assumendo
2508 il valore \errval{EINVAL}.
2509
2510 In generale \func{strerror} viene usata passando \var{errno} come argomento,
2511 ed il valore di quest'ultima non verrà modificato. La funzione inoltre tiene
2512 conto del valore della variabile di ambiente \val{LC\_MESSAGES} per usare le
2513 appropriate traduzioni dei messaggi d'errore nella localizzazione presente.
2514
2515 La funzione utilizza una stringa statica che non deve essere modificata dal
2516 programma; essa è utilizzabile solo fino ad una chiamata successiva a
2517 \func{strerror} o \func{perror}, nessun'altra funzione di libreria tocca
2518 questa stringa. In ogni caso l'uso di una stringa statica rende la funzione
2519 non \index{funzioni!rientranti} rientrante, per cui nel caso si usino i
2520 \itindex{thread} \textit{thread} le librerie forniscono\footnote{questa
2521   funzione è la versione prevista dalle \acr{glibc}, ed effettivamente
2522   definita in \file{string.h}, ne esiste una analoga nello standard SUSv3
2523   (quella riportata dalla pagina di manuale), che restituisce \code{int} al
2524   posto di \code{char *}, e che tronca la stringa restituita a
2525   \param{size}.}  una apposita versione \index{funzioni!rientranti} rientrante
2526 \func{strerror\_r}, il cui prototipo è:
2527 \begin{prototype}{string.h}
2528   {char * strerror\_r(int errnum, char *buf, size\_t size)} 
2529   
2530   Restituisce una stringa con il messaggio di errore relativo ad
2531   \param{errnum}.
2532  
2533   \bodydesc{La funzione restituisce l'indirizzo del messaggio in caso di
2534     successo e \val{NULL} in caso di errore; nel qual caso \var{errno}
2535     assumerà i valori:
2536   \begin{errlist}
2537   \item[\errcode{EINVAL}] si è specificato un valore di \param{errnum} non
2538     valido.
2539   \item[\errcode{ERANGE}] la lunghezza di \param{buf} è insufficiente a
2540     contenere la stringa di errore.
2541   \end{errlist}}
2542 \end{prototype}
2543 \noindent
2544
2545 La funzione è analoga a \func{strerror} ma restituisce la stringa di errore
2546 nel buffer \param{buf} che il singolo \itindex{thread} \textit{thread} deve
2547 allocare autonomamente per evitare i problemi connessi alla condivisione del
2548 buffer statico. Il messaggio è copiato fino alla dimensione massima del
2549 buffer, specificata dall'argomento
2550 \param{size}, che deve comprendere pure il carattere di terminazione;
2551 altrimenti la stringa viene troncata.
2552
2553 Una seconda funzione usata per riportare i codici di errore in maniera
2554 automatizzata sullo standard error (vedi sez.~\ref{sec:file_std_descr}) è
2555 \funcd{perror}, il cui prototipo è:
2556 \begin{prototype}{stdio.h}{void perror(const char *message)} 
2557   Stampa il messaggio di errore relativo al valore corrente di \var{errno}
2558   sullo standard error; preceduto dalla stringa \param{message}.
2559 \end{prototype}
2560
2561 I messaggi di errore stampati sono gli stessi di \func{strerror}, (riportati
2562 in app.~\ref{cha:errors}), e, usando il valore corrente di \var{errno}, si
2563 riferiscono all'ultimo errore avvenuto. La stringa specificata con
2564 \param{message} viene stampato prima del messaggio d'errore, seguita dai due
2565 punti e da uno spazio, il messaggio è terminato con un a capo.
2566
2567 Il messaggio può essere riportato anche usando le due variabili globali:
2568 \includecodesnip{listati/errlist.c} 
2569 dichiarate in \file{errno.h}. La prima contiene i puntatori alle stringhe di
2570 errore indicizzati da \var{errno}; la seconda esprime il valore più alto per
2571 un codice di errore, l'utilizzo di questa stringa è sostanzialmente
2572 equivalente a quello di \func{strerror}.
2573
2574 \begin{figure}[!htb]
2575   \footnotesize \centering
2576   \begin{minipage}[c]{15cm}
2577     \includecodesample{listati/errcode_mess.c}
2578   \end{minipage}
2579   \normalsize
2580   \caption{Codice per la stampa del messaggio di errore standard.}
2581   \label{fig:sys_err_mess}
2582 \end{figure}
2583
2584 In fig.~\ref{fig:sys_err_mess} è riportata la sezione attinente del codice del
2585 programma \cmd{errcode}, che può essere usato per stampare i messaggi di
2586 errore e le costanti usate per identificare i singoli errori; il sorgente
2587 completo del programma è allegato nel file \file{ErrCode.c} e contiene pure la
2588 gestione delle opzioni e tutte le definizioni necessarie ad associare il
2589 valore numerico alla costante simbolica. In particolare si è riportata la
2590 sezione che converte la stringa passata come argomento in un intero
2591 (\texttt{\small 1--2}), controllando con i valori di ritorno di \func{strtol}
2592 che la conversione sia avvenuta correttamente (\texttt{\small 4--10}), e poi
2593 stampa, a seconda dell'opzione scelta il messaggio di errore (\texttt{\small
2594   11--14}) o la macro (\texttt{\small 15--17}) associate a quel codice.
2595
2596
2597
2598 \subsection{Alcune estensioni GNU}
2599 \label{sec:sys_err_GNU}
2600
2601 Le precedenti funzioni sono quelle definite ed usate nei vari standard; le
2602 \acr{glibc} hanno però introdotto una serie di estensioni ``GNU'' che
2603 forniscono alcune funzionalità aggiuntive per una gestione degli errori
2604 semplificata e più efficiente. 
2605
2606 La prima estensione consiste in due variabili, \code{char *
2607   program\_invocation\_name} e \code{char * program\_invocation\_short\_name}
2608 servono per ricavare il nome del programma; queste sono utili quando si deve
2609 aggiungere il nome del programma (cosa comune quando si ha un programma che
2610 non viene lanciato da linea di comando e salva gli errori in un file di log)
2611 al messaggio d'errore. La prima contiene il nome usato per lanciare il
2612 programma (ed è equivalente ad \code{argv[0]}); la seconda mantiene solo il
2613 nome del programma (senza eventuali directory in testa).
2614
2615 Uno dei problemi che si hanno con l'uso di \func{perror} è che non c'è
2616 flessibilità su quello che si può aggiungere al messaggio di errore, che può
2617 essere solo una stringa. In molte occasioni invece serve poter scrivere dei
2618 messaggi con maggiore informazione; ad esempio negli standard di
2619 programmazione GNU si richiede che ogni messaggio di errore sia preceduto dal
2620 nome del programma, ed in generale si può voler stampare il contenuto di
2621 qualche variabile; per questo le \acr{glibc} definiscono la funzione
2622 \funcd{error}, il cui prototipo è:
2623 \begin{prototype}{stdio.h}
2624 {void error(int status, int errnum, const char *format, ...)} 
2625
2626 Stampa un messaggio di errore formattato.
2627
2628 \bodydesc{La funzione non restituisce nulla e non riporta errori.}
2629 \end{prototype}
2630
2631 La funzione fa parte delle estensioni GNU per la gestione degli errori,
2632 l'argomento \param{format} prende la stessa sintassi di \func{printf}, ed i
2633 relativi argomenti devono essere forniti allo stesso modo, mentre
2634 \param{errnum} indica l'errore che si vuole segnalare (non viene quindi usato
2635 il valore corrente di \var{errno}); la funzione stampa sullo standard error il
2636 nome del programma, come indicato dalla variabile globale \var{program\_name},
2637 seguito da due punti ed uno spazio, poi dalla stringa generata da
2638 \param{format} e dagli argomenti seguenti, seguita da due punti ed uno spazio
2639 infine il messaggio di errore relativo ad \param{errnum}, il tutto è terminato
2640 da un a capo.
2641
2642 Il comportamento della funzione può essere ulteriormente controllato se si
2643 definisce una variabile \var{error\_print\_progname} come puntatore ad una
2644 funzione \ctyp{void} che restituisce \ctyp{void} che si incarichi di stampare
2645 il nome del programma. 
2646
2647 L'argomento \param{status} può essere usato per terminare direttamente il
2648 programma in caso di errore, nel qual caso \func{error} dopo la stampa del
2649 messaggio di errore chiama \func{exit} con questo stato di uscita. Se invece
2650 il valore è nullo \func{error} ritorna normalmente ma viene incrementata
2651 un'altra variabile globale, \var{error\_message\_count}, che tiene conto di
2652 quanti errori ci sono stati.
2653
2654 Un'altra funzione per la stampa degli errori, ancora più sofisticata, che
2655 prende due argomenti aggiuntivi per indicare linea e file su cui è avvenuto
2656 l'errore è \funcd{error\_at\_line}; il suo prototipo è:
2657 \begin{prototype}{stdio.h}
2658 {void error\_at\_line(int status, int errnum, const char *fname, 
2659   unsigned int lineno, const char *format, ...)} 
2660
2661 Stampa un messaggio di errore formattato.
2662
2663 \bodydesc{La funzione non restituisce nulla e non riporta errori.}
2664 \end{prototype}
2665 \noindent ed il suo comportamento è identico a quello di \func{error} se non
2666 per il fatto che, separati con il solito due punti-spazio, vengono inseriti un
2667 nome di file indicato da \param{fname} ed un numero di linea subito dopo la
2668 stampa del nome del programma. Inoltre essa usa un'altra variabile globale,
2669 \var{error\_one\_per\_line}, che impostata ad un valore diverso da zero fa si
2670 che errori relativi alla stessa linea non vengano ripetuti.
2671
2672
2673 % LocalWords:  filesystem like kernel saved header limits sysconf sez tab float
2674 % LocalWords:  FOPEN stdio MB LEN CHAR char UCHAR unsigned SCHAR MIN signed INT
2675 % LocalWords:  SHRT short USHRT int UINT LONG long ULONG LLONG ULLONG POSIX ARG
2676 % LocalWords:  Stevens exec CHILD STREAM stream TZNAME timezone NGROUPS SSIZE
2677 % LocalWords:  ssize LISTIO JOB CONTROL job control IDS VERSION YYYYMML bits bc
2678 % LocalWords:  dall'header posix lim nell'header glibc run unistd name errno SC
2679 % LocalWords:  NGROUP CLK TCK clock tick process PATH pathname BUF CANON path
2680 % LocalWords:  pathconf fpathconf descriptor fd uname sys struct utsname info
2681 % LocalWords:  EFAULT fig SOURCE NUL LENGTH DOMAIN NMLN UTSLEN system call proc
2682 % LocalWords:  domainname sysctl BSD nlen void oldval size oldlenp newval EPERM
2683 % LocalWords:  newlen ENOTDIR EINVAL ENOMEM linux l'array oldvalue paging stack
2684 % LocalWords:  TCP shell Documentation ostype hostname osrelease version mount
2685 % LocalWords:  const source filesystemtype mountflags ENODEV ENOTBLK block read
2686 % LocalWords:  device EBUSY only superblock point EACCES NODEV ENXIO major xC
2687 % LocalWords:  number EMFILE dummy ENAMETOOLONG ENOENT ELOOP virtual devfs MGC
2688 % LocalWords:  magic MSK RDONLY NOSUID suid sgid NOEXEC SYNCHRONOUS REMOUNT MNT
2689 % LocalWords:  MANDLOCK mandatory locking WRITE APPEND append IMMUTABLE NOATIME
2690 % LocalWords:  access NODIRATIME BIND MOVE umount flags FORCE statfs fstatfs ut
2691 % LocalWords:  buf ENOSYS EIO EBADF type fstab mntent home shadow username uid
2692 % LocalWords:  passwd PAM Pluggable Authentication Method Service Switch pwd ru
2693 % LocalWords:  getpwuid getpwnam NULL buflen result ERANGE getgrnam getgrgid AS
2694 % LocalWords:  grp group gid SVID fgetpwent putpwent getpwent setpwent endpwent
2695 % LocalWords:  fgetgrent putgrent getgrent setgrent endgrent accounting init HZ
2696 % LocalWords:  runlevel Hierarchy logout setutent endutent utmpname utmp paths
2697 % LocalWords:  WTMP getutent getutid getutline pututline LVL OLD DEAD EMPTY dev
2698 % LocalWords:  line libc XPG utmpx getutxent getutxid getutxline pututxline who
2699 % LocalWords:  setutxent endutxent wmtp updwtmp logwtmp wtmp host rusage utime
2700 % LocalWords:  minflt majflt nswap fault swap timeval wait getrusage usage SELF
2701 % LocalWords:  CHILDREN current limit soft RLIMIT Address brk mremap mmap dump
2702 % LocalWords:  SIGSEGV SIGXCPU SIGKILL sbrk FSIZE SIGXFSZ EFBIG LOCKS lock dup
2703 % LocalWords:  MEMLOCK NOFILE NPROC fork EAGAIN SIGPENDING sigqueue kill RSS tv
2704 % LocalWords:  resource getrlimit setrlimit rlimit rlim INFINITY capabilities
2705 % LocalWords:  capability CAP l'I Sun Sparc PAGESIZE getpagesize SVr SUSv get
2706 % LocalWords:  phys pages avphys NPROCESSORS CONF ONLN getloadavg stdlib double
2707 % LocalWords:  loadavg nelem scheduler CONFIG ACCT acct filename EACCESS EUSER
2708 % LocalWords:  ENFILE EROFS PACCT AcctCtrl cap calendar UTC Jan the Epoch GMT
2709 % LocalWords:  Greenwich Mean l'UTC timer CLOCKS SEC cron wall elapsed times tz
2710 % LocalWords:  tms dell' cutime cstime waitpid gettimeofday settimeofday timex
2711 % LocalWords:  timespec adjtime olddelta adjtimex David Mills nell' RFC NTP ntp
2712 % LocalWords:  nell'RFC ADJ FREQUENCY frequency MAXERROR maxerror ESTERROR PLL
2713 % LocalWords:  esterror TIMECONST constant SINGLESHOT MOD INS insert leap OOP
2714 % LocalWords:  second delete progress has occurred BAD broken tm gmtoff asctime
2715 % LocalWords:  ctime timep gmtime localtime mktime tzname tzset daylight format
2716 % LocalWords:  strftime thread EOF modifiable lvalue app errcode strerror LC at
2717 % LocalWords:  perror string errnum MESSAGES error message ErrCode strtol log
2718 % LocalWords:  program invocation argv printf print progname exit count fname
2719 % LocalWords:  lineno one standardese Di page Wed Wednesday Apr April PM AM
2720
2721
2722
2723 %%% Local Variables: 
2724 %%% mode: latex
2725 %%% TeX-master: "gapil"
2726 %%% End: 
2727 % LocalWords:  CEST