Reindicizzazioni varie e riscrittura totale della sezione sul
[gapil.git] / session.tex
1 %% session.tex
2 %%
3 %% Copyright (C) 2000-2011 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{Interfaccia utente: terminali e sessioni di lavoro}
13 \label{cha:session}
14
15
16 A lungo l'unico modo per interagire con sistema di tipo Unix è stato tramite
17 l'interfaccia dei terminali, ma anche oggi, nonostante la presenza di diverse
18 interfacce grafiche, essi continuano ad essere estensivamente usati per il
19 loro stretto legame la linea di comando.
20
21 Nella prima parte esamineremo i concetti base in cui si articola l'interfaccia
22 dei terminali, a partire dal sistema del \textit{job control} e delle sessioni
23 di lavoro, toccando infine anche le problematiche dell'interazione con
24 programmi non interattivi. Nella seconda parte tratteremo il funzionamento
25 dell'I/O su terminale, e delle varie peculiarità che esso viene ad assumere
26 nell'uso come interfaccia di accesso al sistema da parte degli utenti. La
27 terza parte coprirà le tematiche relative alla creazione e gestione dei
28 terminali virtuali, che consentono di replicare via software l'interfaccia dei
29 terminali.
30
31
32
33 \section{L'interazione con i terminali}
34 \label{sec:sess_job_control}
35
36 I terminali sono l'interfaccia con cui fin dalla loro nascita i sistemi
37 unix-like hanno gestito l'interazione con gli utenti, tramite quella riga di
38 comando che li caratterizza da sempre. Ma essi hanno anche una rilevanza
39 particolare perché quella dei terminali è l'unica interfaccia hardware usata
40 dal kernel per comunicare direttamente con gli utenti, con la cosiddetta
41 \textit{console} di sistema, senza dover passare per un programma.
42
43 Originariamente si trattava di dispositivi specifici (i terminali seriali, se
44 non addirittura le telescriventi). Oggi questa interfaccia viene in genere
45 emulata o tramite programmi o con le cosiddette console virtuali associate a
46 monitor e tastiera, ma esiste sempre la possibilità di associarla direttamente
47 ad alcuni dispositivi, come eventuali linee seriali.\footnote{ed in certi
48   casi, come buona parte dei dispositivi embedded su cui gira Linux (come
49   router, access point, ecc.) questa resta anche l'unica opzione per una
50   \textit{console} di sistema.}
51
52
53 \subsection{Il \textit{job control}}
54 \label{sec:sess_job_control_overview}
55
56 Viene comunemente chiamato \textit{job control} quell'insieme di funzionalità
57 il cui scopo è quello di permettere ad un utente di poter sfruttare le
58 capacità multitasking di un sistema Unix per eseguire in contemporanea più
59 processi, pur potendo accedere, di solito, ad un solo terminale,\footnote{con
60   le interfacce grafiche di \textit{X Window} e con i terminali virtuali via
61   rete tutto questo non è più vero, dato che si può accedere a molti terminali
62   in contemporanea da una singola postazione di lavoro, ma il sistema è nato
63   prima dell'esistenza di tutto ciò.} avendo cioè un solo punto in cui si può
64 avere accesso all'input ed all'output degli stessi.
65
66 Il \textit{job control} è una caratteristica opzionale, introdotta in BSD
67 negli anni '80, e successivamente standardizzata da POSIX.1; la sua
68 disponibilità nel sistema è verificabile attraverso il controllo della macro
69 \macro{\_POSIX\_JOB\_CONTROL}. In generale il \textit{job control} richiede il
70 supporto sia da parte della shell (quasi tutte ormai lo hanno), che da parte
71 del kernel; in particolare il kernel deve assicurare sia la presenza di un
72 driver per i terminali abilitato al \textit{job control} che quella dei
73 relativi segnali illustrati in sez.~\ref{sec:sig_job_control}. 
74
75 In un sistema che supporta il \textit{job control}, una volta completato il
76 login, l'utente avrà a disposizione una shell dalla quale eseguire i comandi e
77 potrà iniziare quella che viene chiamata una \textsl{sessione}, che riunisce
78 (vedi sez.~\ref{sec:sess_proc_group}) tutti i processi eseguiti all'interno
79 dello stesso login (esamineremo tutto il processo in dettaglio in
80 sez.~\ref{sec:sess_login}).
81
82 Siccome la shell è collegata ad un solo terminale, che viene usualmente
83 chiamato \textsl{terminale di controllo}, (vedi sez.~\ref{sec:sess_ctrl_term})
84 un solo comando alla volta (quello che viene detto in \textit{foreground} o in
85 \textsl{primo piano}), potrà scrivere e leggere dal terminale. La shell però
86 può eseguire, aggiungendo una ``\cmd{\&}'' alla fine del comando, più
87 programmi in contemporanea, mandandoli in \textit{background} (o \textsl{sullo
88   sfondo}), nel qual caso essi saranno eseguiti senza essere collegati al
89 terminale.
90
91 Si noti come si sia parlato di comandi e non di programmi o processi; fra le
92 funzionalità della shell infatti c'è anche quella di consentire di concatenare
93 più programmi in una sola riga di comando con le pipe, ed in tal caso verranno
94 eseguiti più programmi. Inoltre, anche quando si invoca un singolo programma,
95 questo potrà sempre lanciare eventuali sotto-processi per eseguire dei compiti
96 specifici.
97
98 Per questo l'esecuzione di un comando può originare più di un processo; quindi
99 nella gestione del \textit{job control} non si può far riferimento ai singoli
100 processi.  Per questo il kernel prevede la possibilità di raggruppare più
101 processi in un cosiddetto \itindex{process~group} \textit{process group}
102 (detto anche \textsl{raggruppamento di processi}, vedi
103 sez.~\ref{sec:sess_proc_group}). Deve essere cura della shell far sì che tutti
104 i processi che originano da una stessa riga di comando appartengano allo
105 stesso raggruppamento di processi, in modo che le varie funzioni di controllo,
106 ed i segnali inviati dal terminale, possano fare riferimento ad esso.
107
108 In generale all'interno di una sessione avremo un eventuale (può non esserci)
109 \itindex{process~group} \textit{process group} in \textit{foreground}, che
110 riunisce i processi che possono accedere al terminale, e più
111 \itindex{process~group} \textit{process group} in \textit{background}, che non
112 possono accedervi. Il \textit{job control} prevede che quando un processo
113 appartenente ad un raggruppamento in \textit{background} cerca di accedere al
114 terminale, venga inviato un segnale a tutti i processi del raggruppamento, in
115 modo da bloccarli (vedi sez.~\ref{sec:sess_ctrl_term}).
116
117 Un comportamento analogo si ha anche per i segnali generati dai comandi di
118 tastiera inviati dal terminale, che vengono inviati a tutti i processi del
119 raggruppamento in \textit{foreground}. In particolare \cmd{C-z} interrompe
120 l'esecuzione del comando, che può poi essere mandato in \textit{background}
121 con il comando \cmd{bg}.\footnote{si tenga presente che \cmd{bg} e \cmd{fg}
122   sono parole chiave che indicano comandi interni alla shell, e nel caso non
123   comportano l'esecuzione di un programma esterno ma operazioni di gestione
124   compiute direttamente dalla shell stessa.} Il comando \cmd{fg} consente
125 invece di mettere in \textit{foreground} un comando precedentemente lanciato
126 in \textit{background}.
127
128 Di norma la shell si cura anche di notificare all'utente (di solito prima
129 della stampa a video del prompt) lo stato dei vari processi; essa infatti sarà
130 in grado, grazie all'uso di \func{waitpid}, di rilevare sia i processi che
131 sono terminati, sia i raggruppamenti che sono bloccati (in questo caso usando
132 l'opzione \const{WUNTRACED}, secondo quanto illustrato in
133 sez.~\ref{sec:proc_wait}).
134
135
136 \subsection{I \textit{process group} e le \textsl{sessioni}}
137 \label{sec:sess_proc_group}
138
139 \itindbeg{process~group}
140
141 Come accennato in sez.~\ref{sec:sess_job_control_overview} nel job control i
142 processi vengono raggruppati in \textit{process group} e \textsl{sessioni};
143 per far questo vengono utilizzati due ulteriori identificatori (oltre quelli
144 visti in sez.~\ref{sec:proc_pid}) che il kernel associa a ciascun
145 processo:\footnote{in Linux questi identificatori sono mantenuti nei campi
146   \var{pgrp} e \var{session} della struttura \struct{task\_struct} definita in
147   \file{sched.h}.}  l'identificatore del \textit{process group} e
148 l'identificatore della \textsl{sessione}, che vengono indicati rispettivamente
149 con le sigle \acr{pgid} e \acr{sid}, e sono mantenuti in variabili di tipo
150 \type{pid\_t}. I valori di questi identificatori possono essere visualizzati
151 dal comando \cmd{ps} usando l'opzione \cmd{-j}.
152
153 Un \textit{process group} è pertanto definito da tutti i processi che hanno lo
154 stesso \acr{pgid}; è possibile leggere il valore di questo identificatore con
155 le funzioni \funcd{getpgid} e \funcd{getpgrp},\footnote{\func{getpgrp} è
156   definita nello standard POSIX.1, mentre \func{getpgid} è richiesta da SVr4.}
157 i cui prototipi sono:
158 \begin{functions}
159   \headdecl{unistd.h}
160
161   \funcdecl{pid\_t getpgid(pid\_t pid)} 
162   Legge il \acr{pgid} del processo \param{pid}.
163
164   \funcdecl{pid\_t getpgrp(void)}
165   Legge il \acr{pgid} del processo corrente.
166   
167   \bodydesc{Le funzioni restituiscono il \acr{pgid} del processo,
168     \func{getpgrp} ha sempre successo, mentre \func{getpgid} restituisce -1
169     ponendo \var{errno} a \errval{ESRCH} se il processo selezionato non
170     esiste.}
171 \end{functions}
172
173 La funzione \func{getpgid} permette di specificare il \acr{pid} del processo
174 di cui si vuole sapere il \acr{pgid}; un valore nullo per \param{pid}
175 restituisce il \acr{pgid} del processo corrente; \func{getpgrp} è di norma
176 equivalente a \code{getpgid(0)}.
177
178 In maniera analoga l'identificatore della sessione può essere letto dalla
179 funzione \funcd{getsid}, che però nelle \acr{glibc}\footnote{la system call è
180   stata introdotta in Linux a partire dalla versione 1.3.44, il supporto nelle
181   librerie del C è iniziato dalla versione 5.2.19. La funzione non è prevista
182   da POSIX.1, che parla solo di processi leader di sessione, e non di
183   identificatori di sessione.} è accessibile solo definendo
184 \macro{\_XOPEN\_SOURCE} e \macro{\_XOPEN\_SOURCE\_EXTENDED}; il suo prototipo
185 è:
186 \begin{prototype}{unistd.h}{pid\_t getsid(pid\_t pid)}
187   Legge l'identificatore di sessione del processo \param{pid}.
188   
189   \bodydesc{La funzione restituisce l'identificatore (un numero positivo) in
190   caso di successo, e -1 in caso di errore, nel qual caso \var{errno} assumerà
191   i valori:
192     \begin{errlist}
193     \item[\errcode{ESRCH}] il processo selezionato non esiste.
194     \item[\errcode{EPERM}] in alcune implementazioni viene restituito quando il
195       processo selezionato non fa parte della stessa sessione del processo
196       corrente.
197     \end{errlist}
198   }
199 \end{prototype}
200
201 Entrambi gli identificatori vengono inizializzati alla creazione di ciascun
202 processo con lo stesso valore che hanno nel processo padre, per cui un
203 processo appena creato appartiene sempre allo stesso raggruppamento e alla
204 stessa sessione del padre. Vedremo poi come sia possibile creare più
205 \textit{process group} all'interno della stessa sessione, e spostare i
206 processi dall'uno all'altro, ma sempre all'interno di una stessa sessione.
207
208 Ciascun raggruppamento di processi ha sempre un processo principale, il
209 cosiddetto \itindex{process~group~leader} \textit{process group leader}, che è
210 identificato dall'avere un \acr{pgid} uguale al suo \acr{pid}, in genere
211 questo è il primo processo del raggruppamento, che si incarica di lanciare
212 tutti gli altri. Un nuovo raggruppamento si crea con la funzione
213 \funcd{setpgrp},\footnote{questa è la definizione di POSIX.1, BSD definisce
214   una funzione con lo stesso nome, che però è identica a \func{setpgid}; nelle
215   \acr{glibc} viene sempre usata sempre questa definizione, a meno di non
216   richiedere esplicitamente la compatibilità all'indietro con BSD, definendo
217   la macro \macro{\_BSD\_SOURCE}.} il cui prototipo è:
218 \begin{prototype}{unistd.h}{int setpgrp(void)}
219   Modifica il \acr{pgid} al valore del \acr{pid} del processo corrente.
220   
221   \bodydesc{La funzione restituisce il valore del nuovo \textit{process
222       group}.}
223 \end{prototype}
224
225 La funzione, assegnando al \acr{pgid} il valore del \acr{pid} processo
226 corrente, rende questo \itindex{process~group~leader} \textit{group leader} di
227 un nuovo raggruppamento, tutti i successivi processi da esso creati
228 apparterranno (a meno di non cambiare di nuovo il \acr{pgid}) al nuovo
229 raggruppamento. È possibile invece spostare un processo da un raggruppamento
230 ad un altro con la funzione \funcd{setpgid}, il cui prototipo è:
231 \begin{prototype}{unistd.h}{int setpgid(pid\_t pid, pid\_t pgid)}
232   Assegna al \acr{pgid} del processo \param{pid} il valore \param{pgid}.
233   
234   \bodydesc{La funzione ritorna il valore del nuovo \textit{process group}, e
235   -1 in caso di errore, nel qual caso \var{errno} assumerà i valori:
236     \begin{errlist}
237     \item[\errcode{ESRCH}] il processo selezionato non esiste.
238     \item[\errcode{EPERM}] il cambiamento non è consentito.
239     \item[\errcode{EACCES}] il processo ha già eseguito una \func{exec}.
240     \item[\errcode{EINVAL}] il valore di \param{pgid} è negativo.
241     \end{errlist}
242  }
243 \end{prototype}
244
245 La funzione permette di cambiare il \acr{pgid} del processo \param{pid}, ma il
246 cambiamento può essere effettuato solo se \param{pgid} indica un
247 \textit{process group} che è nella stessa sessione del processo chiamante.
248 Inoltre la funzione può essere usata soltanto sul processo corrente o su uno
249 dei suoi figli, ed in quest'ultimo caso ha successo soltanto se questo non ha
250 ancora eseguito una \func{exec}.\footnote{questa caratteristica è implementata
251   dal kernel che mantiene allo scopo un altro campo, \var{did\_exec}, in
252   \struct{task\_struct}.}  Specificando un valore nullo per \param{pid} si
253 indica il processo corrente, mentre specificando un valore nullo per
254 \param{pgid} si imposta il \textit{process group} al valore del \acr{pid} del
255 processo selezionato; pertanto \func{setpgrp} è equivalente a \code{setpgid(0,
256   0)}.
257
258 Di norma questa funzione viene usata dalla shell quando si usano delle
259 pipeline, per mettere nello stesso \textit{process group} tutti i programmi
260 lanciati su ogni linea di comando; essa viene chiamata dopo una \func{fork}
261 sia dal processo padre, per impostare il valore nel figlio, che da
262 quest'ultimo, per sé stesso, in modo che il cambiamento di \textit{process
263   group} sia immediato per entrambi; una delle due chiamate sarà ridondante,
264 ma non potendo determinare quale dei due processi viene eseguito per primo,
265 occorre eseguirle comunque entrambe per evitare di esporsi ad una
266 \itindex{race~condition} \textit{race condition}.
267
268 Si noti come nessuna delle funzioni esaminate finora permetta di spostare un
269 processo da una sessione ad un altra; infatti l'unico modo di far cambiare
270 sessione ad un processo è quello di crearne una nuova con l'uso di
271 \funcd{setsid}; il suo prototipo è:
272 \begin{prototype}{unistd.h}{pid\_t setsid(void)}
273   Crea una nuova sessione sul processo corrente impostandone \acr{sid} e
274   \acr{pgid}.
275   
276   \bodydesc{La funzione ritorna il valore del nuovo \acr{sid}, e -1 in caso di
277     errore, il solo errore possibile è \errval{EPERM}, che si ha quando il
278     \acr{pgid} e \acr{pid} del processo coincidono.}
279 \end{prototype}
280
281 La funzione imposta il \acr{pgid} ed il \acr{sid} del processo corrente al
282 valore del suo \acr{pid}, creando così una nuova sessione ed un nuovo
283 \textit{process group} di cui esso diventa leader (come per i \textit{process
284   group} un processo si dice leader di sessione\footnote{in Linux la proprietà
285   è mantenuta in maniera indipendente con un apposito campo \var{leader} in
286   \struct{task\_struct}.} se il suo \acr{sid} è uguale al suo \acr{pid}) ed
287 unico componente.  Inoltre la funzione distacca il processo da ogni terminale
288 di controllo (torneremo sull'argomento in sez.~\ref{sec:sess_ctrl_term}) cui
289 fosse in precedenza associato.
290
291 La funzione ha successo soltanto se il processo non è già
292 \itindex{process~group~leader} leader di un \textit{process group}, per cui
293 per usarla di norma si esegue una \func{fork} e si esce, per poi chiamare
294 \func{setsid} nel processo figlio, in modo che, avendo questo lo stesso
295 \acr{pgid} del padre ma un \acr{pid} diverso, non ci siano possibilità di
296 errore.\footnote{potrebbe sorgere il dubbio che, per il riutilizzo dei valori
297   dei \acr{pid} fatto nella creazione dei nuovi processi (vedi
298   sez.~\ref{sec:proc_pid}), il figlio venga ad assumere un valore
299   corrispondente ad un \textit{process group} esistente; questo viene evitato
300   dal kernel che considera come disponibili per un nuovo \acr{pid} solo valori
301   che non corrispondono ad altri \acr{pid}, \acr{pgid} o \acr{sid} in uso nel
302   sistema.} Questa funzione viene usata di solito nel processo di login (per i
303 dettagli vedi sez.~\ref{sec:sess_login}) per raggruppare in una sessione tutti
304 i comandi eseguiti da un utente dalla sua shell.
305
306 \itindend{process~group}
307
308 \subsection{Il terminale di controllo e il controllo di sessione}
309 \label{sec:sess_ctrl_term}
310
311 Come accennato in sez.~\ref{sec:sess_job_control_overview}, nel sistema del
312 \textit{job control} i processi all'interno di una sessione fanno riferimento
313 ad un terminale di controllo (ad esempio quello su cui si è effettuato il
314 login), sul quale effettuano le operazioni di lettura e
315 scrittura,\footnote{nel caso di login grafico la cosa può essere più
316   complessa, e di norma l'I/O è effettuato tramite il server X, ma ad esempio
317   per i programmi, anche grafici, lanciati da un qualunque emulatore di
318   terminale, sarà quest'ultimo a fare da terminale (virtuale) di controllo.} e
319 dal quale ricevono gli eventuali segnali da tastiera.
320
321 A tale scopo lo standard POSIX.1 prevede che ad ogni sessione possa essere
322 associato un terminale di controllo; in Linux questo viene realizzato
323 mantenendo fra gli attributi di ciascun processo anche qual'è il suo terminale
324 di controllo.\footnote{lo standard POSIX.1 non specifica nulla riguardo
325   l'implementazione; in Linux anch'esso viene mantenuto nella solita struttura
326   \struct{task\_struct}, nel campo \var{tty}.}  In generale ogni processo
327 eredita dal padre, insieme al \acr{pgid} e al \acr{sid} anche il terminale di
328 controllo (vedi sez.~\ref{sec:proc_fork}). In questo modo tutti processi
329 originati dallo stesso leader di sessione mantengono lo stesso terminale di
330 controllo.
331
332 Alla creazione di una nuova sessione con \func{setsid} ogni associazione con
333 il precedente terminale di controllo viene cancellata, ed il processo che è
334 divenuto un nuovo leader di sessione dovrà riottenere\footnote{solo quando ciò
335   è necessario, cosa che, come vedremo in sez.~\ref{sec:sess_daemon}, non è
336   sempre vera.}, un terminale di controllo. In generale questo viene fatto
337 automaticamente dal sistema\footnote{a meno di non avere richiesto
338   esplicitamente che questo non diventi un terminale di controllo con il flag
339   \const{O\_NOCTTY} (vedi sez.~\ref{sec:file_open}). In questo Linux segue la
340   semantica di SVr4; BSD invece richiede che il terminale venga allocato
341   esplicitamente con una \func{ioctl} con il comando \const{TIOCSCTTY}.}
342 quando viene aperto il primo terminale (cioè uno dei vari file di dispositivo
343 \file{/dev/tty*}) che diventa automaticamente il terminale di controllo,
344 mentre il processo diventa il \textsl{processo di controllo} di quella
345 sessione.
346
347 In genere (a meno di redirezioni) nelle sessioni di lavoro questo terminale è
348 associato ai file standard (di input, output ed error) dei processi nella
349 sessione, ma solo quelli che fanno parte del cosiddetto raggruppamento di
350 \textit{foreground}, possono leggere e scrivere in certo istante. Per
351 impostare il raggruppamento di \textit{foreground} di un terminale si usa la
352 funzione \funcd{tcsetpgrp}, il cui prototipo è:
353 \begin{functions}
354   \headdecl{unistd.h}
355   \headdecl{termios.h}
356   
357   \funcdecl{int tcsetpgrp(int fd, pid\_t pgrpid)} Imposta a \param{pgrpid} il
358   \textit{process group} di \textit{foreground} del terminale associato al
359   file descriptor \param{fd}.
360    
361   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
362     errore, nel qual caso \var{errno} assumerà i valori:
363     \begin{errlist}
364     \item[\errcode{ENOTTY}] il file \param{fd} non corrisponde al terminale di
365       controllo del processo chiamante.
366     \item[\errcode{ENOSYS}] il sistema non supporta il job control.
367     \item[\errcode{EPERM}] il \textit{process group} specificato non è nella
368     stessa sessione del processo chiamante.
369     \end{errlist}
370     ed inoltre \errval{EBADF} ed \errval{EINVAL}. 
371   }
372 \end{functions}
373 \noindent la funzione può essere eseguita con successo solo da
374 un processo nella stessa sessione e con lo stesso terminale di controllo. 
375
376 Come accennato in sez.~\ref{sec:sess_job_control_overview}, tutti i processi
377 (e relativi raggruppamenti) che non fanno parte del gruppo di
378 \textit{foreground} sono detti in \textit{background}; se uno si essi cerca di
379 accedere al terminale di controllo provocherà l'invio da parte del kernel di
380 uno dei due segnali \signal{SIGTTIN} o \signal{SIGTTOU} (a seconda che l'accesso
381 sia stato in lettura o scrittura) a tutto il suo \itindex{process~group}
382 \textit{process group}; dato che il comportamento di default di questi segnali
383 (si riveda quanto esposto in sez.~\ref{sec:sig_job_control}) è di fermare il
384 processo, di norma questo comporta che tutti i membri del gruppo verranno
385 fermati, ma non si avranno condizioni di errore.\footnote{la shell in genere
386   notifica comunque un avvertimento, avvertendo la presenza di processi
387   bloccati grazie all'uso di \func{waitpid}.} Se però si bloccano o ignorano i
388 due segnali citati, le funzioni di lettura e scrittura falliranno con un
389 errore di \errcode{EIO}.
390
391 Un processo può controllare qual è il gruppo di \textit{foreground} associato
392 ad un terminale con la funzione \funcd{tcgetpgrp}, il cui prototipo è:
393 \begin{functions}
394   \headdecl{unistd.h} \headdecl{termios.h}
395   
396   \funcdecl{pid\_t tcgetpgrp(int fd)} Legge il \textit{process group} di
397   \textit{foreground} del terminale associato al file descriptor \param{fd}.
398   \bodydesc{La funzione restituisce in caso di successo il \acr{pgid} del
399     gruppo di \textit{foreground}, e -1 in caso di errore, nel qual caso
400     \var{errno} assumerà i valori:
401     \begin{errlist}
402     \item[\errcode{ENOTTY}] non c'è un terminale di controllo o \param{fd} non
403       corrisponde al terminale di controllo del processo chiamante.
404     \end{errlist}
405     ed inoltre \errval{EBADF} ed \errval{ENOSYS}. 
406   }
407 \end{functions}
408
409 Si noti come entrambe le funzioni usino come argomento il valore di un file
410 descriptor, il risultato comunque non dipende dal file descriptor che si usa
411 ma solo dal terminale cui fa riferimento; il kernel inoltre permette a ciascun
412 processo di accedere direttamente al suo terminale di controllo attraverso il
413 file speciale \file{/dev/tty}, che per ogni processo è un sinonimo per il
414 proprio terminale di controllo.  Questo consente anche a processi che possono
415 aver rediretto l'output di accedere al terminale di controllo, pur non
416 disponendo più del file descriptor originario; un caso tipico è il programma
417 \cmd{crypt} che accetta la redirezione sullo standard input di un file da
418 decifrare, ma deve poi leggere la password dal terminale.
419
420 Un'altra caratteristica del terminale di controllo usata nel job control è che
421 utilizzando su di esso le combinazioni di tasti speciali (\texttt{C-z},
422 \texttt{C-c}, \texttt{C-y} e \texttt{C-|}) si farà sì che il kernel invii i
423 corrispondenti segnali (rispettivamente \signal{SIGTSTP}, \signal{SIGINT},
424 \signal{SIGQUIT} e \signal{SIGTERM}, trattati in sez.~\ref{sec:sig_job_control})
425 a tutti i processi del raggruppamento di \textit{foreground}; in questo modo
426 la shell può gestire il blocco e l'interruzione dei vari comandi.
427
428
429 Per completare la trattazione delle caratteristiche del job control legate al
430 terminale di controllo, occorre prendere in considerazione i vari casi legati
431 alla terminazione anomala dei processi, che sono di norma gestite attraverso
432 il segnale \signal{SIGHUP}. Il nome del segnale deriva da \textit{hungup},
433 termine che viene usato per indicare la condizione in cui il terminale diventa
434 inutilizzabile, (letteralmente sarebbe \textsl{impiccagione}).
435
436 Quando si verifica questa condizione, ad esempio se si interrompe la linea, o
437 va giù la rete o più semplicemente si chiude forzatamente la finestra di
438 terminale su cui si stava lavorando, il kernel provvederà ad inviare il
439 segnale di \signal{SIGHUP} al processo di controllo. L'azione preimpostata in
440 questo caso è la terminazione del processo, il problema che si pone è cosa
441 accade agli altri processi nella sessione, che non han più un processo di
442 controllo che possa gestire l'accesso al terminale, che potrebbe essere
443 riutilizzato per qualche altra sessione.
444
445 Lo standard POSIX.1 prevede che quando il processo di controllo termina, che
446 ciò avvenga o meno per un \textit{hungup} del terminale (ad esempio si
447 potrebbe terminare direttamente la shell con \cmd{kill}) venga inviato un
448 segnale di \signal{SIGHUP} ai processi del raggruppamento di foreground. In
449 questo modo essi potranno essere avvisati che non esiste più un processo in
450 grado di gestire il terminale (di norma tutto ciò comporta la terminazione
451 anche di questi ultimi).
452
453 Restano però gli eventuali processi in background, che non ricevono il
454 segnale; in effetti se il terminale non dovesse più servire essi potrebbero
455 proseguire fino al completamento della loro esecuzione; ma si pone il problema
456 di come gestire quelli che sono bloccati, o che si bloccano nell'accesso al
457 terminale, in assenza di un processo che sia in grado di effettuare il
458 controllo dello stesso.
459
460 Questa è la situazione in cui si ha quello che viene chiamato un
461 \itindex{process~group~orphaned} \textit{orphaned process group}. Lo standard
462 POSIX.1 lo definisce come un \itindex{process~group} \textit{process group} i
463 cui processi hanno come padri esclusivamente o altri processi nel
464 raggruppamento, o processi fuori della sessione.  Lo standard prevede inoltre
465 che se la terminazione di un processo fa sì che un raggruppamento di processi
466 diventi orfano e se i suoi membri sono bloccati, ad essi vengano inviati in
467 sequenza i segnali di \signal{SIGHUP} e \signal{SIGCONT}.
468
469 La definizione può sembrare complicata, e a prima vista non è chiaro cosa
470 tutto ciò abbia a che fare con il problema della terminazione del processo di
471 controllo.  Consideriamo allora cosa avviene di norma nel \textit{job
472   control}: una sessione viene creata con \func{setsid} che crea anche un
473 nuovo \itindex{process~group} \textit{process group}: per definizione
474 quest'ultimo è sempre \itindex{process~group~orphaned} \textsl{orfano}, dato
475 che il padre del leader di sessione è fuori dalla stessa e il nuovo
476 \textit{process group} \itindex{process~group} contiene solo il leader di
477 sessione. Questo è un caso limite, e non viene emesso nessun segnale perché
478 quanto previsto dallo standard riguarda solo i raggruppamenti che diventano
479 orfani in seguito alla terminazione di un processo.\footnote{l'emissione dei
480   segnali infatti avviene solo nella fase di uscita del processo, come una
481   delle operazioni legate all'esecuzione di \func{\_exit}, secondo quanto
482   illustrato in sez.~\ref{sec:proc_termination}.}
483
484 Il leader di sessione provvederà a creare nuovi raggruppamenti che a questo
485 punto non sono orfani in quanto esso resta padre per almeno uno dei processi
486 del gruppo (gli altri possono derivare dal primo). Alla terminazione del
487 leader di sessione però avremo che, come visto in
488 sez.~\ref{sec:proc_termination}, tutti i suoi figli vengono adottati da
489 \cmd{init}, che è fuori dalla sessione. Questo renderà orfani tutti i process
490 group creati direttamente dal leader di sessione (a meno di non aver spostato
491 con \func{setpgid} un processo da un gruppo ad un altro, cosa che di norma non
492 viene fatta) i quali riceveranno, nel caso siano bloccati, i due segnali;
493 \signal{SIGCONT} ne farà proseguire l'esecuzione, ed essendo stato nel
494 frattempo inviato anche \signal{SIGHUP}, se non c'è un gestore per
495 quest'ultimo, i processi bloccati verranno automaticamente terminati.
496
497
498
499 \subsection{Dal login alla shell}
500 \label{sec:sess_login}
501
502 L'organizzazione del sistema del job control è strettamente connessa alle
503 modalità con cui un utente accede al sistema per dare comandi, collegandosi ad
504 esso con un terminale, che sia questo realmente tale, come un VT100 collegato
505 ad una seriale o virtuale, come quelli associati a schermo e tastiera o ad una
506 connessione di rete. Dato che i concetti base sono gli stessi, e dato che alla
507 fine le differenze sono\footnote{in generale nel caso di login via rete o di
508   terminali lanciati dall'interfaccia grafica cambia anche il processo da cui
509   ha origine l'esecuzione della shell.} nel dispositivo cui il kernel associa
510 i file standard (vedi sez.~\ref{sec:file_std_descr}) per l'I/O, tratteremo
511 solo il caso classico del terminale.
512
513 Abbiamo già brevemente illustrato in sez.~\ref{sec:intro_kern_and_sys} le
514 modalità con cui il sistema si avvia, e di come, a partire da \cmd{init},
515 vengano lanciati tutti gli altri processi. Adesso vedremo in maniera più
516 dettagliata le modalità con cui il sistema arriva a fornire ad un utente la
517 shell che gli permette di lanciare i suoi comandi su un terminale.
518
519 Nella maggior parte delle distribuzioni di GNU/Linux\footnote{in realtà negli
520   ultimi tempi questa situazione sta cambiando, e sono state proposte diversi
521   possibili rimpiazzi per il tradizionale \texttt{init} di System V, come
522   \texttt{upstart} o \texttt{systemd}, ma per quanto trattato in questa
523   sezione il risultato finale non cambia, si avrà comunque il lancio di un
524   programma che consenta l'accesso al terminale.}  viene usata la procedura di
525 avvio di System V; questa prevede che \cmd{init} legga dal file di
526 configurazione \conffile{/etc/inittab} quali programmi devono essere lanciati,
527 ed in quali modalità, a seconda del cosiddetto \textit{run level}, anch'esso
528 definito nello stesso file.
529
530 Tralasciando la descrizione del sistema dei \textit{run level}, (per il quale
531 si rimanda alla lettura delle pagine di manuale di \cmd{init} e di
532 \file{inittab} o alla trattazione in sez.~5.3.5 di \cite{AGL}) quello che
533 comunque viene sempre fatto è di eseguire almeno una istanza di un programma
534 che permetta l'accesso ad un terminale. Uno schema di massima della procedura
535 è riportato in fig.~\ref{fig:sess_term_login}.
536
537 \begin{figure}[!htb]
538   \centering \includegraphics[width=13cm]{img/tty_login}
539   \caption{Schema della procedura di login su un terminale.}
540   \label{fig:sess_term_login}
541 \end{figure}
542
543 Un terminale, che esso sia un terminale effettivo, attaccato ad una seriale o
544 ad un altro tipo di porta di comunicazione, o una delle console virtuali
545 associate allo schermo, viene sempre visto attraverso un device driver che ne
546 presenta un'interfaccia comune su un apposito file di dispositivo.
547
548 Per controllare un terminale si usa di solito il programma \cmd{getty} (od una
549 delle sue varianti), che permette di mettersi in ascolto su uno di questi
550 dispositivi. Alla radice della catena che porta ad una shell per i comandi
551 perciò c'è sempre \cmd{init} che esegue prima una \func{fork} e poi una
552 \func{exec} per lanciare una istanza di questo programma su un terminale, il
553 tutto ripetuto per ciascuno dei terminali che si hanno a disposizione (o per
554 un certo numero di essi, nel caso delle console virtuali), secondo quanto
555 indicato dall'amministratore nel file di configurazione del programma,
556 \conffile{/etc/inittab}.
557
558 Quando viene lanciato da \cmd{init} il programma parte con i privilegi di
559 amministratore e con un ambiente vuoto; \cmd{getty} si cura di chiamare
560 \func{setsid} per creare una nuova sessione ed un nuovo
561 \itindex{process~group} \textit{process group}, e di aprire il terminale (che
562 così diventa il terminale di controllo della sessione) in lettura sullo
563 standard input ed in scrittura sullo standard output e sullo standard error;
564 inoltre effettuerà, qualora servano, ulteriori impostazioni.\footnote{ad
565   esempio, come qualcuno si sarà accorto scrivendo un nome di login in
566   maiuscolo, può effettuare la conversione automatica dell'input in minuscolo,
567   ponendosi in una modalità speciale che non distingue fra i due tipi di
568   caratteri (a beneficio di alcuni vecchi terminali che non supportavano le
569   minuscole).}  Alla fine il programma stamperà un messaggio di benvenuto per
570 poi porsi in attesa dell'immissione del nome di un utente.
571
572 Una volta che si sia immesso il nome di login \cmd{getty} esegue direttamente
573 il programma \cmd{login} con una \func{exevle}, passando come argomento la
574 stringa con il nome, ed un ambiente opportunamente costruito che contenga
575 quanto necessario; ad esempio di solito viene opportunamente inizializzata la
576 variabile di ambiente \texttt{TERM} per identificare il terminale su cui si
577 sta operando, a beneficio dei programmi che verranno lanciati in seguito.
578
579 A sua volta \cmd{login}, che mantiene i privilegi di amministratore, usa il
580 nome dell'utente per effettuare una ricerca nel database degli
581 utenti,\footnote{in genere viene chiamata \func{getpwnam}, che abbiamo visto
582   in sez.~\ref{sec:sys_user_group}, per leggere la password e gli altri dati
583   dal database degli utenti.} e richiede una password. Se l'utente non esiste
584 o se la password non corrisponde\footnote{il confronto non viene effettuato
585   con un valore in chiaro; quanto immesso da terminale viene invece a sua
586   volta criptato, ed è il risultato che viene confrontato con il valore che
587   viene mantenuto nel database degli utenti.} la richiesta viene ripetuta un
588 certo numero di volte dopo di che \cmd{login} esce ed \cmd{init} provvede a
589 rilanciare un'altra istanza di \cmd{getty}.
590
591 Se invece la password corrisponde \cmd{login} esegue \func{chdir} per
592 impostare come directory di lavoro la \textit{home directory} dell'utente,
593 cambia i diritti di accesso al terminale (con \func{chown} e \func{chmod}) per
594 assegnarne la titolarità all'utente ed al suo gruppo principale, assegnandogli
595 al contempo i diritti di lettura e scrittura.\footnote{oggi queste operazioni,
596   insieme ad altre relative alla contabilità ed alla tracciatura degli
597   accessi, vengono gestite dalle distribuzioni più recenti in una maniera
598   generica appoggiandosi a servizi di sistema come \textit{ConsoleKit}, ma il
599   concetto generale resta sostanzialmente lo stesso.}  Inoltre il programma
600 provvede a costruire gli opportuni valori per le variabili di ambiente, come
601 \texttt{HOME}, \texttt{SHELL}, ecc.  Infine attraverso l'uso di \func{setuid},
602 \func{setgid} e \func{initgroups} verrà cambiata l'identità del proprietario
603 del processo, infatti, come spiegato in sez.~\ref{sec:proc_setuid}, avendo
604 invocato tali funzioni con i privilegi di amministratore, tutti gli \acr{uid}
605 ed i \acr{gid} (reali, effettivi e salvati) saranno impostati a quelli
606 dell'utente.
607
608 A questo punto \cmd{login} provvederà (fatte salve eventuali altre azioni
609 iniziali, come la stampa di messaggi di benvenuto o il controllo della posta)
610 ad eseguire con un'altra \func{exec} la shell, che si troverà con un ambiente
611 già pronto con i file standard di sez.~\ref{sec:file_std_descr} impostati sul
612 terminale, e pronta, nel ruolo di leader di sessione e di processo di
613 controllo per il terminale, a gestire l'esecuzione dei comandi come illustrato
614 in sez.~\ref{sec:sess_job_control_overview}. 
615
616 Dato che il processo padre resta sempre \cmd{init} quest'ultimo potrà
617 provvedere, ricevendo un \signal{SIGCHLD} all'uscita della shell quando la
618 sessione di lavoro è terminata, a rilanciare \cmd{getty} sul terminale per
619 ripetere da capo tutto il procedimento.
620
621
622
623 \subsection{Interazione senza terminale: i \textsl{demoni} ed il
624   \textit{syslog}}
625 \label{sec:sess_daemon}
626
627 Come sottolineato fin da sez.~\ref{sec:intro_base_concept}, in un sistema
628 unix-like tutte le operazioni sono eseguite tramite processi, comprese quelle
629 operazioni di sistema (come l'esecuzione dei comandi periodici, o la consegna
630 della posta, ed in generale tutti i programmi di servizio) che non hanno
631 niente a che fare con la gestione diretta dei comandi dell'utente.
632
633 Questi programmi, che devono essere eseguiti in modalità non interattiva e
634 senza nessun intervento dell'utente, sono normalmente chiamati
635 \textsl{demoni}, (o \textit{daemons}), nome ispirato dagli omonimi spiritelli
636 della mitologia greca che svolgevano compiti che gli dei trovavano noiosi, di
637 cui parla anche Socrate (che sosteneva di averne uno al suo servizio).
638
639 %TODO ricontrollare, i miei ricordi di filosofia sono piuttosto datati.
640
641 Se però si lancia un programma demone dalla riga di comando in un sistema che
642 supporta, come Linux, il \textit{job control} esso verrà comunque associato ad
643 un terminale di controllo e mantenuto all'interno di una sessione, e anche se
644 può essere mandato in background e non eseguire più nessun I/O su terminale,
645 si avranno comunque tutte le conseguenze che abbiamo appena visto in
646 sez.~\ref{sec:sess_ctrl_term} (in particolare l'invio dei segnali in
647 corrispondenza dell'uscita del leader di sessione).
648
649 Per questo motivo un programma che deve funzionare come demone deve sempre
650 prendere autonomamente i provvedimenti opportuni (come distaccarsi dal
651 terminale e dalla sessione) ad impedire eventuali interferenze da parte del
652 sistema del \textit{job control}; questi sono riassunti in una lista di
653 prescrizioni\footnote{ad esempio sia Stevens in \cite{APUE}, che la
654   \textit{Unix Programming FAQ} \cite{UnixFAQ} ne riportano di sostanzialmente
655   identiche.} da seguire quando si scrive un demone.
656
657 Pertanto, quando si lancia un programma che deve essere eseguito come demone
658 occorrerà predisporlo in modo che esso compia le seguenti azioni:
659 \begin{enumerate*}
660 \item Eseguire una \func{fork} e terminare immediatamente il processo padre
661   proseguendo l'esecuzione nel figlio.  In questo modo si ha la certezza che
662   il figlio non è un \itindex{process~group~leader} \textit{process group
663     leader}, (avrà il \acr{pgid} del padre, ma un \acr{pid} diverso) e si può
664   chiamare \func{setsid} con successo. Inoltre la shell considererà terminato
665   il comando all'uscita del padre.
666 \item Eseguire \func{setsid} per creare una nuova sessione ed un nuovo
667   raggruppamento di cui il processo diventa automaticamente il leader, che
668   però non ha associato nessun terminale di controllo.
669 \item Assicurarsi che al processo non venga associato in seguito nessun nuovo
670   terminale di controllo; questo può essere fatto sia avendo cura di usare
671   sempre l'opzione \const{O\_NOCTTY} nell'aprire i file di terminale, che
672   eseguendo una ulteriore \func{fork} uscendo nel padre e proseguendo nel
673   figlio. In questo caso, non essendo più quest'ultimo un leader di sessione
674   non potrà ottenere automaticamente un terminale di controllo.
675 \item Eseguire una \func{chdir} per impostare la directory di lavoro del
676   processo (su \file{/} o su una directory che contenga dei file necessari per
677   il programma), per evitare che la directory da cui si è lanciato il processo
678   resti in uso e non sia possibile rimuoverla o smontare il filesystem che la
679   contiene.
680 \item Impostare la \itindex{umask} maschera dei permessi (di solito con
681   \code{umask(0)}) in modo da non essere dipendenti dal valore ereditato da
682   chi ha lanciato originariamente il processo.
683 \item Chiudere tutti i file aperti che non servono più (in generale tutti); in
684   particolare vanno chiusi i file standard che di norma sono ancora associati
685   al terminale (un'altra opzione è quella di redirigerli verso
686   \file{/dev/null}).
687 \end{enumerate*}
688
689
690 In Linux buona parte di queste azioni possono venire eseguite invocando la
691 funzione \funcd{daemon}, introdotta per la prima volta in BSD4.4; il suo
692 prototipo è:
693 \begin{prototype}{unistd.h}{int daemon(int nochdir, int noclose)}
694   Esegue le operazioni che distaccano il processo dal terminale di controllo e
695   lo fanno girare come demone.
696   
697   \bodydesc{La funzione restituisce (nel nuovo processo) 0 in caso di
698     successo, e -1 in caso di errore, nel qual caso \var{errno} assumerà i
699     valori impostati dalle sottostanti \func{fork} e \func{setsid}.}
700 \end{prototype}
701
702 La funzione esegue una \func{fork}, per uscire subito, con \func{\_exit}, nel
703 padre, mentre l'esecuzione prosegue nel figlio che esegue subito una
704 \func{setsid}. In questo modo si compiono automaticamente i passi 1 e 2 della
705 precedente lista. Se \param{nochdir} è nullo la funzione imposta anche la
706 directory di lavoro su \file{/}, se \param{noclose} è nullo i file standard
707 vengono rediretti su \file{/dev/null} (corrispondenti ai passi 4 e 6); in caso
708 di valori non nulli non viene eseguita nessuna altra azione.
709
710 Dato che un programma demone non può più accedere al terminale, si pone il
711 problema di come fare per la notifica di eventuali errori, non potendosi più
712 utilizzare lo standard error; per il normale I/O infatti ciascun demone avrà
713 le sue modalità di interazione col sistema e gli utenti a seconda dei compiti
714 e delle funzionalità che sono previste; ma gli errori devono normalmente
715 essere notificati all'amministratore del sistema.
716
717 \itindbeg{syslog}
718
719 Una soluzione può essere quella di scrivere gli eventuali messaggi su uno
720 specifico file (cosa che a volte viene fatta comunque) ma questo comporta il
721 grande svantaggio che l'amministratore dovrà tenere sotto controllo un file
722 diverso per ciascun demone, e che possono anche generarsi conflitti di nomi.
723 Per questo in BSD4.2 venne introdotto un servizio di sistema, il
724 \textit{syslog}, che oggi si trova su tutti i sistemi Unix, e che permette ai
725 demoni di inviare messaggi all'amministratore in una maniera
726 standardizzata. 
727
728 Il servizio prevede vari meccanismi di notifica, e, come ogni altro servizio
729 in un sistema unix-like, viene gestito attraverso un apposito programma, che è
730 anch'esso un \textsl{demone}. In generale i messaggi di errore vengono
731 raccolti dal file speciale \file{/dev/log}, un socket locale (vedi
732 sez.~\ref{sec:sock_sa_local}) dedicato a questo scopo, o via rete, con un
733 socket UDP e trattati dal demone che gestisce il servizio. Il più comune di
734 questi è \texttt{syslogd}, che consente un semplice smistamento dei messaggi
735 sui file in base alle informazioni in esse presenti.\footnote{ad oggi però
736   \texttt{syslogd} è in sostanziale disuso, sostituito da programmi più
737   sofisticati come \texttt{rsyslog} o \texttt{syslog-ng}.}
738
739 Il servizio del \textit{syslog} permette infatti di trattare i vari messaggi
740 classificandoli attraverso due indici; il primo, chiamato \textit{facility},
741 suddivide in diverse categorie i messaggi in modo di raggruppare quelli
742 provenienti da operazioni che hanno attinenza fra loro, ed è organizzato in
743 sottosistemi (kernel, posta elettronica, demoni di stampa, ecc.). Il secondo,
744 chiamato \textit{priority}, identifica l'importanza dei vari messaggi, e
745 permette di classificarli e differenziare le modalità di notifica degli
746 stessi.
747
748 Il sistema del \textit{syslog} attraverso il proprio demone di gestione
749 provvede poi a riportare i messaggi all'amministratore attraverso una serie
750 differenti meccanismi come:
751 \begin{itemize*}
752 \item scriverli sulla console.
753 \item inviarli via mail ad uno specifico utente.
754 \item scriverli su un file (comunemente detto \textit{log file}, o giornale).
755 \item inviarli ad un altro demone (anche via rete su una macchina diversa).
756 \item ignorarli completamente.
757 \end{itemize*}
758 le modalità con cui queste azioni vengono realizzate dipendono ovviamente dal
759 demone che si usa, per la gestione del quale si rimanda ad un testo di
760 amministrazione di sistema.\footnote{l'argomento è ad esempio coperto dal
761   capitolo 3.2.3 si \cite{AGL}.}
762
763 Le \acr{glibc} definiscono una serie di funzioni standard con cui un processo
764 può accedere in maniera generica al servizio di \textit{syslog}, che però
765 funzionano solo localmente; se si vogliono inviare i messaggi ad un altro
766 sistema occorre farlo esplicitamente con un socket UDP, o utilizzare le
767 capacità di reinvio del servizio.
768
769 La prima funzione definita dall'interfaccia è \funcd{openlog}, che apre una
770 connessione al servizio di \textit{syslog}; essa in generale non è necessaria
771 per l'uso del servizio, ma permette di impostare alcuni valori che controllano
772 gli effetti delle chiamate successive; il suo prototipo è:
773 \begin{prototype}{syslog.h}{void openlog(const char *ident, int option, 
774 int facility)}
775
776 Apre una connessione al sistema del \textit{syslog}.
777   
778 \bodydesc{La funzione non restituisce nulla.}
779 \end{prototype}
780
781 La funzione permette di specificare, tramite \param{ident}, l'identità di chi
782 ha inviato il messaggio (di norma si passa il nome del programma, come
783 specificato da \code{argv[0]}); la stringa verrà preposta all'inizio di ogni
784 messaggio. Si tenga presente che il valore di \param{ident} che si passa alla
785 funzione è un puntatore, se la stringa cui punta viene cambiata lo sarà pure
786 nei successivi messaggi, e se viene cancellata i risultati potranno essere
787 impredicibili, per questo è sempre opportuno usare una stringa costante. 
788
789 L'argomento \param{facility} permette invece di preimpostare per le successive
790 chiamate l'omonimo indice che classifica la categoria del messaggio.
791 L'argomento è interpretato come una maschera binaria, e pertanto è possibile
792 inviare i messaggi su più categorie alla volta; i valori delle costanti che
793 identificano ciascuna categoria sono riportati in
794 tab.~\ref{tab:sess_syslog_facility}, il valore di \param{facility} deve essere
795 specificato con un OR aritmetico.
796
797 \begin{table}[htb]
798   \footnotesize
799   \centering
800   \begin{tabular}[c]{|l|p{8cm}|}
801     \hline
802     \textbf{Valore}& \textbf{Significato}\\
803     \hline
804     \hline
805     \const{LOG\_AUTH}     & Messaggi relativi ad autenticazione e sicurezza,
806                             obsoleto, è sostituito da \const{LOG\_AUTHPRIV}.\\
807     \const{LOG\_AUTHPRIV} & Sostituisce \const{LOG\_AUTH}.\\
808     \const{LOG\_CRON}     & Messaggi dei demoni di gestione dei comandi
809                             programmati (\cmd{cron} e \cmd{at}).\\
810     \const{LOG\_DAEMON}   & Demoni di sistema.\\
811     \const{LOG\_FTP}      & Servizio FTP.\\
812     \const{LOG\_KERN}     & Messaggi del kernel.\\
813     \const{LOG\_LOCAL0}   & Riservato all'amministratore per uso locale.\\
814     \hspace{.5cm}--- &   \hspace{3cm} ...\\
815     \const{LOG\_LOCAL7}   & Riservato all'amministratore per uso locale.\\
816     \const{LOG\_LPR}      & Messaggi del sistema di gestione delle stampanti.\\
817     \const{LOG\_MAIL}     & Messaggi del sistema di posta elettronica.\\
818     \const{LOG\_NEWS}     & Messaggi del sistema di gestione delle news 
819                             (USENET).\\
820     \const{LOG\_SYSLOG}   & Messaggi generati dal demone di gestione del
821                             \textit{syslog}.\\
822     \const{LOG\_USER}     & Messaggi generici a livello utente.\\
823     \const{LOG\_UUCP}     & Messaggi del sistema UUCP (\textit{Unix to Unix
824                              CoPy}, ormai in disuso).\\
825 \hline
826 \end{tabular}
827 \caption{Valori possibili per l'argomento \param{facility} di \func{openlog}.}
828 \label{tab:sess_syslog_facility}
829 \end{table}
830
831 L'argomento \param{option} serve invece per controllare il comportamento della
832 funzione \func{openlog} e delle modalità con cui le successive chiamate
833 scriveranno i messaggi, esso viene specificato come maschera binaria composta
834 con un OR aritmetico di una qualunque delle costanti riportate in
835 tab.~\ref{tab:sess_openlog_option}.
836
837 \begin{table}[htb]
838   \footnotesize
839 \centering
840 \begin{tabular}[c]{|l|p{8cm}|}
841 \hline
842 \textbf{Valore}& \textbf{Significato}\\
843 \hline
844 \hline
845 \const{LOG\_CONS}   & Scrive sulla console in caso di errore nell'invio del
846                       messaggio al sistema del \textit{syslog}. \\
847 \const{LOG\_NDELAY} & Apre la connessione al sistema del \textit{syslog}
848                       subito invece di attendere l'invio del primo messaggio.\\
849 \const{LOG\_NOWAIT} & Non usato su Linux, su altre piattaforme non attende i
850                       processi figli creati per inviare il messaggio.\\
851 \const{LOG\_ODELAY} & Attende il primo messaggio per aprire la connessione al
852                       sistema del \textit{syslog}.\\ 
853 \const{LOG\_PERROR} & Stampa anche su \file{stderr} (non previsto in
854                       POSIX.1-2001).\\ 
855 \const{LOG\_PID}    & Inserisce nei messaggi il \acr{pid} del processo
856                       chiamante.\\
857 \hline
858 \end{tabular}
859 \caption{Valori possibili per l'argomento \param{option} di \func{openlog}.}
860 \label{tab:sess_openlog_option}
861 \end{table}
862
863 La funzione che si usa per generare un messaggio è \funcd{syslog}, dato che
864 l'uso di \func{openlog} è opzionale, sarà quest'ultima a provvede a chiamare la
865 prima qualora ciò non sia stato fatto (nel qual caso il valore di
866 \param{ident} è \val{NULL}). Il suo prototipo è:
867 \begin{prototype}{syslog.h}
868 {void syslog(int priority, const char *format, ...)}
869
870 Genera un messaggio di priorità \param{priority}.
871
872 \bodydesc{La funzione non restituisce nulla.}
873 \end{prototype}
874
875 Il comportamento della funzione è analogo quello di \func{printf}, e il valore
876 dell'argomento \param{format} è identico a quello descritto nella pagina di
877 manuale di quest'ultima (per i valori principali si può vedere la trattazione
878 sommaria che se ne è fatto in sez.~\ref{sec:file_formatted_io}); l'unica
879 differenza è che la sequenza \val{\%m} viene rimpiazzata dalla stringa
880 restituita da \code{strerror(errno)}. Gli argomenti seguenti i primi due
881 devono essere forniti secondo quanto richiesto da \param{format}.
882
883 L'argomento \param{priority} permette di impostare sia la \textit{facility}
884 che la \textit{priority} del messaggio. In realtà viene prevalentemente usato
885 per specificare solo quest'ultima in quanto la prima viene di norma 
886 preimpostata con \func{openlog}. La priorità è indicata con un valore
887 numerico\footnote{le \acr{glibc}, seguendo POSIX.1-2001, prevedono otto
888   diverse priorità ordinate da 0 a 7, in ordine di importanza decrescente;
889   questo comporta che i tre bit meno significativi dell'argomento
890   \param{priority} sono occupati da questo valore, mentre i restanti bit più
891   significativi vengono usati per specificare la \textit{facility}.}
892 specificabile attraverso le costanti riportate in
893 tab.~\ref{tab:sess_syslog_priority}.  Nel caso si voglia specificare anche la
894 \textit{facility} basta eseguire un OR aritmetico del valore della priorità
895 con la maschera binaria delle costanti di tab.~\ref{tab:sess_syslog_facility}.
896
897 \begin{table}[htb]
898   \footnotesize
899   \centering
900   \begin{tabular}[c]{|l|p{8cm}|}
901     \hline
902     \textbf{Valore}& \textbf{Significato}\\
903     \hline
904     \hline
905     \const{LOG\_EMERG}   & Il sistema è inutilizzabile.\\
906     \const{LOG\_ALERT}   & C'è una emergenza che richiede intervento
907                            immediato.\\
908     \const{LOG\_CRIT}    & Si è in una condizione critica.\\
909     \const{LOG\_ERR}     & Si è in una condizione di errore.\\
910     \const{LOG\_WARNING} & Messaggio di avvertimento.\\
911     \const{LOG\_NOTICE}  & Notizia significativa relativa al comportamento.\\
912     \const{LOG\_INFO}    & Messaggio informativo.\\
913     \const{LOG\_DEBUG}   & Messaggio di debug.\\
914     \hline
915   \end{tabular}
916   \caption{Valori possibili per l'indice di importanza del messaggio da
917     specificare nell'argomento \param{priority} di \func{syslog}.}
918   \label{tab:sess_syslog_priority}
919 \end{table}
920
921 Una funzione sostanzialmente identica a \func{syslog}, la cui sola differenza
922 è prendere invece di una lista esplicita di argomenti un unico argomento
923 finale nella forma di una lista di argomenti passato come \macro{va\_list},
924 utile qualora si ottengano questi nella invocazione di una funzione
925 \index{funzioni!variadic} \textit{variadic} (si rammenti quanto visto in
926 sez.~\ref{sec:proc_variadic}), è \funcd{vsyslog},\footnote{la funzione è
927   originaria di BSD e per utilizzarla deve essere definito
928   \macro{\_BSD\_SOURCE}.} il suo prototipo è:
929 \begin{prototype}{syslog.h}
930 {void vsyslog(int priority, const char *format, va\_list src)}
931
932 Genera un messaggio di priorità \param{priority}.
933
934 \bodydesc{La funzione non restituisce nulla.}
935 \end{prototype}
936
937 Per semplificare la gestione della scelta del livello di priorità a partire
938 dal quale si vogliono registrare i messaggi, le funzioni di gestione
939 mantengono per ogni processo una maschera che determina quale delle chiamate
940 effettuate a \func{syslog} verrà effettivamente registrata.  In questo modo
941 sarà possibile escludere, impostando opportunamente la maschera una volta per
942 tutte, i livelli di priorità che non interessa registrare.\footnote{questo
943   significa che in genere nei programmi vengono comunque previste le chiamate
944   a \func{syslog} per tutti i livelli di priorità, ma poi si imposta questa
945   maschera per registrare solo quello che effettivamente interessa.} La
946 funzione che consente di fare questo è \funcd{setlogmask}, ed il suo prototipo
947 è:
948 \begin{prototype}{syslog.h}{int setlogmask(int mask)}
949
950 Imposta la maschera dei messaggi al valore specificato.
951
952 \bodydesc{La funzione restituisce il precedente valore.}
953 \end{prototype}
954
955 La funzione restituisce il valore della maschera corrente, e se si passa un
956 valore nullo per \param{mask} la maschera corrente non viene modificata; in
957 questo modo si può leggere il valore della maschera corrente. Indicando un
958 valore non nullo per \param{mask} la registrazione dei messaggi viene
959 disabilitata per tutte quelle priorità che non rientrano nella maschera. In
960 genere il valore viene impostato usando la macro \macro{LOG\_MASK}\texttt{(p)}
961 dove \code{p} è una delle costanti di tab.~\ref{tab:sess_syslog_priority}. É
962 inoltre disponibile anche la macro \macro{LOG\_UPTO}\texttt{(p)} che permette
963 di specificare automaticamente tutte le priorità fino a quella indicata da
964 \code{p}.
965
966 Una volta che si sia certi che non si intende registrare più nessun messaggio
967 si può chiudere esplicitamente la connessione al \textit{syslog} con la
968 funzione \funcd{closelog}, il cui prototipo è:
969 \begin{prototype}{syslog.h}{void closelog(void)}
970
971 Chiude la connessione al \textit{syslog}.
972
973 \bodydesc{La funzione non restituisce nulla.}
974 \end{prototype}
975 \noindent l'uso di questa funzione è comunque completamente opzionale.
976
977 Come si evince anche dalla presenza della facility \const{LOG\_KERN} in
978 tab.~\ref{tab:sess_syslog_facility}, uno dei possibili utenti del servizio del
979 \textit{syslog} è anche il kernel, che a sua volta può avere necessità di
980 inviare messaggi verso l'\textit{user space}. I messaggi del kernel sono
981 mantenuti in un apposito buffer circolare e generati all'interno del kernel
982 tramite la funzione \func{printk}, analoga alla \func{printf} usata in
983 \textit{user space}.\footnote{una trattazione eccellente dell'argomento si
984   trova nel quarto capitolo di \cite{LinDevDri}.}
985
986 Come per i messaggi ordinari anche i messaggi del kernel hanno una priorità ma
987 in questo caso non si può contare sulla coincidenza con le costanti di
988 tab.~\ref{tab:sess_syslog_priority} dato che il codice del kernel viene
989 mantenuto in maniera indipendente dalle librerie. Per questo motivo le varie
990 priorità usate dal kernel sono associate ad un valore numerico che viene
991 tradotto in una stringa preposta ad ogni messaggio, secondo i valori che si
992 sono riportati in fig.~\ref{fig:printk_priority}
993
994 \begin{figure}[!htb]
995   \footnotesize \centering
996   \begin{minipage}[c]{\textwidth}
997     \includestruct{listati/printk_prio.c}
998   \end{minipage} 
999   \normalsize 
1000   \caption{Definizione delle stringhe coi relativi valori numerici che
1001     indicano le priorità dei messaggi del kernel (ripresa da
1002     \texttt{linux/kernel.h}).}
1003   \label{fig:printk_priority}
1004 \end{figure}
1005
1006 Dato che i messaggi generati da \func{printk} hanno un loro specifico formato
1007 tradizionalmente si usava un demone ausiliario, \cmd{klogd}, per leggerli,
1008 rimappare le priorità sui valori di tab.~\ref{tab:sess_syslog_priority} e
1009 inviarli al sistema del \textit{syslog} nella facility \const{LOG\_KERN}.
1010 Oggi i nuovi demoni più avanzati che realizzano il servizio (come
1011 \texttt{rsyslog} o \texttt{syslog-ng}) sono in grado di fare tutto questo da
1012 soli.
1013
1014 Ma i messaggi del kernel non sono necessariamente connessi al sistema del
1015 \textit{syslog}; ad esempio possono anche essere letti direttamente dal buffer
1016 circolare con il comando \texttt{dmesg}. Inoltre è previsto che essi vengano
1017 stampati direttamente sul terminale indicato come \textit{console} di
1018 sistema,\footnote{quello che viene indicato con il parametro di avvio
1019   \texttt{console} del kernel, si consulti al riguardo sez.~5.3.1 di
1020   \cite{AGL}.} se superano una certa priorità, in modo che sia possibile
1021 vederli anche in caso di blocco totale del sistema (nell'assunzione che la
1022 console sia collegata).
1023
1024 In particolare la stampa dei messaggi sulla console è controllata dal
1025 contenuto del file \sysctlfile{kernel/printk} (o con l'equivalente
1026 parametro di \func{sysctl}) che prevede quattro valori numerici interi: il
1027 primo (\textit{console\_loglevel}) indica la priorità corrente oltre la quale
1028 vengono stampati i messaggi sulla console, il secondo
1029 (\textit{default\_message\_loglevel}) la priorità di default assegnata ai
1030 messaggi che non ne hanno impostata una, il terzo
1031 (\textit{minimum\_console\_level}) il valore minimo che si può assegnare al
1032 primo valore,\footnote{quello che può essere usato con una delle operazioni di
1033   gestione che vedremo a breve per ``\textsl{silenziare}'' il kernel. } ed il
1034 quarto (\textit{default\_console\_loglevel}) il valore di
1035 default.\footnote{anch'esso viene usato nelle operazioni di controllo per
1036   tornare ad un valore predefinito.}
1037
1038 Per la lettura dei messaggi del kernel e la gestione del relativo buffer
1039 circolare esiste una apposita \textit{system call} chiamata anch'essa
1040 \texttt{syslog}, ma dato il conflitto di nomi questa viene rimappata su
1041 un'altra funzione di libreria, in particolare nelle \acr{glibc} essa viene
1042 invocata tramite la funzione \funcd{klogctl},\footnote{nelle \acr{libc4} e
1043   nelle \acr{libc5} la funzione invece era \func{SYS\_klog}.} il cui prototipo
1044 è:
1045 \begin{prototype}{sys/klog.h}{int klogctl(int op, char *buffer, int len)}
1046
1047 Gestisce i messaggi di log del kernel.
1048
1049 \bodydesc{La funzione restituisce in caso di successo un intero positivo o
1050   nullo dipendente dall'operazione scelta e $-1$ in caso di errore, nel qual
1051   caso \var{errno} assumerà i valori:
1052   \begin{errlist}
1053   \item[\errcode{EINVAL}] l'argomento \param{op} non ha un valore valido, o si
1054     sono specificati valori non validi per gli altri argomenti quando questi
1055     sono richiesti.
1056   \item[\errcode{ERESTARTSYS}] l'operazione è stata interrotta da un segnale.
1057   \item[\errcode{EPERM}] non si hanno i privilegi richiesti per l'operazione
1058     richiesta.
1059   \item[\errcode{ENOSYS}] il supporto per \func{printk} non è stato compilato
1060     nel kernel.
1061   \end{errlist}
1062   ed inoltre \errval{EBADF} ed \errval{ENOSYS}.
1063 }
1064 \end{prototype}
1065
1066 La funzione prevede che si passi come primo argomento \param{op} un codice
1067 numerico che indica l'operazione richiesta, il secondo argomento deve essere,
1068 per le operazioni che compiono una lettura di dati, l'indirizzo del buffer su
1069 cui copiarli, ed il terzo quanti leggerne. L'effettivo uso di questi due
1070 argomenti dipende comunque dall'operazione richiesta, ma essi devono essere
1071 comunque specificati, anche quando non servono, nel qual caso verranno
1072 semplicemente ignorati.
1073
1074 \begin{table}[htb]
1075   \footnotesize
1076   \centering
1077   \begin{tabular}[c]{|l|p{10cm}|}
1078     \hline
1079     \textbf{Valore}& \textbf{Significato}\\
1080     \hline
1081     \hline
1082     \texttt{0} & apre il log (attualmente non fa niente), \param{buffer}
1083                  e \param{len} sono ignorati.\\
1084     \texttt{1} & chiude il log (attualmente non fa niente), \param{buffer}
1085                  e \param{len} sono ignorati.\\
1086     \texttt{2} & legge \param{len} byte nel buffer \param{buffer} dal log dei
1087                  messaggi.\\   
1088     \texttt{3} & legge \param{len} byte nel buffer \param{buffer} dal buffer
1089                  circolare dei messaggi.\\
1090     \texttt{4} & legge \param{len} byte nel buffer \param{buffer} dal buffer
1091                  circolare dei messaggi e lo svuota.\\
1092     \texttt{5} & svuota il buffer circolare dei messaggi, \param{buffer}
1093                  e \param{len} sono ignorati.\\
1094     \texttt{6} & disabilita la stampa dei messaggi sulla console, \param{buffer}
1095                  e \param{len} sono ignorati.\\
1096     \texttt{7} & abilita la stampa dei messaggi sulla console, \param{buffer}
1097                  e \param{len} sono ignorati.\\
1098     \texttt{8} & imposta a \param{len} il livello dei messaggi stampati sulla
1099                  console, \param{buffer} è ignorato.\\ 
1100     \texttt{9} & ritorna il numero di byte da leggere presenti sul buffer di
1101                  log, \param{buffer} e \param{len} sono ignorati (dal kernel
1102                  2.4.10).\\ 
1103     \texttt{10}& ritorna la dimensione del buffer di log, \param{buffer}
1104                  e \param{len} sono ignorati (dal kernel 2.6.6).\\
1105 \hline
1106 \end{tabular}
1107 \caption{Valori possibili per l'argomento \param{op} di \func{klogctl}.}
1108 \label{tab:klogctl_operation}
1109 \end{table}
1110
1111 Si sono riportati in tab.~\ref{tab:klogctl_operation} i possibili valori
1112 utilizzabili per \param{op}, con una breve spiegazione della relativa
1113 operazione e a come vengono usati gli altri due argomenti. Come si può notare
1114 la funzione è una sorta di interfaccia comune usata per eseguire operazioni
1115 completamente diverse fra loro.
1116
1117 L'operazione corrispondente al valore 2 \param{op} consente di leggere un
1118 messaggio dal cosiddetto \textit{log} del kernel. Eseguire questa operazione è
1119 equivalente ad eseguire una lettura dal file
1120 \procfile{/proc/kmsg},\footnote{in realtà è vero l'opposto, è questa funzione
1121   che viene eseguita quando si legge da questo file.} se non vi sono messaggi
1122 la funzione blocca in attesa di dati e ritorna soltanto quando questi
1123 diventino disponibili. In tal caso verranno letti ed
1124 estratti\footnote{estratti in quanti i dati del \textit{log} del kernel si
1125   possono leggere una volta sola, se più processi eseguono l'operazione di
1126   lettura soltanto uno riceverà i dati, a meno che completata la propria
1127   operazione di lettura non restino altri messaggi pendenti che a questo punto
1128   potrebbero essere letti da un altro processo in attesa.} dal log \param{len}
1129 byte che verranno scritti su \param{buffer}; il valore di ritorno di
1130 \func{klogctl} corrisponderà al numero di byte ottenuti.
1131
1132 Se invece si usa l'operazione 3 i dati vengono letti dal buffer circolare
1133 usato da \texttt{printk}, che mantiene tutti i messaggi stampati dal kernel
1134 fino al limite delle sue dimensioni, in questo caso i messaggi possono essere
1135 letti più volte. Usando invece l'operazione 4 si richiede, dopo aver fatto la
1136 lettura, di cancellare il buffer circolare, che risulterà vuoto ad una lettura
1137 successiva. Anche con queste operazioni \param{len} indica il numero di byte
1138 da leggere e \param{buffer} il buffer dover leggerli, e la funzione ritorna il
1139 numero di byte effettivamente letti. L'operazione 5 esegue soltanto la
1140 cancellazione del buffer circolare, \param{len} e \param{buffer} sono ignorati
1141 e la funzione ritorna un valore nullo.
1142
1143 Le operazioni corrispondenti ai valori 6, 7 ed 8 consentono di modificare la
1144 priorità oltre la quale i messaggi vengono stampati direttamente sulla
1145 \textit{console} e fanno riferimento ai parametri del kernel gestiti con le
1146 variabili contenute in \sysctlfile{kernel/printk} di cui abbiamo
1147 parlato prima, ed in particolare con 6 si imposta come corrente il valore
1148 minimo della terza variabile (\textit{minimum\_console\_level}), ottenendo
1149 l'effetto di ridurre al minimo i messaggi che arrivano in console, mentre con
1150 7 si ripristina il valore di default.\footnote{secondo la documentazione
1151   questo sarebbe quello indicato della quarta variabile,
1152   \textit{default\_console\_loglevel} in genere pari a 7, ma alcune prove con
1153   il programma \texttt{mydmesg} che si trova nei sorgenti allegati alla guida
1154   rivelano che l'unico effetto di questa operazione è riportare il valore a
1155   quello precedente se lo si è ridotto al minimo con l'operazione 6.}  Per
1156 impostare direttamente un valore specifico infine si può usare 8, nel qual
1157 caso il valore numerico del livello da impostare deve essere specificato
1158 con \param{len}, che può assumere solo un valore fra 1 e 8.
1159
1160 Infine le due operazioni 9 e 10 consentono di ottenere rispettivamente il
1161 numero di byte ancora non letti dal log del kernel, e la dimensione totale di
1162 questo. Per entrambe i dati sono restituiti come valore di ritorno, e gli
1163 argomento \param{buffer} e \param{len} sono ignorati.
1164
1165 Si tenga presente che la modifica del livello minimo per cui i messaggi
1166 vengono stampati sulla console (operazioni 6, 7 e 8) e la cancellazione del
1167 buffer circolare di \texttt{printk} (operazioni 4 e 5) sono privilegiate; fino
1168 al kernel 2.6.30 era richiesta la capacità \const{CAP\_SYS\_ADMIN}, a partire
1169 dal 2.6.38 detto privilegio è stato assegnato ad una capacità aggiuntiva,
1170 \const{CAP\_SYSLOG}. Tutto questo è stato fatto per evitare che processi
1171 eseguiti all'interno di un sistema di virtualizzazione ``\textsl{leggera}''
1172 (come i \textit{Linux Container} di LXC) che necessitano di
1173 \const{CAP\_SYS\_ADMIN} per operare all'interno del proprio ambiente
1174 ristretto, potessero anche avere la capacità di influire sui log del kernel
1175 al di fuori di questo.
1176
1177 \itindend{syslog}
1178
1179
1180
1181 \section{L'I/O su terminale}
1182 \label{sec:sess_terminal_io}
1183
1184 Benché come ogni altro dispositivo i terminali siano accessibili come file,
1185 essi hanno assunto storicamente (essendo stati a lungo l'unico modo di
1186 accedere al sistema) una loro rilevanza specifica, che abbiamo già avuto modo
1187 di incontrare nella precedente sezione.
1188
1189 Esamineremo qui le peculiarità dell'I/O eseguito sui terminali, che per la
1190 loro particolare natura presenta delle differenze rispetto ai normali file su
1191 disco e agli altri dispositivi.
1192
1193
1194
1195 \subsection{L'architettura}
1196 \label{sec:term_design}
1197
1198 I terminali sono una classe speciale di dispositivi a caratteri (si ricordi la
1199 classificazione di sez.~\ref{sec:file_file_types}); un terminale ha infatti una
1200 caratteristica che lo contraddistingue da un qualunque altro dispositivo, e
1201 cioè che è destinato a gestire l'interazione con un utente (deve essere cioè
1202 in grado di fare da terminale di controllo per una sessione), che comporta la
1203 presenza di ulteriori capacità.
1204
1205 L'interfaccia per i terminali è una delle più oscure e complesse, essendosi
1206 stratificata dagli inizi dei sistemi Unix fino ad oggi. Questo comporta una
1207 grande quantità di opzioni e controlli relativi ad un insieme di
1208 caratteristiche (come ad esempio la velocità della linea) necessarie per
1209 dispositivi, come i terminali seriali, che al giorno d'oggi sono praticamente
1210 in disuso.
1211
1212 Storicamente i primi terminali erano appunto terminali di telescriventi
1213 (\textit{teletype}), da cui deriva sia il nome dell'interfaccia, \textit{TTY},
1214 che quello dei relativi file di dispositivo, che sono sempre della forma
1215 \texttt{/dev/tty*}.\footnote{ciò vale solo in parte per i terminali virtuali,
1216   essi infatti hanno due lati, un \textit{master}, che può assumere i nomi
1217   \file{/dev/pty[p-za-e][0-9a-f]} ed un corrispondente \textit{slave} con nome
1218   \file{/dev/tty[p-za-e][0-9a-f]}.}  Oggi essi includono le porte seriali, le
1219 console virtuali dello schermo, i terminali virtuali che vengono creati come
1220 canali di comunicazione dal kernel e che di solito vengono associati alle
1221 connessioni di rete (ad esempio per trattare i dati inviati con \cmd{telnet} o
1222 \cmd{ssh}).
1223
1224 L'I/O sui terminali si effettua con le stesse modalità dei file normali: si
1225 apre il relativo file di dispositivo, e si leggono e scrivono i dati con le
1226 usuali funzioni di lettura e scrittura, così se apriamo una console virtuale
1227 avremo che \func{read} leggerà quanto immesso dalla tastiera, mentre
1228 \func{write} scriverà sullo schermo.  In realtà questo è vero solo a grandi
1229 linee, perché non tiene conto delle caratteristiche specifiche dei terminali;
1230 una delle principali infatti è che essi prevedono due modalità di operazione,
1231 dette rispettivamente ``\textsl{modo canonico}'' e ``\textsl{modo non
1232   canonico}'', che hanno dei comportamenti nettamente diversi.
1233
1234 La modalità preimpostata all'apertura del terminale è quella canonica, in cui
1235 le operazioni di lettura vengono sempre effettuate assemblando i dati in una
1236 linea;\footnote{per cui eseguendo una \func{read} su un terminale in modo
1237   canonico la funzione si bloccherà, anche se si sono scritti dei caratteri,
1238   fintanto che non si preme il tasto di ritorno a capo: a questo punto la
1239   linea sarà completa e la funzione ritornerà.} ed in cui alcuni caratteri
1240 vengono interpretati per compiere operazioni (come la generazione dei segnali
1241 illustrata in sez.~\ref{sec:sig_job_control}), questa di norma è la modalità
1242 in cui funziona la shell.
1243
1244 Un terminale in modo non canonico invece non effettua nessun accorpamento dei
1245 dati in linee né li interpreta; esso viene di solito usato dai programmi (gli
1246 editor ad esempio) che necessitano di poter leggere un carattere alla volta e
1247 che gestiscono al loro interno i vari comandi.
1248
1249 Per capire le caratteristiche dell'I/O sui terminali, occorre esaminare le
1250 modalità con cui esso viene effettuato; l'accesso, come per tutti i
1251 dispositivi, viene gestito da un driver apposito, la cui struttura generica è
1252 mostrata in fig.~\ref{fig:term_struct}. Ad un terminale sono sempre associate
1253 due code per gestire l'input e l'output, che ne implementano una
1254 bufferizzazione all'interno del kernel.\footnote{completamente indipendente
1255   dalla eventuale ulteriore bufferizzazione fornita dall'interfaccia standard
1256   dei file.}
1257
1258 \begin{figure}[!htb]
1259   \centering \includegraphics[width=14.5cm]{img/term_struct}
1260   \caption{Struttura interna generica di un driver per un terminale.}
1261   \label{fig:term_struct}
1262 \end{figure}
1263
1264 La coda di ingresso mantiene i caratteri che sono stati letti dal terminale ma
1265 non ancora letti da un processo, la sua dimensione è definita dal parametro di
1266 sistema \const{MAX\_INPUT} (si veda sez.~\ref{sec:sys_file_limits}), che ne
1267 specifica il limite minimo, in realtà la coda può essere più grande e cambiare
1268 dimensione dinamicamente. Se è stato abilitato il controllo di flusso in
1269 ingresso il driver emette i caratteri di STOP e START per bloccare e sbloccare
1270 l'ingresso dei dati; altrimenti i caratteri immessi oltre le dimensioni
1271 massime vengono persi; in alcuni casi il driver provvede ad inviare
1272 automaticamente un avviso (un carattere di BELL, che provoca un beep)
1273 sull'output quando si eccedono le dimensioni della coda.  Se è abilitato il
1274 modo canonico i caratteri in ingresso restano nella coda fintanto che non
1275 viene ricevuto un a capo; un altro parametro del sistema, \const{MAX\_CANON},
1276 specifica la dimensione massima di una riga in modo canonico.
1277
1278 La coda di uscita è analoga a quella di ingresso e contiene i caratteri
1279 scritti dai processi ma non ancora inviati al terminale. Se è abilitato il
1280 controllo di flusso in uscita il driver risponde ai caratteri di START e STOP
1281 inviati dal terminale. Le dimensioni della coda non sono specificate, ma non
1282 hanno molta importanza, in quanto qualora esse vengano eccedute il driver
1283 provvede automaticamente a bloccare la funzione chiamante.
1284
1285
1286
1287 \subsection{La gestione delle caratteristiche di un terminale}
1288 \label{sec:term_attr}
1289
1290 Data le loro peculiarità, fin dall'inizio si è posto il problema di come
1291 gestire le caratteristiche specifiche dei terminali. Storicamente i vari
1292 dialetti di Unix hanno utilizzato diverse funzioni, ma alla fine con POSIX.1 è
1293 stata effettuata una standardizzazione unificando le differenze fra BSD e
1294 System V in una unica interfaccia, che è quella usata da Linux.
1295
1296 Alcune di queste funzioni prendono come argomento un file descriptor (in
1297 origine molte operazioni venivano effettuate con \func{ioctl}), ma ovviamente
1298 possono essere usate solo con file che corrispondano effettivamente ad un
1299 terminale, altrimenti si otterrà un errore di \errcode{ENOTTY}; questo può
1300 essere evitato utilizzando preventivamente la funzione \funcd{isatty}, il cui
1301 prototipo è:
1302 \begin{prototype}{unistd.h}{int isatty(int fd)}
1303   
1304   Controlla se il file descriptor \param{fd} è un terminale.
1305   
1306   \bodydesc{La funzione restituisce 1 se \param{fd} è connesso ad un
1307     terminale, 0 altrimenti, ed in tal caso \var{errno} potrà assumere i
1308     valori:
1309   \begin{errlist}
1310   \item[\errcode{EBADF}] \param{fd} non è un file descriptor valido.
1311   \item[\errcode{EINVAL}] \param{fd} non è associato a un terminale (non
1312     ottempera a POSIX.1-2001 che richiederebbe \errcode{ENOTTY}).
1313   \end{errlist}
1314 }
1315 \end{prototype}
1316
1317 Un'altra funzione che fornisce informazioni su un terminale è \funcd{ttyname},
1318 che permette di ottenere il nome del file di dispositivo del terminale
1319 associato ad un file descriptor; il suo prototipo è:
1320 \begin{prototype}{unistd.h}{char *ttyname(int fd)}
1321   
1322   Restituisce il nome del terminale associato a \param{fd}.
1323   
1324   \bodydesc{La funzione restituisce il puntatore alla stringa contenente il
1325     nome del terminale associato \param{fd} e \val{NULL} in caso di errore,
1326     nel qual caso \var{errno} assumerà i valori:
1327   \begin{errlist}
1328   \item[\errcode{EBADF}] \param{fd} non è un file descriptor valido.
1329   \item[\errcode{ENOTTY}] \param{fd} non è associato a un terminale.
1330   \end{errlist}
1331 }
1332 \end{prototype}
1333 \noindent ma si tenga presente che la funzione restituisce un indirizzo di
1334 dati statici, che pertanto possono essere sovrascritti da successive chiamate.
1335
1336 Della funzione esiste anche una versione \index{funzioni!rientranti}
1337 rientrante, \funcd{ttyname\_r}, che non presenta il problema dell'uso di una
1338 zona di memoria statica; il suo prototipo è:
1339 \begin{prototype}{unistd.h}{int ttyname\_r(int fd, char *buff, size\_t len)}
1340   
1341   Restituisce il nome del terminale associato a \param{fd}.
1342   
1343   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
1344     errore, nel qual caso \var{errno} assumerà i valori:
1345     \begin{errlist}
1346     \item[\errcode{ERANGE}] la lunghezza del buffer \param{len} non è
1347       sufficiente per contenere la stringa restituita.
1348     \end{errlist}
1349     oltre ai precedenti \errval{EBADF} ed \errval{ENOTTY}.  }
1350 \end{prototype}
1351
1352 La funzione prende due argomenti in più, il puntatore \param{buff} alla zona
1353 di memoria in cui l'utente vuole che il risultato venga scritto, che dovrà
1354 essere stata allocata in precedenza, e la relativa dimensione,
1355 \param{len}. Se la stringa che deve essere restituita, compreso lo zero di
1356 terminazione finale, eccede questa dimensione si avrà una condizione di
1357 errore.
1358
1359 Una funzione funzione analoga alle precedenti anch'essa prevista da POSIX.1,
1360 che restituisce sempre il nome di un file di dispositivo, è \funcd{ctermid},
1361 il cui prototipo è:
1362 \begin{prototype}{stdio.h}{char *ctermid(char *s)}
1363   
1364   Restituisce il nome del terminale di controllo del processo.
1365   
1366   \bodydesc{La funzione restituisce il puntatore alla stringa contenente il
1367     \textit{pathname} del terminale o \val{NULL} se non non riesce ad eseguire
1368     l'operazione.}
1369 \end{prototype}
1370
1371 La funzione restituisce un puntatore al \textit{pathname} del file di
1372 dispositivo del terminale di controllo del processo chiamante.  Se si passa
1373 come argomento \val{NULL} la funzione restituisce il puntatore ad una stringa
1374 statica che può essere sovrascritta da chiamate successive, e non è
1375 rientrante. Indicando invece un puntatore ad una zona di memoria già allocata
1376 la stringa sarà scritta su di essa, ma in questo caso il buffer preallocato
1377 deve essere di almeno \const{L\_ctermid}\footnote{\const{L\_ctermid} è una
1378   delle varie costanti del sistema, non trattata esplicitamente in
1379   sez.~\ref{sec:sys_characteristics} che indica la dimensione che deve avere
1380   una stringa per poter contenere il nome di un terminale.} caratteri.
1381
1382 Si tenga presente che il \itindex{pathname} \textit{pathname} restituito dalla
1383 funzione potrebbe non identificare univocamente il terminale (ad esempio
1384 potrebbe essere \file{/dev/tty}), inoltre non è detto che il processo possa
1385 effettivamente essere in grado di aprire il terminale.
1386
1387 I vari attributi associati ad un terminale vengono mantenuti per ciascuno di
1388 essi in una struttura \struct{termios} che viene usata dalle varie funzioni
1389 dell'interfaccia. In fig.~\ref{fig:term_termios} si sono riportati tutti i
1390 campi della definizione di questa struttura usata in Linux; di questi solo i
1391 primi cinque sono previsti dallo standard POSIX.1, ma le varie implementazioni
1392 ne aggiungono degli altri per mantenere ulteriori informazioni.\footnote{la
1393   definizione della struttura si trova in \file{bits/termios.h}, da non
1394   includere mai direttamente, Linux, seguendo l'esempio di BSD, aggiunge i due
1395   campi \var{c\_ispeed} e \var{c\_ospeed} per mantenere le velocità delle
1396   linee seriali, ed un campo ulteriore, \var{c\_line} per indicare la
1397   disciplina di linea.}
1398
1399 \begin{figure}[!htb] 
1400   \footnotesize \centering
1401   \begin{minipage}[c]{\textwidth}
1402     \includestruct{listati/termios.h}
1403   \end{minipage} 
1404   \normalsize 
1405   \caption{La struttura \structd{termios}, che identifica le proprietà di un
1406     terminale.}
1407   \label{fig:term_termios}
1408 \end{figure}
1409
1410 % per le definizioni dei dati vedi anche:
1411 % http://www.lafn.org/~dave/linux/termios.txt 
1412
1413 I primi quattro campi sono quattro flag che controllano il comportamento del
1414 terminale; essi sono realizzati come maschera binaria, pertanto il tipo
1415 \type{tcflag\_t} è di norma realizzato con un intero senza segno di lunghezza
1416 opportuna. I valori devono essere specificati bit per bit, avendo cura di non
1417 modificare i bit su cui non si interviene.
1418
1419 \begin{table}[b!ht]
1420   \footnotesize
1421   \centering
1422   \begin{tabular}[c]{|l|p{10cm}|}
1423     \hline
1424     \textbf{Valore}& \textbf{Significato}\\
1425     \hline
1426     \hline
1427     \const{IGNBRK} & Ignora le condizioni di BREAK sull'input. Una
1428                      \textit{condizione di BREAK} è definita nel contesto di
1429                      una trasmissione seriale asincrona come una sequenza di
1430                      bit nulli più lunga di un byte.\\
1431     \const{BRKINT} & Controlla la reazione ad un BREAK quando
1432                      \const{IGNBRK} non è impostato. Se \const{BRKINT} è
1433                      impostato il BREAK causa lo scarico delle code, 
1434                      e se il terminale è il terminale di controllo per un 
1435                      gruppo in foreground anche l'invio di \signal{SIGINT} ai
1436                      processi di quest'ultimo. Se invece \const{BRKINT} non è
1437                      impostato un BREAK viene letto come un carattere
1438                      NUL, a meno che non sia impostato \const{PARMRK}
1439                      nel qual caso viene letto come la sequenza di caratteri
1440                      \texttt{0xFF 0x00 0x00}.\\
1441     \const{IGNPAR} & Ignora gli errori di parità, il carattere viene passato
1442                      come ricevuto. Ha senso solo se si è impostato 
1443                      \const{INPCK}.\\
1444     \const{PARMRK} & Controlla come vengono riportati gli errori di parità. Ha 
1445                      senso solo se \const{INPCK} è impostato e \const{IGNPAR}
1446                      no. Se impostato inserisce una sequenza \texttt{0xFF
1447                        0x00} prima di ogni carattere che presenta errori di
1448                      parità, se non impostato un carattere con errori di
1449                      parità viene letto come uno \texttt{0x00}. Se un
1450                      carattere ha il valore \texttt{0xFF} e \const{ISTRIP} 
1451                      non è impostato, per evitare ambiguità esso viene sempre
1452                      riportato come \texttt{0xFF 0xFF}.\\
1453     \const{INPCK}  & Abilita il controllo di parità in ingresso. Se non viene
1454                      impostato non viene fatto nessun controllo ed i caratteri
1455                      vengono passati in input direttamente.\\
1456     \const{ISTRIP} & Se impostato i caratteri in input sono tagliati a sette
1457                      bit mettendo a zero il bit più significativo, altrimenti 
1458                      vengono passati tutti gli otto bit.\\
1459     \const{INLCR}  & Se impostato in ingresso il carattere di a capo
1460                      (\verb|'\n'|) viene automaticamente trasformato in un
1461                      ritorno carrello (\verb|'\r'|).\\
1462     \const{IGNCR}  & Se impostato il carattere di ritorno carrello 
1463                      (\textit{carriage return}, \verb|'\r'|) viene scartato 
1464                      dall'input. Può essere utile per i terminali che inviano 
1465                      entrambi i caratteri di ritorno carrello e a capo 
1466                      (\textit{newline}, \verb|'\n'|).\\
1467     \const{ICRNL}  & Se impostato un carattere di ritorno carrello  
1468                      (\verb|'\r'|) sul terminale viene automaticamente 
1469                      trasformato in un a capo (\verb|'\n'|) sulla coda di
1470                      input.\\
1471     \const{IUCLC}  & Se impostato trasforma i caratteri maiuscoli dal
1472                      terminale in minuscoli sull'ingresso (opzione non 
1473                      POSIX).\\
1474     \const{IXON}   & Se impostato attiva il controllo di flusso in uscita con i
1475                      caratteri di START e STOP. se si riceve
1476                      uno STOP l'output viene bloccato, e viene fatto
1477                      ripartire solo da uno START, e questi due
1478                      caratteri non vengono passati alla coda di input. Se non
1479                      impostato i due caratteri sono passati alla coda di input
1480                      insieme agli altri.\\
1481     \const{IXANY}  & Se impostato con il controllo di flusso permette a
1482                      qualunque carattere di far ripartire l'output bloccato da
1483                      un carattere di STOP.\\
1484     \const{IXOFF}  & Se impostato abilita il controllo di flusso in
1485                      ingresso. Il computer emette un carattere di STOP per
1486                      bloccare l'input dal terminale e lo sblocca con il
1487                      carattere START.\\
1488     \const{IMAXBEL}& Se impostato fa suonare il cicalino se si riempie la cosa
1489                      di ingresso; in Linux non è implementato e il kernel si
1490                      comporta cose se fosse sempre impostato (è una estensione
1491                      BSD).\\
1492     \const{IUTF8}  & Indica che l'input è in UTF-8, cosa che consente di
1493                      utilizzare la cancellazione dei caratteri in maniera
1494                      corretta (dal kernel 2.6.4 e non previsto in POSIX).\\
1495     \hline
1496   \end{tabular}
1497   \caption{Costanti identificative dei vari bit del flag di controllo
1498     \var{c\_iflag} delle modalità di input di un terminale.}
1499   \label{tab:sess_termios_iflag}
1500 \end{table}
1501
1502 Il primo flag, mantenuto nel campo \var{c\_iflag}, è detto \textsl{flag di
1503   input} e controlla le modalità di funzionamento dell'input dei caratteri sul
1504 terminale, come il controllo di parità, il controllo di flusso, la gestione
1505 dei caratteri speciali; un elenco dei vari bit, del loro significato e delle
1506 costanti utilizzate per identificarli è riportato in
1507 tab.~\ref{tab:sess_termios_iflag}.
1508
1509 Si noti come alcuni di questi flag (come quelli per la gestione del flusso)
1510 fanno riferimento a delle caratteristiche che ormai sono completamente
1511 obsolete; la maggior parte inoltre è tipica di terminali seriali, e non ha
1512 alcun effetto su dispositivi diversi come le console virtuali o gli
1513 pseudo-terminali usati nelle connessioni di rete.
1514
1515 Il secondo flag, mantenuto nel campo \var{c\_oflag}, è detto \textsl{flag di
1516   output} e controlla le modalità di funzionamento dell'output dei caratteri,
1517 come l'impacchettamento dei caratteri sullo schermo, la traslazione degli a
1518 capo, la conversione dei caratteri speciali; un elenco dei vari bit, del loro
1519 significato e delle costanti utilizzate per identificarli è riportato in
1520 tab.~\ref{tab:sess_termios_oflag}, di questi solo \const{OPOST} era previsto
1521 da POSIX.1, buona parte degli altri sono stati aggiunti in POSIX.1-2001,
1522 quelli ancora assenti sono stati indicati esplicitamente.
1523
1524 \begin{table}[!htb]
1525   \footnotesize
1526   \centering
1527   \begin{tabular}[c]{|l|p{10cm}|}
1528     \hline
1529     \textbf{Valore}& \textbf{Significato}\\
1530     \hline
1531     \hline
1532     \const{OPOST} & Se impostato i caratteri vengono convertiti opportunamente
1533                     (in maniera dipendente dall'implementazione) per la 
1534                     visualizzazione sul terminale, ad esempio al
1535                     carattere di a capo (NL) può venire aggiunto un ritorno
1536                     carrello (CR).\\
1537     \const{OLCUC} & Se impostato trasforma i caratteri minuscoli in ingresso 
1538                     in caratteri maiuscoli sull'uscita (non previsto da
1539                     POSIX).\\
1540     \const{ONLCR} & Se impostato converte automaticamente il carattere di a 
1541                     capo (NL) in un carattere di ritorno carrello (CR).\\
1542     \const{OCRNL} & Se impostato converte automaticamente il carattere di a
1543                     capo (NL) nella coppia di caratteri ritorno carrello, a 
1544                     capo (CR-NL).\\
1545     \const{ONOCR} & Se impostato converte il carattere di ritorno carrello
1546                     (CR) nella coppia di caratteri CR-NL.\\
1547     \const{ONLRET}& Se impostato rimuove dall'output il carattere di ritorno
1548                     carrello (CR).\\
1549     \const{OFILL} & Se impostato in caso di ritardo sulla linea invia dei
1550                     caratteri di riempimento invece di attendere.\\
1551     \const{OFDEL} & Se impostato il carattere di riempimento è DEL
1552                     (\texttt{0x3F}), invece che NUL (\texttt{0x00}), (non
1553                     previsto da POSIX e non implementato su Linux).\\
1554     \const{NLDLY} & Maschera per i bit che indicano il ritardo per il
1555                     carattere di a capo (NL), i valori possibili sono 
1556                     \val{NL0} o \val{NL1}.\\
1557     \const{CRDLY} & Maschera per i bit che indicano il ritardo per il
1558                     carattere ritorno carrello (CR), i valori possibili sono
1559                     \val{CR0}, \val{CR1}, \val{CR2} o \val{CR3}.\\
1560     \const{TABDLY}& Maschera per i bit che indicano il ritardo per il
1561                     carattere di tabulazione, i valori possibili sono
1562                     \val{TAB0}, \val{TAB1}, \val{TAB2} o \val{TAB3}.\\
1563     \const{BSDLY} & Maschera per i bit che indicano il ritardo per il
1564                     carattere di ritorno indietro (\textit{backspace}), i
1565                     valori possibili sono \val{BS0} o \val{BS1}.\\
1566     \const{VTDLY} & Maschera per i bit che indicano il ritardo per il
1567                     carattere di tabulazione verticale, i valori possibili sono
1568                     \val{VT0} o \val{VT1}.\\
1569     \const{FFDLY} & Maschera per i bit che indicano il ritardo per il
1570                     carattere di pagina nuova (\textit{form feed}), i valori
1571                     possibili sono \val{FF0} o \val{FF1}.\\
1572     \hline
1573   \end{tabular}
1574   \caption{Costanti identificative dei vari bit del flag di controllo
1575     \var{c\_oflag} delle modalità di output di un terminale.}
1576   \label{tab:sess_termios_oflag}
1577 \end{table}
1578
1579 Si noti come alcuni dei valori riportati in tab.~\ref{tab:sess_termios_oflag}
1580 fanno riferimento a delle maschere di bit; essi infatti vengono utilizzati per
1581 impostare alcuni valori numerici relativi ai ritardi nell'output di alcuni
1582 caratteri: una caratteristica originaria dei primi terminali su telescrivente,
1583 che avevano bisogno di tempistiche diverse per spostare il carrello in
1584 risposta ai caratteri speciali, e che oggi sono completamente in disuso.
1585
1586 Si tenga presente inoltre che nel caso delle maschere il valore da inserire in
1587 \var{c\_oflag} deve essere fornito avendo cura di cancellare prima tutti i bit
1588 della maschera, i valori da immettere infatti (quelli riportati nella
1589 spiegazione corrispondente) sono numerici e non per bit, per cui possono
1590 sovrapporsi fra di loro. Occorrerà perciò utilizzare un codice del tipo:
1591
1592 \includecodesnip{listati/oflag.c}
1593
1594 \noindent che prima cancella i bit della maschera in questione e poi setta il
1595 valore.
1596
1597
1598 \begin{table}[!htb]
1599   \footnotesize
1600   \centering
1601   \begin{tabular}[c]{|l|p{10cm}|}
1602     \hline
1603     \textbf{Valore}& \textbf{Significato}\\
1604     \hline
1605     \hline
1606     \const{CBAUD}  & Maschera dei bit (4+1) usati per impostare della velocità
1607                      della linea (il \textit{baud rate}) in ingresso; non è
1608                      presente in POSIX ed in Linux non è implementato in
1609                      quanto viene usato un apposito campo di
1610                      \struct{termios}.\\ 
1611     \const{CBAUDEX}& Bit aggiuntivo per l'impostazione della velocità della
1612                      linea, non è presente in POSIX e per le stesse
1613                      motivazioni del precedente non è implementato in Linux.\\
1614     \const{CSIZE}  & Maschera per i bit usati per specificare la dimensione 
1615                      del carattere inviato lungo la linea di trasmissione, i
1616                      valore ne indica la lunghezza (in bit), ed i valori   
1617                      possibili sono \val{CS5}, \val{CS6}, \val{CS7} e \val{CS8}
1618                      corrispondenti ad un analogo numero di bit.\\
1619     \const{CSTOPB} & Se impostato vengono usati due bit di stop sulla linea
1620                      seriale, se non impostato ne viene usato soltanto uno.\\
1621     \const{CREAD}  & Se è impostato si può leggere l'input del terminale,
1622                      altrimenti i caratteri in ingresso vengono scartati
1623                      quando arrivano.\\
1624     \const{PARENB} & Se impostato abilita la generazione il controllo di
1625                      parità. La reazione in caso di errori dipende dai
1626                      relativi valori per \var{c\_iflag}, riportati in 
1627                      tab.~\ref{tab:sess_termios_iflag}. Se non è impostato i
1628                      bit di parità non vengono generati e i caratteri non
1629                      vengono controllati.\\
1630     \const{PARODD} & Ha senso solo se è attivo anche \const{PARENB}. Se 
1631                      impostato viene usata una parità è dispari, altrimenti 
1632                      viene usata una parità pari.\\
1633     \const{HUPCL}  & Se è impostato viene distaccata la connessione del
1634                      modem quando l'ultimo dei processi che ha ancora un file
1635                      aperto sul terminale lo chiude o esce.\\
1636     \const{LOBLK}  & Se impostato blocca l'output su un layer di shell non
1637                      corrente, non è presente in POSIX e non è implementato
1638                      da Linux.\\
1639     \const{CLOCAL} & Se impostato indica che il terminale è connesso in locale
1640                      e che le linee di controllo del modem devono essere
1641                      ignorate. Se non impostato effettuando una chiamata ad
1642                      \func{open} senza aver specificato il flag di
1643                      \const{O\_NOBLOCK} si bloccherà il processo finché 
1644                      non si è stabilita una connessione con il modem; inoltre 
1645                      se viene rilevata una disconnessione viene inviato un
1646                      segnale di \signal{SIGHUP} al processo di controllo del
1647                      terminale. La lettura su un terminale sconnesso comporta
1648                      una condizione di \textit{end of file} e la scrittura un
1649                      errore di \errcode{EIO}.\\
1650     \const{CIBAUD} & Maschera dei bit della velocità della linea in
1651                      ingresso; analogo a \const{CBAUD}, non è previsto da
1652                      POSIX e non è implementato in Linux dato che è
1653                      mantenuto in un apposito campo di \struct{termios}.\\
1654     \const{CMSPAR} & imposta un bit di parità costante: se \const{PARODD} è
1655                      impostato la parità è sempre 1 (\textit{MARK}) se non è
1656                      impostato la parità è sempre 0 (\textit{SPACE}), non è
1657                      previsto da POSIX.\\ 
1658 % vedi: http://www.lothosoft.ch/thomas/libmip/markspaceparity.php
1659     \const{CRTSCTS}& Abilita il controllo di flusso hardware sulla seriale,
1660                      attraverso l'utilizzo delle dei due fili di RTS e CTS.\\
1661     \hline
1662   \end{tabular}
1663   \caption{Costanti identificative dei vari bit del flag di controllo
1664     \var{c\_cflag} delle modalità di controllo di un terminale.}
1665   \label{tab:sess_termios_cflag}
1666 \end{table}
1667
1668 Il terzo flag, mantenuto nel campo \var{c\_cflag}, è detto \textsl{flag di
1669   controllo} ed è legato al funzionamento delle linee seriali, permettendo di
1670 impostarne varie caratteristiche, come il numero di bit di stop, le
1671 impostazioni della parità, il funzionamento del controllo di flusso; esso ha
1672 senso solo per i terminali connessi a linee seriali. Un elenco dei vari bit,
1673 del loro significato e delle costanti utilizzate per identificarli è riportato
1674 in tab.~\ref{tab:sess_termios_cflag}.
1675
1676 I valori di questo flag sono molto specifici, e completamente indirizzati al
1677 controllo di un terminale che opera attraverso una linea seriale; essi
1678 pertanto non hanno nessuna rilevanza per i terminali che usano un'altra
1679 interfaccia fisica, come le console virtuali e gli pseudo-terminali usati
1680 dalle connessioni di rete.
1681
1682 Inoltre alcuni valori di questi flag sono previsti solo per quelle
1683 implementazioni (lo standard POSIX non specifica nulla riguardo
1684 l'implementazione, ma solo delle funzioni di lettura e scrittura) che
1685 mantengono le velocità delle linee seriali all'interno dei flag; come
1686 accennato in Linux questo viene fatto (seguendo l'esempio di BSD) attraverso
1687 due campi aggiuntivi, \var{c\_ispeed} e \var{c\_ospeed}, nella struttura
1688 \struct{termios} (mostrati in fig.~\ref{fig:term_termios}).
1689
1690 Il quarto flag, mantenuto nel campo \var{c\_lflag}, è detto \textsl{flag
1691   locale}, e serve per controllare il funzionamento dell'interfaccia fra il
1692 driver e l'utente, come abilitare l'eco, gestire i caratteri di controllo e
1693 l'emissione dei segnali, impostare modo canonico o non canonico; un elenco dei
1694 vari bit, del loro significato e delle costanti utilizzate per identificarli è
1695 riportato in tab.~\ref{tab:sess_termios_lflag}. Con i terminali odierni l'unico
1696 flag con cui probabilmente si può avere a che fare è questo, in quanto è con
1697 questo che si impostano le caratteristiche generiche comuni a tutti i
1698 terminali.
1699
1700 \begin{table}[b!ht]
1701   \footnotesize
1702   \centering
1703   \begin{tabular}[c]{|l|p{10cm}|}
1704     \hline
1705     \textbf{Valore}& \textbf{Significato}\\
1706     \hline
1707     \hline
1708     \const{ISIG}   & Se impostato abilita il riconoscimento dei caratteri
1709                      INTR, QUIT, e SUSP generando il relativo segnale.\\
1710     \const{ICANON} & Se impostato il terminale opera in modo canonico,
1711                      altrimenti opera in modo non canonico.\\
1712     \const{XCASE}  & Se impostato il terminale funziona solo con le
1713                      maiuscole. L'input è convertito in minuscole tranne per i
1714                      caratteri preceduti da una ``\texttt{\bslash}''. In output
1715                      le maiuscole sono precedute da una ``\texttt{\bslash}'' e 
1716                      le minuscole convertite in maiuscole. Non è presente in
1717                      POSIX.\\
1718     \const{ECHO}   & Se è impostato viene attivato l'eco dei caratteri in
1719                      input sull'output del terminale.\\
1720     \const{ECHOE}  & Se è impostato l'eco mostra la cancellazione di un
1721                      carattere in input (in reazione al carattere ERASE)
1722                      cancellando l'ultimo carattere della riga corrente dallo
1723                      schermo; altrimenti il carattere è rimandato in eco per
1724                      mostrare quanto accaduto (usato per i terminali con
1725                      l'uscita su una stampante).\\
1726     \const{ECHOK}  & Se impostato abilita il trattamento della visualizzazione
1727                      del carattere KILL, andando a capo dopo aver visualizzato
1728                      lo stesso, altrimenti viene solo mostrato il carattere e
1729                      sta all'utente ricordare che l'input precedente è stato
1730                      cancellato.\\
1731     \const{ECHONL} & Se impostato viene effettuato l'eco di un a
1732                      capo (\verb|\n|) anche se non è stato impostato
1733                      \const{ECHO}.\\
1734     \const{ECHOCTL}& Se impostato insieme ad \const{ECHO} i caratteri di
1735                      controllo ASCII (tranne TAB, NL, START, e STOP) sono
1736                      mostrati nella forma che prepone un ``\texttt{\circonf}'' 
1737                      alla lettera ottenuta sommando \texttt{0x40} al valore del
1738                      carattere (di solito questi si possono ottenere anche
1739                      direttamente premendo il tasto \texttt{ctrl} più la
1740                      relativa lettera). Non è presente in POSIX.\\
1741     \const{ECHOPRT}& Se impostato abilita la visualizzazione del carattere di
1742                      cancellazione in una modalità adatta ai terminali con
1743                      l'uscita su stampante; l'invio del carattere di ERASE
1744                      comporta la stampa di un ``\texttt{|}'' seguito dal
1745                      carattere cancellato, e così via in caso di successive
1746                      cancellazioni, quando si riprende ad immettere carattere 
1747                      normali prima verrà stampata una ``\texttt{/}''. Non è
1748                      presente in POSIX.\\
1749     \const{ECHOKE} & Se impostato abilita il trattamento della visualizzazione
1750                      del carattere KILL cancellando i caratteri precedenti
1751                      nella linea secondo le modalità specificate dai valori di
1752                      \const{ECHOE} e \const{ECHOPRT}. Non è presente in
1753                      POSIX.\\ 
1754     \const{DEFECHO}& Se impostato effettua l'eco solo se c'è un processo in
1755                      lettura. Non è presente in POSIX e non è supportato da
1756                      Linux.\\
1757     \const{FLUSHO} & Effettua la cancellazione della coda di uscita. Viene
1758                      attivato dal carattere DISCARD. Non è presente in POSIX e
1759                      non è supportato da Linux.\\
1760     \const{NOFLSH} & Se impostato disabilita lo scarico delle code di ingresso
1761                      e uscita quando vengono emessi i segnali \signal{SIGINT}, 
1762                      \signal{SIGQUIT} e \signal{SIGSUSP}.\\
1763     \const{TOSTOP} & Se abilitato, con il supporto per il job control presente,
1764                      genera il segnale \signal{SIGTTOU} per un processo in
1765                      background che cerca di scrivere sul terminale.\\
1766     \const{PENDIN} & Indica che la linea deve essere ristampata, viene
1767                      attivato dal carattere REPRINT e resta attivo fino alla
1768                      fine della ristampa. Non è presente in POSIX e
1769                      non è supportato in Linux.\\
1770     \const{IEXTEN} & Abilita alcune estensioni previste dalla
1771                      implementazione. Deve essere impostato perché caratteri
1772                      speciali come EOL2, LNEXT, REPRINT e WERASE possano
1773                      essere interpretati.\\
1774     \hline
1775   \end{tabular}
1776   \caption{Costanti identificative dei vari bit del flag di controllo
1777     \var{c\_lflag} delle modalità locali di un terminale.}
1778   \label{tab:sess_termios_lflag}
1779 \end{table}
1780
1781 Si tenga presente che i flag che riguardano le modalità di eco dei caratteri
1782 (\const{ECHOE}, \const{ECHOPRT}, \const{ECHOK}, \const{ECHOKE},
1783 \const{ECHONL}) controllano solo il comportamento della visualizzazione, il
1784 riconoscimento dei vari caratteri dipende dalla modalità di operazione, ed
1785 avviene solo in modo canonico, pertanto questi flag non hanno significato se
1786 non è impostato \const{ICANON}.
1787
1788 Oltre ai vari flag per gestire le varie caratteristiche dei terminali,
1789 \struct{termios} contiene pure il campo \var{c\_cc} che viene usato per
1790 impostare i caratteri speciali associati alle varie funzioni di controllo. Il
1791 numero di questi caratteri speciali è indicato dalla costante \const{NCCS},
1792 POSIX ne specifica almeno 11, ma molte implementazioni ne definiscono molti
1793 altri.\footnote{in Linux il valore della costante è 32, anche se i caratteri
1794   effettivamente definiti sono solo 17.}
1795
1796 \begin{table}[!htb]
1797   \footnotesize
1798   \centering
1799   \begin{tabular}[c]{|l|c|c|p{9cm}|}
1800     \hline
1801     \textbf{Indice} & \textbf{Valore}&\textbf{Codice} & \textbf{Funzione}\\
1802     \hline
1803     \hline
1804     \const{VINTR} &\texttt{0x03}&(\texttt{C-c})& Carattere di interrupt, 
1805                                                  provoca l'emissione di 
1806                                                  \signal{SIGINT}.\\
1807     \const{VQUIT} &\texttt{0x1C}&(\texttt{C-\bslash})& Carattere di uscita,  
1808                                                  provoca l'emissione di 
1809                                                  \signal{SIGQUIT}.\\
1810     \const{VERASE}&\texttt{0x7f}&DEL,\texttt{C-?}& Carattere di ERASE, cancella
1811                                                  l'ultimo carattere
1812                                                  precedente nella linea.\\
1813     \const{VKILL} &\texttt{0x15}&(\texttt{C-u})& Carattere di KILL, cancella
1814                                                  l'intera riga.\\
1815     \const{VEOF}  &\texttt{0x04}&(\texttt{C-d})& Carattere di
1816                                                  \textit{end-of-file}. Causa
1817                                                  l'invio del contenuto del
1818                                                  buffer di ingresso al
1819                                                  processo in lettura anche se
1820                                                  non è ancora stato ricevuto
1821                                                  un a capo. Se è il primo
1822                                                  carattere immesso comporta il
1823                                                  ritorno di \func{read} con
1824                                                  zero caratteri, cioè la
1825                                                  condizione di
1826                                                  \textit{end-of-file}.\\
1827     \const{VMIN}  &     ---     &  ---   & Numero minimo di caratteri per una 
1828                                            lettura in modo non canonico.\\
1829     \const{VEOL}  &\texttt{0x00}& NUL &    Carattere di fine riga. Agisce come
1830                                            un a capo, ma non viene scartato ed
1831                                            è letto come l'ultimo carattere
1832                                            nella riga.\\
1833     \const{VTIME} &     ---     &  ---   & Timeout, in decimi di secondo, per
1834                                            una lettura in modo non canonico.\\
1835     \const{VEOL2} &\texttt{0x00}&   NUL  & Ulteriore carattere di fine
1836                                            riga. Ha lo stesso effetto di
1837                                            \const{VEOL} ma può essere un
1838                                            carattere diverso. \\
1839     \const{VSWTC} &\texttt{0x00}&   NUL  & Carattere di switch. Non supportato
1840                                            in Linux.\\
1841     \const{VSTART}&\texttt{0x17}&(\texttt{C-q})& Carattere di START. Riavvia un
1842                                                  output bloccato da uno STOP.\\
1843     \const{VSTOP} &\texttt{0x19}&(\texttt{C-s})& Carattere di STOP. Blocca
1844                                                  l'output fintanto che non
1845                                                  viene premuto un carattere di
1846                                                  START.\\
1847     \const{VSUSP} &\texttt{0x1A}&(\texttt{C-z})& Carattere di
1848                                                  sospensione. Invia il segnale
1849                                                  \signal{SIGTSTP}.\\
1850     \const{VDSUSP}&\texttt{0x19}&(\texttt{C-y})& Carattere di sospensione
1851                                                  ritardata. Invia il segnale 
1852                                                  \signal{SIGTSTP} quando il
1853                                                  carattere viene letto dal
1854                                                  programma, (non presente in
1855                                                  POSIX e non riconosciuto in
1856                                                  Linux).\\ 
1857     \const{VLNEXT}&\texttt{0x16}&(\texttt{C-v})& Carattere di escape, serve a
1858                                                  quotare il carattere
1859                                                  successivo che non viene
1860                                                  interpretato ma passato
1861                                                  direttamente all'output.\\
1862     \const{VWERASE}&\texttt{0x17}&(\texttt{C-w})&Cancellazione di una
1863                                                  parola.\\
1864     \const{VREPRINT}&\texttt{0x12}&(\texttt{C-r})& Ristampa i caratteri non
1865                                                  ancora letti (non presente in
1866                                                  POSIX).\\
1867     \const{VDISCARD}&\texttt{0x0F}&(\texttt{C-o})& Non riconosciuto in Linux.\\
1868     \const{VSTATUS} &\texttt{0x13}&(\texttt{C-t})& Non riconosciuto in Linux.\\
1869     \hline
1870   \end{tabular}
1871   \caption{Valori dei caratteri di controllo mantenuti nel campo \var{c\_cc}
1872     della struttura \struct{termios}.} 
1873   \label{tab:sess_termios_cc}
1874 \end{table}
1875
1876
1877 A ciascuna di queste funzioni di controllo corrisponde un elemento del vettore
1878 \var{c\_cc} che specifica quale è il carattere speciale associato; per
1879 portabilità invece di essere indicati con la loro posizione numerica nel
1880 vettore, i vari elementi vengono indicizzati attraverso delle opportune
1881 costanti, il cui nome corrisponde all'azione ad essi associata. Un elenco
1882 completo dei caratteri di controllo, con le costanti e delle funzionalità
1883 associate è riportato in tab.~\ref{tab:sess_termios_cc}, usando quelle
1884 definizioni diventa possibile assegnare un nuovo carattere di controllo con un
1885 codice del tipo:
1886 \includecodesnip{listati/value_c_cc.c}
1887
1888 La maggior parte di questi caratteri (tutti tranne \const{VTIME} e
1889 \const{VMIN}) hanno effetto solo quando il terminale viene utilizzato in modo
1890 canonico; per alcuni devono essere soddisfatte ulteriori richieste, ad esempio
1891 \const{VINTR}, \const{VSUSP}, e \const{VQUIT} richiedono sia impostato
1892 \const{ISIG}; \const{VSTART} e \const{VSTOP} richiedono sia impostato
1893 \const{IXON}; \const{VLNEXT}, \const{VWERASE}, \const{VREPRINT} richiedono sia
1894 impostato \const{IEXTEN}.  In ogni caso quando vengono attivati i caratteri
1895 vengono interpretati e non sono passati sulla coda di ingresso.
1896
1897 Per leggere ed scrivere tutte le varie impostazioni dei terminali viste finora
1898 lo standard POSIX prevede due funzioni che utilizzano come argomento un
1899 puntatore ad una struttura \struct{termios} che sarà quella in cui andranno
1900 immagazzinate le impostazioni.  Le funzioni sono \funcd{tcgetattr} e
1901 \funcd{tcsetattr} ed il loro prototipo è:
1902 \begin{functions}
1903   \headdecl{unistd.h} 
1904   \headdecl{termios.h}  
1905   \funcdecl{int tcgetattr(int fd, struct termios *termios\_p)} 
1906   Legge il valore delle impostazioni di un terminale.
1907   
1908   \funcdecl{int tcsetattr(int fd, int optional\_actions, struct termios
1909     *termios\_p)} 
1910   Scrive le impostazioni di un terminale.
1911   
1912   \bodydesc{Entrambe le funzioni restituiscono 0 in caso di successo e -1 in
1913     caso di errore, nel qual caso \var{errno} assumerà i valori:
1914     \begin{errlist}
1915     \item[\errcode{EINTR}] la funzione è stata interrotta. 
1916     \end{errlist}
1917     ed inoltre \errval{EBADF}, \errval{ENOTTY} ed \errval{EINVAL}. 
1918   }
1919 \end{functions}
1920
1921 Le funzioni operano sul terminale cui fa riferimento il file descriptor
1922 \param{fd} utilizzando la struttura indicata dal puntatore \param{termios\_p}
1923 per lo scambio dei dati. Si tenga presente che le impostazioni sono associate
1924 al terminale e non al file descriptor; questo significa che se si è cambiata
1925 una impostazione un qualunque altro processo che apra lo stesso terminale, od
1926 un qualunque altro file descriptor che vi faccia riferimento, vedrà le nuove
1927 impostazioni pur non avendo nulla a che fare con il file descriptor che si è
1928 usato per effettuare i cambiamenti.
1929
1930 Questo significa che non è possibile usare file descriptor diversi per
1931 utilizzare automaticamente il terminale in modalità diverse, se esiste una
1932 necessità di accesso differenziato di questo tipo occorrerà cambiare
1933 esplicitamente la modalità tutte le volte che si passa da un file descriptor
1934 ad un altro.
1935
1936 La funzione \func{tcgetattr} legge i valori correnti delle impostazioni di un
1937 terminale qualunque nella struttura puntata da \param{termios\_p};
1938 \func{tcsetattr} invece effettua la scrittura delle impostazioni e quando
1939 viene invocata sul proprio terminale di controllo può essere eseguita con
1940 successo solo da un processo in foreground.  Se invocata da un processo in
1941 background infatti tutto il gruppo riceverà un segnale di \signal{SIGTTOU} come
1942 se si fosse tentata una scrittura, a meno che il processo chiamante non abbia
1943 \signal{SIGTTOU} ignorato o bloccato, nel qual caso l'operazione sarà eseguita.
1944
1945 La funzione \func{tcsetattr} prevede tre diverse modalità di funzionamento,
1946 specificabili attraverso l'argomento \param{optional\_actions}, che permette
1947 di stabilire come viene eseguito il cambiamento delle impostazioni del
1948 terminale, i valori possibili sono riportati in
1949 tab.~\ref{tab:sess_tcsetattr_option}; di norma (come fatto per le due funzioni
1950 di esempio) si usa sempre \const{TCSANOW}, le altre opzioni possono essere
1951 utili qualora si cambino i parametri di output.
1952
1953 \begin{table}[htb]
1954   \footnotesize
1955   \centering
1956   \begin{tabular}[c]{|l|p{8cm}|}
1957     \hline
1958     \textbf{Valore}& \textbf{Significato}\\
1959     \hline
1960     \hline
1961     \const{TCSANOW}  & Esegue i cambiamenti in maniera immediata.\\
1962     \const{TCSADRAIN}& I cambiamenti vengono eseguiti dopo aver atteso che
1963                        tutto l'output presente sulle code è stato scritto.\\
1964     \const{TCSAFLUSH}& È identico a \const{TCSADRAIN}, ma in più scarta
1965                        tutti i dati presenti sulla coda di input.\\
1966     \hline
1967   \end{tabular}
1968   \caption{Possibili valori per l'argomento \param{optional\_actions} della
1969     funzione \func{tcsetattr}.} 
1970   \label{tab:sess_tcsetattr_option}
1971 \end{table}
1972
1973 Occorre infine tenere presente che \func{tcsetattr} ritorna con successo anche
1974 se soltanto uno dei cambiamenti richiesti è stato eseguito. Pertanto se si
1975 effettuano più cambiamenti è buona norma controllare con una ulteriore
1976 chiamata a \func{tcgetattr} che essi siano stati eseguiti tutti quanti.
1977
1978 \begin{figure}[!htbp]
1979   \footnotesize \centering
1980   \begin{minipage}[c]{\codesamplewidth}
1981     \includecodesample{listati/SetTermAttr.c}
1982   \end{minipage} 
1983   \normalsize 
1984   \caption{Codice della funzione \func{SetTermAttr} che permette di
1985     impostare uno dei flag di controllo locale del terminale.}
1986   \label{fig:term_set_attr}
1987 \end{figure}
1988
1989 Come già accennato per i cambiamenti effettuati ai vari flag di controllo
1990 occorre che i valori di ciascun bit siano specificati avendo cura di mantenere
1991 intatti gli altri; per questo motivo in generale si deve prima leggere il
1992 valore corrente delle impostazioni con \func{tcgetattr} per poi modificare i
1993 valori impostati.
1994
1995 In fig.~\ref{fig:term_set_attr} e fig.~\ref{fig:term_unset_attr} si è
1996 riportato rispettivamente il codice delle due funzioni \func{SetTermAttr} e
1997 \func{UnSetTermAttr}, che possono essere usate per impostare o rimuovere, con
1998 le dovute precauzioni, un qualunque bit di \var{c\_lflag}. Il codice completo
1999 di entrambe le funzioni può essere trovato nel file \file{SetTermAttr.c} dei
2000 sorgenti allegati alla guida.
2001
2002 La funzione \func{SetTermAttr} provvede ad impostare il bit specificato
2003 dall'argomento \param{flag}; prima si leggono i valori correnti
2004 (\texttt{\small 8}) con \func{tcgetattr}, uscendo con un messaggio in caso di
2005 errore (\texttt{\small 9--10}), poi si provvede a impostare solo i bit
2006 richiesti (possono essere più di uno) con un OR binario (\texttt{\small 12});
2007 infine si scrive il nuovo valore modificato con \func{tcsetattr}
2008 (\texttt{\small 13}), notificando un eventuale errore (\texttt{\small 14-15})
2009 o uscendo normalmente.
2010
2011 \begin{figure}[!htbp]
2012   \footnotesize \centering
2013   \begin{minipage}[c]{\codesamplewidth}
2014     \includecodesample{listati/UnSetTermAttr.c}
2015   \end{minipage} 
2016   \normalsize 
2017   \caption{Codice della funzione \func{UnSetTermAttr} che permette di
2018     rimuovere uno dei flag di controllo locale del terminale.} 
2019   \label{fig:term_unset_attr}
2020 \end{figure}
2021
2022 La seconda funzione, \func{UnSetTermAttr}, è assolutamente identica alla
2023 prima, solo che in questo caso (\texttt{\small 9}) si rimuovono i bit
2024 specificati dall'argomento \param{flag} usando un AND binario del valore
2025 negato.
2026
2027 Al contrario di tutte le altre caratteristiche dei terminali, che possono
2028 essere impostate esplicitamente utilizzando gli opportuni campi di
2029 \struct{termios}, per le velocità della linea (il cosiddetto \textit{baud
2030   rate}) non è prevista una implementazione standardizzata, per cui anche se
2031 in Linux sono mantenute in due campi dedicati nella struttura, questi non
2032 devono essere acceduti direttamente ma solo attraverso le apposite funzioni di
2033 interfaccia provviste da POSIX.1.
2034
2035 Lo standard prevede due funzioni per scrivere la velocità delle linee seriali,
2036 \funcd{cfsetispeed} per la velocità della linea di ingresso e
2037 \funcd{cfsetospeed} per la velocità della linea di uscita; i loro prototipi
2038 sono:
2039 \begin{functions}
2040   \headdecl{unistd.h} 
2041   \headdecl{termios.h}  
2042   \funcdecl{int cfsetispeed(struct termios *termios\_p, speed\_t speed)} 
2043   Imposta la velocità delle linee seriali in ingresso.
2044   
2045   \funcdecl{int cfsetospeed(struct termios *termios\_p, speed\_t speed)} 
2046   Imposta la velocità delle linee seriali in uscita.
2047   
2048   \bodydesc{Entrambe le funzioni restituiscono 0 in caso di successo e -1 in
2049     caso di errore, che avviene solo quando il valore specificato non è
2050     valido.}
2051 \end{functions}
2052  
2053 Si noti che le funzioni si limitano a scrivere opportunamente il valore della
2054 velocità prescelta \param{speed} all'interno della struttura puntata da
2055 \param{termios\_p}; per effettuare l'impostazione effettiva occorrerà poi
2056 chiamare \func{tcsetattr}.
2057
2058 Si tenga presente che per le linee seriali solo alcuni valori di velocità sono
2059 validi; questi possono essere specificati direttamente (le \acr{glibc}
2060 prevedono che i valori siano indicati in bit per secondo), ma in generale
2061 altre versioni di librerie possono utilizzare dei valori diversi; per questo
2062 POSIX.1 prevede una serie di costanti che però servono solo per specificare le
2063 velocità tipiche delle linee seriali:
2064 \begin{verbatim}
2065      B0       B50      B75      B110     B134     B150     B200     
2066      B300     B600     B1200    B1800    B2400    B4800    B9600    
2067      B19200   B38400   B57600   B115200  B230400  B460800
2068 \end{verbatim}
2069
2070 Un terminale può utilizzare solo alcune delle velocità possibili, le funzioni
2071 però non controllano se il valore specificato è valido, dato che non possono
2072 sapere a quale terminale le velocità saranno applicate; sarà l'esecuzione di
2073 \func{tcsetattr} a fallire quando si cercherà di eseguire l'impostazione.
2074 Di norma il valore ha senso solo per i terminali seriali dove indica appunto
2075 la velocità della linea di trasmissione; se questa non corrisponde a quella
2076 del terminale quest'ultimo non potrà funzionare: quando il terminale non è
2077 seriale il valore non influisce sulla velocità di trasmissione dei dati. 
2078
2079 In generale impostare un valore nullo (\val{B0}) sulla linea di output fa si
2080 che il modem non asserisca più le linee di controllo, interrompendo di fatto
2081 la connessione, qualora invece si utilizzi questo valore per la linea di input
2082 l'effetto sarà quello di rendere la sua velocità identica a quella della linea
2083 di output.
2084
2085 Dato che in genere si imposta sempre la stessa velocità sulle linee di uscita
2086 e di ingresso è supportata anche la funzione \funcd{cfsetspeed}, una
2087 estensione di BSD,\footnote{la funzione origina da 4.4BSD e richiede sua
2088   definita la macro \macro{\_BSD\_SOURCE}.} il cui prototipo è:
2089 \begin{functions}
2090   \headdecl{unistd.h} 
2091   \headdecl{termios.h}  
2092   \funcdecl{int cfsetspeed(struct termios *termios\_p, speed\_t speed)} 
2093   Imposta la velocità delle linee seriali.
2094
2095   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2096     errore, che avviene solo quando il valore specificato non è valido.}
2097 \end{functions}
2098 \noindent la funzione è identica alle due precedenti ma imposta la stessa
2099 velocità sia per la linea di ingresso che per quella di uscita.
2100
2101 Analogamente a quanto avviene per l'impostazione, le velocità possono essere
2102 lette da una struttura \struct{termios} utilizzando altre due funzioni,
2103 \funcd{cfgetispeed} e \funcd{cfgetospeed}, i cui prototipi sono:
2104 \begin{functions}
2105   \headdecl{unistd.h} 
2106   \headdecl{termios.h}  
2107   \funcdecl{speed\_t cfgetispeed(struct termios *termios\_p)} 
2108   Legge la velocità delle linee seriali in ingresso.
2109   
2110   \funcdecl{speed\_t cfgetospeed(struct termios *termios\_p)} 
2111   Legge la velocità delle linee seriali in uscita.
2112   
2113   \bodydesc{Entrambe le funzioni restituiscono la velocità della linea, non
2114   sono previste condizioni di errore.}
2115 \end{functions}
2116
2117 Anche in questo caso le due funzioni estraggono i valori della velocità della
2118 linea da una struttura, il cui indirizzo è specificato dall'argomento
2119 \param{termios\_p} che deve essere stata letta in precedenza con
2120 \func{tcgetattr}.
2121
2122 Infine sempre da BSD è stata ripresa una funzione che consente di impostare il
2123 teminale in una modalità analoga all cosiddetta modalità ``\textit{raw}'' di
2124 System V, in cui i dati in input vengono resi disponibili un carattere alla
2125 volta, e l'echo e tutte le interpretazioni dei caratteri in entrata e uscita
2126 sono disabilitate. La funzione è \funcd{cfmakeraw} ed il suo prototipo è:
2127 \begin{functions}
2128   \headdecl{unistd.h} 
2129   \headdecl{termios.h}  
2130   \funcdecl{void cfmakeraw(struct termios *termios\_p)} 
2131   Importa il terminale in  modalità ``\textit{raw}'' alla System V.
2132   
2133   \bodydesc{La funzione imposta solo i valori in \param{termios\_p}, e non
2134     sono previste condizioni di errore.}
2135 \end{functions}
2136
2137 Anche in questo caso la funzione si limita a preparare i valori che poi
2138 saranno impostato con una successiva chiamata a \func{tcsetattr}, in sostanza
2139 la funzione è equivalente a:
2140 \includecodesnip{listati/cfmakeraw.c}
2141
2142
2143 \subsection{La gestione della disciplina di linea.}
2144 \label{sec:term_line_discipline}
2145
2146 Come illustrato dalla struttura riportata in fig.~\ref{fig:term_struct} tutti
2147 i terminali hanno un insieme di funzionalità comuni, che prevedono la presenza
2148 di code di ingresso ed uscita; in generale si fa riferimento ad esse con il
2149 nome di \textsl{discipline di linea}.
2150
2151 Lo standard POSIX prevede alcune funzioni che permettono di intervenire
2152 direttamente sulla gestione di quest'ultime e sull'interazione fra i dati in
2153 ingresso ed uscita e le relative code. In generale tutte queste funzioni
2154 vengono considerate, dal punto di vista dell'accesso al terminale, come delle
2155 funzioni di scrittura, pertanto se usate da processi in background sul loro
2156 terminale di controllo provocano l'emissione di \signal{SIGTTOU} come
2157 illustrato in sez.~\ref{sec:sess_ctrl_term}.\footnote{con la stessa eccezione,
2158   già vista per \func{tcsetattr}, che quest'ultimo sia bloccato o ignorato dal
2159   processo chiamante.}
2160
2161 Una prima funzione, che è efficace solo in caso di terminali seriali asincroni
2162 (non fa niente per tutti gli altri terminali), è \funcd{tcsendbreak}; il suo
2163 prototipo è:
2164 \begin{functions}
2165   \headdecl{unistd.h} 
2166   \headdecl{termios.h}  
2167   
2168   \funcdecl{int tcsendbreak(int fd, int duration)} Genera una condizione di
2169   break inviando un flusso di bit nulli.
2170   
2171   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2172     errore, nel qual caso \var{errno} assumerà i valori \errval{EBADF} o
2173     \errval{ENOTTY}.}
2174 \end{functions}
2175
2176 La funzione invia un flusso di bit nulli (che genera una condizione di break)
2177 sul terminale associato a \param{fd}; un valore nullo di \param{duration}
2178 implica una durata del flusso fra 0.25 e 0.5 secondi, un valore diverso da
2179 zero implica una durata pari a \code{duration*T} dove \code{T} è un valore
2180 compreso fra 0.25 e 0.5.\footnote{lo standard POSIX specifica il comportamento
2181   solo nel caso si sia impostato un valore nullo per \param{duration}; il
2182   comportamento negli altri casi può dipendere dalla implementazione.}
2183
2184 Le altre funzioni previste da POSIX servono a controllare il comportamento
2185 dell'interazione fra le code associate al terminale e l'utente; la prima è
2186 \funcd{tcdrain}, il cui prototipo è:
2187 \begin{functions}
2188   \headdecl{unistd.h} 
2189   \headdecl{termios.h}  
2190   
2191   \funcdecl{int tcdrain(int fd)} Attende lo svuotamento della coda di output.
2192   
2193   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2194     errore, nel qual caso \var{errno} assumerà i valori \errval{EBADF} o
2195     \errval{ENOTTY}.}
2196 \end{functions}
2197
2198 La funzione blocca il processo fino a che tutto l'output presente sulla coda
2199 di uscita non è stato trasmesso al terminale associato ad \param{fd}. % La
2200                                 % funzione è  un punto di cancellazione per i
2201                                 % programmi multi-thread, in tal caso le
2202                                 % chiamate devono essere protette con dei
2203                                 % gestori di cancellazione. 
2204
2205 Una seconda funzione, \funcd{tcflush}, permette svuotare immediatamente le code
2206 di cancellando tutti i dati presenti al loro interno; il suo prototipo è:
2207 \begin{functions}
2208   \headdecl{unistd.h} \headdecl{termios.h}
2209   
2210   \funcdecl{int tcflush(int fd, int queue)} Cancella i dati presenti
2211   nelle code di ingresso o di uscita.
2212   
2213   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2214     errore, nel qual caso \var{errno} assumerà i valori \errval{EBADF} o
2215     \errval{ENOTTY}.}
2216 \end{functions}
2217
2218 La funzione agisce sul terminale associato a \param{fd}, l'argomento
2219 \param{queue} permette di specificare su quale coda (ingresso, uscita o
2220 entrambe), operare. Esso può prendere i valori riportati in
2221 tab.~\ref{tab:sess_tcflush_queue}, nel caso si specifichi la coda di ingresso
2222 cancellerà i dati ricevuti ma non ancora letti, nel caso si specifichi la coda
2223 di uscita cancellerà i dati scritti ma non ancora trasmessi.
2224
2225 \begin{table}[htb]
2226   \footnotesize
2227   \centering
2228   \begin{tabular}[c]{|l|p{8cm}|}
2229     \hline
2230     \textbf{Valore}& \textbf{Significato}\\
2231     \hline
2232     \hline
2233     \const{TCIFLUSH} & Cancella i dati sulla coda di ingresso.\\
2234     \const{TCOFLUSH} & Cancella i dati sulla coda di uscita. \\
2235     \const{TCIOFLUSH}& Cancella i dati su entrambe le code.\\
2236     \hline
2237   \end{tabular}
2238   \caption{Possibili valori per l'argomento \param{queue} della
2239     funzione \func{tcflush}.} 
2240   \label{tab:sess_tcflush_queue}
2241 \end{table}
2242
2243
2244 L'ultima funzione dell'interfaccia che interviene sulla disciplina di linea è
2245 \funcd{tcflow}, che viene usata per sospendere la trasmissione e la ricezione
2246 dei dati sul terminale; il suo prototipo è:
2247 \begin{functions}
2248   \headdecl{unistd.h} 
2249   \headdecl{termios.h}  
2250   
2251   \funcdecl{int tcflow(int fd, int action)} 
2252   
2253   Sospende e riavvia il flusso dei dati sul terminale.
2254
2255   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2256     errore, nel qual caso \var{errno} assumerà i valori \errval{EBADF} o
2257     \errval{ENOTTY}.}
2258 \end{functions}
2259
2260 La funzione permette di controllare (interrompendo e facendo riprendere) il
2261 flusso dei dati fra il terminale ed il sistema sia in ingresso che in uscita.
2262 Il comportamento della funzione è regolato dall'argomento \param{action}, i
2263 cui possibili valori, e relativa azione eseguita dalla funzione, sono
2264 riportati in tab.~\ref{tab:sess_tcflow_action}.
2265
2266 \begin{table}[htb]
2267    \footnotesize
2268   \centering
2269   \begin{tabular}[c]{|l|p{8cm}|}
2270     \hline
2271     \textbf{Valore}& \textbf{Azione}\\
2272     \hline
2273     \hline
2274     \const{TCOOFF}& Sospende l'output.\\
2275     \const{TCOON} & Riprende un output precedentemente sospeso.\\
2276     \const{TCIOFF}& Il sistema trasmette un carattere di STOP, che 
2277                     fa interrompere la trasmissione dei dati dal terminale.\\
2278     \const{TCION} & Il sistema trasmette un carattere di START, che 
2279                     fa riprendere la trasmissione dei dati dal terminale.\\
2280     \hline
2281   \end{tabular}
2282   \caption{Possibili valori per l'argomento \param{action} della
2283     funzione \func{tcflow}.} 
2284   \label{tab:sess_tcflow_action}
2285 \end{table}
2286
2287
2288
2289 \subsection{Operare in \textsl{modo non canonico}}
2290 \label{sec:term_non_canonical}
2291
2292 Operare con un terminale in modo canonico è relativamente semplice; basta
2293 eseguire una lettura e la funzione ritornerà quando una il driver del
2294 terminale avrà completato una linea di input. Non è detto che la linea sia
2295 letta interamente (si può aver richiesto un numero inferiore di byte) ma in
2296 ogni caso nessun dato verrà perso, e il resto della linea sarà letto alla
2297 chiamata successiva.
2298
2299 Inoltre in modo canonico la gestione dell'input è di norma eseguita
2300 direttamente dal driver del terminale, che si incarica (a seconda di quanto
2301 impostato con le funzioni viste nei paragrafi precedenti) di cancellare i
2302 caratteri, bloccare e riavviare il flusso dei dati, terminare la linea quando
2303 viene ricevuti uno dei vari caratteri di terminazione (NL, EOL, EOL2, EOF).
2304
2305 In modo non canonico tocca invece al programma gestire tutto quanto, i
2306 caratteri NL, EOL, EOL2, EOF, ERASE, KILL, CR, REPRINT non vengono
2307 interpretati automaticamente ed inoltre, non dividendo più l'input in linee,
2308 il sistema non ha più un limite definito per quando ritornare i dati ad un
2309 processo. Per questo motivo abbiamo visto che in \var{c\_cc} sono previsti due
2310 caratteri speciali, MIN e TIME (specificati dagli indici \const{VMIN} e
2311 \const{VTIME} in \var{c\_cc}) che dicono al sistema di ritornare da una
2312 \func{read} quando è stata letta una determinata quantità di dati o è passato
2313 un certo tempo.
2314
2315 Come accennato nella relativa spiegazione in tab.~\ref{tab:sess_termios_cc},
2316 TIME e MIN non sono in realtà caratteri ma valori numerici. Il comportamento
2317 del sistema per un terminale in modalità non canonica prevede quattro casi
2318 distinti:
2319 \begin{description}
2320 \item[MIN$>0$, TIME$>0$] In questo caso MIN stabilisce il numero minimo di
2321   caratteri desiderati e TIME un tempo di attesa, in decimi di secondo, fra un
2322   carattere e l'altro. Una \func{read} ritorna se vengono ricevuti almeno MIN
2323   caratteri prima della scadenza di TIME (MIN è solo un limite inferiore, se
2324   la funzione ha richiesto un numero maggiore di caratteri ne possono essere
2325   restituiti di più); se invece TIME scade vengono restituiti i byte ricevuti
2326   fino ad allora (un carattere viene sempre letto, dato che il timer inizia a
2327   scorrere solo dopo la ricezione del primo carattere).
2328 \item[MIN$>0$, TIME$=0$] Una \func{read} ritorna solo dopo che sono stati
2329   ricevuti almeno MIN caratteri. Questo significa che una \func{read} può
2330   bloccarsi indefinitamente. 
2331 \item[MIN$=0$, TIME$>0$] In questo caso TIME indica un tempo di attesa dalla
2332   chiamata di \func{read}, la funzione ritorna non appena viene ricevuto un
2333   carattere o scade il tempo. Si noti che è possibile che \func{read} ritorni
2334   con un valore nullo.
2335 \item[MIN$=0$, TIME$=0$] In questo caso una \func{read} ritorna immediatamente
2336   restituendo tutti i caratteri ricevuti. Anche in questo caso può ritornare
2337   con un valore nullo.
2338 \end{description}
2339
2340
2341
2342 \section{La gestione dei terminali virtuali}
2343 \label{sec:sess_virtual_terminal}
2344
2345
2346 % TODO terminali virtuali 
2347 % Qui c'è da mettere tutta la parte sui terminali virtuali, e la gestione
2348 % degli stessi
2349 %
2350
2351 Da fare.
2352
2353 \subsection{I terminali virtuali}
2354 \label{sec:sess_pty}
2355
2356 Qui vanno spiegati i terminali virtuali, \file{/dev/pty} e compagnia.
2357 % vedi man pts
2358
2359
2360 \subsection{Allocazione dei terminali virtuali}
2361 \label{sec:sess_openpty}
2362
2363 Qui vanno le cose su \func{openpty} e compagnia.
2364
2365 % TODO le ioctl dei terminali
2366 % TODO trattare \func{posix\_openpt}
2367
2368
2369
2370 % TODO materiale sulle seriali
2371 % vedi http://www.easysw.com/~mike/serial/serial.html
2372 % TODO materiale generico sul layer TTY
2373 % vedi http://www.linusakesson.net/programming/tty/index.php
2374
2375
2376 % LocalWords:  kernel multitasking dell'I job control BSD POSIX shell sez group
2377 % LocalWords:  foreground process bg fg waitpid WUNTRACED pgrp session sched
2378 % LocalWords:  struct pgid sid pid ps getpgid getpgrp SVr unistd void errno int
2379 % LocalWords:  ESRCH getsid glibc system call XOPEN SOURCE EPERM setpgrp EACCES
2380 % LocalWords:  setpgid exec EINVAL did fork race condition setsid l'I tty ioctl
2381 % LocalWords:  NOCTTY TIOCSCTTY error tcsetpgrp termios fd pgrpid descriptor VT
2382 % LocalWords:  ENOTTY ENOSYS EBADF SIGTTIN SIGTTOU EIO tcgetpgrp crypt SIGTSTP
2383 % LocalWords:  SIGINT SIGQUIT SIGTERM SIGHUP hungup kill orphaned SIGCONT exit
2384 % LocalWords:  init Slackware run level inittab fig device getty exevle TERM at
2385 % LocalWords:  getpwnam chdir home chown chmod setuid setgid initgroups SIGCHLD
2386 % LocalWords:  daemon like daemons NdT Stevens Programming FAQ filesystem umask
2387 % LocalWords:  noclose syslog syslogd socket UDP klogd printk printf facility
2388 % LocalWords:  priority log openlog const char ident option argv tab AUTH CRON
2389 % LocalWords:  AUTHPRIV cron FTP KERN LOCAL LPR NEWS news USENET UUCP CONS CRIT
2390 % LocalWords:  NDELAY NOWAIT ODELAY PERROR stderr format strerror EMERG ALERT
2391 % LocalWords:  ERR WARNING NOTICE INFO DEBUG debug setlogmask mask UPTO za ssh
2392 % LocalWords:  teletype telnet read write BELL beep CANON isatty desc ttyname
2393 % LocalWords:  NULL ctermid stdio pathname buff size len ERANGE bits ispeed xFF
2394 % LocalWords:  ospeed line tcflag INPCK IGNPAR PARMRK ISTRIP IGNBRK BREAK NUL
2395 % LocalWords:  BRKINT IGNCR carriage return newline ICRNL INLCR IUCLC IXON NL
2396 % LocalWords:  IXANY IXOFF IMAXBEL iflag OPOST CR OCRNL OLCUC ONLCR ONOCR OFILL
2397 % LocalWords:  ONLRET OFDEL NLDLY CRDLY TABDLY BSDLY backspace BS VTDLY FFDLY
2398 % LocalWords:  form feed FF oflag CLOCAL NOBLOCK of HUPCL CREAD CSTOPB PARENB
2399 % LocalWords:  PARODD CSIZE CS CBAUD CBAUDEX CIBAUD CRTSCTS RTS CTS cflag ECHO
2400 % LocalWords:  ICANON ECHOE ERASE ECHOPRT ECHOK ECHOKE ECHONL ECHOCTL ctrl ISIG
2401 % LocalWords:  INTR QUIT SUSP IEXTEN EOL LNEXT REPRINT WERASE NOFLSH and TOSTOP
2402 % LocalWords:  SIGSUSP XCASE DEFECHO FLUSHO DISCARD PENDIN lflag NCCS VINTR EOF
2403 % LocalWords:  interrupt VQUIT VERASE VKILL VEOF VTIME VMIN VSWTC switch VSTART
2404 % LocalWords:  VSTOP VSUSP VEOL VREPRINT VDISCARD VWERASE VLNEXT escape actions
2405 % LocalWords:  tcgetattr tcsetattr EINTR TCSANOW TCSADRAIN TCSAFLUSH speed MIN
2406 % LocalWords:  SetTermAttr UnSetTermAttr cfsetispeed cfsetospeed cfgetispeed ng
2407 % LocalWords:  cfgetospeed quest'ultime tcsendbreak duration break tcdrain list
2408 % LocalWords:  tcflush queue TCIFLUSH TCOFLUSH TCIOFLUSH tcflow action TCOOFF
2409 % LocalWords:  TCOON TCIOFF TCION timer openpty Window nochdir embedded router
2410 % LocalWords:  access point upstart systemd rsyslog vsyslog variadic src linux
2411 % LocalWords:  closelog dmesg sysctl klogctl sys ERESTARTSYS ConsoleKit to CoPy
2412 % LocalWords:  loglevel message libc klog mydmesg CAP ADMIN LXC
2413
2414 %%% Local Variables: 
2415 %%% mode: latex
2416 %%% TeX-master: "gapil"
2417 %%% End: