Aggiunta di note.
[gapil.git] / system.tex
1 %% system.tex
2 %%
3 %% Copyright (C) 2000-2007 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione del sistema, del tempo e degli errori}
13 \label{cha:system}
14
15 In questo capitolo tratteremo varie interfacce che attengono agli aspetti più
16 generali del sistema, come quelle per la gestione dei parametri e della
17 configurazione dello stesso, quelle per la lettura dei limiti e delle
18 caratteristiche, quelle per il controllo dell'uso delle risorse dei processi,
19 quelle per la gestione ed il controllo dei filesystem, degli utenti, dei tempi
20 e degli errori.
21
22
23
24 \section{Capacità e caratteristiche del sistema}
25 \label{sec:sys_characteristics}
26
27 In questa sezione tratteremo le varie modalità con cui un programma può
28 ottenere informazioni riguardo alle capacità del sistema. Ogni sistema
29 unix-like infatti è contraddistinto da un gran numero di limiti e costanti che
30 lo caratterizzano, e che possono dipendere da fattori molteplici, come
31 l'architettura hardware, l'implementazione del kernel e delle librerie, le
32 opzioni di configurazione.
33
34 La definizione di queste caratteristiche ed il tentativo di provvedere dei
35 meccanismi generali che i programmi possono usare per ricavarle è uno degli
36 aspetti più complessi e controversi con cui le diverse standardizzazioni si
37 sono dovute confrontare, spesso con risultati spesso tutt'altro che chiari.
38 Daremo comunque una descrizione dei principali metodi previsti dai vari
39 standard per ricavare sia le caratteristiche specifiche del sistema, che
40 quelle della gestione dei file.
41
42
43 \subsection{Limiti e parametri di sistema}
44 \label{sec:sys_limits}
45
46 Quando si devono determinare le caratteristiche generali del sistema ci si
47 trova di fronte a diverse possibilità; alcune di queste infatti possono
48 dipendere dall'architettura dell'hardware (come le dimensioni dei tipi
49 interi), o dal sistema operativo (come la presenza o meno del gruppo degli
50 identificatori \textit{saved}), altre invece possono dipendere dalle opzioni
51 con cui si è costruito il sistema (ad esempio da come si è compilato il
52 kernel), o dalla configurazione del medesimo; per questo motivo in generale
53 sono necessari due tipi diversi di funzionalità:
54 \begin{itemize*}
55 \item la possibilità di determinare limiti ed opzioni al momento della
56   compilazione.
57 \item la possibilità di determinare limiti ed opzioni durante l'esecuzione.
58 \end{itemize*}
59
60 La prima funzionalità si può ottenere includendo gli opportuni header file che
61 contengono le costanti necessarie definite come macro di preprocessore, per la
62 seconda invece sono ovviamente necessarie delle funzioni. La situazione è
63 complicata dal fatto che ci sono molti casi in cui alcuni di questi limiti
64 sono fissi in un'implementazione mentre possono variare in un altra. Tutto
65 questo crea una ambiguità che non è sempre possibile risolvere in maniera
66 chiara; in generale quello che succede è che quando i limiti del sistema sono
67 fissi essi vengono definiti come macro di preprocessore nel file
68 \file{limits.h}, se invece possono variare, il loro valore sarà ottenibile
69 tramite la funzione \func{sysconf} (che esamineremo in
70 sez.~\ref{sec:sys_sysconf}).
71
72 Lo standard ANSI C definisce dei limiti che sono tutti fissi, pertanto questo
73 saranno sempre disponibili al momento della compilazione. Un elenco, ripreso
74 da \file{limits.h}, è riportato in tab.~\ref{tab:sys_ansic_macro}. Come si può
75 vedere per la maggior parte questi limiti attengono alle dimensioni dei dati
76 interi, che sono in genere fissati dall'architettura hardware (le analoghe
77 informazioni per i dati in virgola mobile sono definite a parte, ed
78 accessibili includendo \file{float.h}). Lo standard prevede anche un'altra
79 costante, \const{FOPEN\_MAX}, che può non essere fissa e che pertanto non è
80 definita in \file{limits.h}; essa deve essere definita in \file{stdio.h} ed
81 avere un valore minimo di 8.
82
83 \begin{table}[htb]
84   \centering
85   \footnotesize
86   \begin{tabular}[c]{|l|r|l|}
87     \hline
88     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
89     \hline
90     \hline
91     \const{MB\_LEN\_MAX}&       16  & Massima dimensione di un 
92                                       carattere esteso.\\
93     \const{CHAR\_BIT} &          8  & Numero di bit di \ctyp{char}.\\
94     \const{UCHAR\_MAX}&        255  & Massimo di \ctyp{unsigned char}.\\
95     \const{SCHAR\_MIN}&       -128  & Minimo di \ctyp{signed char}.\\
96     \const{SCHAR\_MAX}&        127  & Massimo di \ctyp{signed char}.\\
97     \const{CHAR\_MIN} &\footnotemark& Minimo di \ctyp{char}.\\
98     \const{CHAR\_MAX} &\footnotemark& Massimo di \ctyp{char}.\\
99     \const{SHRT\_MIN} &     -32768  & Minimo di \ctyp{short}.\\
100     \const{SHRT\_MAX} &      32767  & Massimo di \ctyp{short}.\\
101     \const{USHRT\_MAX}&      65535  & Massimo di \ctyp{unsigned short}.\\
102     \const{INT\_MAX}  & 2147483647  & Minimo di \ctyp{int}.\\
103     \const{INT\_MIN}  &-2147483648  & Minimo di \ctyp{int}.\\
104     \const{UINT\_MAX} & 4294967295  & Massimo di \ctyp{unsigned int}.\\
105     \const{LONG\_MAX} & 2147483647  & Massimo di \ctyp{long}.\\
106     \const{LONG\_MIN} &-2147483648  & Minimo di \ctyp{long}.\\
107     \const{ULONG\_MAX}& 4294967295  & Massimo di \ctyp{unsigned long}.\\
108     \hline                
109   \end{tabular}
110   \caption{Costanti definite in \file{limits.h} in conformità allo standard
111     ANSI C.}
112   \label{tab:sys_ansic_macro}
113 \end{table}
114
115 \footnotetext[1]{il valore può essere 0 o \const{SCHAR\_MIN} a seconda che il
116   sistema usi caratteri con segno o meno.} 
117
118 \footnotetext[2]{il valore può essere \const{UCHAR\_MAX} o \const{SCHAR\_MAX}
119   a seconda che il sistema usi caratteri con segno o meno.}
120
121 A questi valori lo standard ISO C90 ne aggiunge altri tre, relativi al tipo
122 \ctyp{long long} introdotto con il nuovo standard, i relativi valori sono in
123 tab.~\ref{tab:sys_isoc90_macro}.
124
125 \begin{table}[htb]
126   \centering
127   \footnotesize
128   \begin{tabular}[c]{|l|r|l|}
129     \hline
130     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
131     \hline
132     \hline
133     \const{LLONG\_MAX}& 9223372036854775807& Massimo di \ctyp{long long}.\\
134     \const{LLONG\_MIN}&-9223372036854775808& Minimo di \ctyp{long long}.\\
135     \const{ULLONG\_MAX}&18446744073709551615&
136                                     Massimo di \ctyp{unsigned long long}.\\
137     \hline                
138   \end{tabular}
139   \caption{Macro definite in \file{limits.h} in conformità allo standard
140     ISO C90.}
141   \label{tab:sys_isoc90_macro}
142 \end{table}
143
144 Ovviamente le dimensioni dei vari tipi di dati sono solo una piccola parte
145 delle caratteristiche del sistema; mancano completamente tutte quelle che
146 dipendono dalla implementazione dello stesso. Queste, per i sistemi unix-like,
147 sono state definite in gran parte dallo standard POSIX.1, che tratta anche i
148 limiti relativi alle caratteristiche dei file che vedremo in
149 sez.~\ref{sec:sys_file_limits}.
150
151 Purtroppo la sezione dello standard che tratta questi argomenti è una delle
152 meno chiare\footnote{tanto che Stevens, in \cite{APUE}, la porta come esempio
153   di ``\textsl{standardese}''.}. Lo standard prevede che ci siano 13 macro che
154 descrivono le caratteristiche del sistema (7 per le caratteristiche generiche,
155 riportate in tab.~\ref{tab:sys_generic_macro}, e 6 per le caratteristiche dei
156 file, riportate in tab.~\ref{tab:sys_file_macro}).
157
158 \begin{table}[htb]
159   \centering
160   \footnotesize
161   \begin{tabular}[c]{|l|r|p{7cm}|}
162     \hline
163     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
164     \hline
165     \hline
166     \const{ARG\_MAX} &131072& Dimensione massima degli argomenti
167                               passati ad una funzione della famiglia
168                               \func{exec}.\\ 
169     \const{CHILD\_MAX} & 999& Numero massimo di processi contemporanei
170                               che un utente può eseguire.\\
171     \const{OPEN\_MAX}  & 256& Numero massimo di file che un processo
172                               può mantenere aperti in contemporanea.\\
173     \const{STREAM\_MAX}&   8& Massimo numero di stream aperti per
174                               processo in contemporanea.\\
175     \const{TZNAME\_MAX}&   6& Dimensione massima del nome di una
176                               \texttt{timezone} (vedi
177                               sez.~\ref{sec:sys_time_base})).\\  
178     \const{NGROUPS\_MAX}& 32& Numero di gruppi supplementari per
179                               processo (vedi sez.~\ref{sec:proc_access_id}).\\
180     \const{SSIZE\_MAX}&32767& Valore massimo del tipo \type{ssize\_t}.\\
181     \hline
182   \end{tabular}
183   \caption{Costanti per i limiti del sistema.}
184   \label{tab:sys_generic_macro}
185 \end{table}
186
187 Lo standard dice che queste macro devono essere definite in \file{limits.h}
188 quando i valori a cui fanno riferimento sono fissi, e altrimenti devono essere
189 lasciate indefinite, ed i loro valori dei limiti devono essere accessibili
190 solo attraverso \func{sysconf}.  In realtà queste vengono sempre definite ad
191 un valore generico. Si tenga presente poi che alcuni di questi limiti possono
192 assumere valori molto elevati (come \const{CHILD\_MAX}), e non è pertanto il
193 caso di utilizzarli per allocare staticamente della memoria.
194
195 A complicare la faccenda si aggiunge il fatto che POSIX.1 prevede una serie di
196 altre costanti (il cui nome inizia sempre con \code{\_POSIX\_}) che
197 definiscono i valori minimi le stesse caratteristiche devono avere, perché una
198 implementazione possa dichiararsi conforme allo standard; detti valori sono
199 riportati in tab.~\ref{tab:sys_posix1_general}.
200
201 \begin{table}[htb]
202   \centering
203   \footnotesize
204   \begin{tabular}[c]{|l|r|p{7cm}|}
205     \hline
206     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
207     \hline
208     \hline
209     \const{\_POSIX\_ARG\_MAX}    & 4096& Dimensione massima degli argomenti
210                                          passati ad una funzione della famiglia
211                                          \func{exec}.\\ 
212     \const{\_POSIX\_CHILD\_MAX}  &    6& Numero massimo di processi
213                                          contemporanei che un utente può 
214                                          eseguire.\\
215     \const{\_POSIX\_OPEN\_MAX}   &   16& Numero massimo di file che un processo
216                                          può mantenere aperti in 
217                                          contemporanea.\\
218     \const{\_POSIX\_STREAM\_MAX} &    8& Massimo numero di stream aperti per
219                                          processo in contemporanea.\\
220     \const{\_POSIX\_TZNAME\_MAX} &     & Dimensione massima del nome di una
221                                          \textit{timezone} (vedi
222                                          sez.~\ref{sec:sys_date}). \\ 
223     \const{\_POSIX\_NGROUPS\_MAX}&    0& Numero di gruppi supplementari per
224                                          processo (vedi 
225                                          sez.~\ref{sec:proc_access_id}).\\
226     \const{\_POSIX\_SSIZE\_MAX}  &32767& Valore massimo del tipo 
227                                          \type{ssize\_t}.\\
228     \const{\_POSIX\_AIO\_LISTIO\_MAX}&2& \\
229     \const{\_POSIX\_AIO\_MAX}    &    1& \\
230     \hline                
231   \end{tabular}
232   \caption{Macro dei valori minimi delle caratteristiche generali del sistema
233     per la conformità allo standard POSIX.1.}
234   \label{tab:sys_posix1_general}
235 \end{table}
236
237 In genere questi valori non servono a molto, la loro unica utilità è quella di
238 indicare un limite superiore che assicura la portabilità senza necessità di
239 ulteriori controlli. Tuttavia molti di essi sono ampiamente superati in tutti
240 i sistemi POSIX in uso oggigiorno. Per questo è sempre meglio utilizzare i
241 valori ottenuti da \func{sysconf}.
242
243 \begin{table}[htb]
244   \centering
245   \footnotesize
246   \begin{tabular}[c]{|l|p{8cm}|}
247     \hline
248     \textbf{Macro}&\textbf{Significato}\\
249     \hline
250     \hline
251     \macro{\_POSIX\_JOB\_CONTROL}& Il sistema supporta il 
252                                    \textit{job control} (vedi 
253                                    sez.~\ref{sec:sess_job_control}).\\
254     \macro{\_POSIX\_SAVED\_IDS}  & Il sistema supporta gli identificatori del 
255                                    gruppo \textit{saved} (vedi 
256                                    sez.~\ref{sec:proc_access_id})
257                                    per il controllo di accesso dei processi\\
258     \const{\_POSIX\_VERSION}     & Fornisce la versione dello standard POSIX.1
259                                    supportata nel formato YYYYMML (ad esempio 
260                                    199009L).\\
261     \hline
262   \end{tabular}
263   \caption{Alcune macro definite in \file{limits.h} in conformità allo standard
264     POSIX.1.}
265   \label{tab:sys_posix1_other}
266 \end{table}
267
268 Oltre ai precedenti valori (e a quelli relativi ai file elencati in
269 tab.~\ref{tab:sys_posix1_file}), che devono essere obbligatoriamente definiti,
270 lo standard POSIX.1 ne prevede parecchi altri.  La lista completa si trova
271 dall'header file \file{bits/posix1\_lim.h} (da non usare mai direttamente, è
272 incluso automaticamente all'interno di \file{limits.h}). Di questi vale la
273 pena menzionare alcune macro di uso comune, (riportate in
274 tab.~\ref{tab:sys_posix1_other}), che non indicano un valore specifico, ma
275 denotano la presenza di alcune funzionalità nel sistema (come il supporto del
276 \textit{job control} o degli identificatori del gruppo \textit{saved}).
277
278 Oltre allo standard POSIX.1, anche lo standard POSIX.2 definisce una serie di
279 altre costanti. Siccome queste sono principalmente attinenti a limiti relativi
280 alle applicazioni di sistema presenti (come quelli su alcuni parametri delle
281 espressioni regolari o del comando \cmd{bc}), non li tratteremo
282 esplicitamente, se ne trova una menzione completa nell'header file
283 \file{bits/posix2\_lim.h}, e alcuni di loro sono descritti nella pagina di
284 manuale di \func{sysconf} e nel manuale delle \acr{glibc}.
285
286
287 \subsection{La funzione \func{sysconf}}
288 \label{sec:sys_sysconf}
289
290 Come accennato in sez.~\ref{sec:sys_limits} quando uno dei limiti o delle
291 caratteristiche del sistema può variare, per non dover essere costretti a
292 ricompilare un programma tutte le volte che si cambiano le opzioni con cui è
293 compilato il kernel, o alcuni dei parametri modificabili a run time, è
294 necessario ottenerne il valore attraverso la funzione \funcd{sysconf}. Il
295 prototipo di questa funzione è:
296 \begin{prototype}{unistd.h}{long sysconf(int name)}
297   Restituisce il valore del parametro di sistema \param{name}.
298   
299   \bodydesc{La funzione restituisce indietro il valore del parametro
300     richiesto, o 1 se si tratta di un'opzione disponibile, 0 se l'opzione non
301     è disponibile e -1 in caso di errore (ma \var{errno} non viene impostata).}
302 \end{prototype}
303
304 La funzione prende come argomento un intero che specifica quale dei limiti si
305 vuole conoscere; uno specchietto contenente i principali valori disponibili in
306 Linux è riportato in tab.~\ref{tab:sys_sysconf_par}; l'elenco completo è
307 contenuto in \file{bits/confname.h}, ed una lista più esaustiva, con le
308 relative spiegazioni, si può trovare nel manuale delle \acr{glibc}.
309
310 \begin{table}[htb]
311   \centering
312   \footnotesize
313     \begin{tabular}[c]{|l|l|p{9cm}|}
314       \hline
315       \textbf{Parametro}&\textbf{Macro sostituita} &\textbf{Significato}\\
316       \hline
317       \hline
318       \texttt{\_SC\_ARG\_MAX}   & \const{ARG\_MAX}&
319                                   La dimensione massima degli argomenti passati
320                                   ad una funzione della famiglia \func{exec}.\\
321       \texttt{\_SC\_CHILD\_MAX} & \const{\_CHILD\_MAX}&
322                                   Il numero massimo di processi contemporanei
323                                   che un utente può eseguire.\\
324       \texttt{\_SC\_OPEN\_MAX}  & \const{\_OPEN\_MAX}&
325                                   Il numero massimo di file che un processo può
326                                   mantenere aperti in contemporanea.\\
327       \texttt{\_SC\_STREAM\_MAX}& \const{STREAM\_MAX}&
328                                   Il massimo numero di stream che un processo
329                                   può mantenere aperti in contemporanea. Questo
330                                   limite previsto anche dallo standard ANSI C,
331                                   che specifica la macro {FOPEN\_MAX}.\\
332       \texttt{\_SC\_TZNAME\_MAX}& \const{TZNAME\_MAX}&
333                                   La dimensione massima di un nome di una
334                                   \texttt{timezone} (vedi
335                                   sez.~\ref{sec:sys_date}).\\
336       \texttt{\_SC\_NGROUPS\_MAX}&\const{NGROUP\_MAX}&
337                                   Massimo numero di gruppi supplementari che
338                                   può avere un processo (vedi
339                                   sez.~\ref{sec:proc_access_id}).\\
340       \texttt{\_SC\_SSIZE\_MAX} & \const{SSIZE\_MAX}& 
341                                   Valore massimo del tipo di dato
342                                   \type{ssize\_t}.\\ 
343       \texttt{\_SC\_CLK\_TCK}   & \const{CLK\_TCK} &
344                                   Il numero di \itindex{clock~tick}
345                                   \textit{clock tick} al secondo, 
346                                   cioè l'unità di misura del
347                                   \itindex{process~time} \textit{process
348                                     time} (vedi
349                                   sez.~\ref{sec:sys_unix_time}).\\  
350       \texttt{\_SC\_JOB\_CONTROL}&\macro{\_POSIX\_JOB\_CONTROL}&
351                                   Indica se è supportato il \textit{job
352                                     control} (vedi
353                                   sez.~\ref{sec:sess_job_control}) in stile
354                                   POSIX.\\ 
355       \texttt{\_SC\_SAVED\_IDS} & \macro{\_POSIX\_SAVED\_IDS}&
356                                   Indica se il sistema supporta i
357                                   \textit{saved id} (vedi
358                                   sez.~\ref{sec:proc_access_id}).\\  
359       \texttt{\_SC\_VERSION}    & \const{\_POSIX\_VERSION} &
360                                   Indica il mese e l'anno di approvazione
361                                   della revisione dello standard POSIX.1 a cui
362                                   il sistema fa riferimento, nel formato
363                                   YYYYMML, la revisione più recente è 199009L,
364                                   che indica il Settembre 1990.\\ 
365      \hline
366     \end{tabular}
367   \caption{Parametri del sistema leggibili dalla funzione \func{sysconf}.}
368   \label{tab:sys_sysconf_par}
369 \end{table}
370
371 In generale ogni limite o caratteristica del sistema per cui è definita una
372 macro, sia dagli standard ANSI C e ISO C90, che da POSIX.1 e POSIX.2, può
373 essere ottenuto attraverso una chiamata a \func{sysconf}. Il valore si otterrà
374 specificando come valore dell'argomento \param{name} il nome ottenuto
375 aggiungendo \code{\_SC\_} ai nomi delle macro definite dai primi due, o
376 sostituendolo a \code{\_POSIX\_} per le macro definite dagli gli altri due.
377
378 In generale si dovrebbe fare uso di \func{sysconf} solo quando la relativa
379 macro non è definita, quindi con un codice analogo al seguente:
380 \includecodesnip{listati/get_child_max.c}
381 ma in realtà in Linux queste macro sono comunque definite, indicando però un
382 limite generico. Per questo motivo è sempre meglio usare i valori restituiti
383 da \func{sysconf}.
384
385
386 \subsection{I limiti dei file}
387 \label{sec:sys_file_limits}
388
389 Come per le caratteristiche generali del sistema anche per i file esistono una
390 serie di limiti (come la lunghezza del nome del file o il numero massimo di
391 link) che dipendono sia dall'implementazione che dal filesystem in uso; anche
392 in questo caso lo standard prevede alcune macro che ne specificano il valore,
393 riportate in tab.~\ref{tab:sys_file_macro}.
394
395 \begin{table}[htb]
396   \centering
397   \footnotesize
398   \begin{tabular}[c]{|l|r|l|}
399     \hline
400     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
401     \hline
402     \hline                
403     \const{LINK\_MAX}   &8  & Numero massimo di link a un file.\\
404     \const{NAME\_MAX}&  14  & Lunghezza in byte di un nome di file. \\
405     \const{PATH\_MAX}& 256  & Lunghezza in byte di un
406                               \itindex{pathname} \textit{pathname}.\\
407     \const{PIPE\_BUF}&4096  & Byte scrivibili atomicamente in una pipe
408                               (vedi sez.~\ref{sec:ipc_pipes}).\\
409     \const{MAX\_CANON}&255  & Dimensione di una riga di terminale in modo 
410                               canonico (vedi sez.~\ref{sec:term_design}).\\
411     \const{MAX\_INPUT}&255  & Spazio disponibile nella coda di input 
412                               del terminale (vedi 
413                               sez.~\ref{sec:term_design}).\\
414     \hline                
415   \end{tabular}
416   \caption{Costanti per i limiti sulle caratteristiche dei file.}
417   \label{tab:sys_file_macro}
418 \end{table}
419
420 Come per i limiti di sistema, lo standard POSIX.1 detta una serie di valori
421 minimi anche per queste caratteristiche, che ogni sistema che vuole essere
422 conforme deve rispettare; le relative macro sono riportate in
423 tab.~\ref{tab:sys_posix1_file}, e per esse vale lo stesso discorso fatto per
424 le analoghe di tab.~\ref{tab:sys_posix1_general}.
425
426 \begin{table}[htb]
427   \centering
428   \footnotesize
429   \begin{tabular}[c]{|l|r|l|}
430     \hline
431     \textbf{Macro}&\textbf{Valore}&\textbf{Significato}\\
432     \hline
433     \hline
434     \const{\_POSIX\_LINK\_MAX}   &8  & Numero massimo di link a un file.\\
435     \const{\_POSIX\_NAME\_MAX}&  14  & Lunghezza in byte di un nome di file.\\
436     \const{\_POSIX\_PATH\_MAX}& 256  & Lunghezza in byte di un 
437                                        \itindex{pathname} \textit{pathname}.\\
438     \const{\_POSIX\_PIPE\_BUF}& 512  & Byte scrivibili atomicamente in una
439                                        pipe.\\
440     \const{\_POSIX\_MAX\_CANON}&255  & Dimensione di una riga di
441                                        terminale in modo canonico.\\
442     \const{\_POSIX\_MAX\_INPUT}&255  & Spazio disponibile nella coda di input 
443                                        del terminale.\\
444 %    \const{\_POSIX\_MQ\_OPEN\_MAX}&  8& \\
445 %    \const{\_POSIX\_MQ\_PRIO\_MAX}& 32& \\
446 %    \const{\_POSIX\_FD\_SETSIZE}& 16 & \\
447 %    \const{\_POSIX\_DELAYTIMER\_MAX}& 32 & \\
448     \hline
449   \end{tabular}
450   \caption{Costanti dei valori minimi delle caratteristiche dei file per la
451     conformità allo standard POSIX.1.}
452   \label{tab:sys_posix1_file}
453 \end{table}
454
455 Tutti questi limiti sono definiti in \file{limits.h}; come nel caso precedente
456 il loro uso è di scarsa utilità in quanto ampiamente superati in tutte le
457 implementazioni moderne.
458
459
460 \subsection{La funzione \func{pathconf}}
461 \label{sec:sys_pathconf}
462
463 In generale i limiti per i file sono molto più soggetti ad essere variabili
464 rispetto ai limiti generali del sistema; ad esempio parametri come la
465 lunghezza del nome del file o il numero di link possono variare da filesystem
466 a filesystem; per questo motivo questi limiti devono essere sempre controllati
467 con la funzione \funcd{pathconf}, il cui prototipo è:
468 \begin{prototype}{unistd.h}{long pathconf(char *path, int name)}
469   Restituisce il valore del parametro \param{name} per il file \param{path}.
470   
471   \bodydesc{La funzione restituisce indietro il valore del parametro
472     richiesto, o -1 in caso di errore (ed \var{errno} viene impostata ad uno
473     degli errori possibili relativi all'accesso a \param{path}).}
474 \end{prototype}
475
476 E si noti come la funzione in questo caso richieda un argomento che specifichi
477 a quale file si fa riferimento, dato che il valore del limite cercato può
478 variare a seconda del filesystem. Una seconda versione della funzione,
479 \funcd{fpathconf}, opera su un file descriptor invece che su un
480 \itindex{pathname} \textit{pathname}. Il suo prototipo è:
481 \begin{prototype}{unistd.h}{long fpathconf(int fd, int name)}
482   Restituisce il valore del parametro \param{name} per il file \param{fd}.
483   
484   \bodydesc{È identica a \func{pathconf} solo che utilizza un file descriptor
485     invece di un \itindex{pathname} \textit{pathname}; pertanto gli errori
486     restituiti cambiano di conseguenza.}
487 \end{prototype}
488 \noindent ed il suo comportamento è identico a quello di \func{pathconf}.
489
490
491 \subsection{La funzione \func{uname}}
492 \label{sec:sys_uname}
493
494 Un'altra funzione che si può utilizzare per raccogliere informazioni sia
495 riguardo al sistema che al computer su cui esso sta girando è \funcd{uname};
496 il suo prototipo è:
497 \begin{prototype}{sys/utsname.h}{int uname(struct utsname *info)}
498   Restituisce informazioni sul sistema nella struttura \param{info}.
499   
500   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
501     fallimento, nel qual caso \var{errno} assumerà il valore \errval{EFAULT}.}
502 \end{prototype}
503
504 La funzione, che viene usata dal comando \cmd{uname}, restituisce le
505 informazioni richieste nella struttura \param{info}; anche questa struttura è
506 definita in \file{sys/utsname.h}, secondo quanto mostrato in
507 fig.~\ref{fig:sys_utsname}, e le informazioni memorizzate nei suoi membri
508 indicano rispettivamente:
509 \begin{itemize*}
510 \item il nome del sistema operativo;
511 \item il nome della release del kernel;
512 \item il nome della versione del kernel;
513 \item il tipo di macchina in uso;
514 \item il nome della stazione;
515 \item il nome del domino.
516 \end{itemize*}
517 l'ultima informazione è stata aggiunta di recente e non è prevista dallo
518 standard POSIX, essa è accessibile, come mostrato in
519 fig.~\ref{fig:sys_utsname}, solo definendo \macro{\_GNU\_SOURCE}.
520
521 \begin{figure}[!htb]
522   \footnotesize \centering
523   \begin{minipage}[c]{15cm}
524     \includestruct{listati/ustname.h}
525   \end{minipage}
526   \normalsize 
527   \caption{La struttura \structd{utsname}.} 
528   \label{fig:sys_utsname}
529 \end{figure}
530
531 In generale si tenga presente che le dimensioni delle stringe di una
532 \struct{utsname} non è specificata, e che esse sono sempre terminate con NUL;
533 il manuale delle \acr{glibc} indica due diverse dimensioni,
534 \const{\_UTSNAME\_LENGTH} per i campi standard e
535 \const{\_UTSNAME\_DOMAIN\_LENGTH} per quello specifico per il nome di dominio;
536 altri sistemi usano nomi diversi come \const{SYS\_NMLN} o \const{\_SYS\_NMLN}
537 o \const{UTSLEN} che possono avere valori diversi.\footnote{nel caso di Linux
538   \func{uname} corrisponde in realtà a 3 system call diverse, le prime due
539   usano rispettivamente delle lunghezze delle stringhe di 9 e 65 byte; la
540   terza usa anch'essa 65 byte, ma restituisce anche l'ultimo campo,
541   \var{domainname}, con una lunghezza di 257 byte.}
542
543
544 \section{Opzioni e configurazione del sistema}
545 \label{sec:sys_config}
546
547 Come abbiamo accennato nella sezione precedente, non tutti i limiti che
548 caratterizzano il sistema sono fissi, o perlomeno non lo sono in tutte le
549 implementazioni. Finora abbiamo visto come si può fare per leggerli, ci manca
550 di esaminare il meccanismo che permette, quando questi possono variare durante
551 l'esecuzione del sistema, di modificarli.
552
553 Inoltre, al di la di quelli che possono essere limiti caratteristici previsti
554 da uno standard, ogni sistema può avere una sua serie di altri parametri di
555 configurazione, che, non essendo mai fissi e variando da sistema a sistema,
556 non sono stati inclusi nella standardizzazione della sezione precedente. Per
557 questi occorre, oltre al meccanismo di impostazione, pure un meccanismo di
558 lettura.  Affronteremo questi argomenti in questa sezione, insieme alle
559 funzioni che si usano per il controllo di altre caratteristiche generali del
560 sistema, come quelle per la gestione dei filesystem e di utenti e gruppi.
561
562
563 \subsection{La funzione \func{sysctl} ed il filesystem \file{/proc}}
564 \label{sec:sys_sysctl}
565
566 La funzione che permette la lettura ed l'impostazione dei parametri del
567 sistema è \funcd{sysctl}; è una funzione derivata da BSD4.4, ma
568 l'implementazione è specifica di Linux; il suo prototipo è:
569 \begin{functions}
570 \headdecl{unistd.h}
571 \funcdecl{int sysctl(int *name, int nlen, void *oldval, size\_t *oldlenp, void
572   *newval, size\_t newlen)}
573
574 Legge o scrive uno dei parametri di sistema.
575
576 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
577   errore, nel qual caso \var{errno} assumerà uno dei valori:
578   \begin{errlist}
579   \item[\errcode{EPERM}] non si ha il permesso di accedere ad uno dei
580     componenti nel cammino specificato per il parametro, o di accedere al
581     parametro nella modalità scelta.
582   \item[\errcode{ENOTDIR}] non esiste un parametro corrispondente al nome
583     \param{name}.
584 %  \item[\errcode{EFAULT}] si è specificato \param{oldlenp} zero quando
585 %    \param{oldval} è non nullo. 
586   \item[\errcode{EINVAL}] o si è specificato un valore non valido per il
587     parametro che si vuole impostare o lo spazio provvisto per il ritorno di un
588     valore non è delle giuste dimensioni.
589   \item[\errcode{ENOMEM}] talvolta viene usato più correttamente questo errore
590     quando non si è specificato sufficiente spazio per ricevere il valore di un
591     parametro.
592   \end{errlist}
593   ed inoltre \errval{EFAULT}.
594 }
595 \end{functions}
596
597 I parametri a cui la funzione permettere di accedere sono organizzati in
598 maniera gerarchica all'interno di un albero;\footnote{si tenga presente che
599   includendo solo \file{unistd.h}, saranno definiti solo i parametri generici;
600   dato che ce ne sono molti specifici dell'implementazione, nel caso di Linux
601   occorrerà includere anche i file \file{linux/unistd.h} e
602   \file{linux/sysctl.h}.} per accedere ad uno di essi occorre specificare un
603 cammino attraverso i vari nodi dell'albero, in maniera analoga a come avviene
604 per la risoluzione di un \itindex{pathname} \textit{pathname} (da cui l'uso
605 alternativo del filesystem \file{/proc}, che vedremo dopo).
606
607 Ciascun nodo dell'albero è identificato da un valore intero, ed il cammino che
608 arriva ad identificare un parametro specifico è passato alla funzione
609 attraverso l'array \param{name}, di lunghezza \param{nlen}, che contiene la
610 sequenza dei vari nodi da attraversare. Ogni parametro ha un valore in un
611 formato specifico che può essere un intero, una stringa o anche una struttura
612 complessa, per questo motivo i valori vengono passati come puntatori
613 \ctyp{void}.
614
615 L'indirizzo a cui il valore corrente del parametro deve essere letto è
616 specificato da \param{oldvalue}, e lo spazio ivi disponibile è specificato da
617 \param{oldlenp} (passato come puntatore per avere indietro la dimensione
618 effettiva di quanto letto); il valore che si vuole impostare nel sistema è
619 passato in \param{newval} e la sua dimensione in \param{newlen}.
620
621 Si può effettuare anche una lettura e scrittura simultanea, nel qual caso il
622 valore letto restituito dalla funzione è quello precedente alla scrittura.
623
624 I parametri accessibili attraverso questa funzione sono moltissimi, e possono
625 essere trovati in \file{sysctl.h}, essi inoltre dipendono anche dallo stato
626 corrente del kernel (ad esempio dai moduli che sono stati caricati nel
627 sistema) e in genere i loro nomi possono variare da una versione di kernel
628 all'altra; per questo è sempre il caso di evitare l'uso di \func{sysctl}
629 quando esistono modalità alternative per ottenere le stesse informazioni.
630 Alcuni esempi di parametri ottenibili sono:
631 \begin{itemize}
632 \item il nome di dominio
633 \item i parametri del meccanismo di \textit{paging}.
634 \item il filesystem montato come radice
635 \item la data di compilazione del kernel
636 \item i parametri dello stack TCP
637 \item il numero massimo di file aperti
638 \end{itemize}
639
640 Come accennato in Linux si ha una modalità alternativa per accedere alle
641 stesse informazioni di \func{sysctl} attraverso l'uso del filesystem
642 \file{/proc}. Questo è un filesystem virtuale, generato direttamente dal
643 kernel, che non fa riferimento a nessun dispositivo fisico, ma presenta in
644 forma di file alcune delle strutture interne del kernel stesso.
645
646 In particolare l'albero dei valori di \func{sysctl} viene presentato in forma
647 di file nella directory \file{/proc/sys}, cosicché è possibile accedervi
648 specificando un \itindex{pathname} \textit{pathname} e leggendo e scrivendo sul
649 file corrispondente al parametro scelto.  Il kernel si occupa di generare al
650 volo il contenuto ed i nomi dei file corrispondenti, e questo ha il grande
651 vantaggio di rendere accessibili i vari parametri a qualunque comando di shell
652 e di permettere la navigazione dell'albero dei valori.
653
654 Alcune delle corrispondenze dei file presenti in \file{/proc/sys} con i valori
655 di \func{sysctl} sono riportate nei commenti del codice che può essere trovato
656 in \file{linux/sysctl.h},\footnote{indicando un file di definizioni si fa
657   riferimento alla directory standard dei file di include, che in ogni
658   distribuzione che si rispetti è \file{/usr/include}.} la informazione
659 disponibile in \file{/proc/sys} è riportata inoltre nella documentazione
660 inclusa nei sorgenti del kernel, nella directory \file{Documentation/sysctl}.
661
662 Ma oltre alle informazioni ottenibili da \func{sysctl} dentro \file{proc} sono
663 disponibili moltissime altre informazioni, fra cui ad esempio anche quelle
664 fornite da \func{uname} (vedi sez.~\ref{sec:sys_config}) che sono mantenute
665 nei file \procrelfile{/proc/sys/kernel}{ostype},
666 \procrelfile{/proc/sys/kernel}{hostname},
667 \procrelfile{/proc/sys/kernel}{osrelease},
668 \procrelfile{/proc/sys/kernel}{version} e
669 \procrelfile{/proc/sys/kernel}{domainname} di \file{/proc/sys/kernel/}.
670
671
672
673 \subsection{La gestione delle proprietà dei filesystem}
674 \label{sec:sys_file_config}
675
676 Come accennato in sez.~\ref{sec:file_organization} per poter accedere ai file
677 occorre prima rendere disponibile al sistema il filesystem su cui essi sono
678 memorizzati; l'operazione di attivazione del filesystem è chiamata
679 \textsl{montaggio}, per far questo in Linux\footnote{la funzione è specifica
680   di Linux e non è portabile.} si usa la funzione \funcd{mount} il cui
681 prototipo è:
682 \begin{prototype}{sys/mount.h}
683 {mount(const char *source, const char *target, const char *filesystemtype, 
684   unsigned long mountflags, const void *data)}
685
686 Monta il filesystem di tipo \param{filesystemtype} contenuto in \param{source}
687 sulla directory \param{target}.
688   
689   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
690   fallimento, nel qual caso gli errori comuni a tutti i filesystem che possono
691   essere restituiti in \var{errno} sono:
692   \begin{errlist}
693   \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
694   \item[\errcode{ENODEV}] \param{filesystemtype} non esiste o non è configurato
695     nel kernel.
696   \item[\errcode{ENOTBLK}] non si è usato un \textit{block device} per
697     \param{source} quando era richiesto.
698   \item[\errcode{EBUSY}] \param{source} è già montato, o non può essere
699     rimontato in read-only perché ci sono ancora file aperti in scrittura, o
700     \param{target} è ancora in uso.
701   \item[\errcode{EINVAL}] il device \param{source} presenta un
702     \textit{superblock} non valido, o si è cercato di rimontare un filesystem
703     non ancora montato, o di montarlo senza che \param{target} sia un
704     \textit{mount point} o di spostarlo quando \param{target} non è un
705     \textit{mount point} o è \file{/}.
706   \item[\errcode{EACCES}] non si ha il permesso di accesso su uno dei
707     componenti del \itindex{pathname} \textit{pathname}, o si è cercato
708     di montare un filesystem disponibile in sola lettura senza averlo
709     specificato o il device \param{source} è su un filesystem montato con
710     l'opzione \const{MS\_NODEV}.
711   \item[\errcode{ENXIO}] il \textit{major number} del device \param{source} è
712     sbagliato.
713   \item[\errcode{EMFILE}] la tabella dei device \textit{dummy} è piena.
714   \end{errlist}
715   ed inoltre \errval{ENOTDIR}, \errval{EFAULT}, \errval{ENOMEM},
716   \errval{ENAMETOOLONG}, \errval{ENOENT} o \errval{ELOOP}.}
717 \end{prototype}
718
719 La funzione monta sulla directory \param{target}, detta \textit{mount point},
720 il filesystem contenuto in \param{source}. In generale un filesystem è
721 contenuto su un disco, e l'operazione di montaggio corrisponde a rendere
722 visibile al sistema il contenuto del suddetto disco, identificato attraverso
723 il file di dispositivo ad esso associato.
724
725 Ma la struttura del virtual filesystem vista in sez.~\ref{sec:file_vfs} è molto
726 più flessibile e può essere usata anche per oggetti diversi da un disco. Ad
727 esempio usando il \textit{loop device} si può montare un file qualunque (come
728 l'immagine di un CD-ROM o di un floppy) che contiene un filesystem, inoltre
729 alcuni filesystem, come \file{proc} o \file{devfs} sono del tutto virtuali, i
730 loro dati sono generati al volo ad ogni lettura, e passati al kernel ad ogni
731 scrittura. 
732
733 Il tipo di filesystem è specificato da \param{filesystemtype}, che deve essere
734 una delle stringhe riportate nel file \procfile{/proc/filesystems}, che
735 contiene l'elenco dei filesystem supportati dal kernel; nel caso si sia
736 indicato uno dei filesystem virtuali, il contenuto di \param{source} viene
737 ignorato.
738
739 Dopo l'esecuzione della funzione il contenuto del filesystem viene resto
740 disponibile nella directory specificata come \textit{mount point}, il
741 precedente contenuto di detta directory viene mascherato dal contenuto della
742 directory radice del filesystem montato.
743
744 Dal kernel 2.4.x inoltre è divenuto possibile sia spostare atomicamente un
745 \textit{mount point} da una directory ad un'altra, sia montare in diversi
746 \textit{mount point} lo stesso filesystem, sia montare più filesystem sullo
747 stesso \textit{mount point} (nel qual caso vale quanto appena detto, e solo il
748 contenuto dell'ultimo filesystem montato sarà visibile).
749
750 Ciascun filesystem è dotato di caratteristiche specifiche che possono essere
751 attivate o meno, alcune di queste sono generali (anche se non è detto siano
752 disponibili in ogni filesystem), e vengono specificate come opzioni di
753 montaggio con l'argomento \param{mountflags}.  
754
755 In Linux \param{mountflags} deve essere un intero a 32 bit i cui 16 più
756 significativi sono un \textit{magic number}\footnote{cioè un numero speciale
757   usato come identificativo, che nel caso è \code{0xC0ED}; si può usare la
758   costante \const{MS\_MGC\_MSK} per ottenere la parte di \param{mountflags}
759   riservata al \textit{magic number}.} mentre i 16 meno significativi sono
760 usati per specificare le opzioni; essi sono usati come maschera binaria e
761 vanno impostati con un OR aritmetico della costante \const{MS\_MGC\_VAL} con i
762 valori riportati in tab.~\ref{tab:sys_mount_flags}.
763
764 \begin{table}[htb]
765   \footnotesize
766   \centering
767   \begin{tabular}[c]{|l|r|l|}
768     \hline
769     \textbf{Parametro} & \textbf{Valore}&\textbf{Significato}\\
770     \hline
771     \hline
772     \const{MS\_RDONLY}     &  1 & Monta in sola lettura.\\
773     \const{MS\_NOSUID}     &  2 & Ignora i bit \itindex{suid~bit} \acr{suid} e
774                                   \itindex{sgid~bit} \acr{sgid}.\\ 
775     \const{MS\_NODEV}      &  4 & Impedisce l'accesso ai file di dispositivo.\\
776     \const{MS\_NOEXEC}     &  8 & Impedisce di eseguire programmi.\\
777     \const{MS\_SYNCHRONOUS}& 16 & Abilita la scrittura sincrona.\\
778     \const{MS\_REMOUNT}    & 32 & Rimonta il filesystem cambiando le opzioni.\\
779     \const{MS\_MANDLOCK}   & 64 & Consente il \textit{mandatory locking} 
780                                   \itindex{mandatory~locking} (vedi
781                                   sez.~\ref{sec:file_mand_locking}).\\
782     \const{S\_WRITE}      & 128 & Scrive normalmente.\\
783     \const{S\_APPEND}     & 256 & Consente la scrittura solo in
784                                   \itindex{append~mode} \textit{append mode} 
785                                   (vedi sez.~\ref{sec:file_sharing}).\\
786     \const{S\_IMMUTABLE}  & 512 & Impedisce che si possano modificare i file.\\
787     \const{MS\_NOATIME}   &1024 & Non aggiorna gli \textit{access time} (vedi
788                                   sez.~\ref{sec:file_file_times}).\\
789     \const{MS\_NODIRATIME}&2048 & Non aggiorna gli \textit{access time} delle
790                                   directory.\\
791     \const{MS\_BIND}      &4096 & Monta il filesystem altrove.\\
792     \const{MS\_MOVE}      &8192 & Sposta atomicamente il punto di montaggio.\\
793     \hline
794   \end{tabular}
795   \caption{Tabella dei codici dei flag di montaggio di un filesystem.}
796   \label{tab:sys_mount_flags}
797 \end{table}
798
799 % TODO aggiornare con i nuovi flag di man mount
800 % gli S_* non esistono più come segnalato da Alessio...
801 % verificare i readonly mount bind del 2.6.26
802
803 Per l'impostazione delle caratteristiche particolari di ciascun filesystem si
804 usa invece l'argomento \param{data} che serve per passare le ulteriori
805 informazioni necessarie, che ovviamente variano da filesystem a filesystem.
806
807 La funzione \func{mount} può essere utilizzata anche per effettuare il
808 \textsl{rimontaggio} di un filesystem, cosa che permette di cambiarne al volo
809 alcune delle caratteristiche di funzionamento (ad esempio passare da sola
810 lettura a lettura/scrittura). Questa operazione è attivata attraverso uno dei
811 bit di \param{mountflags}, \const{MS\_REMOUNT}, che se impostato specifica che
812 deve essere effettuato il rimontaggio del filesystem (con le opzioni
813 specificate dagli altri bit), anche in questo caso il valore di \param{source}
814 viene ignorato.
815
816 Una volta che non si voglia più utilizzare un certo filesystem è possibile
817 \textsl{smontarlo} usando la funzione \funcd{umount}, il cui prototipo è:
818 \begin{prototype}{sys/mount.h}{umount(const char *target)}
819   
820   Smonta il filesystem montato sulla directory \param{target}.
821   
822   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
823     fallimento, nel qual caso \var{errno} assumerà uno dei valori:
824   \begin{errlist}
825   \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
826   \item[\errcode{EBUSY}]  \param{target} è la directory di lavoro di qualche
827   processo, o contiene dei file aperti, o un altro mount point.
828   \end{errlist}
829   ed inoltre \errval{ENOTDIR}, \errval{EFAULT}, \errval{ENOMEM},
830   \errval{ENAMETOOLONG}, \errval{ENOENT} o \errval{ELOOP}.}
831 \end{prototype}
832 \noindent la funzione prende il nome della directory su cui il filesystem è
833 montato e non il file o il dispositivo che è stato montato,\footnote{questo è
834   vero a partire dal kernel 2.3.99-pre7, prima esistevano due chiamate
835   separate e la funzione poteva essere usata anche specificando il file di
836   dispositivo.} in quanto con il kernel 2.4.x è possibile montare lo stesso
837 dispositivo in più punti. Nel caso più di un filesystem sia stato montato
838 sullo stesso \textit{mount point} viene smontato quello che è stato montato
839 per ultimo.
840
841 Si tenga presente che la funzione fallisce quando il filesystem è
842 \textsl{occupato}, questo avviene quando ci sono ancora file aperti sul
843 filesystem, se questo contiene la directory di lavoro corrente di un qualunque
844 processo o il mount point di un altro filesystem; in questo caso l'errore
845 restituito è \errcode{EBUSY}.
846
847 Linux provvede inoltre una seconda funzione, \funcd{umount2}, che in alcuni
848 casi permette di forzare lo smontaggio di un filesystem, anche quando questo
849 risulti occupato; il suo prototipo è:
850 \begin{prototype}{sys/mount.h}{umount2(const char *target, int flags)}
851   
852   La funzione è identica a \func{umount} per comportamento e codici di errore,
853   ma con \param{flags} si può specificare se forzare lo smontaggio.
854 \end{prototype}
855
856 Il valore di \param{flags} è una maschera binaria, e al momento l'unico valore
857 definito è il bit \const{MNT\_FORCE}; gli altri bit devono essere nulli.
858 Specificando \const{MNT\_FORCE} la funzione cercherà di liberare il filesystem
859 anche se è occupato per via di una delle condizioni descritte in precedenza. A
860 seconda del tipo di filesystem alcune (o tutte) possono essere superate,
861 evitando l'errore di \errcode{EBUSY}.  In tutti i casi prima dello smontaggio
862 viene eseguita una sincronizzazione dei dati. 
863
864 % TODO documentare MNT_DETACH e MNT_EXPIRE ...
865
866 Altre due funzioni specifiche di Linux,\footnote{esse si trovano anche su BSD,
867   ma con una struttura diversa.} utili per ottenere in maniera diretta
868 informazioni riguardo al filesystem su cui si trova un certo file, sono
869 \funcd{statfs} e \funcd{fstatfs}, i cui prototipi sono:
870 \begin{functions}
871   \headdecl{sys/vfs.h} 
872   \funcdecl{int statfs(const char *path, struct statfs *buf)} 
873
874   \funcdecl{int fstatfs(int fd, struct statfs *buf)} 
875   
876   Restituisce in \param{buf} le informazioni relative al filesystem su cui è
877   posto il file specificato.
878   
879   \bodydesc{Le funzioni ritornano 0 in caso di successo e -1 in caso di
880     errore, nel qual caso \var{errno} assumerà uno dei valori:
881   \begin{errlist}
882   \item[\errcode{ENOSYS}] il filesystem su cui si trova il file specificato non
883   supporta la funzione.
884   \end{errlist}
885   e \errval{EFAULT} ed \errval{EIO} per entrambe, \errval{EBADF} per
886   \func{fstatfs}, \errval{ENOTDIR}, \errval{ENAMETOOLONG}, \errval{ENOENT},
887   \errval{EACCES}, \errval{ELOOP} per \func{statfs}.}
888 \end{functions}
889
890 Queste funzioni permettono di ottenere una serie di informazioni generali
891 riguardo al filesystem su cui si trova il file specificato; queste vengono
892 restituite all'indirizzo \param{buf} di una struttura \struct{statfs} definita
893 come in fig.~\ref{fig:sys_statfs}, ed i campi che sono indefiniti per il
894 filesystem in esame sono impostati a zero.  I valori del campo \var{f\_type}
895 sono definiti per i vari filesystem nei relativi file di header dei sorgenti
896 del kernel da costanti del tipo \var{XXX\_SUPER\_MAGIC}, dove \var{XXX} in
897 genere è il nome del filesystem stesso.
898
899 \begin{figure}[!htb]
900   \footnotesize \centering
901   \begin{minipage}[c]{15cm}
902     \includestruct{listati/statfs.h}
903   \end{minipage}
904   \normalsize 
905   \caption{La struttura \structd{statfs}.} 
906   \label{fig:sys_statfs}
907 \end{figure}
908
909
910 Le \acr{glibc} provvedono infine una serie di funzioni per la gestione dei due
911 file \conffile{/etc/fstab} ed \conffile{/etc/mtab}, che convenzionalmente sono
912 usati in quasi tutti i sistemi unix-like per mantenere rispettivamente le
913 informazioni riguardo ai filesystem da montare e a quelli correntemente
914 montati. Le funzioni servono a leggere il contenuto di questi file in
915 opportune strutture \struct{fstab} e \struct{mntent}, e, per
916 \conffile{/etc/mtab} per inserire e rimuovere le voci presenti nel file.
917
918 In generale si dovrebbero usare queste funzioni (in particolare quelle
919 relative a \conffile{/etc/mtab}), quando si debba scrivere un programma che
920 effettua il montaggio di un filesystem; in realtà in questi casi è molto più
921 semplice invocare direttamente il programma \cmd{mount}, per cui ne
922 tralasceremo la trattazione, rimandando al manuale delle \acr{glibc}
923 \cite{glibc} per la documentazione completa.
924
925
926
927 % TODO scrivere relativamente alle varie funzioni (getfsent e getmntent &C)
928
929 \subsection{La gestione delle informazioni su utenti e gruppi}
930 \label{sec:sys_user_group}
931
932 Tradizionalmente le informazioni utilizzate nella gestione di utenti e gruppi
933 (password, corrispondenze fra nomi simbolici e user-id, home directory, ecc.)
934 venivano registrate all'interno dei due file di testo \conffile{/etc/passwd}
935 ed \conffile{/etc/group},\footnote{in realtà oltre a questi nelle
936   distribuzioni più recenti è stato introdotto il sistema delle \textit{shadow
937     password} che prevede anche i due file \conffile{/etc/shadow} e
938   \conffile{/etc/gshadow}, in cui sono state spostate le informazioni di
939   autenticazione (ed inserite alcune estensioni) per toglierle dagli altri
940   file che devono poter essere letti per poter effettuare l'associazione fra
941   username e \acr{uid}.} il cui formato è descritto dalle relative pagine del
942 manuale\footnote{nella quinta sezione, quella dei file di configurazione,
943   occorre cioè usare \cmd{man 5 passwd} dato che altrimenti si avrebbe la
944   pagina di manuale del comando \cmd{passwd}.} e tutte le funzioni che
945 richiedevano l'accesso a queste informazione andavano a leggere direttamente
946 il contenuto di questi file.
947
948 Col tempo però questa impostazione ha incominciato a mostrare dei limiti: da
949 una parte il meccanismo classico di autenticazione è stato ampliato, ed oggi
950 la maggior parte delle distribuzioni di GNU/Linux usa la libreria PAM (sigla
951 che sta per \textit{Pluggable Authentication Method}) che fornisce una
952 interfaccia comune per i processi di autenticazione,\footnote{il
953   \textit{Pluggable Authentication Method} è un sistema modulare, in cui è
954   possibile utilizzare anche più meccanismi insieme, diventa così possibile
955   avere vari sistemi di riconoscimento (biometria, chiavi hardware, ecc.),
956   diversi formati per le password e diversi supporti per le informazioni, il
957   tutto in maniera trasparente per le applicazioni purché per ciascun
958   meccanismo si disponga della opportuna libreria che implementa l'interfaccia
959   di PAM.}  svincolando completamente le singole applicazione dai dettagli del
960 come questa viene eseguita e di dove vengono mantenuti i dati relativi;
961 dall'altra con il diffondersi delle reti la necessità di centralizzare le
962 informazioni degli utenti e dei gruppi per insiemi di macchine, in modo da
963 mantenere coerenti i dati, ha portato anche alla necessità di poter recuperare
964 e memorizzare dette informazioni su supporti diversi, introducendo il sistema
965 del \itindex{Name~Service~Switch} \textit{Name Service Switch} che tratteremo
966 brevemente più avanti (in sez.~\ref{sec:sock_resolver}) dato che la maggior
967 parte delle sua applicazioni sono relative alla risoluzioni di nomi di rete.
968
969 In questo paragrafo ci limiteremo comunque a trattare le funzioni classiche
970 per la lettura delle informazioni relative a utenti e gruppi tralasciando
971 completamente quelle relative all'autenticazione. 
972 %  Per questo non tratteremo
973 % affatto l'interfaccia di PAM, ma approfondiremo invece il sistema del
974 % \textit{Name Service Switch}, un meccanismo messo a disposizione dalle
975 % \acr{glibc} per modularizzare l'accesso a tutti i servizi in cui sia
976 % necessario trovare una corrispondenza fra un nome ed un numero (od altra
977 % informazione) ad esso associato, come appunto, quella fra uno username ed un
978 % \acr{uid} o fra un \acr{gid} ed il nome del gruppo corrispondente.
979 Le prime funzioni che vedremo sono quelle previste dallo standard POSIX.1;
980 queste sono del tutto generiche e si appoggiano direttamente al \textit{Name
981   Service Switch}, per cui sono in grado di ricevere informazioni qualunque
982 sia il supporto su cui esse vengono mantenute.  Per leggere le informazioni
983 relative ad un utente si possono usare due funzioni, \funcd{getpwuid} e
984 \funcd{getpwnam}, i cui prototipi sono:
985 \begin{functions}
986   \headdecl{pwd.h} 
987   \headdecl{sys/types.h} 
988   \funcdecl{struct passwd *getpwuid(uid\_t uid)} 
989   
990   \funcdecl{struct passwd *getpwnam(const char *name)} 
991
992   Restituiscono le informazioni relative all'utente specificato.
993   
994   \bodydesc{Le funzioni ritornano il puntatore alla struttura contenente le
995     informazioni in caso di successo e \val{NULL} nel caso non sia stato
996     trovato nessun utente corrispondente a quanto specificato.}
997 \end{functions}
998
999 Le due funzioni forniscono le informazioni memorizzate nel registro degli
1000 utenti (che nelle versioni più recenti possono essere ottenute attraverso PAM)
1001 relative all'utente specificato attraverso il suo \acr{uid} o il nome di
1002 login. Entrambe le funzioni restituiscono un puntatore ad una struttura di
1003 tipo \struct{passwd} la cui definizione (anch'essa eseguita in \file{pwd.h}) è
1004 riportata in fig.~\ref{fig:sys_passwd_struct}, dove è pure brevemente
1005 illustrato il significato dei vari campi.
1006
1007 \begin{figure}[!htb]
1008   \footnotesize
1009   \centering
1010   \begin{minipage}[c]{15cm}
1011     \includestruct{listati/passwd.h}
1012   \end{minipage} 
1013   \normalsize 
1014   \caption{La struttura \structd{passwd} contenente le informazioni relative ad
1015     un utente del sistema.}
1016   \label{fig:sys_passwd_struct}
1017 \end{figure}
1018
1019 La struttura usata da entrambe le funzioni è allocata staticamente, per questo
1020 motivo viene sovrascritta ad ogni nuova invocazione, lo stesso dicasi per la
1021 memoria dove sono scritte le stringhe a cui i puntatori in essa contenuti
1022 fanno riferimento. Ovviamente questo implica che dette funzioni non possono
1023 essere rientranti; per questo motivo ne esistono anche due versioni
1024 alternative (denotate dalla solita estensione \code{\_r}), i cui prototipi
1025 sono:
1026 \begin{functions}
1027   \headdecl{pwd.h} 
1028   
1029   \headdecl{sys/types.h} 
1030   
1031   \funcdecl{struct passwd *getpwuid\_r(uid\_t uid, struct passwd *password,
1032     char *buffer, size\_t buflen, struct passwd **result)}
1033   
1034   \funcdecl{struct passwd *getpwnam\_r(const char *name, struct passwd
1035     *password, char *buffer, size\_t buflen, struct passwd **result)}
1036
1037   Restituiscono le informazioni relative all'utente specificato.
1038   
1039   \bodydesc{Le funzioni ritornano 0 in caso di successo e un codice d'errore
1040     altrimenti, nel qual caso \var{errno} sarà impostata opportunamente.}
1041 \end{functions}
1042
1043 In questo caso l'uso è molto più complesso, in quanto bisogna prima allocare
1044 la memoria necessaria a contenere le informazioni. In particolare i valori
1045 della struttura \struct{passwd} saranno restituiti all'indirizzo
1046 \param{password} mentre la memoria allocata all'indirizzo \param{buffer}, per
1047 un massimo di \param{buflen} byte, sarà utilizzata per contenere le stringhe
1048 puntate dai campi di \param{password}. Infine all'indirizzo puntato da
1049 \param{result} viene restituito il puntatore ai dati ottenuti, cioè
1050 \param{buffer} nel caso l'utente esista, o \val{NULL} altrimenti.  Qualora i
1051 dati non possano essere contenuti nei byte specificati da \param{buflen}, la
1052 funzione fallirà restituendo \errcode{ERANGE} (e \param{result} sarà comunque
1053 impostato a \val{NULL}).
1054
1055 Del tutto analoghe alle precedenti sono le funzioni \funcd{getgrnam} e
1056 \funcd{getgrgid} (e le relative analoghe rientranti con la stessa estensione
1057 \code{\_r}) che permettono di leggere le informazioni relative ai gruppi, i
1058 loro prototipi sono:
1059 \begin{functions}
1060   \headdecl{grp.h} 
1061   \headdecl{sys/types.h} 
1062
1063   \funcdecl{struct group *getgrgid(gid\_t gid)} 
1064   
1065   \funcdecl{struct group *getgrnam(const char *name)} 
1066   
1067   \funcdecl{struct group *getpwuid\_r(gid\_t gid, struct group *password,
1068     char *buffer, size\_t buflen, struct group **result)}
1069   
1070   \funcdecl{struct group *getpwnam\_r(const char *name, struct group
1071     *password, char *buffer, size\_t buflen, struct group **result)}
1072
1073   Restituiscono le informazioni relative al gruppo specificato.
1074   
1075   \bodydesc{Le funzioni ritornano 0 in caso di successo e un codice d'errore
1076     altrimenti, nel qual caso \var{errno} sarà impostata opportunamente.}
1077 \end{functions}
1078
1079 Il comportamento di tutte queste funzioni è assolutamente identico alle
1080 precedenti che leggono le informazioni sugli utenti, l'unica differenza è che
1081 in questo caso le informazioni vengono restituite in una struttura di tipo
1082 \struct{group}, la cui definizione è riportata in
1083 fig.~\ref{fig:sys_group_struct}.
1084
1085 \begin{figure}[!htb]
1086   \footnotesize
1087   \centering
1088   \begin{minipage}[c]{15cm}
1089     \includestruct{listati/group.h}
1090   \end{minipage} 
1091   \normalsize 
1092   \caption{La struttura \structd{group} contenente le informazioni relative ad
1093     un gruppo del sistema.}
1094   \label{fig:sys_group_struct}
1095 \end{figure}
1096
1097 Le funzioni viste finora sono in grado di leggere le informazioni sia
1098 direttamente dal file delle password in \conffile{/etc/passwd} che tramite il
1099 sistema del \itindex{Name~Service~Switch} \textit{Name Service Switch} e sono
1100 completamente generiche. Si noti però che non c'è una funzione che permetta di
1101 impostare direttamente una password.\footnote{in realtà questo può essere
1102   fatto ricorrendo a PAM, ma questo è un altro discorso.} Dato che POSIX non
1103 prevede questa possibilità esiste un'altra interfaccia che lo fa, derivata da
1104 SVID le cui funzioni sono riportate in tab.~\ref{tab:sys_passwd_func}. Questa
1105 però funziona soltanto quando le informazioni sono mantenute su un apposito
1106 file di \textsl{registro} di utenti e gruppi, con il formato classico di
1107 \conffile{/etc/passwd} e \conffile{/etc/group}.
1108
1109 \begin{table}[htb]
1110   \footnotesize
1111   \centering
1112   \begin{tabular}[c]{|l|p{8cm}|}
1113     \hline
1114     \textbf{Funzione} & \textbf{Significato}\\
1115     \hline
1116     \hline
1117     \func{fgetpwent}   & Legge una voce dal file di registro degli utenti
1118                          specificato.\\
1119     \func{fgetpwent\_r}& Come la precedente, ma rientrante.\\
1120     \func{putpwent}    & Immette una voce in un file di registro degli
1121                          utenti.\\ 
1122     \func{getpwent}    & Legge una voce da \conffile{/etc/passwd}.\\
1123     \func{getpwent\_r} & Come la precedente, ma rientrante.\\
1124     \func{setpwent}    & Ritorna all'inizio di \conffile{/etc/passwd}.\\
1125     \func{endpwent}    & Chiude \conffile{/etc/passwd}.\\
1126     \func{fgetgrent}   & Legge una voce dal file di registro dei gruppi 
1127                          specificato.\\
1128     \func{fgetgrent\_r}& Come la precedente, ma rientrante.\\
1129     \func{putgrent}    & Immette una voce in un file di registro dei gruppi.\\
1130     \func{getgrent}    & Legge una voce da \conffile{/etc/group}.\\ 
1131     \func{getgrent\_r} & Come la precedente, ma rientrante.\\
1132     \func{setgrent}    & Ritorna all'inizio di \conffile{/etc/group}.\\
1133     \func{endgrent}    & Chiude \conffile{/etc/group}.\\
1134     \hline
1135   \end{tabular}
1136   \caption{Funzioni per la manipolazione dei campi di un file usato come
1137     registro per utenti o gruppi nel formato di \conffile{/etc/passwd} e
1138     \conffile{/etc/group}.} 
1139   \label{tab:sys_passwd_func}
1140 \end{table}
1141
1142 Dato che oramai la gran parte delle distribuzioni di GNU/Linux utilizzano
1143 almeno le \textit{shadow password} (quindi con delle modifiche rispetto al
1144 formato classico del file \conffile{/etc/passwd}), si tenga presente che le
1145 funzioni di questa interfaccia che permettono di scrivere delle voci in un
1146 \textsl{registro} degli utenti (cioè \func{putpwent} e \func{putgrent}) non
1147 hanno la capacità di farlo specificando tutti i contenuti necessari rispetto a
1148 questa estensione. Per questo motivo l'uso di queste funzioni è deprecato, in
1149 quanto comunque non funzionale, pertanto ci limiteremo a fornire soltanto
1150 l'elenco di tab.~\ref{tab:sys_passwd_func}, senza nessuna spiegazione
1151 ulteriore.  Chi volesse insistere ad usare questa interfaccia può fare
1152 riferimento alle pagine di manuale delle rispettive funzioni ed al manuale
1153 delle \acr{glibc} per i dettagli del funzionamento.
1154
1155
1156
1157 \subsection{Il registro della \textsl{contabilità} degli utenti}
1158 \label{sec:sys_accounting}
1159
1160 L'ultimo insieme di funzioni relative alla gestione del sistema che
1161 esamineremo è quello che permette di accedere ai dati del registro della
1162 cosiddetta \textsl{contabilità} (o \textit{accounting}) degli utenti.  In esso
1163 vengono mantenute una serie di informazioni storiche relative sia agli utenti
1164 che si sono collegati al sistema, (tanto per quelli correntemente collegati,
1165 che per la registrazione degli accessi precedenti), sia relative all'intero
1166 sistema, come il momento di lancio di processi da parte di \cmd{init}, il
1167 cambiamento dell'orologio di sistema, il cambiamento di runlevel o il riavvio
1168 della macchina.
1169
1170 I dati vengono usualmente\footnote{questa è la locazione specificata dal
1171   \textit{Linux Filesystem Hierarchy Standard}, adottato dalla gran parte
1172   delle distribuzioni.} memorizzati nei due file \file{/var/run/utmp} e
1173 \file{/var/log/wtmp}.\footnote{non si confonda quest'ultimo con il simile
1174   \file{/var/log/btmp} dove invece vengono memorizzati dal programma di login
1175   tutti tentativi di accesso fallito.} Quando un utente si collega viene
1176 aggiunta una voce a \file{/var/run/utmp} in cui viene memorizzato il nome di
1177 login, il terminale da cui ci si collega, l'\acr{uid} della shell di login,
1178 l'orario della connessione ed altre informazioni.  La voce resta nel file fino
1179 al logout, quando viene cancellata e spostata in \file{/var/log/wtmp}.
1180
1181 In questo modo il primo file viene utilizzato per registrare chi sta
1182 utilizzando il sistema al momento corrente, mentre il secondo mantiene la
1183 registrazione delle attività degli utenti. A quest'ultimo vengono anche
1184 aggiunte delle voci speciali per tenere conto dei cambiamenti del sistema,
1185 come la modifica del runlevel, il riavvio della macchina, ecc. Tutte queste
1186 informazioni sono descritte in dettaglio nel manuale delle \acr{glibc}.
1187
1188 Questi file non devono mai essere letti direttamente, ma le informazioni che
1189 contengono possono essere ricavate attraverso le opportune funzioni di
1190 libreria. Queste sono analoghe alle precedenti funzioni (vedi
1191 tab.~\ref{tab:sys_passwd_func}) usate per accedere al registro degli utenti,
1192 solo che in questo caso la struttura del registro della \textsl{contabilità} è
1193 molto più complessa, dato che contiene diversi tipi di informazione.
1194
1195 Le prime tre funzioni, \funcd{setutent}, \funcd{endutent} e \funcd{utmpname}
1196 servono rispettivamente a aprire e a chiudere il file che contiene il
1197 registro, e a specificare su quale file esso viene mantenuto. I loro prototipi
1198 sono:
1199 \begin{functions}
1200   \headdecl{utmp.h} 
1201   
1202   \funcdecl{void utmpname(const char *file)} Specifica il file da usare come
1203   registro.
1204   
1205   \funcdecl{void setutent(void)} Apre il file del registro, posizionandosi al
1206   suo inizio.
1207   
1208   \funcdecl{void endutent(void)} Chiude il file del registro.
1209   
1210   \bodydesc{Le funzioni non ritornano codici di errore.}
1211 \end{functions}
1212 e si tenga presente che le funzioni non restituiscono nessun valore, pertanto
1213 non è possibile accorgersi di eventuali errori (ad esempio se si è impostato
1214 un nome di file sbagliato con \func{utmpname}).
1215
1216 Nel caso non si sia utilizzata \func{utmpname} per specificare un file di
1217 registro alternativo, sia \func{setutent} che \func{endutent} operano usando
1218 il default che è \file{/var/run/utmp}. Il nome di questo file, così come una
1219 serie di altri valori di default per i \textit{pathname} di uso più comune,
1220 viene mantenuto nei valori di una serie di costanti definite includendo
1221 \file{paths.h}, in particolare quelle che ci interessano sono:
1222 \begin{basedescript}{\desclabelwidth{2.0cm}}
1223 \item[\const{\_PATH\_UTMP}] specifica il file che contiene il registro per gli
1224   utenti correntemente collegati; questo è il valore che viene usato se non si
1225   è utilizzato \func{utmpname} per modificarlo.
1226 \item[\const{\_PATH\_WTMP}] specifica il file che contiene il registro per
1227   l'archivio storico degli utenti collegati.
1228 \end{basedescript}
1229 che nel caso di Linux hanno un valore corrispondente ai file
1230 \file{/var/run/utmp} e \file{/var/log/wtmp} citati in precedenza.
1231
1232 Una volta aperto il file del registro degli utenti si può eseguire una
1233 scansione leggendo o scrivendo una voce con le funzioni \funcd{getutent},
1234 \funcd{getutid}, \funcd{getutline} e \funcd{pututline}, i cui prototipi sono:
1235 \begin{functions}
1236   \headdecl{utmp.h} 
1237
1238   \funcdecl{struct utmp *getutent(void)} 
1239   Legge una voce dalla posizione corrente nel registro.
1240   
1241   \funcdecl{struct utmp *getutid(struct utmp *ut)} Ricerca una voce sul
1242   registro in base al contenuto di \param{ut}.
1243
1244   \funcdecl{struct utmp *getutline(struct utmp *ut)} 
1245   Ricerca nel registro la prima voce corrispondente ad un processo sulla linea
1246   di terminale specificata tramite \param{ut}.
1247
1248   \funcdecl{struct utmp *pututline(struct utmp *ut)} 
1249   Scrive una voce nel registro.
1250   
1251   \bodydesc{Le funzioni ritornano il puntatore ad una struttura \struct{utmp}
1252     in caso di successo e \val{NULL} in caso di errore.}
1253 \end{functions}
1254
1255 Tutte queste funzioni fanno riferimento ad una struttura di tipo
1256 \struct{utmp}, la cui definizione in Linux è riportata in
1257 fig.~\ref{fig:sys_utmp_struct}. Le prime tre funzioni servono per leggere una
1258 voce dal registro; \func{getutent} legge semplicemente la prima voce
1259 disponibile; le altre due permettono di eseguire una ricerca.
1260
1261
1262 \begin{figure}[!htb]
1263   \footnotesize
1264   \centering
1265   \begin{minipage}[c]{15cm}
1266     \includestruct{listati/utmp.h}
1267   \end{minipage} 
1268   \normalsize 
1269   \caption{La struttura \structd{utmp} contenente le informazioni di una voce
1270     del registro di \textsl{contabilità}.}
1271   \label{fig:sys_utmp_struct}
1272 \end{figure}
1273
1274 Con \func{getutid} si può cercare una voce specifica, a seconda del valore del
1275 campo \var{ut\_type} dell'argomento \param{ut}.  Questo può assumere i valori
1276 riportati in tab.~\ref{tab:sys_ut_type}, quando assume i valori
1277 \const{RUN\_LVL}, \const{BOOT\_TIME}, \const{OLD\_TIME}, \const{NEW\_TIME},
1278 verrà restituito la prima voce che corrisponde al tipo determinato; quando
1279 invece assume i valori \const{INIT\_PROCESS}, \const{LOGIN\_PROCESS},
1280 \const{USER\_PROCESS} o \const{DEAD\_PROCESS} verrà restituita la prima voce
1281 corrispondente al valore del campo \var{ut\_id} specificato in \param{ut}.
1282
1283 \begin{table}[htb]
1284   \footnotesize
1285   \centering
1286   \begin{tabular}[c]{|l|p{8cm}|}
1287     \hline
1288     \textbf{Valore} & \textbf{Significato}\\
1289     \hline
1290     \hline
1291     \const{EMPTY}         & Non contiene informazioni valide.\\
1292     \const{RUN\_LVL}      & Identica il runlevel del sistema.\\
1293     \const{BOOT\_TIME}    & Identifica il tempo di avvio del sistema.\\
1294     \const{OLD\_TIME}     & Identifica quando è stato modificato l'orologio di
1295                             sistema.\\
1296     \const{NEW\_TIME}     & Identifica da quanto è stato modificato il 
1297                             sistema.\\
1298     \const{INIT\_PROCESS} & Identifica un processo lanciato da \cmd{init}.\\
1299     \const{LOGIN\_PROCESS}& Identifica un processo di login.\\
1300     \const{USER\_PROCESS} & Identifica un processo utente.\\
1301     \const{DEAD\_PROCESS} & Identifica un processo terminato.\\
1302 %    \const{ACCOUNTING}    & ??? \\
1303     \hline
1304   \end{tabular}
1305   \caption{Classificazione delle voci del registro a seconda dei
1306     possibili valori del campo \var{ut\_type}.} 
1307   \label{tab:sys_ut_type}
1308 \end{table}
1309
1310 La funzione \func{getutline} esegue la ricerca sulle voci che hanno
1311 \var{ut\_type} uguale a \const{LOGIN\_PROCESS} o \const{USER\_PROCESS},
1312 restituendo la prima che corrisponde al valore di \var{ut\_line}, che
1313 specifica il device\footnote{espresso senza il \file{/dev/} iniziale.} di
1314 terminale che interessa. Lo stesso criterio di ricerca è usato da
1315 \func{pututline} per trovare uno spazio dove inserire la voce specificata,
1316 qualora non sia trovata la voce viene aggiunta in coda al registro.
1317
1318 In generale occorre però tenere conto che queste funzioni non sono
1319 completamente standardizzate, e che in sistemi diversi possono esserci
1320 differenze; ad esempio \func{pututline} restituisce \code{void} in vari
1321 sistemi (compreso Linux, fino alle \acr{libc5}). Qui seguiremo la sintassi
1322 fornita dalle \acr{glibc}, ma gli standard POSIX 1003.1-2001 e XPG4.2 hanno
1323 introdotto delle nuove strutture (e relativi file) di tipo \code{utmpx}, che
1324 sono un sovrainsieme di \code{utmp}. 
1325
1326 Le \acr{glibc} utilizzano già una versione estesa di \code{utmp}, che rende
1327 inutili queste nuove strutture; pertanto esse e le relative funzioni di
1328 gestione (\func{getutxent}, \func{getutxid}, \func{getutxline},
1329 \func{pututxline}, \func{setutxent} e \func{endutxent}) sono ridefinite come
1330 sinonimi delle funzioni appena viste.
1331
1332 Come visto in sez.~\ref{sec:sys_user_group}, l'uso di strutture allocate
1333 staticamente rende le funzioni di lettura non rientranti; per questo motivo le
1334 \acr{glibc} forniscono anche delle versioni rientranti: \func{getutent\_r},
1335 \func{getutid\_r}, \func{getutline\_r}, che invece di restituire un puntatore
1336 restituiscono un intero e prendono due argomenti aggiuntivi. Le funzioni si
1337 comportano esattamente come le analoghe non rientranti, solo che restituiscono
1338 il risultato all'indirizzo specificato dal primo argomento aggiuntivo (di tipo
1339 \code{struct utmp *buffer}) mentre il secondo (di tipo \code{struct utmp
1340   **result)} viene usato per restituire il puntatore allo stesso buffer.
1341
1342 Infine le \acr{glibc} forniscono come estensione per la scrittura delle voci
1343 in \file{wmtp} altre due funzioni, \funcd{updwtmp} e \funcd{logwtmp}, i cui
1344 prototipi sono:
1345 \begin{functions}
1346   \headdecl{utmp.h} 
1347   
1348   \funcdecl{void updwtmp(const char *wtmp\_file, const struct utmp *ut)}
1349   Aggiunge la voce \param{ut} nel registro \file{wmtp}.
1350   
1351   \funcdecl{void logwtmp(const char *line, const char *name, const char
1352     *host)} Aggiunge nel registro una voce con i valori specificati.
1353 \end{functions}
1354
1355 La prima funzione permette l'aggiunta di una voce a \file{wmtp} specificando
1356 direttamente una struttura \struct{utmp}, mentre la seconda utilizza gli
1357 argomenti \param{line}, \param{name} e \param{host} per costruire la voce che
1358 poi aggiunge chiamando \func{updwtmp}.
1359
1360
1361 \section{Il controllo dell'uso delle risorse}
1362 \label{sec:sys_res_limits}
1363
1364
1365 Dopo aver esaminato le funzioni che permettono di controllare le varie
1366 caratteristiche, capacità e limiti del sistema a livello globale, in questa
1367 sezione tratteremo le varie funzioni che vengono usate per quantificare le
1368 risorse (CPU, memoria, ecc.) utilizzate da ogni singolo processo e quelle che
1369 permettono di imporre a ciascuno di essi vincoli e limiti di
1370 utilizzo. 
1371
1372
1373 \subsection{L'uso delle risorse}
1374 \label{sec:sys_resource_use}
1375
1376 Come abbiamo accennato in sez.~\ref{sec:proc_wait} le informazioni riguardo
1377 l'utilizzo delle risorse da parte di un processo è mantenuto in una struttura
1378 di tipo \struct{rusage}, la cui definizione (che si trova in
1379 \file{sys/resource.h}) è riportata in fig.~\ref{fig:sys_rusage_struct}.
1380
1381 \begin{figure}[!htb]
1382   \footnotesize
1383   \centering
1384   \begin{minipage}[c]{15cm}
1385     \includestruct{listati/rusage.h}
1386   \end{minipage} 
1387   \normalsize 
1388   \caption{La struttura \structd{rusage} per la lettura delle informazioni dei 
1389     delle risorse usate da un processo.}
1390   \label{fig:sys_rusage_struct}
1391 \end{figure}
1392
1393 La definizione della struttura in fig.~\ref{fig:sys_rusage_struct} è ripresa
1394 da BSD 4.3,\footnote{questo non ha a nulla a che fare con il cosiddetto
1395   \textit{BSD accounting} (vedi sez. \ref{sec:sys_bsd_accounting}) che si trova
1396   nelle opzioni di compilazione del kernel (e di norma è disabilitato) che
1397   serve per mantenere una contabilità delle risorse usate da ciascun processo
1398   in maniera molto più dettagliata.} ma attualmente (con i kernel della serie
1399 2.4.x e 2.6.x) i soli campi che sono mantenuti sono: \var{ru\_utime},
1400 \var{ru\_stime}, \var{ru\_minflt}, \var{ru\_majflt}, e \var{ru\_nswap}. I
1401 primi due indicano rispettivamente il tempo impiegato dal processo
1402 nell'eseguire le istruzioni in user space, e quello impiegato dal kernel nelle
1403 system call eseguite per conto del processo.
1404
1405 Gli altri tre campi servono a quantificare l'uso della memoria
1406 virtuale\index{memoria~virtuale} e corrispondono rispettivamente al numero di
1407 \itindex{page~fault} \textit{page fault} (vedi sez.~\ref{sec:proc_mem_gen})
1408 avvenuti senza richiedere I/O su disco (i cosiddetti \textit{minor page
1409   fault}), a quelli che invece han richiesto I/O su disco (detti invece
1410 \textit{major page fault}) ed al numero di volte che il processo è stato
1411 completamente tolto dalla memoria per essere inserito nello swap.
1412
1413 In genere includere esplicitamente \file{<sys/time.h>} non è più strettamente
1414 necessario, ma aumenta la portabilità, e serve comunque quando, come nella
1415 maggior parte dei casi, si debba accedere ai campi di \struct{rusage} relativi
1416 ai tempi di utilizzo del processore, che sono definiti come strutture di tipo
1417 \struct{timeval}.
1418
1419 Questa è la stessa struttura utilizzata da \func{wait4} (si ricordi quando
1420 visto in sez.~\ref{sec:proc_wait}) per ricavare la quantità di risorse
1421 impiegate dal processo di cui si è letto lo stato di terminazione, ma essa può
1422 anche essere letta direttamente utilizzando la funzione \funcd{getrusage}, il
1423 cui prototipo è:
1424 \begin{functions}
1425   \headdecl{sys/time.h} 
1426   \headdecl{sys/resource.h} 
1427   \headdecl{unistd.h} 
1428   
1429   \funcdecl{int getrusage(int who, struct rusage *usage)} 
1430   Legge la quantità di risorse usate da un processo.
1431
1432
1433   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
1434   nel qual caso \var{errno} può essere \errval{EINVAL} o \errval{EFAULT}.}
1435 \end{functions}
1436
1437 L'argomento \param{who} permette di specificare il processo di cui si vuole
1438 leggere l'uso delle risorse; esso può assumere solo i due valori
1439 \const{RUSAGE\_SELF} per indicare il processo corrente e
1440 \const{RUSAGE\_CHILDREN} per indicare l'insieme dei processi figli di cui si è
1441 ricevuto lo stato di terminazione. 
1442
1443 % TODO previsto in futuro \const{RUSAGE\_THREAD}, verificare.
1444
1445 \subsection{Limiti sulle risorse}
1446 \label{sec:sys_resource_limit}
1447
1448 Come accennato nell'introduzione il kernel mette a disposizione delle
1449 funzionalità che permettono non solo di mantenere dati statistici relativi
1450 all'uso delle risorse, ma anche di imporre dei limiti precisi sul loro
1451 utilizzo da parte dei vari processi o degli utenti.
1452
1453 Per far questo esistono una serie di risorse e ad ogni processo vengono
1454 associati due diversi limiti per ciascuna di esse; questi sono il
1455 \textsl{limite corrente} (o \textit{current limit}) che esprime un valore
1456 massimo che il processo non può superare ad un certo momento, ed il
1457 \textsl{limite massimo} (o \textit{maximum limit}) che invece esprime il
1458 valore massimo che può assumere il \textsl{limite corrente}. In generale il
1459 primo viene chiamato anche \textit{soft limit} dato che il suo valore può
1460 essere aumentato dal processo stesso durante l'esecuzione, ciò può però essere
1461 fatto solo fino al valore del secondo, che per questo viene detto \textit{hard
1462   limit}.
1463
1464 \begin{table}[htb]
1465   \footnotesize
1466   \centering
1467   \begin{tabular}[c]{|l|p{12cm}|}
1468     \hline
1469     \textbf{Valore} & \textbf{Significato}\\
1470     \hline
1471     \hline
1472     \const{RLIMIT\_AS}     &  La dimensione massima della memoria virtuale di
1473                               un processo, il cosiddetto \textit{Address
1474                                 Space}, (vedi sez.~\ref{sec:proc_mem_gen}). Se
1475                               il limite viene superato dall'uso di funzioni
1476                               come \func{brk}, \func{mremap} o \func{mmap}
1477                               esse falliranno con un errore di
1478                               \errcode{ENOMEM}, mentre se il superamento viene
1479                               causato dalla crescita dello \itindex{stack}
1480                               stack il processo riceverà un segnale di
1481                               \const{SIGSEGV}.\\  
1482     \const{RLIMIT\_CORE}   &  La massima dimensione per di un file di
1483                               \itindex{core~dump} \textit{core dump} (vedi
1484                               sez.~\ref{sec:sig_prog_error}) creato nella
1485                               terminazione di un processo; file di dimensioni 
1486                               maggiori verranno troncati a questo valore,
1487                               mentre con un valore si bloccherà la creazione
1488                               dei \itindex{core~dump} \textit{core dump}.\\ 
1489     \const{RLIMIT\_CPU}    &  Il massimo tempo di CPU (vedi
1490                               sez.~\ref{sec:sys_cpu_times}) che il processo può
1491                               usare. Il superamento del limite corrente
1492                               comporta l'emissione di un segnale di
1493                               \const{SIGXCPU} la cui azione predefinita (vedi
1494                               sez.~\ref{sec:sig_classification}) è terminare
1495                               il processo. Il superamento del limite massimo
1496                               comporta l'emissione di un segnale di
1497                               \const{SIGKILL}.\footnotemark\\
1498     \const{RLIMIT\_DATA}   &  La massima dimensione del \index{segmento!dati}
1499                               segmento dati di un 
1500                               processo (vedi sez.~\ref{sec:proc_mem_layout}).
1501                               Il tentativo di allocare più memoria di quanto
1502                               indicato dal limite corrente causa il fallimento
1503                               della funzione di allocazione (\func{brk} o
1504                               \func{sbrk}) con un errore di \errcode{ENOMEM}.\\
1505     \const{RLIMIT\_FSIZE}  &  La massima dimensione di un file che un processo
1506                               può creare. Se il processo cerca di scrivere
1507                               oltre questa dimensione riceverà un segnale di
1508                               \const{SIGXFSZ}, che di norma termina il
1509                               processo; se questo viene intercettato la
1510                               system call che ha causato l'errore fallirà con
1511                               un errore di \errcode{EFBIG}.\\
1512     \const{RLIMIT\_LOCKS}&    È un limite presente solo nelle prime versioni
1513                               del kernel 2.4 sul numero massimo di
1514                               \index{file!locking} \textit{file lock} (vedi
1515                               sez.~\ref{sec:file_locking}) che un
1516                               processo poteva effettuare.\\ 
1517     \const{RLIMIT\_MEMLOCK}&  L'ammontare massimo di memoria che può essere
1518                               bloccata in RAM da un processo (vedi
1519                               sez.~\ref{sec:proc_mem_lock}). Dal kernel 2.6.9
1520                               questo limite comprende anche la memoria che può
1521                               essere bloccata da ciascun utente nell'uso della
1522                               memoria condivisa (vedi
1523                               sez.~\ref{sec:ipc_sysv_shm}) che viene
1524                               contabilizzata separatamente ma sulla quale
1525                               viene applicato questo stesso limite.\\ 
1526     \const{RLIMIT\_NOFILE} &  Il numero massimo di file che il processo può
1527                               aprire. L'apertura di un ulteriore file farà
1528                               fallire la funzione (\func{open}, \func{dup} o
1529                               \func{pipe}) con un errore \errcode{EMFILE}.\\
1530     \const{RLIMIT\_NPROC}  &  Il numero massimo di processi che possono essere
1531                               creati sullo stesso user id real. Se il limite
1532                               viene raggiunto \func{fork} fallirà con un
1533                               \errcode{EAGAIN}.\\
1534     \const{RLIMIT\_SIGPENDING}& Il numero massimo di segnali che possono
1535                               essere mantenuti in coda per ciascun utente,
1536                               considerando sia i segnali normali che real-time
1537                               (vedi sez.~\ref{sec:sig_real_time}). Il limite è
1538                               attivo solo per \func{sigqueue}, con \func{kill}
1539                               si potrà sempre inviare un segnale che non sia
1540                               già presente su una coda.\footnotemark\\
1541     \const{RLIMIT\_STACK}  &  La massima dimensione dello \itindex{stack}
1542                               stack del 
1543                               processo. Se il processo esegue operazioni che
1544                               estendano lo stack oltre questa dimensione
1545                               riceverà un segnale di \const{SIGSEGV}.\\
1546     \const{RLIMIT\_RSS}    &  L'ammontare massimo di pagine di memoria dato al
1547                               \index{segmento!testo} testo del processo. Il
1548                               limite è solo una indicazione per il kernel,
1549                               qualora ci fosse un surplus di memoria questa
1550                               verrebbe assegnata.\\ 
1551 % TODO integrare con la roba di madvise
1552     \hline
1553   \end{tabular}
1554   \caption{Valori possibili dell'argomento \param{resource} delle funzioni
1555     \func{getrlimit} e \func{setrlimit}.} 
1556   \label{tab:sys_rlimit_values}
1557 \end{table}
1558
1559 \footnotetext[18]{questo è quanto avviene per i kernel dalla serie 2.2 fino ad
1560   oggi (la 2.6.x); altri kernel possono avere comportamenti diversi per quanto
1561   avviene quando viene superato il \textit{soft limit}; perciò per avere
1562   operazioni portabili è sempre opportuno intercettare \const{SIGXCPU} e
1563   terminare in maniera ordinata il processo.}
1564
1565 \footnotetext{il limite su questa risorsa è stato introdotto con il kernel
1566   2.6.8.}
1567
1568 % aggiungere i limiti che mancano come RLIMIT_RTTIME introdotto con il 2.6.25
1569 % vedi file include/asm-generic/resource.h
1570
1571 In generale il superamento di un limite corrente\footnote{di norma quanto
1572   riportato in tab.~\ref{tab:sys_rlimit_values} fa riferimento a quanto
1573   avviene al superamento del limite corrente, con l'eccezione
1574   \const{RLIMIT\_CPU} in cui si ha in comportamento diverso per il superamento
1575   dei due limiti.}  comporta o l'emissione di un segnale o il fallimento della
1576 system call che lo ha provocato;\footnote{si nuovo c'è una eccezione per
1577   \const{RLIMIT\_CORE} che influenza soltanto la dimensione (o l'eventuale
1578   creazione) dei file di \itindex{core~dump} \textit{core dump}.} per
1579 permettere di leggere e di impostare i limiti di utilizzo delle risorse da
1580 parte di un processo sono previste due funzioni, \funcd{getrlimit} e
1581 \funcd{setrlimit}, i cui prototipi sono:
1582 \begin{functions}
1583   \headdecl{sys/time.h} 
1584   \headdecl{sys/resource.h} 
1585   \headdecl{unistd.h} 
1586   
1587   \funcdecl{int getrlimit(int resource, struct rlimit *rlim)} 
1588
1589   Legge il limite corrente per la risorsa \param{resource}.
1590   
1591   \funcdecl{int setrlimit(int resource, const struct rlimit *rlim)} 
1592   
1593   Imposta il limite per la risorsa \param{resource}.
1594   
1595   \bodydesc{Le funzioni ritornano 0 in caso di successo e -1 in caso di
1596     errore, nel qual caso \var{errno} assumerà uno dei valori:
1597     \begin{errlist}
1598     \item[\errcode{EINVAL}] i valori per \param{resource} non sono validi.
1599     \item[\errcode{EPERM}] un processo senza i privilegi di amministratore ha
1600     cercato di innalzare i propri limiti.
1601     \end{errlist}
1602   ed \errval{EFAULT}.}
1603 \end{functions}
1604
1605
1606 Entrambe le funzioni permettono di specificare, attraverso l'argomento
1607 \param{resource}, su quale risorsa si vuole operare: i possibili valori di
1608 questo argomento sono elencati in tab.~\ref{tab:sys_rlimit_values}. L'acceso
1609 (rispettivamente in lettura e scrittura) ai valori effettivi dei limiti viene
1610 poi effettuato attraverso la struttura \struct{rlimit} puntata da
1611 \param{rlim}, la cui definizione è riportata in
1612 fig.~\ref{fig:sys_rlimit_struct}, ed i cui campi corrispondono appunto a
1613 limite corrente e limite massimo.
1614
1615
1616 \begin{figure}[!htb]
1617   \footnotesize
1618   \centering
1619   \begin{minipage}[c]{15cm}
1620     \includestruct{listati/rlimit.h}
1621   \end{minipage} 
1622   \normalsize 
1623   \caption{La struttura \structd{rlimit} per impostare i limiti di utilizzo 
1624     delle risorse usate da un processo.}
1625   \label{fig:sys_rlimit_struct}
1626 \end{figure}
1627
1628
1629 Nello specificare un limite, oltre a fornire dei valori specifici, si può
1630 anche usare la costante \const{RLIM\_INFINITY} che permette di sbloccare l'uso
1631 di una risorsa; ma si ricordi che solo un processo con i privilegi di
1632 amministratore\footnote{per essere precisi in questo caso quello che serve è
1633   la \itindex{capabilities} \textit{capability} \const{CAP\_SYS\_RESOURCE}.}
1634 può innalzare un limite al di sopra del valore corrente del limite massimo ed
1635 usare un valore qualsiasi per entrambi i limiti. Si tenga conto infine che
1636 tutti i limiti vengono ereditati dal processo padre attraverso una \func{fork}
1637 (vedi sez.~\ref{sec:proc_fork}) e mantenuti per gli altri programmi eseguiti
1638 attraverso una \func{exec} (vedi sez.~\ref{sec:proc_exec}).
1639
1640
1641 \subsection{Le risorse di memoria e processore}
1642 \label{sec:sys_memory_res}
1643
1644 La gestione della memoria è già stata affrontata in dettaglio in
1645 sez.~\ref{sec:proc_memory}; abbiamo visto allora che il kernel provvede il
1646 meccanismo della \index{memoria~virtuale} memoria virtuale attraverso la
1647 divisione della memoria fisica in pagine.
1648
1649 In genere tutto ciò è del tutto trasparente al singolo processo, ma in certi
1650 casi, come per l'I/O mappato in memoria (vedi sez.~\ref{sec:file_memory_map})
1651 che usa lo stesso meccanismo per accedere ai file, è necessario conoscere le
1652 dimensioni delle pagine usate dal kernel. Lo stesso vale quando si vuole
1653 gestire in maniera ottimale l'interazione della memoria che si sta allocando
1654 con il meccanismo della \index{paginazione} paginazione.
1655
1656 Di solito la dimensione delle pagine di memoria è fissata dall'architettura
1657 hardware, per cui il suo valore di norma veniva mantenuto in una costante che
1658 bastava utilizzare in fase di compilazione, ma oggi, con la presenza di alcune
1659 architetture (ad esempio Sun Sparc) che permettono di variare questa
1660 dimensione, per non dover ricompilare i programmi per ogni possibile modello e
1661 scelta di dimensioni, è necessario poter utilizzare una funzione.
1662
1663 Dato che si tratta di una caratteristica generale del sistema, questa
1664 dimensione può essere ottenuta come tutte le altre attraverso una chiamata a
1665 \func{sysconf}, \footnote{nel caso specifico si dovrebbe utilizzare il
1666   parametro \const{\_SC\_PAGESIZE}.}  ma in BSD 4.2 è stata introdotta una
1667 apposita funzione, \funcd{getpagesize}, che restituisce la dimensione delle
1668 pagine di memoria; il suo prototipo è:
1669 \begin{prototype}{unistd.h}{int getpagesize(void)}
1670   Legge le dimensioni delle pagine di memoria.
1671   
1672   \bodydesc{La funzione ritorna la dimensione di una pagina in byte, e non
1673     sono previsti errori.}
1674 \end{prototype}
1675
1676 La funzione è prevista in SVr4, BSD 4.4 e SUSv2, anche se questo ultimo
1677 standard la etichetta come obsoleta, mentre lo standard POSIX 1003.1-2001 la
1678 ha eliminata. In Linux è implementata come una system call nelle architetture
1679 in cui essa è necessaria, ed in genere restituisce il valore del simbolo
1680 \const{PAGE\_SIZE} del kernel, che dipende dalla architettura hardware, anche
1681 se le versioni delle librerie del C precedenti le \acr{glibc} 2.1
1682 implementavano questa funzione restituendo sempre un valore statico.
1683
1684 % TODO verificare meglio la faccenda di const{PAGE\_SIZE} 
1685
1686 Le \textsl{glibc} forniscono, come specifica estensione GNU, altre due
1687 funzioni, \funcd{get\_phys\_pages} e \funcd{get\_avphys\_pages} che permettono
1688 di ottenere informazioni riguardo la memoria; i loro prototipi sono:
1689 \begin{functions}
1690   \headdecl{sys/sysinfo.h} 
1691   
1692   \funcdecl{long int get\_phys\_pages(void)} 
1693
1694   Legge il numero totale di pagine di memoria disponibili per il sistema.
1695   
1696   \funcdecl{long int get\_avphys\_pages(void)} 
1697   
1698   Legge il numero di pagine di memoria disponibili nel sistema. 
1699   
1700   \bodydesc{Le funzioni restituiscono un numero di pagine.}
1701 \end{functions}
1702
1703 Queste funzioni sono equivalenti all'uso della funzione \func{sysconf}
1704 rispettivamente con i parametri \const{\_SC\_PHYS\_PAGES} e
1705 \const{\_SC\_AVPHYS\_PAGES}. La prima restituisce il numero totale di pagine
1706 corrispondenti alla RAM della macchina; la seconda invece la memoria
1707 effettivamente disponibile per i processi.
1708
1709 Le \acr{glibc} supportano inoltre, come estensioni GNU, due funzioni che
1710 restituiscono il numero di processori della macchina (e quello dei processori
1711 attivi); anche queste sono informazioni comunque ottenibili attraverso
1712 \func{sysconf} utilizzando rispettivamente i parametri
1713 \const{\_SC\_NPROCESSORS\_CONF} e \const{\_SC\_NPROCESSORS\_ONLN}.
1714
1715 Infine le \acr{glibc} riprendono da BSD la funzione \funcd{getloadavg} che
1716 permette di ottenere il carico di processore della macchina, in questo modo è
1717 possibile prendere decisioni su quando far partire eventuali nuovi processi.
1718 Il suo prototipo è:
1719 \begin{prototype}{stdlib.h}{int getloadavg(double loadavg[], int nelem)}
1720   Legge il carico medio della macchina.
1721   
1722   \bodydesc{La funzione ritorna il numero di elementi scritti o -1 in caso di
1723     errore.}
1724 \end{prototype}
1725
1726 La funzione restituisce in ciascun elemento di \param{loadavg} il numero medio
1727 di processi attivi sulla coda dello \itindex{scheduler} scheduler, calcolato
1728 su diversi intervalli di tempo.  Il numero di intervalli che si vogliono
1729 leggere è specificato da \param{nelem}, dato che nel caso di Linux il carico
1730 viene valutato solo su tre intervalli (corrispondenti a 1, 5 e 15 minuti),
1731 questo è anche il massimo valore che può essere assegnato a questo argomento.
1732
1733
1734 \subsection{La \textsl{contabilità} in stile BSD}
1735 \label{sec:sys_bsd_accounting}
1736
1737 Una ultima modalità per monitorare l'uso delle risorse è, se si è compilato il
1738 kernel con il relativo supporto,\footnote{se cioè si è abilitata l'opzione di
1739   compilazione \texttt{CONFIG\_BSD\_PROCESS\_ACCT}.} quella di attivare il
1740 cosiddetto \textit{BSD accounting}, che consente di registrare su file una
1741 serie di informazioni\footnote{contenute nella struttura \texttt{acct}
1742   definita nel file \texttt{include/linux/acct.h} dei sorgenti del kernel.}
1743 riguardo alla \textsl{contabilità} delle risorse utilizzate da ogni processo
1744 che viene terminato.
1745
1746 Linux consente di salvare la contabilità delle informazioni relative alle
1747 risorse utilizzate dai processi grazie alla funzione \funcd{acct}, il cui
1748 prototipo è:
1749 \begin{prototype}{unistd.h}{int acct(const char *filename)}
1750   Abilita il \textit{BSD accounting}.
1751   
1752   \bodydesc{La funzione ritorna 0 in caso di successo o $-1$ in caso di
1753     errore, nel qual caso \var{errno} assumerà uno dei valori:
1754     \begin{errlist}
1755     \item[\errcode{EACCESS}] non si hanno i permessi per accedere a
1756       \param{pathname}.
1757     \item[\errcode{EPERM}] il processo non ha privilegi sufficienti ad
1758       abilitare il \textit{BSD accounting}.
1759     \item[\errcode{ENOSYS}] il kernel non supporta il \textit{BSD accounting}.
1760     \item[\errcode{EUSER}] non sono disponibili nel kernel strutture per il
1761       file o si è finita la memoria.
1762     \end{errlist}
1763     ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{ELOOP},
1764     \errval{ENAMETOOLONG}, \errval{ENFILE}, \errval{ENOENT}, \errval{ENOMEM},
1765     \errval{ENOTDIR}, \errval{EROFS}.}
1766 \end{prototype}
1767
1768 La funzione attiva il salvataggio dei dati sul file indicato dal pathname
1769 contenuti nella stringa puntata da \param{filename}; la funzione richiede che
1770 il processo abbia i privilegi di amministratore (è necessaria la
1771 \itindex{capabilities} capability \const{CAP\_SYS\_PACCT}, vedi
1772 sez.~\ref{sec:proc_capabilities}). Se si specifica il valore \const{NULL} per
1773 \param{filename} il \textit{BSD accounting} viene invece disabilitato. Un
1774 semplice esempio per l'uso di questa funzione è riportato nel programma
1775 \texttt{AcctCtrl.c} dei sorgenti allegati alla guida.
1776
1777 Quando si attiva la contabilità, il file che si indica deve esistere; esso
1778 verrà aperto in sola scrittura;\footnote{si applicano al pathname indicato da
1779   \param{filename} tutte le restrizioni viste in cap.~\ref{cha:file_intro}.}
1780 le informazioni verranno registrate in \itindex{append~mode} \textit{append}
1781 in coda al file tutte le volte che un processo termina. Le informazioni
1782 vengono salvate in formato binario, e corrispondono al contenuto della
1783 apposita struttura dati definita all'interno del kernel.
1784
1785 Il funzionamento di \func{acct} viene inoltre modificato da uno specifico
1786 parametro di sistema, modificabile attraverso \procfile{/proc/sys/kernel/acct}
1787 (o tramite la corrispondente \func{sysctl}). Esso contiene tre valori interi,
1788 il primo indica la percentuale di spazio disco libero sopra il quale viene
1789 ripresa una registrazione che era stata sospesa per essere scesi sotto il
1790 minimo indicato dal secondo valore (sempre in percentuale di spazio disco
1791 libero). Infine l'ultimo valore indica la frequenza in secondi con cui deve
1792 essere controllata detta percentuale.
1793
1794
1795
1796
1797 \section{La gestione dei tempi del sistema}
1798 \label{sec:sys_time}
1799
1800 In questa sezione, una volta introdotti i concetti base della gestione dei
1801 tempi da parte del sistema, tratteremo le varie funzioni attinenti alla
1802 gestione del tempo in un sistema unix-like, a partire da quelle per misurare i
1803 veri tempi di sistema associati ai processi, a quelle per convertire i vari
1804 tempi nelle differenti rappresentazioni che vengono utilizzate, a quelle della
1805 gestione di data e ora.
1806
1807
1808 \subsection{La misura del tempo in Unix}
1809 \label{sec:sys_unix_time}
1810
1811 Storicamente i sistemi unix-like hanno sempre mantenuto due distinti tipi di
1812 dati per la misure dei tempi all'interno del sistema: essi sono
1813 rispettivamente chiamati \itindend{calendar~time} \textit{calendar time} e
1814 \itindex{process~time} \textit{process time}, secondo le definizioni:
1815 \begin{basedescript}{\desclabelwidth{1.5cm}\desclabelstyle{\nextlinelabel}}
1816 \item[\textit{calendar time}] \itindend{calendar~time} detto anche
1817   \textsl{tempo di calendario}. È il numero di secondi dalla mezzanotte del
1818   primo gennaio 1970, in tempo universale coordinato (o UTC), data che viene
1819   usualmente indicata con 00:00:00 Jan, 1 1970 (UTC) e chiamata \textit{the
1820     Epoch}. Questo tempo viene anche chiamato anche GMT (Greenwich Mean Time)
1821   dato che l'UTC corrisponde all'ora locale di Greenwich.  È il tempo su cui
1822   viene mantenuto l'orologio del kernel, e viene usato ad esempio per indicare
1823   le date di modifica dei file o quelle di avvio dei processi. Per memorizzare
1824   questo tempo è stato riservato il tipo primitivo \type{time\_t}.
1825 \item[\textit{process time}] \itindex{process~time} detto talvolta
1826   \textsl{tempo di processore}.  Viene misurato in \itindex{clock~tick}
1827   \textit{clock tick}. Un tempo questo corrispondeva al numero di interruzioni
1828   effettuate dal timer di sistema, adesso lo standard POSIX richiede che esso
1829   sia pari al valore della costante \const{CLOCKS\_PER\_SEC}, che deve essere
1830   definita come 1000000, qualunque sia la risoluzione reale dell'orologio di
1831   sistema e la frequenza delle interruzioni del timer.\footnote{quest'ultima,
1832     come accennato in sez.~\ref{sec:proc_hierarchy}, è invece data dalla
1833     costante \const{HZ}.}  Il dato primitivo usato per questo tempo è
1834   \type{clock\_t}, che ha quindi una risoluzione del microsecondo. Il numero
1835   di \itindex{clock~tick} \textit{tick} al secondo può essere ricavato anche
1836   attraverso \func{sysconf} (vedi sez.~\ref{sec:sys_sysconf}).  Il vecchio
1837   simbolo \const{CLK\_TCK} definito in \file{time.h} è ormai considerato
1838   obsoleto.
1839 \end{basedescript}
1840
1841 In genere si usa il \itindend{calendar~time} \textit{calendar time} per
1842 esprimere le date dei file e le informazioni analoghe che riguardano i
1843 cosiddetti \textsl{tempi di orologio}, che vengono usati ad esempio per i
1844 demoni che compiono lavori amministrativi ad ore definite, come \cmd{cron}.
1845
1846 Di solito questo tempo viene convertito automaticamente dal valore in UTC al
1847 tempo locale, utilizzando le opportune informazioni di localizzazione
1848 (specificate in \conffile{/etc/timezone}). E da tenere presente che questo
1849 tempo è mantenuto dal sistema e non è detto che corrisponda al tempo tenuto
1850 dall'orologio hardware del calcolatore.
1851
1852 Anche il \itindex{process~time} \textit{process time} di solito si esprime in
1853 secondi, ma fornisce una precisione ovviamente superiore al \textit{calendar
1854   time} (che è mantenuto dal sistema con una granularità di un secondo) e
1855 viene usato per tenere conto dei tempi di esecuzione dei processi. Per ciascun
1856 processo il kernel calcola tre tempi diversi:
1857 \begin{basedescript}{\desclabelwidth{1.5cm}\desclabelstyle{\nextlinelabel}}
1858 \item[\textit{clock time}] il tempo \textsl{reale} (viene chiamato anche
1859   \textit{wall clock time} o \textit{elapsed time}) passato dall'avvio del
1860   processo. Chiaramente tale tempo dipende anche dal carico del sistema e da
1861   quanti altri processi stavano girando nello stesso periodo.
1862   
1863 \item[\textit{user time}] il tempo effettivo che il processore ha impiegato
1864   nell'esecuzione delle istruzioni del processo in user space. È quello
1865   riportato nella risorsa \var{ru\_utime} di \struct{rusage} vista in
1866   sez.~\ref{sec:sys_resource_use}.
1867   
1868 \item[\textit{system time}] il tempo effettivo che il processore ha impiegato
1869   per eseguire codice delle system call nel kernel per conto del processo.  È
1870   quello riportato nella risorsa \var{ru\_stime} di \struct{rusage} vista in
1871   sez.~\ref{sec:sys_resource_use}.
1872 \end{basedescript}
1873
1874 In genere la somma di \textit{user time} e \textit{system time} indica il
1875 tempo di processore totale che il sistema ha effettivamente utilizzato per
1876 eseguire un certo processo, questo viene chiamato anche \textit{CPU time} o
1877 \textsl{tempo di CPU}. Si può ottenere un riassunto dei valori di questi tempi
1878 quando si esegue un qualsiasi programma lanciando quest'ultimo come argomento
1879 del comando \cmd{time}.
1880
1881
1882
1883 \subsection{La gestione del \textit{process time}}
1884 \label{sec:sys_cpu_times}
1885
1886 \itindbeg{process~time}
1887
1888 Di norma tutte le operazioni del sistema fanno sempre riferimento al
1889 \itindend{calendar~time} \textit{calendar time}, l'uso del \textit{process
1890   time} è riservato a quei casi in cui serve conoscere i tempi di esecuzione
1891 di un processo (ad esempio per valutarne l'efficienza). In tal caso infatti
1892 fare ricorso al \textit{calendar time} è inutile in quanto il tempo può essere
1893 trascorso mentre un altro processo era in esecuzione o in attesa del risultato
1894 di una operazione di I/O.
1895
1896 La funzione più semplice per leggere il \textit{process time} di un processo è
1897 \funcd{clock}, che da una valutazione approssimativa del tempo di CPU
1898 utilizzato dallo stesso; il suo prototipo è:
1899 \begin{prototype}{time.h}{clock\_t clock(void)}
1900   Legge il valore corrente del tempo di CPU.
1901   
1902   \bodydesc{La funzione ritorna il tempo di CPU usato dal programma e -1 in
1903     caso di errore.}
1904 \end{prototype}
1905
1906 La funzione restituisce il tempo in \itindex{clock~tick} \texttt{clock tick},
1907 quindi se si vuole il tempo in secondi occorre dividere il risultato per la
1908 costante \const{CLOCKS\_PER\_SEC}.\footnote{le \acr{glibc} seguono lo standard
1909   ANSI C, POSIX richiede che \const{CLOCKS\_PER\_SEC} sia definito pari a
1910   1000000 indipendentemente dalla risoluzione del timer di sistema.} In genere
1911 \type{clock\_t} viene rappresentato come intero a 32 bit, il che comporta un
1912 valore massimo corrispondente a circa 72 minuti, dopo i quali il contatore
1913 riprenderà lo stesso valore iniziale.
1914
1915 Come accennato in sez.~\ref{sec:sys_unix_time} il tempo di CPU è la somma di
1916 altri due tempi, l'\textit{user time} ed il \textit{system time} che sono
1917 quelli effettivamente mantenuti dal kernel per ciascun processo. Questi
1918 possono essere letti attraverso la funzione \funcd{times}, il cui prototipo è:
1919 \begin{prototype}{sys/times.h}{clock\_t times(struct tms *buf)}
1920   Legge in \param{buf} il valore corrente dei tempi di processore.
1921   
1922   \bodydesc{La funzione ritorna il numero di \itindex{clock~tick}
1923     \textit{clock tick} dall'avvio del sistema in caso di successo e -1 in
1924     caso di errore.}
1925 \end{prototype}
1926
1927 La funzione restituisce i valori di \textit{process time} del processo
1928 corrente in una struttura di tipo \struct{tms}, la cui definizione è riportata
1929 in fig.~\ref{fig:sys_tms_struct}. La struttura prevede quattro campi; i primi
1930 due, \var{tms\_utime} e \var{tms\_stime}, sono l'\textit{user time} ed il
1931 \textit{system time} del processo, così come definiti in
1932 sez.~\ref{sec:sys_unix_time}.
1933
1934 \begin{figure}[!htb]
1935   \footnotesize
1936   \centering
1937   \begin{minipage}[c]{15cm}
1938     \includestruct{listati/tms.h}
1939   \end{minipage} 
1940   \normalsize 
1941   \caption{La struttura \structd{tms} dei tempi di processore associati a un
1942     processo.} 
1943   \label{fig:sys_tms_struct}
1944 \end{figure}
1945
1946 Gli altri due campi mantengono rispettivamente la somma dell'\textit{user
1947   time} ed del \textit{system time} di tutti i processi figli che sono
1948 terminati; il kernel cioè somma in \var{tms\_cutime} il valore di
1949 \var{tms\_utime} e \var{tms\_cutime} per ciascun figlio del quale è stato
1950 ricevuto lo stato di terminazione, e lo stesso vale per \var{tms\_cstime}.
1951
1952 Si tenga conto che l'aggiornamento di \var{tms\_cutime} e \var{tms\_cstime}
1953 viene eseguito solo quando una chiamata a \func{wait} o \func{waitpid} è
1954 ritornata. Per questo motivo se un processo figlio termina prima di ricevere
1955 lo stato di terminazione di tutti i suoi figli, questi processi
1956 ``\textsl{nipoti}'' non verranno considerati nel calcolo di questi tempi.
1957
1958 \itindend{process~time}
1959
1960
1961 \subsection{Le funzioni per il \textit{calendar time}}
1962 \label{sec:sys_time_base}
1963
1964 \itindbeg{calendar~time}
1965
1966 Come anticipato in sez.~\ref{sec:sys_unix_time} il \textit{calendar time} è
1967 mantenuto dal kernel in una variabile di tipo \type{time\_t}, che usualmente
1968 corrisponde ad un tipo elementare (in Linux è definito come \ctyp{long int},
1969 che di norma corrisponde a 32 bit).  Il valore corrente del \textit{calendar
1970   time}, che indicheremo come \textsl{tempo di sistema}, può essere ottenuto
1971 con la funzione \funcd{time} che lo restituisce nel suddetto formato; il suo
1972 prototipo è:
1973 \begin{prototype}{time.h}{time\_t time(time\_t *t)}
1974   Legge il valore corrente del \textit{calendar time}.
1975   
1976   \bodydesc{La funzione ritorna il valore del \textit{calendar time} in caso
1977     di successo e -1 in caso di errore, che può essere solo \errval{EFAULT}.}
1978 \end{prototype}
1979 \noindent dove \param{t}, se non nullo, deve essere  l'indirizzo di una
1980 variabile su cui duplicare il valore di ritorno.
1981
1982 Analoga a \func{time} è la funzione \funcd{stime} che serve per effettuare
1983 l'operazione inversa, e cioè per impostare il tempo di sistema qualora questo
1984 sia necessario; il suo prototipo è:
1985 \begin{prototype}{time.h}{int stime(time\_t *t)}
1986   Imposta a \param{t} il valore corrente del \textit{calendar time}.
1987   
1988   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
1989     che può essere \errval{EFAULT} o \errval{EPERM}.}
1990 \end{prototype}
1991 \noindent dato che modificare l'ora ha un impatto su tutto il sistema 
1992 il cambiamento dell'orologio è una operazione privilegiata e questa funzione
1993 può essere usata solo da un processo con i privilegi di amministratore,
1994 altrimenti la chiamata fallirà con un errore di \errcode{EPERM}.
1995
1996 Data la scarsa precisione nell'uso di \type{time\_t} (che ha una risoluzione
1997 massima di un secondo) quando si devono effettuare operazioni sui tempi di
1998 norma l'uso delle funzioni precedenti è sconsigliato, ed esse sono di solito
1999 sostituite da \funcd{gettimeofday} e \funcd{settimeofday},\footnote{le due
2000   funzioni \func{time} e \func{stime} sono più antiche e derivano da SVr4,
2001   \func{gettimeofday} e \func{settimeofday} sono state introdotte da BSD, ed
2002   in BSD4.3 sono indicate come sostitute delle precedenti.} i cui prototipi
2003 sono:
2004 \begin{functions}
2005   \headdecl{sys/time.h}
2006   \headdecl{time.h}
2007   
2008   \funcdecl{int gettimeofday(struct timeval *tv, struct timezone *tz)} 
2009
2010   Legge il tempo corrente del sistema.
2011   
2012   \funcdecl{int settimeofday(const struct timeval *tv, const struct timezone
2013     *tz)}
2014   
2015   Imposta il tempo di sistema.
2016   
2017   \bodydesc{Entrambe le funzioni restituiscono 0 in caso di successo e -1 in
2018     caso di errore, nel qual caso \var{errno} può assumere i valori
2019     \errval{EINVAL} \errval{EFAULT} e per \func{settimeofday} anche
2020     \errval{EPERM}.}
2021 \end{functions}
2022
2023 Queste funzioni utilizzano una struttura di tipo \struct{timeval}, la cui
2024 definizione, insieme a quella della analoga \struct{timespec}, è riportata in
2025 fig.~\ref{fig:sys_timeval_struct}. Le \acr{glibc} infatti forniscono queste due
2026 rappresentazioni alternative del \textit{calendar time} che rispetto a
2027 \type{time\_t} consentono rispettivamente precisioni del microsecondo e del
2028 nanosecondo.\footnote{la precisione è solo teorica, la precisione reale della
2029   misura del tempo dell'orologio di sistema non dipende dall'uso di queste
2030   strutture.}
2031
2032 \begin{figure}[!htb]
2033   \footnotesize \centering
2034   \begin{minipage}[c]{15cm}
2035     \includestruct{listati/timeval.h}
2036   \end{minipage} 
2037   \normalsize 
2038   \caption{Le strutture \structd{timeval} e \structd{timespec} usate per una
2039     rappresentazione ad alta risoluzione del \textit{calendar time}.}
2040   \label{fig:sys_timeval_struct}
2041 \end{figure}
2042
2043 Come nel caso di \func{stime} anche \func{settimeofday} (la cosa continua a
2044 valere per qualunque funzione che vada a modificare l'orologio di sistema,
2045 quindi anche per quelle che tratteremo in seguito) può essere utilizzata solo
2046 da un processo coi privilegi di amministratore.
2047
2048 Il secondo argomento di entrambe le funzioni è una struttura
2049 \struct{timezone}, che storicamente veniva utilizzata per specificare appunto
2050 la \textit{time zone}, cioè l'insieme del fuso orario e delle convenzioni per
2051 l'ora legale che permettevano il passaggio dal tempo universale all'ora
2052 locale. Questo argomento oggi è obsoleto ed in Linux non è mai stato
2053 utilizzato; esso non è supportato né dalle vecchie \textsl{libc5}, né dalle
2054 \textsl{glibc}: pertanto quando si chiama questa funzione deve essere sempre
2055 impostato a \val{NULL}.
2056
2057 Modificare l'orologio di sistema con queste funzioni è comunque problematico,
2058 in quanto esse effettuano un cambiamento immediato. Questo può creare dei
2059 buchi o delle ripetizioni nello scorrere dell'orologio di sistema, con
2060 conseguenze indesiderate.  Ad esempio se si porta avanti l'orologio si possono
2061 perdere delle esecuzioni di \cmd{cron} programmate nell'intervallo che si è
2062 saltato. Oppure se si porta indietro l'orologio si possono eseguire due volte
2063 delle operazioni previste nell'intervallo di tempo che viene ripetuto. 
2064
2065 Per questo motivo la modalità più corretta per impostare l'ora è quella di
2066 usare la funzione \funcd{adjtime}, il cui prototipo è:
2067 \begin{prototype}{sys/time.h}
2068 {int adjtime(const struct timeval *delta, struct timeval *olddelta)} 
2069   
2070   Aggiusta del valore \param{delta} l'orologio di sistema.
2071   
2072   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2073     errore, nel qual caso \var{errno} assumerà il valore \errcode{EPERM}.}
2074 \end{prototype}
2075
2076 Questa funzione permette di avere un aggiustamento graduale del tempo di
2077 sistema in modo che esso sia sempre crescente in maniera monotona. Il valore
2078 di \param{delta} esprime il valore di cui si vuole spostare l'orologio; se è
2079 positivo l'orologio sarà accelerato per un certo tempo in modo da guadagnare
2080 il tempo richiesto, altrimenti sarà rallentato. Il secondo argomento viene
2081 usato, se non nullo, per ricevere il valore dell'ultimo aggiustamento
2082 effettuato.
2083
2084
2085 \begin{figure}[!htb]
2086   \footnotesize \centering
2087   \begin{minipage}[c]{15cm}
2088     \includestruct{listati/timex.h}
2089   \end{minipage} 
2090   \normalsize 
2091   \caption{La struttura \structd{timex} per il controllo dell'orologio di
2092     sistema.} 
2093   \label{fig:sys_timex_struct}
2094 \end{figure}
2095
2096 Linux poi prevede un'altra funzione, che consente un aggiustamento molto più
2097 dettagliato del tempo, permettendo ad esempio anche di modificare anche la
2098 velocità dell'orologio di sistema.  La funzione è \funcd{adjtimex} ed il suo
2099 prototipo è:
2100 \begin{prototype}{sys/timex.h}
2101 {int adjtimex(struct timex *buf)} 
2102   
2103   Aggiusta del valore \param{delta} l'orologio di sistema.
2104   
2105   \bodydesc{La funzione restituisce lo stato dell'orologio (un valore $>0$) in
2106     caso di successo e -1 in caso di errore, nel qual caso \var{errno}
2107     assumerà i valori \errval{EFAULT}, \errval{EINVAL} ed \errval{EPERM}.}
2108 \end{prototype}
2109
2110 La funzione richiede una struttura di tipo \struct{timex}, la cui definizione,
2111 così come effettuata in \file{sys/timex.h}, è riportata in
2112 fig.~\ref{fig:sys_timex_struct}. L'azione della funzione dipende dal valore del
2113 campo \var{mode}, che specifica quale parametro dell'orologio di sistema,
2114 specificato in un opportuno campo di \struct{timex}, deve essere impostato. Un
2115 valore nullo serve per leggere i parametri correnti; i valori diversi da zero
2116 devono essere specificati come OR binario delle costanti riportate in
2117 tab.~\ref{tab:sys_timex_mode}.
2118
2119 La funzione utilizza il meccanismo di David L. Mills, descritto
2120 nell'\href{http://www.ietf.org/rfc/rfc1305.txt}{RFC~1305}, che è alla base del
2121 protocollo NTP. La funzione è specifica di Linux e non deve essere usata se la
2122 portabilità è un requisito, le \acr{glibc} provvedono anche un suo omonimo
2123 \func{ntp\_adjtime}.  La trattazione completa di questa funzione necessita di
2124 una lettura approfondita del meccanismo descritto nell'RFC~1305, ci limitiamo
2125 a descrivere in tab.~\ref{tab:sys_timex_mode} i principali valori utilizzabili
2126 per il campo \var{mode}, un elenco più dettagliato del significato dei vari
2127 campi della struttura \struct{timex} può essere ritrovato in \cite{glibc}.
2128
2129 \begin{table}[!htb]
2130   \footnotesize
2131   \centering
2132   \begin{tabular}[c]{|l|c|p{8.5cm}|}
2133     \hline
2134     \textbf{Nome} & \textbf{Valore} & \textbf{Significato}\\
2135     \hline
2136     \hline
2137     \const{ADJ\_OFFSET}         & 0x0001 & Imposta la differenza fra il tempo
2138                                            reale e l'orologio di sistema: 
2139                                            deve essere indicata in microsecondi
2140                                            nel campo \var{offset} di
2141                                            \struct{timex}.\\ 
2142     \const{ADJ\_FREQUENCY}      & 0x0002 & Imposta la differenze in frequenza
2143                                            fra il tempo reale e l'orologio di
2144                                            sistema: deve essere indicata
2145                                            in parti per milione nel campo
2146                                            \var{frequency} di \struct{timex}.\\
2147     \const{ADJ\_MAXERROR}       & 0x0004 & Imposta il valore massimo 
2148                                            dell'errore
2149                                            sul tempo, espresso in microsecondi 
2150                                            nel campo \var{maxerror} di
2151                                            \struct{timex}.\\ 
2152     \const{ADJ\_ESTERROR}       & 0x0008 & Imposta la stima dell'errore
2153                                            sul tempo, espresso in microsecondi 
2154                                            nel campo \var{esterror} di
2155                                            \struct{timex}.\\
2156     \const{ADJ\_STATUS}         & 0x0010 & Imposta alcuni
2157                                            valori di stato interni usati dal
2158                                            sistema nella gestione
2159                                            dell'orologio specificati nel campo
2160                                            \var{status} di \struct{timex}.\\ 
2161     \const{ADJ\_TIMECONST}      & 0x0020 & Imposta la larghezza di banda del 
2162                                            PLL implementato dal kernel,
2163                                            specificato nel campo
2164                                            \var{constant} di \struct{timex}.\\ 
2165     \const{ADJ\_TICK}           & 0x4000 & Imposta il valore dei \textit{tick}
2166                                            \itindex{clock~tick} del timer in
2167                                            microsecondi, espresso nel campo
2168                                            \var{tick} di \struct{timex}.\\  
2169     \const{ADJ\_OFFSET\_SINGLESHOT}&0x8001&Imposta uno spostamento una tantum 
2170                                            dell'orologio secondo il valore del
2171                                            campo \var{offset} simulando il
2172                                            comportamento di \func{adjtime}.\\ 
2173     \hline
2174   \end{tabular}
2175   \caption{Costanti per l'assegnazione del valore del campo \var{mode} della
2176     struttura \struct{timex}.} 
2177   \label{tab:sys_timex_mode}
2178 \end{table}
2179
2180 Il valore delle costanti per \var{mode} può essere anche espresso, secondo la
2181 sintassi specificata per la forma equivalente di questa funzione definita come
2182 \func{ntp\_adjtime}, utilizzando il prefisso \code{MOD} al posto di
2183 \code{ADJ}.
2184
2185 \begin{table}[htb]
2186   \footnotesize
2187   \centering
2188   \begin{tabular}[c]{|l|c|l|}
2189     \hline
2190     \textbf{Nome} & \textbf{Valore} & \textbf{Significato}\\
2191     \hline
2192     \hline
2193     \const{TIME\_OK}   & 0 & L'orologio è sincronizzato.\\ 
2194     \const{TIME\_INS}  & 1 & Insert leap second.\\ 
2195     \const{TIME\_DEL}  & 2 & Delete leap second.\\ 
2196     \const{TIME\_OOP}  & 3 & Leap second in progress.\\ 
2197     \const{TIME\_WAIT} & 4 & Leap second has occurred.\\ 
2198     \const{TIME\_BAD}  & 5 & L'orologio non è sincronizzato.\\ 
2199     \hline
2200   \end{tabular}
2201   \caption{Possibili valori di ritorno di \func{adjtimex}.} 
2202   \label{tab:sys_adjtimex_return}
2203 \end{table}
2204
2205 La funzione ritorna un valore positivo che esprime lo stato dell'orologio di
2206 sistema; questo può assumere i valori riportati in
2207 tab.~\ref{tab:sys_adjtimex_return}.  Un valore di -1 viene usato per riportare
2208 un errore; al solito se si cercherà di modificare l'orologio di sistema
2209 (specificando un \var{mode} diverso da zero) senza avere i privilegi di
2210 amministratore si otterrà un errore di \errcode{EPERM}.
2211
2212
2213
2214 \subsection{La gestione delle date.}
2215 \label{sec:sys_date}
2216
2217 Le funzioni viste al paragrafo precedente sono molto utili per trattare le
2218 operazioni elementari sui tempi, però le rappresentazioni del tempo ivi
2219 illustrate, se han senso per specificare un intervallo, non sono molto
2220 intuitive quando si deve esprimere un'ora o una data.  Per questo motivo è
2221 stata introdotta una ulteriore rappresentazione, detta \textit{broken-down
2222   time}, che permette appunto di \textsl{suddividere} il \textit{calendar
2223   time} usuale in ore, minuti, secondi, ecc.
2224
2225 Questo viene effettuato attraverso una opportuna struttura \struct{tm}, la cui
2226 definizione è riportata in fig.~\ref{fig:sys_tm_struct}, ed è in genere questa
2227 struttura che si utilizza quando si deve specificare un tempo a partire dai
2228 dati naturali (ora e data), dato che essa consente anche di trattare la
2229 gestione del fuso orario e dell'ora legale.\footnote{in realtà i due campi
2230   \var{tm\_gmtoff} e \var{tm\_zone} sono estensioni previste da BSD e dalle
2231   \acr{glibc}, che, quando è definita \macro{\_BSD\_SOURCE}, hanno la forma in
2232   fig.~\ref{fig:sys_tm_struct}.}
2233
2234 Le funzioni per la gestione del \textit{broken-down time} sono varie e vanno
2235 da quelle usate per convertire gli altri formati in questo, usando o meno
2236 l'ora locale o il tempo universale, a quelle per trasformare il valore di un
2237 tempo in una stringa contenente data ed ora, i loro prototipi sono:
2238 \begin{functions}
2239   \headdecl{time.h}
2240   \funcdecl{char *\funcd{asctime}(const struct tm *tm)} 
2241   Produce una stringa con data e ora partendo da un valore espresso in
2242   \textit{broken-down time}.
2243
2244   \funcdecl{char *\funcd{ctime}(const time\_t *timep)} 
2245   Produce una stringa con data e ora partendo da un valore espresso in
2246   in formato \type{time\_t}.
2247   
2248   \funcdecl{struct tm *\funcd{gmtime}(const time\_t *timep)} 
2249   Converte il \textit{calendar time} dato in formato \type{time\_t} in un
2250   \textit{broken-down time} espresso in UTC.
2251
2252   \funcdecl{struct tm *\funcd{localtime}(const time\_t *timep)} 
2253   Converte il \textit{calendar time} dato in formato \type{time\_t} in un
2254   \textit{broken-down time} espresso nell'ora locale.
2255
2256   \funcdecl{time\_t \funcd{mktime}(struct tm *tm)}   
2257   Converte il \textit{broken-down time} in formato \type{time\_t}.
2258   
2259   \bodydesc{Tutte le funzioni restituiscono un puntatore al risultato in caso
2260   di successo e \val{NULL} in caso di errore, tranne che \func{mktime} che
2261   restituisce direttamente il valore o -1 in caso di errore.}
2262 \end{functions}
2263
2264 \begin{figure}[!htb]
2265   \footnotesize \centering
2266   \begin{minipage}[c]{15cm}
2267     \includestruct{listati/tm.h}
2268   \end{minipage} 
2269   \normalsize 
2270   \caption{La struttura \structd{tm} per una rappresentazione del tempo in
2271     termini di ora, minuti, secondi, ecc.}
2272   \label{fig:sys_tm_struct}
2273 \end{figure}
2274
2275
2276
2277 Le prime due funzioni, \func{asctime} e \func{ctime} servono per poter
2278 stampare in forma leggibile un tempo; esse restituiscono il puntatore ad una
2279 stringa, allocata staticamente, nella forma:
2280 \begin{verbatim}
2281 "Wed Jun 30 21:49:08 1993\n"
2282 \end{verbatim}
2283 e impostano anche la variabile \var{tzname} con l'informazione della
2284 \textit{time zone} corrente; \func{ctime} è banalmente definita in termini di
2285 \func{asctime} come \code{asctime(localtime(t)}. Dato che l'uso di una stringa
2286 statica rende le funzioni non rientranti POSIX.1c e SUSv2 prevedono due
2287 sostitute rientranti, il cui nome è al solito ottenuto aggiungendo un
2288 \code{\_r}, che prendono un secondo argomento \code{char *buf}, in cui
2289 l'utente deve specificare il buffer su cui la stringa deve essere copiata
2290 (deve essere di almeno 26 caratteri).
2291
2292 Le altre tre funzioni, \func{gmtime}, \func{localtime} e \func{mktime} servono
2293 per convertire il tempo dal formato \type{time\_t} a quello di \struct{tm} e
2294 viceversa; \func{gmtime} effettua la conversione usando il tempo coordinato
2295 universale (UTC), cioè l'ora di Greenwich; mentre \func{localtime} usa l'ora
2296 locale; \func{mktime} esegue la conversione inversa.  
2297
2298 Anche in questo caso le prime due funzioni restituiscono l'indirizzo di una
2299 struttura allocata staticamente, per questo sono state definite anche altre
2300 due versioni rientranti (con la solita estensione \code{\_r}), che prevedono
2301 un secondo argomento \code{struct tm *result}, fornito dal chiamante, che deve
2302 preallocare la struttura su cui sarà restituita la conversione.
2303
2304 Come mostrato in fig.~\ref{fig:sys_tm_struct} il \textit{broken-down time}
2305 permette di tenere conto anche della differenza fra tempo universale e ora
2306 locale, compresa l'eventuale ora legale. Questo viene fatto attraverso le tre
2307 variabili globali mostrate in fig.~\ref{fig:sys_tzname}, cui si accede quando
2308 si include \file{time.h}. Queste variabili vengono impostate quando si chiama
2309 una delle precedenti funzioni di conversione, oppure invocando direttamente la
2310 funzione \funcd{tzset}, il cui prototipo è:
2311 \begin{prototype}{sys/timex.h}
2312 {void tzset(void)} 
2313   
2314   Imposta le variabili globali della \textit{time zone}.
2315   
2316   \bodydesc{La funzione non ritorna niente e non dà errori.}
2317 \end{prototype}
2318
2319 La funzione inizializza le variabili di fig.~\ref{fig:sys_tzname} a partire dal
2320 valore della variabile di ambiente \const{TZ}, se quest'ultima non è definita
2321 verrà usato il file \conffile{/etc/localtime}.
2322
2323 \begin{figure}[!htb]
2324   \footnotesize
2325   \centering
2326   \begin{minipage}[c]{15cm}
2327     \includestruct{listati/time_zone_var.c}
2328   \end{minipage} 
2329   \normalsize 
2330   \caption{Le variabili globali usate per la gestione delle \textit{time
2331       zone}.}  
2332   \label{fig:sys_tzname}
2333 \end{figure}
2334
2335 La variabile \var{tzname} contiene due stringhe, che indicano i due nomi
2336 standard della \textit{time zone} corrente. La prima è il nome per l'ora
2337 solare, la seconda per l'ora legale.\footnote{anche se sono indicati come
2338   \code{char *} non è il caso di modificare queste stringhe.} La variabile
2339 \var{timezone} indica la differenza di fuso orario in secondi, mentre
2340 \var{daylight} indica se è attiva o meno l'ora legale. 
2341
2342 Benché la funzione \func{asctime} fornisca la modalità più immediata per
2343 stampare un tempo o una data, la flessibilità non fa parte delle sue
2344 caratteristiche; quando si vuole poter stampare solo una parte (l'ora, o il
2345 giorno) di un tempo si può ricorrere alla più sofisticata \funcd{strftime},
2346 il cui prototipo è:
2347 \begin{prototype}{time.h}
2348 {size\_t strftime(char *s, size\_t max, const char *format, 
2349   const struct tm *tm)}
2350   
2351 Stampa il tempo \param{tm} nella stringa \param{s} secondo il formato
2352 \param{format}.
2353   
2354   \bodydesc{La funzione ritorna il numero di caratteri stampati in \param{s},
2355   altrimenti restituisce 0.}
2356 \end{prototype}
2357
2358 La funzione converte opportunamente il tempo \param{tm} in una stringa di
2359 testo da salvare in \param{s}, purché essa sia di dimensione, indicata da
2360 \param{size}, sufficiente. I caratteri generati dalla funzione vengono
2361 restituiti come valore di ritorno, ma non tengono conto del terminatore
2362 finale, che invece viene considerato nel computo della dimensione; se
2363 quest'ultima è eccessiva viene restituito 0 e lo stato di \param{s} è
2364 indefinito.
2365
2366 \begin{table}[htb]
2367   \footnotesize
2368   \centering
2369   \begin{tabular}[c]{|c|l|p{6cm}|}
2370     \hline
2371     \textbf{Modificatore} & \textbf{Esempio} & \textbf{Significato}\\
2372     \hline
2373     \hline
2374     \var{\%a}&\texttt{Wed}        & Nome del giorno, abbreviato.\\ 
2375     \var{\%A}&\texttt{Wednesday}  & Nome del giorno, completo.\\ 
2376     \var{\%b}&\texttt{Apr}        & Nome del mese, abbreviato.\\ 
2377     \var{\%B}&\texttt{April}      & Nome del mese, completo.\\ 
2378     \var{\%c}&\texttt{Wed Apr 24 18:40:50 2002}& Data e ora.\\ 
2379     \var{\%d}&\texttt{24}         & Giorno del mese.\\ 
2380     \var{\%H}&\texttt{18}         & Ora del giorno, da 0 a 24.\\ 
2381     \var{\%I}&\texttt{06}         & Ora del giorno, da 0 a 12.\\ 
2382     \var{\%j}&\texttt{114}        & Giorno dell'anno.\\ 
2383     \var{\%m}&\texttt{04}         & Mese dell'anno.\\ 
2384     \var{\%M}&\texttt{40}         & Minuto.\\ 
2385     \var{\%p}&\texttt{PM}         & AM/PM.\\ 
2386     \var{\%S}&\texttt{50}         & Secondo.\\ 
2387     \var{\%U}&\texttt{16}         & Settimana dell'anno (partendo dalla
2388                                     domenica).\\ 
2389     \var{\%w}&\texttt{3}          & Giorno della settimana.  \\ 
2390     \var{\%W}&\texttt{16}         & Settimana dell'anno (partendo dal
2391                                     lunedì).\\ 
2392     \var{\%x}&\texttt{04/24/02}   & La data.\\ 
2393     \var{\%X}&\texttt{18:40:50}   & L'ora.\\ 
2394     \var{\%y}&\texttt{02}         & Anno nel secolo.\\ 
2395     \var{\%Y}&\texttt{2002}       & Anno.\\ 
2396     \var{\%Z}&\texttt{CEST}       & Nome della \textit{timezone}.\\ 
2397     \var{\%\%}&\texttt{\%}        & Il carattere \%.\\ 
2398     \hline
2399   \end{tabular}
2400   \caption{Valori previsti dallo standard ANSI C per modificatore della
2401     stringa di formato di \func{strftime}.}  
2402   \label{tab:sys_strftime_format}
2403 \end{table}
2404
2405 Il risultato della funzione è controllato dalla stringa di formato
2406 \param{format}, tutti i caratteri restano invariati eccetto \texttt{\%} che
2407 viene utilizzato come modificatore; alcuni\footnote{per la precisione quelli
2408   definiti dallo standard ANSI C, che sono anche quelli riportati da POSIX.1;
2409   le \acr{glibc} provvedono tutte le estensioni introdotte da POSIX.2 per il
2410   comando \cmd{date}, i valori introdotti da SVID3 e ulteriori estensioni GNU;
2411   l'elenco completo dei possibili valori è riportato nella pagina di manuale
2412   della funzione.} dei possibili valori che esso può assumere sono riportati
2413 in tab.~\ref{tab:sys_strftime_format}. La funzione tiene conto anche della
2414 presenza di una localizzazione per stampare in maniera adeguata i vari nomi.
2415
2416 \itindend{calendar~time}
2417
2418
2419 \section{La gestione degli errori}
2420 \label{sec:sys_errors}
2421
2422 In questa sezione esamineremo le caratteristiche principali della gestione
2423 degli errori in un sistema unix-like. Infatti a parte il caso particolare di
2424 alcuni segnali (che tratteremo in cap.~\ref{cha:signals}) in un sistema
2425 unix-like il kernel non avvisa mai direttamente un processo dell'occorrenza di
2426 un errore nell'esecuzione di una funzione, ma di norma questo viene riportato
2427 semplicemente usando un opportuno valore di ritorno della funzione invocata.
2428 Inoltre il sistema di classificazione degli errori è basato sull'architettura
2429 a processi, e presenta una serie di problemi nel caso lo si debba usare con i
2430 thread.
2431
2432
2433 \subsection{La variabile \var{errno}}
2434 \label{sec:sys_errno}
2435
2436 Quasi tutte le funzioni delle librerie del C sono in grado di individuare e
2437 riportare condizioni di errore, ed è una norma fondamentale di buona
2438 programmazione controllare \textbf{sempre} che le funzioni chiamate si siano
2439 concluse correttamente.
2440
2441 In genere le funzioni di libreria usano un valore speciale per indicare che
2442 c'è stato un errore. Di solito questo valore è -1 o un puntatore nullo o la
2443 costante \val{EOF} (a seconda della funzione); ma questo valore segnala solo
2444 che c'è stato un errore, non il tipo di errore.
2445
2446 Per riportare il tipo di errore il sistema usa la variabile globale
2447 \var{errno},\footnote{l'uso di una variabile globale può comportare alcuni
2448   problemi (ad esempio nel caso dei thread) ma lo standard ISO C consente
2449   anche di definire \var{errno} come un \textit{modifiable lvalue}, quindi si
2450   può anche usare una macro, e questo è infatti il modo usato da Linux per
2451   renderla locale ai singoli thread.} definita nell'header \file{errno.h}; la
2452 variabile è in genere definita come \direct{volatile} dato che può essere
2453 cambiata in modo asincrono da un segnale (si veda sez.~\ref{sec:sig_sigchld}
2454 per un esempio, ricordando quanto trattato in sez.~\ref{sec:proc_race_cond}),
2455 ma dato che un gestore di segnale scritto bene salva e ripristina il valore
2456 della variabile, di questo non è necessario preoccuparsi nella programmazione
2457 normale.
2458
2459 I valori che può assumere \var{errno} sono riportati in app.~\ref{cha:errors},
2460 nell'header \file{errno.h} sono anche definiti i nomi simbolici per le
2461 costanti numeriche che identificano i vari errori; essi iniziano tutti per
2462 \val{E} e si possono considerare come nomi riservati. In seguito faremo
2463 sempre riferimento a tali valori, quando descriveremo i possibili errori
2464 restituiti dalle funzioni. Il programma di esempio \cmd{errcode} stampa il
2465 codice relativo ad un valore numerico con l'opzione \cmd{-l}.
2466
2467 Il valore di \var{errno} viene sempre impostato a zero all'avvio di un
2468 programma, gran parte delle funzioni di libreria impostano \var{errno} ad un
2469 valore diverso da zero in caso di errore. Il valore è invece indefinito in
2470 caso di successo, perché anche se una funzione ha successo, può chiamarne
2471 altre al suo interno che falliscono, modificando così \var{errno}.
2472
2473 Pertanto un valore non nullo di \var{errno} non è sintomo di errore (potrebbe
2474 essere il risultato di un errore precedente) e non lo si può usare per
2475 determinare quando o se una chiamata a funzione è fallita.  La procedura da
2476 seguire è sempre quella di controllare \var{errno} immediatamente dopo aver
2477 verificato il fallimento della funzione attraverso il suo codice di ritorno.
2478
2479
2480 \subsection{Le funzioni \func{strerror} e \func{perror}}
2481 \label{sec:sys_strerror}
2482
2483 Benché gli errori siano identificati univocamente dal valore numerico di
2484 \var{errno} le librerie provvedono alcune funzioni e variabili utili per
2485 riportare in opportuni messaggi le condizioni di errore verificatesi.  La
2486 prima funzione che si può usare per ricavare i messaggi di errore è
2487 \funcd{strerror}, il cui prototipo è:
2488 \begin{prototype}{string.h}{char *strerror(int errnum)} 
2489   Restituisce una stringa con il messaggio di errore relativo ad
2490   \param{errnum}.
2491   
2492   \bodydesc{La funzione ritorna il puntatore ad una stringa di errore.}
2493 \end{prototype}
2494
2495
2496 La funzione ritorna il puntatore alla stringa contenente il messaggio di
2497 errore corrispondente al valore di \param{errnum}, se questo non è un valore
2498 valido verrà comunque restituita una stringa valida contenente un messaggio
2499 che dice che l'errore è sconosciuto, e \var{errno} verrà modificata assumendo
2500 il valore \errval{EINVAL}.
2501
2502 In generale \func{strerror} viene usata passando \var{errno} come argomento,
2503 ed il valore di quest'ultima non verrà modificato. La funzione inoltre tiene
2504 conto del valore della variabile di ambiente \val{LC\_MESSAGES} per usare le
2505 appropriate traduzioni dei messaggi d'errore nella localizzazione presente.
2506
2507 La funzione utilizza una stringa statica che non deve essere modificata dal
2508 programma; essa è utilizzabile solo fino ad una chiamata successiva a
2509 \func{strerror} o \func{perror}, nessun'altra funzione di libreria tocca
2510 questa stringa. In ogni caso l'uso di una stringa statica rende la funzione
2511 non rientrante, per cui nel caso si usino i thread le librerie
2512 forniscono\footnote{questa funzione è la versione prevista dalle \acr{glibc},
2513   ed effettivamente definita in \file{string.h}, ne esiste una analoga nello
2514   standard SUSv3 (quella riportata dalla pagina di manuale), che restituisce
2515   \code{int} al posto di \code{char *}, e che tronca la stringa restituita a
2516   \param{size}.}  una apposita versione rientrante \func{strerror\_r}, il cui
2517 prototipo è:
2518 \begin{prototype}{string.h}
2519   {char * strerror\_r(int errnum, char *buf, size\_t size)} 
2520   
2521   Restituisce una stringa con il messaggio di errore relativo ad
2522   \param{errnum}.
2523  
2524   \bodydesc{La funzione restituisce l'indirizzo del messaggio in caso di
2525     successo e \val{NULL} in caso di errore; nel qual caso \var{errno}
2526     assumerà i valori:
2527   \begin{errlist}
2528   \item[\errcode{EINVAL}] si è specificato un valore di \param{errnum} non
2529     valido.
2530   \item[\errcode{ERANGE}] la lunghezza di \param{buf} è insufficiente a
2531     contenere la stringa di errore.
2532   \end{errlist}}
2533 \end{prototype}
2534 \noindent
2535
2536 La funzione è analoga a \func{strerror} ma restituisce la stringa di errore
2537 nel buffer \param{buf} che il singolo thread deve allocare autonomamente per
2538 evitare i problemi connessi alla condivisione del buffer statico. Il messaggio
2539 è copiato fino alla dimensione massima del buffer, specificata dall'argomento
2540 \param{size}, che deve comprendere pure il carattere di terminazione;
2541 altrimenti la stringa viene troncata.
2542
2543 Una seconda funzione usata per riportare i codici di errore in maniera
2544 automatizzata sullo standard error (vedi sez.~\ref{sec:file_std_descr}) è
2545 \funcd{perror}, il cui prototipo è:
2546 \begin{prototype}{stdio.h}{void perror(const char *message)} 
2547   Stampa il messaggio di errore relativo al valore corrente di \var{errno}
2548   sullo standard error; preceduto dalla stringa \param{message}.
2549 \end{prototype}
2550
2551 I messaggi di errore stampati sono gli stessi di \func{strerror}, (riportati
2552 in app.~\ref{cha:errors}), e, usando il valore corrente di \var{errno}, si
2553 riferiscono all'ultimo errore avvenuto. La stringa specificata con
2554 \param{message} viene stampato prima del messaggio d'errore, seguita dai due
2555 punti e da uno spazio, il messaggio è terminato con un a capo.
2556
2557 Il messaggio può essere riportato anche usando le due variabili globali:
2558 \includecodesnip{listati/errlist.c} 
2559 dichiarate in \file{errno.h}. La prima contiene i puntatori alle stringhe di
2560 errore indicizzati da \var{errno}; la seconda esprime il valore più alto per
2561 un codice di errore, l'utilizzo di questa stringa è sostanzialmente
2562 equivalente a quello di \func{strerror}.
2563
2564 \begin{figure}[!htb]
2565   \footnotesize \centering
2566   \begin{minipage}[c]{15cm}
2567     \includecodesample{listati/errcode_mess.c}
2568   \end{minipage}
2569   \normalsize
2570   \caption{Codice per la stampa del messaggio di errore standard.}
2571   \label{fig:sys_err_mess}
2572 \end{figure}
2573
2574 In fig.~\ref{fig:sys_err_mess} è riportata la sezione attinente del codice del
2575 programma \cmd{errcode}, che può essere usato per stampare i messaggi di
2576 errore e le costanti usate per identificare i singoli errori; il sorgente
2577 completo del programma è allegato nel file \file{ErrCode.c} e contiene pure la
2578 gestione delle opzioni e tutte le definizioni necessarie ad associare il
2579 valore numerico alla costante simbolica. In particolare si è riportata la
2580 sezione che converte la stringa passata come argomento in un intero
2581 (\texttt{\small 1--2}), controllando con i valori di ritorno di \func{strtol}
2582 che la conversione sia avvenuta correttamente (\texttt{\small 4--10}), e poi
2583 stampa, a seconda dell'opzione scelta il messaggio di errore (\texttt{\small
2584   11--14}) o la macro (\texttt{\small 15--17}) associate a quel codice.
2585
2586
2587
2588 \subsection{Alcune estensioni GNU}
2589 \label{sec:sys_err_GNU}
2590
2591 Le precedenti funzioni sono quelle definite ed usate nei vari standard; le
2592 \acr{glibc} hanno però introdotto una serie di estensioni ``GNU'' che
2593 forniscono alcune funzionalità aggiuntive per una gestione degli errori
2594 semplificata e più efficiente. 
2595
2596 La prima estensione consiste in due variabili, \code{char *
2597   program\_invocation\_name} e \code{char * program\_invocation\_short\_name}
2598 servono per ricavare il nome del programma; queste sono utili quando si deve
2599 aggiungere il nome del programma (cosa comune quando si ha un programma che
2600 non viene lanciato da linea di comando e salva gli errori in un file di log)
2601 al messaggio d'errore. La prima contiene il nome usato per lanciare il
2602 programma (ed è equivalente ad \code{argv[0]}); la seconda mantiene solo il
2603 nome del programma (senza eventuali directory in testa).
2604
2605 Uno dei problemi che si hanno con l'uso di \func{perror} è che non c'è
2606 flessibilità su quello che si può aggiungere al messaggio di errore, che può
2607 essere solo una stringa. In molte occasioni invece serve poter scrivere dei
2608 messaggi con maggiore informazione; ad esempio negli standard di
2609 programmazione GNU si richiede che ogni messaggio di errore sia preceduto dal
2610 nome del programma, ed in generale si può voler stampare il contenuto di
2611 qualche variabile; per questo le \acr{glibc} definiscono la funzione
2612 \funcd{error}, il cui prototipo è:
2613 \begin{prototype}{stdio.h}
2614 {void error(int status, int errnum, const char *format, ...)} 
2615
2616 Stampa un messaggio di errore formattato.
2617
2618 \bodydesc{La funzione non restituisce nulla e non riporta errori.}
2619 \end{prototype}
2620
2621 La funzione fa parte delle estensioni GNU per la gestione degli errori,
2622 l'argomento \param{format} prende la stessa sintassi di \func{printf}, ed i
2623 relativi argomenti devono essere forniti allo stesso modo, mentre
2624 \param{errnum} indica l'errore che si vuole segnalare (non viene quindi usato
2625 il valore corrente di \var{errno}); la funzione stampa sullo standard error il
2626 nome del programma, come indicato dalla variabile globale \var{program\_name},
2627 seguito da due punti ed uno spazio, poi dalla stringa generata da
2628 \param{format} e dagli argomenti seguenti, seguita da due punti ed uno spazio
2629 infine il messaggio di errore relativo ad \param{errnum}, il tutto è terminato
2630 da un a capo.
2631
2632 Il comportamento della funzione può essere ulteriormente controllato se si
2633 definisce una variabile \var{error\_print\_progname} come puntatore ad una
2634 funzione \ctyp{void} che restituisce \ctyp{void} che si incarichi di stampare
2635 il nome del programma. 
2636
2637 L'argomento \param{status} può essere usato per terminare direttamente il
2638 programma in caso di errore, nel qual caso \func{error} dopo la stampa del
2639 messaggio di errore chiama \func{exit} con questo stato di uscita. Se invece
2640 il valore è nullo \func{error} ritorna normalmente ma viene incrementata
2641 un'altra variabile globale, \var{error\_message\_count}, che tiene conto di
2642 quanti errori ci sono stati.
2643
2644 Un'altra funzione per la stampa degli errori, ancora più sofisticata, che
2645 prende due argomenti aggiuntivi per indicare linea e file su cui è avvenuto
2646 l'errore è \funcd{error\_at\_line}; il suo prototipo è:
2647 \begin{prototype}{stdio.h}
2648 {void error\_at\_line(int status, int errnum, const char *fname, 
2649   unsigned int lineno, const char *format, ...)} 
2650
2651 Stampa un messaggio di errore formattato.
2652
2653 \bodydesc{La funzione non restituisce nulla e non riporta errori.}
2654 \end{prototype}
2655 \noindent ed il suo comportamento è identico a quello di \func{error} se non
2656 per il fatto che, separati con il solito due punti-spazio, vengono inseriti un
2657 nome di file indicato da \param{fname} ed un numero di linea subito dopo la
2658 stampa del nome del programma. Inoltre essa usa un'altra variabile globale,
2659 \var{error\_one\_per\_line}, che impostata ad un valore diverso da zero fa si
2660 che errori relativi alla stessa linea non vengano ripetuti.
2661
2662
2663 % LocalWords:  filesystem like kernel saved header limits sysconf sez tab float
2664 % LocalWords:  FOPEN stdio MB LEN CHAR char UCHAR unsigned SCHAR MIN signed INT
2665 % LocalWords:  SHRT short USHRT int UINT LONG long ULONG LLONG ULLONG POSIX ARG
2666 % LocalWords:  Stevens exec CHILD STREAM stream TZNAME timezone NGROUPS SSIZE
2667 % LocalWords:  ssize LISTIO JOB CONTROL job control IDS VERSION YYYYMML bits bc
2668 % LocalWords:  dall'header posix lim nell'header glibc run unistd name errno SC
2669 % LocalWords:  NGROUP CLK TCK clock tick process PATH pathname BUF CANON path
2670 % LocalWords:  pathconf fpathconf descriptor fd uname sys struct utsname info
2671 % LocalWords:  EFAULT fig SOURCE NUL LENGTH DOMAIN NMLN UTSLEN system call proc
2672 % LocalWords:  domainname sysctl BSD nlen void oldval size oldlenp newval EPERM
2673 % LocalWords:  newlen ENOTDIR EINVAL ENOMEM linux l'array oldvalue paging stack
2674 % LocalWords:  TCP shell Documentation ostype hostname osrelease version mount
2675 % LocalWords:  const source filesystemtype mountflags ENODEV ENOTBLK block read
2676 % LocalWords:  device EBUSY only superblock point EACCES NODEV ENXIO major xC
2677 % LocalWords:  number EMFILE dummy ENAMETOOLONG ENOENT ELOOP virtual devfs MGC
2678 % LocalWords:  magic MSK RDONLY NOSUID suid sgid NOEXEC SYNCHRONOUS REMOUNT MNT
2679 % LocalWords:  MANDLOCK mandatory locking WRITE APPEND append IMMUTABLE NOATIME
2680 % LocalWords:  access NODIRATIME BIND MOVE umount flags FORCE statfs fstatfs ut
2681 % LocalWords:  buf ENOSYS EIO EBADF type fstab mntent home shadow username uid
2682 % LocalWords:  passwd PAM Pluggable Authentication Method Service Switch pwd ru
2683 % LocalWords:  getpwuid getpwnam NULL buflen result ERANGE getgrnam getgrgid AS
2684 % LocalWords:  grp group gid SVID fgetpwent putpwent getpwent setpwent endpwent
2685 % LocalWords:  fgetgrent putgrent getgrent setgrent endgrent accounting init HZ
2686 % LocalWords:  runlevel Hierarchy logout setutent endutent utmpname utmp paths
2687 % LocalWords:  WTMP getutent getutid getutline pututline LVL OLD DEAD EMPTY dev
2688 % LocalWords:  line libc XPG utmpx getutxent getutxid getutxline pututxline who
2689 % LocalWords:  setutxent endutxent wmtp updwtmp logwtmp wtmp host rusage utime
2690 % LocalWords:  minflt majflt nswap fault swap timeval wait getrusage usage SELF
2691 % LocalWords:  CHILDREN current limit soft RLIMIT Address brk mremap mmap dump
2692 % LocalWords:  SIGSEGV SIGXCPU SIGKILL sbrk FSIZE SIGXFSZ EFBIG LOCKS lock dup
2693 % LocalWords:  MEMLOCK NOFILE NPROC fork EAGAIN SIGPENDING sigqueue kill RSS tv
2694 % LocalWords:  resource getrlimit setrlimit rlimit rlim INFINITY capabilities
2695 % LocalWords:  capability CAP l'I Sun Sparc PAGESIZE getpagesize SVr SUSv get
2696 % LocalWords:  phys pages avphys NPROCESSORS CONF ONLN getloadavg stdlib double
2697 % LocalWords:  loadavg nelem scheduler CONFIG ACCT acct filename EACCESS EUSER
2698 % LocalWords:  ENFILE EROFS PACCT AcctCtrl cap calendar UTC Jan the Epoch GMT
2699 % LocalWords:  Greenwich Mean l'UTC timer CLOCKS SEC cron wall elapsed times tz
2700 % LocalWords:  tms dell' cutime cstime waitpid gettimeofday settimeofday timex
2701 % LocalWords:  timespec adjtime olddelta adjtimex David Mills nell' RFC NTP ntp
2702 % LocalWords:  nell'RFC ADJ FREQUENCY frequency MAXERROR maxerror ESTERROR PLL
2703 % LocalWords:  esterror TIMECONST constant SINGLESHOT MOD INS insert leap OOP
2704 % LocalWords:  second delete progress has occurred BAD broken tm gmtoff asctime
2705 % LocalWords:  ctime timep gmtime localtime mktime tzname tzset daylight format
2706 % LocalWords:  strftime thread EOF modifiable lvalue app errcode strerror LC at
2707 % LocalWords:  perror string errnum MESSAGES error message ErrCode strtol log
2708 % LocalWords:  program invocation argv printf print progname exit count fname
2709 % LocalWords:  lineno one standardese Di page Wed Wednesday Apr April PM AM
2710
2711
2712
2713 %%% Local Variables: 
2714 %%% mode: latex
2715 %%% TeX-master: "gapil"
2716 %%% End: 
2717 % LocalWords:  CEST