c2af15d637ce024f93bd9c344060da9445b84e20
[gapil.git] / prochand.tex
1 \chapter{La gestione dei processi}
2 \label{cha:process_handling}
3
4 Come accennato nell'introduzione in un sistema unix ogni attività del sistema
5 viene svolta tramite i processi.  In sostanza i processi costituiscono l'unità
6 base per l'allocazione e l'uso delle risorse del sistema.
7
8 Nel precedente capitolo abbiamo visto come funziona un singolo processo, in
9 questo capitolo affronteremo i dettagli della creazione e della distruzione
10 dei processi, della gestione dei loro attributi e privilegi, e di tutte le
11 funzioni a questo connesse. Infine nella sezione finale affronteremo alcune
12 problematiche generiche della programmazione in ambiente multitasking.
13
14
15
16 \section{Introduzione}
17 \label{sec:proc_gen}
18
19 Partiremo con una introduzione generale ai concetti che stanno alla base della
20 gestione dei processi in un sitema unix-like. Introdurremo in questa sezione
21 l'architettura della gestione dei processi e le sue principali
22 caratteristiche, e daremo una panoramica sull'uso delle principali funzioni
23 per la gestione dei processi.
24
25
26 \subsection{La gerarchia dei processi}
27 \label{sec:proc_hierarchy}
28
29 A differenza di quanto avviene in altri sistemi (ad esempio nel VMS la
30 generazione di nuovi processi è un'operazione privilegiata) una delle
31 caratteristiche di unix (che esamineremo in dettaglio più avanti) è che
32 qualunque processo può a sua volta generarne altri, detti processi figli
33 (\textit{child process}). Ogni processo è identificato presso il sistema da un
34 numero unico, il cosiddetto \textit{process identifier} o, più brevemente, 
35 \acr{pid}.
36
37 Una seconda caratteristica di un sistema unix è che la generazione di un
38 processo è una operazione separata rispetto al lancio di un programma. In
39 genere la sequenza è sempre quella di creare un nuovo processo, il quale
40 eseguirà, in un passo successivo, il programma voluto: questo è ad esempio
41 quello che fa la shell quando mette in esecuzione il programma che gli
42 indichiamo nella linea di comando.
43
44 Una terza caratteristica è che ogni processo è sempre stato generato da un
45 altro, che viene chiamato processo padre (\textit{parent process}). Questo
46 vale per tutti i processi, con una sola eccezione: dato che ci deve essere un
47 punto di partenza esiste un processo speciale (che normalmente è
48 \cmd{/sbin/init}), che viene lanciato dal kernel alla conclusione della fase
49 di avvio; essendo questo il primo processo lanciato dal sistema ha sempre il
50 \acr{pid} uguale a 1 e non è figlio di nessun altro processo.
51
52 Ovviamente \cmd{init} è un processo speciale che in genere si occupa di far
53 partire tutti gli altri processi necessari al funzionamento del sistema,
54 inoltre \cmd{init} è essenziale per svolgere una serie di compiti
55 amministrativi nelle operazioni ordinarie del sistema (torneremo su alcuni di
56 essi in \secref{sec:proc_termination}) e non può mai essere terminato. La
57 struttura del sistema comunque consente di lanciare al posto di \cmd{init}
58 qualunque altro programma, e in casi di emergenza (ad esempio se il file di
59 \cmd{init} si fosse corrotto) è ad esempio possibile lanciare una shell al suo
60 posto, passando la riga \cmd{init=/bin/sh} come parametro di avvio.
61
62 \begin{figure}[!htb]
63   \footnotesize
64 \begin{verbatim}
65 [piccardi@gont piccardi]$ pstree -n 
66 init-+-keventd
67      |-kapm-idled
68      |-kreiserfsd
69      |-portmap
70      |-syslogd
71      |-klogd
72      |-named
73      |-rpc.statd
74      |-gpm
75      |-inetd
76      |-junkbuster
77      |-master-+-qmgr
78      |        `-pickup
79      |-sshd
80      |-xfs
81      |-cron
82      |-bash---startx---xinit-+-XFree86
83      |                       `-WindowMaker-+-ssh-agent
84      |                                     |-wmtime
85      |                                     |-wmmon
86      |                                     |-wmmount
87      |                                     |-wmppp
88      |                                     |-wmcube
89      |                                     |-wmmixer
90      |                                     |-wmgtemp
91      |                                     |-wterm---bash---pstree
92      |                                     `-wterm---bash-+-emacs
93      |                                                    `-man---pager
94      |-5*[getty]
95      |-snort
96      `-wwwoffled
97 \end{verbatim} %$
98   \caption{L'albero dei processi, così come riportato dal comando
99     \cmd{pstree}.}
100   \label{fig:proc_tree}
101 \end{figure}
102
103 Dato che tutti i processi attivi nel sistema sono comunque generati da
104 \cmd{init} o da uno dei suoi figli\footnote{in realtà questo non è del tutto
105   vero, in Linux ci sono alcuni processi che pur comparendo come figli di
106   init, o con \acr{pid} successivi, sono in realtà generati direttamente dal
107   kernel, (come \cmd{keventd}, \cmd{kswapd}, etc.)} si possono classificare i
108 processi con la relazione padre/figlio in una organizzazione gerarchica ad
109 albero, in maniera analoga a come i file sono organizzati in un albero di
110 directory (si veda \secref{sec:file_file_struct}); in \curfig\ si è mostrato il
111 risultato del comando \cmd{pstree} che permette di mostrare questa struttura,
112 alla cui base c'è \cmd{init} che è progenitore di tutti gli altri processi.
113
114
115 \subsection{Una panoramica sulle funzioni di gestione}
116 \label{sec:proc_handling_intro}
117
118 I processi vengono creati dalla funzione \func{fork}; in molti unix questa è
119 una system call, Linux però usa un'altra nomenclatura, e la funzione fork è
120 basata a sua volta sulla system call \func{\_\_clone}, che viene usata anche
121 per generare i \textit{thread}.  Il processo figlio creato dalla \func{fork} è
122 una copia identica del processo processo padre, ma ha nuovo \acr{pid} e viene
123 eseguito in maniera indipendente (le differenze fra padre e figlio sono
124 affrontate in dettaglio in \secref{sec:proc_fork}).
125
126 Se si vuole che il processo padre si fermi fino alla conclusione del processo
127 figlio questo deve essere specificato subito dopo la \func{fork} chiamando la
128 funzione \func{wait} o la funzione \func{waitpid} (si veda
129 \secref{sec:proc_wait}); queste funzioni restituiscono anche una informazione
130 abbastanza limitata (lo stato di terminazione) sulle cause della terminazione
131 del processo.
132
133 Quando un processo ha concluso il suo compito o ha incontrato un errore non
134 risolvibile esso può essere terminato con la funzione \func{exit} (si veda
135 quanto discusso in \secref{sec:proc_conclusion}). La vita del processo però
136 termina solo quando la notifica della sua conclusione viene ricevuta dal
137 processo padre, a quel punto tutte le risorse allocate nel sistema ad esso
138 associate vengono rilasciate.
139
140 Avere due processi che eseguono esattamente lo stesso codice non è molto
141 utile, normalmente si genera un secondo processo per affidargli l'esecuzione
142 di un compito specifico (ad esempio gestire una connessione dopo che questa è
143 stata stabilita), o fargli eseguire (come fa la shell) un altro programma. Per
144 quest'ultimo caso si usa la seconda funzione fondamentale per programmazione
145 coi processi che è la \func{exec}.
146
147 Il programma che un processo sta eseguendo si chiama immagine del processo (o
148 \textit{process image}), le funzioni della famiglia \func{exec} permettono di
149 caricare un'altro programma da disco sostituendo quest'ultimo all'immagine
150 corrente; questo fa si che l'immagine precedente venga completamente
151 cancellata. Questo significa che quando il nuovo programma esce anche il
152 processo termina, e non si può tornare alla precedente immagine.
153
154 Per questo motivo la \func{fork} e la \func{exec} sono funzioni molto
155 particolari con caratteristiche uniche rispetto a tutte le altre, infatti la
156 prima ritorna due volte (nel processo padre e nel figlio) mentre la seconda
157 non ritorna mai (in quanto con essa viene eseguito un altro programma).
158
159
160
161 \section{La gestione dei processi}
162 \label{sec:proc_handling}
163
164 In questa sezione tratteremo le funzioni per la gestione dei processi, a
165 partire dalle funzioni elementari che permettono di leggerne gli
166 identificatori, alle varie funzioni di manipolazione dei processi, che
167 riguardano la loro creazione, terminazione, e la messa in esecuzione di altri
168 programmi.
169
170
171 \subsection{Gli identificatori dei processi}
172 \label{sec:proc_pid}
173
174 Come accennato nell'introduzione ogni processo viene identificato dal sistema
175 da un numero identificativo unico, il \textit{process id} o \acr{pid};
176 quest'ultimo è un tipo di dato standard, il \type{pid\_t} che in genere è un
177 intero con segno (nel caso di Linux e delle glibc il tipo usato è \type{int}).
178
179 Il \acr{pid} viene assegnato in forma progressiva ogni volta che un nuovo
180 processo viene creato, fino ad un limite massimo (in genere essendo detto
181 numero memorizzato in un intero a 16 bit si arriva a 32767) oltre il quale si
182 riparte dal numero più basso disponibile (FIXME: verificare, non sono sicuro).
183 Per questo motivo processo il processo di avvio (\cmd{init}) ha sempre il
184 \acr{pid} uguale a uno. 
185
186 Tutti i processi inoltre memorizzano anche il \acr{pid} del genitore da cui
187 sono stati creati, questo viene chiamato in genere \acr{ppid} (da
188 \textit{parent process id}).  Questi due identificativi possono essere
189 ottenuti da programma usando le funzioni:
190
191 \begin{functions}
192 \headdecl{sys/types.h}
193 \headdecl{unistd.h}
194 \funcdecl{pid\_t getpid(void)} restituisce il pid del processo corrente.
195 \funcdecl{pid\_t getppid(void)} restituisce il pid del padre del processo
196     corrente.
197
198 Entrambe le funzioni non riportano condizioni di errore. 
199 \end{functions}
200 esempi dell'uso di queste funzioni sono riportati in
201 \figref{fig:proc_fork_code}, nel programma di esempio \file{ForkTest.c}.
202
203 Il fatto che il \acr{pid} sia un numero univoco per il sistema lo rende il
204 candidato ideale per generare ulteriori indicatori associati al processo di
205 cui diventa possibile garantire l'unicità: ad esempio la funzione
206 \func{tmpname} (si veda \secref{sec:file_temp_file}) usa il \acr{pid} per
207 generare un pathname univoco, che non potrà essere replicato da un'altro
208 processo che usi la stessa funzione. 
209
210 Tutti i processi figli dello stesso processo padre sono detti
211 \textit{sibling}, questa è una delle relazioni usate nel \textsl{controllo di
212   sessione}, in cui si raggruppano i processi creati su uno stesso terminale,
213 o relativi allo stesso login. Torneremo su questo argomento in dettaglio in
214 \secref{cap:session}, dove esamineremo gli altri identificativi associati ad
215 un processo e le varie relazioni fra processi utilizzate per definire una
216 sessione.
217
218 Oltre al \acr{pid} e al \acr{ppid}, e a quelli usati per il controllo di
219 sessione, ad ogni processo sono associati altri identificatori, usati per il
220 controllo di accesso, che servono per determinare se il processo può o meno
221 eseguire le operazioni richieste, a seconda dei privilegi e dell'identità di
222 chi lo ha posto in esecuzione; su questi torneremo in dettaglii più avanti in
223 \secref{sec:proc_perm}.
224
225
226 \subsection{La funzione \func{fork}}
227 \label{sec:proc_fork}
228
229 La funzione \func{fork} è la funzione fondamentale della gestione dei
230 processi: come si è detto l'unico modo di creare un nuovo processo è
231 attraverso l'uso di questa funzione, essa quindi riveste un ruolo centrale
232 tutte le volte che si devono scrivere programmi che usano il multitasking.  Il
233 prototipo della funzione è:
234
235 \begin{functions}
236   \headdecl{sys/types.h} 
237   \headdecl{unistd.h} 
238   \funcdecl{pid\_t fork(void)} 
239   Restituisce zero al padre e il \acr{pid} al figlio in caso di successo,
240   ritorna -1 al padre (senza creare il figlio) in caso di errore;
241   \texttt{errno} può assumere i valori:
242   \begin{errlist}
243   \item \macro{EAGAIN} non ci sono risorse sufficienti per creare un'altro
244     processo (per allocare la tabella delle pagine e le strutture del task) o
245     si è esaurito il numero di processi disponibili.
246   \item \macro{ENOMEM} non è stato possibile allocare la memoria per le
247     strutture necessarie al kernel per creare il nuovo processo.
248   \end{errlist}
249 \end{functions}
250
251 Dopo il successo dell'esecuzione di una \func{fork} sia il processo padre che
252 il processo figlio continuano ad essere eseguiti normalmente alla istruzione
253 seguente la \func{fork}; il processo figlio è però una copia del padre, e
254 riceve una copia dei segmenti di testo, stack e dati (vedi
255 \secref{sec:proc_mem_layout}), ed esegue esattamente lo stesso codice del
256 padre, ma la memoria è copiata, non condivisa\footnote{In generale il segmento
257   di testo, che è identico, è condiviso e tenuto in read-only, Linux poi
258   utilizza la tecnica del \textit{copy-on-write}, per cui la memoria degli
259   altri segmenti viene copiata dal kernel per il nuovo processo solo in caso
260   di scrittura, rendendo molto più efficiente il meccanismo} pertanto padre e
261 figlio vedono variabili diverse.
262
263 La differenza che si ha nei due processi è che nel processo padre il valore di
264 ritorno della funzione fork è il \acr{pid} del processo figlio, mentre nel
265 figlio è zero; in questo modo il programma può identificare se viene eseguito
266 dal padre o dal figlio.  Si noti come la funzione \func{fork} ritorni
267 \textbf{due} volte: una nel padre e una nel figlio. La sola differenza che si
268 ha nei due processi è il valore di ritorno restituito dalla funzione, che nel
269 padre è il \acr{pid} del figlio mentre nel figlio è zero; in questo modo il
270 programma può identificare se viene eseguito dal padre o dal figlio.
271
272 La scelta di questi valori non è casuale, un processo infatti può avere più
273 figli, ed il valore di ritorno di \func{fork} è l'unico modo che permette di
274 identificare quello appena creato; al contrario un figlio ha sempre un solo
275 padre (il cui \acr{pid} può sempre essere ottenuto con \func{getppid}, vedi
276 \secref{sec:proc_pid}) e si usa il valore nullo, che non può essere il
277 \acr{pid} di nessun processo.
278
279 \begin{figure}[!htb]
280   \footnotesize
281   \begin{lstlisting}{}
282 #include <errno.h>       /* error definitions and routines */ 
283 #include <stdlib.h>      /* C standard library */
284 #include <unistd.h>      /* unix standard library */
285 #include <stdio.h>       /* standard I/O library */
286 #include <string.h>      /* string functions */
287
288 /* Help printing routine */
289 void usage(void);
290
291 int main(int argc, char *argv[])
292 {
293 /* 
294  * Variables definition  
295  */
296     int nchild, i;
297     pid_t pid;
298     int wait_child  = 0;
299     int wait_parent = 0;
300     int wait_end    = 0;
301     ...        /* handling options */
302     nchild = atoi(argv[optind]);
303     printf("Test for forking %d child\n", nchild);
304     /* loop to fork children */
305     for (i=0; i<nchild; i++) {
306         if ( (pid = fork()) < 0) { 
307             /* on error exit */ 
308             printf("Error on %d child creation, %s\n", i+1, strerror(errno));
309             exit(-1); 
310         }
311         if (pid == 0) {   /* child */
312             printf("Child %d successfully executing\n", ++i);
313             if (wait_child) sleep(wait_child);
314             printf("Child %d, parent %d, exiting\n", i, getppid());
315             exit(0);
316         } else {          /* parent */
317             printf("Spawned %d child, pid %d \n", i+1, pid);
318             if (wait_parent) sleep(wait_parent);
319             printf("Go to next child \n");
320         }
321     }
322     /* normal exit */
323     if (wait_end) sleep(wait_end);
324     return 0;
325 }
326   \end{lstlisting}
327   \caption{Esempio di codice per la creazione di nuovi processi.}
328   \label{fig:proc_fork_code}
329 \end{figure}
330
331 Normalmente la chiamata a \func{fork} può fallire solo per due ragioni, o ci
332 sono già troppi processi nel sistema (il che di solito è sintomo che
333 qualcos'altro non sta andando per il verso giusto) o si è ecceduto il limite
334 sul numero totale di processi permessi all'utente (il valore della costante
335 \macro{CHILD\_MAX} definito in \file{limits.h}, che fa riferimento ai processo
336 con lo stesso \textit{real user id}).
337
338 L'uso di \func{fork} avviene secondo due modalità principali; la prima è
339 quella in cui all'interno di un programma si creano processi figli per
340 affidargli l'esecuzione di una certa sezione di codice, mentre il processo
341 padre ne esegue un'altra. È il caso tipico dei server di rete in cui il padre
342 riceve ed accetta le richieste da parte dei client, per ciascuna delle quali
343 pone in esecuzione un figlio che è incaricato di fornire il servizio.
344
345 La seconda modalità è quella in cui il processo vuole eseguire un altro
346 programma; questo è ad esempio il caso della shell. In questo caso il processo
347 crea un figlio la cui unica operazione è quella fare una \func{exec} (di cui
348 parleremo in \secref{sec:proc_exec}) subito dopo la \func{fork}.
349
350 Alcuni sistemi operativi (il VMS ad esempio) combinano le operazioni di questa
351 seconda modalità (una \func{fork} seguita da una \func{exec}) in un'unica
352 operazione che viene chiamata \textit{spawn}. Nei sistemi unix-like è stato
353 scelto di mantenere questa separazione, dato che, come visto per la prima
354 modalità d'uso, esistono numerosi scenari in cui si può usare una \func{fork}
355 senza bisogno di una \func{exec}. Inoltre anche nel caso della seconda
356 modalità di operazioni, avere le due funzioni separate permette al figlio di
357 cambiare gli attributi del processo (maschera dei segnali, redirezione
358 dell'output, \textit{user id}) prima della \func{exec}, rendendo molto più
359 flessibile la possibilità di modificare gli attributi del nuovo processo.
360
361 In \curfig\ si è riportato il corpo del codice del programma di esempio
362 \cmd{forktest}, che ci permette di illustrare molte caratteristiche dell'uso
363 della funzione \func{fork}. Il programma permette di creare un numero di figli
364 specificato a linea di comando, e prende anche alcune opzioni per indicare
365 degli eventuali tempi di attesa in secondi (eseguiti tramite la funzione
366 \func{sleep}) per il padre ed il figlio (con \cmd{forktest -h} si ottiene la
367 descrizione delle opzioni); il codice completo, compresa la parte che gestisce
368 le opzioni a riga di comando, è disponibile nel file \file{ForkTest.c}.
369
370 Decifrato il numero di figli da creare, il ciclo principale del programma
371 (\texttt{\small 28--40}) esegue in successione la creazione dei processi figli
372 controllando il successo della chiamata a \func{fork} (\texttt{\small
373   29--31}); ciascun figlio (\texttt{\small 29--31}) si limita a stampare il
374 suo numero di successione, eventualmente attendere il numero di secondi
375 specificato e scrivere un messaggio prima di uscire. Il processo padre invece
376 (\texttt{\small 29--31}) stampa un messaggio di creazione, eventualmente
377 attende il numero di secondi specificato, e procede nell'esecuzione del ciclo;
378 alla conclusione del ciclo, prima di uscire, può essere specificato un altro
379 periodo di attesa.
380
381 Se eseguiamo il comando senza specificare attese (come si può notare in
382 \texttt{\small 17--19} i valori di default specificano di non attendere),
383 otterremo come output sul terminale:
384
385 \footnotesize
386 \begin{verbatim}
387 [piccardi@selidor sources]$ ./forktest 3
388 Process 1963: forking 3 child
389 Spawned 1 child, pid 1964 
390 Child 1 successfully executing
391 Child 1, parent 1963, exiting
392 Go to next child 
393 Spawned 2 child, pid 1965 
394 Child 2 successfully executing
395 Child 2, parent 1963, exiting
396 Go to next child 
397 Child 3 successfully executing
398 Child 3, parent 1963, exiting
399 Spawned 3 child, pid 1966 
400 Go to next child 
401 \end{verbatim} %$
402 \normalsize
403
404 Esaminiamo questo risultato: una prima conclusione che si può trarre è non si
405 può dire quale processo fra il padre ed il figlio venga eseguito per
406 primo\footnote{anche se nel kernel 2.4.x era stato introdotto un meccanismo
407   che metteva in esecuzione sempre il xxx per primo (TODO recuperare le
408   informazioni esatte)} dopo la chiamata a \func{fork}; dall'esempio si può
409 notare infatti come nei primi due cicli sia stato eseguito per primo il padre
410 (con la stampa del \acr{pid} del nuovo processo) per poi passare
411 all'esecuzione del figlio (completata con i due avvisi di esecuzione ed
412 uscita), e tornare all'esecuzione del padre (con la stampa del passaggio al
413 ciclo successivo), mentre la terza volta è stato prima eseguito il figlio
414 (fino alla conclusione) e poi il padre.
415
416 In generale l'ordine di esecuzione dipenderà, oltre che dall'algoritmo di
417 scheduling usato dal kernel, dalla particolare situazione in si trova la
418 macchina al momento della chiamata, risultando del tutto impredicibile.
419 Eseguendo più volte il programma di prova e producendo un numero diverso di
420 figli, si sono ottenute situazioni completamente diverse, compreso il caso in
421 cui il processo padre ha eseguito più di una \func{fork} prima che uno dei
422 figli venisse messo in esecuzione.
423
424 Pertanto non si può fare nessuna assunzione sulla sequenza di esecuzione delle
425 istruzioni del codice fra padre e figli, nè sull'ordine in cui questi potranno
426 essere messi in esecuzione, e se è necessaria una qualche forma di precedenza
427 occorrerà provvedere ad espliciti meccanismi di sincronizzazione, pena il
428 rischio di incorrere nelle cosiddette \textit{race conditions}.
429
430 Si noti inoltre che, come accennato, essendo i segmenti di memoria utilizzati
431 dai singoli processi completamente separati, le modifiche delle variabili nei
432 processi figli (come l'incremento di \var{i} in \texttt{\small 33}) sono
433 visibili solo al loro interno, e non hanno alcun effetto sul valore che le
434 stesse variabili hanno nel processo padre (ed in eventuali altri processi
435 figli che eseguano lo stesso codice).
436
437 Un secondo aspetto molto importante nella creazione dei processi figli è
438 quello dell'interazione dei vari processi con i file; per illustrarlo meglio
439 proviamo a redirigere su un file l'output del nostro programma di test, quello
440 che otterremo è:
441
442 \footnotesize
443 \begin{verbatim}
444 [piccardi@selidor sources]$ ./forktest 3 > output
445 [piccardi@selidor sources]$ cat output
446 Process 1967: forking 3 child
447 Child 1 successfully executing
448 Child 1, parent 1967, exiting
449 Test for forking 3 child
450 Spawned 1 child, pid 1968 
451 Go to next child 
452 Child 2 successfully executing
453 Child 2, parent 1967, exiting
454 Test for forking 3 child
455 Spawned 1 child, pid 1968 
456 Go to next child 
457 Spawned 2 child, pid 1969 
458 Go to next child 
459 Child 3 successfully executing
460 Child 3, parent 1967, exiting
461 Test for forking 3 child
462 Spawned 1 child, pid 1968 
463 Go to next child 
464 Spawned 2 child, pid 1969 
465 Go to next child 
466 Spawned 3 child, pid 1970 
467 Go to next child 
468 \end{verbatim}
469 \normalsize
470 che come si vede è completamente diverso da quanto ottenevamo sul terminale.
471
472 Il comportamento delle varie funzioni di interfaccia con i file è analizzato
473 in gran dettaglio in \capref{cha:file_unix_interface} e in
474 \secref{cha:files_std_interface}. Qui basta accennare che si sono usate le
475 funzioni standard della libreria del C che prevedono l'output bufferizzato; e
476 questa bufferizzazione varia a seconda che si tratti di un file su disco (in
477 cui il buffer viene scaricato su disco solo quando necessario) o di un
478 terminale (nel qual caso il buffer viene scaricato ad ogni a capo).
479
480 Nel primo esempio allora avevamo che ad ogni chiamata a \func{printf} il
481 buffer veniva scaricato, e le singole righe erano stampate a video subito dopo
482 l'esecuzione della \func{printf}. Ma con la redirezione su file la scrittura
483 non avviene più alla fine di ogni riga e l'output resta nel buffer, per questo
484 motivo, dato che ogni figlio riceve una copia della memoria del padre, esso
485 riceverà anche quanto c'è nel buffer delle funzioni di I/O, comprese le linee
486 scritte dal padre fino allora. Così quando all'uscita del figlio il buffer
487 viene scritto su disco, troveremo nel file anche tutto quello che il processo
488 padre aveva scritto prima della sua creazione.  E alla fine del file, dato che
489 in questo caso il padre esce per ultimo, troviamo anche l'output del padre.
490
491 Ma l'esempio ci mostra un'altro aspetto fondamentale dell'interazione con i
492 file, che era valido anche per l'esempio precedente, ma meno evidente; il
493 fatto cioè che non solo processi diversi possono scrivere in contemporanea
494 sullo stesso file (l'argomento della condivisione dei file in unix è trattato
495 in dettaglio in \secref{sec:file_sharing}), ma anche che, a differenza di
496 quanto avviene per le variabili, la posizione corrente sul file è condivisa 
497 fra il padre e tutti i processi figli. 
498
499 Quello che succede è che quando lo standard output del padre viene rediretto,
500 lo stesso avviene anche per tutti i figli; la funzione \func{fork} infatti ha
501 la caratteristica di duplicare (allo stesso modo in cui lo fa la funzione
502 \func{dup}, trattata in \secref{sec:file_dup}) nei figli tutti i file
503 descriptor aperti nel padre, il che comporta che padre e figli condividono
504 le stesse voci della file table (per la spiegazione di questi termini si veda
505 \secref{sec:file_sharing} e referenza a figura da fare) e quindi anche
506 l'offset corrente nel file.
507
508 In questo modo se un processo scrive sul file aggiornerà l'offset sulla file
509 table, e tutti gli altri processi che condividono la file table vedranno il
510 nuovo valore; in questo modo si evita, in casi come quello appena mostrato in
511 cui diversi processi scrivono sullo stesso file, che l'output successivo di un
512 processo vada a sovrapporsi a quello dei precedenti (l'output potrà risultare
513 mescolato, ma non ci saranno parti perdute per via di una sovrascrittura).
514
515 Questo tipo di comportamento è essenziale in tutti quei casi in cui il padre
516 crea un figlio ed attende la sua conclusione per proseguire, ed entrambi
517 scrivono sullo stesso file, ad esempio lo standard output (un caso tipico è la
518 shell). Se l'output viene rediretto con questo comportamento avremo che il
519 padre potrà continuare a scrivere automaticamente in coda a quanto scritto dal
520 figlio; se così non fosse ottenere questo comportamento sarebbe estremamente
521 complesso necessitando di una qualche forma di comunicazione fra i due
522 processi.
523
524 In generale comunque non è buona norma far scrivere più processi sullo stesso
525 file senza una qualche forma di sincronizzazione in quanto, come visto con il
526 nostro esempio, le varie scritture risulteranno mescolate fra loro in una
527 sequenza impredicibile. Le modalità con cui in genere si usano i file dopo una
528 \func{fork} sono sostanzialmente due:
529 \begin{enumerate}
530 \item Il processo padre aspetta la conclusione del figlio. In questo caso non
531   è necessaria nessuna azione riguardo ai file, in quanto la sincronizzazione
532   degli offset dopo eventuali operazioni di lettura e scrittura effettuate dal
533   figlio è automatica.
534 \item L'esecuzione di padre e figlio procede indipendentemente. In questo caso
535   ciascuno dei due deve chiudere i file che non gli servono una volta che la
536   \func{fork} è stata eseguita, per evitare ogni forma di interferenza.
537 \end{enumerate}
538
539 Oltre ai file aperti i processi figli ereditano dal padre una serie di altre
540 proprietà; la lista dettagliata delle proprietà che padre e figlio hanno in
541 comune dopo l'esecuzione di una \func{fork} è la seguente:
542 \begin{itemize*}
543 \item i file aperti (e gli eventuali flag di \textit{close-on-exec} se
544   settati).
545 \item gli identificatori per il controllo di accesso: il \textit{real user
546     id}, il \textit{real group id}, l'\textit{effective user id},
547   l'\textit{effective group id} e i \textit{supplementary group id} (vedi
548   \secref{sec:proc_user_group}).
549 \item gli identificatori per il controllo di sessione: il \textit{process
550     group id} e il \textit{session id} e il terminale di controllo (vedi
551   \secref{sec:sess_xxx} e \secref{sec:sess_xxx}).
552 \item i flag di \acr{suid} e \acr{sgid} (vedi \secref{sec:file_suid_sgid}).
553 \item la directory di lavoro e la directory radice (vedi
554   \secref{sec:file_work_dir}).
555 \item la maschera dei permessi di creazione (vedi \secref{sec:file_umask}).
556 \item la maschera dei segnali.
557 \item i segmenti di memoria condivisa agganciati al processo. 
558 \item i limiti sulle risorse
559 \item le variabili di ambiente (vedi \secref{sec:proc_environ}).
560 \end{itemize*}
561 le differenze fra padree figlio dopo la \func{fork} invece sono:
562 \begin{itemize*}
563 \item il valore di ritorno di \func{fork}.
564 \item il \textit{process id}. 
565 \item il \textit{parent process id} (quello del figlio viene settato al
566   \acr{pid} del padre).
567 \item i valori dei tempi di esecuzione (\var{tms\_utime}, \var{tms\_stime},
568   \var{tms\_cutime}, \var{tms\_uetime}) che nel figlio sono posti a zero.
569 \item i \textit{file lock}, che non vengono ereditati dal figlio.
570 \item gli allarmi pendenti, che per il figlio vengono cancellati.
571 \end{itemize*}
572
573
574 \subsection{La funzione \func{vfork}}
575 \label{sec:proc_vfork}
576
577 La funzione \func{vfork} è esattamente identica a \func{fork} ed ha la stessa
578 semantica e gli stessi errori; la sola differenza è che non viene creata la
579 tabella delle pagine né la struttura dei task per il nuovo processo. Il
580 processo padre è posto in attesa fintanto che il figlio non ha eseguito una
581 \func{execve} o non è uscito con una \func{\_exit}. Il figlio condivide la
582 memoria del padre (e modifiche possono avere effetti imprevedibili) e non deve
583 ritornare o uscire con \func{exit} ma usare esplicitamente \func{\_exit}.
584
585 Questa funzione è un rimasuglio dei vecchi tempi in cui eseguire una
586 \func{fork} comportava anche la copia completa del segmento dati del processo
587 padre, che costituiva un inutile appesantimento in tutti quei casi in cui la
588 \func{fork} veniva fatto solo per poi eseguire una \func{exec}. La funzione
589 venne introdotta in BSD per migliorare le prestazioni.
590
591 Dato che Linux supporta il \textit{copy on write} la perdita di prestazioni è
592 assolutamente trascurabile, e l'uso di questa funzione (che resta un caso
593 speciale della funzione \func{clone}), è deprecato, per questo eviteremo di
594 trattarla ulteriormente.
595
596
597 \subsection{La conclusione di un processo.}
598 \label{sec:proc_termination}
599
600 In \secref{sec:proc_conclusion} abbiamo già affrontato le modalità con cui
601 concludere un programma, ma dal punto di vista del programma stesso; avendo a
602 che fare con un sistema multitasking occorre adesso affrontare l'argomento dal
603 punto di vista generale di come il sistema gestisce la conclusione dei
604 processi.
605
606 Abbiamo già visto in \secref{sec:proc_conclusion} le tre modalità con cui un
607 programma viene terminato in maniera normale: la chiamata di \func{exit} (che
608 esegue le funzioni registrate per l'uscita e chiude gli stream), il ritorno
609 dalla funzione \func{main} (equivalente alla chiamata di \func{exit}), e la
610 chiamata ad \func{\_exit} (che passa direttamente alle operazioni di
611 terminazione del processo da parte del kernel).
612
613 Ma oltre alla conclusione normale abbiamo accennato che esistono anche delle
614 modalità di conclusione anomala; queste sono in sostanza due: il programma può
615 chiamare la funzione \func{abort} per invocare una chiusura anomala, o essere
616 terminato da un segnale.  In realtà anche la prima modalità si riconduce alla
617 seconda, dato che \func{abort} si limita a generare il segnale
618 \macro{SIGABRT}.
619
620 Qualunque sia la modalità di conclusione di un processo, il kernel esegue
621 comunque una serie di operazioni: chiude tutti i file aperti, rilascia la
622 memoria che stava usando, e così via; l'elenco completo delle operazioni
623 eseguite alla chiusura di un processo è il seguente:
624 \begin{itemize*}
625 \item tutti i descrittori dei file sono chiusi.
626 \item viene memorizzato lo stato di terminazione del processo.
627 \item ad ogni processo figlio viene assegnato un nuovo padre.
628 \item viene inviato il segnale \macro{SIGCHLD} al processo padre.
629 \item se il processo è un leader di sessione viene mandato un segnale di
630   \macro{SIGHUP} a tutti i processi in background e il terminale di controllo
631   viene disconnesso.
632 \item se la conclusione di un processo rende orfano un \textit{process group}
633   ciascun membro del gruppo viene bloccato, e poi gli vengono inviati in
634   successione i segnali \macro{SIGHUP} e \macro{SIGCONT}.
635 \end{itemize*}
636 ma al di la di queste operazioni è necessario poter disporre di un meccanismo
637 ulteriore che consenta di sapere come questa terminazione è avvenuta; dato che
638 in un sistema unix-like tutto viene gestito attraverso i processi il
639 meccanismo scelto consiste nel riportare lo stato di terminazione
640 (\textit{termination status}) di cui sopra al processo padre.
641
642 Nel caso di conclusione normale, lo stato di uscita del processo viene
643 caratterizzato tramite il valore del cosiddetto \textit{exit status}, cioè il
644 valore passato alle funzioni \func{exit} o \func{\_exit} (o dal valore di
645 ritorno per \func{main}).  Ma se il processo viene concluso in maniera anomala
646 il programma non può specificare nessun \textit{exit status}, ed è il kernel
647 che deve generare autonomamente il \textit{termination status} per indicare le
648 ragioni della conclusione anomala.  
649
650 Si noti la distinzione fra \textit{exit status} e \textit{termination status}:
651 quello che contraddistingue lo stato di chiusura del processo e viene
652 riportato attraverso le funzioni \func{wait} o \func{waitpid} (vedi
653 \secref{sec:proc_wait}) è sempre quest'ultimo; in caso di conclusione normale
654 il kernel usa il primo (nel codice eseguito da \func{\_exit}) per produrre il
655 secondo.
656
657 La scelta di riportare al padre lo stato di terminazione dei figli, pur
658 essendo l'unica possibile, comporta comunque alcune complicazioni: infatti se
659 alla sua creazione è scontato che ogni nuovo processo ha un padre, non è detto
660 che sia così alla sua conclusione, dato che il padre potrebbe essere già
661 terminato (si potrebbe avere cioè quello che si chiama un processo
662 \textsl{orfano}). 
663
664 Questa complicazione viene superata facendo in modo che il processo figlio
665 venga \textsl{adottato} da \cmd{init}: come già accennato quando un processo
666 termina il kernel controlla se è il padre di altri processi in esecuzione: in
667 caso positivo allora il \acr{ppid} di tutti questi processi viene sostituito
668 con il \acr{pid} di \cmd{init} (e cioè con 1); in questo modo ogni processo
669 avrà sempre un padre (nel caso \textsl{adottivo}) cui riportare il suo stato
670 di terminazione.  Come verifica di questo comportamento possiamo eseguire il
671 comando \cmd{forktest} imponendo a ciascun processo figlio due
672 secondi di attesa prima di uscire, il risultato è:
673
674 \footnotesize
675 \begin{verbatim}
676 [piccardi@selidor sources]$ ./forktest -c2 3
677 Process 1972: forking 3 child
678 Spawned 1 child, pid 1973 
679 Child 1 successfully executing
680 Go to next child 
681 Spawned 2 child, pid 1974 
682 Child 2 successfully executing
683 Go to next child 
684 Child 3 successfully executing
685 Spawned 3 child, pid 1975 
686 Go to next child 
687 [piccardi@selidor sources]$ Child 3, parent 1, exiting
688 Child 2, parent 1, exiting
689 Child 1, parent 1, exiting
690 \end{verbatim}
691 \normalsize
692 come si può notare in questo caso il processo padre si conclude prima dei
693 figli, tornando alla shell, che stampa il prompt sul terminale: circa due
694 secondi dopo viene stampato a video anche l'output dei tre figli che
695 terminano, e come si può notare in questo caso, al contrario di quanto visto
696 in precedenza, essi riportano 1 come \acr{ppid}.
697
698 Altrettanto rilevante è il caso in cui il figlio termina prima del padre,
699 perché non è detto che il padre possa ricevere immediatamente lo stato di
700 terminazione, quindi il kernel deve comunque conservare una certa quantità di
701 informazioni riguardo ai processi che sta terminando.
702
703 Questo viene fatto mantenendo attiva la voce nella tabella dei processi, e
704 memorizzando alcuni dati essenziali, come il \acr{pid}, i tempi di CPU usati
705 dal processo (vedi \secref{sec:intro_unix_time}) e lo stato di terminazione
706 \footnote{NdA verificare esattamente cosa c'è!}, mentre la memoria in uso ed i
707 file aperti vengono rilasciati immediatamente. I processi che sono terminati,
708 ma il cui stato di terminazione non è stato ancora ricevuto dal padre sono
709 chiamati \textit{zombie}, essi restano presenti nella tabella dei processi ed
710 in genere possono essere identificati dall'output di \cmd{ps} per la presenza
711 di una \cmd{Z} nella colonna che ne indica lo stato. Quando il padre
712 effettuerà la lettura dello stato di uscita anche questa informazione, non più
713 necessaria, verrà scartata e la terminazione potrà dirsi completamente
714 conclusa.
715
716 Possiamo utilizzare il nostro programma di prova per analizzare anche questa
717 condizione: lanciamo il comando \cmd{forktest} in background, indicando al
718 processo padre di aspettare 10 secondi prima di uscire; in questo caso, usando
719 \cmd{ps} sullo stesso terminale (prima dello scadere dei 10 secondi)
720 otterremo:
721
722 \footnotesize
723 \begin{verbatim}
724 [piccardi@selidor sources]$ ps T
725   PID TTY      STAT   TIME COMMAND
726   419 pts/0    S      0:00 bash
727   568 pts/0    S      0:00 ./forktest -e10 3
728   569 pts/0    Z      0:00 [forktest <defunct>]
729   570 pts/0    Z      0:00 [forktest <defunct>]
730   571 pts/0    Z      0:00 [forktest <defunct>]
731   572 pts/0    R      0:00 ps T
732 \end{verbatim} %$
733 \normalsize 
734 e come si vede, dato che non si è fatto nulla per riceverne lo stato di
735 terminazione, i tre processi figli sono ancora presenti pur essendosi
736 conclusi, con lo stato di zombie e l'indicazione che sono stati terminati.
737
738 La possibilità di avere degli zombie deve essere tenuta sempre presente quando
739 si scrive un programma che deve essere mantenuto in esecuzione a lungo e
740 creare molti figli. In questo caso si deve sempre avere cura di far leggere
741 l'eventuale stato di uscita di tutti i figli (in genere questo si fa
742 attraverso un apposito \textit{signal handler}, che chiama la funzione
743 \func{wait}, vedi \secref{sec:sig_xxx} e \secref{sec:proc_wait}). Questa
744 operazione è necessaria perché anche se gli \textit{zombie} non consumano
745 risorse di memoria o processore, occupano comunque una voce nella tabella dei
746 processi, che a lungo andare potrebbe esaurirsi.
747
748 Si noti che quando un processo adottato da \cmd{init} termina, esso non
749 diviene uno \textit{zombie}; questo perché una delle funzioni di \cmd{init} è
750 appunto quella di chiamare la funzione \func{wait} per i processi cui fa da
751 padre, completandone la terminazione. Questo è quanto avviene anche quando,
752 come nel caso del precedente esempio con \cmd{forktest}, il padre termina con
753 dei figli in stato di zombie: alla sua terminazione infatti tutti i suoi figli
754 vengono ereditati (compresi gli zombie) verranno adottati da \cmd{init}, il
755 quale provvederà a completarne la terminazione.
756
757 Si tenga presente infine che siccome gli zombie sono processi già usciti, non
758 c'è modo di eliminarli con il comando \cmd{kill}; l'unica possibilità è quella
759 di terminare il processo che li ha generati, in modo che \cmd{init} possa
760 adottarli e provvedere a concludere la terminazione.
761
762
763 \subsection{Le funzioni \func{wait} e  \func{waitpid}}
764 \label{sec:proc_wait}
765
766 Abbiamo già accennato come uno degli usi possibili delle capacità multitasking
767 di un sistema unix-like consista nella creazione di programmi di tipo server,
768 in cui un processo principale attende le richieste che vengono poi soddisfatte
769 creando una serie di processi figli. Si è già sottolineato al paragrafo
770 precedente come in questo caso diventi necessario gestire esplicitamente la
771 conclusione dei vari processi figli onde evitare di riempire di
772 \textit{zombie} la tabella dei processi; le funzioni deputate a questo compito
773 sono sostanzialmente due, \func{wait} e \func{waitpid}. La prima, il cui
774 prototipo è:
775
776 \begin{functions}
777 \headdecl{sys/types.h}
778 \headdecl{sys/wait.h}
779 \funcdecl{pid\_t wait(int * status)} 
780
781 Sospende il processo corrente finché un figlio non è uscito, o finché un
782 segnale termina il processo o chiama una funzione di gestione. Se un figlio è
783 già uscito la funzione ritorna immediatamente. Al ritorno lo stato di
784 termininazione del processo viene salvato nella variabile puntata da
785 \var{status} e tutte le informazioni relative al processo (vedi
786 \secref{sec:proc_termination}) vengono rilasciate.
787
788 La funzione restituisce il \acr{pid} del figlio in caso di successo e -1 in
789 caso di errore; \var{errno} può assumere i valori:
790   \begin{errlist}
791   \item \macro{EINTR} la funzione è stata interrotta da un segnale.
792   \end{errlist}
793 \end{functions}
794
795 è presente fin dalle prime versioni di unix; la funzione ritorna alla
796 conclusione del primo figlio (o immediatamente se un figlio è già uscito). Nel
797 caso un processo abbia più figli il valore di ritorno permette di identificare
798 qual'è quello che è uscito.
799
800 Questa funzione però ha il difetto di essere poco flessibile, in quanto
801 ritorna all'uscita di un figlio qualunque. Nelle occasioni in cui è necessario
802 attendere la conclusione di un processo specifico occorre predisporre un
803 meccanismo che tenga conto dei processi già terminati, e ripeta la chiamata
804 alla funzione nel caso il processo cercato sia ancora attivo.
805
806 Per questo motivo lo standard POSIX.1 ha introdotto la funzione \func{waitpid}
807 che effettua lo stesso servizio, ma dispone di una serie di funzionalità più
808 ampie, legate anche al controllo di sessione.  Dato che è possibile ottenere
809 lo stesso comportamento di \func{wait} si consiglia di utilizzare sempre
810 questa funzione; il suo prototipo è:
811
812 \begin{functions}
813 \headdecl{sys/types.h}
814 \headdecl{sys/wait.h}
815 \funcdecl{pid\_t waitpid(pid\_t pid, int * status, int options)} 
816
817 La funzione restituisce il \acr{pid} del processo che è uscito, 0 se è stata
818 specificata l'opzione \macro{WNOHANG} e il processo non è uscito e -1 per un
819 errore, nel qual caso \var{errno} assumerà i valori:
820   \begin{errlist}
821   \item \macro{EINTR} se non è stata specificata l'opzione \macro{WNOHANG} e
822     la funzione è stata interrotta da un segnale.
823   \item \macro{ECHILD} il processo specificato da \var{pid} non esiste o non è
824     figlio del processo chiamante.
825   \end{errlist}
826 \end{functions}
827
828 Le differenze principali fra le due funzioni sono che \func{wait} si blocca
829 sempre fino a che un processo figlio non termina, mentre \func{waitpid} ha la
830 possibilità si specificare un'opzione \macro{WNOHANG} che ne previene il
831 blocco; inoltre \func{waitpid} può specificare quale processo attendere sulla
832 base del valore specificato tramite la variabile \var{pid}, secondo lo
833 specchietto riportato in \ntab:
834 \begin{table}[!htb]
835   \centering
836   \footnotesize
837   \begin{tabular}[c]{|c|p{10cm}|}
838     \hline
839     \textbf{Valore} & \textbf{Significato}\\
840     \hline
841     \hline
842     $<-1$& attende per un figlio il cui \textit{process group} è uguale al
843     valore assoluto di \var{pid}. \\
844     $-1$ & attende per un figlio qualsiasi, usata in questa maniera è
845     equivalente a \func{wait}.\\ 
846     $0$  & attende per un figlio il cui \textit{process group} è uguale a
847     quello del processo chiamante. \\
848     $>0$ & attende per un figlio il cui \acr{pid} è uguale al
849     valore di \var{pid}.\\
850     \hline
851   \end{tabular}
852   \caption{Significato dei valori del parametro \var{pid} della funzione
853     \func{waitpid}.}
854   \label{tab:proc_waidpid_pid}
855 \end{table}
856
857 Il comportamento di \func{waitpid} può essere modificato passando delle
858 opportune opzioni tramite la variabile \var{option}. I valori possibili sono
859 il già citato \macro{WNOHANG}, che previene il blocco della funzione quando il
860 processo figlio non è terminato, e \macro{WUNTRACED} (usata per il controllo
861 di sessione, trattato in \capref{cha:session}) che fa ritornare la funzione
862 anche per i processi figli che sono bloccati ed il cui stato non è stato
863 ancora riportato al padre. Il valore dell'opzione deve essere specificato come
864 maschera binaria ottenuta con l'OR delle suddette costanti con zero.
865
866 La terminazione di un processo figlio è chiaramente un evento asincrono
867 rispetto all'esecuzione di un programma e può avvenire in un qualunque
868 momento, per questo motivo, come si è visto nella sezione precedente, una
869 delle azioni prese dal kernel alla conclusione di un processo è quella di
870 mandare un segnale di \macro{SIGCHLD} al padre. Questo segnale viene ignorato
871 di default, ma costituisce il meccanismo di comunicazione asincrona con cui il
872 kernel avverte un processo padre che uno dei suoi figli è terminato.
873
874 In genere in un programma non si vuole essere forzati ad attendere la
875 conclusione di un processo per proseguire, specie se tutto questo serve solo
876 per leggerne lo stato di chiusura (ed evitare la presenza di \textit{zombie}),
877 per questo la modalità più usata per chiamare queste funzioni è quella di
878 utilizzarle all'interno di un \textit{signal handler} (torneremo sui segnali e
879 su come gestire \macro{SIGCHLD} in \secref{sec:sig_sigwait_xxx}) nel qual
880 caso, dato che il segnale è generato dalla terminazione un figlio, avremo la
881 certezza che la chiamata a \func{wait} non si bloccherà.
882
883 \begin{table}[!htb]
884   \centering
885   \footnotesize
886   \begin{tabular}[c]{|c|p{10cm}|}
887     \hline
888     \textbf{Macro} & \textbf{Descrizione}\\
889     \hline
890     \hline
891     \macro{WIFEXITED(s)}   & Condizione vera (valore non nullo) per un processo
892     figlio che sia terminato normalmente. \\
893     \macro{WEXITSTATUS(s)} & Restituisce gli otto bit meno significativi dello
894     stato di uscita del processo (passato attraverso \func{\_exit}, \func{exit}
895     o come valore di ritorno di \func{main}). Può essere valutata solo se
896     \macro{WIFEXITED} ha restituito un valore non nullo.\\
897     \macro{WIFSIGNALED(s)} & Vera se il processo figlio è terminato
898     in maniera anomala a causa di un segnale che non è stato catturato (vedi
899     \secref{sec:sig_notification}).\\
900     \macro{WTERMSIG(s)}    & restituisce il numero del segnale che ha causato
901     la terminazione anomala del processo.  Può essere valutata solo se
902     \macro{WIFSIGNALED} ha restituito un valore non nullo.\\
903     \macro{WCOREDUMP(s)}   & Vera se il processo terminato ha generato un
904     file si \textit{core dump}. Può essere valutata solo se
905     \macro{WIFSIGNALED} ha restituito un valore non nullo\footnote{questa
906     macro non è definita dallo standard POSIX.1, ma è presente come estensione
907     sia in Linux che in altri unix}.\\
908     \macro{WIFSTOPPED(s)}  & Vera se il processo che ha causato il ritorno di
909     \func{waitpid} è bloccato. L'uso è possibile solo avendo specificato
910     l'opzione \macro{WUNTRACED}. \\
911     \macro{WSTOPSIG(s)}    & restituisce il numero del segnale che ha bloccato
912     il processo, Può essere valutata solo se \macro{WIFSTOPPED} ha
913     restituito un valore non nullo. \\
914     \hline
915   \end{tabular}
916   \caption{Descrizione delle varie macro di preprocessore utilizzabili per 
917     verificare lo stato di terminazione \var{s} di un processo.}
918   \label{tab:proc_status_macro}
919 \end{table}
920
921
922 Entrambe le funzioni restituiscono lo stato di terminazione del processo
923 tramite il puntatore \var{status} (se non interessa memorizzare lo stato si
924 può passare un puntatore nullo). Il valore restituito da entrambe le funzioni
925 dipende dall'implementazione, e tradizionalmente alcuni bit sono riservati per
926 memorizzare lo stato di uscita (in genere 8) altri per indicare il segnale che
927 ha causato la terminazione (in caso di conclusione anomala), uno per indicare
928 se è stato generato un core file, etc.\footnote{le definizioni esatte si
929   possono trovare in \file{<bits/waitstatus.h} ma questo file non deve mai
930   essere usato direttamente, esso viene incluso attraverso
931   \file{<sys/wait.h>}}.  Lo standard POSIX.1 definisce una serie di macro di
932 preprocessore da usare per analizzare lo stato di uscita; esse sono definite
933 sempre in \file{<sys/wait.h>} ed elencate in \curtab\ (si tenga presente che
934 queste macro prendono come parametro la variabile di tipo \type{int} puntata
935 da \var{status}).
936
937 Si tenga conto che nel caso di conclusione anomala il valore restituito da
938 \macro{WTERMSIG} può essere controllato contro le costanti definite in
939 \file{signal.h}, e stampato usando le funzioni definite in
940 \secref{sec:sig_strsignal}.
941
942
943 \subsection{Le funzioni \func{wait3} e \func{wait4}}
944 \label{sec:proc_wait4}
945
946 Linux, seguendo una estensione di BSD, supporta altre due funzioni per la
947 lettura dello stato di terminazione di un processo, analoghe a \func{wait} e
948 \func{waitpid}, ma che prevedono un ulteriore parametro attraverso il quale il
949 kernel può restituire al processo padre ulteriori informazioni sulle risorse
950 usate dal processo terminato e dai vari figli.  Queste funzioni, che diventano
951 accessibili definendo la costante \macro{\_USE\_BSD}, sono:
952
953 \begin{functions}
954   \headdecl{sys/times.h} 
955   \headdecl{sys/types.h} 
956   \headdecl{sys/wait.h}        
957   \headdecl{sys/resource.h}
958   \funcdecl{pid\_t wait4(pid\_t pid, int * status, int options, struct rusage
959     * rusage)} 
960   La funzione è identica a \func{waitpid} sia per comportamento che per i
961   valori dei parametri, ma restituisce in \var{rusage} un sommario delle
962   risorse usate dal processo (per i dettagli vedi \secref{sec:xxx_limit_res})
963   \funcdecl{pid\_t wait3(int *status, int options, struct rusage *rusage)}
964   Prima versione, equivalente a \func{wait4(-1, \&status, opt, rusage)} è
965   ormai deprecata in favore di \func{wait4}.
966 \end{functions}
967 \noindent 
968 la struttura \type{rusage} è definita in \file{sys/resource.h}, e viene
969 utilizzata anche dalla funzione \func{getrusage} per ottenere le risorse di
970 sistema usate dal processo; in Linux è definita come:
971 \begin{figure}[!htb]
972   \footnotesize
973   \centering
974   \begin{minipage}[c]{15cm}
975     \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
976 struct rusage {
977      struct timeval ru_utime; /* user time used */
978      struct timeval ru_stime; /* system time used */
979      long ru_maxrss;          /* maximum resident set size */
980      long ru_ixrss;           /* integral shared memory size */
981      long ru_idrss;           /* integral unshared data size */
982      long ru_isrss;           /* integral unshared stack size */
983      long ru_minflt;          /* page reclaims */
984      long ru_majflt;          /* page faults */
985      long ru_nswap;           /* swaps */
986      long ru_inblock;         /* block input operations */
987      long ru_oublock;         /* block output operations */
988      long ru_msgsnd;          /* messages sent */
989      long ru_msgrcv;          /* messages received */
990      long ru_nsignals;   ;    /* signals received */
991      long ru_nvcsw;           /* voluntary context switches */
992      long ru_nivcsw;          /* involuntary context switches */
993 };
994     \end{lstlisting}
995   \end{minipage} 
996   \normalsize 
997   \caption{La struttura \var{rusage} per la lettura delle informazioni dei 
998     delle risorse usate da un processo.}
999   \label{fig:proc_rusage_struct}
1000 \end{figure}
1001 In genere includere esplicitamente \file{<sys/time.h>} non è più necessario,
1002 ma aumenta la portabilità, e serve in caso si debba accedere ai campi di
1003 \var{rusage} definiti come \type{struct timeval}. La struttura è ripresa dalla
1004 versione 4.3 Reno di BSD, attualmente (con il kernel 2.4.x) i soli campi che
1005 sono mantenuti sono: \var{ru\_utime}, \var{ru\_stime}, \var{ru\_minflt},
1006 \var{ru\_majflt}, e \var{ru\_nswap}.
1007
1008
1009 \subsection{Le funzioni \func{exec}}
1010 \label{sec:proc_exec}
1011
1012 Abbiamo già detto che una delle modalità principali con cui si utilizzano i
1013 processi in unix è quella di usarli per lanciare nuovi programmi: questo viene
1014 fatto attraverso una delle funzioni della famiglia \func{exec}. Quando un
1015 processo chiama una di queste funzioni esso viene completamente sostituito dal
1016 nuovo programma; il \acr{pid} del processo non cambia, dato che non viene
1017 creato un nuovo processo, la funzione semplicemente rimpiazza lo stack, o
1018 heap, i dati ed il testo del processo corrente con un nuovo programma letto da
1019 disco. 
1020
1021 Ci sono sei diverse versioni di \func{exec} (per questo la si è chiamata
1022 famiglia di funzioni) che possono essere usate per questo compito, che in
1023 realtà (come mostrato in \figref{fig:proc_exec_relat}), costituiscono un
1024 front-end a \func{execve}. Il prototipo  di quest'ultima è:
1025
1026 \begin{prototype}{unistd.h}
1027 {int execve(const char * filename, char * const argv [], char * const envp[])}
1028   
1029   La funzione esegue il file o lo script indicato da \var{filename},
1030   passandogli la lista di argomenti indicata da \var{argv} e come ambiente la
1031   lista di stringhe indicata da \var{envp}; entrambe le liste devono essere
1032   terminate da un puntatore nullo. I vettori degli argomenti e dell'ambiente
1033   possono essere acceduti dal nuovo programma quando la sua funzione
1034   \func{main} è dichiarata nella forma \func{main(int argc, char *argv[], char
1035     *envp[])}.
1036
1037   La funzione ritorna -1 solo in caso di errore, nel qual caso caso la
1038   \var{errno} può assumere i valori:
1039   \begin{errlist}
1040   \item \macro{EACCES} il file non è eseguibile, oppure il filesystem è
1041     montato in \cmd{noexec}, oppure non è un file normale o un interprete.
1042   \item \macro{EPERM} il file ha i bit \acr{suid} o \acr{sgid} ma l'utente non
1043     è root o il filesystem è montato con \cmd{nosuid}, oppure
1044   \item \macro{ENOEXEC} il file è in un formato non eseguibile o non
1045     riconosciuto come tale, o compilato per un'altra architettura.
1046   \item \macro{ENOENT} il file o una delle librerie dinamiche o l'interprete
1047     necessari per eseguirlo non esistono.
1048   \item \macro{ETXTBSY} L'eseguibile è aperto in scrittura da uno o più
1049     processi. 
1050   \item \macro{EINVAL} L'eseguibile ELF ha più di un segmento
1051     \macro{PF\_INTERP}, cioè chiede di essere eseguito da più di un interprete.
1052   \item \macro{ELIBBAD} Un interprete ELF non è in un formato  riconoscibile.
1053   \end{errlist}
1054   ed inoltre anche \macro{EFAULT}, \macro{ENOMEM}, \macro{EIO},
1055   \macro{ENAMETOOLONG}, \macro{E2BIG}, \macro{ELOOP}, \macro{ENOTDIR},
1056   \macro{ENFILE}, \macro{EMFILE}.
1057 \end{prototype}
1058
1059 Le altre funzioni della famiglia servono per fornire all'utente una serie
1060 possibile di diverse interfacce per la creazione di un nuovo processo. I loro
1061 prototipi sono:
1062
1063 \begin{functions}
1064 \headdecl{unistd.h}
1065 \funcdecl{int execl(const char *path, const char *arg, ...)} 
1066 \funcdecl{int execv(const char *path, char *const argv[])} 
1067 \funcdecl{int execle(const char *path, const char *arg, ..., char 
1068 * const envp[])} 
1069 \funcdecl{int execlp(const char *file, const char *arg, ...)} 
1070 \funcdecl{int execvp(const char *file, char *const argv[])} 
1071
1072 Sostituiscono l'immagine corrente del processo con quella indicata nel primo
1073 argomento. I parametri successivi consentono di specificare gli argomenti a
1074 linea di comando e l'ambiente ricevuti dal nuovo processo.
1075
1076 Queste funzioni ritornano solo in caso di errore, restituendo -1; nel qual
1077 caso \var{errno} andrà ad assumere i valori visti in precedenza per
1078 \func{execve}.
1079 \end{functions}
1080
1081 Per capire meglio le differenze fra le funzioni della famiglia si può fare
1082 riferimento allo specchietto riportato in \ntab. La prima differenza riguarda
1083 le modalità di passaggio dei parametri che poi andranno a costituire gli
1084 argomenti a linea di comando (cioè i valori di \var{argv} e \var{argc} visti
1085 dalla funzione \func{main} del programma chiamato). 
1086
1087 Queste modalità sono due e sono riassunte dagli mnenonici \func{v} e \func{l}
1088 che stanno rispettivamente per \textit{vector} e \textit{list}. Nel primo caso
1089 gli argomenti sono passati tramite il vettore di puntatori \var{argv[]} a
1090 stringhe terminate con zero che costituiranno gli argomenti a riga di comando,
1091 questo vettore \emph{deve} essere terminato da un puntatore nullo.
1092
1093 Nel secondo caso le stringhe degli argomenti sono passate alla funzione come
1094 lista di puntatori, nella forma:
1095 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
1096   char * arg0, char * arg1,  ..., char * argn, NULL
1097 \end{lstlisting}
1098 che deve essere terminata da un puntatore nullo.  In entrambi i casi vale la
1099 convenzione che il primo argomento (\var{arg0} o \var{argv[0]}) viene usato
1100 per indicare il nome del file che contiene il programma che verrà eseguito.
1101
1102 \begin{table}[!htb]
1103   \footnotesize
1104   \centering
1105   \begin{tabular}[c]{|l|c|c|c||c|c|c|}
1106     \hline
1107     \multicolumn{1}{|c|}{\textbf{Caratteristiche}} & 
1108     \multicolumn{6}{|c|}{\textbf{Funzioni}} \\
1109     \hline
1110     &\func{execl\ }&\func{execlp}&\func{execle}
1111     &\func{execv\ }& \func{execvp}& \func{execve} \\
1112     \hline
1113     \hline
1114     argomenti a lista    &$\bullet$&$\bullet$&$\bullet$&&& \\
1115     argomenti a vettore  &&&&$\bullet$&$\bullet$&$\bullet$\\
1116     \hline
1117     filename completo    &&$\bullet$&&&$\bullet$& \\ 
1118     ricerca su \var{PATH}&$\bullet$&&$\bullet$&$\bullet$&&$\bullet$ \\
1119     \hline
1120     ambiente a vettore   &&&$\bullet$&&&$\bullet$ \\
1121     uso di \var{environ} &$\bullet$&$\bullet$&&$\bullet$&$\bullet$& \\
1122     \hline
1123   \end{tabular}
1124   \caption{Confronto delle caratteristiche delle varie funzioni della 
1125     famiglia \func{exec}.}
1126   \label{tab:proc_exec_scheme}
1127 \end{table}
1128
1129 La seconda differenza fra le funzioni riguarda le modalità con cui si
1130 specifica il programma che si vuole eseguire. Con lo mnemonico \func{p} si
1131 indicano le due funzioni che replicano il comportamento della shell nello
1132 specificare il comando da eseguire; quando il parametro \var{file} non
1133 contiene una \file{/} esso viene considerato come un nome di programma, e
1134 viene eseguita automaticamente una ricerca fra i file presenti nella lista di
1135 directory specificate dalla variabile di ambiente \var{PATH}. Il file che
1136 viene posto in esecuzione è il primo che viene trovato. Se si ha un errore di
1137 permessi negati (cioè l'esecuzione della sottostante \func{execve} ritorna un
1138 \macro{EACCESS}), la ricerca viene proseguita nelle eventuali ulteriori
1139 directory indicate nel \var{PATH}, solo se non viene trovato nessun altro file
1140 viene finalmente restituito \macro{EACCESS}.
1141
1142 Le altre quattro funzioni si limitano invece a cercare di eseguire il file
1143 indicato dal parametro \var{path}, che viene interpretato come il
1144 \textit{pathname} del programma.
1145
1146 \begin{figure}[htb]
1147   \centering
1148   \includegraphics[width=13cm]{img/exec_rel.eps}
1149   \caption{La interrelazione fra le sei funzioni della famiglia \func{exec}}
1150   \label{fig:proc_exec_relat}
1151 \end{figure}
1152
1153 La terza differenza è come viene passata la lista delle variabili di ambiente.
1154 Con lo mnemonico \func{e} vengono indicate quelle funzioni che necessitano di
1155 un vettore di parametri \var{envp[]} analogo a quello usato per gli argomenti
1156 a riga di comando (terminato quindi da un \macro{NULL}), le altre usano il
1157 valore della variabile \var{environ} (vedi \secref{sec:proc_environ}) del
1158 processo di partenza per costruire l'ambiente.
1159
1160 Oltre a mantenere lo stesso \acr{pid}, il nuovo programma fatto partire da
1161 \func{exec} assume anche una serie di altre proprietà del processo chiamante;
1162 la lista completa è la seguente:
1163 \begin{itemize*}
1164 \item il \textit{process ID} (\acr{pid}) ed il \textit{parent process ID}
1165   (\acr{ppid}).
1166 \item il \textit{real user ID} ed il \textit{real group ID} (vedi
1167   \secref{sec:proc_user_group}).
1168 \item i \textit{supplementary group ID} (vedi \secref{sec:proc_user_group}).
1169 \item il \textit{session ID} ed il \textit{process group ID} (vedi
1170   \secref{sec:sess_xxx}).
1171 \item il terminale di controllo (vedi \secref{sec:sess_xxx}).
1172 \item il tempo restante ad un allarme.
1173 \item la directory radice e la directory di lavoro corrente (vedi
1174   \secref{sec:file_work_dir}).
1175 \item la maschera di creazione dei file (\var{umask}, vedi
1176   \secref{sec:file_umask}) ed i \textit{lock} sui file (vedi
1177   \secref{sec:file_xxx}).
1178 \item i segnali sospesi (\textit{pending}) e la maschera dei segnali (si veda
1179   \secref{sec:sig_xxx}).
1180 \item i limiti sulle risorse (vedi \secref{sec:limits_xxx})..
1181 \item i valori delle variabili \var{tms\_utime}, \var{tms\_stime},
1182   \var{tms\_cutime}, \var{tms\_ustime} (vedi \secref{sec:xxx_xxx})..
1183 \end{itemize*}
1184
1185 Oltre a questo i segnali che sono stati settati per essere ignorati nel
1186 processo chiamante mantengono lo stesso settaggio pure nuovo programma, tutti
1187 gli altri segnali vengono settati alla loro azione di default. Un caso
1188 speciale è il segnale \macro{SIGCHLD} che, quando settato a \macro{SIG\_IGN}
1189 può anche non essere resettato a \macro{SIG\_DFL} (si veda
1190 \secref{sec:sig_xxx}).
1191
1192 La gestione dei file aperti dipende dal valore del flag di
1193 \textit{close-on-exec} per ciascun file descriptor (si veda
1194 \secref{sec:file_xxx}); i file per cui è settato vengono chiusi, tutti gli
1195 altri file restano aperti. Questo significa che il comportamento di default è
1196 che i file restano aperti attraverso una \func{exec}, a meno di una chiamata
1197 esplicita a \func{fcntl} che setti il suddetto flag.
1198
1199 Per le directory lo standard POSIX.1 richiede che esse vengano chiuse
1200 attraverso una \func{exec}, in genere questo è fatto dalla funzione
1201 \func{opendir} che effettua da sola il settaggio del flag di
1202 \textit{close-on-exec} sulle directory che apre, in maniera trasparente
1203 all'utente.
1204
1205 Abbiamo detto che il \textit{real user ID} ed il \textit{real group ID}
1206 restano gli stessi all'esecuzione di \func{exec}; lo stesso vale per
1207 l'\textit{effective user ID} ed l'\textit{effective group ID}, tranne il caso
1208 in cui il file che si va ad eseguire ha o il \acr{suid} bit o lo \acr{sgid}
1209 bit settato, nel qual caso \textit{effective user ID} e \textit{effective
1210   group ID} vengono settati rispettivamente all'utente o al gruppo cui il file
1211 appartiene (per i dettagli vedi \secref{sec:proc_perms}).
1212
1213 Se il file da eseguire è in formato \emph{a.out} e necessita di librerie
1214 condivise, viene lanciato il \textit{linker} dinamico \cmd{ld.so} prima del
1215 programma per caricare le librerie necessarie ed effettuare il link
1216 dell'eseguibile. Se il programma è in formato ELF per caricare le librerie
1217 dinamiche viene usato l'interprete indicato nel segmento \macro{PT\_INTERP},
1218 in genere questo è \file{/lib/ld-linux.so.1} per programmi linkati con le
1219 \emph{libc5}, e \file{/lib/ld-linux.so.2} per programmi linkati con le
1220 \emph{glibc}. Infine nel caso il file sia uno script esso deve iniziare con
1221 una linea nella forma \cmd{\#!/path/to/interpreter} dove l'interprete indicato
1222 deve esse un valido programma (binario, non un altro script) che verrà
1223 chiamato come se si fosse eseguito il comando \cmd{interpreter [arg]
1224   filename}.
1225
1226 Con la famiglia delle \func{exec} si chiude il novero delle funzioni su cui è
1227 basata la gestione dei processi in unix: con \func{fork} si crea un nuovo
1228 processo, con \func{exec} si avvia un nuovo programma, con \func{exit} e
1229 \func{wait} si effettua e verifica la conclusione dei programmi. Tutte le
1230 altre funzioni sono ausiliarie e servono la lettura e il settaggio dei vari
1231 parametri connessi ai processi.
1232
1233
1234
1235 \section{Il controllo di accesso}
1236 \label{sec:proc_perms}
1237
1238 In questa sezione esamineremo le problematiche relative al controllo di
1239 accesso dal punto di vista del processi; vedremo quali sono gli identificatori
1240 usati, come questi possono essere modificati nella creazione e nel lancio di
1241 nuovi processi, e le varie funzioni per la loro manipolazione diretta e tutte
1242 le problematiche connesse alla gestione accorta dei privilegi.
1243
1244
1245 \subsection{Utente e gruppo di un processo}
1246 \label{sec:proc_user_group}
1247
1248 Come accennato in \secref{sec:intro_multiuser} il modello base\footnote{in
1249   realtà già esistono estensioni di questo modello base, che lo rendono più
1250   flessibile e controllabile, come le \textit{capabilities}, le ACL per i file
1251   o il \textit{Mandatory Access Control} di SELinux} di sicurezza di un
1252 sistema unix-like è fondato sui concetti di utente e gruppo, e sulla
1253 separazione fra l'amministratore (\textsl{root}, detto spesso anche
1254 \textit{superuser}) che non è sottoposto a restrizioni, ed il resto degli
1255 utenti, per i quali invece vengono effettuati i vari controlli di accesso.
1256
1257 %Benché il sistema sia piuttosto semplice (è basato su un solo livello di
1258 % separazione) il sistema permette una
1259 %notevole flessibilità, 
1260
1261 Abbiamo già accennato come il sistema associ ad ogni utente e gruppo due
1262 identificatori univoci, lo \acr{uid} e il \acr{gid}; questi servono al kernel
1263 per identificare uno specifico utente o un gruppo di utenti, per poi poter
1264 controllare che essi siano autorizzati a compiere le operazioni richieste.  Ad
1265 esempio in \secref{sec:file_access_control} vedremo come ad ogni file vengano
1266 associati un utente ed un gruppo (i suoi \textsl{proprietari}, indicati
1267 appunto tramite un \acr{uid} ed un \acr{gid}) che vengono controllati dal
1268 kernel nella gestione dei permessi di accesso.
1269
1270 Dato che tutte le operazioni del sistema vengono compiute dai processi, è
1271 evidente che per poter implementare un controllo sulle operazioni occorre
1272 anche poter identificare chi è che ha lanciato un certo processo, e pertanto
1273 anche a ciascuno di essi è associato un utente e a un gruppo. 
1274
1275 Un semplice controllo di una corrispondenza fra identificativi però non
1276 garantisce però sufficiente flessibilità per tutti quei casi in cui è
1277 necessario poter disporre di privilegi diversi, o dover impersonare un altro
1278 utente per un limitato insieme di operazioni. Per questo motivo in generale
1279 tutti gli unix prevedono che i processi abbiano almeno due gruppi di
1280 identificatori, chiamati rispettivamente \textit{real} ed \textit{effective}.
1281
1282
1283 \begin{table}[htb]
1284   \footnotesize
1285   \centering
1286   \begin{tabular}[c]{|c|l|p{6.5cm}|}
1287     \hline
1288     \textbf{Suffisso} & \textbf{Significato} & \textbf{Utilizzo} \\ 
1289     \hline
1290     \hline
1291     \acr{uid}   & \textit{real user id} & indica l'utente che ha lanciato
1292     il programma\\ 
1293     \acr{gid}   & \textit{real group id} & indica il gruppo dell'utente 
1294     che ha lanciato il programma \\ 
1295     \acr{euid}  & \textit{effective user id} & indica l'utente usato
1296     dal programma nel controllo di accesso \\ 
1297     \acr{egid}  & \textit{effective group id} & indica il gruppo 
1298     usato dal programma  nel controllo di accesso \\ 
1299     --          & \textit{supplementary group id} & indica i gruppi cui
1300     l'utente appartiene  \\ 
1301     --          & \textit{saved user id} &  copia dell'\acr{euid} iniziale\\ 
1302     --          & \textit{saved group id} &  copia dell'\acr{egid} iniziale \\ 
1303     \acr{fsuid} & \textit{filesystem user id} & indica l'utente effettivo per
1304     il filesystem \\ 
1305     \acr{fsgid} & \textit{filesystem group id} & indica il gruppo effettivo
1306     per il filesystem  \\ 
1307     \hline
1308   \end{tabular}
1309   \caption{Identificatori di utente e gruppo associati a ciascun processo con
1310     indicazione dei suffissi usate dalle varie funzioni di manipolazione.}
1311   \label{tab:proc_uid_gid}
1312 \end{table}
1313
1314 Al primo gruppo appartengono il \textit{real user ID} e il \textit{real group
1315   ID}: questi vengono settati al login ai valori corrispondenti all'utente con
1316 cui si accede al sistema (e relativo gruppo di default). Servono per
1317 l'identificazione dell'utente e normalmente non vengono mai cambiati. In
1318 realtà vedremo (in \secref{sec:proc_setuid}) che è possibile modificarli, ma
1319 solo ad un processo che abbia i privilegi di amministratore; questa
1320 possibilità è usata ad esempio da \cmd{login} che una volta completata la
1321 procedura di autenticazione lancia una shell per la quale setta questi
1322 identificatori ai valori corrispondenti all'utente che entra nel sistema.
1323
1324 Al secondo gruppo appartengono l'\textit{effective user ID} e
1325 l'\textit{effective group ID} (a cui si aggiungono gli eventuali
1326 \textit{supplementary group id} dei gruppi dei quale l'utente fa parte).
1327 Questi sono invece gli identificatori usati nella verifiche dei permessi del
1328 processo e per il controllo di accesso ai file (argomento affrontato in
1329 dettaglio in \secref{sec:file_perm_overview}). 
1330
1331 Questi identificatori normalmente sono identici ai corrispondenti del gruppo
1332 \textsl{reale} tranne nel caso in cui, come visto in \secref{sec:proc_exec},
1333 il programma che si è posto in esecuzione abbia i bit \acr{suid} o \acr{sgid}
1334 settati (il significato di questi bit è affrontato in dettaglio in
1335 \secref{sec:file_suid_sgid}). In questo caso essi saranno settati all'utente e
1336 al gruppo proprietari del file; questo consente, per programmi in cui ci sia
1337 necessità, di dare a qualunquee utente normale privilegi o permessi di
1338 un'altro (o dell'amministratore).
1339
1340 Come nel caso del \acr{pid} e del \acr{ppid} tutti questi identificatori
1341 possono essere letti dal processo attraverso delle opportune funzioni, i cui
1342 prototipi sono i seguenti:
1343
1344 \begin{functions}
1345 \headdecl{unistd.h}
1346 \headdecl{sys/types.h}
1347 \funcdecl{uid\_t getuid(void)} restituisce il \textit{real user ID} del
1348 processo corrente.
1349 \funcdecl{uid\_t geteuid(void)} restituisce l'\textit{effective user ID} del
1350 processo corrente.
1351 \funcdecl{gid\_t getgid(void)} restituisce il \textit{real group ID} del
1352 processo corrente.
1353 \funcdecl{gid\_t getegid(void)} restituisce l'\textit{effective group ID} del
1354 processo corrente.
1355
1356 Queste funzioni non riportano condizioni di errore. 
1357 \end{functions}
1358
1359 In generale l'uso di privilegi superiori deve essere limitato il più
1360 possibile, per evitare abusi e problemi di sicurezza, per questo occorre anche
1361 un meccanismo che consenta ad un programma di rilasciare gli eventuali
1362 maggiori privilegi necessari, una volta che si siano effettuate le operazioni
1363 per i quali erano richiesti, e a poterli eventualmente recuperare in caso
1364 servano di nuovo.
1365
1366 Questo in Linux viene fatto usando altri due gruppi di identificatori, il
1367 \textit{saved} ed il \textit{filesystem}, analoghi ai precedenti. Il primo
1368 gruppo è lo stesso usato in SVr4, e previsto dallo standard POSIX quando è
1369 definita la costante \macro{\_POSIX\_SAVED\_IDS}\footnote{in caso si abbia a
1370   cuore la portabilità del programma su altri unix è buona norma controllare
1371   sempre la disponibilità di queste funzioni controllando se questa costante è
1372   definita}, il secondo gruppo è specifico di Linux e viene usato per
1373 migliorare la sicurezza con NFS.
1374
1375 Il \textit{saved user id} e il \textit{saved group id} sono copie
1376 dell'\textit{effective user id} e dell'\textit{effective group id} del
1377 processo padre, e vengono settati dalla funzione \func{exec} all'avvio del
1378 processo, come copie dell'\textit{effective user id} e dell'\textit{effective
1379   group id} dopo che questo sono stati settati tenendo conto di eventuali
1380 \acr{suid} o \acr{sgid}.  Essi quindi consentono di tenere traccia di quale
1381 fossero utente e gruppo effettivi all'inizio dell'esecuzione di un nuovo
1382 programma.
1383
1384 Il \textit{filesystem user id} e il \textit{filesystem group id} sono una
1385 estensione introdotta in Linux per rendere più sicuro l'uso di NFS (torneremo
1386 sull'argomento in \secref{sec:proc_setfsuid}). Essi sono una replica dei
1387 corrispondenti \textit{effective id}, ai quali si sostituiscono per tutte le
1388 operazioni di verifica dei permessi relativi ai file (trattate in
1389 \secref{sec:file_perm_overview}).  Ogni cambiamento effettuato sugli
1390 \textit{effective id} viene automaticamente riportato su di essi, per cui in
1391 condizioni normali se ne può tranquillamente ignorare l'esistenza, in quanto
1392 saranno del tutto equivalenti ai precedenti.
1393
1394 Uno specchietto riassuntivo, contenente l'elenco completo degli identificatori
1395 di utente e gruppo associati dal kernel ad ogni processo, è riportato in
1396 \tabref{tab:proc_uid_gid}.
1397
1398
1399 \subsection{Le funzioni \func{setuid} e \func{setgid}}
1400 \label{sec:proc_setuid}
1401
1402 Le due funzioni che venfono usate per cambiare identità (cioè utente e gruppo
1403 di appartenenza) ad un processo sono rispettivamente \func{setuid} e
1404 \func{setgid}; come accennato in \secref{sec:proc_user_group} in Linux esse
1405 seguono la sematica POSIX che prevede l'esistenza di \textit{saved user id} e
1406 \textit{saved group id}; i loro prototipi sono:
1407
1408 \begin{functions}
1409 \headdecl{unistd.h}
1410 \headdecl{sys/types.h}
1411
1412 \funcdecl{int setuid(uid\_t uid)} setta l'\textit{user ID} del processo
1413 corrente.
1414
1415 \funcdecl{int setgid(gid\_t gid)} setta il \textit{group ID} del processo
1416 corrente.
1417
1418 Le funzioni restituiscono 0 in caso di successo e -1 in caso di fallimento:
1419 l'unico errore possibile è \macro{EPERM}. 
1420 \end{functions}
1421
1422 Il funzionamento di queste due funzioni è analogo, per cui considereremo solo
1423 la prima; la seconda si comporta esattamente allo stesso modo facendo
1424 riferimento al \textit{group id} invece che all'\textit{user id}.  Gli
1425 eventuali \textit{supplementary group id} non vengono modificati da nessuna
1426 delle funzioni che tratteremo in questa sezione.
1427
1428
1429 L'effetto della chiamata è diverso a seconda dei privilegi del processo; se
1430 l'\textit{effective user id} è zero (cioè è quello dell'amministratore di
1431 sistema) allora tutti gli identificatatori (\textit{real}, \textit{effective}
1432 e \textit{saved}) vengono settati al valore specificato da \var{uid},
1433 altrimenti viene settato solo l'\textit{effective user id}, e soltanto se il
1434 valore specificato corrisponde o al \textit{real user id} o al \textit{saved
1435   user id}. Negli altri casi viene segnalato un errore (con \macro{EPERM}).
1436
1437 Come accennato l'uso principale di queste funzioni è quello di poter
1438 consentire ad un programma con i bit \acr{suid} o \acr{sgid} settati di
1439 riportare l'\textit{effective user id} a quello dell'utente che ha lanciato il
1440 programma, effettuare il lavoro che non necessita di privilegi aggiuntivi, ed
1441 eventualmente tornare indietro.
1442
1443 Come esempio per chiarire dell'uso di queste funzioni prediamo quello con cui
1444 viene gestito l'accesso al file \file{/var/log/utmp}.  In questo file viene
1445 registrato chi sta usando il sistema al momento corrente; chiaramente non può
1446 essere lasciato aperto in scrittura a qualunque utente, che protrebbe
1447 falsificare la registrazione. Per questo motivo questo file (e l'analogo
1448 \file{/var/log/wtmp} su cui vengono registrati login e logout) appartengono ad
1449 un gruppo dedicato (\acr{utmp}) ed i programmi che devono accedervi (ad
1450 esempio tutti i programmi di terminale in X, o il programma \cmd{screen}
1451 che crea terminali multipli su una console) appartengono a questo gruppo ed
1452 hanno il bit \acr{sgid} settato.
1453
1454 Quando uno di questi programmi (ad esempio \cmd{xterm}) viene lanciato la
1455 situazione degli identificatori è la seguente:
1456 \begin{eqnarray*}
1457   \label{eq:1}
1458   \textit{real group id}      &=& \textrm{\acr{gid} (del chiamante)} \\
1459   \textit{effective group id} &=& \textrm{\acr{utmp}} \\
1460   \textit{saved group id}     &=& \textrm{\acr{utmp}}
1461 \end{eqnarray*}
1462 in questo modo, dato che l'\textit{effective group id} è quello giusto, il
1463 programma può accedere a \file{/var/log/utmp} in scrittura ed aggiornarlo, a
1464 questo punto il programma può eseguire una \func{setgid(getgid())} per settare
1465 l'\textit{effective group id} a quello dell'utente (e dato che il \textit{real
1466   group id} corrisponde la funzione avrà successo), in questo modo non sarà
1467 possibile lanciare dal terminale programmi che modificano detto file, in tal
1468 caso infatti la situazione degli identificatori sarebbe:
1469 \begin{eqnarray*}
1470   \label{eq:2}
1471   \textit{real group id}      &=& \textrm{\acr{gid} (invariato)}  \\
1472   \textit{effective group id} &=& \textrm{\acr{gid}} \\
1473   \textit{saved group id}     &=& \textrm{\acr{utmp} (invariato)}
1474 \end{eqnarray*}
1475 e ogni processo lanciato dal terminale avrebbe comunque \acr{gid} come
1476 \textit{effective group id}. All'uscita dal terminale, per poter di nuovo
1477 aggiornare lo stato di \file{/var/log/utmp} il programma eseguirà una
1478 \func{setgid(utmp)} (dove \var{utmp} è il valore numerico associato al gruppo
1479 \acr{utmp}, ottenuto ad esempio con una \func{getegid}), dato che in questo
1480 caso il valore richiesto corrisponde al \textit{saved group id} la funzione
1481 avrà successo e riporterà la situazione a:
1482 \begin{eqnarray*}
1483   \label{eq:3}
1484   \textit{real group id}      &=& \textrm{\acr{gid} (invariato)}  \\
1485   \textit{effective group id} &=& \textrm{\acr{utmp}} \\
1486   \textit{saved group id}     &=& \textrm{\acr{utmp} (invariato)}
1487 \end{eqnarray*}
1488 consentendo l'accesso a \file{/var/log/utmp}.
1489
1490 Occorre però tenere conto che tutto questo non è possibile con un processo con
1491 i privilegi di root, in tal caso infatti l'esecuzione una \func{setuid}
1492 comporta il cambiamento di tutti gli identificatori associati al processo,
1493 rendendo impossibile riguadagnare i privilegi di amministratore.  Questo
1494 comportamento è corretto per l'uso che ne fa \cmd{login} una volta che crea
1495 una nuova shell per l'utente; ma quando si vuole cambiare soltanto
1496 l'\textit{effective user id} del processo per cedere i privilegi occorre
1497 ricorrere ad altre funzioni (si veda ad esempio \secref{sec:proc_seteuid}).
1498
1499
1500 \subsection{Le funzioni \func{setreuid} e \func{setresuid}}
1501 \label{sec:proc_setreuid}
1502
1503 Queste due funzioni derivano da BSD che non supportando\footnote{almeno fino
1504   alla versione 4.3+BSD TODO, verificare e aggiornare la nota} i \textit{saved
1505   id} le usava per poter scambiare fra di loro effective e real id. I
1506 prototipi sono:
1507
1508 \begin{functions}
1509 \headdecl{unistd.h}
1510 \headdecl{sys/types.h}
1511
1512 \funcdecl{int setreuid(uid\_t ruid, uid\_t euid)} setta il \textit{real user
1513   ID} e l'\textit{effective user ID} del processo corrente ai valori
1514 specificati da \var{ruid} e \var{euid}.
1515   
1516 \funcdecl{int setregid(gid\_t rgid, gid\_t egid)} setta il \textit{real group
1517   ID} e l'\textit{effective group ID} del processo corrente ai valori
1518 specificati da \var{rgid} e \var{egid}.
1519
1520 Le funzioni restituiscono 0 in caso di successo e -1 in caso di fallimento:
1521 l'unico errore possibile è \macro{EPERM}. 
1522 \end{functions}
1523
1524 I processi non privileguiati possono settare i \textit{real id} soltanto ai
1525 valori dei loro \textit{effective id} o \textit{real id} e gli
1526 \textit{effective id} ai valori dei loro \textit{real id}, \textit{effective
1527   id} o \textit{saved id}; valori diversi comportano il fallimento della
1528 chiamata; l'amministratore invece può specificare un valore qualunque.
1529 Specificando un valore di -1 l'identificatore corrispondente viene lasciato
1530 inalterato.
1531
1532 Con queste funzione si possono scambiare fra loro \textit{real id} e
1533 \textit{effective id}, e pertanto è possibile implementare un comportamento
1534 simile a quello visto in precedenza per \func{setgid}, cedendo i privilegi con
1535 un primo scambio, e recuperandoli, eseguito il lavoro non privilegiato, con un
1536 secondo scambio.
1537
1538 In questo caso però occorre porre molta attenzione quando si creano nuovi
1539 processi nella fase intermedia in cui si sono scambiati gli identificatori, in
1540 questo caso infatti essi avranno un \textit{real id} privilegiato, che dovrà
1541 essere esplicitamente eliminato prima di porre in esecuzione un nuovo
1542 programma (occorrerà cioè eseguire un'altra chiamata dopo la \func{fork}, e
1543 prima della \func{exec} per uniformare i \textit{real id} agli
1544 \textit{effective id}) in caso contrario quest'ultimo potrebbe a sua volta
1545 effettuare uno scambio e riottenere privilegi non previsti.
1546
1547 Lo stesso problema di propagazione dei privilegi ad eventuali processi figli
1548 si porrebbe per i \textit{saved id}. Queste funzioni derivano da
1549 un'implementazione che non ne prevede la presenza, e quindi non è possibile
1550 usarle per correggere la situazione come nel caso precedente, per questo
1551 motivo tutte le volte che uno degli identificatori viene modificato ad un
1552 valore diverso dal precedente \textit{real id}, il \textit{saved id} viene
1553 sempre settato al valore dell'\textit{effective id}.
1554
1555
1556 \subsection{Le funzioni \func{setresuid} e \func{setresgid}}
1557 \label{sec:proc_setresuid}
1558
1559 Queste due funzioni sono una estensione introdotta in Linux dal kernel 2.1.44,
1560 e permettono un completo controllo su tutti gli identificatori (\textit{real},
1561 \textit{effective} e \textit{saved}), i prototipi sono:
1562
1563 \begin{functions}
1564 \headdecl{unistd.h}
1565 \headdecl{sys/types.h}
1566
1567 \funcdecl{int setresuid(uid\_t ruid, uid\_t euid, uid\_t suid)} setta il
1568 \textit{real user ID}, l'\textit{effective user ID} e il \textit{saved user
1569   ID} del processo corrente ai valori specificati rispettivamente da
1570 \var{ruid}, \var{euid} e \var{suid}.
1571   
1572 \funcdecl{int setresgid(gid\_t rgid, gid\_t egid, gid\_t sgid)} setta il
1573 \textit{real group ID}, l'\textit{effective group ID} e il \textit{saved group
1574   ID} del processo corrente ai valori specificati rispettivamente da
1575 \var{rgid}, \var{egid} e \var{sgid}.
1576
1577 Le funzioni restituiscono 0 in caso di successo e -1 in caso di fallimento:
1578 l'unico errore possibile è \macro{EPERM}. 
1579 \end{functions}
1580
1581 I processi non privilegiati possono cambiare uno qualunque degli
1582 identificatori usando uno qualunque dei valori correnti di \textit{real id},
1583 \textit{effective id} o \textit{saved id}, l'ammnistratore può specificare i
1584 valori che vuole; un valore di -1 per un qualunque parametro lascia inalterato
1585 l'dentificatore corrispondente.
1586
1587
1588
1589 \subsection{Le funzioni \func{seteuid} e \func{setegid}}
1590 \label{sec:proc_seteuid}
1591
1592 Queste funzioni sono un'estensione allo standard POSIX.1 (ma sono comunque
1593 supportate dalla maggior parte degli unix) e usate per cambiare gli
1594 \textit{effective id}; i loro prototipi sono:
1595
1596 \begin{functions}
1597 \headdecl{unistd.h}
1598 \headdecl{sys/types.h}
1599
1600 \funcdecl{int seteuid(uid\_t uid)} setta l'\textit{effective user ID} del
1601 processo corrente a \var{uid}.
1602
1603 \funcdecl{int setegid(gid\_t gid)} setta l'\textit{effective group ID} del
1604 processo corrente a \var{gid}.
1605
1606 Le funzioni restituiscono 0 in caso di successo e -1 in caso di fallimento:
1607 l'unico errore possibile è \macro{EPERM}. 
1608 \end{functions}
1609
1610 Gli utenti normali possono settare l'\textit{effective id} solo al valore del
1611 \textit{real id} o del \textit{saved id}, l'amministratore può specificare
1612 qualunque valore. Queste funzioni sono usate per permettere a root di settare
1613 solo l'\textit{effective id}, dato che l'uso normale di \func{setuid} comporta
1614 il settaggio di tutti gli identificatori.
1615  
1616
1617 \subsection{Le funzioni \func{setfsuid} e \func{setfsgid}}
1618 \label{sec:proc_setfsuid}
1619
1620 Queste funzioni sono usate per settare gli identificatori usati da Linux per
1621 il controllo dell'accesso ai file. Come già accennato in
1622 \secref{sec:proc_user_group} in Linux è definito questo ulteriore gruppo di
1623 identificatori, che di norma sono assolutamente equivalenti agli
1624 \textit{effective id}, dato che ogni cambiamento di questi ultimi viene
1625 immediatamente riportato sui \textit{filesystem id}.
1626
1627 C'è un solo caso in cui si ha necessità di introdurre una differenza fra
1628 \textit{effective id} e \textit{filesystem id}, ed è per ovviare ad un
1629 problema di sicurezza che si presenta quando si deve implementare un server
1630 NFS. Il server NFS infatti deve poter cambiare l'identificatore con cui accede
1631 ai file per assumere l'identità del singolo utente remoto, ma se questo viene
1632 fatto cambiando l'\textit{effective id} o il \textit{real id} il server si
1633 espone alla ricezione di eventuali segnali ostili da parte dell'utente di cui
1634 ha temporaneamente assunto l'identità.  Cambiando solo il \textit{filesystem
1635   id} si ottengono i privilegi necessari per accedere ai file, mantenendo
1636 quelli originari per quanto riguarda tutti gli altri controlli di accesso.
1637
1638 Le due funzioni usate per cambiare questi identificatori sono \func{setfsuid}
1639 e \func{setfsgid}, ovviamenete sono specifiche di Linux e non devono essere
1640 usate se si intendono scrivere programmi portabili; i loro prototipi sono:
1641
1642 \begin{functions}
1643 \headdecl{sys/fsuid.h}
1644
1645 \funcdecl{int setfsuid(uid\_t fsuid)} setta il \textit{filesystem user ID} del
1646 processo corrente a \var{fsuid}.
1647
1648 \funcdecl{int setfsgid(gid\_t fsgid)} setta l'\textit{filesystem group ID} del
1649 processo corrente a \var{fsgid}.
1650
1651 Le funzioni restituiscono 0 in caso di successo e -1 in caso di fallimento:
1652 l'unico errore possibile è \macro{EPERM}. 
1653 \end{functions}
1654
1655 Queste funzioni hanno successo solo se il processo chiamante ha i privilegi di
1656 amministratore o, per gli altri utenti, se il valore specificato coincide con
1657 uno dei \textit{real}, \textit{effective} o \textit{saved id}.
1658
1659
1660 \section{Problematiche di programmazione multitasking}
1661 \label{sec:proc_multi_prog}
1662
1663 Benché i processi siano strutturati in modo da apparire il più possibile come
1664 indipendenti l'uno dall'altro, nella programmazione in un sistema multiutente
1665 occorre tenere conto di tutta una serie di problematiche che normalmente non
1666 esistono quando si ha a che fare con un sistema in cui viene eseguito un solo
1667 programma alla volta. 
1668
1669 Pur non essendo tutto questo direttamente legato alla modalità specifica in
1670 cui il multitasking è implementato in un sistema unix-like, siccome la
1671 gestione dei processi è stata affrontata in questo capitolo, tratteremo in
1672 questa sezione conclusiva anche queste problematiche, esaminandone le
1673 caratteristiche fondamentali e le modalità con cui si affrontano.
1674
1675
1676 \subsection{Le funzioni rientranti}
1677 \label{sec:proc_reentrant}
1678
1679
1680 \subsection{Le operazioni atomiche}
1681 \label{sec:proc_atom_oper}
1682
1683
1684 \subsection{Le \textit{race condition}}
1685 \label{sec:proc_race_cond}
1686
1687 Si definisce una \textit{race condition} il caso in cui diversi processi
1688 stanno cercando di fare qualcosa con una risorsa comune ed il risultato finale
1689 viene a dipendere dall'ordine di esecuzione dei medesimi. Ovviamente dato che
1690 l'ordine di esecuzione di un processo, senza appositi meccanismi di
1691 sincronizzazione, non è assolutamente prevedibile, queste situazioni sono
1692 fonti di errori molto subdoli, che possono verificarsi solo in condizioni
1693 particolari e quindi difficilmente riproducibili.
1694
1695
1696 \subsection{I \textit{deadlock}}
1697 \label{sec:proc_deadlock}
1698