Aggiunta roba su adjtimex.
[gapil.git] / ipprot.tex
1 \chapter{Il protocollo IP}
2 \label{cha:ip_protocol}
3
4 L'attuale Internet Protocol (IPv4) viene standardizzato nel 1981
5 dall'RFC~719; esso nasce per disaccoppiare le applicazioni della struttura
6 hardware delle reti di trasmissione, e creare una interfaccia di trasmissione
7 dei dati indipendente dal sottostante substrato di rete, che può essere
8 realizzato con le tecnologie più disparate (Ethernet, Token Ring, FDDI,
9 etc.).
10
11
12 \section{Introduzione}
13 \label{sec:IP_intro}
14
15 Il compito di IP è pertanto quello di trasmettere i pacchetti da un computer
16 all'altro della rete; le caratteristiche essenziali con cui questo viene
17 realizzato in IPv4 sono due:
18
19 \begin{itemize}
20 \item \textit{Universal addressing} la comunicazione avviene fra due host
21   identificati univocamente con un indirizzo a 32 bit che può appartenere ad
22   una sola interfaccia di rete.
23 \item \textit{Best effort} viene assicurato il massimo impegno nella
24   trasmissione, ma non c'è nessuna garanzia per i livelli superiori né
25   sulla percentuale di successo né sul tempo di consegna dei pacchetti di
26   dati.
27 \end{itemize}
28
29 Per effettuare la comunicazione e l'instradamento dei pacchetti fra le varie
30 reti di cui è composta Internet IPv4 organizza gli indirizzi in una
31 gerarchia a due livelli, in cui una parte dei 32 bit dell'indirizzo indica il
32 numero di rete, e un'altra l'host al suo interno.  Il numero di rete serve
33 ai router per stabilire a quale rete il pacchetto deve essere inviato, il
34 numero di host indica la macchina di destinazione finale all'interno di detta
35 rete.
36
37 Per garantire l'unicità dell'indirizzo Internet esiste un'autorità
38 centrale (la IANA, \textit{Internet Assigned Number Authority}) che assegna i
39 numeri di rete alle organizzazioni che ne fanno richiesta; è poi compito di
40 quest'ultime assegnare i numeri dei singoli host.  
41
42 Per venire incontro alle diverse esigenze gli indirizzi di rete sono stati
43 originariamente organizzati in \textit{classi}, (rappresentate in
44 Tab.~\ref{tab:IP_ipv4class}), per consentire dispiegamenti di reti di
45 dimensioni diverse.
46
47
48 \begin{table}[htb]
49   \centering
50   \footnotesize
51   \begin{tabular} {c@{\hspace{1mm}\vrule}
52       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
53       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
54       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
55       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
56       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
57       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
58       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
59       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}}
60     \omit&\omit& \multicolumn{7}{c}{7 bit}&\multicolumn{24}{c}{24 bit} \\
61     \cline{2-33}
62     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
63     classe A &\centering 0&
64     \multicolumn{7}{@{}c@{\vrule}}{\parbox[c]{21mm}{\centering net Id}} &
65     \multicolumn{24}{@{}c@{\vrule}}{\parbox[c]{72mm}{\centering host Id}} \\
66     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
67     \cline{2-33}
68     \multicolumn{33}{c}{ } \\
69     \omit&\omit&\omit& 
70     \multicolumn{14}{c}{14 bit}&\multicolumn{16}{c}{16 bit} \\
71     \cline{2-33}
72     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
73     classe B&\centering 1&\centering 0& 
74     \multicolumn{14}{@{}c@{\vrule}}{\parbox{42mm}{\centering net Id}} &
75     \multicolumn{16}{@{}c@{\vrule}}{\parbox{48mm}{\centering host Id}} \\
76     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
77     \cline{2-33}
78    
79     \multicolumn{33}{c}{ } \\
80     \omit&\omit&\omit& 
81     \multicolumn{21}{c}{21 bit}&\multicolumn{8}{c}{8 bit} \\
82     \cline{2-33}
83     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
84     classe C&\centering 1&\centering 1&\centering 0&
85     \multicolumn{21}{@{}c@{\vrule}}{\parbox{63mm}{\centering net Id}} &
86     \multicolumn{8}{@{}c@{\vrule}}{\parbox{24mm}{\centering host Id}} \\
87     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
88     \cline{2-33}
89
90
91     \multicolumn{33}{c}{ } \\
92     \omit&\omit&\omit&\omit& 
93     \multicolumn{28}{c}{28 bit} \\
94     \cline{2-33}
95     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
96     classe D&\centering 1&\centering 1&\centering 1&\centering 0&
97     \multicolumn{28}{@{}c@{\vrule}}{\parbox{63mm}{\centering 
98         multicast group Id}} \\
99     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
100     \cline{2-33}
101
102     \multicolumn{33}{c}{ } \\
103     \omit&\omit&\omit&\omit&\omit&
104     \multicolumn{27}{c}{27 bit} \\
105     \cline{2-33}
106     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
107     classe E&\centering 1&\centering 1&\centering 1&\centering 1&\centering 0&
108     \multicolumn{27}{@{}c@{\vrule}}{\parbox{59mm}{\centering 
109         reserved for future use}} \\
110     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
111     \cline{2-33}
112
113 \end{tabular}
114 \caption{Le classi di indirizzi secondo IPv4.}
115 \label{tab:IP_ipv4class}
116 \end{table}
117
118 Le classi usate per il dispiegamento delle reti sono le prime tre; la classe D
119 è destinata al (non molto usato) \textit{multicast} mentre la classe E è
120 riservata per usi sperimentali e non viene impiegata.
121
122 Come si può notare però la suddivisione riportata in \tabref{tab:IP_ipv4class}
123 è largamente inefficiente in quanto se ad un utente necessita anche solo un
124 indirizzo in più dei 256 disponibili con una classe A occorre passare a una
125 classe B, con un conseguente spreco di numeri.
126
127 Inoltre, in particolare per le reti di classe C, la presenza di tanti
128 indirizzi di rete diversi comporta una crescita enorme delle tabelle di
129 instradamento che ciascun router dovrebbe tenere in memoria per sapere dove
130 inviare il pacchetto, con conseguente crescita dei tempi di processo da parte
131 di questi ultimi ed inefficienza nel trasporto.
132
133 \begin{table}[htb]
134   \centering
135   \footnotesize
136   \begin{tabular} {c@{\hspace{1mm}\vrule}
137       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
138       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
139       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
140       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
141       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
142       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
143       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
144       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}}
145     \omit&
146     \multicolumn{12}{c}{$n$ bit}&\multicolumn{20}{c}{$32-n$ bit} \\
147     \cline{2-33}
148     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
149     CIDR &
150     \multicolumn{12}{@{}c@{\vrule}}{\parbox[c]{36mm}{\centering net Id}} &
151     \multicolumn{20}{@{}c@{\vrule}}{\parbox[c]{60mm}{\centering host Id}} \\
152     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
153     \cline{2-33}
154 \end{tabular}
155 \caption{Uno esempio di indirizzamento CIDR.}
156 \label{tab:IP_ipv4cidr}
157 \end{table}
158
159 Per questo nel 1992 è stato introdotto un indirizzamento senza classi (il
160 CIDR) in cui il limite fra i bit destinati a indicare il numero di rete e
161 quello destinati a indicare l'host finale può essere piazzato in qualunque
162 punto (vedi Tab.~\tabref{tab:IP_ipv4cidr}), permettendo di accorpare più
163 classi A su un'unica rete o suddividere una classe B e diminuendo al contempo
164 il numero di indirizzi di rete da inserire nelle tabelle di instradamento dei
165 router.
166
167
168 \section{I motivi della transizione}
169 \label{sec:IP_whyipv6}
170
171 Negli ultimi anni la crescita vertiginosa del numero di macchine connesse a
172 internet ha iniziato a far emergere i vari limiti di IPv4; in particolare si
173 è iniziata a delineare la possibilità di arrivare a una carenza di
174 indirizzi disponibili.
175
176 In realtà il problema non è propriamente legato al numero di indirizzi
177 disponibili; infatti con 32 bit si hanno $2^{32}$, cioè circa 4 miliardi,
178 numeri diversi possibili, che sono molti di più dei computer attualmente
179 esistenti.
180
181 Il punto è che la suddivisione di questi numeri nei due livelli rete/host e
182 l'utilizzo delle classi di indirizzamento mostrate in precedenza, ha
183 comportato che, nella sua evoluzione storica, il dispiegamento delle reti e
184 l'allocazione degli indirizzi siano stati inefficienti; neanche l'uso del CIDR
185 ha permesso di eliminare le inefficienze che si erano formate, dato che il
186 ridispiegamento degli indirizzi comporta cambiamenti complessi a tutti i
187 livelli e la riassegnazione di tutti gli indirizzi dei computer di ogni
188 sottorete.
189
190 Diventava perciò necessario progettare un nuovo protocollo che permettesse
191 di risolvere questi problemi, e garantisse flessibilità sufficiente per
192 poter continuare a funzionare a lungo termine; in particolare necessitava un
193 nuovo schema di indirizzamento che potesse rispondere alle seguenti
194 necessità:
195
196 \begin{itemize}
197 \item un maggior numero di numeri disponibili che consentisse di non restare
198   più a corto di indirizzi
199 \item un'organizzazione gerarchica più flessibile dell'attuale 
200 \item uno schema di assegnazione degli indirizzi in grado di minimizzare le
201   dimensioni delle tabelle di instradamento
202 \item uno spazio di indirizzi che consentisse un passaggio automatico dalle
203   reti locali a internet
204 \end{itemize}
205
206
207 \section{Principali caratteristiche di IPv6}
208 \label{sec:IP_ipv6over}
209
210 Per rispondere alle esigenze descritte in \secref{sec:IP_whyipv6} IPv6 nasce
211 come evoluzione di IPv4, mantendone inalterate le funzioni che si sono
212 dimostrate valide, eliminando quelle inutili e aggiungendone poche altre
213 ponendo al contempo una grande attenzione a mantenere il protocollo il più
214 snello e veloce possibile.
215
216 I cambiamenti apportati sono comunque notevoli e si possono essere riassunti a
217 grandi linee nei seguenti punti:
218 \begin{itemize}
219 \item l'espansione delle capacità di indirizzamento e instradamento, per
220   supportare una gerarchia con più livelli di indirizzamento, un numero di
221   nodi indirizzabili molto maggiore e una autoconfigurazione degli indirizzi
222 \item l'introduzione un nuovo tipo di indirizzamento, l'\textit{anycast} che
223   si aggiungono agli usuali \textit{unycast} e \textit{multicast}
224 \item la semplificazione del formato della testata, eliminando o rendendo
225   opzionali alcuni dei campi di IPv4, per eliminare la necessità di
226   riprocessamento della stessa da parte dei router e contenere l'aumento di
227   dimensione dovuto ai nuovi indirizzi
228 \item un supporto per le opzioni migliorato, per garantire una trasmissione
229   più efficiente del traffico normale, limiti meno stringenti sulle
230   dimensioni delle opzioni, e la flessibilità necessaria per introdurne di
231   nuove in futuro
232 \item il supporto per delle capacità di qualità di servizio (QoS) che
233   permetta di identificare gruppi di dati per i quali si può provvedere un
234   trattamento speciale (in vista dell'uso di internet per applicazioni
235   multimediali e/o ``real-time'')
236 \end{itemize}
237
238
239 \section{La testata di IPv6}
240 \label{sec:IP_ipv6head}
241
242 Per capire le caratteristiche di IPv6 partiamo dall'intestazione usata dal
243 protocollo per gestire la trasmissione dei pacchetti; in
244 \tabref{tab:IP_ipv6head} è riportato il formato della testata di IPv6 da
245 confrontare con quella di IPv4 in \tabref{tab:IP_ipv4head}. La spiegazione del
246 significato dei vari campi delle due testate è riportato rispettivamente in
247 \tabref{tab:IP_ipv6field} e \tabref{tab:IP_ipv4field})
248
249 \begin{table}[htb]
250   \footnotesize
251   \begin{center}
252     \begin{tabular}{@{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule}p{16mm}
253         @{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule}p{16mm}
254         @{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule} }
255     \multicolumn{8}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
256     \hline
257     \centering version&\centering priority& 
258     \multicolumn{6}{@{}p{96mm}@{\vrule}}{\centering flow label} \\
259     \hline
260     \multicolumn{4}{@{\vrule}p{64mm}@{\vrule}}{\centering payload lenght} & 
261     \multicolumn{2}{@{}p{32mm}@{\vrule}}{\centering next header} & 
262     \multicolumn{2}{@{}p{32mm}@{\vrule}}{\centering hop limit}\\
263     \hline
264     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
265     \multicolumn{8}{@{\vrule}c@{\vrule}}{
266       source} \\
267     \multicolumn{8}{@{\vrule}c@{\vrule}}{
268       IP address} \\
269     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
270     \hline
271     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
272     \multicolumn{8}{@{\vrule}c@{\vrule}}{
273       destination} \\
274     \multicolumn{8}{@{\vrule}c@{\vrule}}{
275      IP address} \\
276     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
277     \hline
278     \end{tabular}
279     \caption{La testata o \textit{header} di IPv6}
280     \label{tab:IP_ipv6head}
281   \end{center}
282 \end{table}
283
284 Come si può notare la testata di IPv6 diventa di dimensione fissa, pari a 40
285 byte, contro una dimensione (minima, in assenza di opzioni) di 20 byte per
286 IPv4; un semplice raddoppio nonostante lo spazio destinato agli indirizzi sia
287 quadruplicato, questo grazie a una notevole semplificazione che ha ridotto il
288 numero dei campi da 12 a 8.
289
290 \begin{table}[htb]
291   \begin{center}
292   \footnotesize
293     \begin{tabular}{|l|c|p{8cm}|}
294       \hline
295       \textbf{Nome} & \textbf{Lunghezza} & \textbf{Significato} \\
296       \hline
297       \hline
298       \textit{version}       &  4 bit & 
299       \textsl{versione}, nel caso specifico vale sempre 6\\
300       \textit{priority}      &  4 bit & 
301       \textsl{priorità}, vedi Sez.~\ref{sec:prio} \\
302       \textit{flow label}    & 24 bit & 
303       \textsl{etichetta di flusso}, vedi Sez.~\ref{sec:IP_ipv6_flow}\\
304       \textit{payload leght} & 16 bit & 
305       \textsl{lunghezza del carico}, cioè del corpo dei dati che segue 
306       l'intestazione, in byte. \\
307       \textit{next header}   &  8 bit & \textsl{testata successiva}, 
308       identifica il tipo di pacchetto che segue la testata di IPv6, usa gli 
309       stessi valori del campo protocollo nella testata di IPv4\\
310       \textit{hop limit}     &  8 bit & \textsl{limite di salti},
311       stesso significato del \textit{time to live} nella testata di IPv4, 
312       è decrementato di uno ogni volta che un nodo ritrasmette il
313       pacchetto, se arriva a zero il pacchetto viene scartato \\
314       \textit{source IP}     & 128 bit & \textsl{indirizzo di origine} \\
315       \textit{destination IP}& 128 bit & \textsl{indirizzo di destinazione}\\
316       \hline
317     \end{tabular}
318     \caption{Legenda per il significato dei campi dell'intestazione di IPv6}
319     \label{tab:IP_ipv6field}
320   \end{center}
321 \end{table}
322
323 Abbiamo già anticipato in \secref{sec:IP_ipv6over} uno dei criteri principali
324 nella progettazione di IPv6 è stato quello di ridurre al massimo il tempo di
325 processamento dei pacchetti da parte dei router, un confronto con la testata
326 di IPv4 (vedi \secref{tab:IP_ipv4head}) mostra le seguenti differenze:
327
328 \begin{itemize}
329 \item è stato eliminato il campo \textit{header lenght} in quanto le opzioni
330   sono state tolte dalla testata che ha così dimensione fissa; ci possono
331   essere più testate opzionali (\textsl{testate di estensione}, vedi
332   \secref{sec:IP_ipv6_extens}), ciascuna delle quali avrà un suo campo di
333   lunghezza all'interno.
334 \item la testata e gli indirizzi sono allineati a 64 bit, questo rende più
335   veloce il processo da parte di computer con processori a 64 bit.
336 \item i campi per gestire la frammentazione (\textit{identification},
337   \textit{flag} e \textit{fragment offset}) sono stati eliminati; questo
338   perché la  frammentazione è un'eccezione che non deve rallentare il
339   processo dei pacchetti nel caso normale.
340 \item è stato eliminato il campo \textit{checksum} in quanto tutti i
341   protocolli di livello superiore (TCP, UDP e ICMPv6) hanno un campo di
342   checksum che include, oltre alla loro testata e ai dati, pure i campi
343   \textit{payload lenght}, \textit{next header}, e gli indirizzi di origine e
344   di destinazione; una checksum esiste anche per la gran parte protocolli di
345   livello inferiore (anche se quelli che non lo hanno, come SLIP, non possono
346   essere usati con grande affidabilità); con questa scelta si è ridotto di
347   molti tempo di riprocessamento dato che i router non hanno più la
348   necessità di ricalcolare la checksum ad ogni passaggio di un pacchetto per
349   il cambiamento del campo \textit{hop limit}.
350 \item è stato eliminato il campo \textit{type of service}, che praticamente
351   non è mai stato utilizzato; una parte delle funzionalità ad esso delegate
352   sono state reimplementate (vedi il campo \textit{priority} al prossimo
353   punto) con altri metodi.
354 \item è stato introdotto un nuovo campo \textit{flow label}, che viene usato,
355   insieme al campo \textit{priority} (che recupera i bit di precedenza del
356   campo \textit{type of service}) per implementare la gestione di una
357   ``qualità di servizio'' (vedi Sez.~\ref{sec:IP_ipv6_qos}) che permette di
358   identificare i pacchetti appartenenti a un ``flusso'' di dati per i quali si
359   può provvedere un trattamento speciale.
360 \end{itemize}
361
362 \begin{table}[htb]
363   \footnotesize
364   \centering
365   \begin{tabular}{@{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule}p{16mm}
366         @{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule}p{16mm}
367         @{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule} }
368     \multicolumn{8}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
369     \hline
370     \centering version&
371     \centering head lenght&
372     \multicolumn{2}{@{}p{32mm}@{\vrule}}{\centering type of service} &  
373     \multicolumn{4}{@{}p{64mm}@{\vrule}}{\centering total lenght} \\
374     \hline
375     \multicolumn{4}{@{\vrule}p{64mm}@{\vrule}}{\centering identification} &
376     \multicolumn{4}{@{}p{64mm}@{\vrule}}{\parbox{11mm}{\centering flag} \vrule
377         \parbox{52mm}{\centering fragment offset}}\\
378     \hline
379     \multicolumn{2}{@{\vrule}p{32mm}@{\vrule}}{\centering TTL}& 
380     \multicolumn{2}{@{}p{32mm}@{\vrule}}{\centering protocol}&    
381     \multicolumn{4}{@{}p{64mm}@{\vrule}}{\centering header checksum} \\
382     \hline
383     \multicolumn{8}{@{\vrule}c@{\vrule}}{
384       source IP address} \\
385     \hline
386     \multicolumn{8}{@{\vrule}c@{\vrule}}{
387       destination IP address} \\
388     \hline
389     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\    
390     \multicolumn{8}{@{}p{128mm}@{}}{
391       \centering options (if any)} \\
392     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\    
393     \hline
394   \end{tabular}
395   \caption{L'intestazione o \textit{header} di IPv4}
396 \label{tab:IP_ipv4head}
397 \end{table}
398
399 \begin{table}[htb]
400   \footnotesize
401   \begin{center}
402     \begin{tabular}{|l|c|p{9cm}|}
403       \hline
404       \textbf{Nome} & \textbf{Lunghezza} & \textbf{Significato} \\
405       \hline
406       \hline
407       \textit{version}          &  4 bit & \textsl{versione}, nel caso 
408       specifico vale sempre 4\\
409       \textit{head lenght}      &  4 bit & \textsl{lunghezza della testata}, 
410       in multipli di 32 bit\\
411       \textit{type of service}  &  8 bit & \textsl{tipo di servizio}, 
412       consiste in: 3 bit di precedenza, 
413       correntemente ignorati; un bit non usato a 0;  4 bit che identificano
414       il tipo di servizio richiesto, uno solo dei quali può essere 1\\
415       \textit{total lenght}     & 16 bit & \textsl{lunghezza totale}, indica 
416       la dimensione del pacchetto IP in byte\\
417       \textit{identification}   & 16 bit & \textsl{identificazione}, 
418       assegnato alla creazione, è aumentato di uno all'origine alla 
419       trasmissione di ciascun pacchetto, ma resta lo stesso per i 
420       pacchetti frammentati\\
421       \textit{flag}             &  3 bit & 
422       \textsl{flag} bit di frammentazione, uno indica se un
423       pacchetto è frammentato, un'altro se ci sono ulteriori frammenti, e 
424       un'altro se il pacchetto non può essere frammentato. \\
425       \textit{fragmentation offset} & 13 bit& \textsl{offset di frammento},
426       indica la posizione del frammento rispetto al pacchetto originale\\
427       \textit{time to live}    & 16 bit & \textsl{tempo di vita},
428       ha lo stesso significato di
429       \textit{hop limit}, vedi Tab.~\ref{tab:IP_ipv6field}\\
430       \textit{protocol}        &  8 bit & \textsl{protocollo} 
431       identifica il tipo di pacchetto che segue
432       la testata di IPv4\\
433       \textit{header checksum} & 16 bit & \textsl{checksum di testata}, somma
434       di controllo per la testata\\
435       \textit{source IP}       & 32 bit & \textsl{indirizzo di origine}\\
436       \textit{destination IP}  & 32 bit & \textsl{indirizzo di destinazione}\\
437       \hline
438     \end{tabular}
439     \caption{Legenda per il significato dei campi dell'intestazione di IPv4}
440     \label{tab:IP_ipv4field}
441   \end{center}
442 \end{table}
443
444 Oltre alle differenze precedenti, relative ai singoli campi nella testata,
445 ulteriori caratteristiche che diversificano il comportamento di IPv4 da
446 quello di IPv6 sono le seguenti:
447
448 \begin{itemize}
449 \item il broadcasting non è previsto in IPv6, le applicazioni che lo usano
450   dovono essere reimplementate usando il multicasting (vedi
451   \secref{sec:IP_ipv6_multicast}), che da opzionale diventa obbligatorio.
452 \item è stato introdotto un nuovo tipo di indirizzi, gli \textit{anycast}.
453 \item i router non possono più frammentare i pacchetti lungo il cammino, la
454   frammentazione di pacchetti troppo grandi potrà essere gestita solo ai
455   capi della comunicazione (usando un'apposita estensione vedi
456   \secref{sec:IP_ipv6_extens}).
457 \item IPv6 richiede il supporto per il \textit{path MTU discovery} (cioè il
458   protocollo per la selezione della massima lunghezza del pacchetto); seppure
459   questo sia in teoria opzionale, senza di esso non sarà possibile inviare
460   pacchetti più larghi della dimensione minima (576 byte).
461 \end{itemize}
462
463 \section{Gli indirizzi di IPv6}
464 \label{sec:IP_ipv6_addr}
465
466 Come già abbondantemente anticipato la principale novità di IPv6 è
467 costituita dall'ampliamento dello spazio degli indirizzi, che consente di avere
468 indirizzi disponibili in un numero dell'ordine di quello degli atomi che
469 costituiscono la terra. 
470
471 In realtà l'allocazione di questi indirizzi deve tenere conto della
472 necessità di costruire delle gerarchie che consentano un instradamento
473 rapido ed efficiente dei pacchetti, e flessibilità nel dispiegamento delle
474 reti, il che comporta una riduzione drastica dei numeri utilizzabili; uno
475 studio sull'efficienza dei vari sistemi di allocazione usati in altre
476 architetture (come i sistemi telefonici) è comunque giunto alla conclusione
477 che anche nella peggiore delle ipotesi IPv6 dovrebbe essere in grado di
478 fornire più di un migliaio di indirizzi per ogni metro quadro della
479 superficie terrestre.
480
481
482 \subsection{La notazione}
483 \label{sec:IP_ipv6_notation}
484 Con un numero di bit quadruplicato non è più possibile usare la notazione
485 coi numeri decimali di IPv4 per rappresentare un numero IP. Per questo gli
486 indirizzi di IPv6 sono in genere scritti come sequenze di otto numeri
487 esadecimali di 4 cifre (cioè a gruppi di 16 bit) usando i due punti come
488 separatore; cioè qualcosa del tipo
489 \texttt{5f1b:df00:ce3e:e200:0020:0800:2078:e3e3}.
490
491
492 Visto che la notazione resta comunque piuttosto pesante esistono alcune
493 abbreviazioni; si può evitare di scrivere gli zeri iniziali per cui si
494 può scrivere \texttt{1080:0:0:0:8:800:ba98:2078:e3e3}; se poi un intero è
495 zero si può omettere del tutto, così come un insieme di zeri (ma questo
496 solo una volta per non generare ambiguità) per cui il precedente indirizzo
497 si può scrivere anche come \texttt{1080::8:800:ba98:2078:e3e3}.
498
499 Infine per scrivere un indirizzo IPv4 all'interno di un indirizzo IPv6 si
500 può usare la vecchia notazione con i punti, per esempio
501 \texttt{::192.84.145.138}.
502
503 \begin{table}[htb]
504   \centering 
505   \footnotesize
506   \begin{tabular}{|l|l|l|}
507     \hline
508     \centering \textbf{Tipo di indirizzo}
509     & \centering \textbf{Prefisso} & {\centering \textbf{Frazione}} \\
510     \hline
511     \hline
512     riservato & \texttt{0000 0000} & 1/256 \\
513     non assegnato  & \texttt{0000 0001} & 1/256 \\
514     \hline
515     riservato per NSAP & \texttt{0000 001} & 1/128\\
516     riservato per IPX & \texttt{0000 010} & 1/128\\
517     \hline
518     non assegnato  & \texttt{0000 011} & 1/128 \\
519     non assegnato  & \texttt{0000 1} & 1/32 \\
520     non assegnato  & \texttt{0001} & 1/16 \\
521     \hline
522     provider-based & \texttt{001} & 1/8\\
523     \hline
524     non assegnato  & \texttt{010} & 1/8 \\
525     non assegnato  & \texttt{011} & 1/8 \\
526     geografic-based& \texttt{100} & 1/8 \\
527     non assegnato  & \texttt{101} & 1/8 \\
528     non assegnato  & \texttt{110} & 1/8 \\
529     non assegnato  & \texttt{1110} & 1/16 \\
530     non assegnato  & \texttt{1111 0} & 1/32 \\
531     non assegnato  & \texttt{1111 10} & 1/64 \\
532     non assegnato  & \texttt{1111 110} & 1/128 \\
533     non assegnato  & \texttt{1111 1100 0} & 1/512 \\
534     \hline
535     unicast link-local & \texttt{1111 1100 10} & 1/1024 \\
536     unicast site-local & \texttt{1111 1100 11} & 1/1024 \\
537     \hline
538     \hline
539     multicast & \texttt{1111 1111} & 1/256 \\
540     \hline
541   \end{tabular}
542   \caption{Classificazione degli indirizzi IPv6 a seconda dei bit più 
543     significativi}
544   \label{tab:IP_ipv6addr}
545 \end{table}
546
547
548 \subsection{La architettura degli indirizzi di IPv6}
549 \label{sec:IP_ipv6_addr_arch}
550
551 Come per IPv4 gli indirizzi sono identificatori per una singola (indirizzi
552 \textit{unicast}) o per un insieme (indirizzi \textit{multicast} e
553 \textit{anycast}) di interfacce di rete.  
554
555 Gli indirizzi sono sempre assegnati all'interfaccia, non al nodo che la
556 ospita; dato che ogni interfaccia appartiene ad un nodo quest'ultimo può
557 essere identificato attraverso uno qualunque degli indirizzi unicast delle sue
558 interfacce. A una interfaccia possono essere associati anche più indirizzi.
559
560 IPv6 presenta tre tipi diversi di indirizzi: due di questi, gli indirizzi
561 \textit{unicast} e \textit{multicast} hanno le stesse caratteristiche che in
562 IPv4, un terzo tipo, gli indirizzi \textit{anycast} è completamente nuovo.
563 In IPv6 non esistono più gli indirizzi \textit{broadcast}, la funzione di
564 questi ultimi deve essere reimplementata con gli indirizzi \textit{multicast}.
565
566 Gli indirizzi \textit{unicast} identificano una singola interfaccia i
567 pacchetti mandati ad un tale indirizzo verranno inviati a quella interfaccia,
568 gli indirizzi \textit{anycast} identificano un gruppo di interfacce tale che
569 un pacchetto mandato a uno di questi indirizzi viene inviato alla più vicina
570 (nel senso di distanza di routing) delle interfacce del gruppo, gli indirizzi
571 \textit{multicast} identificano un gruppo di interfacce tale che un pacchetto
572 mandato a uno di questi indirizzi viene inviato a tutte le interfacce del
573 gruppo.
574
575 In IPv6 non ci sono più le classi ma i bit più significativi indicano il tipo
576 di indirizzo; in \tabref{tab:IP_ipv6addr} sono riportati i valori di detti
577 bit e il tipo di indirizzo che loro corrispondente.  I bit più significativi
578 costituiscono quello che viene chiamato il \textit{format prefix} ed è sulla
579 base di questo che i vari tipi di indirizzi vengono identificati.  Come si
580 vede questa architettura di allocazione supporta l'allocazione di indirizzi
581 per i provider, per uso locale e per il multicast; inoltre è stato riservato
582 lo spazio per indirizzi NSAP, IPX e per le connessioni; gran parte dello
583 spazio (più del 70\%) è riservato per usi futuri.
584
585 Si noti infine che gli indirizzi \textit{anycast} non sono riportati in
586 \tabref{tab:IP_ipv6addr} in quanto allocati al di fuori dello spazio di
587 allocazione degli indirizzi unicast.
588
589 \subsection{Indirizzi unicast \textit{provider-based}}
590 \label{sec:IP_ipv6_unicast}
591
592 Gli indirizzi \textit{provider-based} sono gli indirizzi usati per le
593 comunicazioni globali, questi sono definiti nell'RFC 2073 e sono gli
594 equivalenti degli attuali indirizzi delle classi da A a C.
595
596 L'autorità che presiede all'allocazione di questi indirizzi è la IANA; per
597 evitare i problemi di crescita delle tabelle di instradamento e una procedura
598 efficiente di allocazione la struttura di questi indirizzi è organizzata fin
599 dall'inizio in maniera gerarchica; pertanto lo spazio di questi indirizzi è
600 stato suddiviso in una serie di campi secondo lo schema riportato in
601 \tabref{tab:IP_ipv6_unicast}.
602
603 \begin{table}[htb]
604   \centering
605   \footnotesize
606   \begin{tabular} {@{\vrule}p{6mm}
607       @{\vrule}p{16mm}@{\vrule}p{24mm}
608       @{\vrule}p{30mm}@{\vrule}c@{\vrule}}
609     \multicolumn{1}{@{}c@{}}{3}&\multicolumn{1}{c}{5 bit}&
610     \multicolumn{1}{c}{$n$ bit}&\multicolumn{1}{c}{$56-n$ bit}&
611     \multicolumn{1}{c}{64 bit} \\
612     \hline
613     \omit\vrule\hfill\vrule&\hspace{16mm} & & &\omit\hspace{76mm}\hfill\vrule\\ 
614     \centering 010&
615     \centering \textsl{Registry Id}&
616     \centering \textsl{Provider Id}& 
617     \centering \textsl{Subscriber Id}& 
618     \textsl{Intra-Subscriber} \\
619     \omit\vrule\hfill\vrule& & & &\omit\hspace{6mm}\hfill\vrule\\ 
620     \hline
621   \end{tabular}
622 \caption{Formato di un indirizzo unicast \textit{provider-based}.}
623 \label{tab:IP_ipv6_unicast}
624 \end{table}
625
626 Al livello più alto la IANA può delegare l'allocazione a delle autorità
627 regionali (i Regional Register) assegnando ad esse dei blocchi di indirizzi; a
628 queste autorità regionali è assegnato un Registry Id che deve seguire
629 immediatamente il prefisso di formato. Al momento sono definite tre registri
630 regionali (INTERNIC, RIPE NCC e APNIC), inoltre la IANA si è riservata la
631 possibilità di allocare indirizzi su base regionale; pertanto sono previsti
632 i seguenti possibili valori per il \textsl{Registry Id};
633 gli altri valori restano riservati per la IANA.
634 \begin{table}[htb]
635   \begin{center}
636     \begin{tabular}{|l|l|l|}
637       \hline
638       \textbf{Regione} & \textbf{Registro} & \textbf{Id} \\
639       \hline
640       \hline
641       Nord America &INTERNIC & \texttt{11000} \\
642       Europa & RIPE NCC & \texttt{01000} \\
643       Asia & APNIC & \texttt{00100} \\
644       Multi-regionale & IANA &\texttt{10000} \\
645       \hline
646     \end{tabular}
647     \caption{Valori dell'identificativo dei 
648       Regional Register allocati ad oggi.}
649     \label{tab:IP_ipv6_regid}
650   \end{center}
651 \end{table}
652
653 L'organizzazione degli indirizzi prevede poi che i due livelli successivi, di
654 suddivisione fra \textit{Provider Id}, che identifica i grandi fornitori di
655 servizi, e \textit{Subscriber Id}, che identifica i fruitori, sia gestita dai
656 singoli registri regionali. Questi ultimi dovranno definire come dividere lo
657 spazio di indirizzi assegnato a questi due campi (che ammonta a un totale di
658 58~bit), definendo lo spazio da assegnare al \textit{Provider Id} e
659 al \textit{Subscriber Id}, ad essi spetterà inoltre anche l'allocazione dei
660 numeri di \textit{Provider Id} ai singoli fornitori, ai quali sarà delegata
661 l'autorità di allocare i \textit{Subscriber Id} al loro interno.
662
663 L'ultimo livello è quello \textit{Intra-subscriber} che è lasciato alla
664 gestione dei singoli fruitori finali, gli indirizzi \textit{provider-based}
665 lasciano normalmente gli ultimi 64~bit a disposizione per questo livello, la
666 modalità più immediata è quella di usare uno schema del tipo mostrato in
667 \tabref{tab:IP_ipv6_uninterf} dove l'\textit{Interface Id} è dato dal
668 MAC-address a 48~bit dello standard Ethernet, scritto in genere nell'hardware
669 delle scheda di rete, e si usano i restanti 16~bit per indicare la sottorete.
670
671 \begin{table}[htb]
672   \centering
673   \footnotesize
674   \begin{tabular} {@{\vrule}p{64mm}@{\vrule}p{16mm}@{\vrule}c@{\vrule}}
675     \multicolumn{1}{c}{64 bit}&\multicolumn{1}{c}{16 bit}&
676     \multicolumn{1}{c}{48 bit}\\
677     \hline
678     \omit\vrule\hfill\vrule&\hspace{16mm}&\omit\hspace{48mm}\hfill\vrule\\ 
679     \centering \textsl{Subscriber Prefix}& 
680     \centering \textsl{Subnet Id}&
681     \textsl{Interface Id}\\
682     \omit\vrule\hfill\vrule& &\omit\hspace{6mm}\hfill\vrule\\ 
683     \hline
684   \end{tabular}
685 \caption{Formato del campo \textit{Intra-subscriber} per un indirizzo unicast
686   \textit{provider-based}.}
687 \label{tab:IP_ipv6_uninterf}
688 \end{table}
689
690 Qualora si dovesse avere a che fare con una necessità di un numero più
691 elevato di sottoreti, il precedente schema andrebbe modificato, per evitare
692 l'enorme spreco dovuto all'uso dei MAC-address, a questo scopo si possono
693 usare le capacità di autoconfigurazione di IPv6 per assegnare indirizzi
694 generici con ulteriori gerarchie per sfruttare efficacemente tutto lo spazio
695 di indirizzi.
696
697 Un registro regionale può introdurre un ulteriore livello nella gerarchia
698 degli indirizzi, allocando dei blocchi per i quali delegare l'autorità a dei
699 registri nazionali, quest'ultimi poi avranno il compito di gestire la
700 attribuzione degli indirizzi per i fornitori di servizi nell'ambito del/i
701 paese coperto dal registro nazionale con le modalità viste in precedenza.
702 Una tale ripartizione andrà effettuata all'interno dei soliti 58~bit come
703 mostrato in \ntab.
704
705 \begin{table}[htb]
706   \centering
707   \footnotesize
708   \begin{tabular} {@{\vrule}p{3mm}
709       @{\vrule}p{10mm}@{\vrule}p{12mm}@{\vrule}p{18mm}
710       @{\vrule}p{18mm}@{\vrule}c@{\vrule}}
711     \multicolumn{1}{@{}c@{}}{3}&\multicolumn{1}{c}{5 bit}&
712     \multicolumn{1}{c}{n bit}&\multicolumn{1}{c}{m bit}&
713     \multicolumn{1}{c}{56-n-m bit}&\multicolumn{1}{c}{64 bit} \\
714     \hline
715     \omit\vrule\hfill\vrule& & & & &\omit\hspace{64mm}\hfill\vrule\\
716     \centering \texttt{3}&
717     \centering \textsl{Reg.}&
718     \centering \textsl{Naz.}&
719     \centering \textsl{Prov.}& 
720     \centering \textsl{Subscr.}& 
721     \textsl{Intra-Subscriber} \\
722     \omit\vrule\hfill\vrule &&&&&\\ 
723     \hline
724   \end{tabular}
725 \caption{Formato di un indirizzo unicast \textit{provider-based} che prevede
726       un registro nazionale.}
727 \label{tab:IP_ipv6_uninaz}
728 \end{table}
729
730
731 \subsection{Indirizzi ad uso locale}
732 \label{sec:IP_ipv6_linksite}
733
734 Gli indirizzi ad uso locale sono indirizzi unicast che sono instradabili solo
735 localmente (all'interno di un sito o di una sottorete), e possono avere una
736 unicità locale o globale.
737
738 Questi indirizzi sono pensati per l'uso all'interno di un sito per mettere su
739 una comunicazione locale immediata, o durante le fasi di autoconfigurazione
740 prima di avere un indirizzo globale.
741
742 \begin{table}[htb]
743   \centering
744   \footnotesize
745   \begin{tabular} {@{\vrule}p{10mm}@{\vrule}p{54mm}@{\vrule}c@{\vrule}}
746     \multicolumn{1}{c}{10} &\multicolumn{1}{c}{54 bit} & 
747     \multicolumn{1}{c}{64 bit} \\
748     \hline
749     \omit\vrule\hfill\vrule & & \omit\hspace{64mm}\hfill\vrule\\
750     \centering \texttt{FE80}& 
751     \centering\texttt{0000 .   .   .   .   . 0000} &
752     Interface Id \\
753     \omit\vrule\hfill\vrule & &\\
754     \hline
755 \end{tabular}
756 \caption{Formato di un indirizzo \textit{link-local}.}
757 \label{tab:IP_ipv6_linklocal}
758 \end{table}
759
760 Ci sono due tipi di indirizzi, \textit{link-local} e \textit{site-local}. Il
761 primo è usato per un singolo link; la struttura è mostrata in
762 \tabref{tab:IP_ipv6_linklocal}, questi indirizzi iniziano sempre per
763 \texttt{FE80} e vengono in genere usati per la configurazione automatica
764 dell'indirizzo al bootstrap e per la ricerca dei vicini (vedi
765 \ref{sec:IP_ipv6_autoconf}); un pacchetto che abbia tale indirizzo come
766 sorgente o destinazione non deve venire ritrasmesso dai router.
767
768 Un indirizzo \textit{site-local} invece è usato per l'indirizzamento
769 all'interno di un sito che non necessita di un prefisso globale; la struttura
770 è mostrata in \ntab, questi indirizzi iniziano sempre per
771 \texttt{FEC0} e non devono venire ritrasmessi dai router all'esterno del sito
772 stesso; sono in sostanza gli equivalenti degli indirizzi riservati per reti
773 private definiti su IPv4.
774 Per entrambi gli indirizzi il campo \textit{Interface Id} è un
775 identificatore che deve essere unico nel dominio in cui viene usato, un modo
776 immediato per costruirlo è quello di usare il MAC-address delle schede di
777 rete.
778  
779 \begin{table}[!h]
780   \centering
781   \footnotesize
782   \begin{tabular} {@{\vrule}p{10mm}@{\vrule}p{38mm}@{\vrule}p{16mm}
783       @{\vrule}c@{\vrule}}
784     \multicolumn{1}{c}{10} &\multicolumn{1}{c}{38 bit} & 
785     \multicolumn{1}{c}{16 bit} &\multicolumn{1}{c}{64 bit} \\
786     \hline
787     \omit\vrule\hfill\vrule& & & \omit\hspace{64mm}\hfill\vrule\\
788     \centering \texttt{FEC0}& 
789     \centering \texttt{0000 .   .   . 0000}& 
790     \centering Subnet Id &
791     Interface Id\\
792     \omit\vrule\hfill\vrule& & &\\
793     \hline
794 \end{tabular}
795 \caption{Formato di un indirizzo \textit{site-local}.}
796 \label{tab:IP_ipv6_sitelocal}
797 \end{table}
798
799 Gli indirizzi di uso locale consentono ad una organizzazione che non è
800 (ancora) connessa ad Internet di operare senza richiedere un prefisso globale,
801 una volta che in seguito l'organizzazione venisse connessa a Internet
802 potrebbe continuare a usare la stessa suddivisione effettuata con gli
803 indirizzi \textit{site-local} utilizzando un prefisso globale e la
804 rinumerazione degli indirizzi delle singole macchine sarebbe automatica.
805
806 \subsection{Indirizzi riservati}
807 \label{sec:IP_ipv6_reserved}
808
809 Alcuni indirizzi sono riservati per scopi speciali, in particolare per scopi
810 di compatibilità.
811
812 Un primo tipo sono gli indirizzi \textit{IPv4 mappati su IPv6} (mostrati in
813 \ntab), questo sono indirizzi unicast che vengono usati per consentire ad
814 applicazioni IPv6 di comunicare con host capaci solo di IPv4; questi sono ad
815 esempio gli indirizzi generati da un DNS quando l'host richiesto supporta solo
816 IPv4; l'uso di un tale indirizzo in un socket IPv6 comporta la generazione di
817 un pacchetto IPv4 (ovviamente occorre che sia IPv4 che IPv6 siano supportate
818 sull'host di origine).
819
820 \begin{table}[!htb]
821   \centering
822   \footnotesize
823   \begin{tabular} {@{\vrule}p{80mm}@{\vrule}p{16mm}@{\vrule}c@{\vrule}}
824     \multicolumn{1}{c}{80 bit} &\multicolumn{1}{c}{16 bit} & 
825     \multicolumn{1}{c}{32 bit} \\
826     \hline
827     \omit\vrule\hfill\vrule& &\omit\hspace{32mm}\hfill\vrule\\ 
828     \centering
829     \texttt{0000 .   .   .   .   .   .   .   .   .   .   .   . 0000} & 
830     \centering\texttt{FFFF} &
831     IPv4 address \\
832     \omit\vrule\hfill\vrule& &\\ 
833     \hline
834 \end{tabular}
835 \caption{Formato di un indirizzo IPV4 mappato su IPv6.}
836 \label{tab:IP_ipv6_map}
837 \end{table}
838
839 Un secondo tipo di indirizzi di compatibilità sono gli \textit{IPv4
840   compatibili IPv6} (vedi \ntab) usati nella transizione da IPv4 a IPv6,
841 quando un host che supporta sia IPv6 che IPv4 non ha un router IPv6 deve usare
842 nel DNS un indirizzo di questo tipo, ogni pacchetto IPv6 inviato a un tale
843 indirizzo verrà automaticamente incapsulato in IPv4.
844
845 \begin{table}[htb]
846   \centering
847   \footnotesize
848   \begin{tabular} {@{\vrule}p{80mm}@{\vrule}p{16mm}@{\vrule}p{32mm}@{\vrule}}
849     \multicolumn{1}{c}{80 bit} &\multicolumn{1}{c}{16 bit} & 
850     \multicolumn{1}{c}{32 bit} \\
851     \hline
852     \omit\vrule\hfill\vrule& &\omit\hspace{32mm}\hfill\vrule\\ 
853     \centering
854     \texttt{0000 .   .   .   .   .   .   .   .   .   .   .   . 0000} & 
855     \centering\texttt{0000} &
856     \parbox{32mm}{\centering IPv4 address} \\
857     \omit\vrule\hfill\vrule& &\\ 
858     \hline
859 \end{tabular}
860 \caption{Formato di un indirizzo IPV4 mappato su IPv6.}
861 \label{tab:IP_ipv6_comp}
862 \end{table}
863
864 Altri indirizzi speciali sono il \textit{loopback address}, costituito da 127
865 zeri ed un uno (cioè \texttt{::1}) e l'\textsl{indirizzo generico}
866 costituito da tutti zeri (scritto come \texttt{0::0} o ancora più
867 semplicemente come \texttt{:}) usato in genere quando si vuole indicare
868 l'accettazione di una connessione da qualunque host.
869
870 \subsection{Multicasting}
871 \label{sec:IP_ipv6_multicast}
872
873 Gli indirizzi \textit{multicast} sono usati per inviare un pacchetto a un
874 gruppo di interfacce; l'indirizzo identifica uno specifico gruppo di
875 multicast e il pacchetto viene inviato a tutte le interfacce di detto gruppo.
876 Un'interfaccia può appartenere ad un numero qualunque numero di gruppi di
877 multicast. Il formato degli indirizzi \textit{multicast} è riportato in
878 \ntab:
879
880 \begin{table}[htb]
881   \centering
882   \footnotesize
883   \begin{tabular} {@{\vrule}p{12mm}
884       @{\vrule}p{6mm}@{\vrule}p{6mm}@{\vrule}c@{\vrule}}
885     \multicolumn{1}{c}{8}&\multicolumn{1}{c}{4}&
886     \multicolumn{1}{c}{4}&\multicolumn{1}{c}{112 bit} \\
887     \hline
888     \omit\vrule\hfill\vrule& & & \omit\hspace{104mm}\hfill\vrule\\
889     \centering\texttt{FF}& 
890     \centering flag &
891     \centering scop& 
892     Group Id\\
893     \omit\vrule\hfill\vrule &&&\\ 
894     \hline
895   \end{tabular}
896 \caption{Formato di un indirizzo \textit{multicast}.}
897 \label{tab:IP_ipv6_multicast}
898 \end{table}
899
900 Il prefisso di formato per tutti gli indirizzi \textit{multicast} è
901 \texttt{FF}, ad esso seguono i due campi il cui significato è il seguente:
902
903 \begin{itemize}
904 \item \textsl{flag}: un insieme di 4 bit, di cui i primi tre sono riservati e
905   posti a zero, l'ultimo è zero se l'indirizzo è permanente (cioè un
906   indirizzo noto, assegnato dalla IANA), ed è uno se invece l'indirizzo è
907   transitorio.
908 \item \textsl{scop} è un numero di quattro bit che indica il raggio di
909   validità dell'indirizzo, i valori assegnati per ora sono riportati in
910   \ntab.
911 \end{itemize}
912
913 Infine l'ultimo campo identifica il gruppo di multicast, sia permanente che
914 transitorio, all'interno del raggio di validità del medesimo.
915
916 \begin{table}[!htb]
917   \centering 
918   \footnotesize
919   \begin{tabular}[c]{|c|l|c|l|}
920     \hline
921     \multicolumn{4}{|c|}{\bf Gruppi di multicast} \\
922     \hline
923     \hline
924     0 & riservato & 8 & organizzazione locale \\
925     1 & nodo locale & 9 & non assegnato \\
926     2 & collegamento locale & A & non assegnato \\
927     3 & non assegnato & B & non assegnato \\
928     4 & non assegnato & C & non assegnato \\ 
929     5 & sito locale & D & non assegnato \\
930     6 & non assegnato & E & globale \\
931     7 & non assegnato & F & riservato \\
932     \hline
933   \end{tabular}
934 \caption{Possibili valori del campo \textsl{scop} di un indirizzo multicast.}
935 \label{tab:IP_ipv6_multiscope}
936 \end{table}
937
938 \subsection{Indirizzi \textit{anycast}}
939 \label{sec:IP_anycast}
940
941 Gli indirizzi \textit{anycast} sono indirizzi che vengono assegnati ad un
942 gruppo di interfacce per quali un pacchetto indirizzato a questo tipo di
943 indirizzo viene inviato al componente del gruppo più ``vicino'' secondo la
944 distanza di instradamento calcolata dai router.
945
946 Questi indirizzi sono allocati nello stesso spazio degli indirizzi unicast,
947 usando uno dei formati disponibili, e per questo, sono da essi assolutamente
948 indistinguibili. Quando un indirizzo unicast viene assegnato a più interfacce
949 (trasformandolo in un anycast) il computer su cui è l'interfaccia deve essere
950 configurato per tener conto del fatto.
951
952 Gli indirizzi anycast consentono a un nodo sorgente di inviare pacchetti a una
953 destinazione su un gruppo di possibili interfacce selezionate. La sorgente non
954 deve curarsi di come scegliere l'interfaccia più vicina, compito che tocca
955 al sistema di instradamento, (in sostanza la sorgente non ha nessun controllo
956 sulla selezione). 
957
958 Gli indirizzi anycast, quando vengono usati come parte di una sequenza di
959 instradamento, consentono ad esempio ad un nodo di scegliere quale fornitore
960 vuole usare (configurando gli indirizzi anycast per identificare i router di
961 uno stesso provider).
962
963 Questi indirizzi pertanto possono essere usati come indirizzi intermedi in una
964 testata di instradamento o per identificare insiemi di router connessi a una
965 particolare sottorete, o che forniscono l'accesso a un certo sotto dominio.
966
967 L'idea alla base degli indirizzi anycast è perciò quella di utilizzarli per
968 poter raggiungere il fornitore di servizio più vicino; ma restano aperte tutta
969 una serie di problematiche, visto che una connessione con uno di questi
970 indirizzi non è possibile, dato che per una variazione delle distanze di
971 routing non è detto che due pacchetti successivi finiscano alla stessa
972 interfaccia.
973
974 La materia è pertanto ancora controversa e in via di definizione.
975
976
977 \section{Le estensioni}
978 \label{sec:IP_ipv6_extens}
979
980 Come già detto in precedenza IPv6 ha completamente cambiato il trattamento
981 delle opzioni; queste ultime infatti sono state tolte dalla testata del
982 pacchetto, e poste in apposite \textsl{testate di estensione} (o
983 \textit{extension header}) poste fra la testata di IPv6 e la testata del
984 protocollo di trasporto.
985
986 Per aumentare la velocità di processo, sia dei dati del livello seguente che
987 di ulteriori opzioni, ciascuna estensione deve avere una lunghezza multipla di
988 8 byte per mantenere l'allineamento a 64~bit di tutti le testate seguenti.
989
990 Dato che la maggior parte di queste estensioni non sono esaminate dai router
991 durante l'instradamento e la trasmissione dei pacchetti, ma solo all'arrivo
992 alla destinazione finale, questa scelta ha consentito un miglioramento delle
993 prestazioni rispetto a IPv4 dove la presenza di un'opzione comportava l'esame
994 di tutte quante.
995
996 Un secondo miglioramento è che rispetto a IPv4 le opzioni possono essere di
997 lunghezza arbitraria e non limitate a 40 byte; questo, insieme al modo in cui
998 vengono trattate, consente di utilizzarle per scopi come l'autenticazione e la
999 sicurezza, improponibili con IPv4.
1000
1001 Le estensioni definite al momento sono le seguenti:
1002 \begin{itemize}
1003 \item \textbf{Hop by hop} devono seguire immediatamente la testata principale;
1004   indicano le opzioni che devono venire processate ad ogni passaggio da un
1005   router, fra di esse è da menzionare la \textit{jumbo payload} che segnala
1006   la presenza di un pacchetto di dati di dimensione superiore a 64Kb.
1007 \item \textbf{Destination options} opzioni che devono venire esaminate al nodo
1008   di ricevimento, nessuna di esse è tuttora definita.
1009 \item \textbf{Routing} definisce una \textit{source route} (come la analoga
1010   opzione di IPv4) cioè una lista di indirizzi IP di nodi per i quali il
1011   pacchetto deve passare. 
1012 \item \textbf{Fragmentation} viene generato automaticamente quando un host
1013   vuole frammentare un pacchetto, ed è riprocessato automaticamente alla
1014   destinazione che riassembla i frammenti.
1015 \item \textbf{Authentication} gestisce l'autenticazione e il controllo di
1016   integrità dei pacchetti; è documentato dall'RFC 162.
1017 \item \textbf{Encapsulation} serve a gestire la segretezza del contenuto
1018   trasmesso; è documentato dall'RFC 1827.
1019 \end{itemize}
1020
1021 La presenza di opzioni è rilevata dal valore del campo \textit{next header}
1022 che indica qual'è la testata successiva a quella di IPv6; in assenza di
1023 opzioni questa sarà la testata di un protocollo di trasporto del livello
1024 superiore, per cui il campo assumerà lo stesso valore del campo
1025 \textit{protocol} di IPv4, altrimenti assumerà il valore dell'opzione
1026 presente; i valori possibili sono riportati in \ntab.
1027
1028 \begin{table}[htb]
1029   \begin{center}
1030     \footnotesize
1031     \begin{tabular}{|c|l|l|}
1032       \hline
1033       \textbf{Valore} & \textbf{Keyword} & \textbf{Tipo di protocollo} \\
1034       \hline
1035       \hline
1036       0  &      & riservato\\
1037          & HBH  & Hop by Hop \\
1038       1  & ICMP & Internet Control Message (IPv4 o IPv6) \\
1039       2  & ICMP & Internet Group Management (IPv4) \\
1040       3  & GGP  & Gateway-to-Gateway \\
1041       4  & IP   & IP in IP (IPv4 encapsulation) \\
1042       5  & ST   & Stream \\
1043       6  & TCP  & Trasmission Control \\
1044       17 & UDP  & User Datagram \\
1045       43 & RH   & Routing Header (IPv6) \\
1046       44 & FH   & Fragment Header (IPv6) \\
1047       45 & IDRP & Inter Domain Routing \\
1048       51 & AH   & Autentication Header (IPv6) \\
1049       52 & ESP  & Encrypted Security Payload (IPv6) \\
1050       59 & Null & No next header (IPv6) \\
1051       88 & IGRP & Internet Group Routing \\
1052       89 & OSPF & Open Short Path First \\
1053       255&      & riservato \\
1054     \hline
1055     \end{tabular}
1056     \caption{Tipi di protocolli e testate di estensione}
1057     \label{tab:IP_ipv6_nexthead}
1058   \end{center}
1059 \end{table}
1060
1061 Questo meccanismo permette la presenza di più opzioni in successione prima
1062 del pacchetto del protocollo di trasporto; l'ordine raccomandato per le
1063 estensioni è quello riportato nell'elenco precedente con la sola differenza
1064 che le opzioni di destinazione sono inserite nella posizione ivi indicata solo
1065 se, come per il tunnelling, devono essere esaminate dai router, quelle che
1066 devono essere esaminate solo alla destinazione finale vanno in coda.
1067
1068
1069 \section{Qualità di servizio}
1070 \label{sec:IP_ipv6_qos}
1071
1072 Una delle caratteristiche innovative di IPv6 è quella di avere introdotto un
1073 supporto per la qualità di servizio che è importante per applicazioni come
1074 quelle multimediali o ``real-time'' che richiedono un qualche grado di
1075 controllo sulla stabilità della banda di trasmissione, sui ritardi o la
1076 dispersione dei temporale del flusso dei pacchetti.
1077
1078
1079 \subsection{Etichette di flusso}
1080 \label{sec:IP_ipv6_flow}
1081 L'introduzione del campo \textit{flow label} può essere usata dall'origine
1082 della comunicazione per etichettare quei pacchetti per i quali si vuole un
1083 trattamento speciale da parte dei router come un una garanzia di banda minima
1084 assicurata o un tempo minimo di instradamento/trasmissione garantito.
1085
1086 Questo aspetto di IPv6 è ancora sperimentale per cui i router che non
1087 supportino queste funzioni devono porre a zero il \textit{flow label} per i
1088 pacchetti da loro originanti e lasciare invariato il campo per quelli in
1089 transito.
1090
1091 Un flusso è una sequenza di pacchetti da una particolare origine a una
1092 particolare destinazione per il quale l'origine desidera un trattamento
1093 speciale da parte dei router che lo manipolano; la natura di questo
1094 trattamento può essere comunicata ai router in vari modi (come un protocollo
1095 di controllo o con opzioni del tipo \textit{hop-by-hop}). 
1096
1097 Ci possono essere più flussi attivi fra un'origine e una destinazione, come
1098 del traffico non assegnato a nessun flusso, un flusso viene identificato
1099 univocamente dagli indirizzi di origine e destinazione e da una etichetta di
1100 flusso diversa da zero, il traffico normale deve avere l'etichetta di flusso
1101 posta a zero.
1102
1103 L'etichetta di flusso è assegnata dal nodo di origine, i valori devono
1104 essere scelti in maniera (pseudo)casuale nel range fra 1 e FFFFFF in modo da
1105 rendere utilizzabile un qualunque sottoinsieme dei bit come chiavi di hash per
1106 i router.
1107
1108 \subsection{Priorità}
1109 \label{sec:prio}
1110
1111 Il campo di priorità consente di indicare il livello di priorità dei
1112 pacchetti relativamente agli altri pacchetti provenienti dalla stessa
1113 sorgente. I valori sono divisi in due intervalli, i valori da 0 a 7 sono usati
1114 per specificare la priorità del traffico per il quale la sorgente provvede
1115 un controllo di congestione cioè per il traffico che può essere ``tirato
1116 indietro'' in caso di congestione come quello di TCP, i valori da 8 a 15 sono
1117 usati per i pacchetti che non hanno questa caratteristica, come i pacchetti
1118 ``real-time'' inviati a ritmo costante.
1119
1120 Per il traffico con controllo di congestione sono raccomandati i seguenti
1121 valori di priorità a seconda del tipo di applicazione:
1122
1123 \begin{table}[htb]
1124   \centering
1125   \footnotesize
1126   \begin{tabular}{|c|l|}
1127     \hline
1128     \textbf{Valore} & \textbf{Tipo di traffico} \\
1129     \hline
1130     \hline
1131     0 & traffico generico \\
1132     1 & traffico di riempimento (es. news) \\
1133     2 & trasferimento dati non interattivo (es. e-mail)\\
1134     3 & riservato \\
1135     4 & trasferimento dati interattivo (es. FTP, HTTP, NFS) \\
1136     5 & riservato \\
1137     \hline
1138 \end{tabular}
1139 \caption{Formato di un indirizzo \textit{site-local}.}
1140 \label{tab:priority}
1141 \end{table}
1142
1143 Per il traffico senza controllo di congestione la priorità più bassa
1144 dovrebbe essere usata per quei pacchetti che si preferisce siano scartati
1145 più facilmente in caso di congestione.
1146
1147
1148 \section{Sicurezza a livello IP}
1149 \label{sec:security}
1150
1151 La attuale implementazione di Internet presenta numerosi problemi di
1152 sicurezza, in particolare i dati presenti nelle testate dei vari protocolli
1153 sono assunti essere corretti, il che da adito alla possibilità di varie
1154 tipologie di attacco forgiando pacchetti false, inoltre tutti questi dati
1155 passano in chiaro sulla rete e sono esposti all'osservazione di chiunque si
1156 trovi in mezzo.
1157
1158 Con IPv4 non è possibile realizzare un meccanismo di autenticazione e
1159 riservatezza a un livello inferiore al primo (quello di applicazione), con
1160 IPv6 è stato progettata la possibilità di intervenire al livello del
1161 collegamento (il terzo) prevedendo due apposite estensioni che possono essere
1162 usate per fornire livelli di sicurezza a seconda degli utenti. La codifica
1163 generale di questa architettura è riportata nell'RFC 2401.
1164
1165 Il meccanismo in sostanza si basa su due estensioni:
1166 \begin{itemize}
1167 \item una testata di sicurezza (\textit{autentication header}) che garantisce
1168   al destinatario l'autenticità del pacchetto
1169 \item un carico di sicurezza (\textit{Encrypted Security Payload}) che
1170   assicura che solo il legittimo ricevente può leggere il pacchetto.
1171 \end{itemize}
1172
1173 Perché tutto questo funzioni le stazioni sorgente e destinazione devono
1174 usare una stessa chiave crittografica e gli stessi algoritmi, l'insieme degli
1175 accordi fra le due stazioni per concordare chiavi e algoritmi usati va sotto
1176 il nome di associazione di sicurezza.
1177
1178 I pacchetti autenticati e crittografati portano un indice dei parametri di
1179 sicurezza (SPI, \textit{Security Parameter Index}) che viene negoziato prima
1180 di ogni comunicazione ed è definito dalla stazione sorgente. Nel caso di
1181 multicast dovrà essere lo stesso per tutte le stazioni del gruppo.
1182
1183 \subsection{Autenticazione}
1184 Il primo meccanismo di sicurezza è quello della testata di autenticazione
1185 (\textit{autentication header}) che fornisce l'autenticazione e il controllo
1186 di integrità (ma senza riservatezza) dei pacchetti IP.
1187
1188 La testata di autenticazione ha il formato descritto in
1189 Tab.~\ref{tab:autent_head} il campo \textit{Next Header} indica la testata
1190 successiva, con gli stessi valori del campo omonimo nella testata principale
1191 di IPv6, il campo \textit{Lengh} indica la lunghezza della testata di
1192 autenticazione in numero di parole a 32 bit, il campo riservato deve essere
1193 posto a zero, seguono poi l'indice di sicurezza, stabilito nella associazione
1194 di sicurezza, e un numero di sequenza che la stazione sorgente deve
1195 incrementare di pacchetto in pacchetto.
1196
1197 Completano la testata i dati di autenticazione che contengono un valore di
1198 controllo di integrità (ICV, \textit{Integrity Check Value}), che deve essere
1199 di dimensione pari a un multiplo intero di 32 bit e può contenere un padding
1200 per allineare la testata a 64 bit. Tutti gli algoritmi di autenticazione
1201 devono provvedere questa capacità.
1202
1203 \renewcommand\arraystretch{1.2}
1204 \begin{table}[htb]
1205   \footnotesize
1206   \begin{center}
1207     \begin{tabular}{@{\vrule}p{24mm}@{\vrule}p{24mm}
1208         @{\vrule}p{48mm}@{\vrule} }
1209     \multicolumn{3}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
1210     \hline
1211     \centering Next Header&\centering Lenght&
1212     \centering Reserved \tabularnewline
1213     \hline
1214     \multicolumn{3}{@{\vrule}c@{\vrule}}
1215     {\centering Security Parameter Index (SPI)}\\  
1216     \hline
1217     \multicolumn{3}{@{\vrule}c@{\vrule}}
1218     {\centering Sequence Number}\\  
1219     \hline
1220     \multicolumn{3}{@{\vrule}c@{\vrule}}{} \\
1221     \multicolumn{3}{@{\vrule}c@{\vrule}}{Autentication Data} \\
1222     \multicolumn{3}{@{\vrule}c@{\vrule}}
1223     {\centering ... } \\
1224     \multicolumn{3}{@{\vrule}c@{\vrule}}{} \\
1225     \hline
1226     \end{tabular}
1227     \caption{Formato della testata dell'estensione di autenticazione}
1228     \label{tab:autent_estens}
1229   \end{center}
1230 \end{table}
1231 \renewcommand\arraystretch{1} %default
1232
1233
1234
1235 La testata di autenticazione può essere impiegata in due modi diverse
1236 modalità: modalità trasporto e modalità tunnel.
1237
1238 La modalità trasporto è utilizzabile solo per comunicazioni fra stazioni
1239 singole che supportino l'autenticazione. In questo caso la testata di
1240 autenticazione è inserita dopo tutte le altre testate di estensione
1241 eccezion fatta per la \textit{Destination Option} che può comparire sia
1242 prima che dopo. 
1243
1244 \begin{table}[htb]
1245   \footnotesize
1246   \begin{center}
1247     \begin{tabular*}{90mm}{|c|c|c|c|c|c|}
1248     \hline
1249     & & & & & \\
1250     IP Head &
1251     \parbox[c]{28mm}{hop by hop, dest., \\
1252       routing, fragment}& AH & 
1253     dest.opt & TCP & data \\
1254     & & & & & \\
1255     \hline
1256     \end{tabular*}
1257     \caption{Formato della testata dell'estensione di autenticazione}
1258     \label{tab:autent_head}
1259   \end{center}
1260 \end{table}
1261 \begin{center}
1262     \begin{pspicture}(0,0)(9,0.8)
1263       \pnode(0,0){A}
1264       \pnode(9,0.4){B}
1265       \ncline{<->}{A}{B}\ncput{copertura dell'autenticazione}
1266     \end{pspicture}
1267 \end{center}
1268
1269 La modalità tunnel può essere utilizzata sia per comunicazioni fra stazioni
1270 singole che con un gateway di sicurezza; in questa modalità 
1271
1272
1273 La testata di autenticazione è una testata di estensione inserita dopo la
1274 testata principale e prima del carico dei dati. La sua presenza non ha
1275 perciò alcuna influenza sui livelli superiori dei protocolli di trasmissione
1276 come il TCP.
1277
1278
1279
1280
1281
1282 La procedura di autenticazione cerca di garantire l'autenticità del
1283 pacchetto nella massima estensione possibile, ma dato che alcuni campi della
1284 testata di IP possono variare in maniera impredicibile alla sorgente, il loro
1285 valore non può essere protetto dall'autenticazione. 
1286
1287 Il calcolo dei dati di autenticazione viene effettuato alla sorgente su una
1288 versione speciale del pacchetto in cui il numero di salti nella testata
1289 principale è settato a zero, così come le opzioni che possono essere
1290 modificate nella trasmissione, e la testata di routing (se usata) è posta ai
1291 valori che deve avere all'arrivo.
1292
1293 L'estensione è indipendente dall'algoritmo particolare, e il protocollo è
1294 ancora in fase di definizione; attualmente è stato suggerito l'uso di una
1295 modifica dell'MD5 chiamata \textit{keyed MD5} che combina alla codifica anche
1296 una chiave che viene inserita all'inizio e alla fine degli altri campi.
1297
1298
1299 \subsection{Riservatezza}
1300 \label{sec:ecry}
1301
1302 Per garantire una trasmissione riservata dei dati, è stata previsto la
1303 possibilità di trasmettere pacchetti con i dati criptati: il cosiddetto ESP,
1304 \textit{Encripted Security Payload}. Questo viene realizzato usando con una
1305 apposita opzione che deve essere sempre l'ultima delle testate di estensione;
1306 ad essa segue il carico del pacchetto che viene criptato.
1307
1308 Un pacchetto crittografato pertanto viene ad avere una struttura del tipo di
1309 quella mostrata in Tab~.\ref{tab:criptopack}, tutti i campi sono in chiaro
1310 fino al vettore di inizializzazione, il resto è crittografato.
1311
1312 \renewcommand\arraystretch{1.2}
1313 \begin{table}[htb]
1314   \footnotesize
1315   \begin{center}
1316     \begin{tabular}{@{\vrule}p{24mm}@{\vrule}p{24mm}@{\vrule}
1317         p{24mm}@{\vrule}p{24mm}@{\vrule}}
1318     \multicolumn{4}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
1319     \hline
1320     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1321     \multicolumn{4}{@{\vrule}c@{\vrule}}{Testata Principale}\\
1322     \multicolumn{4}{@{\vrule}c@{\vrule}}{...}\\
1323     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1324     \hline
1325     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1326     \multicolumn{4}{@{\vrule}c@{\vrule}}{Testate di estensione}\\
1327     \multicolumn{4}{@{\vrule}c@{\vrule}}{...}\\
1328     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1329     \hline
1330     \multicolumn{4}{@{\vrule}c@{\vrule}}
1331     {\centering Security Parameter Index}\\  
1332     \hline
1333     \multicolumn{4}{@{\vrule}c@{\vrule}}
1334     {\centering Vettore}\\  
1335     \multicolumn{4}{@{\vrule}c@{\vrule}}
1336     {\centering di inizializzazione}\\  
1337     \hline   
1338     \multicolumn{4}{@{\vrule}c@{\vrule}}{carico}\\ 
1339     \multicolumn{4}{@{\vrule}c@{\vrule}}{crittografato}\\ 
1340     \multicolumn{4}{@{\vrule}c@{\vrule}}{...}\\
1341     \cline{2-4}
1342     & \multicolumn{3}{c@{\vrule}}{}\\
1343     \cline{1-1}
1344     \cline{3-4}
1345     \multicolumn{1}{@{\vrule}c}{}&
1346     \centering \raisebox{2mm}[0pt][0pt]{riempimento} &
1347     \centering lunghezza pad &\centering tipo carico\tabularnewline
1348     \hline
1349     \end{tabular}
1350     \caption{Schema di pacchetto crittografato}
1351     \label{tab:criptopack}
1352   \end{center}
1353 \end{table}
1354 \renewcommand\arraystretch{1} %default
1355
1356
1357 \section{Autoconfigurazione}
1358 \label{sec:IP_ipv6_autoconf}
1359
1360
1361 %%% Local Variables: 
1362 %%% mode: latex
1363 %%% TeX-master: "gapil"
1364 %%% End: