Correzioni varie alle note (uniformate in stile) e trattazione di
[gapil.git] / system.tex
1 %% system.tex
2 %%
3 %% Copyright (C) 2000-2007 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione del sistema, del tempo e degli errori}
13 \label{cha:system}
14
15 In questo capitolo tratteremo varie interfacce che attengono agli aspetti più
16 generali del sistema, come quelle per la gestione dei parametri e della
17 configurazione dello stesso, quelle per la lettura dei limiti e delle
18 caratteristiche, quelle per il controllo dell'uso delle risorse dei processi,
19 quelle per la gestione ed il controllo dei filesystem, degli utenti, dei tempi
20 e degli errori.
21
22
23
24 \section{Capacità e caratteristiche del sistema}
25 \label{sec:sys_characteristics}
26
27 In questa sezione tratteremo le varie modalità con cui un programma può
28 ottenere informazioni riguardo alle capacità del sistema. Ogni sistema
29 unix-like infatti è contraddistinto da un gran numero di limiti e costanti che
30 lo caratterizzano, e che possono dipendere da fattori molteplici, come
31 l'architettura hardware, l'implementazione del kernel e delle librerie, le
32 opzioni di configurazione.
33
34 La definizione di queste caratteristiche ed il tentativo di provvedere dei
35 meccanismi generali che i programmi possono usare per ricavarle è uno degli
36 aspetti più complessi e controversi con cui le diverse standardizzazioni si
37 sono dovute confrontare, spesso con risultati spesso tutt'altro che chiari.
38 Daremo comunque una descrizione dei principali metodi previsti dai vari
39 standard per ricavare sia le caratteristiche specifiche del sistema, che
40 quelle della gestione dei file.
41
42
43 \subsection{Limiti e parametri di sistema}
44 \label{sec:sys_limits}
45
46 Quando si devono determinare le caratteristiche generali del sistema ci si
47 trova di fronte a diverse possibilità; alcune di queste infatti possono
48 dipendere dall'architettura dell'hardware (come le dimensioni dei tipi
49 interi), o dal sistema operativo (come la presenza o meno del gruppo degli
50 identificatori \textit{saved}), altre invece possono dipendere dalle opzioni
51 con cui si è costruito il sistema (ad esempio da come si è compilato il
52 kernel), o dalla configurazione del medesimo; per questo motivo in generale
53 sono necessari due tipi diversi di funzionalità:
54 \begin{itemize*}
55 \item la possibilità di determinare limiti ed opzioni al momento della
56   compilazione.
57 \item la possibilità di determinare limiti ed opzioni durante l'esecuzione.
58 \end{itemize*}
59
60 La prima funzionalità si può ottenere includendo gli opportuni header file che
61 contengono le costanti necessarie definite come macro di preprocessore, per la
62 seconda invece sono ovviamente necessarie delle funzioni. La situazione è
63 complicata dal fatto che ci sono molti casi in cui alcuni di questi limiti
64 sono fissi in un'implementazione mentre possono variare in un altra. Tutto
65 questo crea una ambiguità che non è sempre possibile risolvere in maniera
66 chiara; in generale quello che succede è che quando i limiti del sistema sono
67 fissi essi vengono definiti come macro di preprocessore nel file
68 \file{limits.h}, se invece possono variare, il loro valore sarà ottenibile
69 tramite la funzione \func{sysconf} (che esamineremo in
70 sez.~\ref{sec:sys_sysconf}).
71
72 Lo standard ANSI C definisce dei limiti che sono tutti fissi, pertanto questo
73 saranno sempre disponibili al momento della compilazione. Un elenco, ripreso
74 da \file{limits.h}, è riportato in tab.~\ref{tab:sys_ansic_macro}. Come si può
75 vedere per la maggior parte questi limiti attengono alle dimensioni dei dati
76 interi, che sono in genere fissati dall'architettura hardware (le analoghe
77 informazioni per i dati in virgola mobile sono definite a parte, ed
78 accessibili includendo \file{float.h}). Lo standard prevede anche un'altra
79 costante, \const{FOPEN\_MAX}, che può non essere fissa e che pertanto non è
80 definita in \file{limits.h}; essa deve essere definita in \file{stdio.h} ed
81 avere un valore minimo di 8.
82
83 \begin{table}[htb]
84   \centering
85   \footnotesize
86   \begin{tabular}[c]{|l|r|l|}
87     \hline
88     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
89     \hline
90     \hline
91     \const{MB\_LEN\_MAX}&       16  & massima dimensione di un 
92                                       carattere esteso\\
93     \const{CHAR\_BIT} &          8  & bit di \ctyp{char}\\
94     \const{UCHAR\_MAX}&        255  & massimo di \ctyp{unsigned char}\\
95     \const{SCHAR\_MIN}&       -128  & minimo di \ctyp{signed char}\\
96     \const{SCHAR\_MAX}&        127  & massimo di \ctyp{signed char}\\
97     \const{CHAR\_MIN} &\footnotemark& minimo di \ctyp{char}\\
98     \const{CHAR\_MAX} &\footnotemark& massimo di \ctyp{char}\\
99     \const{SHRT\_MIN} &     -32768  & minimo di \ctyp{short}\\
100     \const{SHRT\_MAX} &      32767  & massimo di \ctyp{short}\\
101     \const{USHRT\_MAX}&      65535  & massimo di \ctyp{unsigned short}\\
102     \const{INT\_MAX}  & 2147483647  & minimo di \ctyp{int}\\
103     \const{INT\_MIN}  &-2147483648  & minimo di \ctyp{int}\\
104     \const{UINT\_MAX} & 4294967295  & massimo di \ctyp{unsigned int}\\
105     \const{LONG\_MAX} & 2147483647  & massimo di \ctyp{long}\\
106     \const{LONG\_MIN} &-2147483648  & minimo di \ctyp{long}\\
107     \const{ULONG\_MAX}& 4294967295  & massimo di \ctyp{unsigned long}\\
108     \hline                
109   \end{tabular}
110   \caption{Costanti definite in \file{limits.h} in conformità allo standard
111     ANSI C.}
112   \label{tab:sys_ansic_macro}
113 \end{table}
114
115 \footnotetext[1]{il valore può essere 0 o \const{SCHAR\_MIN} a seconda che il
116   sistema usi caratteri con segno o meno.} 
117
118 \footnotetext[2]{il valore può essere \const{UCHAR\_MAX} o \const{SCHAR\_MAX}
119   a seconda che il sistema usi caratteri con segno o meno.}
120
121 A questi valori lo standard ISO C90 ne aggiunge altri tre, relativi al tipo
122 \ctyp{long long} introdotto con il nuovo standard, i relativi valori sono in
123 tab.~\ref{tab:sys_isoc90_macro}.
124
125 \begin{table}[htb]
126   \centering
127   \footnotesize
128   \begin{tabular}[c]{|l|r|l|}
129     \hline
130     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
131     \hline
132     \hline
133     \const{LLONG\_MAX}& 9223372036854775807& massimo di \ctyp{long long}\\
134     \const{LLONG\_MIN}&-9223372036854775808& minimo di \ctyp{long long}\\
135     \const{ULLONG\_MAX}&18446744073709551615&
136     massimo di \ctyp{unsigned long long}\\
137     \hline                
138   \end{tabular}
139   \caption{Macro definite in \file{limits.h} in conformità allo standard
140     ISO C90.}
141   \label{tab:sys_isoc90_macro}
142 \end{table}
143
144 Ovviamente le dimensioni dei vari tipi di dati sono solo una piccola parte
145 delle caratteristiche del sistema; mancano completamente tutte quelle che
146 dipendono dalla implementazione dello stesso. Queste, per i sistemi unix-like,
147 sono state definite in gran parte dallo standard POSIX.1, che tratta anche i
148 limiti relativi alle caratteristiche dei file che vedremo in
149 sez.~\ref{sec:sys_file_limits}.
150
151 Purtroppo la sezione dello standard che tratta questi argomenti è una delle
152 meno chiare\footnote{tanto che Stevens, in \cite{APUE}, la porta come esempio
153   di ``\textsl{standardese}''.}. Lo standard prevede che ci siano 13 macro che
154 descrivono le caratteristiche del sistema (7 per le caratteristiche generiche,
155 riportate in tab.~\ref{tab:sys_generic_macro}, e 6 per le caratteristiche dei
156 file, riportate in tab.~\ref{tab:sys_file_macro}).
157
158 \begin{table}[htb]
159   \centering
160   \footnotesize
161   \begin{tabular}[c]{|l|r|p{7cm}|}
162     \hline
163     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
164     \hline
165     \hline
166     \const{ARG\_MAX} &131072& Dimensione massima degli argomenti
167                               passati ad una funzione della famiglia
168                               \func{exec}.\\ 
169     \const{CHILD\_MAX} & 999& Numero massimo di processi contemporanei
170                               che un utente può eseguire.\\
171     \const{OPEN\_MAX}  & 256& Numero massimo di file che un processo
172                               può mantenere aperti in contemporanea.\\
173     \const{STREAM\_MAX}&   8& Massimo numero di stream aperti per
174                               processo in contemporanea.\\
175     \const{TZNAME\_MAX}&   6& Dimensione massima del nome di una
176                               \texttt{timezone} (vedi
177                               sez.~\ref{sec:sys_time_base})).\\  
178     \const{NGROUPS\_MAX}& 32& Numero di gruppi supplementari per
179                               processo (vedi sez.~\ref{sec:proc_access_id}).\\
180     \const{SSIZE\_MAX}&32767& Valore massimo del tipo \type{ssize\_t}.\\
181     \hline
182   \end{tabular}
183   \caption{Costanti per i limiti del sistema.}
184   \label{tab:sys_generic_macro}
185 \end{table}
186
187 Lo standard dice che queste macro devono essere definite in \file{limits.h}
188 quando i valori a cui fanno riferimento sono fissi, e altrimenti devono essere
189 lasciate indefinite, ed i loro valori dei limiti devono essere accessibili
190 solo attraverso \func{sysconf}.  In realtà queste vengono sempre definite ad
191 un valore generico. Si tenga presente poi che alcuni di questi limiti possono
192 assumere valori molto elevati (come \const{CHILD\_MAX}), e non è pertanto il
193 caso di utilizzarli per allocare staticamente della memoria.
194
195 A complicare la faccenda si aggiunge il fatto che POSIX.1 prevede una serie di
196 altre costanti (il cui nome inizia sempre con \code{\_POSIX\_}) che
197 definiscono i valori minimi le stesse caratteristiche devono avere, perché una
198 implementazione possa dichiararsi conforme allo standard; detti valori sono
199 riportati in tab.~\ref{tab:sys_posix1_general}.
200
201 \begin{table}[htb]
202   \centering
203   \footnotesize
204   \begin{tabular}[c]{|l|r|p{7cm}|}
205     \hline
206     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
207     \hline
208     \hline
209     \const{\_POSIX\_ARG\_MAX}    & 4096& Dimensione massima degli argomenti
210                                          passati ad una funzione della famiglia
211                                          \func{exec}.\\ 
212     \const{\_POSIX\_CHILD\_MAX}  &    6& Numero massimo di processi
213                                          contemporanei che un utente può 
214                                          eseguire.\\
215     \const{\_POSIX\_OPEN\_MAX}   &   16& Numero massimo di file che un processo
216                                          può mantenere aperti in 
217                                          contemporanea.\\
218     \const{\_POSIX\_STREAM\_MAX} &    8& Massimo numero di stream aperti per
219                                          processo in contemporanea.\\
220     \const{\_POSIX\_TZNAME\_MAX} &     & Dimensione massima del nome di una
221                                          \textit{timezone} (vedi
222                                          sez.~\ref{sec:sys_date}). \\ 
223     \const{\_POSIX\_NGROUPS\_MAX}&    0& Numero di gruppi supplementari per
224                                          processo (vedi 
225                                          sez.~\ref{sec:proc_access_id}).\\
226     \const{\_POSIX\_SSIZE\_MAX}  &32767& Valore massimo del tipo 
227                                          \type{ssize\_t}.\\
228     \const{\_POSIX\_AIO\_LISTIO\_MAX}&2& \\
229     \const{\_POSIX\_AIO\_MAX}    &    1& \\
230     \hline                
231   \end{tabular}
232   \caption{Macro dei valori minimi delle caratteristiche generali del sistema
233     per la conformità allo standard POSIX.1.}
234   \label{tab:sys_posix1_general}
235 \end{table}
236
237 In genere questi valori non servono a molto, la loro unica utilità è quella di
238 indicare un limite superiore che assicura la portabilità senza necessità di
239 ulteriori controlli. Tuttavia molti di essi sono ampiamente superati in tutti
240 i sistemi POSIX in uso oggigiorno. Per questo è sempre meglio utilizzare i
241 valori ottenuti da \func{sysconf}.
242
243 \begin{table}[htb]
244   \centering
245   \footnotesize
246   \begin{tabular}[c]{|l|p{8cm}|}
247     \hline
248     \textbf{Macro}&\textbf{Significato}\\
249     \hline
250     \hline
251     \macro{\_POSIX\_JOB\_CONTROL}& Il sistema supporta il 
252                                    \textit{job control} (vedi 
253                                    sez.~\ref{sec:sess_job_control}).\\
254     \macro{\_POSIX\_SAVED\_IDS}  & Il sistema supporta gli identificatori del 
255                                    gruppo \textit{saved} (vedi 
256                                    sez.~\ref{sec:proc_access_id})
257                                    per il controllo di accesso dei processi\\
258     \const{\_POSIX\_VERSION}     & Fornisce la versione dello standard POSIX.1
259                                    supportata nel formato YYYYMML (ad esempio 
260                                    199009L).\\
261     \hline
262   \end{tabular}
263   \caption{Alcune macro definite in \file{limits.h} in conformità allo standard
264     POSIX.1.}
265   \label{tab:sys_posix1_other}
266 \end{table}
267
268 Oltre ai precedenti valori (e a quelli relativi ai file elencati in
269 tab.~\ref{tab:sys_posix1_file}), che devono essere obbligatoriamente definiti,
270 lo standard POSIX.1 ne prevede parecchi altri.  La lista completa si trova
271 dall'header file \file{bits/posix1\_lim.h} (da non usare mai direttamente, è
272 incluso automaticamente all'interno di \file{limits.h}). Di questi vale la
273 pena menzionare alcune macro di uso comune, (riportate in
274 tab.~\ref{tab:sys_posix1_other}), che non indicano un valore specifico, ma
275 denotano la presenza di alcune funzionalità nel sistema (come il supporto del
276 \textit{job control} o degli identificatori del gruppo \textit{saved}).
277
278 Oltre allo standard POSIX.1, anche lo standard POSIX.2 definisce una serie di
279 altre costanti. Siccome queste sono principalmente attinenti a limiti relativi
280 alle applicazioni di sistema presenti (come quelli su alcuni parametri delle
281 espressioni regolari o del comando \cmd{bc}), non li tratteremo
282 esplicitamente, se ne trova una menzione completa nell'header file
283 \file{bits/posix2\_lim.h}, e alcuni di loro sono descritti nella pagina di
284 manuale di \func{sysconf} e nel manuale delle \acr{glibc}.
285
286
287 \subsection{La funzione \func{sysconf}}
288 \label{sec:sys_sysconf}
289
290 Come accennato in sez.~\ref{sec:sys_limits} quando uno dei limiti o delle
291 caratteristiche del sistema può variare, per non dover essere costretti a
292 ricompilare un programma tutte le volte che si cambiano le opzioni con cui è
293 compilato il kernel, o alcuni dei parametri modificabili a run time, è
294 necessario ottenerne il valore attraverso la funzione \funcd{sysconf}. Il
295 prototipo di questa funzione è:
296 \begin{prototype}{unistd.h}{long sysconf(int name)}
297   Restituisce il valore del parametro di sistema \param{name}.
298   
299   \bodydesc{La funzione restituisce indietro il valore del parametro
300     richiesto, o 1 se si tratta di un'opzione disponibile, 0 se l'opzione non
301     è disponibile e -1 in caso di errore (ma \var{errno} non viene impostata).}
302 \end{prototype}
303
304 La funzione prende come argomento un intero che specifica quale dei limiti si
305 vuole conoscere; uno specchietto contenente i principali valori disponibili in
306 Linux è riportato in tab.~\ref{tab:sys_sysconf_par}; l'elenco completo è
307 contenuto in \file{bits/confname.h}, ed una lista più esaustiva, con le
308 relative spiegazioni, si può trovare nel manuale delle \acr{glibc}.
309
310 \begin{table}[htb]
311   \centering
312   \footnotesize
313     \begin{tabular}[c]{|l|l|p{9cm}|}
314       \hline
315       \textbf{Parametro}&\textbf{Macro sostituita} &\textbf{Significato}\\
316       \hline
317       \hline
318       \texttt{\_SC\_ARG\_MAX}   & \const{ARG\_MAX}&
319                                   La dimensione massima degli argomenti passati
320                                   ad una funzione della famiglia \func{exec}.\\
321       \texttt{\_SC\_CHILD\_MAX} & \const{\_CHILD\_MAX}&
322                                   Il numero massimo di processi contemporanei
323                                   che un utente può eseguire.\\
324       \texttt{\_SC\_OPEN\_MAX}  & \const{\_OPEN\_MAX}&
325                                   Il numero massimo di file che un processo può
326                                   mantenere aperti in contemporanea.\\
327       \texttt{\_SC\_STREAM\_MAX}& \const{STREAM\_MAX}&
328                                   Il massimo numero di stream che un processo
329                                   può mantenere aperti in contemporanea. Questo
330                                   limite previsto anche dallo standard ANSI C,
331                                   che specifica la macro {FOPEN\_MAX}.\\
332       \texttt{\_SC\_TZNAME\_MAX}& \const{TZNAME\_MAX}&
333                                   La dimensione massima di un nome di una
334                                   \texttt{timezone} (vedi
335                                   sez.~\ref{sec:sys_date}).\\
336       \texttt{\_SC\_NGROUPS\_MAX}&\const{NGROUP\_MAX}&
337                                   Massimo numero di gruppi supplementari che
338                                   può avere un processo (vedi
339                                   sez.~\ref{sec:proc_access_id}).\\
340       \texttt{\_SC\_SSIZE\_MAX} & \const{SSIZE\_MAX}& 
341                                   Valore massimo del tipo di dato
342                                   \type{ssize\_t}.\\ 
343       \texttt{\_SC\_CLK\_TCK}   & \const{CLK\_TCK} &
344                                   Il numero di \textit{clock tick} al secondo,
345                                   cioè l'unità di misura del
346                                   \itindex{process~time} \textit{process
347                                     time} (vedi
348                                   sez.~\ref{sec:sys_unix_time}).\\  
349       \texttt{\_SC\_JOB\_CONTROL}&\macro{\_POSIX\_JOB\_CONTROL}&
350                                   Indica se è supportato il \textit{job
351                                     control} (vedi
352                                   sez.~\ref{sec:sess_job_control}) in stile
353                                   POSIX.\\ 
354       \texttt{\_SC\_SAVED\_IDS} & \macro{\_POSIX\_SAVED\_IDS}&
355                                   Indica se il sistema supporta i
356                                   \textit{saved id} (vedi
357                                   sez.~\ref{sec:proc_access_id}).\\  
358       \texttt{\_SC\_VERSION}    & \const{\_POSIX\_VERSION} &
359                                   Indica il mese e l'anno di approvazione
360                                   della revisione dello standard POSIX.1 a cui
361                                   il sistema fa riferimento, nel formato
362                                   YYYYMML, la revisione più recente è 199009L,
363                                   che indica il Settembre 1990.\\ 
364      \hline
365     \end{tabular}
366   \caption{Parametri del sistema leggibili dalla funzione \func{sysconf}.}
367   \label{tab:sys_sysconf_par}
368 \end{table}
369
370 In generale ogni limite o caratteristica del sistema per cui è definita una
371 macro, sia dagli standard ANSI C e ISO C90, che da POSIX.1 e POSIX.2, può
372 essere ottenuto attraverso una chiamata a \func{sysconf}. Il valore si otterrà
373 specificando come valore dell'argomento \param{name} il nome ottenuto
374 aggiungendo \code{\_SC\_} ai nomi delle macro definite dai primi due, o
375 sostituendolo a \code{\_POSIX\_} per le macro definite dagli gli altri due.
376
377 In generale si dovrebbe fare uso di \func{sysconf} solo quando la relativa
378 macro non è definita, quindi con un codice analogo al seguente:
379 \includecodesnip{listati/get_child_max.c}
380 ma in realtà in Linux queste macro sono comunque definite, indicando però un
381 limite generico. Per questo motivo è sempre meglio usare i valori restituiti
382 da \func{sysconf}.
383
384
385 \subsection{I limiti dei file}
386 \label{sec:sys_file_limits}
387
388 Come per le caratteristiche generali del sistema anche per i file esistono una
389 serie di limiti (come la lunghezza del nome del file o il numero massimo di
390 link) che dipendono sia dall'implementazione che dal filesystem in uso; anche
391 in questo caso lo standard prevede alcune macro che ne specificano il valore,
392 riportate in tab.~\ref{tab:sys_file_macro}.
393
394 \begin{table}[htb]
395   \centering
396   \footnotesize
397   \begin{tabular}[c]{|l|r|l|}
398     \hline
399     \textbf{Costante}&\textbf{Valore}&\textbf{Significato}\\
400     \hline
401     \hline                
402     \const{LINK\_MAX}   &8  & Numero massimo di link a un file.\\
403     \const{NAME\_MAX}&  14  & Lunghezza in byte di un nome di file. \\
404     \const{PATH\_MAX}& 256  & Lunghezza in byte di un
405                               \itindex{pathname} \textit{pathname}.\\
406     \const{PIPE\_BUF}&4096  & Byte scrivibili atomicamente in una pipe
407                               (vedi sez.~\ref{sec:ipc_pipes}).\\
408     \const{MAX\_CANON}&255  & Dimensione di una riga di terminale in modo 
409                               canonico (vedi sez.~\ref{sec:term_design}).\\
410     \const{MAX\_INPUT}&255  & Spazio disponibile nella coda di input 
411                               del terminale (vedi 
412                               sez.~\ref{sec:term_design}).\\
413     \hline                
414   \end{tabular}
415   \caption{Costanti per i limiti sulle caratteristiche dei file.}
416   \label{tab:sys_file_macro}
417 \end{table}
418
419 Come per i limiti di sistema, lo standard POSIX.1 detta una serie di valori
420 minimi anche per queste caratteristiche, che ogni sistema che vuole essere
421 conforme deve rispettare; le relative macro sono riportate in
422 tab.~\ref{tab:sys_posix1_file}, e per esse vale lo stesso discorso fatto per
423 le analoghe di tab.~\ref{tab:sys_posix1_general}.
424
425 \begin{table}[htb]
426   \centering
427   \footnotesize
428   \begin{tabular}[c]{|l|r|l|}
429     \hline
430     \textbf{Macro}&\textbf{Valore}&\textbf{Significato}\\
431     \hline
432     \hline
433     \const{\_POSIX\_LINK\_MAX}   &8  & Numero massimo di link a un file.\\
434     \const{\_POSIX\_NAME\_MAX}&  14  & Lunghezza in byte di un nome di file.\\
435     \const{\_POSIX\_PATH\_MAX}& 256  & Lunghezza in byte di un 
436                                        \itindex{pathname} \textit{pathname}.\\
437     \const{\_POSIX\_PIPE\_BUF}& 512  & Byte scrivibili atomicamente in una
438                                        pipe.\\
439     \const{\_POSIX\_MAX\_CANON}&255  & Dimensione di una riga di
440                                        terminale in modo canonico.\\
441     \const{\_POSIX\_MAX\_INPUT}&255  & Spazio disponibile nella coda di input 
442                                        del terminale.\\
443 %    \const{\_POSIX\_MQ\_OPEN\_MAX}&  8& \\
444 %    \const{\_POSIX\_MQ\_PRIO\_MAX}& 32& \\
445 %    \const{\_POSIX\_FD\_SETSIZE}& 16 & \\
446 %    \const{\_POSIX\_DELAYTIMER\_MAX}& 32 & \\
447     \hline
448   \end{tabular}
449   \caption{Costanti dei valori minimi delle caratteristiche dei file per la
450     conformità allo standard POSIX.1.}
451   \label{tab:sys_posix1_file}
452 \end{table}
453
454 Tutti questi limiti sono definiti in \file{limits.h}; come nel caso precedente
455 il loro uso è di scarsa utilità in quanto ampiamente superati in tutte le
456 implementazioni moderne.
457
458
459 \subsection{La funzione \func{pathconf}}
460 \label{sec:sys_pathconf}
461
462 In generale i limiti per i file sono molto più soggetti ad essere variabili
463 rispetto ai limiti generali del sistema; ad esempio parametri come la
464 lunghezza del nome del file o il numero di link possono variare da filesystem
465 a filesystem; per questo motivo questi limiti devono essere sempre controllati
466 con la funzione \funcd{pathconf}, il cui prototipo è:
467 \begin{prototype}{unistd.h}{long pathconf(char *path, int name)}
468   Restituisce il valore del parametro \param{name} per il file \param{path}.
469   
470   \bodydesc{La funzione restituisce indietro il valore del parametro
471     richiesto, o -1 in caso di errore (ed \var{errno} viene impostata ad uno
472     degli errori possibili relativi all'accesso a \param{path}).}
473 \end{prototype}
474
475 E si noti come la funzione in questo caso richieda un argomento che specifichi
476 a quale file si fa riferimento, dato che il valore del limite cercato può
477 variare a seconda del filesystem. Una seconda versione della funzione,
478 \funcd{fpathconf}, opera su un file descriptor invece che su un
479 \itindex{pathname} \textit{pathname}. Il suo prototipo è:
480 \begin{prototype}{unistd.h}{long fpathconf(int fd, int name)}
481   Restituisce il valore del parametro \param{name} per il file \param{fd}.
482   
483   \bodydesc{È identica a \func{pathconf} solo che utilizza un file descriptor
484     invece di un \itindex{pathname} \textit{pathname}; pertanto gli errori
485     restituiti cambiano di conseguenza.}
486 \end{prototype}
487 \noindent ed il suo comportamento è identico a quello di \func{pathconf}.
488
489
490 \subsection{La funzione \func{uname}}
491 \label{sec:sys_uname}
492
493 Un'altra funzione che si può utilizzare per raccogliere informazioni sia
494 riguardo al sistema che al computer su cui esso sta girando è \funcd{uname};
495 il suo prototipo è:
496 \begin{prototype}{sys/utsname.h}{int uname(struct utsname *info)}
497   Restituisce informazioni sul sistema nella struttura \param{info}.
498   
499   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
500     fallimento, nel qual caso \var{errno} assumerà il valore \errval{EFAULT}.}
501 \end{prototype}
502
503 La funzione, che viene usata dal comando \cmd{uname}, restituisce le
504 informazioni richieste nella struttura \param{info}; anche questa struttura è
505 definita in \file{sys/utsname.h}, secondo quanto mostrato in
506 fig.~\ref{fig:sys_utsname}, e le informazioni memorizzate nei suoi membri
507 indicano rispettivamente:
508 \begin{itemize*}
509 \item il nome del sistema operativo;
510 \item il nome della release del kernel;
511 \item il nome della versione del kernel;
512 \item il tipo di macchina in uso;
513 \item il nome della stazione;
514 \item il nome del domino.
515 \end{itemize*}
516 l'ultima informazione è stata aggiunta di recente e non è prevista dallo
517 standard POSIX, essa è accessibile, come mostrato in
518 fig.~\ref{fig:sys_utsname}, solo definendo \macro{\_GNU\_SOURCE}.
519
520 \begin{figure}[!htb]
521   \footnotesize \centering
522   \begin{minipage}[c]{15cm}
523     \includestruct{listati/ustname.h}
524   \end{minipage}
525   \normalsize 
526   \caption{La struttura \structd{utsname}.} 
527   \label{fig:sys_utsname}
528 \end{figure}
529
530 In generale si tenga presente che le dimensioni delle stringe di una
531 \struct{utsname} non è specificata, e che esse sono sempre terminate con NUL;
532 il manuale delle \acr{glibc} indica due diverse dimensioni,
533 \const{\_UTSNAME\_LENGTH} per i campi standard e
534 \const{\_UTSNAME\_DOMAIN\_LENGTH} per quello specifico per il nome di dominio;
535 altri sistemi usano nomi diversi come \const{SYS\_NMLN} o \const{\_SYS\_NMLN}
536 o \const{UTSLEN} che possono avere valori diversi.\footnote{nel caso di Linux
537   \func{uname} corrisponde in realtà a 3 system call diverse, le prime due
538   usano rispettivamente delle lunghezze delle stringhe di 9 e 65 byte; la
539   terza usa anch'essa 65 byte, ma restituisce anche l'ultimo campo,
540   \var{domainname}, con una lunghezza di 257 byte.}
541
542
543 \section{Opzioni e configurazione del sistema}
544 \label{sec:sys_config}
545
546 Come abbiamo accennato nella sezione precedente, non tutti i limiti che
547 caratterizzano il sistema sono fissi, o perlomeno non lo sono in tutte le
548 implementazioni. Finora abbiamo visto come si può fare per leggerli, ci manca
549 di esaminare il meccanismo che permette, quando questi possono variare durante
550 l'esecuzione del sistema, di modificarli.
551
552 Inoltre, al di la di quelli che possono essere limiti caratteristici previsti
553 da uno standard, ogni sistema può avere una sua serie di altri parametri di
554 configurazione, che, non essendo mai fissi e variando da sistema a sistema,
555 non sono stati inclusi nella standardizzazione della sezione precedente. Per
556 questi occorre, oltre al meccanismo di impostazione, pure un meccanismo di
557 lettura.  Affronteremo questi argomenti in questa sezione, insieme alle
558 funzioni che si usano per il controllo di altre caratteristiche generali del
559 sistema, come quelle per la gestione dei filesystem e di utenti e gruppi.
560
561
562 \subsection{La funzione \func{sysctl} ed il filesystem \file{/proc}}
563 \label{sec:sys_sysctl}
564
565 La funzione che permette la lettura ed l'impostazione dei parametri del
566 sistema è \funcd{sysctl}; è una funzione derivata da BSD4.4, ma
567 l'implementazione è specifica di Linux; il suo prototipo è:
568 \begin{functions}
569 \headdecl{unistd.h}
570 \funcdecl{int sysctl(int *name, int nlen, void *oldval, size\_t *oldlenp, void
571   *newval, size\_t newlen)}
572
573 Legge o scrive uno dei parametri di sistema.
574
575 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
576   errore, nel qual caso \var{errno} assumerà uno dei valori:
577   \begin{errlist}
578   \item[\errcode{EPERM}] non si ha il permesso di accedere ad uno dei
579     componenti nel cammino specificato per il parametro, o di accedere al
580     parametro nella modalità scelta.
581   \item[\errcode{ENOTDIR}] non esiste un parametro corrispondente al nome
582     \param{name}.
583 %  \item[\errcode{EFAULT}] si è specificato \param{oldlenp} zero quando
584 %    \param{oldval} è non nullo. 
585   \item[\errcode{EINVAL}] o si è specificato un valore non valido per il
586     parametro che si vuole impostare o lo spazio provvisto per il ritorno di un
587     valore non è delle giuste dimensioni.
588   \item[\errcode{ENOMEM}] talvolta viene usato più correttamente questo errore
589     quando non si è specificato sufficiente spazio per ricevere il valore di un
590     parametro.
591   \end{errlist}
592   ed inoltre \errval{EFAULT}.
593 }
594 \end{functions}
595
596 I parametri a cui la funzione permettere di accedere sono organizzati in
597 maniera gerarchica all'interno di un albero;\footnote{si tenga presente che
598   includendo solo \file{unistd.h}, saranno definiti solo i parametri generici;
599   dato che ce ne sono molti specifici dell'implementazione, nel caso di Linux
600   occorrerà includere anche i file \file{linux/unistd.h} e
601   \file{linux/sysctl.h}.} per accedere ad uno di essi occorre specificare un
602 cammino attraverso i vari nodi dell'albero, in maniera analoga a come avviene
603 per la risoluzione di un \itindex{pathname} \textit{pathname} (da cui l'uso
604 alternativo del filesystem \file{/proc}, che vedremo dopo).
605
606 Ciascun nodo dell'albero è identificato da un valore intero, ed il cammino che
607 arriva ad identificare un parametro specifico è passato alla funzione
608 attraverso l'array \param{name}, di lunghezza \param{nlen}, che contiene la
609 sequenza dei vari nodi da attraversare. Ogni parametro ha un valore in un
610 formato specifico che può essere un intero, una stringa o anche una struttura
611 complessa, per questo motivo i valori vengono passati come puntatori
612 \ctyp{void}.
613
614 L'indirizzo a cui il valore corrente del parametro deve essere letto è
615 specificato da \param{oldvalue}, e lo spazio ivi disponibile è specificato da
616 \param{oldlenp} (passato come puntatore per avere indietro la dimensione
617 effettiva di quanto letto); il valore che si vuole impostare nel sistema è
618 passato in \param{newval} e la sua dimensione in \param{newlen}.
619
620 Si può effettuare anche una lettura e scrittura simultanea, nel qual caso il
621 valore letto restituito dalla funzione è quello precedente alla scrittura.
622
623 I parametri accessibili attraverso questa funzione sono moltissimi, e possono
624 essere trovati in \file{sysctl.h}, essi inoltre dipendono anche dallo stato
625 corrente del kernel (ad esempio dai moduli che sono stati caricati nel
626 sistema) e in genere i loro nomi possono variare da una versione di kernel
627 all'altra; per questo è sempre il caso di evitare l'uso di \func{sysctl}
628 quando esistono modalità alternative per ottenere le stesse informazioni.
629 Alcuni esempi di parametri ottenibili sono:
630 \begin{itemize}
631 \item il nome di dominio
632 \item i parametri del meccanismo di \textit{paging}.
633 \item il filesystem montato come radice
634 \item la data di compilazione del kernel
635 \item i parametri dello stack TCP
636 \item il numero massimo di file aperti
637 \end{itemize}
638
639 Come accennato in Linux si ha una modalità alternativa per accedere alle
640 stesse informazioni di \func{sysctl} attraverso l'uso del filesystem
641 \file{/proc}. Questo è un filesystem virtuale, generato direttamente dal
642 kernel, che non fa riferimento a nessun dispositivo fisico, ma presenta in
643 forma di file alcune delle strutture interne del kernel stesso.
644
645 In particolare l'albero dei valori di \func{sysctl} viene presentato in forma
646 di file nella directory \file{/proc/sys}, cosicché è possibile accedervi
647 specificando un \itindex{pathname} \textit{pathname} e leggendo e scrivendo sul
648 file corrispondente al parametro scelto.  Il kernel si occupa di generare al
649 volo il contenuto ed i nomi dei file corrispondenti, e questo ha il grande
650 vantaggio di rendere accessibili i vari parametri a qualunque comando di shell
651 e di permettere la navigazione dell'albero dei valori.
652
653 Alcune delle corrispondenze dei file presenti in \file{/proc/sys} con i valori
654 di \func{sysctl} sono riportate nei commenti del codice che può essere trovato
655 in \file{linux/sysctl.h},\footnote{indicando un file di definizioni si fa
656   riferimento alla directory standard dei file di include, che in ogni
657   distribuzione che si rispetti è \file{/usr/include}.} la informazione
658 disponibile in \file{/proc/sys} è riportata inoltre nella documentazione
659 inclusa nei sorgenti del kernel, nella directory \file{Documentation/sysctl}.
660
661 Ma oltre alle informazioni ottenibili da \func{sysctl} dentro \file{proc} sono
662 disponibili moltissime altre informazioni, fra cui ad esempio anche quelle
663 fornite da \func{uname} (vedi sez.~\ref{sec:sys_config}) che sono mantenute
664 nei file \procrelfile{/proc/sys/kernel}{ostype},
665 \procrelfile{/proc/sys/kernel}{hostname},
666 \procrelfile{/proc/sys/kernel}{osrelease},
667 \procrelfile{/proc/sys/kernel}{version} e
668 \procrelfile{/proc/sys/kernel}{domainname} di \file{/proc/sys/kernel/}.
669
670
671
672 \subsection{La gestione delle proprietà dei filesystem}
673 \label{sec:sys_file_config}
674
675 Come accennato in sez.~\ref{sec:file_organization} per poter accedere ai file
676 occorre prima rendere disponibile al sistema il filesystem su cui essi sono
677 memorizzati; l'operazione di attivazione del filesystem è chiamata
678 \textsl{montaggio}, per far questo in Linux\footnote{la funzione è specifica
679   di Linux e non è portabile.} si usa la funzione \funcd{mount} il cui
680 prototipo è:
681 \begin{prototype}{sys/mount.h}
682 {mount(const char *source, const char *target, const char *filesystemtype, 
683   unsigned long mountflags, const void *data)}
684
685 Monta il filesystem di tipo \param{filesystemtype} contenuto in \param{source}
686 sulla directory \param{target}.
687   
688   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
689   fallimento, nel qual caso gli errori comuni a tutti i filesystem che possono
690   essere restituiti in \var{errno} sono:
691   \begin{errlist}
692   \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
693   \item[\errcode{ENODEV}] \param{filesystemtype} non esiste o non è configurato
694     nel kernel.
695   \item[\errcode{ENOTBLK}] non si è usato un \textit{block device} per
696     \param{source} quando era richiesto.
697   \item[\errcode{EBUSY}] \param{source} è già montato, o non può essere
698     rimontato in read-only perché ci sono ancora file aperti in scrittura, o
699     \param{target} è ancora in uso.
700   \item[\errcode{EINVAL}] il device \param{source} presenta un
701     \textit{superblock} non valido, o si è cercato di rimontare un filesystem
702     non ancora montato, o di montarlo senza che \param{target} sia un
703     \textit{mount point} o di spostarlo quando \param{target} non è un
704     \textit{mount point} o è \file{/}.
705   \item[\errcode{EACCES}] non si ha il permesso di accesso su uno dei
706     componenti del \itindex{pathname} \textit{pathname}, o si è cercato
707     di montare un filesystem disponibile in sola lettura senza averlo
708     specificato o il device \param{source} è su un filesystem montato con
709     l'opzione \const{MS\_NODEV}.
710   \item[\errcode{ENXIO}] il \textit{major number} del device \param{source} è
711     sbagliato.
712   \item[\errcode{EMFILE}] la tabella dei device \textit{dummy} è piena.
713   \end{errlist}
714   ed inoltre \errval{ENOTDIR}, \errval{EFAULT}, \errval{ENOMEM},
715   \errval{ENAMETOOLONG}, \errval{ENOENT} o \errval{ELOOP}.}
716 \end{prototype}
717
718 La funzione monta sulla directory \param{target}, detta \textit{mount point},
719 il filesystem contenuto in \param{source}. In generale un filesystem è
720 contenuto su un disco, e l'operazione di montaggio corrisponde a rendere
721 visibile al sistema il contenuto del suddetto disco, identificato attraverso
722 il file di dispositivo ad esso associato.
723
724 Ma la struttura del virtual filesystem vista in sez.~\ref{sec:file_vfs} è molto
725 più flessibile e può essere usata anche per oggetti diversi da un disco. Ad
726 esempio usando il \textit{loop device} si può montare un file qualunque (come
727 l'immagine di un CD-ROM o di un floppy) che contiene un filesystem, inoltre
728 alcuni filesystem, come \file{proc} o \file{devfs} sono del tutto virtuali, i
729 loro dati sono generati al volo ad ogni lettura, e passati al kernel ad ogni
730 scrittura. 
731
732 Il tipo di filesystem è specificato da \param{filesystemtype}, che deve essere
733 una delle stringhe riportate nel file \procfile{/proc/filesystems}, che
734 contiene l'elenco dei filesystem supportati dal kernel; nel caso si sia
735 indicato uno dei filesystem virtuali, il contenuto di \param{source} viene
736 ignorato.
737
738 Dopo l'esecuzione della funzione il contenuto del filesystem viene resto
739 disponibile nella directory specificata come \textit{mount point}, il
740 precedente contenuto di detta directory viene mascherato dal contenuto della
741 directory radice del filesystem montato.
742
743 Dal kernel 2.4.x inoltre è divenuto possibile sia spostare atomicamente un
744 \textit{mount point} da una directory ad un'altra, sia montare in diversi
745 \textit{mount point} lo stesso filesystem, sia montare più filesystem sullo
746 stesso \textit{mount point} (nel qual caso vale quanto appena detto, e solo il
747 contenuto dell'ultimo filesystem montato sarà visibile).
748
749 Ciascun filesystem è dotato di caratteristiche specifiche che possono essere
750 attivate o meno, alcune di queste sono generali (anche se non è detto siano
751 disponibili in ogni filesystem), e vengono specificate come opzioni di
752 montaggio con l'argomento \param{mountflags}.  
753
754 In Linux \param{mountflags} deve essere un intero a 32 bit i cui 16 più
755 significativi sono un \textit{magic number}\footnote{cioè un numero speciale
756   usato come identificativo, che nel caso è \code{0xC0ED}; si può usare la
757   costante \const{MS\_MGC\_MSK} per ottenere la parte di \param{mountflags}
758   riservata al \textit{magic number}.} mentre i 16 meno significativi sono
759 usati per specificare le opzioni; essi sono usati come maschera binaria e
760 vanno impostati con un OR aritmetico della costante \const{MS\_MGC\_VAL} con i
761 valori riportati in tab.~\ref{tab:sys_mount_flags}.
762
763 \begin{table}[htb]
764   \footnotesize
765   \centering
766   \begin{tabular}[c]{|l|r|l|}
767     \hline
768     \textbf{Parametro} & \textbf{Valore}&\textbf{Significato}\\
769     \hline
770     \hline
771     \const{MS\_RDONLY}     &  1 & Monta in sola lettura.\\
772     \const{MS\_NOSUID}     &  2 & Ignora i bit \itindex{suid~bit} \acr{suid} e
773                                   \itindex{sgid~bit} \acr{sgid}.\\ 
774     \const{MS\_NODEV}      &  4 & Impedisce l'accesso ai file di dispositivo.\\
775     \const{MS\_NOEXEC}     &  8 & Impedisce di eseguire programmi.\\
776     \const{MS\_SYNCHRONOUS}& 16 & Abilita la scrittura sincrona.\\
777     \const{MS\_REMOUNT}    & 32 & Rimonta il filesystem cambiando le opzioni.\\
778     \const{MS\_MANDLOCK}   & 64 & Consente il \textit{mandatory locking} 
779                                   \itindex{mandatory~locking} (vedi
780                                   sez.~\ref{sec:file_mand_locking}).\\
781     \const{S\_WRITE}      & 128 & Scrive normalmente.\\
782     \const{S\_APPEND}     & 256 & Consente la scrittura solo in
783                                   \itindex{append~mode} \textit{append mode} 
784                                   (vedi sez.~\ref{sec:file_sharing}).\\
785     \const{S\_IMMUTABLE}  & 512 & Impedisce che si possano modificare i file.\\
786     \const{MS\_NOATIME}   &1024 & Non aggiorna gli \textit{access time} (vedi
787                                   sez.~\ref{sec:file_file_times}).\\
788     \const{MS\_NODIRATIME}&2048 & Non aggiorna gli \textit{access time} delle
789                                   directory.\\
790     \const{MS\_BIND}      &4096 & Monta il filesystem altrove.\\
791     \const{MS\_MOVE}      &8192 & Sposta atomicamente il punto di montaggio.\\
792     \hline
793   \end{tabular}
794   \caption{Tabella dei codici dei flag di montaggio di un filesystem.}
795   \label{tab:sys_mount_flags}
796 \end{table}
797
798 % TODO aggiornare con i nuovi flag di man mount
799
800 Per l'impostazione delle caratteristiche particolari di ciascun filesystem si
801 usa invece l'argomento \param{data} che serve per passare le ulteriori
802 informazioni necessarie, che ovviamente variano da filesystem a filesystem.
803
804 La funzione \func{mount} può essere utilizzata anche per effettuare il
805 \textsl{rimontaggio} di un filesystem, cosa che permette di cambiarne al volo
806 alcune delle caratteristiche di funzionamento (ad esempio passare da sola
807 lettura a lettura/scrittura). Questa operazione è attivata attraverso uno dei
808 bit di \param{mountflags}, \const{MS\_REMOUNT}, che se impostato specifica che
809 deve essere effettuato il rimontaggio del filesystem (con le opzioni
810 specificate dagli altri bit), anche in questo caso il valore di \param{source}
811 viene ignorato.
812
813 Una volta che non si voglia più utilizzare un certo filesystem è possibile
814 \textsl{smontarlo} usando la funzione \funcd{umount}, il cui prototipo è:
815 \begin{prototype}{sys/mount.h}{umount(const char *target)}
816   
817   Smonta il filesystem montato sulla directory \param{target}.
818   
819   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di
820     fallimento, nel qual caso \var{errno} assumerà uno dei valori:
821   \begin{errlist}
822   \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
823   \item[\errcode{EBUSY}]  \param{target} è la directory di lavoro di qualche
824   processo, o contiene dei file aperti, o un altro mount point.
825   \end{errlist}
826   ed inoltre \errval{ENOTDIR}, \errval{EFAULT}, \errval{ENOMEM},
827   \errval{ENAMETOOLONG}, \errval{ENOENT} o \errval{ELOOP}.}
828 \end{prototype}
829 \noindent la funzione prende il nome della directory su cui il filesystem è
830 montato e non il file o il dispositivo che è stato montato,\footnote{questo è
831   vero a partire dal kernel 2.3.99-pre7, prima esistevano due chiamate
832   separate e la funzione poteva essere usata anche specificando il file di
833   dispositivo.} in quanto con il kernel 2.4.x è possibile montare lo stesso
834 dispositivo in più punti. Nel caso più di un filesystem sia stato montato
835 sullo stesso \textit{mount point} viene smontato quello che è stato montato
836 per ultimo.
837
838 Si tenga presente che la funzione fallisce quando il filesystem è
839 \textsl{occupato}, questo avviene quando ci sono ancora file aperti sul
840 filesystem, se questo contiene la directory di lavoro corrente di un qualunque
841 processo o il mount point di un altro filesystem; in questo caso l'errore
842 restituito è \errcode{EBUSY}.
843
844 Linux provvede inoltre una seconda funzione, \funcd{umount2}, che in alcuni
845 casi permette di forzare lo smontaggio di un filesystem, anche quando questo
846 risulti occupato; il suo prototipo è:
847 \begin{prototype}{sys/mount.h}{umount2(const char *target, int flags)}
848   
849   La funzione è identica a \func{umount} per comportamento e codici di errore,
850   ma con \param{flags} si può specificare se forzare lo smontaggio.
851 \end{prototype}
852
853 Il valore di \param{flags} è una maschera binaria, e al momento l'unico valore
854 definito è il bit \const{MNT\_FORCE}; gli altri bit devono essere nulli.
855 Specificando \const{MNT\_FORCE} la funzione cercherà di liberare il filesystem
856 anche se è occupato per via di una delle condizioni descritte in precedenza. A
857 seconda del tipo di filesystem alcune (o tutte) possono essere superate,
858 evitando l'errore di \errcode{EBUSY}.  In tutti i casi prima dello smontaggio
859 viene eseguita una sincronizzazione dei dati. 
860
861 % TODO documentare MNT_DETACH e MNT_EXPIRE ...
862
863 Altre due funzioni specifiche di Linux,\footnote{esse si trovano anche su BSD,
864   ma con una struttura diversa.} utili per ottenere in maniera diretta
865 informazioni riguardo al filesystem su cui si trova un certo file, sono
866 \funcd{statfs} e \funcd{fstatfs}, i cui prototipi sono:
867 \begin{functions}
868   \headdecl{sys/vfs.h} 
869   \funcdecl{int statfs(const char *path, struct statfs *buf)} 
870
871   \funcdecl{int fstatfs(int fd, struct statfs *buf)} 
872   
873   Restituisce in \param{buf} le informazioni relative al filesystem su cui è
874   posto il file specificato.
875   
876   \bodydesc{Le funzioni ritornano 0 in caso di successo e -1 in caso di
877     errore, nel qual caso \var{errno} assumerà uno dei valori:
878   \begin{errlist}
879   \item[\errcode{ENOSYS}] il filesystem su cui si trova il file specificato non
880   supporta la funzione.
881   \end{errlist}
882   e \errval{EFAULT} ed \errval{EIO} per entrambe, \errval{EBADF} per
883   \func{fstatfs}, \errval{ENOTDIR}, \errval{ENAMETOOLONG}, \errval{ENOENT},
884   \errval{EACCES}, \errval{ELOOP} per \func{statfs}.}
885 \end{functions}
886
887 Queste funzioni permettono di ottenere una serie di informazioni generali
888 riguardo al filesystem su cui si trova il file specificato; queste vengono
889 restituite all'indirizzo \param{buf} di una struttura \struct{statfs} definita
890 come in fig.~\ref{fig:sys_statfs}, ed i campi che sono indefiniti per il
891 filesystem in esame sono impostati a zero.  I valori del campo \var{f\_type}
892 sono definiti per i vari filesystem nei relativi file di header dei sorgenti
893 del kernel da costanti del tipo \var{XXX\_SUPER\_MAGIC}, dove \var{XXX} in
894 genere è il nome del filesystem stesso.
895
896 \begin{figure}[!htb]
897   \footnotesize \centering
898   \begin{minipage}[c]{15cm}
899     \includestruct{listati/statfs.h}
900   \end{minipage}
901   \normalsize 
902   \caption{La struttura \structd{statfs}.} 
903   \label{fig:sys_statfs}
904 \end{figure}
905
906
907 Le \acr{glibc} provvedono infine una serie di funzioni per la gestione dei due
908 file \conffile{/etc/fstab} ed \conffile{/etc/mtab}, che convenzionalmente sono
909 usati in quasi tutti i sistemi unix-like per mantenere rispettivamente le
910 informazioni riguardo ai filesystem da montare e a quelli correntemente
911 montati. Le funzioni servono a leggere il contenuto di questi file in
912 opportune strutture \struct{fstab} e \struct{mntent}, e, per
913 \conffile{/etc/mtab} per inserire e rimuovere le voci presenti nel file.
914
915 In generale si dovrebbero usare queste funzioni (in particolare quelle
916 relative a \conffile{/etc/mtab}), quando si debba scrivere un programma che
917 effettua il montaggio di un filesystem; in realtà in questi casi è molto più
918 semplice invocare direttamente il programma \cmd{mount}, per cui ne
919 tralasceremo la trattazione, rimandando al manuale delle \acr{glibc}
920 \cite{glibc} per la documentazione completa.
921
922
923
924 % TODO scrivere relativamente alle varie funzioni (getfsent e getmntent &C)
925
926 \subsection{La gestione delle informazioni su utenti e gruppi}
927 \label{sec:sys_user_group}
928
929 Tradizionalmente le informazioni utilizzate nella gestione di utenti e gruppi
930 (password, corrispondenze fra nomi simbolici e user-id, home directory, ecc.)
931 venivano registrate all'interno dei due file di testo \conffile{/etc/passwd}
932 ed \conffile{/etc/group},\footnote{in realtà oltre a questi nelle
933   distribuzioni più recenti è stato introdotto il sistema delle \textit{shadow
934     password} che prevede anche i due file \conffile{/etc/shadow} e
935   \conffile{/etc/gshadow}, in cui sono state spostate le informazioni di
936   autenticazione (ed inserite alcune estensioni) per toglierle dagli altri
937   file che devono poter essere letti per poter effettuare l'associazione fra
938   username e \acr{uid}.} il cui formato è descritto dalle relative pagine del
939 manuale\footnote{nella quinta sezione, quella dei file di configurazione,
940   occorre cioè usare \cmd{man 5 passwd} dato che altrimenti si avrebbe la
941   pagina di manuale del comando \cmd{passwd}.} e tutte le funzioni che
942 richiedevano l'accesso a queste informazione andavano a leggere direttamente
943 il contenuto di questi file.
944
945 Col tempo però questa impostazione ha incominciato a mostrare dei limiti: da
946 una parte il meccanismo classico di autenticazione è stato ampliato, ed oggi
947 la maggior parte delle distribuzioni di GNU/Linux usa la libreria PAM (sigla
948 che sta per \textit{Pluggable Authentication Method}) che fornisce una
949 interfaccia comune per i processi di autenticazione,\footnote{il
950   \textit{Pluggable Authentication Method} è un sistema modulare, in cui è
951   possibile utilizzare anche più meccanismi insieme, diventa così possibile
952   avere vari sistemi di riconoscimento (biometria, chiavi hardware, ecc.),
953   diversi formati per le password e diversi supporti per le informazioni, il
954   tutto in maniera trasparente per le applicazioni purché per ciascun
955   meccanismo si disponga della opportuna libreria che implementa l'interfaccia
956   di PAM.}  svincolando completamente le singole applicazione dai dettagli del
957 come questa viene eseguita e di dove vengono mantenuti i dati relativi;
958 dall'altra con il diffondersi delle reti la necessità di centralizzare le
959 informazioni degli utenti e dei gruppi per insiemi di macchine, in modo da
960 mantenere coerenti i dati, ha portato anche alla necessità di poter recuperare
961 e memorizzare dette informazioni su supporti diversi, introducendo il sistema
962 del \itindex{Name~Service~Switch} \textit{Name Service Switch} che tratteremo
963 brevemente più avanti (in sez.~\ref{sec:sock_resolver}) dato che la maggior
964 parte delle sua applicazioni sono relative alla risoluzioni di nomi di rete.
965
966 In questo paragrafo ci limiteremo comunque a trattare le funzioni classiche
967 per la lettura delle informazioni relative a utenti e gruppi tralasciando
968 completamente quelle relative all'autenticazione. 
969 %  Per questo non tratteremo
970 % affatto l'interfaccia di PAM, ma approfondiremo invece il sistema del
971 % \textit{Name Service Switch}, un meccanismo messo a disposizione dalle
972 % \acr{glibc} per modularizzare l'accesso a tutti i servizi in cui sia
973 % necessario trovare una corrispondenza fra un nome ed un numero (od altra
974 % informazione) ad esso associato, come appunto, quella fra uno username ed un
975 % \acr{uid} o fra un \acr{gid} ed il nome del gruppo corrispondente.
976 Le prime funzioni che vedremo sono quelle previste dallo standard POSIX.1;
977 queste sono del tutto generiche e si appoggiano direttamente al \textit{Name
978   Service Switch}, per cui sono in grado di ricevere informazioni qualunque
979 sia il supporto su cui esse vengono mantenute.  Per leggere le informazioni
980 relative ad un utente si possono usare due funzioni, \funcd{getpwuid} e
981 \funcd{getpwnam}, i cui prototipi sono:
982 \begin{functions}
983   \headdecl{pwd.h} 
984   \headdecl{sys/types.h} 
985   \funcdecl{struct passwd *getpwuid(uid\_t uid)} 
986   
987   \funcdecl{struct passwd *getpwnam(const char *name)} 
988
989   Restituiscono le informazioni relative all'utente specificato.
990   
991   \bodydesc{Le funzioni ritornano il puntatore alla struttura contenente le
992     informazioni in caso di successo e \val{NULL} nel caso non sia stato
993     trovato nessun utente corrispondente a quanto specificato.}
994 \end{functions}
995
996 Le due funzioni forniscono le informazioni memorizzate nel registro degli
997 utenti (che nelle versioni più recenti possono essere ottenute attraverso PAM)
998 relative all'utente specificato attraverso il suo \acr{uid} o il nome di
999 login. Entrambe le funzioni restituiscono un puntatore ad una struttura di
1000 tipo \struct{passwd} la cui definizione (anch'essa eseguita in \file{pwd.h}) è
1001 riportata in fig.~\ref{fig:sys_passwd_struct}, dove è pure brevemente
1002 illustrato il significato dei vari campi.
1003
1004 \begin{figure}[!htb]
1005   \footnotesize
1006   \centering
1007   \begin{minipage}[c]{15cm}
1008     \includestruct{listati/passwd.h}
1009   \end{minipage} 
1010   \normalsize 
1011   \caption{La struttura \structd{passwd} contenente le informazioni relative ad
1012     un utente del sistema.}
1013   \label{fig:sys_passwd_struct}
1014 \end{figure}
1015
1016 La struttura usata da entrambe le funzioni è allocata staticamente, per questo
1017 motivo viene sovrascritta ad ogni nuova invocazione, lo stesso dicasi per la
1018 memoria dove sono scritte le stringhe a cui i puntatori in essa contenuti
1019 fanno riferimento. Ovviamente questo implica che dette funzioni non possono
1020 essere rientranti; per questo motivo ne esistono anche due versioni
1021 alternative (denotate dalla solita estensione \code{\_r}), i cui prototipi
1022 sono:
1023 \begin{functions}
1024   \headdecl{pwd.h} 
1025   
1026   \headdecl{sys/types.h} 
1027   
1028   \funcdecl{struct passwd *getpwuid\_r(uid\_t uid, struct passwd *password,
1029     char *buffer, size\_t buflen, struct passwd **result)}
1030   
1031   \funcdecl{struct passwd *getpwnam\_r(const char *name, struct passwd
1032     *password, char *buffer, size\_t buflen, struct passwd **result)}
1033
1034   Restituiscono le informazioni relative all'utente specificato.
1035   
1036   \bodydesc{Le funzioni ritornano 0 in caso di successo e un codice d'errore
1037     altrimenti, nel qual caso \var{errno} sarà impostata opportunamente.}
1038 \end{functions}
1039
1040 In questo caso l'uso è molto più complesso, in quanto bisogna prima allocare
1041 la memoria necessaria a contenere le informazioni. In particolare i valori
1042 della struttura \struct{passwd} saranno restituiti all'indirizzo
1043 \param{password} mentre la memoria allocata all'indirizzo \param{buffer}, per
1044 un massimo di \param{buflen} byte, sarà utilizzata per contenere le stringhe
1045 puntate dai campi di \param{password}. Infine all'indirizzo puntato da
1046 \param{result} viene restituito il puntatore ai dati ottenuti, cioè
1047 \param{buffer} nel caso l'utente esista, o \val{NULL} altrimenti.  Qualora i
1048 dati non possano essere contenuti nei byte specificati da \param{buflen}, la
1049 funzione fallirà restituendo \errcode{ERANGE} (e \param{result} sarà comunque
1050 impostato a \val{NULL}).
1051
1052 Del tutto analoghe alle precedenti sono le funzioni \funcd{getgrnam} e
1053 \funcd{getgrgid} (e le relative analoghe rientranti con la stessa estensione
1054 \code{\_r}) che permettono di leggere le informazioni relative ai gruppi, i
1055 loro prototipi sono:
1056 \begin{functions}
1057   \headdecl{grp.h} 
1058   \headdecl{sys/types.h} 
1059
1060   \funcdecl{struct group *getgrgid(gid\_t gid)} 
1061   
1062   \funcdecl{struct group *getgrnam(const char *name)} 
1063   
1064   \funcdecl{struct group *getpwuid\_r(gid\_t gid, struct group *password,
1065     char *buffer, size\_t buflen, struct group **result)}
1066   
1067   \funcdecl{struct group *getpwnam\_r(const char *name, struct group
1068     *password, char *buffer, size\_t buflen, struct group **result)}
1069
1070   Restituiscono le informazioni relative al gruppo specificato.
1071   
1072   \bodydesc{Le funzioni ritornano 0 in caso di successo e un codice d'errore
1073     altrimenti, nel qual caso \var{errno} sarà impostata opportunamente.}
1074 \end{functions}
1075
1076 Il comportamento di tutte queste funzioni è assolutamente identico alle
1077 precedenti che leggono le informazioni sugli utenti, l'unica differenza è che
1078 in questo caso le informazioni vengono restituite in una struttura di tipo
1079 \struct{group}, la cui definizione è riportata in
1080 fig.~\ref{fig:sys_group_struct}.
1081
1082 \begin{figure}[!htb]
1083   \footnotesize
1084   \centering
1085   \begin{minipage}[c]{15cm}
1086     \includestruct{listati/group.h}
1087   \end{minipage} 
1088   \normalsize 
1089   \caption{La struttura \structd{group} contenente le informazioni relative ad
1090     un gruppo del sistema.}
1091   \label{fig:sys_group_struct}
1092 \end{figure}
1093
1094 Le funzioni viste finora sono in grado di leggere le informazioni sia
1095 direttamente dal file delle password in \conffile{/etc/passwd} che tramite il
1096 sistema del \itindex{Name~Service~Switch} \textit{Name Service Switch} e sono
1097 completamente generiche. Si noti però che non c'è una funzione che permetta di
1098 impostare direttamente una password.\footnote{in realtà questo può essere
1099   fatto ricorrendo a PAM, ma questo è un altro discorso.} Dato che POSIX non
1100 prevede questa possibilità esiste un'altra interfaccia che lo fa, derivata da
1101 SVID le cui funzioni sono riportate in tab.~\ref{tab:sys_passwd_func}. Questa
1102 però funziona soltanto quando le informazioni sono mantenute su un apposito
1103 file di \textsl{registro} di utenti e gruppi, con il formato classico di
1104 \conffile{/etc/passwd} e \conffile{/etc/group}.
1105
1106 \begin{table}[htb]
1107   \footnotesize
1108   \centering
1109   \begin{tabular}[c]{|l|p{8cm}|}
1110     \hline
1111     \textbf{Funzione} & \textbf{Significato}\\
1112     \hline
1113     \hline
1114     \func{fgetpwent}   & Legge una voce dal file di registro degli utenti
1115                          specificato.\\
1116     \func{fgetpwent\_r}& Come la precedente, ma rientrante.\\
1117     \func{putpwent}    & Immette una voce in un file di registro degli
1118                          utenti.\\ 
1119     \func{getpwent}    & Legge una voce da \conffile{/etc/passwd}.\\
1120     \func{getpwent\_r} & Come la precedente, ma rientrante.\\
1121     \func{setpwent}    & Ritorna all'inizio di \conffile{/etc/passwd}.\\
1122     \func{endpwent}    & Chiude \conffile{/etc/passwd}.\\
1123     \func{fgetgrent}   & Legge una voce dal file di registro dei gruppi 
1124                          specificato.\\
1125     \func{fgetgrent\_r}& Come la precedente, ma rientrante.\\
1126     \func{putgrent}    & Immette una voce in un file di registro dei gruppi.\\
1127     \func{getgrent}    & Legge una voce da \conffile{/etc/group}.\\ 
1128     \func{getgrent\_r} & Come la precedente, ma rientrante.\\
1129     \func{setgrent}    & Ritorna all'inizio di \conffile{/etc/group}.\\
1130     \func{endgrent}    & Chiude \conffile{/etc/group}.\\
1131     \hline
1132   \end{tabular}
1133   \caption{Funzioni per la manipolazione dei campi di un file usato come
1134     registro per utenti o gruppi nel formato di \conffile{/etc/passwd} e
1135     \conffile{/etc/group}.} 
1136   \label{tab:sys_passwd_func}
1137 \end{table}
1138
1139 Dato che oramai la gran parte delle distribuzioni di GNU/Linux utilizzano
1140 almeno le \textit{shadow password} (quindi con delle modifiche rispetto al
1141 formato classico del file \conffile{/etc/passwd}), si tenga presente che le
1142 funzioni di questa interfaccia che permettono di scrivere delle voci in un
1143 \textsl{registro} degli utenti (cioè \func{putpwent} e \func{putgrent}) non
1144 hanno la capacità di farlo specificando tutti i contenuti necessari rispetto a
1145 questa estensione. Per questo motivo l'uso di queste funzioni è deprecato, in
1146 quanto comunque non funzionale, pertanto ci limiteremo a fornire soltanto
1147 l'elenco di tab.~\ref{tab:sys_passwd_func}, senza nessuna spiegazione
1148 ulteriore.  Chi volesse insistere ad usare questa interfaccia può fare
1149 riferimento alle pagine di manuale delle rispettive funzioni ed al manuale
1150 delle \acr{glibc} per i dettagli del funzionamento.
1151
1152
1153
1154 \subsection{Il registro della \textsl{contabilità} degli utenti}
1155 \label{sec:sys_accounting}
1156
1157 L'ultimo insieme di funzioni relative alla gestione del sistema che
1158 esamineremo è quello che permette di accedere ai dati del registro della
1159 cosiddetta \textsl{contabilità} (o \textit{accounting}) degli utenti.  In esso
1160 vengono mantenute una serie di informazioni storiche relative sia agli utenti
1161 che si sono collegati al sistema, (tanto per quelli correntemente collegati,
1162 che per la registrazione degli accessi precedenti), sia relative all'intero
1163 sistema, come il momento di lancio di processi da parte di \cmd{init}, il
1164 cambiamento dell'orologio di sistema, il cambiamento di runlevel o il riavvio
1165 della macchina.
1166
1167 I dati vengono usualmente\footnote{questa è la locazione specificata dal
1168   \textit{Linux Filesystem Hierarchy Standard}, adottato dalla gran parte
1169   delle distribuzioni.} memorizzati nei due file \file{/var/run/utmp} e
1170 \file{/var/log/wtmp}.\footnote{non si confonda quest'ultimo con il simile
1171   \file{/var/log/btmp} dove invece vengono memorizzati dal programma di login
1172   tutti tentativi di accesso fallito.} Quando un utente si collega viene
1173 aggiunta una voce a \file{/var/run/utmp} in cui viene memorizzato il nome di
1174 login, il terminale da cui ci si collega, l'\acr{uid} della shell di login,
1175 l'orario della connessione ed altre informazioni.  La voce resta nel file fino
1176 al logout, quando viene cancellata e spostata in \file{/var/log/wtmp}.
1177
1178 In questo modo il primo file viene utilizzato per registrare chi sta
1179 utilizzando il sistema al momento corrente, mentre il secondo mantiene la
1180 registrazione delle attività degli utenti. A quest'ultimo vengono anche
1181 aggiunte delle voci speciali per tenere conto dei cambiamenti del sistema,
1182 come la modifica del runlevel, il riavvio della macchina, ecc. Tutte queste
1183 informazioni sono descritte in dettaglio nel manuale delle \acr{glibc}.
1184
1185 Questi file non devono mai essere letti direttamente, ma le informazioni che
1186 contengono possono essere ricavate attraverso le opportune funzioni di
1187 libreria. Queste sono analoghe alle precedenti funzioni (vedi
1188 tab.~\ref{tab:sys_passwd_func}) usate per accedere al registro degli utenti,
1189 solo che in questo caso la struttura del registro della \textsl{contabilità} è
1190 molto più complessa, dato che contiene diversi tipi di informazione.
1191
1192 Le prime tre funzioni, \funcd{setutent}, \funcd{endutent} e \funcd{utmpname}
1193 servono rispettivamente a aprire e a chiudere il file che contiene il
1194 registro, e a specificare su quale file esso viene mantenuto. I loro prototipi
1195 sono:
1196 \begin{functions}
1197   \headdecl{utmp.h} 
1198   
1199   \funcdecl{void utmpname(const char *file)} Specifica il file da usare come
1200   registro.
1201   
1202   \funcdecl{void setutent(void)} Apre il file del registro, posizionandosi al
1203   suo inizio.
1204   
1205   \funcdecl{void endutent(void)} Chiude il file del registro.
1206   
1207   \bodydesc{Le funzioni non ritornano codici di errore.}
1208 \end{functions}
1209 e si tenga presente che le funzioni non restituiscono nessun valore, pertanto
1210 non è possibile accorgersi di eventuali errori (ad esempio se si è impostato
1211 un nome di file sbagliato con \func{utmpname}).
1212
1213 Nel caso non si sia utilizzata \func{utmpname} per specificare un file di
1214 registro alternativo, sia \func{setutent} che \func{endutent} operano usando
1215 il default che è \file{/var/run/utmp}. Il nome di questo file, così come una
1216 serie di altri valori di default per i \textit{pathname} di uso più comune,
1217 viene mantenuto nei valori di una serie di costanti definite includendo
1218 \file{paths.h}, in particolare quelle che ci interessano sono:
1219 \begin{basedescript}{\desclabelwidth{2.0cm}}
1220 \item[\const{\_PATH\_UTMP}] specifica il file che contiene il registro per gli
1221   utenti correntemente collegati; questo è il valore che viene usato se non si
1222   è utilizzato \func{utmpname} per modificarlo.
1223 \item[\const{\_PATH\_WTMP}] specifica il file che contiene il registro per
1224   l'archivio storico degli utenti collegati.
1225 \end{basedescript}
1226 che nel caso di Linux hanno un valore corrispondente ai file
1227 \file{/var/run/utmp} e \file{/var/log/wtmp} citati in precedenza.
1228
1229 Una volta aperto il file del registro degli utenti si può eseguire una
1230 scansione leggendo o scrivendo una voce con le funzioni \funcd{getutent},
1231 \funcd{getutid}, \funcd{getutline} e \funcd{pututline}, i cui prototipi sono:
1232 \begin{functions}
1233   \headdecl{utmp.h} 
1234
1235   \funcdecl{struct utmp *getutent(void)} 
1236   Legge una voce dalla posizione corrente nel registro.
1237   
1238   \funcdecl{struct utmp *getutid(struct utmp *ut)} Ricerca una voce sul
1239   registro in base al contenuto di \param{ut}.
1240
1241   \funcdecl{struct utmp *getutline(struct utmp *ut)} 
1242   Ricerca nel registro la prima voce corrispondente ad un processo sulla linea
1243   di terminale specificata tramite \param{ut}.
1244
1245   \funcdecl{struct utmp *pututline(struct utmp *ut)} 
1246   Scrive una voce nel registro.
1247   
1248   \bodydesc{Le funzioni ritornano il puntatore ad una struttura \struct{utmp}
1249     in caso di successo e \val{NULL} in caso di errore.}
1250 \end{functions}
1251
1252 Tutte queste funzioni fanno riferimento ad una struttura di tipo
1253 \struct{utmp}, la cui definizione in Linux è riportata in
1254 fig.~\ref{fig:sys_utmp_struct}. Le prime tre funzioni servono per leggere una
1255 voce dal registro; \func{getutent} legge semplicemente la prima voce
1256 disponibile; le altre due permettono di eseguire una ricerca.
1257
1258
1259 \begin{figure}[!htb]
1260   \footnotesize
1261   \centering
1262   \begin{minipage}[c]{15cm}
1263     \includestruct{listati/utmp.h}
1264   \end{minipage} 
1265   \normalsize 
1266   \caption{La struttura \structd{utmp} contenente le informazioni di una voce
1267     del registro di \textsl{contabilità}.}
1268   \label{fig:sys_utmp_struct}
1269 \end{figure}
1270
1271 Con \func{getutid} si può cercare una voce specifica, a seconda del valore del
1272 campo \var{ut\_type} dell'argomento \param{ut}.  Questo può assumere i valori
1273 riportati in tab.~\ref{tab:sys_ut_type}, quando assume i valori
1274 \const{RUN\_LVL}, \const{BOOT\_TIME}, \const{OLD\_TIME}, \const{NEW\_TIME},
1275 verrà restituito la prima voce che corrisponde al tipo determinato; quando
1276 invece assume i valori \const{INIT\_PROCESS}, \const{LOGIN\_PROCESS},
1277 \const{USER\_PROCESS} o \const{DEAD\_PROCESS} verrà restituita la prima voce
1278 corrispondente al valore del campo \var{ut\_id} specificato in \param{ut}.
1279
1280 \begin{table}[htb]
1281   \footnotesize
1282   \centering
1283   \begin{tabular}[c]{|l|p{8cm}|}
1284     \hline
1285     \textbf{Valore} & \textbf{Significato}\\
1286     \hline
1287     \hline
1288     \const{EMPTY}         & Non contiene informazioni valide.\\
1289     \const{RUN\_LVL}      & Identica il runlevel del sistema.\\
1290     \const{BOOT\_TIME}    & Identifica il tempo di avvio del sistema.\\
1291     \const{OLD\_TIME}     & Identifica quando è stato modificato l'orologio di
1292                             sistema.\\
1293     \const{NEW\_TIME}     & Identifica da quanto è stato modificato il 
1294                             sistema.\\
1295     \const{INIT\_PROCESS} & Identifica un processo lanciato da \cmd{init}.\\
1296     \const{LOGIN\_PROCESS}& Identifica un processo di login.\\
1297     \const{USER\_PROCESS} & Identifica un processo utente.\\
1298     \const{DEAD\_PROCESS} & Identifica un processo terminato.\\
1299 %    \const{ACCOUNTING}    & ??? \\
1300     \hline
1301   \end{tabular}
1302   \caption{Classificazione delle voci del registro a seconda dei
1303     possibili valori del campo \var{ut\_type}.} 
1304   \label{tab:sys_ut_type}
1305 \end{table}
1306
1307 La funzione \func{getutline} esegue la ricerca sulle voci che hanno
1308 \var{ut\_type} uguale a \const{LOGIN\_PROCESS} o \const{USER\_PROCESS},
1309 restituendo la prima che corrisponde al valore di \var{ut\_line}, che
1310 specifica il device\footnote{espresso senza il \file{/dev/} iniziale.} di
1311 terminale che interessa. Lo stesso criterio di ricerca è usato da
1312 \func{pututline} per trovare uno spazio dove inserire la voce specificata,
1313 qualora non sia trovata la voce viene aggiunta in coda al registro.
1314
1315 In generale occorre però tenere conto che queste funzioni non sono
1316 completamente standardizzate, e che in sistemi diversi possono esserci
1317 differenze; ad esempio \func{pututline} restituisce \code{void} in vari
1318 sistemi (compreso Linux, fino alle \acr{libc5}). Qui seguiremo la sintassi
1319 fornita dalle \acr{glibc}, ma gli standard POSIX 1003.1-2001 e XPG4.2 hanno
1320 introdotto delle nuove strutture (e relativi file) di tipo \code{utmpx}, che
1321 sono un sovrainsieme di \code{utmp}. 
1322
1323 Le \acr{glibc} utilizzano già una versione estesa di \code{utmp}, che rende
1324 inutili queste nuove strutture; pertanto esse e le relative funzioni di
1325 gestione (\func{getutxent}, \func{getutxid}, \func{getutxline},
1326 \func{pututxline}, \func{setutxent} e \func{endutxent}) sono ridefinite come
1327 sinonimi delle funzioni appena viste.
1328
1329 Come visto in sez.~\ref{sec:sys_user_group}, l'uso di strutture allocate
1330 staticamente rende le funzioni di lettura non rientranti; per questo motivo le
1331 \acr{glibc} forniscono anche delle versioni rientranti: \func{getutent\_r},
1332 \func{getutid\_r}, \func{getutline\_r}, che invece di restituire un puntatore
1333 restituiscono un intero e prendono due argomenti aggiuntivi. Le funzioni si
1334 comportano esattamente come le analoghe non rientranti, solo che restituiscono
1335 il risultato all'indirizzo specificato dal primo argomento aggiuntivo (di tipo
1336 \code{struct utmp *buffer}) mentre il secondo (di tipo \code{struct utmp
1337   **result)} viene usato per restituire il puntatore allo stesso buffer.
1338
1339 Infine le \acr{glibc} forniscono come estensione per la scrittura delle voci
1340 in \file{wmtp} altre due funzioni, \funcd{updwtmp} e \funcd{logwtmp}, i cui
1341 prototipi sono:
1342 \begin{functions}
1343   \headdecl{utmp.h} 
1344   
1345   \funcdecl{void updwtmp(const char *wtmp\_file, const struct utmp *ut)}
1346   Aggiunge la voce \param{ut} nel registro \file{wmtp}.
1347   
1348   \funcdecl{void logwtmp(const char *line, const char *name, const char
1349     *host)} Aggiunge nel registro una voce con i valori specificati.
1350 \end{functions}
1351
1352 La prima funzione permette l'aggiunta di una voce a \file{wmtp} specificando
1353 direttamente una struttura \struct{utmp}, mentre la seconda utilizza gli
1354 argomenti \param{line}, \param{name} e \param{host} per costruire la voce che
1355 poi aggiunge chiamando \func{updwtmp}.
1356
1357
1358 \section{Il controllo dell'uso delle risorse}
1359 \label{sec:sys_res_limits}
1360
1361
1362 Dopo aver esaminato le funzioni che permettono di controllare le varie
1363 caratteristiche, capacità e limiti del sistema a livello globale, in questa
1364 sezione tratteremo le varie funzioni che vengono usate per quantificare le
1365 risorse (CPU, memoria, ecc.) utilizzate da ogni singolo processo e quelle che
1366 permettono di imporre a ciascuno di essi vincoli e limiti di
1367 utilizzo. 
1368
1369
1370 \subsection{L'uso delle risorse}
1371 \label{sec:sys_resource_use}
1372
1373 Come abbiamo accennato in sez.~\ref{sec:proc_wait} le informazioni riguardo
1374 l'utilizzo delle risorse da parte di un processo è mantenuto in una struttura
1375 di tipo \struct{rusage}, la cui definizione (che si trova in
1376 \file{sys/resource.h}) è riportata in fig.~\ref{fig:sys_rusage_struct}.
1377
1378 \begin{figure}[!htb]
1379   \footnotesize
1380   \centering
1381   \begin{minipage}[c]{15cm}
1382     \includestruct{listati/rusage.h}
1383   \end{minipage} 
1384   \normalsize 
1385   \caption{La struttura \structd{rusage} per la lettura delle informazioni dei 
1386     delle risorse usate da un processo.}
1387   \label{fig:sys_rusage_struct}
1388 \end{figure}
1389
1390 La definizione della struttura in fig.~\ref{fig:sys_rusage_struct} è ripresa
1391 da BSD 4.3,\footnote{questo non ha a nulla a che fare con il cosiddetto
1392   \textit{BSD accounting} (vedi sez. \ref{sec:sys_bsd_accounting}) che si trova
1393   nelle opzioni di compilazione del kernel (e di norma è disabilitato) che
1394   serve per mantenere una contabilità delle risorse usate da ciascun processo
1395   in maniera molto più dettagliata.} ma attualmente (con i kernel della serie
1396 2.4.x e 2.6.x) i soli campi che sono mantenuti sono: \var{ru\_utime},
1397 \var{ru\_stime}, \var{ru\_minflt}, \var{ru\_majflt}, e \var{ru\_nswap}. I
1398 primi due indicano rispettivamente il tempo impiegato dal processo
1399 nell'eseguire le istruzioni in user space, e quello impiegato dal kernel nelle
1400 system call eseguite per conto del processo.
1401
1402 Gli altri tre campi servono a quantificare l'uso della memoria
1403 virtuale\index{memoria~virtuale} e corrispondono rispettivamente al numero di
1404 \itindex{page~fault} \textit{page fault} (vedi sez.~\ref{sec:proc_mem_gen})
1405 avvenuti senza richiedere I/O su disco (i cosiddetti \textit{minor page
1406   fault}), a quelli che invece han richiesto I/O su disco (detti invece
1407 \textit{major page fault}) ed al numero di volte che il processo è stato
1408 completamente tolto dalla memoria per essere inserito nello swap.
1409
1410 In genere includere esplicitamente \file{<sys/time.h>} non è più strettamente
1411 necessario, ma aumenta la portabilità, e serve comunque quando, come nella
1412 maggior parte dei casi, si debba accedere ai campi di \struct{rusage} relativi
1413 ai tempi di utilizzo del processore, che sono definiti come strutture di tipo
1414 \struct{timeval}.
1415
1416 Questa è la stessa struttura utilizzata da \func{wait4} (si ricordi quando
1417 visto in sez.~\ref{sec:proc_wait}) per ricavare la quantità di risorse
1418 impiegate dal processo di cui si è letto lo stato di terminazione, ma essa può
1419 anche essere letta direttamente utilizzando la funzione \funcd{getrusage}, il
1420 cui prototipo è:
1421 \begin{functions}
1422   \headdecl{sys/time.h} 
1423   \headdecl{sys/resource.h} 
1424   \headdecl{unistd.h} 
1425   
1426   \funcdecl{int getrusage(int who, struct rusage *usage)} 
1427   Legge la quantità di risorse usate da un processo.
1428
1429
1430   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
1431   nel qual caso \var{errno} può essere \errval{EINVAL} o \errval{EFAULT}.}
1432 \end{functions}
1433
1434 L'argomento \param{who} permette di specificare il processo di cui si vuole
1435 leggere l'uso delle risorse; esso può assumere solo i due valori
1436 \const{RUSAGE\_SELF} per indicare il processo corrente e
1437 \const{RUSAGE\_CHILDREN} per indicare l'insieme dei processi figli di cui si è
1438 ricevuto lo stato di terminazione. 
1439
1440
1441 \subsection{Limiti sulle risorse}
1442 \label{sec:sys_resource_limit}
1443
1444 Come accennato nell'introduzione il kernel mette a disposizione delle
1445 funzionalità che permettono non solo di mantenere dati statistici relativi
1446 all'uso delle risorse, ma anche di imporre dei limiti precisi sul loro
1447 utilizzo da parte dei vari processi o degli utenti.
1448
1449 Per far questo esistono una serie di risorse e ad ogni processo vengono
1450 associati due diversi limiti per ciascuna di esse; questi sono il
1451 \textsl{limite corrente} (o \textit{current limit}) che esprime un valore
1452 massimo che il processo non può superare ad un certo momento, ed il
1453 \textsl{limite massimo} (o \textit{maximum limit}) che invece esprime il
1454 valore massimo che può assumere il \textsl{limite corrente}. In generale il
1455 primo viene chiamato anche \textit{soft limit} dato che il suo valore può
1456 essere aumentato dal processo stesso durante l'esecuzione, ciò può però essere
1457 fatto solo fino al valore del secondo, che per questo viene detto \textit{hard
1458   limit}.
1459
1460 \begin{table}[htb]
1461   \footnotesize
1462   \centering
1463   \begin{tabular}[c]{|l|p{12cm}|}
1464     \hline
1465     \textbf{Valore} & \textbf{Significato}\\
1466     \hline
1467     \hline
1468     \const{RLIMIT\_AS}     &  La dimensione massima della memoria virtuale di
1469                               un processo, il cosiddetto \textit{Address
1470                                 Space}, (vedi sez.~\ref{sec:proc_mem_gen}). Se
1471                               il limite viene superato dall'uso di funzioni
1472                               come \func{brk}, \func{mremap} o \func{mmap}
1473                               esse falliranno con un errore di
1474                               \errcode{ENOMEM}, mentre se il superamento viene
1475                               causato dalla crescita dello \itindex{stack}
1476                               stack il processo riceverà un segnale di
1477                               \const{SIGSEGV}.\\  
1478     \const{RLIMIT\_CORE}   &  La massima dimensione per di un file di
1479                               \itindex{core~dump} \textit{core dump} (vedi
1480                               sez.~\ref{sec:sig_prog_error}) creato nella
1481                               terminazione di un processo; file di dimensioni 
1482                               maggiori verranno troncati a questo valore,
1483                               mentre con un valore si bloccherà la creazione
1484                               dei \itindex{core~dump} \textit{core dump}.\\ 
1485     \const{RLIMIT\_CPU}    &  Il massimo tempo di CPU (vedi
1486                               sez.~\ref{sec:sys_cpu_times}) che il processo può
1487                               usare. Il superamento del limite corrente
1488                               comporta l'emissione di un segnale di
1489                               \const{SIGXCPU} la cui azione predefinita (vedi
1490                               sez.~\ref{sec:sig_classification}) è terminare
1491                               il processo. Il superamento del limite massimo
1492                               comporta l'emissione di un segnale di
1493                               \const{SIGKILL}.\footnotemark\\
1494     \const{RLIMIT\_DATA}   &  La massima dimensione del \index{segmento!dati}
1495                               segmento dati di un 
1496                               processo (vedi sez.~\ref{sec:proc_mem_layout}).
1497                               Il tentativo di allocare più memoria di quanto
1498                               indicato dal limite corrente causa il fallimento
1499                               della funzione di allocazione (\func{brk} o
1500                               \func{sbrk}) con un errore di \errcode{ENOMEM}.\\
1501     \const{RLIMIT\_FSIZE}  &  La massima dimensione di un file che un processo
1502                               può creare. Se il processo cerca di scrivere
1503                               oltre questa dimensione riceverà un segnale di
1504                               \const{SIGXFSZ}, che di norma termina il
1505                               processo; se questo viene intercettato la
1506                               system call che ha causato l'errore fallirà con
1507                               un errore di \errcode{EFBIG}.\\
1508     \const{RLIMIT\_LOCKS}&    È un limite presente solo nelle prime versioni
1509                               del kernel 2.4 sul numero massimo di
1510                               \index{file!locking} \textit{file lock} (vedi
1511                               sez.~\ref{sec:file_locking}) che un
1512                               processo poteva effettuare.\\ 
1513     \const{RLIMIT\_MEMLOCK}&  L'ammontare massimo di memoria che può essere
1514                               bloccata in RAM da un processo (vedi
1515                               sez.~\ref{sec:proc_mem_lock}). Dal kernel 2.6.9
1516                               questo limite comprende anche la memoria che può
1517                               essere bloccata da ciascun utente nell'uso della
1518                               memoria condivisa (vedi
1519                               sez.~\ref{sec:ipc_sysv_shm}) che viene
1520                               contabilizzata separatamente ma sulla quale
1521                               viene applicato questo stesso limite.\\ 
1522     \const{RLIMIT\_NOFILE} &  Il numero massimo di file che il processo può
1523                               aprire. L'apertura di un ulteriore file farà
1524                               fallire la funzione (\func{open}, \func{dup} o
1525                               \func{pipe}) con un errore \errcode{EMFILE}.\\
1526     \const{RLIMIT\_NPROC}  &  Il numero massimo di processi che possono essere
1527                               creati sullo stesso user id real. Se il limite
1528                               viene raggiunto \func{fork} fallirà con un
1529                               \errcode{EAGAIN}.\\
1530     \const{RLIMIT\_SIGPENDING}& Il numero massimo di segnali che possono
1531                               essere mantenuti in coda per ciascun utente,
1532                               considerando sia i segnali normali che real-time
1533                               (vedi sez.~\ref{sec:sig_real_time}). Il limite è
1534                               attivo solo per \func{sigqueue}, con \func{kill}
1535                               si potrà sempre inviare un segnale che non sia
1536                               già presente su una coda.\footnotemark\\
1537     \const{RLIMIT\_STACK}  &  La massima dimensione dello \itindex{stack}
1538                               stack del 
1539                               processo. Se il processo esegue operazioni che
1540                               estendano lo stack oltre questa dimensione
1541                               riceverà un segnale di \const{SIGSEGV}.\\
1542     \const{RLIMIT\_RSS}    &  L'ammontare massimo di pagine di memoria dato al
1543                               \index{segmento!testo} testo del processo. Il
1544                               limite è solo una indicazione per il kernel,
1545                               qualora ci fosse un surplus di memoria questa
1546                               verrebbe assegnata.\\ 
1547 % TODO integrare con la roba di madvise
1548     \hline
1549   \end{tabular}
1550   \caption{Valori possibili dell'argomento \param{resource} delle funzioni
1551     \func{getrlimit} e \func{setrlimit}.} 
1552   \label{tab:sys_rlimit_values}
1553 \end{table}
1554
1555 \footnotetext[18]{questo è quanto avviene per i kernel dalla serie 2.2 fino ad
1556   oggi (la 2.6.x); altri kernel possono avere comportamenti diversi per quanto
1557   avviene quando viene superato il \textit{soft limit}; perciò per avere
1558   operazioni portabili è sempre opportuno intercettare \const{SIGXCPU} e
1559   terminare in maniera ordinata il processo.}
1560
1561 \footnotetext{il limite su questa risorsa è stato introdotto con il kernel
1562   2.6.8.}
1563
1564 In generale il superamento di un limite corrente\footnote{di norma quanto
1565   riportato in tab.~\ref{tab:sys_rlimit_values} fa riferimento a quanto
1566   avviene al superamento del limite corrente, con l'eccezione
1567   \const{RLIMIT\_CPU} in cui si ha in comportamento diverso per il superamento
1568   dei due limiti.}  comporta o l'emissione di un segnale o il fallimento della
1569 system call che lo ha provocato;\footnote{si nuovo c'è una eccezione per
1570   \const{RLIMIT\_CORE} che influenza soltanto la dimensione (o l'eventuale
1571   creazione) dei file di \itindex{core~dump} \textit{core dump}.} per
1572 permettere di leggere e di impostare i limiti di utilizzo delle risorse da
1573 parte di un processo sono previste due funzioni, \funcd{getrlimit} e
1574 \funcd{setrlimit}, i cui prototipi sono:
1575 \begin{functions}
1576   \headdecl{sys/time.h} 
1577   \headdecl{sys/resource.h} 
1578   \headdecl{unistd.h} 
1579   
1580   \funcdecl{int getrlimit(int resource, struct rlimit *rlim)} 
1581
1582   Legge il limite corrente per la risorsa \param{resource}.
1583   
1584   \funcdecl{int setrlimit(int resource, const struct rlimit *rlim)} 
1585   
1586   Imposta il limite per la risorsa \param{resource}.
1587   
1588   \bodydesc{Le funzioni ritornano 0 in caso di successo e -1 in caso di
1589     errore, nel qual caso \var{errno} assumerà uno dei valori:
1590     \begin{errlist}
1591     \item[\errcode{EINVAL}] I valori per \param{resource} non sono validi.
1592     \item[\errcode{EPERM}] Un processo senza i privilegi di amministratore ha
1593     cercato di innalzare i propri limiti.
1594     \end{errlist}
1595   ed \errval{EFAULT}.}
1596 \end{functions}
1597
1598
1599 Entrambe le funzioni permettono di specificare, attraverso l'argomento
1600 \param{resource}, su quale risorsa si vuole operare: i possibili valori di
1601 questo argomento sono elencati in tab.~\ref{tab:sys_rlimit_values}. L'acceso
1602 (rispettivamente in lettura e scrittura) ai valori effettivi dei limiti viene
1603 poi effettuato attraverso la struttura \struct{rlimit} puntata da
1604 \param{rlim}, la cui definizione è riportata in
1605 fig.~\ref{fig:sys_rlimit_struct}, ed i cui campi corrispondono appunto a
1606 limite corrente e limite massimo.
1607
1608
1609 \begin{figure}[!htb]
1610   \footnotesize
1611   \centering
1612   \begin{minipage}[c]{15cm}
1613     \includestruct{listati/rlimit.h}
1614   \end{minipage} 
1615   \normalsize 
1616   \caption{La struttura \structd{rlimit} per impostare i limiti di utilizzo 
1617     delle risorse usate da un processo.}
1618   \label{fig:sys_rlimit_struct}
1619 \end{figure}
1620
1621
1622 Nello specificare un limite, oltre a fornire dei valori specifici, si può
1623 anche usare la costante \const{RLIM\_INFINITY} che permette di sbloccare l'uso
1624 di una risorsa; ma si ricordi che solo un processo con i privilegi di
1625 amministratore\footnote{per essere precisi in questo caso quello che serve è
1626   la \itindex{capabilities} \textit{capability} \const{CAP\_SYS\_RESOURCE}.}
1627 può innalzare un limite al di sopra del valore corrente del limite massimo ed
1628 usare un valore qualsiasi per entrambi i limiti. Si tenga conto infine che
1629 tutti i limiti vengono ereditati dal processo padre attraverso una \func{fork}
1630 (vedi sez.~\ref{sec:proc_fork}) e mantenuti per gli altri programmi eseguiti
1631 attraverso una \func{exec} (vedi sez.~\ref{sec:proc_exec}).
1632
1633
1634 \subsection{Le risorse di memoria e processore}
1635 \label{sec:sys_memory_res}
1636
1637 La gestione della memoria è già stata affrontata in dettaglio in
1638 sez.~\ref{sec:proc_memory}; abbiamo visto allora che il kernel provvede il
1639 meccanismo della \index{memoria~virtuale} memoria virtuale attraverso la
1640 divisione della memoria fisica in pagine.
1641
1642 In genere tutto ciò è del tutto trasparente al singolo processo, ma in certi
1643 casi, come per l'I/O mappato in memoria (vedi sez.~\ref{sec:file_memory_map})
1644 che usa lo stesso meccanismo per accedere ai file, è necessario conoscere le
1645 dimensioni delle pagine usate dal kernel. Lo stesso vale quando si vuole
1646 gestire in maniera ottimale l'interazione della memoria che si sta allocando
1647 con il meccanismo della \index{paginazione} paginazione.
1648
1649 Di solito la dimensione delle pagine di memoria è fissata dall'architettura
1650 hardware, per cui il suo valore di norma veniva mantenuto in una costante che
1651 bastava utilizzare in fase di compilazione, ma oggi, con la presenza di alcune
1652 architetture (ad esempio Sun Sparc) che permettono di variare questa
1653 dimensione, per non dover ricompilare i programmi per ogni possibile modello e
1654 scelta di dimensioni, è necessario poter utilizzare una funzione.
1655
1656 Dato che si tratta di una caratteristica generale del sistema, questa
1657 dimensione può essere ottenuta come tutte le altre attraverso una chiamata a
1658 \func{sysconf}, \footnote{nel caso specifico si dovrebbe utilizzare il
1659   parametro \const{\_SC\_PAGESIZE}.}  ma in BSD 4.2 è stata introdotta una
1660 apposita funzione, \funcd{getpagesize}, che restituisce la dimensione delle
1661 pagine di memoria; il suo prototipo è:
1662 \begin{prototype}{unistd.h}{int getpagesize(void)}
1663   Legge le dimensioni delle pagine di memoria.
1664   
1665   \bodydesc{La funzione ritorna la dimensione di una pagina in byte, e non
1666     sono previsti errori.}
1667 \end{prototype}
1668
1669 La funzione è prevista in SVr4, BSD 4.4 e SUSv2, anche se questo ultimo
1670 standard la etichetta come obsoleta, mentre lo standard POSIX 1003.1-2001 la
1671 ha eliminata. In Linux è implementata come una system call nelle architetture
1672 in cui essa è necessaria, ed in genere restituisce il valore del simbolo
1673 \const{PAGE\_SIZE} del kernel, che dipende dalla architettura hardware, anche
1674 se le versioni delle librerie del C precedenti le \acr{glibc} 2.1
1675 implementavano questa funzione restituendo sempre un valore statico.
1676
1677 % TODO verificare meglio la faccenda di const{PAGE\_SIZE} 
1678
1679 Le \textsl{glibc} forniscono, come specifica estensione GNU, altre due
1680 funzioni, \funcd{get\_phys\_pages} e \funcd{get\_avphys\_pages} che permettono
1681 di ottenere informazioni riguardo la memoria; i loro prototipi sono:
1682 \begin{functions}
1683   \headdecl{sys/sysinfo.h} 
1684   
1685   \funcdecl{long int get\_phys\_pages(void)} 
1686
1687   Legge il numero totale di pagine di memoria disponibili per il sistema.
1688   
1689   \funcdecl{long int get\_avphys\_pages(void)} 
1690   
1691   Legge il numero di pagine di memoria disponibili nel sistema. 
1692   
1693   \bodydesc{Le funzioni restituiscono un numero di pagine.}
1694 \end{functions}
1695
1696 Queste funzioni sono equivalenti all'uso della funzione \func{sysconf}
1697 rispettivamente con i parametri \const{\_SC\_PHYS\_PAGES} e
1698 \const{\_SC\_AVPHYS\_PAGES}. La prima restituisce il numero totale di pagine
1699 corrispondenti alla RAM della macchina; la seconda invece la memoria
1700 effettivamente disponibile per i processi.
1701
1702 Le \acr{glibc} supportano inoltre, come estensioni GNU, due funzioni che
1703 restituiscono il numero di processori della macchina (e quello dei processori
1704 attivi); anche queste sono informazioni comunque ottenibili attraverso
1705 \func{sysconf} utilizzando rispettivamente i parametri
1706 \const{\_SC\_NPROCESSORS\_CONF} e \const{\_SC\_NPROCESSORS\_ONLN}.
1707
1708 Infine le \acr{glibc} riprendono da BSD la funzione \funcd{getloadavg} che
1709 permette di ottenere il carico di processore della macchina, in questo modo è
1710 possibile prendere decisioni su quando far partire eventuali nuovi processi.
1711 Il suo prototipo è:
1712 \begin{prototype}{stdlib.h}{int getloadavg(double loadavg[], int nelem)}
1713   Legge il carico medio della macchina.
1714   
1715   \bodydesc{La funzione ritorna il numero di elementi scritti o -1 in caso di
1716     errore.}
1717 \end{prototype}
1718
1719 La funzione restituisce in ciascun elemento di \param{loadavg} il numero medio
1720 di processi attivi sulla coda dello \itindex{scheduler} scheduler, calcolato
1721 su diversi intervalli di tempo.  Il numero di intervalli che si vogliono
1722 leggere è specificato da \param{nelem}, dato che nel caso di Linux il carico
1723 viene valutato solo su tre intervalli (corrispondenti a 1, 5 e 15 minuti),
1724 questo è anche il massimo valore che può essere assegnato a questo argomento.
1725
1726
1727 \subsection{La \textsl{contabilità} in stile BSD}
1728 \label{sec:sys_bsd_accounting}
1729
1730 Una ultima modalità per monitorare l'uso delle risorse è, se si è compilato il
1731 kernel con il relativo supporto,\footnote{se cioè si è abilitata l'opzione di
1732   compilazione \texttt{CONFIG\_BSD\_PROCESS\_ACCT}.} quella di attivare il
1733 cosiddetto \textit{BSD accounting}, che consente di registrare su file una
1734 serie di informazioni\footnote{contenute nella struttura \texttt{acct}
1735   definita nel file \texttt{include/linux/acct.h} dei sorgenti del kernel.}
1736 riguardo alla \textsl{contabilità} delle risorse utilizzate da ogni processo
1737 che viene terminato.
1738
1739 Linux consente di salvare la contabilità delle informazioni relative alle
1740 risorse utilizzate dai processi grazie alla funzione \funcd{acct}, il cui
1741 prototipo è:
1742 \begin{prototype}{unistd.h}{int acct(const char *filename)}
1743   Abilita il \textit{BSD accounting}.
1744   
1745   \bodydesc{La funzione ritorna 0 in caso di successo o $-1$ in caso di
1746     errore, nel qual caso \var{errno} assumerà uno dei valori:
1747     \begin{errlist}
1748     \item[\errcode{EACCESS}] non si hanno i permessi per accedere a
1749       \param{pathname}.
1750     \item[\errcode{EPERM}] Il processo non ha privilegi sufficienti ad
1751       abilitare il \textit{BSD accounting}.
1752     \item[\errcode{ENOSYS}] il kernel non supporta il \textit{BSD accounting}.
1753     \item[\errcode{EUSER}] non sono disponibili nel kernel strutture per il
1754       file o si è finita la memoria.
1755     \end{errlist}
1756     ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{ELOOP},
1757     \errval{ENAMETOOLONG}, \errval{ENFILE}, \errval{ENOENT}, \errval{ENOMEM},
1758     \errval{ENOTDIR}, \errval{EROFS}.}
1759 \end{prototype}
1760
1761 La funzione attiva il salvataggio dei dati sul file indicato dal pathname
1762 contenuti nella stringa puntata da \param{filename}; la funzione richiede che
1763 il processo abbia i privilegi di amministratore (è necessaria la
1764 \itindex{capabilities} capability \const{CAP\_SYS\_PACCT}, vedi
1765 sez.~\ref{sec:proc_capabilities}). Se si specifica il valore \const{NULL} per
1766 \param{filename} il \textit{BSD accounting} viene invece disabilitato. Un
1767 semplice esempio per l'uso di questa funzione è riportato nel programma
1768 \texttt{AcctCtrl.c} dei sorgenti allegati alla guida.
1769
1770 Quando si attiva la contabilità, il file che si indica deve esistere; esso
1771 verrà aperto in sola scrittura;\footnote{si applicano al pathname indicato da
1772   \param{filename} tutte le restrizioni viste in cap.~\ref{cha:file_intro}.}
1773 le informazioni verranno registrate in \itindex{append~mode} \textit{append}
1774 in coda al file tutte le volte che un processo termina. Le informazioni
1775 vengono salvate in formato binario, e corrispondono al contenuto della
1776 apposita struttura dati definita all'interno del kernel.
1777
1778 Il funzionamento di \func{acct} viene inoltre modificato da uno specifico
1779 parametro di sistema, modificabile attraverso \procfile{/proc/sys/kernel/acct}
1780 (o tramite la corrispondente \func{sysctl}). Esso contiene tre valori interi,
1781 il primo indica la percentuale di spazio disco libero sopra il quale viene
1782 ripresa una registrazione che era stata sospesa per essere scesi sotto il
1783 minimo indicato dal secondo valore (sempre in percentuale di spazio disco
1784 libero). Infine l'ultimo valore indica la frequenza in secondi con cui deve
1785 essere controllata detta percentuale.
1786
1787
1788
1789
1790 \section{La gestione dei tempi del sistema}
1791 \label{sec:sys_time}
1792
1793 In questa sezione, una volta introdotti i concetti base della gestione dei
1794 tempi da parte del sistema, tratteremo le varie funzioni attinenti alla
1795 gestione del tempo in un sistema unix-like, a partire da quelle per misurare i
1796 veri tempi di sistema associati ai processi, a quelle per convertire i vari
1797 tempi nelle differenti rappresentazioni che vengono utilizzate, a quelle della
1798 gestione di data e ora.
1799
1800
1801 \subsection{La misura del tempo in Unix}
1802 \label{sec:sys_unix_time}
1803
1804 Storicamente i sistemi unix-like hanno sempre mantenuto due distinti tipi di
1805 dati per la misure dei tempi all'interno del sistema: essi sono
1806 rispettivamente chiamati \itindend{calendar~time} \textit{calendar time} e
1807 \itindex{process~time} \textit{process time}, secondo le definizioni:
1808 \begin{basedescript}{\desclabelwidth{1.5cm}\desclabelstyle{\nextlinelabel}}
1809 \item[\textit{calendar time}] \itindend{calendar~time} detto anche
1810   \textsl{tempo di calendario}. È il numero di secondi dalla mezzanotte del
1811   primo gennaio 1970, in tempo universale coordinato (o UTC), data che viene
1812   usualmente indicata con 00:00:00 Jan, 1 1970 (UTC) e chiamata \textit{the
1813     Epoch}. Questo tempo viene anche chiamato anche GMT (Greenwich Mean Time)
1814   dato che l'UTC corrisponde all'ora locale di Greenwich.  È il tempo su cui
1815   viene mantenuto l'orologio del kernel, e viene usato ad esempio per indicare
1816   le date di modifica dei file o quelle di avvio dei processi. Per memorizzare
1817   questo tempo è stato riservato il tipo primitivo \type{time\_t}.
1818 \item[\textit{process time}] \itindex{process~time} detto talvolta
1819   \textsl{tempo di processore}.  Viene misurato in \textit{clock tick}. Un
1820   tempo questo corrispondeva al numero di interruzioni effettuate dal timer di
1821   sistema, adesso lo standard POSIX richiede che esso sia pari al valore della
1822   costante \const{CLOCKS\_PER\_SEC}, che deve essere definita come 1000000,
1823   qualunque sia la risoluzione reale dell'orologio di sistema e la frequenza
1824   delle interruzioni del timer.\footnote{quest'ultima, come accennato in
1825     sez.~\ref{sec:proc_hierarchy}, è invece data dalla costante \const{HZ}.}
1826   Il dato primitivo usato per questo tempo è \type{clock\_t}, che ha quindi
1827   una risoluzione del microsecondo. Il numero di tick al secondo può essere
1828   ricavato anche attraverso \func{sysconf} (vedi sez.~\ref{sec:sys_sysconf}).
1829   Il vecchio simbolo \const{CLK\_TCK} definito in \file{time.h} è ormai
1830   considerato obsoleto.
1831 \end{basedescript}
1832
1833 In genere si usa il \itindend{calendar~time} \textit{calendar time} per
1834 esprimere le date dei file e le informazioni analoghe che riguardano i
1835 cosiddetti \textsl{tempi di orologio}, che vengono usati ad esempio per i
1836 demoni che compiono lavori amministrativi ad ore definite, come \cmd{cron}.
1837
1838 Di solito questo tempo viene convertito automaticamente dal valore in UTC al
1839 tempo locale, utilizzando le opportune informazioni di localizzazione
1840 (specificate in \conffile{/etc/timezone}). E da tenere presente che questo
1841 tempo è mantenuto dal sistema e non è detto che corrisponda al tempo tenuto
1842 dall'orologio hardware del calcolatore.
1843
1844 Anche il \itindex{process~time} \textit{process time} di solito si esprime in
1845 secondi, ma fornisce una precisione ovviamente superiore al \textit{calendar
1846   time} (che è mantenuto dal sistema con una granularità di un secondo) e
1847 viene usato per tenere conto dei tempi di esecuzione dei processi. Per ciascun
1848 processo il kernel calcola tre tempi diversi:
1849 \begin{basedescript}{\desclabelwidth{1.5cm}\desclabelstyle{\nextlinelabel}}
1850 \item[\textit{clock time}] il tempo \textsl{reale} (viene chiamato anche
1851   \textit{wall clock time} o \textit{elapsed time}) passato dall'avvio del
1852   processo. Chiaramente tale tempo dipende anche dal carico del sistema e da
1853   quanti altri processi stavano girando nello stesso periodo.
1854   
1855 \item[\textit{user time}] il tempo effettivo che il processore ha impiegato
1856   nell'esecuzione delle istruzioni del processo in user space. È quello
1857   riportato nella risorsa \var{ru\_utime} di \struct{rusage} vista in
1858   sez.~\ref{sec:sys_resource_use}.
1859   
1860 \item[\textit{system time}] il tempo effettivo che il processore ha impiegato
1861   per eseguire codice delle system call nel kernel per conto del processo.  È
1862   quello riportato nella risorsa \var{ru\_stime} di \struct{rusage} vista in
1863   sez.~\ref{sec:sys_resource_use}.
1864 \end{basedescript}
1865
1866 In genere la somma di \textit{user time} e \textit{system time} indica il
1867 tempo di processore totale che il sistema ha effettivamente utilizzato per
1868 eseguire un certo processo, questo viene chiamato anche \textit{CPU time} o
1869 \textsl{tempo di CPU}. Si può ottenere un riassunto dei valori di questi tempi
1870 quando si esegue un qualsiasi programma lanciando quest'ultimo come argomento
1871 del comando \cmd{time}.
1872
1873
1874
1875 \subsection{La gestione del \textit{process time}}
1876 \label{sec:sys_cpu_times}
1877
1878 \itindbeg{process~time}
1879
1880 Di norma tutte le operazioni del sistema fanno sempre riferimento al
1881 \itindend{calendar~time} \textit{calendar time}, l'uso del \textit{process
1882   time} è riservato a quei casi in cui serve conoscere i tempi di esecuzione
1883 di un processo (ad esempio per valutarne l'efficienza). In tal caso infatti
1884 fare ricorso al \textit{calendar time} è inutile in quanto il tempo può essere
1885 trascorso mentre un altro processo era in esecuzione o in attesa del risultato
1886 di una operazione di I/O.
1887
1888 La funzione più semplice per leggere il \textit{process time} di un processo è
1889 \funcd{clock}, che da una valutazione approssimativa del tempo di CPU
1890 utilizzato dallo stesso; il suo prototipo è:
1891 \begin{prototype}{time.h}{clock\_t clock(void)}
1892   Legge il valore corrente del tempo di CPU.
1893   
1894   \bodydesc{La funzione ritorna il tempo di CPU usato dal programma e -1 in
1895     caso di errore.}
1896 \end{prototype}
1897
1898 La funzione restituisce il tempo in tick, quindi se si vuole il tempo in
1899 secondi occorre dividere il risultato per la costante
1900 \const{CLOCKS\_PER\_SEC}.\footnote{le \acr{glibc} seguono lo standard ANSI C,
1901   POSIX richiede che \const{CLOCKS\_PER\_SEC} sia definito pari a 1000000
1902   indipendentemente dalla risoluzione del timer di sistema.} In genere
1903 \type{clock\_t} viene rappresentato come intero a 32 bit, il che comporta un
1904 valore massimo corrispondente a circa 72 minuti, dopo i quali il contatore
1905 riprenderà lo stesso valore iniziale.
1906
1907 Come accennato in sez.~\ref{sec:sys_unix_time} il tempo di CPU è la somma di
1908 altri due tempi, l'\textit{user time} ed il \textit{system time} che sono
1909 quelli effettivamente mantenuti dal kernel per ciascun processo. Questi
1910 possono essere letti attraverso la funzione \funcd{times}, il cui prototipo è:
1911 \begin{prototype}{sys/times.h}{clock\_t times(struct tms *buf)}
1912   Legge in \param{buf} il valore corrente dei tempi di processore.
1913   
1914   \bodydesc{La funzione ritorna il numero di clock tick dall'avvio del sistema
1915     in caso di successo e -1 in caso di errore.}
1916 \end{prototype}
1917
1918 La funzione restituisce i valori di \textit{process time} del processo
1919 corrente in una struttura di tipo \struct{tms}, la cui definizione è riportata
1920 in fig.~\ref{fig:sys_tms_struct}. La struttura prevede quattro campi; i primi
1921 due, \var{tms\_utime} e \var{tms\_stime}, sono l'\textit{user time} ed il
1922 \textit{system time} del processo, così come definiti in
1923 sez.~\ref{sec:sys_unix_time}.
1924
1925 \begin{figure}[!htb]
1926   \footnotesize
1927   \centering
1928   \begin{minipage}[c]{15cm}
1929     \includestruct{listati/tms.h}
1930   \end{minipage} 
1931   \normalsize 
1932   \caption{La struttura \structd{tms} dei tempi di processore associati a un
1933     processo.} 
1934   \label{fig:sys_tms_struct}
1935 \end{figure}
1936
1937 Gli altri due campi mantengono rispettivamente la somma dell'\textit{user
1938   time} ed del \textit{system time} di tutti i processi figli che sono
1939 terminati; il kernel cioè somma in \var{tms\_cutime} il valore di
1940 \var{tms\_utime} e \var{tms\_cutime} per ciascun figlio del quale è stato
1941 ricevuto lo stato di terminazione, e lo stesso vale per \var{tms\_cstime}.
1942
1943 Si tenga conto che l'aggiornamento di \var{tms\_cutime} e \var{tms\_cstime}
1944 viene eseguito solo quando una chiamata a \func{wait} o \func{waitpid} è
1945 ritornata. Per questo motivo se un processo figlio termina prima di ricevere
1946 lo stato di terminazione di tutti i suoi figli, questi processi
1947 ``\textsl{nipoti}'' non verranno considerati nel calcolo di questi tempi.
1948
1949 \itindend{process~time}
1950
1951
1952 \subsection{Le funzioni per il \textit{calendar time}}
1953 \label{sec:sys_time_base}
1954
1955 \itindbeg{calendar~time}
1956
1957 Come anticipato in sez.~\ref{sec:sys_unix_time} il \textit{calendar time} è
1958 mantenuto dal kernel in una variabile di tipo \type{time\_t}, che usualmente
1959 corrisponde ad un tipo elementare (in Linux è definito come \ctyp{long int},
1960 che di norma corrisponde a 32 bit).  Il valore corrente del \textit{calendar
1961   time}, che indicheremo come \textsl{tempo di sistema}, può essere ottenuto
1962 con la funzione \funcd{time} che lo restituisce nel suddetto formato; il suo
1963 prototipo è:
1964 \begin{prototype}{time.h}{time\_t time(time\_t *t)}
1965   Legge il valore corrente del \textit{calendar time}.
1966   
1967   \bodydesc{La funzione ritorna il valore del \textit{calendar time} in caso
1968     di successo e -1 in caso di errore, che può essere solo \errval{EFAULT}.}
1969 \end{prototype}
1970 \noindent dove \param{t}, se non nullo, deve essere  l'indirizzo di una
1971 variabile su cui duplicare il valore di ritorno.
1972
1973 Analoga a \func{time} è la funzione \funcd{stime} che serve per effettuare
1974 l'operazione inversa, e cioè per impostare il tempo di sistema qualora questo
1975 sia necessario; il suo prototipo è:
1976 \begin{prototype}{time.h}{int stime(time\_t *t)}
1977   Imposta a \param{t} il valore corrente del \textit{calendar time}.
1978   
1979   \bodydesc{La funzione ritorna 0 in caso di successo e -1 in caso di errore,
1980     che può essere \errval{EFAULT} o \errval{EPERM}.}
1981 \end{prototype}
1982 \noindent dato che modificare l'ora ha un impatto su tutto il sistema 
1983 il cambiamento dell'orologio è una operazione privilegiata e questa funzione
1984 può essere usata solo da un processo con i privilegi di amministratore,
1985 altrimenti la chiamata fallirà con un errore di \errcode{EPERM}.
1986
1987 Data la scarsa precisione nell'uso di \type{time\_t} (che ha una risoluzione
1988 massima di un secondo) quando si devono effettuare operazioni sui tempi di
1989 norma l'uso delle funzioni precedenti è sconsigliato, ed esse sono di solito
1990 sostituite da \funcd{gettimeofday} e \funcd{settimeofday},\footnote{le due
1991   funzioni \func{time} e \func{stime} sono più antiche e derivano da SVr4,
1992   \func{gettimeofday} e \func{settimeofday} sono state introdotte da BSD, ed
1993   in BSD4.3 sono indicate come sostitute delle precedenti.} i cui prototipi
1994 sono:
1995 \begin{functions}
1996   \headdecl{sys/time.h}
1997   \headdecl{time.h}
1998   
1999   \funcdecl{int gettimeofday(struct timeval *tv, struct timezone *tz)} 
2000
2001   Legge il tempo corrente del sistema.
2002   
2003   \funcdecl{int settimeofday(const struct timeval *tv, const struct timezone
2004     *tz)}
2005   
2006   Imposta il tempo di sistema.
2007   
2008   \bodydesc{Entrambe le funzioni restituiscono 0 in caso di successo e -1 in
2009     caso di errore, nel qual caso \var{errno} può assumere i valori
2010     \errval{EINVAL} \errval{EFAULT} e per \func{settimeofday} anche
2011     \errval{EPERM}.}
2012 \end{functions}
2013
2014 Queste funzioni utilizzano una struttura di tipo \struct{timeval}, la cui
2015 definizione, insieme a quella della analoga \struct{timespec}, è riportata in
2016 fig.~\ref{fig:sys_timeval_struct}. Le \acr{glibc} infatti forniscono queste due
2017 rappresentazioni alternative del \textit{calendar time} che rispetto a
2018 \type{time\_t} consentono rispettivamente precisioni del microsecondo e del
2019 nanosecondo.\footnote{la precisione è solo teorica, la precisione reale della
2020   misura del tempo dell'orologio di sistema non dipende dall'uso di queste
2021   strutture.}
2022
2023 \begin{figure}[!htb]
2024   \footnotesize \centering
2025   \begin{minipage}[c]{15cm}
2026     \includestruct{listati/timeval.h}
2027   \end{minipage} 
2028   \normalsize 
2029   \caption{Le strutture \structd{timeval} e \structd{timespec} usate per una
2030     rappresentazione ad alta risoluzione del \textit{calendar time}.}
2031   \label{fig:sys_timeval_struct}
2032 \end{figure}
2033
2034 Come nel caso di \func{stime} anche \func{settimeofday} (la cosa continua a
2035 valere per qualunque funzione che vada a modificare l'orologio di sistema,
2036 quindi anche per quelle che tratteremo in seguito) può essere utilizzata solo
2037 da un processo coi privilegi di amministratore.
2038
2039 Il secondo argomento di entrambe le funzioni è una struttura
2040 \struct{timezone}, che storicamente veniva utilizzata per specificare appunto
2041 la \textit{time zone}, cioè l'insieme del fuso orario e delle convenzioni per
2042 l'ora legale che permettevano il passaggio dal tempo universale all'ora
2043 locale. Questo argomento oggi è obsoleto ed in Linux non è mai stato
2044 utilizzato; esso non è supportato né dalle vecchie \textsl{libc5}, né dalle
2045 \textsl{glibc}: pertanto quando si chiama questa funzione deve essere sempre
2046 impostato a \val{NULL}.
2047
2048 Modificare l'orologio di sistema con queste funzioni è comunque problematico,
2049 in quanto esse effettuano un cambiamento immediato. Questo può creare dei
2050 buchi o delle ripetizioni nello scorrere dell'orologio di sistema, con
2051 conseguenze indesiderate.  Ad esempio se si porta avanti l'orologio si possono
2052 perdere delle esecuzioni di \cmd{cron} programmate nell'intervallo che si è
2053 saltato. Oppure se si porta indietro l'orologio si possono eseguire due volte
2054 delle operazioni previste nell'intervallo di tempo che viene ripetuto. 
2055
2056 Per questo motivo la modalità più corretta per impostare l'ora è quella di
2057 usare la funzione \funcd{adjtime}, il cui prototipo è:
2058 \begin{prototype}{sys/time.h}
2059 {int adjtime(const struct timeval *delta, struct timeval *olddelta)} 
2060   
2061   Aggiusta del valore \param{delta} l'orologio di sistema.
2062   
2063   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2064     errore, nel qual caso \var{errno} assumerà il valore \errcode{EPERM}.}
2065 \end{prototype}
2066
2067 Questa funzione permette di avere un aggiustamento graduale del tempo di
2068 sistema in modo che esso sia sempre crescente in maniera monotona. Il valore
2069 di \param{delta} esprime il valore di cui si vuole spostare l'orologio; se è
2070 positivo l'orologio sarà accelerato per un certo tempo in modo da guadagnare
2071 il tempo richiesto, altrimenti sarà rallentato. Il secondo argomento viene
2072 usato, se non nullo, per ricevere il valore dell'ultimo aggiustamento
2073 effettuato.
2074
2075
2076 \begin{figure}[!htb]
2077   \footnotesize \centering
2078   \begin{minipage}[c]{15cm}
2079     \includestruct{listati/timex.h}
2080   \end{minipage} 
2081   \normalsize 
2082   \caption{La struttura \structd{timex} per il controllo dell'orologio di
2083     sistema.} 
2084   \label{fig:sys_timex_struct}
2085 \end{figure}
2086
2087 Linux poi prevede un'altra funzione, che consente un aggiustamento molto più
2088 dettagliato del tempo, permettendo ad esempio anche di modificare anche la
2089 velocità dell'orologio di sistema.  La funzione è \funcd{adjtimex} ed il suo
2090 prototipo è:
2091 \begin{prototype}{sys/timex.h}
2092 {int adjtimex(struct timex *buf)} 
2093   
2094   Aggiusta del valore \param{delta} l'orologio di sistema.
2095   
2096   \bodydesc{La funzione restituisce lo stato dell'orologio (un valore $>0$) in
2097     caso di successo e -1 in caso di errore, nel qual caso \var{errno}
2098     assumerà i valori \errval{EFAULT}, \errval{EINVAL} ed \errval{EPERM}.}
2099 \end{prototype}
2100
2101 La funzione richiede una struttura di tipo \struct{timex}, la cui definizione,
2102 così come effettuata in \file{sys/timex.h}, è riportata in
2103 fig.~\ref{fig:sys_timex_struct}. L'azione della funzione dipende dal valore del
2104 campo \var{mode}, che specifica quale parametro dell'orologio di sistema,
2105 specificato in un opportuno campo di \struct{timex}, deve essere impostato. Un
2106 valore nullo serve per leggere i parametri correnti; i valori diversi da zero
2107 devono essere specificati come OR binario delle costanti riportate in
2108 tab.~\ref{tab:sys_timex_mode}.
2109
2110 La funzione utilizza il meccanismo di David L. Mills, descritto
2111 nell'\href{http://www.ietf.org/rfc/rfc1305.txt}{RFC~1305}, che è alla base del
2112 protocollo NTP. La funzione è specifica di Linux e non deve essere usata se la
2113 portabilità è un requisito, le \acr{glibc} provvedono anche un suo omonimo
2114 \func{ntp\_adjtime}.  La trattazione completa di questa funzione necessita di
2115 una lettura approfondita del meccanismo descritto nell'RFC~1305, ci limitiamo
2116 a descrivere in tab.~\ref{tab:sys_timex_mode} i principali valori utilizzabili
2117 per il campo \var{mode}, un elenco più dettagliato del significato dei vari
2118 campi della struttura \struct{timex} può essere ritrovato in \cite{glibc}.
2119
2120 \begin{table}[!htb]
2121   \footnotesize
2122   \centering
2123   \begin{tabular}[c]{|l|c|p{8.5cm}|}
2124     \hline
2125     \textbf{Nome} & \textbf{Valore} & \textbf{Significato}\\
2126     \hline
2127     \hline
2128     \const{ADJ\_OFFSET}         & 0x0001 & Imposta la differenza fra il tempo
2129                                            reale e l'orologio di sistema: 
2130                                            deve essere indicata in microsecondi
2131                                            nel campo \var{offset} di
2132                                            \struct{timex}.\\ 
2133     \const{ADJ\_FREQUENCY}      & 0x0002 & Imposta la differenze in frequenza
2134                                            fra il tempo reale e l'orologio di
2135                                            sistema: deve essere indicata
2136                                            in parti per milione nel campo
2137                                            \var{frequency} di \struct{timex}.\\
2138     \const{ADJ\_MAXERROR}       & 0x0004 & Imposta il valore massimo 
2139                                            dell'errore
2140                                            sul tempo, espresso in microsecondi 
2141                                            nel campo \var{maxerror} di
2142                                            \struct{timex}.\\ 
2143     \const{ADJ\_ESTERROR}       & 0x0008 & Imposta la stima dell'errore
2144                                            sul tempo, espresso in microsecondi 
2145                                            nel campo \var{esterror} di
2146                                            \struct{timex}.\\
2147     \const{ADJ\_STATUS}         & 0x0010 & Imposta alcuni
2148                                            valori di stato interni usati dal
2149                                            sistema nella gestione
2150                                            dell'orologio specificati nel campo
2151                                            \var{status} di \struct{timex}.\\ 
2152     \const{ADJ\_TIMECONST}      & 0x0020 & Imposta la larghezza di banda del 
2153                                            PLL implementato dal kernel,
2154                                            specificato nel campo
2155                                            \var{constant} di \struct{timex}.\\ 
2156     \const{ADJ\_TICK}           & 0x4000 & Imposta il valore dei tick del timer
2157                                            in microsecondi, espresso nel campo
2158                                            \var{tick} di \struct{timex}.\\ 
2159     \const{ADJ\_OFFSET\_SINGLESHOT}&0x8001&Imposta uno spostamento una tantum 
2160                                            dell'orologio secondo il valore del
2161                                            campo \var{offset} simulando il
2162                                            comportamento di \func{adjtime}.\\ 
2163     \hline
2164   \end{tabular}
2165   \caption{Costanti per l'assegnazione del valore del campo \var{mode} della
2166     struttura \struct{timex}.} 
2167   \label{tab:sys_timex_mode}
2168 \end{table}
2169
2170 Il valore delle costanti per \var{mode} può essere anche espresso, secondo la
2171 sintassi specificata per la forma equivalente di questa funzione definita come
2172 \func{ntp\_adjtime}, utilizzando il prefisso \code{MOD} al posto di
2173 \code{ADJ}.
2174
2175 \begin{table}[htb]
2176   \footnotesize
2177   \centering
2178   \begin{tabular}[c]{|l|c|l|}
2179     \hline
2180     \textbf{Nome} & \textbf{Valore} & \textbf{Significato}\\
2181     \hline
2182     \hline
2183     \const{TIME\_OK}   & 0 & L'orologio è sincronizzato.\\ 
2184     \const{TIME\_INS}  & 1 & Insert leap second.\\ 
2185     \const{TIME\_DEL}  & 2 & Delete leap second.\\ 
2186     \const{TIME\_OOP}  & 3 & Leap second in progress.\\ 
2187     \const{TIME\_WAIT} & 4 & Leap second has occurred.\\ 
2188     \const{TIME\_BAD}  & 5 & L'orologio non è sincronizzato.\\ 
2189     \hline
2190   \end{tabular}
2191   \caption{Possibili valori di ritorno di \func{adjtimex}.} 
2192   \label{tab:sys_adjtimex_return}
2193 \end{table}
2194
2195 La funzione ritorna un valore positivo che esprime lo stato dell'orologio di
2196 sistema; questo può assumere i valori riportati in
2197 tab.~\ref{tab:sys_adjtimex_return}.  Un valore di -1 viene usato per riportare
2198 un errore; al solito se si cercherà di modificare l'orologio di sistema
2199 (specificando un \var{mode} diverso da zero) senza avere i privilegi di
2200 amministratore si otterrà un errore di \errcode{EPERM}.
2201
2202
2203
2204 \subsection{La gestione delle date.}
2205 \label{sec:sys_date}
2206
2207 Le funzioni viste al paragrafo precedente sono molto utili per trattare le
2208 operazioni elementari sui tempi, però le rappresentazioni del tempo ivi
2209 illustrate, se han senso per specificare un intervallo, non sono molto
2210 intuitive quando si deve esprimere un'ora o una data.  Per questo motivo è
2211 stata introdotta una ulteriore rappresentazione, detta \textit{broken-down
2212   time}, che permette appunto di \textsl{suddividere} il \textit{calendar
2213   time} usuale in ore, minuti, secondi, ecc.
2214
2215 Questo viene effettuato attraverso una opportuna struttura \struct{tm}, la cui
2216 definizione è riportata in fig.~\ref{fig:sys_tm_struct}, ed è in genere questa
2217 struttura che si utilizza quando si deve specificare un tempo a partire dai
2218 dati naturali (ora e data), dato che essa consente anche di trattare la
2219 gestione del fuso orario e dell'ora legale.\footnote{in realtà i due campi
2220   \var{tm\_gmtoff} e \var{tm\_zone} sono estensioni previste da BSD e dalle
2221   \acr{glibc}, che, quando è definita \macro{\_BSD\_SOURCE}, hanno la forma in
2222   fig.~\ref{fig:sys_tm_struct}.}
2223
2224 Le funzioni per la gestione del \textit{broken-down time} sono varie e vanno
2225 da quelle usate per convertire gli altri formati in questo, usando o meno
2226 l'ora locale o il tempo universale, a quelle per trasformare il valore di un
2227 tempo in una stringa contenente data ed ora, i loro prototipi sono:
2228 \begin{functions}
2229   \headdecl{time.h}
2230   \funcdecl{char *\funcd{asctime}(const struct tm *tm)} 
2231   Produce una stringa con data e ora partendo da un valore espresso in
2232   \textit{broken-down time}.
2233
2234   \funcdecl{char *\funcd{ctime}(const time\_t *timep)} 
2235   Produce una stringa con data e ora partendo da un valore espresso in
2236   in formato \type{time\_t}.
2237   
2238   \funcdecl{struct tm *\funcd{gmtime}(const time\_t *timep)} 
2239   Converte il \textit{calendar time} dato in formato \type{time\_t} in un
2240   \textit{broken-down time} espresso in UTC.
2241
2242   \funcdecl{struct tm *\funcd{localtime}(const time\_t *timep)} 
2243   Converte il \textit{calendar time} dato in formato \type{time\_t} in un
2244   \textit{broken-down time} espresso nell'ora locale.
2245
2246   \funcdecl{time\_t \funcd{mktime}(struct tm *tm)}   
2247   Converte il \textit{broken-down time} in formato \type{time\_t}.
2248   
2249   \bodydesc{Tutte le funzioni restituiscono un puntatore al risultato in caso
2250   di successo e \val{NULL} in caso di errore, tranne che \func{mktime} che
2251   restituisce direttamente il valore o -1 in caso di errore.}
2252 \end{functions}
2253
2254 \begin{figure}[!htb]
2255   \footnotesize \centering
2256   \begin{minipage}[c]{15cm}
2257     \includestruct{listati/tm.h}
2258   \end{minipage} 
2259   \normalsize 
2260   \caption{La struttura \structd{tm} per una rappresentazione del tempo in
2261     termini di ora, minuti, secondi, ecc.}
2262   \label{fig:sys_tm_struct}
2263 \end{figure}
2264
2265
2266
2267 Le prime due funzioni, \func{asctime} e \func{ctime} servono per poter
2268 stampare in forma leggibile un tempo; esse restituiscono il puntatore ad una
2269 stringa, allocata staticamente, nella forma:
2270 \begin{verbatim}
2271 "Wed Jun 30 21:49:08 1993\n"
2272 \end{verbatim}
2273 e impostano anche la variabile \var{tzname} con l'informazione della
2274 \textit{time zone} corrente; \func{ctime} è banalmente definita in termini di
2275 \func{asctime} come \code{asctime(localtime(t)}. Dato che l'uso di una stringa
2276 statica rende le funzioni non rientranti POSIX.1c e SUSv2 prevedono due
2277 sostitute rientranti, il cui nome è al solito ottenuto aggiungendo un
2278 \code{\_r}, che prendono un secondo argomento \code{char *buf}, in cui
2279 l'utente deve specificare il buffer su cui la stringa deve essere copiata
2280 (deve essere di almeno 26 caratteri).
2281
2282 Le altre tre funzioni, \func{gmtime}, \func{localtime} e \func{mktime} servono
2283 per convertire il tempo dal formato \type{time\_t} a quello di \struct{tm} e
2284 viceversa; \func{gmtime} effettua la conversione usando il tempo coordinato
2285 universale (UTC), cioè l'ora di Greenwich; mentre \func{localtime} usa l'ora
2286 locale; \func{mktime} esegue la conversione inversa.  
2287
2288 Anche in questo caso le prime due funzioni restituiscono l'indirizzo di una
2289 struttura allocata staticamente, per questo sono state definite anche altre
2290 due versioni rientranti (con la solita estensione \code{\_r}), che prevedono
2291 un secondo argomento \code{struct tm *result}, fornito dal chiamante, che deve
2292 preallocare la struttura su cui sarà restituita la conversione.
2293
2294 Come mostrato in fig.~\ref{fig:sys_tm_struct} il \textit{broken-down time}
2295 permette di tenere conto anche della differenza fra tempo universale e ora
2296 locale, compresa l'eventuale ora legale. Questo viene fatto attraverso le tre
2297 variabili globali mostrate in fig.~\ref{fig:sys_tzname}, cui si accede quando
2298 si include \file{time.h}. Queste variabili vengono impostate quando si chiama
2299 una delle precedenti funzioni di conversione, oppure invocando direttamente la
2300 funzione \funcd{tzset}, il cui prototipo è:
2301 \begin{prototype}{sys/timex.h}
2302 {void tzset(void)} 
2303   
2304   Imposta le variabili globali della \textit{time zone}.
2305   
2306   \bodydesc{La funzione non ritorna niente e non dà errori.}
2307 \end{prototype}
2308
2309 La funzione inizializza le variabili di fig.~\ref{fig:sys_tzname} a partire dal
2310 valore della variabile di ambiente \const{TZ}, se quest'ultima non è definita
2311 verrà usato il file \conffile{/etc/localtime}.
2312
2313 \begin{figure}[!htb]
2314   \footnotesize
2315   \centering
2316   \begin{minipage}[c]{15cm}
2317     \includestruct{listati/time_zone_var.c}
2318   \end{minipage} 
2319   \normalsize 
2320   \caption{Le variabili globali usate per la gestione delle \textit{time
2321       zone}.}  
2322   \label{fig:sys_tzname}
2323 \end{figure}
2324
2325 La variabile \var{tzname} contiene due stringhe, che indicano i due nomi
2326 standard della \textit{time zone} corrente. La prima è il nome per l'ora
2327 solare, la seconda per l'ora legale.\footnote{anche se sono indicati come
2328   \code{char *} non è il caso di modificare queste stringhe.} La variabile
2329 \var{timezone} indica la differenza di fuso orario in secondi, mentre
2330 \var{daylight} indica se è attiva o meno l'ora legale. 
2331
2332 Benché la funzione \func{asctime} fornisca la modalità più immediata per
2333 stampare un tempo o una data, la flessibilità non fa parte delle sue
2334 caratteristiche; quando si vuole poter stampare solo una parte (l'ora, o il
2335 giorno) di un tempo si può ricorrere alla più sofisticata \funcd{strftime},
2336 il cui prototipo è:
2337 \begin{prototype}{time.h}
2338 {size\_t strftime(char *s, size\_t max, const char *format, 
2339   const struct tm *tm)}
2340   
2341 Stampa il tempo \param{tm} nella stringa \param{s} secondo il formato
2342 \param{format}.
2343   
2344   \bodydesc{La funzione ritorna il numero di caratteri stampati in \param{s},
2345   altrimenti restituisce 0.}
2346 \end{prototype}
2347
2348 La funzione converte opportunamente il tempo \param{tm} in una stringa di
2349 testo da salvare in \param{s}, purché essa sia di dimensione, indicata da
2350 \param{size}, sufficiente. I caratteri generati dalla funzione vengono
2351 restituiti come valore di ritorno, ma non tengono conto del terminatore
2352 finale, che invece viene considerato nel computo della dimensione; se
2353 quest'ultima è eccessiva viene restituito 0 e lo stato di \param{s} è
2354 indefinito.
2355
2356 \begin{table}[htb]
2357   \footnotesize
2358   \centering
2359   \begin{tabular}[c]{|c|l|p{6cm}|}
2360     \hline
2361     \textbf{Modificatore} & \textbf{Esempio} & \textbf{Significato}\\
2362     \hline
2363     \hline
2364     \var{\%a}&\texttt{Wed}        & Nome del giorno, abbreviato.\\ 
2365     \var{\%A}&\texttt{Wednesday}  & Nome del giorno, completo.\\ 
2366     \var{\%b}&\texttt{Apr}        & Nome del mese, abbreviato.\\ 
2367     \var{\%B}&\texttt{April}      & Nome del mese, completo.\\ 
2368     \var{\%c}&\texttt{Wed Apr 24 18:40:50 2002}& Data e ora.\\ 
2369     \var{\%d}&\texttt{24}         & Giorno del mese.\\ 
2370     \var{\%H}&\texttt{18}         & Ora del giorno, da 0 a 24.\\ 
2371     \var{\%I}&\texttt{06}         & Ora del giorno, da 0 a 12.\\ 
2372     \var{\%j}&\texttt{114}        & Giorno dell'anno.\\ 
2373     \var{\%m}&\texttt{04}         & Mese dell'anno.\\ 
2374     \var{\%M}&\texttt{40}         & Minuto.\\ 
2375     \var{\%p}&\texttt{PM}         & AM/PM.\\ 
2376     \var{\%S}&\texttt{50}         & Secondo.\\ 
2377     \var{\%U}&\texttt{16}         & Settimana dell'anno (partendo dalla
2378                                     domenica).\\ 
2379     \var{\%w}&\texttt{3}          & Giorno della settimana.  \\ 
2380     \var{\%W}&\texttt{16}         & Settimana dell'anno (partendo dal
2381                                     lunedì).\\ 
2382     \var{\%x}&\texttt{04/24/02}   & La data.\\ 
2383     \var{\%X}&\texttt{18:40:50}   & L'ora.\\ 
2384     \var{\%y}&\texttt{02}         & Anno nel secolo.\\ 
2385     \var{\%Y}&\texttt{2002}       & Anno.\\ 
2386     \var{\%Z}&\texttt{CEST}       & Nome della \textit{timezone}.\\ 
2387     \var{\%\%}&\texttt{\%}        & Il carattere \%.\\ 
2388     \hline
2389   \end{tabular}
2390   \caption{Valori previsti dallo standard ANSI C per modificatore della
2391     stringa di formato di \func{strftime}.}  
2392   \label{tab:sys_strftime_format}
2393 \end{table}
2394
2395 Il risultato della funzione è controllato dalla stringa di formato
2396 \param{format}, tutti i caratteri restano invariati eccetto \texttt{\%} che
2397 viene utilizzato come modificatore; alcuni\footnote{per la precisione quelli
2398   definiti dallo standard ANSI C, che sono anche quelli riportati da POSIX.1;
2399   le \acr{glibc} provvedono tutte le estensioni introdotte da POSIX.2 per il
2400   comando \cmd{date}, i valori introdotti da SVID3 e ulteriori estensioni GNU;
2401   l'elenco completo dei possibili valori è riportato nella pagina di manuale
2402   della funzione.} dei possibili valori che esso può assumere sono riportati
2403 in tab.~\ref{tab:sys_strftime_format}. La funzione tiene conto anche della
2404 presenza di una localizzazione per stampare in maniera adeguata i vari nomi.
2405
2406 \itindend{calendar~time}
2407
2408
2409 \section{La gestione degli errori}
2410 \label{sec:sys_errors}
2411
2412 In questa sezione esamineremo le caratteristiche principali della gestione
2413 degli errori in un sistema unix-like. Infatti a parte il caso particolare di
2414 alcuni segnali (che tratteremo in cap.~\ref{cha:signals}) in un sistema
2415 unix-like il kernel non avvisa mai direttamente un processo dell'occorrenza di
2416 un errore nell'esecuzione di una funzione, ma di norma questo viene riportato
2417 semplicemente usando un opportuno valore di ritorno della funzione invocata.
2418 Inoltre il sistema di classificazione degli errori è basato sull'architettura
2419 a processi, e presenta una serie di problemi nel caso lo si debba usare con i
2420 thread.
2421
2422
2423 \subsection{La variabile \var{errno}}
2424 \label{sec:sys_errno}
2425
2426 Quasi tutte le funzioni delle librerie del C sono in grado di individuare e
2427 riportare condizioni di errore, ed è una norma fondamentale di buona
2428 programmazione controllare \textbf{sempre} che le funzioni chiamate si siano
2429 concluse correttamente.
2430
2431 In genere le funzioni di libreria usano un valore speciale per indicare che
2432 c'è stato un errore. Di solito questo valore è -1 o un puntatore nullo o la
2433 costante \val{EOF} (a seconda della funzione); ma questo valore segnala solo
2434 che c'è stato un errore, non il tipo di errore.
2435
2436 Per riportare il tipo di errore il sistema usa la variabile globale
2437 \var{errno},\footnote{l'uso di una variabile globale può comportare alcuni
2438   problemi (ad esempio nel caso dei thread) ma lo standard ISO C consente
2439   anche di definire \var{errno} come un \textit{modifiable lvalue}, quindi si
2440   può anche usare una macro, e questo è infatti il modo usato da Linux per
2441   renderla locale ai singoli thread.} definita nell'header \file{errno.h}; la
2442 variabile è in genere definita come \direct{volatile} dato che può essere
2443 cambiata in modo asincrono da un segnale (si veda sez.~\ref{sec:sig_sigchld}
2444 per un esempio, ricordando quanto trattato in sez.~\ref{sec:proc_race_cond}),
2445 ma dato che un gestore di segnale scritto bene salva e ripristina il valore
2446 della variabile, di questo non è necessario preoccuparsi nella programmazione
2447 normale.
2448
2449 I valori che può assumere \var{errno} sono riportati in app.~\ref{cha:errors},
2450 nell'header \file{errno.h} sono anche definiti i nomi simbolici per le
2451 costanti numeriche che identificano i vari errori; essi iniziano tutti per
2452 \val{E} e si possono considerare come nomi riservati. In seguito faremo
2453 sempre riferimento a tali valori, quando descriveremo i possibili errori
2454 restituiti dalle funzioni. Il programma di esempio \cmd{errcode} stampa il
2455 codice relativo ad un valore numerico con l'opzione \cmd{-l}.
2456
2457 Il valore di \var{errno} viene sempre impostato a zero all'avvio di un
2458 programma, gran parte delle funzioni di libreria impostano \var{errno} ad un
2459 valore diverso da zero in caso di errore. Il valore è invece indefinito in
2460 caso di successo, perché anche se una funzione ha successo, può chiamarne
2461 altre al suo interno che falliscono, modificando così \var{errno}.
2462
2463 Pertanto un valore non nullo di \var{errno} non è sintomo di errore (potrebbe
2464 essere il risultato di un errore precedente) e non lo si può usare per
2465 determinare quando o se una chiamata a funzione è fallita.  La procedura da
2466 seguire è sempre quella di controllare \var{errno} immediatamente dopo aver
2467 verificato il fallimento della funzione attraverso il suo codice di ritorno.
2468
2469
2470 \subsection{Le funzioni \func{strerror} e \func{perror}}
2471 \label{sec:sys_strerror}
2472
2473 Benché gli errori siano identificati univocamente dal valore numerico di
2474 \var{errno} le librerie provvedono alcune funzioni e variabili utili per
2475 riportare in opportuni messaggi le condizioni di errore verificatesi.  La
2476 prima funzione che si può usare per ricavare i messaggi di errore è
2477 \funcd{strerror}, il cui prototipo è:
2478 \begin{prototype}{string.h}{char *strerror(int errnum)} 
2479   Restituisce una stringa con il messaggio di errore relativo ad
2480   \param{errnum}.
2481   
2482   \bodydesc{La funzione ritorna il puntatore ad una stringa di errore.}
2483 \end{prototype}
2484
2485
2486 La funzione ritorna il puntatore alla stringa contenente il messaggio di
2487 errore corrispondente al valore di \param{errnum}, se questo non è un valore
2488 valido verrà comunque restituita una stringa valida contenente un messaggio
2489 che dice che l'errore è sconosciuto, e \var{errno} verrà modificata assumendo
2490 il valore \errval{EINVAL}.
2491
2492 In generale \func{strerror} viene usata passando \var{errno} come argomento,
2493 ed il valore di quest'ultima non verrà modificato. La funzione inoltre tiene
2494 conto del valore della variabile di ambiente \val{LC\_MESSAGES} per usare le
2495 appropriate traduzioni dei messaggi d'errore nella localizzazione presente.
2496
2497 La funzione utilizza una stringa statica che non deve essere modificata dal
2498 programma; essa è utilizzabile solo fino ad una chiamata successiva a
2499 \func{strerror} o \func{perror}, nessun'altra funzione di libreria tocca
2500 questa stringa. In ogni caso l'uso di una stringa statica rende la funzione
2501 non rientrante, per cui nel caso si usino i thread le librerie
2502 forniscono\footnote{questa funzione è la versione prevista dalle \acr{glibc},
2503   ed effettivamente definita in \file{string.h}, ne esiste una analoga nello
2504   standard SUSv3 (quella riportata dalla pagina di manuale), che restituisce
2505   \code{int} al posto di \code{char *}, e che tronca la stringa restituita a
2506   \param{size}.}  una apposita versione rientrante \func{strerror\_r}, il cui
2507 prototipo è:
2508 \begin{prototype}{string.h}
2509   {char * strerror\_r(int errnum, char *buf, size\_t size)} 
2510   
2511   Restituisce una stringa con il messaggio di errore relativo ad
2512   \param{errnum}.
2513  
2514   \bodydesc{La funzione restituisce l'indirizzo del messaggio in caso di
2515     successo e \val{NULL} in caso di errore; nel qual caso \var{errno}
2516     assumerà i valori:
2517   \begin{errlist}
2518   \item[\errcode{EINVAL}] si è specificato un valore di \param{errnum} non
2519     valido.
2520   \item[\errcode{ERANGE}] la lunghezza di \param{buf} è insufficiente a
2521     contenere la stringa di errore.
2522   \end{errlist}}
2523 \end{prototype}
2524 \noindent
2525
2526 La funzione è analoga a \func{strerror} ma restituisce la stringa di errore
2527 nel buffer \param{buf} che il singolo thread deve allocare autonomamente per
2528 evitare i problemi connessi alla condivisione del buffer statico. Il messaggio
2529 è copiato fino alla dimensione massima del buffer, specificata dall'argomento
2530 \param{size}, che deve comprendere pure il carattere di terminazione;
2531 altrimenti la stringa viene troncata.
2532
2533 Una seconda funzione usata per riportare i codici di errore in maniera
2534 automatizzata sullo standard error (vedi sez.~\ref{sec:file_std_descr}) è
2535 \funcd{perror}, il cui prototipo è:
2536 \begin{prototype}{stdio.h}{void perror(const char *message)} 
2537   Stampa il messaggio di errore relativo al valore corrente di \var{errno}
2538   sullo standard error; preceduto dalla stringa \param{message}.
2539 \end{prototype}
2540
2541 I messaggi di errore stampati sono gli stessi di \func{strerror}, (riportati
2542 in app.~\ref{cha:errors}), e, usando il valore corrente di \var{errno}, si
2543 riferiscono all'ultimo errore avvenuto. La stringa specificata con
2544 \param{message} viene stampato prima del messaggio d'errore, seguita dai due
2545 punti e da uno spazio, il messaggio è terminato con un a capo.
2546
2547 Il messaggio può essere riportato anche usando le due variabili globali:
2548 \includecodesnip{listati/errlist.c} 
2549 dichiarate in \file{errno.h}. La prima contiene i puntatori alle stringhe di
2550 errore indicizzati da \var{errno}; la seconda esprime il valore più alto per
2551 un codice di errore, l'utilizzo di questa stringa è sostanzialmente
2552 equivalente a quello di \func{strerror}.
2553
2554 \begin{figure}[!htb]
2555   \footnotesize \centering
2556   \begin{minipage}[c]{15cm}
2557     \includecodesample{listati/errcode_mess.c}
2558   \end{minipage}
2559   \normalsize
2560   \caption{Codice per la stampa del messaggio di errore standard.}
2561   \label{fig:sys_err_mess}
2562 \end{figure}
2563
2564 In fig.~\ref{fig:sys_err_mess} è riportata la sezione attinente del codice del
2565 programma \cmd{errcode}, che può essere usato per stampare i messaggi di
2566 errore e le costanti usate per identificare i singoli errori; il sorgente
2567 completo del programma è allegato nel file \file{ErrCode.c} e contiene pure la
2568 gestione delle opzioni e tutte le definizioni necessarie ad associare il
2569 valore numerico alla costante simbolica. In particolare si è riportata la
2570 sezione che converte la stringa passata come argomento in un intero
2571 (\texttt{\small 1--2}), controllando con i valori di ritorno di \func{strtol}
2572 che la conversione sia avvenuta correttamente (\texttt{\small 4--10}), e poi
2573 stampa, a seconda dell'opzione scelta il messaggio di errore (\texttt{\small
2574   11--14}) o la macro (\texttt{\small 15--17}) associate a quel codice.
2575
2576
2577
2578 \subsection{Alcune estensioni GNU}
2579 \label{sec:sys_err_GNU}
2580
2581 Le precedenti funzioni sono quelle definite ed usate nei vari standard; le
2582 \acr{glibc} hanno però introdotto una serie di estensioni ``GNU'' che
2583 forniscono alcune funzionalità aggiuntive per una gestione degli errori
2584 semplificata e più efficiente. 
2585
2586 La prima estensione consiste in due variabili, \code{char *
2587   program\_invocation\_name} e \code{char * program\_invocation\_short\_name}
2588 servono per ricavare il nome del programma; queste sono utili quando si deve
2589 aggiungere il nome del programma (cosa comune quando si ha un programma che
2590 non viene lanciato da linea di comando e salva gli errori in un file di log)
2591 al messaggio d'errore. La prima contiene il nome usato per lanciare il
2592 programma (ed è equivalente ad \code{argv[0]}); la seconda mantiene solo il
2593 nome del programma (senza eventuali directory in testa).
2594
2595 Uno dei problemi che si hanno con l'uso di \func{perror} è che non c'è
2596 flessibilità su quello che si può aggiungere al messaggio di errore, che può
2597 essere solo una stringa. In molte occasioni invece serve poter scrivere dei
2598 messaggi con maggiore informazione; ad esempio negli standard di
2599 programmazione GNU si richiede che ogni messaggio di errore sia preceduto dal
2600 nome del programma, ed in generale si può voler stampare il contenuto di
2601 qualche variabile; per questo le \acr{glibc} definiscono la funzione
2602 \funcd{error}, il cui prototipo è:
2603 \begin{prototype}{stdio.h}
2604 {void error(int status, int errnum, const char *format, ...)} 
2605
2606 Stampa un messaggio di errore formattato.
2607
2608 \bodydesc{La funzione non restituisce nulla e non riporta errori.}
2609 \end{prototype}
2610
2611 La funzione fa parte delle estensioni GNU per la gestione degli errori,
2612 l'argomento \param{format} prende la stessa sintassi di \func{printf}, ed i
2613 relativi argomenti devono essere forniti allo stesso modo, mentre
2614 \param{errnum} indica l'errore che si vuole segnalare (non viene quindi usato
2615 il valore corrente di \var{errno}); la funzione stampa sullo standard error il
2616 nome del programma, come indicato dalla variabile globale \var{program\_name},
2617 seguito da due punti ed uno spazio, poi dalla stringa generata da
2618 \param{format} e dagli argomenti seguenti, seguita da due punti ed uno spazio
2619 infine il messaggio di errore relativo ad \param{errnum}, il tutto è terminato
2620 da un a capo.
2621
2622 Il comportamento della funzione può essere ulteriormente controllato se si
2623 definisce una variabile \var{error\_print\_progname} come puntatore ad una
2624 funzione \ctyp{void} che restituisce \ctyp{void} che si incarichi di stampare
2625 il nome del programma. 
2626
2627 L'argomento \param{status} può essere usato per terminare direttamente il
2628 programma in caso di errore, nel qual caso \func{error} dopo la stampa del
2629 messaggio di errore chiama \func{exit} con questo stato di uscita. Se invece
2630 il valore è nullo \func{error} ritorna normalmente ma viene incrementata
2631 un'altra variabile globale, \var{error\_message\_count}, che tiene conto di
2632 quanti errori ci sono stati.
2633
2634 Un'altra funzione per la stampa degli errori, ancora più sofisticata, che
2635 prende due argomenti aggiuntivi per indicare linea e file su cui è avvenuto
2636 l'errore è \funcd{error\_at\_line}; il suo prototipo è:
2637 \begin{prototype}{stdio.h}
2638 {void error\_at\_line(int status, int errnum, const char *fname, 
2639   unsigned int lineno, const char *format, ...)} 
2640
2641 Stampa un messaggio di errore formattato.
2642
2643 \bodydesc{La funzione non restituisce nulla e non riporta errori.}
2644 \end{prototype}
2645 \noindent ed il suo comportamento è identico a quello di \func{error} se non
2646 per il fatto che, separati con il solito due punti-spazio, vengono inseriti un
2647 nome di file indicato da \param{fname} ed un numero di linea subito dopo la
2648 stampa del nome del programma. Inoltre essa usa un'altra variabile globale,
2649 \var{error\_one\_per\_line}, che impostata ad un valore diverso da zero fa si
2650 che errori relativi alla stessa linea non vengano ripetuti.
2651
2652
2653 % LocalWords:  filesystem like kernel saved header limits sysconf sez tab float
2654 % LocalWords:  FOPEN stdio MB LEN CHAR char UCHAR unsigned SCHAR MIN signed INT
2655 % LocalWords:  SHRT short USHRT int UINT LONG long ULONG LLONG ULLONG POSIX ARG
2656 % LocalWords:  Stevens exec CHILD STREAM stream TZNAME timezone NGROUPS SSIZE
2657 % LocalWords:  ssize LISTIO JOB CONTROL job control IDS VERSION YYYYMML bits bc
2658 % LocalWords:  dall'header posix lim nell'header glibc run unistd name errno SC
2659 % LocalWords:  NGROUP CLK TCK clock tick process PATH pathname BUF CANON path
2660 % LocalWords:  pathconf fpathconf descriptor fd uname sys struct utsname info
2661 % LocalWords:  EFAULT fig SOURCE NUL LENGTH DOMAIN NMLN UTSLEN system call proc
2662 % LocalWords:  domainname sysctl BSD nlen void oldval size oldlenp newval EPERM
2663 % LocalWords:  newlen ENOTDIR EINVAL ENOMEM linux l'array oldvalue paging stack
2664 % LocalWords:  TCP shell Documentation ostype hostname osrelease version mount
2665 % LocalWords:  const source filesystemtype mountflags ENODEV ENOTBLK block read
2666 % LocalWords:  device EBUSY only superblock point EACCES NODEV ENXIO major xC
2667 % LocalWords:  number EMFILE dummy ENAMETOOLONG ENOENT ELOOP virtual devfs MGC
2668 % LocalWords:  magic MSK RDONLY NOSUID suid sgid NOEXEC SYNCHRONOUS REMOUNT MNT
2669 % LocalWords:  MANDLOCK mandatory locking WRITE APPEND append IMMUTABLE NOATIME
2670 % LocalWords:  access NODIRATIME BIND MOVE umount flags FORCE statfs fstatfs ut
2671 % LocalWords:  buf ENOSYS EIO EBADF type fstab mntent home shadow username uid
2672 % LocalWords:  passwd PAM Pluggable Authentication Method Service Switch pwd ru
2673 % LocalWords:  getpwuid getpwnam NULL buflen result ERANGE getgrnam getgrgid AS
2674 % LocalWords:  grp group gid SVID fgetpwent putpwent getpwent setpwent endpwent
2675 % LocalWords:  fgetgrent putgrent getgrent setgrent endgrent accounting init HZ
2676 % LocalWords:  runlevel Hierarchy logout setutent endutent utmpname utmp paths
2677 % LocalWords:  WTMP getutent getutid getutline pututline LVL OLD DEAD EMPTY dev
2678 % LocalWords:  line libc XPG utmpx getutxent getutxid getutxline pututxline who
2679 % LocalWords:  setutxent endutxent wmtp updwtmp logwtmp wtmp host rusage utime
2680 % LocalWords:  minflt majflt nswap fault swap timeval wait getrusage usage SELF
2681 % LocalWords:  CHILDREN current limit soft RLIMIT Address brk mremap mmap dump
2682 % LocalWords:  SIGSEGV SIGXCPU SIGKILL sbrk FSIZE SIGXFSZ EFBIG LOCKS lock dup
2683 % LocalWords:  MEMLOCK NOFILE NPROC fork EAGAIN SIGPENDING sigqueue kill RSS tv
2684 % LocalWords:  resource getrlimit setrlimit rlimit rlim INFINITY capabilities
2685 % LocalWords:  capability CAP l'I Sun Sparc PAGESIZE getpagesize SVr SUSv get
2686 % LocalWords:  phys pages avphys NPROCESSORS CONF ONLN getloadavg stdlib double
2687 % LocalWords:  loadavg nelem scheduler CONFIG ACCT acct filename EACCESS EUSER
2688 % LocalWords:  ENFILE EROFS PACCT AcctCtrl cap calendar UTC Jan the Epoch GMT
2689 % LocalWords:  Greenwich Mean l'UTC timer CLOCKS SEC cron wall elapsed times tz
2690 % LocalWords:  tms dell' cutime cstime waitpid gettimeofday settimeofday timex
2691 % LocalWords:  timespec adjtime olddelta adjtimex David Mills nell' RFC NTP ntp
2692 % LocalWords:  nell'RFC ADJ FREQUENCY frequency MAXERROR maxerror ESTERROR PLL
2693 % LocalWords:  esterror TIMECONST constant SINGLESHOT MOD INS insert leap OOP
2694 % LocalWords:  second delete progress has occurred BAD broken tm gmtoff asctime
2695 % LocalWords:  ctime timep gmtime localtime mktime tzname tzset daylight format
2696 % LocalWords:  strftime thread EOF modifiable lvalue app errcode strerror LC at
2697 % LocalWords:  perror string errnum MESSAGES error message ErrCode strtol log
2698 % LocalWords:  program invocation argv printf print progname exit count fname
2699 % LocalWords:  lineno one standardese Di
2700
2701
2702
2703 %%% Local Variables: 
2704 %%% mode: latex
2705 %%% TeX-master: "gapil"
2706 %%% End: