Segnali real-time completati (forse).
[gapil.git] / ipprot.tex
1 \chapter{Il protocollo IP}
2 \label{cha:ip_protocol}
3
4 L'attuale Internet Protocol (IPv4) viene standardizzato nel 1981
5 dall'RFC~719; esso nasce per disaccoppiare le applicazioni della struttura
6 hardware delle reti di trasmissione, e creare una interfaccia di trasmissione
7 dei dati indipendente dal sottostante substrato di rete, che può essere
8 realizzato con le tecnologie più disparate (Ethernet, Token Ring, FDDI,
9 etc.).
10
11
12 \section{Introduzione}
13 \label{sec:IP_intro}
14
15 Il compito di IP è pertanto quello di trasmettere i pacchetti da un computer
16 all'altro della rete; le caratteristiche essenziali con cui questo viene
17 realizzato in IPv4 sono due:
18
19 \begin{itemize}
20 \item \textit{Universal addressing} la comunicazione avviene fra due host
21   identificati univocamente con un indirizzo a 32 bit che può appartenere ad
22   una sola interfaccia di rete.
23 \item \textit{Best effort} viene assicurato il massimo impegno nella
24   trasmissione, ma non c'è nessuna garanzia per i livelli superiori né
25   sulla percentuale di successo né sul tempo di consegna dei pacchetti di
26   dati.
27 \end{itemize}
28
29 Per effettuare la comunicazione e l'instradamento dei pacchetti fra le varie
30 reti di cui è composta Internet IPv4 organizza gli indirizzi in una
31 gerarchia a due livelli, in cui una parte dei 32 bit dell'indirizzo indica il
32 numero di rete, e un'altra l'host al suo interno.  Il numero di rete serve
33 ai router per stabilire a quale rete il pacchetto deve essere inviato, il
34 numero di host indica la macchina di destinazione finale all'interno di detta
35 rete.
36
37 Per garantire l'unicità dell'indirizzo Internet esiste un'autorità
38 centrale (la IANA, \textit{Internet Assigned Number Authority}) che assegna i
39 numeri di rete alle organizzazioni che ne fanno richiesta; è poi compito di
40 quest'ultime assegnare i numeri dei singoli host.  
41
42 Per venire incontro alle diverse esigenze gli indirizzi di rete sono stati
43 originariamente organizzati in \textit{classi}, (rappresentate in
44 \tabref{tab:IP_ipv4class}), per consentire dispiegamenti di reti di dimensioni
45 diverse.
46
47
48 \begin{table}[htb]
49   \centering
50   \footnotesize
51   \begin{tabular} {c@{\hspace{1mm}\vrule}
52       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
53       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
54       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
55       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
56       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
57       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
58       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
59       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}}
60     \omit&\omit& \multicolumn{7}{c}{7 bit}&\multicolumn{24}{c}{24 bit} \\
61     \cline{2-33}
62     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
63     classe A &\centering 0&
64     \multicolumn{7}{@{}c@{\vrule}}{\parbox[c]{21mm}{\centering net Id}} &
65     \multicolumn{24}{@{}c@{\vrule}}{\parbox[c]{72mm}{\centering host Id}} \\
66     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
67     \cline{2-33}
68     \multicolumn{33}{c}{ } \\
69     \omit&\omit&\omit& 
70     \multicolumn{14}{c}{14 bit}&\multicolumn{16}{c}{16 bit} \\
71     \cline{2-33}
72     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
73     classe B&\centering 1&\centering 0& 
74     \multicolumn{14}{@{}c@{\vrule}}{\parbox{42mm}{\centering net Id}} &
75     \multicolumn{16}{@{}c@{\vrule}}{\parbox{48mm}{\centering host Id}} \\
76     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
77     \cline{2-33}
78    
79     \multicolumn{33}{c}{ } \\
80     \omit&\omit&\omit& 
81     \multicolumn{21}{c}{21 bit}&\multicolumn{8}{c}{8 bit} \\
82     \cline{2-33}
83     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
84     classe C&\centering 1&\centering 1&\centering 0&
85     \multicolumn{21}{@{}c@{\vrule}}{\parbox{63mm}{\centering net Id}} &
86     \multicolumn{8}{@{}c@{\vrule}}{\parbox{24mm}{\centering host Id}} \\
87     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
88     \cline{2-33}
89
90
91     \multicolumn{33}{c}{ } \\
92     \omit&\omit&\omit&\omit& 
93     \multicolumn{28}{c}{28 bit} \\
94     \cline{2-33}
95     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
96     classe D&\centering 1&\centering 1&\centering 1&\centering 0&
97     \multicolumn{28}{@{}c@{\vrule}}{\parbox{63mm}{\centering 
98         multicast group Id}} \\
99     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
100     \cline{2-33}
101
102     \multicolumn{33}{c}{ } \\
103     \omit&\omit&\omit&\omit&\omit&
104     \multicolumn{27}{c}{27 bit} \\
105     \cline{2-33}
106     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
107     classe E&\centering 1&\centering 1&\centering 1&\centering 1&\centering 0&
108     \multicolumn{27}{@{}c@{\vrule}}{\parbox{59mm}{\centering 
109         reserved for future use}} \\
110     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
111     \cline{2-33}
112
113 \end{tabular}
114 \caption{Le classi di indirizzi secondo IPv4.}
115 \label{tab:IP_ipv4class}
116 \end{table}
117
118 Le classi usate per il dispiegamento delle reti sono le prime tre; la classe D
119 è destinata al (non molto usato) \textit{multicast} mentre la classe E è
120 riservata per usi sperimentali e non viene impiegata.
121
122 Come si può notare però la suddivisione riportata in \tabref{tab:IP_ipv4class}
123 è largamente inefficiente in quanto se ad un utente necessita anche solo un
124 indirizzo in più dei 256 disponibili con una classe A occorre passare a una
125 classe B, con un conseguente spreco di numeri.
126
127 Inoltre, in particolare per le reti di classe C, la presenza di tanti
128 indirizzi di rete diversi comporta una crescita enorme delle tabelle di
129 instradamento che ciascun router dovrebbe tenere in memoria per sapere dove
130 inviare il pacchetto, con conseguente crescita dei tempi di processo da parte
131 di questi ultimi ed inefficienza nel trasporto.
132
133 \begin{table}[htb]
134   \centering
135   \footnotesize
136   \begin{tabular} {c@{\hspace{1mm}\vrule}
137       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
138       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
139       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
140       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
141       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
142       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
143       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}
144       p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}p{3mm}@{\vrule}}
145     \omit&
146     \multicolumn{12}{c}{$n$ bit}&\multicolumn{20}{c}{$32-n$ bit} \\
147     \cline{2-33}
148     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
149     CIDR &
150     \multicolumn{12}{@{}c@{\vrule}}{\parbox[c]{36mm}{\centering net Id}} &
151     \multicolumn{20}{@{}c@{\vrule}}{\parbox[c]{60mm}{\centering host Id}} \\
152     \omit\hfill\vrule &&&&&&&& &&&&&&&& &&&&&&&& &&&&&&&& \\
153     \cline{2-33}
154 \end{tabular}
155 \caption{Uno esempio di indirizzamento CIDR.}
156 \label{tab:IP_ipv4cidr}
157 \end{table}
158
159 Per questo nel 1992 è stato introdotto un indirizzamento senza classi (il
160 CIDR, \textit{Classless Inter-Domain Routing}) in cui il limite fra i bit
161 destinati a indicare il numero di rete e quello destinati a indicare l'host
162 finale può essere piazzato in qualunque punto (vedi \tabref{tab:IP_ipv4cidr}),
163 permettendo di accorpare più classi A su un'unica rete o suddividere una
164 classe B e diminuendo al contempo il numero di indirizzi di rete da inserire
165 nelle tabelle di instradamento dei router.
166
167
168 \section{I motivi della transizione}
169 \label{sec:IP_whyipv6}
170
171 Negli ultimi anni la crescita vertiginosa del numero di macchine connesse a
172 internet ha iniziato a far emergere i vari limiti di IPv4; in particolare si
173 è iniziata a delineare la possibilità di arrivare a una carenza di
174 indirizzi disponibili.
175
176 In realtà il problema non è propriamente legato al numero di indirizzi
177 disponibili; infatti con 32 bit si hanno $2^{32}$, cioè circa 4 miliardi,
178 numeri diversi possibili, che sono molti di più dei computer attualmente
179 esistenti.
180
181 Il punto è che la suddivisione di questi numeri nei due livelli rete/host e
182 l'utilizzo delle classi di indirizzamento mostrate in precedenza, ha
183 comportato che, nella sua evoluzione storica, il dispiegamento delle reti e
184 l'allocazione degli indirizzi siano stati inefficienti; neanche l'uso del CIDR
185 ha permesso di eliminare le inefficienze che si erano formate, dato che il
186 ridispiegamento degli indirizzi comporta cambiamenti complessi a tutti i
187 livelli e la riassegnazione di tutti gli indirizzi dei computer di ogni
188 sottorete.
189
190 Diventava perciò necessario progettare un nuovo protocollo che permettesse
191 di risolvere questi problemi, e garantisse flessibilità sufficiente per
192 poter continuare a funzionare a lungo termine; in particolare necessitava un
193 nuovo schema di indirizzamento che potesse rispondere alle seguenti
194 necessità:
195
196 \begin{itemize}
197 \item un maggior numero di numeri disponibili che consentisse di non restare
198   più a corto di indirizzi
199 \item un'organizzazione gerarchica più flessibile dell'attuale 
200 \item uno schema di assegnazione degli indirizzi in grado di minimizzare le
201   dimensioni delle tabelle di instradamento
202 \item uno spazio di indirizzi che consentisse un passaggio automatico dalle
203   reti locali a internet
204 \end{itemize}
205
206
207 \section{Principali caratteristiche di IPv6}
208 \label{sec:IP_ipv6over}
209
210 Per rispondere alle esigenze descritte in \secref{sec:IP_whyipv6} IPv6 nasce
211 come evoluzione di IPv4, mantendone inalterate le funzioni che si sono
212 dimostrate valide, eliminando quelle inutili e aggiungendone poche altre
213 ponendo al contempo una grande attenzione a mantenere il protocollo il più
214 snello e veloce possibile.
215
216 I cambiamenti apportati sono comunque notevoli e possono essere riassunti a
217 grandi linee nei seguenti punti:
218 \begin{itemize}
219 \item l'espansione delle capacità di indirizzamento e instradamento, per
220   supportare una gerarchia con più livelli di indirizzamento, un numero di
221   nodi indirizzabili molto maggiore e una autoconfigurazione degli indirizzi
222 \item l'introduzione un nuovo tipo di indirizzamento, l'\textit{anycast} che
223   si aggiungono agli usuali \textit{unycast} e \textit{multicast}
224 \item la semplificazione del formato dell'intestazione, eliminando o rendendo
225   opzionali alcuni dei campi di IPv4, per eliminare la necessità di
226   riprocessamento della stessa da parte dei router e contenere l'aumento di
227   dimensione dovuto ai nuovi indirizzi
228 \item un supporto per le opzioni migliorato, per garantire una trasmissione
229   più efficiente del traffico normale, limiti meno stringenti sulle
230   dimensioni delle opzioni, e la flessibilità necessaria per introdurne di
231   nuove in futuro
232 \item il supporto per delle capacità di qualità di servizio (QoS) che
233   permetta di identificare gruppi di dati per i quali si può provvedere un
234   trattamento speciale (in vista dell'uso di internet per applicazioni
235   multimediali e/o ``real-time'')
236 \end{itemize}
237
238
239 \section{L'intestazione di IPv6}
240 \label{sec:IP_ipv6head}
241
242 Per capire le caratteristiche di IPv6 partiamo dall'intestazione usata dal
243 protocollo per gestire la trasmissione dei pacchetti; in
244 \tabref{tab:IP_ipv6head} è riportato il formato dell'intestazione di IPv6 da
245 confrontare con quella di IPv4 in \tabref{tab:IP_ipv4head}. La spiegazione del
246 significato dei vari campi delle due intestazioni è riportato rispettivamente
247 in \tabref{tab:IP_ipv6field} e \tabref{tab:IP_ipv4field})
248
249 \begin{table}[htb]
250   \footnotesize
251   \begin{center}
252     \begin{tabular}{@{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule}p{16mm}
253         @{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule}p{16mm}
254         @{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule} }
255     \multicolumn{8}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
256     \hline
257     \centering version&\centering priority& 
258     \multicolumn{6}{@{}p{96mm}@{\vrule}}{\centering flow label} \\
259     \hline
260     \multicolumn{4}{@{\vrule}p{64mm}@{\vrule}}{\centering payload length} & 
261     \multicolumn{2}{@{}p{32mm}@{\vrule}}{\centering next header} & 
262     \multicolumn{2}{@{}p{32mm}@{\vrule}}{\centering hop limit}\\
263     \hline
264     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
265     \multicolumn{8}{@{\vrule}c@{\vrule}}{
266       source} \\
267     \multicolumn{8}{@{\vrule}c@{\vrule}}{
268       IP address} \\
269     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
270     \hline
271     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
272     \multicolumn{8}{@{\vrule}c@{\vrule}}{
273       destination} \\
274     \multicolumn{8}{@{\vrule}c@{\vrule}}{
275      IP address} \\
276     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\
277     \hline
278     \end{tabular}
279     \caption{L'intestazione o \textit{header} di IPv6}
280     \label{tab:IP_ipv6head}
281   \end{center}
282 \end{table}
283
284 Come si può notare l'intestazione di IPv6 diventa di dimensione fissa, pari a
285 40 byte, contro una dimensione (minima, in assenza di opzioni) di 20 byte per
286 IPv4; un semplice raddoppio nonostante lo spazio destinato agli indirizzi sia
287 quadruplicato, questo grazie a una notevole semplificazione che ha ridotto il
288 numero dei campi da 12 a 8.
289
290 \begin{table}[htb]
291   \begin{center}
292   \footnotesize
293     \begin{tabular}{|l|c|p{8cm}|}
294       \hline
295       \textbf{Nome} & \textbf{Lunghezza} & \textbf{Significato} \\
296       \hline
297       \hline
298       \textit{version}       &  4 bit & 
299       \textsl{versione}, nel caso specifico vale sempre 6\\
300       \textit{priority}      &  4 bit & 
301       \textsl{priorità}, vedi Sez.~\ref{sec:prio} \\
302       \textit{flow label}    & 24 bit & 
303       \textsl{etichetta di flusso}, vedi Sez.~\ref{sec:IP_ipv6_flow}\\
304       \textit{payload length} & 16 bit & 
305       \textsl{lunghezza del carico}, cioè del corpo dei dati che segue 
306       l'intestazione, in byte. \\
307       \textit{next header}   &  8 bit & \textsl{intestazione successiva}, 
308       identifica il tipo di pacchetto che segue l'intestazione di IPv6, usa 
309       gli stessi valori del campo protocollo nell'intestazione di IPv4\\
310       \textit{hop limit}     &  8 bit & \textsl{limite di salti},
311       stesso significato del \textit{time to live} nell'intestazione di IPv4, 
312       è decrementato di uno ogni volta che un nodo ritrasmette il
313       pacchetto, se arriva a zero il pacchetto viene scartato \\
314       \textit{source IP}     & 128 bit & \textsl{indirizzo di origine} \\
315       \textit{destination IP}& 128 bit & \textsl{indirizzo di destinazione}\\
316       \hline
317     \end{tabular}
318     \caption{Legenda per il significato dei campi dell'intestazione di IPv6}
319     \label{tab:IP_ipv6field}
320   \end{center}
321 \end{table}
322
323 Abbiamo già anticipato in \secref{sec:IP_ipv6over} uno dei criteri principali
324 nella progettazione di IPv6 è stato quello di ridurre al minimo il tempo di
325 processamento dei pacchetti da parte dei router, un confronto con
326 l'intestazione di IPv4 (vedi \secref{tab:IP_ipv4head}) mostra le seguenti
327 differenze:
328
329 \begin{itemize}
330 \item è stato eliminato il campo \textit{header length} in quanto le opzioni
331   sono state tolte dall'intestazione che ha così dimensione fissa; ci possono
332   essere più intestazioni opzionali (\textsl{intestazioni di estensione}, vedi
333   \secref{sec:IP_ipv6_extens}), ciascuna delle quali avrà un suo campo di
334   lunghezza all'interno.
335 \item l'intestazione e gli indirizzi sono allineati a 64 bit, questo rende più
336   veloce il processo da parte di computer con processori a 64 bit.
337 \item i campi per gestire la frammentazione (\textit{identification},
338   \textit{flag} e \textit{fragment offset}) sono stati eliminati; questo
339   perché la  frammentazione è un'eccezione che non deve rallentare il
340   processo dei pacchetti nel caso normale.
341 \item è stato eliminato il campo \textit{checksum} in quanto tutti i
342   protocolli di livello superiore (TCP, UDP e ICMPv6) hanno un campo di
343   checksum che include, oltre alla loro intestazione e ai dati, pure i campi
344   \textit{payload length}, \textit{next header}, e gli indirizzi di origine e
345   di destinazione; una checksum esiste anche per la gran parte protocolli di
346   livello inferiore (anche se quelli che non lo hanno, come SLIP, non possono
347   essere usati con grande affidabilità); con questa scelta si è ridotto di
348   molti tempo di riprocessamento dato che i router non hanno più la
349   necessità di ricalcolare la checksum ad ogni passaggio di un pacchetto per
350   il cambiamento del campo \textit{hop limit}.
351 \item è stato eliminato il campo \textit{type of service}, che praticamente
352   non è mai stato utilizzato; una parte delle funzionalità ad esso delegate
353   sono state reimplementate (vedi il campo \textit{priority} al prossimo
354   punto) con altri metodi.
355 \item è stato introdotto un nuovo campo \textit{flow label}, che viene usato,
356   insieme al campo \textit{priority} (che recupera i bit di precedenza del
357   campo \textit{type of service}) per implementare la gestione di una
358   ``qualità di servizio'' (vedi Sez.~\ref{sec:IP_ipv6_qos}) che permette di
359   identificare i pacchetti appartenenti a un ``flusso'' di dati per i quali si
360   può provvedere un trattamento speciale.
361 \end{itemize}
362
363 \begin{table}[htb]
364   \footnotesize
365   \centering
366   \begin{tabular}{@{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule}p{16mm}
367         @{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule}p{16mm}
368         @{\vrule}p{16mm}@{\vrule}p{16mm}@{\vrule} }
369     \multicolumn{8}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
370     \hline
371     \centering version&
372     \centering head length&
373     \multicolumn{2}{@{}p{32mm}@{\vrule}}{\centering type of service} &  
374     \multicolumn{4}{@{}p{64mm}@{\vrule}}{\centering total length} \\
375     \hline
376     \multicolumn{4}{@{\vrule}p{64mm}@{\vrule}}{\centering identification} &
377     \multicolumn{4}{@{}p{64mm}@{\vrule}}{\parbox{11mm}{\centering flag} \vrule
378         \parbox{52mm}{\centering fragment offset}}\\
379     \hline
380     \multicolumn{2}{@{\vrule}p{32mm}@{\vrule}}{\centering TTL}& 
381     \multicolumn{2}{@{}p{32mm}@{\vrule}}{\centering protocol}&    
382     \multicolumn{4}{@{}p{64mm}@{\vrule}}{\centering header checksum} \\
383     \hline
384     \multicolumn{8}{@{\vrule}c@{\vrule}}{
385       source IP address} \\
386     \hline
387     \multicolumn{8}{@{\vrule}c@{\vrule}}{
388       destination IP address} \\
389     \hline
390     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\    
391     \multicolumn{8}{@{}p{128mm}@{}}{
392       \centering options (if any)} \\
393     \multicolumn{8}{@{\vrule}c@{\vrule}}{} \\    
394     \hline
395   \end{tabular}
396   \caption{L'intestazione o \textit{header} di IPv4}
397 \label{tab:IP_ipv4head}
398 \end{table}
399
400 \begin{table}[htb]
401   \footnotesize
402   \begin{center}
403     \begin{tabular}{|l|c|p{9cm}|}
404       \hline
405       \textbf{Nome} & \textbf{Lunghezza} & \textbf{Significato} \\
406       \hline
407       \hline
408       \textit{version}          &  4 bit & \textsl{versione}, nel caso 
409       specifico vale sempre 4\\
410       \textit{head length}      &  4 bit &\textsl{lunghezza dell'intestazione},
411       in multipli di 32 bit\\
412       \textit{type of service}  &  8 bit & \textsl{tipo di servizio}, 
413       consiste in: 3 bit di precedenza, 
414       correntemente ignorati; un bit non usato a 0;  4 bit che identificano
415       il tipo di servizio richiesto, uno solo dei quali può essere 1\\
416       \textit{total length}     & 16 bit & \textsl{lunghezza totale}, indica 
417       la dimensione del pacchetto IP in byte\\
418       \textit{identification}   & 16 bit & \textsl{identificazione}, 
419       assegnato alla creazione, è aumentato di uno all'origine della 
420       trasmissione di ciascun pacchetto, ma resta lo stesso per i 
421       pacchetti frammentati\\
422       \textit{flag}             &  3 bit & 
423       \textsl{flag} bit di frammentazione, uno indica se un
424       pacchetto è frammentato, un'altro se ci sono ulteriori frammenti, e 
425       un'altro se il pacchetto non può essere frammentato. \\
426       \textit{fragmentation offset} & 13 bit& \textsl{offset di frammento},
427       indica la posizione del frammento rispetto al pacchetto originale\\
428       \textit{time to live}    & 16 bit & \textsl{tempo di vita},
429       ha lo stesso significato di
430       \textit{hop limit}, vedi Tab.~\ref{tab:IP_ipv6field}\\
431       \textit{protocol}        &  8 bit & \textsl{protocollo} 
432       identifica il tipo di pacchetto che segue
433       l'intestazione di IPv4\\
434       \textit{header checksum} & 16 bit & \textsl{checksum di intestazione}, 
435       somma di controllo per l'intestazione\\
436       \textit{source IP}       & 32 bit & \textsl{indirizzo di origine}\\
437       \textit{destination IP}  & 32 bit & \textsl{indirizzo di destinazione}\\
438       \hline
439     \end{tabular}
440     \caption{Legenda per il significato dei campi dell'intestazione di IPv4}
441     \label{tab:IP_ipv4field}
442   \end{center}
443 \end{table}
444
445 Oltre alle differenze precedenti, relative ai singoli campi nell'intestazione,
446 ulteriori caratteristiche che diversificano il comportamento di IPv4 da
447 quello di IPv6 sono le seguenti:
448
449 \begin{itemize}
450 \item il broadcasting non è previsto in IPv6, le applicazioni che lo usano
451   dovono essere reimplementate usando il multicasting (vedi
452   \secref{sec:IP_ipv6_multicast}), che da opzionale diventa obbligatorio.
453 \item è stato introdotto un nuovo tipo di indirizzi, gli \textit{anycast}.
454 \item i router non possono più frammentare i pacchetti lungo il cammino, la
455   frammentazione di pacchetti troppo grandi potrà essere gestita solo ai
456   capi della comunicazione (usando un'apposita estensione vedi
457   \secref{sec:IP_ipv6_extens}).
458 \item IPv6 richiede il supporto per il \textit{path MTU discovery} (cioè il
459   protocollo per la selezione della massima lunghezza del pacchetto); seppure
460   questo sia in teoria opzionale, senza di esso non sarà possibile inviare
461   pacchetti più larghi della dimensione minima (576 byte).
462 \end{itemize}
463
464 \section{Gli indirizzi di IPv6}
465 \label{sec:IP_ipv6_addr}
466
467 Come già abbondantemente anticipato la principale novità di IPv6 è
468 costituita dall'ampliamento dello spazio degli indirizzi, che consente di avere
469 indirizzi disponibili in un numero dell'ordine di quello degli atomi che
470 costituiscono la terra. 
471
472 In realtà l'allocazione di questi indirizzi deve tenere conto della
473 necessità di costruire delle gerarchie che consentano un instradamento
474 rapido ed efficiente dei pacchetti, e flessibilità nel dispiegamento delle
475 reti, il che comporta una riduzione drastica dei numeri utilizzabili; uno
476 studio sull'efficienza dei vari sistemi di allocazione usati in altre
477 architetture (come i sistemi telefonici) è comunque giunto alla conclusione
478 che anche nella peggiore delle ipotesi IPv6 dovrebbe essere in grado di
479 fornire più di un migliaio di indirizzi per ogni metro quadro della
480 superficie terrestre.
481
482
483 \subsection{La notazione}
484 \label{sec:IP_ipv6_notation}
485 Con un numero di bit quadruplicato non è più possibile usare la notazione
486 coi numeri decimali di IPv4 per rappresentare un numero IP. Per questo gli
487 indirizzi di IPv6 sono in genere scritti come sequenze di otto numeri
488 esadecimali di 4 cifre (cioè a gruppi di 16 bit) usando i due punti come
489 separatore; cioè qualcosa del tipo
490 \texttt{5f1b:df00:ce3e:e200:0020:0800:2078:e3e3}.
491
492
493 Visto che la notazione resta comunque piuttosto pesante esistono alcune
494 abbreviazioni; si può evitare di scrivere gli zeri iniziali per cui si
495 può scrivere \texttt{1080:0:0:0:8:800:ba98:2078:e3e3}; se poi un intero è
496 zero si può omettere del tutto, così come un insieme di zeri (ma questo
497 solo una volta per non generare ambiguità) per cui il precedente indirizzo
498 si può scrivere anche come \texttt{1080::8:800:ba98:2078:e3e3}.
499
500 Infine per scrivere un indirizzo IPv4 all'interno di un indirizzo IPv6 si
501 può usare la vecchia notazione con i punti, per esempio
502 \texttt{::192.84.145.138}.
503
504 \begin{table}[htb]
505   \centering 
506   \footnotesize
507   \begin{tabular}{|l|l|l|}
508     \hline
509     \centering \textbf{Tipo di indirizzo}
510     & \centering \textbf{Prefisso} & {\centering \textbf{Frazione}} \\
511     \hline
512     \hline
513     riservato & \texttt{0000 0000} & 1/256 \\
514     non assegnato  & \texttt{0000 0001} & 1/256 \\
515     \hline
516     riservato per NSAP & \texttt{0000 001} & 1/128\\
517     riservato per IPX & \texttt{0000 010} & 1/128\\
518     \hline
519     non assegnato  & \texttt{0000 011} & 1/128 \\
520     non assegnato  & \texttt{0000 1} & 1/32 \\
521     non assegnato  & \texttt{0001} & 1/16 \\
522     \hline
523     provider-based & \texttt{001} & 1/8\\
524     \hline
525     non assegnato  & \texttt{010} & 1/8 \\
526     non assegnato  & \texttt{011} & 1/8 \\
527     geografic-based& \texttt{100} & 1/8 \\
528     non assegnato  & \texttt{101} & 1/8 \\
529     non assegnato  & \texttt{110} & 1/8 \\
530     non assegnato  & \texttt{1110} & 1/16 \\
531     non assegnato  & \texttt{1111 0} & 1/32 \\
532     non assegnato  & \texttt{1111 10} & 1/64 \\
533     non assegnato  & \texttt{1111 110} & 1/128 \\
534     non assegnato  & \texttt{1111 1100 0} & 1/512 \\
535     \hline
536     unicast link-local & \texttt{1111 1100 10} & 1/1024 \\
537     unicast site-local & \texttt{1111 1100 11} & 1/1024 \\
538     \hline
539     \hline
540     multicast & \texttt{1111 1111} & 1/256 \\
541     \hline
542   \end{tabular}
543   \caption{Classificazione degli indirizzi IPv6 a seconda dei bit più 
544     significativi}
545   \label{tab:IP_ipv6addr}
546 \end{table}
547
548
549 \subsection{La architettura degli indirizzi di IPv6}
550 \label{sec:IP_ipv6_addr_arch}
551
552 Come per IPv4 gli indirizzi sono identificatori per una singola (indirizzi
553 \textit{unicast}) o per un insieme (indirizzi \textit{multicast} e
554 \textit{anycast}) di interfacce di rete.  
555
556 Gli indirizzi sono sempre assegnati all'interfaccia, non al nodo che la
557 ospita; dato che ogni interfaccia appartiene ad un nodo quest'ultimo può
558 essere identificato attraverso uno qualunque degli indirizzi unicast delle sue
559 interfacce. A una interfaccia possono essere associati anche più indirizzi.
560
561 IPv6 presenta tre tipi diversi di indirizzi: due di questi, gli indirizzi
562 \textit{unicast} e \textit{multicast} hanno le stesse caratteristiche che in
563 IPv4, un terzo tipo, gli indirizzi \textit{anycast} è completamente nuovo.
564 In IPv6 non esistono più gli indirizzi \textit{broadcast}, la funzione di
565 questi ultimi deve essere reimplementata con gli indirizzi \textit{multicast}.
566
567 Gli indirizzi \textit{unicast} identificano una singola interfaccia: i
568 pacchetti mandati ad un tale indirizzo verranno inviati a quella interfaccia,
569 gli indirizzi \textit{anycast} identificano un gruppo di interfacce tale che
570 un pacchetto mandato a uno di questi indirizzi viene inviato alla più vicina
571 (nel senso di distanza di routing) delle interfacce del gruppo, gli indirizzi
572 \textit{multicast} identificano un gruppo di interfacce tale che un pacchetto
573 mandato a uno di questi indirizzi viene inviato a tutte le interfacce del
574 gruppo.
575
576 In IPv6 non ci sono più le classi ma i bit più significativi indicano il tipo
577 di indirizzo; in \tabref{tab:IP_ipv6addr} sono riportati i valori di detti
578 bit e il tipo di indirizzo che loro corrispondente.  I bit più significativi
579 costituiscono quello che viene chiamato il \textit{format prefix} ed è sulla
580 base di questo che i vari tipi di indirizzi vengono identificati.  Come si
581 vede questa architettura di allocazione supporta l'allocazione di indirizzi
582 per i provider, per uso locale e per il multicast; inoltre è stato riservato
583 lo spazio per indirizzi NSAP, IPX e per le connessioni; gran parte dello
584 spazio (più del 70\%) è riservato per usi futuri.
585
586 Si noti infine che gli indirizzi \textit{anycast} non sono riportati in
587 \tabref{tab:IP_ipv6addr} in quanto allocati al di fuori dello spazio di
588 allocazione degli indirizzi unicast.
589
590 \subsection{Indirizzi unicast \textit{provider-based}}
591 \label{sec:IP_ipv6_unicast}
592
593 Gli indirizzi \textit{provider-based} sono gli indirizzi usati per le
594 comunicazioni globali, questi sono definiti nell'RFC 2073 e sono gli
595 equivalenti degli attuali indirizzi delle classi da A a C.
596
597 L'autorità che presiede all'allocazione di questi indirizzi è la IANA; per
598 evitare i problemi di crescita delle tabelle di instradamento e una procedura
599 efficiente di allocazione la struttura di questi indirizzi è organizzata fin
600 dall'inizio in maniera gerarchica; pertanto lo spazio di questi indirizzi è
601 stato suddiviso in una serie di campi secondo lo schema riportato in
602 \tabref{tab:IP_ipv6_unicast}.
603
604 \begin{table}[htb]
605   \centering
606   \footnotesize
607   \begin{tabular} {@{\vrule}p{6mm}
608       @{\vrule}p{16mm}@{\vrule}p{24mm}
609       @{\vrule}p{30mm}@{\vrule}c@{\vrule}}
610     \multicolumn{1}{@{}c@{}}{3}&\multicolumn{1}{c}{5 bit}&
611     \multicolumn{1}{c}{$n$ bit}&\multicolumn{1}{c}{$56-n$ bit}&
612     \multicolumn{1}{c}{64 bit} \\
613     \hline
614     \omit\vrule\hfill\vrule&\hspace{16mm} & & &\omit\hspace{76mm}\hfill\vrule\\ 
615     \centering 010&
616     \centering \textsl{Registry Id}&
617     \centering \textsl{Provider Id}& 
618     \centering \textsl{Subscriber Id}& 
619     \textsl{Intra-Subscriber} \\
620     \omit\vrule\hfill\vrule& & & &\omit\hspace{6mm}\hfill\vrule\\ 
621     \hline
622   \end{tabular}
623 \caption{Formato di un indirizzo unicast \textit{provider-based}.}
624 \label{tab:IP_ipv6_unicast}
625 \end{table}
626
627 Al livello più alto la IANA può delegare l'allocazione a delle autorità
628 regionali (i Regional Register) assegnando ad esse dei blocchi di indirizzi; a
629 queste autorità regionali è assegnato un Registry Id che deve seguire
630 immediatamente il prefisso di formato. Al momento sono definite tre registri
631 regionali (INTERNIC, RIPE NCC e APNIC), inoltre la IANA si è riservata la
632 possibilità di allocare indirizzi su base regionale; pertanto sono previsti
633 i seguenti possibili valori per il \textsl{Registry Id};
634 gli altri valori restano riservati per la IANA.
635 \begin{table}[htb]
636   \begin{center}
637     \begin{tabular}{|l|l|l|}
638       \hline
639       \textbf{Regione} & \textbf{Registro} & \textbf{Id} \\
640       \hline
641       \hline
642       Nord America &INTERNIC & \texttt{11000} \\
643       Europa & RIPE NCC & \texttt{01000} \\
644       Asia & APNIC & \texttt{00100} \\
645       Multi-regionale & IANA &\texttt{10000} \\
646       \hline
647     \end{tabular}
648     \caption{Valori dell'identificativo dei 
649       Regional Register allocati ad oggi.}
650     \label{tab:IP_ipv6_regid}
651   \end{center}
652 \end{table}
653
654 L'organizzazione degli indirizzi prevede poi che i due livelli successivi, di
655 suddivisione fra \textit{Provider Id}, che identifica i grandi fornitori di
656 servizi, e \textit{Subscriber Id}, che identifica i fruitori, sia gestita dai
657 singoli registri regionali. Questi ultimi dovranno definire come dividere lo
658 spazio di indirizzi assegnato a questi due campi (che ammonta a un totale di
659 56~bit), definendo lo spazio da assegnare al \textit{Provider Id} e
660 al \textit{Subscriber Id}, ad essi spetterà inoltre anche l'allocazione dei
661 numeri di \textit{Provider Id} ai singoli fornitori, ai quali sarà delegata
662 l'autorità di allocare i \textit{Subscriber Id} al loro interno.
663
664 L'ultimo livello è quello \textit{Intra-subscriber} che è lasciato alla
665 gestione dei singoli fruitori finali, gli indirizzi \textit{provider-based}
666 lasciano normalmente gli ultimi 64~bit a disposizione per questo livello, la
667 modalità più immediata è quella di usare uno schema del tipo mostrato in
668 \tabref{tab:IP_ipv6_uninterf} dove l'\textit{Interface Id} è dato dal
669 MAC-address a 48~bit dello standard Ethernet, scritto in genere nell'hardware
670 delle scheda di rete, e si usano i restanti 16~bit per indicare la sottorete.
671
672 \begin{table}[htb]
673   \centering
674   \footnotesize
675   \begin{tabular} {@{\vrule}p{64mm}@{\vrule}p{16mm}@{\vrule}c@{\vrule}}
676     \multicolumn{1}{c}{64 bit}&\multicolumn{1}{c}{16 bit}&
677     \multicolumn{1}{c}{48 bit}\\
678     \hline
679     \omit\vrule\hfill\vrule&\hspace{16mm}&\omit\hspace{48mm}\hfill\vrule\\ 
680     \centering \textsl{Subscriber Prefix}& 
681     \centering \textsl{Subnet Id}&
682     \textsl{Interface Id}\\
683     \omit\vrule\hfill\vrule& &\omit\hspace{6mm}\hfill\vrule\\ 
684     \hline
685   \end{tabular}
686 \caption{Formato del campo \textit{Intra-subscriber} per un indirizzo unicast
687   \textit{provider-based}.}
688 \label{tab:IP_ipv6_uninterf}
689 \end{table}
690
691 Qualora si dovesse avere a che fare con una necessità di un numero più
692 elevato di sottoreti, il precedente schema andrebbe modificato, per evitare
693 l'enorme spreco dovuto all'uso dei MAC-address, a questo scopo si possono
694 usare le capacità di autoconfigurazione di IPv6 per assegnare indirizzi
695 generici con ulteriori gerarchie per sfruttare efficacemente tutto lo spazio
696 di indirizzi.
697
698 Un registro regionale può introdurre un ulteriore livello nella gerarchia
699 degli indirizzi, allocando dei blocchi per i quali delegare l'autorità a dei
700 registri nazionali, quest'ultimi poi avranno il compito di gestire la
701 attribuzione degli indirizzi per i fornitori di servizi nell'ambito del/i
702 paese coperto dal registro nazionale con le modalità viste in precedenza.
703 Una tale ripartizione andrà effettuata all'interno dei soliti 56~bit come
704 mostrato in \ntab.
705
706 \begin{table}[htb]
707   \centering
708   \footnotesize
709   \begin{tabular} {@{\vrule}p{3mm}
710       @{\vrule}p{10mm}@{\vrule}p{12mm}@{\vrule}p{18mm}
711       @{\vrule}p{18mm}@{\vrule}c@{\vrule}}
712     \multicolumn{1}{@{}c@{}}{3}&\multicolumn{1}{c}{5 bit}&
713     \multicolumn{1}{c}{n bit}&\multicolumn{1}{c}{m bit}&
714     \multicolumn{1}{c}{56-n-m bit}&\multicolumn{1}{c}{64 bit} \\
715     \hline
716     \omit\vrule\hfill\vrule& & & & &\omit\hspace{64mm}\hfill\vrule\\
717     \centering \texttt{3}&
718     \centering \textsl{Reg.}&
719     \centering \textsl{Naz.}&
720     \centering \textsl{Prov.}& 
721     \centering \textsl{Subscr.}& 
722     \textsl{Intra-Subscriber} \\
723     \omit\vrule\hfill\vrule &&&&&\\ 
724     \hline
725   \end{tabular}
726 \caption{Formato di un indirizzo unicast \textit{provider-based} che prevede
727       un registro nazionale.}
728 \label{tab:IP_ipv6_uninaz}
729 \end{table}
730
731
732 \subsection{Indirizzi ad uso locale}
733 \label{sec:IP_ipv6_linksite}
734
735 Gli indirizzi ad uso locale sono indirizzi unicast che sono instradabili solo
736 localmente (all'interno di un sito o di una sottorete), e possono avere una
737 unicità locale o globale.
738
739 Questi indirizzi sono pensati per l'uso all'interno di un sito per mettere su
740 una comunicazione locale immediata, o durante le fasi di autoconfigurazione
741 prima di avere un indirizzo globale.
742
743 \begin{table}[htb]
744   \centering
745   \footnotesize
746   \begin{tabular} {@{\vrule}p{10mm}@{\vrule}p{54mm}@{\vrule}c@{\vrule}}
747     \multicolumn{1}{c}{10} &\multicolumn{1}{c}{54 bit} & 
748     \multicolumn{1}{c}{64 bit} \\
749     \hline
750     \omit\vrule\hfill\vrule & & \omit\hspace{64mm}\hfill\vrule\\
751     \centering \texttt{FE80}& 
752     \centering\texttt{0000 .   .   .   .   . 0000} &
753     Interface Id \\
754     \omit\vrule\hfill\vrule & &\\
755     \hline
756 \end{tabular}
757 \caption{Formato di un indirizzo \textit{link-local}.}
758 \label{tab:IP_ipv6_linklocal}
759 \end{table}
760
761 Ci sono due tipi di indirizzi, \textit{link-local} e \textit{site-local}. Il
762 primo è usato per un singolo link; la struttura è mostrata in
763 \tabref{tab:IP_ipv6_linklocal}, questi indirizzi iniziano sempre per
764 \texttt{FE80} e vengono in genere usati per la configurazione automatica
765 dell'indirizzo al bootstrap e per la ricerca dei vicini (vedi
766 \ref{sec:IP_ipv6_autoconf}); un pacchetto che abbia tale indirizzo come
767 sorgente o destinazione non deve venire ritrasmesso dai router.
768
769 Un indirizzo \textit{site-local} invece è usato per l'indirizzamento
770 all'interno di un sito che non necessita di un prefisso globale; la struttura
771 è mostrata in \ntab, questi indirizzi iniziano sempre per
772 \texttt{FEC0} e non devono venire ritrasmessi dai router all'esterno del sito
773 stesso; sono in sostanza gli equivalenti degli indirizzi riservati per reti
774 private definiti su IPv4.
775 Per entrambi gli indirizzi il campo \textit{Interface Id} è un
776 identificatore che deve essere unico nel dominio in cui viene usato, un modo
777 immediato per costruirlo è quello di usare il MAC-address delle schede di
778 rete.
779  
780 \begin{table}[!h]
781   \centering
782   \footnotesize
783   \begin{tabular} {@{\vrule}p{10mm}@{\vrule}p{38mm}@{\vrule}p{16mm}
784       @{\vrule}c@{\vrule}}
785     \multicolumn{1}{c}{10} &\multicolumn{1}{c}{38 bit} & 
786     \multicolumn{1}{c}{16 bit} &\multicolumn{1}{c}{64 bit} \\
787     \hline
788     \omit\vrule\hfill\vrule& & & \omit\hspace{64mm}\hfill\vrule\\
789     \centering \texttt{FEC0}& 
790     \centering \texttt{0000 .   .   . 0000}& 
791     \centering Subnet Id &
792     Interface Id\\
793     \omit\vrule\hfill\vrule& & &\\
794     \hline
795 \end{tabular}
796 \caption{Formato di un indirizzo \textit{site-local}.}
797 \label{tab:IP_ipv6_sitelocal}
798 \end{table}
799
800 Gli indirizzi di uso locale consentono ad una organizzazione che non è
801 (ancora) connessa ad Internet di operare senza richiedere un prefisso globale,
802 una volta che in seguito l'organizzazione venisse connessa a Internet
803 potrebbe continuare a usare la stessa suddivisione effettuata con gli
804 indirizzi \textit{site-local} utilizzando un prefisso globale e la
805 rinumerazione degli indirizzi delle singole macchine sarebbe automatica.
806
807 \subsection{Indirizzi riservati}
808 \label{sec:IP_ipv6_reserved}
809
810 Alcuni indirizzi sono riservati per scopi speciali, in particolare per scopi
811 di compatibilità.
812
813 Un primo tipo sono gli indirizzi \textit{IPv4 mappati su IPv6} (mostrati in
814 \ntab), questo sono indirizzi unicast che vengono usati per consentire ad
815 applicazioni IPv6 di comunicare con host capaci solo di IPv4; questi sono ad
816 esempio gli indirizzi generati da un DNS quando l'host richiesto supporta solo
817 IPv4; l'uso di un tale indirizzo in un socket IPv6 comporta la generazione di
818 un pacchetto IPv4 (ovviamente occorre che sia IPv4 che IPv6 siano supportati
819 sull'host di origine).
820
821 \begin{table}[!htb]
822   \centering
823   \footnotesize
824   \begin{tabular} {@{\vrule}p{80mm}@{\vrule}p{16mm}@{\vrule}c@{\vrule}}
825     \multicolumn{1}{c}{80 bit} &\multicolumn{1}{c}{16 bit} & 
826     \multicolumn{1}{c}{32 bit} \\
827     \hline
828     \omit\vrule\hfill\vrule& &\omit\hspace{32mm}\hfill\vrule\\ 
829     \centering
830     \texttt{0000 .   .   .   .   .   .   .   .   .   .   .   . 0000} & 
831     \centering\texttt{FFFF} &
832     IPv4 address \\
833     \omit\vrule\hfill\vrule& &\\ 
834     \hline
835 \end{tabular}
836 \caption{Formato di un indirizzo IPV4 mappato su IPv6.}
837 \label{tab:IP_ipv6_map}
838 \end{table}
839
840 Un secondo tipo di indirizzi di compatibilità sono gli \textit{IPv4
841   compatibili IPv6} (vedi \tabref{tab:IP_ipv6_comp}) usati nella transizione
842 da IPv4 a IPv6: quando un nodo che supporta sia IPv6 che IPv4 non ha un router
843 IPv6 deve usare nel DNS un indirizzo di questo tipo, ogni pacchetto IPv6
844 inviato a un tale indirizzo verrà automaticamente incapsulato in IPv4.
845
846 \begin{table}[htb]
847   \centering
848   \footnotesize
849   \begin{tabular} {@{\vrule}p{80mm}@{\vrule}p{16mm}@{\vrule}p{32mm}@{\vrule}}
850     \multicolumn{1}{c}{80 bit} &\multicolumn{1}{c}{16 bit} & 
851     \multicolumn{1}{c}{32 bit} \\
852     \hline
853     \omit\vrule\hfill\vrule& &\omit\hspace{32mm}\hfill\vrule\\ 
854     \centering
855     \texttt{0000 .   .   .   .   .   .   .   .   .   .   .   . 0000} & 
856     \centering\texttt{0000} &
857     \parbox{32mm}{\centering IPv4 address} \\
858     \omit\vrule\hfill\vrule& &\\ 
859     \hline
860 \end{tabular}
861 \caption{Formato di un indirizzo IPV4 mappato su IPv6.}
862 \label{tab:IP_ipv6_comp}
863 \end{table}
864
865 Altri indirizzi speciali sono il \textit{loopback address}, costituito da 127
866 zeri ed un uno (cioè \texttt{::1}) e l'\textsl{indirizzo generico}
867 costituito da tutti zeri (scritto come \texttt{0::0} o ancora più
868 semplicemente come \texttt{:}) usato in genere quando si vuole indicare
869 l'accettazione di una connessione da qualunque host.
870
871 \subsection{Multicasting}
872 \label{sec:IP_ipv6_multicast}
873
874 Gli indirizzi \textit{multicast} sono usati per inviare un pacchetto a un
875 gruppo di interfacce; l'indirizzo identifica uno specifico gruppo di
876 multicast e il pacchetto viene inviato a tutte le interfacce di detto gruppo.
877 Un'interfaccia può appartenere ad un numero qualunque numero di gruppi di
878 multicast. Il formato degli indirizzi \textit{multicast} è riportato in
879 \ntab:
880
881 \begin{table}[htb]
882   \centering
883   \footnotesize
884   \begin{tabular} {@{\vrule}p{12mm}
885       @{\vrule}p{6mm}@{\vrule}p{6mm}@{\vrule}c@{\vrule}}
886     \multicolumn{1}{c}{8}&\multicolumn{1}{c}{4}&
887     \multicolumn{1}{c}{4}&\multicolumn{1}{c}{112 bit} \\
888     \hline
889     \omit\vrule\hfill\vrule& & & \omit\hspace{104mm}\hfill\vrule\\
890     \centering\texttt{FF}& 
891     \centering flag &
892     \centering scop& 
893     Group Id\\
894     \omit\vrule\hfill\vrule &&&\\ 
895     \hline
896   \end{tabular}
897 \caption{Formato di un indirizzo \textit{multicast}.}
898 \label{tab:IP_ipv6_multicast}
899 \end{table}
900
901 Il prefisso di formato per tutti gli indirizzi \textit{multicast} è
902 \texttt{FF}, ad esso seguono i due campi il cui significato è il seguente:
903
904 \begin{itemize}
905 \item \textsl{flag}: un insieme di 4 bit, di cui i primi tre sono riservati e
906   posti a zero, l'ultimo è zero se l'indirizzo è permanente (cioè un
907   indirizzo noto, assegnato dalla IANA), ed è uno se invece l'indirizzo è
908   transitorio.
909 \item \textsl{scop} è un numero di quattro bit che indica il raggio di
910   validità dell'indirizzo, i valori assegnati per ora sono riportati in
911   \ntab.
912 \end{itemize}
913
914
915
916 \begin{table}[!htb]
917   \centering 
918   \footnotesize
919   \begin{tabular}[c]{|c|l|c|l|}
920     \hline
921     \multicolumn{4}{|c|}{\bf Gruppi di multicast} \\
922     \hline
923     \hline
924     0 & riservato & 8 & organizzazione locale \\
925     1 & nodo locale & 9 & non assegnato \\
926     2 & collegamento locale & A & non assegnato \\
927     3 & non assegnato & B & non assegnato \\
928     4 & non assegnato & C & non assegnato \\ 
929     5 & sito locale & D & non assegnato \\
930     6 & non assegnato & E & globale \\
931     7 & non assegnato & F & riservato \\
932     \hline
933   \end{tabular}
934 \caption{Possibili valori del campo \textsl{scop} di un indirizzo multicast.}
935 \label{tab:IP_ipv6_multiscope}
936 \end{table}
937
938 Infine l'ultimo campo identifica il gruppo di multicast, sia permanente che
939 transitorio, all'interno del raggio di validità del medesimo. Alcuni
940 indirizzi multicast, riportati in \tabref{tab:multiadd} sono già riservati
941 per il funzionamento della rete.
942
943 \begin{table}[!htb]
944   \centering 
945   \footnotesize
946   \begin{tabular}[c]{l l r}
947     \hline
948     \textbf{Uso}& \textbf{Indirizzi riservati} & \textbf{Definizione}\\
949     \hline 
950     \hline 
951     all-nodes & \texttt{FFxx:0:0:0:0:0:0:1} & RFC 1970\\
952     all-routers & \texttt{FFxx:0:0:0:0:0:0:2} & RFC 1970\\
953     all-rip-routers & \texttt{FFxx:0:0:0:0:0:0:9} & RFC 2080\\
954     all-cbt-routers & \texttt{FFxx:0:0:0:0:0:0:10} &\\
955     reserved &  \texttt{FFxx:0:0:0:0:0:1:0} & IANA \\
956     link-name &  \texttt{FFxx:0:0:0:0:0:1:1} &  \\
957     all-dhcp-agents & \texttt{FFxx:0:0:0:0:0:1:2} & \\
958     all-dhcp-servers & \texttt{FFxx:0:0:0:0:0:1:3} & \\
959     all-dhcp-relays & \texttt{FFxx:0:0:0:0:0:1:4} & \\
960     solicited-nodes &  \texttt{FFxx:0:0:0:0:1:0:0} & RFC 1970\\
961     \hline
962   \end{tabular}
963 \caption{Gruppi multicast predefiniti.}
964 \label{tab:multiadd}
965 \end{table}
966
967 L'utilizzo del campo di \textit{scope} e di questi indirizzi predefiniti serve
968 a recuperare le funzionalità del broadcasting (ad esempio inviando un
969 pacchetto all'indirizzo \texttt{FF02:0:0:0:0:0:0:1} si raggiungono tutti i
970 nodi locali).
971
972
973 \subsection{Indirizzi \textit{anycast}}
974 \label{sec:IP_anycast}
975
976 Gli indirizzi \textit{anycast} sono indirizzi che vengono assegnati ad un
977 gruppo di interfacce: un pacchetto indirizzato a questo tipo di indirizzo
978 viene inviato al componente del gruppo più ``vicino'' secondo la distanza di
979 instradamento calcolata dai router.
980
981 Questi indirizzi sono allocati nello stesso spazio degli indirizzi unicast,
982 usando uno dei formati disponibili, e per questo, sono da essi assolutamente
983 indistinguibili. Quando un indirizzo unicast viene assegnato a più interfacce
984 (trasformandolo in un anycast) il computer su cui è l'interfaccia deve essere
985 configurato per tener conto del fatto.
986
987 Gli indirizzi anycast consentono a un nodo sorgente di inviare pacchetti a una
988 destinazione su un gruppo di possibili interfacce selezionate. La sorgente non
989 deve curarsi di come scegliere l'interfaccia più vicina, compito che tocca al
990 sistema di instradamento (in sostanza la sorgente non ha nessun controllo
991 sulla selezione).
992
993 Gli indirizzi anycast, quando vengono usati come parte di una sequenza di
994 instradamento, consentono ad esempio ad un nodo di scegliere quale fornitore
995 vuole usare (configurando gli indirizzi anycast per identificare i router di
996 uno stesso provider).
997
998 Questi indirizzi pertanto possono essere usati come indirizzi intermedi in una
999 intestazione di instradamento o per identificare insiemi di router connessi a
1000 una particolare sottorete, o che forniscono l'accesso a un certo sotto
1001 dominio.
1002
1003 L'idea alla base degli indirizzi anycast è perciò quella di utilizzarli per
1004 poter raggiungere il fornitore di servizio più vicino; ma restano aperte tutta
1005 una serie di problematiche, visto che una connessione con uno di questi
1006 indirizzi non è possibile, dato che per una variazione delle distanze di
1007 routing non è detto che due pacchetti successivi finiscano alla stessa
1008 interfaccia.
1009
1010 La materia è pertanto ancora controversa e in via di definizione.
1011
1012
1013 \section{Le estensioni}
1014 \label{sec:IP_ipv6_extens}
1015
1016 Come già detto in precedenza IPv6 ha completamente cambiato il trattamento
1017 delle opzioni; queste ultime infatti sono state tolte dall'intestazione del
1018 pacchetto, e poste in apposite \textsl{intestazioni di estensione} (o
1019 \textit{extension header}) poste fra l'intestazione di IPv6 e l'intestazione
1020 del protocollo di trasporto.
1021
1022 Per aumentare la velocità di processo, sia dei dati del livello seguente che
1023 di ulteriori opzioni, ciascuna estensione deve avere una lunghezza multipla di
1024 8 byte per mantenere l'allineamento a 64~bit di tutti le intestazioni
1025 seguenti.
1026
1027 Dato che la maggior parte di queste estensioni non sono esaminate dai router
1028 durante l'instradamento e la trasmissione dei pacchetti, ma solo all'arrivo
1029 alla destinazione finale, questa scelta ha consentito un miglioramento delle
1030 prestazioni rispetto a IPv4 dove la presenza di un'opzione comportava l'esame
1031 di tutte quante.
1032
1033 Un secondo miglioramento è che rispetto a IPv4 le opzioni possono essere di
1034 lunghezza arbitraria e non limitate a 40 byte; questo, insieme al modo in cui
1035 vengono trattate, consente di utilizzarle per scopi come l'autenticazione e la
1036 sicurezza, improponibili con IPv4.
1037
1038 Le estensioni definite al momento sono le seguenti:
1039 \begin{itemize}
1040 \item \textbf{Hop by hop} devono seguire immediatamente l'intestazione
1041   principale; indicano le opzioni che devono venire processate ad ogni
1042   passaggio da un router, fra di esse è da menzionare la \textit{jumbo
1043     payload} che segnala la presenza di un pacchetto di dati di dimensione
1044   superiore a 65535 byte.
1045 \item \textbf{Destination options} opzioni che devono venire esaminate al nodo
1046   di ricevimento, nessuna di esse è tuttora definita.
1047 \item \textbf{Routing} definisce una \textit{source route} (come la analoga
1048   opzione di IPv4) cioè una lista di indirizzi IP di nodi per i quali il
1049   pacchetto deve passare. 
1050 \item \textbf{Fragmentation} viene generato automaticamente quando un host
1051   vuole frammentare un pacchetto, ed è riprocessato automaticamente alla
1052   destinazione che riassembla i frammenti.
1053 \item \textbf{Authentication} gestisce l'autenticazione e il controllo di
1054   integrità dei pacchetti; è documentato dall'RFC 162.
1055 \item \textbf{Encapsulation} serve a gestire la segretezza del contenuto
1056   trasmesso; è documentato dall'RFC 1827.
1057 \end{itemize}
1058
1059 La presenza di opzioni è rilevata dal valore del campo \textit{next header}
1060 che indica qual'è l'intestazione successiva a quella di IPv6; in assenza di
1061 opzioni questa sarà l'intestazione di un protocollo di trasporto del livello
1062 superiore, per cui il campo assumerà lo stesso valore del campo
1063 \textit{protocol} di IPv4, altrimenti assumerà il valore dell'opzione
1064 presente; i valori possibili sono riportati in \ntab.
1065
1066 \begin{table}[htb]
1067   \begin{center}
1068     \footnotesize
1069     \begin{tabular}{|c|l|l|}
1070       \hline
1071       \textbf{Valore} & \textbf{Keyword} & \textbf{Tipo di protocollo} \\
1072       \hline
1073       \hline
1074       0  &      & riservato\\
1075          & HBH  & Hop by Hop \\
1076       1  & ICMP & Internet Control Message (IPv4 o IPv6) \\
1077       2  & ICMP & Internet Group Management (IPv4) \\
1078       3  & GGP  & Gateway-to-Gateway \\
1079       4  & IP   & IP in IP (IPv4 encapsulation) \\
1080       5  & ST   & Stream \\
1081       6  & TCP  & Trasmission Control \\
1082       17 & UDP  & User Datagram \\
1083       43 & RH   & Routing Header (IPv6) \\
1084       44 & FH   & Fragment Header (IPv6) \\
1085       45 & IDRP & Inter Domain Routing \\
1086       51 & AH   & Authentication Header (IPv6) \\
1087       52 & ESP  & Encrypted Security Payload (IPv6) \\
1088       59 & Null & No next header (IPv6) \\
1089       88 & IGRP & Internet Group Routing \\
1090       89 & OSPF & Open Short Path First \\
1091       255&      & riservato \\
1092     \hline
1093     \end{tabular}
1094     \caption{Tipi di protocolli e intestazioni di estensione}
1095     \label{tab:IP_ipv6_nexthead}
1096   \end{center}
1097 \end{table}
1098
1099 Questo meccanismo permette la presenza di più opzioni in successione prima
1100 del pacchetto del protocollo di trasporto; l'ordine raccomandato per le
1101 estensioni è quello riportato nell'elenco precedente con la sola differenza
1102 che le opzioni di destinazione sono inserite nella posizione ivi indicata solo
1103 se, come per il tunnelling, devono essere esaminate dai router, quelle che
1104 devono essere esaminate solo alla destinazione finale vanno in coda.
1105
1106
1107 \section{Qualità di servizio}
1108 \label{sec:IP_ipv6_qos}
1109
1110 Una delle caratteristiche innovative di IPv6 è quella di avere introdotto un
1111 supporto per la qualità di servizio che è importante per applicazioni come
1112 quelle multimediali o ``real-time'' che richiedono un qualche grado di
1113 controllo sulla stabilità della banda di trasmissione, sui ritardi o la
1114 dispersione dei temporale del flusso dei pacchetti.
1115
1116
1117 \subsection{Etichette di flusso}
1118 \label{sec:IP_ipv6_flow}
1119 L'introduzione del campo \textit{flow label} può essere usata dall'origine
1120 della comunicazione per etichettare quei pacchetti per i quali si vuole un
1121 trattamento speciale da parte dei router come un una garanzia di banda minima
1122 assicurata o un tempo minimo di instradamento/trasmissione garantito.
1123
1124 Questo aspetto di IPv6 è ancora sperimentale per cui i router che non
1125 supportino queste funzioni devono porre a zero il \textit{flow label} per i
1126 pacchetti da loro originanti e lasciare invariato il campo per quelli in
1127 transito.
1128
1129 Un flusso è una sequenza di pacchetti da una particolare origine a una
1130 particolare destinazione per il quale l'origine desidera un trattamento
1131 speciale da parte dei router che lo manipolano; la natura di questo
1132 trattamento può essere comunicata ai router in vari modi (come un protocollo
1133 di controllo o con opzioni del tipo \textit{hop-by-hop}). 
1134
1135 Ci possono essere più flussi attivi fra un'origine e una destinazione, come
1136 del traffico non assegnato a nessun flusso, un flusso viene identificato
1137 univocamente dagli indirizzi di origine e destinazione e da una etichetta di
1138 flusso diversa da zero, il traffico normale deve avere l'etichetta di flusso
1139 posta a zero.
1140
1141 L'etichetta di flusso è assegnata dal nodo di origine, i valori devono
1142 essere scelti in maniera (pseudo)casuale nel range fra 1 e FFFFFF in modo da
1143 rendere utilizzabile un qualunque sottoinsieme dei bit come chiavi di hash per
1144 i router.
1145
1146 \subsection{Priorità}
1147 \label{sec:prio}
1148
1149 Il campo di priorità consente di indicare il livello di priorità dei
1150 pacchetti relativamente agli altri pacchetti provenienti dalla stessa
1151 sorgente. I valori sono divisi in due intervalli, i valori da 0 a 7 sono usati
1152 per specificare la priorità del traffico per il quale la sorgente provvede
1153 un controllo di congestione cioè per il traffico che può essere ``tirato
1154 indietro'' in caso di congestione come quello di TCP, i valori da 8 a 15 sono
1155 usati per i pacchetti che non hanno questa caratteristica, come i pacchetti
1156 ``real-time'' inviati a ritmo costante.
1157
1158 Per il traffico con controllo di congestione sono raccomandati i seguenti
1159 valori di priorità a seconda del tipo di applicazione:
1160
1161 \begin{table}[htb]
1162   \centering
1163   \footnotesize
1164   \begin{tabular}{|c|l|}
1165     \hline
1166     \textbf{Valore} & \textbf{Tipo di traffico} \\
1167     \hline
1168     \hline
1169     0 & traffico generico \\
1170     1 & traffico di riempimento (es. news) \\
1171     2 & trasferimento dati non interattivo (es. e-mail)\\
1172     3 & riservato \\
1173     4 & trasferimento dati interattivo (es. FTP, HTTP, NFS) \\
1174     5 & riservato \\
1175     \hline
1176 \end{tabular}
1177 \caption{Formato di un indirizzo \textit{site-local}.}
1178 \label{tab:priority}
1179 \end{table}
1180
1181 Per il traffico senza controllo di congestione la priorità più bassa
1182 dovrebbe essere usata per quei pacchetti che si preferisce siano scartati
1183 più facilmente in caso di congestione.
1184
1185
1186 \section{Sicurezza a livello IP}
1187 \label{sec:security}
1188
1189 La attuale implementazione di Internet presenta numerosi problemi di
1190 sicurezza, in particolare i dati presenti nelle intestazioni dei vari
1191 protocolli sono assunti essere corretti, il che da adito alla possibilità di
1192 varie tipologie di attacco forgiando pacchetti false, inoltre tutti questi
1193 dati passano in chiaro sulla rete e sono esposti all'osservazione di chiunque
1194 si trovi in mezzo.
1195
1196 Con IPv4 non è possibile realizzare un meccanismo di autenticazione e
1197 riservatezza a un livello inferiore al primo (quello di applicazione), con
1198 IPv6 è stato progettata la possibilità di intervenire al livello di rete (il
1199 terzo) prevedendo due apposite estensioni che possono essere usate per fornire
1200 livelli di sicurezza a seconda degli utenti. La codifica generale di questa
1201 architettura è riportata nell'RFC 2401.
1202
1203 Il meccanismo in sostanza si basa su due estensioni:
1204 \begin{itemize}
1205 \item una intestazione di sicurezza (\textit{authentication header}) che
1206   garantisce al destinatario l'autenticità del pacchetto
1207 \item un carico di sicurezza (\textit{Encrypted Security Payload}) che
1208   assicura che solo il legittimo ricevente può leggere il pacchetto.
1209 \end{itemize}
1210
1211 Perché tutto questo funzioni le stazioni sorgente e destinazione devono
1212 usare una stessa chiave crittografica e gli stessi algoritmi, l'insieme degli
1213 accordi fra le due stazioni per concordare chiavi e algoritmi usati va sotto
1214 il nome di associazione di sicurezza.
1215
1216 I pacchetti autenticati e crittografati portano un indice dei parametri di
1217 sicurezza (SPI, \textit{Security Parameter Index}) che viene negoziato prima
1218 di ogni comunicazione ed è definito dalla stazione sorgente. Nel caso di
1219 multicast dovrà essere lo stesso per tutte le stazioni del gruppo.
1220
1221 \subsection{Autenticazione}
1222 \label{sec:auth} 
1223
1224 Il primo meccanismo di sicurezza è quello dell'intestazione di autenticazione
1225 (\textit{authentication header}) che fornisce l'autenticazione e il controllo
1226 di integrità (ma senza riservatezza) dei pacchetti IP.
1227
1228 L'intestazione di autenticazione ha il formato descritto in
1229 \tabref{tab:autent_head}: il campo \textit{Next Header} indica l'intestazione
1230 successiva, con gli stessi valori del campo omonimo nell'intestazione
1231 principale di IPv6, il campo \textit{Length} indica la lunghezza
1232 dell'intestazione di autenticazione in numero di parole a 32 bit, il campo
1233 riservato deve essere posto a zero, seguono poi l'indice di sicurezza,
1234 stabilito nella associazione di sicurezza, e un numero di sequenza che la
1235 stazione sorgente deve incrementare di pacchetto in pacchetto.
1236
1237 Completano l'intestazione i dati di autenticazione che contengono un valore di
1238 controllo di integrità (ICV, \textit{Integrity Check Value}), che deve essere
1239 di dimensione pari a un multiplo intero di 32 bit e può contenere un padding
1240 per allineare l'intestazione a 64 bit. Tutti gli algoritmi di autenticazione
1241 devono provvedere questa capacità.
1242
1243 \renewcommand\arraystretch{1.2}
1244 \begin{table}[htb]
1245   \footnotesize
1246   \begin{center}
1247     \begin{tabular}{@{\vrule}p{24mm}@{\vrule}p{24mm}
1248         @{\vrule}p{48mm}@{\vrule} }
1249     \multicolumn{3}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
1250     \hline
1251     \centering Next Header&\centering Length&
1252     \centering Reserved \tabularnewline
1253     \hline
1254     \multicolumn{3}{@{\vrule}c@{\vrule}}
1255     {\centering Security Parameter Index (SPI)}\\  
1256     \hline
1257     \multicolumn{3}{@{\vrule}c@{\vrule}}
1258     {\centering Sequence Number}\\  
1259     \hline
1260     \multicolumn{3}{@{\vrule}c@{\vrule}}{} \\
1261     \multicolumn{3}{@{\vrule}c@{\vrule}}{Authentication Data} \\
1262     \multicolumn{3}{@{\vrule}c@{\vrule}}
1263     {\centering ... } \\
1264     \multicolumn{3}{@{\vrule}c@{\vrule}}{} \\
1265     \hline
1266     \end{tabular}
1267     \caption{Formato dell'intestazione dell'estensione di autenticazione}
1268     \label{tab:autent_estens}
1269   \end{center}
1270 \end{table}
1271 \renewcommand\arraystretch{1} %default
1272
1273
1274 L'intestazione di autenticazione può essere impiegata in due modi diverse
1275 modalità: modalità trasporto e modalità tunnel.
1276
1277 La modalità trasporto è utilizzabile solo per comunicazioni fra stazioni
1278 singole che supportino l'autenticazione. In questo caso l'intestazione di
1279 autenticazione è inserita dopo tutte le altre intestazioni di estensione
1280 eccezion fatta per la \textit{Destination Option} che può comparire sia
1281 prima che dopo. 
1282
1283 \begin{table}[htb]
1284   \footnotesize
1285   \begin{center}
1286     \begin{tabular*}{90mm}{|c|c|c|c|c|c|}
1287     \hline
1288     & & & & & \\
1289     IP Head &
1290     \parbox[c]{28mm}{hop by hop, dest., \\
1291       routing, fragment}& AH & 
1292     dest.opt & TCP & data \\
1293     & & & & & \\
1294     \hline
1295     \end{tabular*}
1296     \caption{Formato dell'intestazione dell'estensione di autenticazione}
1297     \label{tab:autent_head}
1298   \end{center}
1299 \end{table}
1300 \begin{center}
1301     \begin{pspicture}(0,0)(9,0.8)
1302       \pnode(0,0){A}
1303       \pnode(9,0.4){B}
1304       \ncline{<->}{A}{B}\ncput{copertura dell'autenticazione}
1305     \end{pspicture}
1306 \end{center}
1307
1308 La modalità tunnel può essere utilizzata sia per comunicazioni fra stazioni
1309 singole che con un gateway di sicurezza; in questa modalità 
1310
1311
1312 L'intestazione di autenticazione è una intestazione di estensione inserita
1313 dopo l'intestazione principale e prima del carico dei dati. La sua presenza
1314 non ha perciò alcuna influenza sui livelli superiori dei protocolli di
1315 trasmissione come il TCP.
1316
1317
1318 La procedura di autenticazione cerca di garantire l'autenticità del pacchetto
1319 nella massima estensione possibile, ma dato che alcuni campi dell'intestazione
1320 di IP possono variare in maniera impredicibile alla sorgente, il loro valore
1321 non può essere protetto dall'autenticazione.
1322
1323 Il calcolo dei dati di autenticazione viene effettuato alla sorgente su una
1324 versione speciale del pacchetto in cui il numero di salti nell'intestazione
1325 principale è settato a zero, così come le opzioni che possono essere
1326 modificate nella trasmissione, e l'intestazione di routing (se usata) è posta
1327 ai valori che deve avere all'arrivo.
1328
1329 L'estensione è indipendente dall'algoritmo particolare, e il protocollo è
1330 ancora in fase di definizione; attualmente è stato suggerito l'uso di una
1331 modifica dell'MD5 chiamata \textit{keyed MD5} che combina alla codifica anche
1332 una chiave che viene inserita all'inizio e alla fine degli altri campi.
1333
1334
1335 \subsection{Riservatezza}
1336 \label{sec:ecry}
1337
1338 Per garantire una trasmissione riservata dei dati, è stata previsto la
1339 possibilità di trasmettere pacchetti con i dati criptati: il cosiddetto ESP,
1340 \textit{Encripted Security Payload}. Questo viene realizzato usando con una
1341 apposita opzione che deve essere sempre l'ultima delle intestazioni di
1342 estensione; ad essa segue il carico del pacchetto che viene criptato.
1343
1344 Un pacchetto crittografato pertanto viene ad avere una struttura del tipo di
1345 quella mostrata in Tab~.\ref{tab:criptopack}, tutti i campi sono in chiaro
1346 fino al vettore di inizializzazione, il resto è crittografato.
1347
1348 \renewcommand\arraystretch{1.2}
1349 \begin{table}[htb]
1350   \footnotesize
1351   \begin{center}
1352     \begin{tabular}{@{\vrule}p{24mm}@{\vrule}p{24mm}@{\vrule}
1353         p{24mm}@{\vrule}p{24mm}@{\vrule}}
1354     \multicolumn{4}{@{}c@{}}{0\hfill 15 16\hfill 31}\\
1355     \hline
1356     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1357     \multicolumn{4}{@{\vrule}c@{\vrule}}{Intestazione Principale}\\
1358     \multicolumn{4}{@{\vrule}c@{\vrule}}{...}\\
1359     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1360     \hline
1361     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1362     \multicolumn{4}{@{\vrule}c@{\vrule}}{Intestazioni di estensione}\\
1363     \multicolumn{4}{@{\vrule}c@{\vrule}}{...}\\
1364     \multicolumn{4}{@{\vrule}c@{\vrule}}{}\\
1365     \hline
1366     \multicolumn{4}{@{\vrule}c@{\vrule}}
1367     {\centering Security Parameter Index}\\  
1368     \hline
1369     \multicolumn{4}{@{\vrule}c@{\vrule}}
1370     {\centering Vettore}\\  
1371     \multicolumn{4}{@{\vrule}c@{\vrule}}
1372     {\centering di inizializzazione}\\  
1373     \hline   
1374     \multicolumn{4}{@{\vrule}c@{\vrule}}{carico}\\ 
1375     \multicolumn{4}{@{\vrule}c@{\vrule}}{crittografato}\\ 
1376     \multicolumn{4}{@{\vrule}c@{\vrule}}{...}\\
1377     \cline{2-4}
1378     & \multicolumn{3}{c@{\vrule}}{}\\
1379     \cline{1-1}
1380     \cline{3-4}
1381     \multicolumn{1}{@{\vrule}c}{}&
1382     \centering \raisebox{2mm}[0pt][0pt]{riempimento} &
1383     \centering lunghezza pad &\centering tipo carico\tabularnewline
1384     \hline
1385     \end{tabular}
1386     \caption{Schema di pacchetto crittografato}
1387     \label{tab:criptopack}
1388   \end{center}
1389 \end{table}
1390 \renewcommand\arraystretch{1} %default
1391
1392
1393 \section{Autoconfigurazione}
1394 \label{sec:IP_ipv6_autoconf}
1395
1396 Una delle caratteristiche salienti di IPv6 è quella dell'autoconfigurazione,
1397 il protocollo infatti fornisce la possibilità ad un nodo di scoprire
1398 automaticamente il suo indirizzo acquisendo i parametri necessari per potersi
1399 connettere a internet. 
1400
1401 L'autoconfigurazione sfrutta gli indirizzi link-local; qualora sul nodo sia
1402 presente una scheda di rete che supporta lo standard IEEE802 (ethernet) questo
1403 garantisce la presenza di un indirizzo fisico a 48 bit unico; pertanto il nodo
1404 può assumere automaticamente senza pericoli di collisione l'indirizzo
1405 link-local \texttt{FE80::xxxx:xxxx:xxxx} dove \texttt{xxxx:xxxx:xxxx} è
1406 l'indirizzo hardware della scheda di rete. 
1407
1408 Nel caso in cui non sia presente una scheda che supporta lo standard IEEE802
1409 allora il nodo assumerà ugualmente un indirizzo link-local della forma
1410 precedente, ma il valore di \texttt{xxxx:xxxx:xxxx} sarà generato
1411 casualmente; in questo caso la probabilità di collisione è di 1 su 300
1412 milioni. In ogni caso per prevenire questo rischio il nodo invierà un
1413 messaggio ICMP \textit{Solicitation} all'indirizzo scelto attendendo un certo
1414 lasso di tempo; in caso di risposta l'indirizzo è duplicato e il
1415 procedimento dovrà essere ripetuto con un nuovo indirizzo (o interrotto
1416 richiedendo assistenza).
1417
1418 Una volta ottenuto un indirizzo locale valido diventa possibile per il nodo
1419 comunicare con la rete locale; sono pertanto previste due modalità di
1420 autoconfigurazione, descritte nelle seguenti sezioni. In ogni caso
1421 l'indirizzo link-local resta valido.
1422
1423 \subsection{Autoconfigurazione stateless}
1424 \label{sec:stateless}
1425
1426 Questa è la forma più semplice di autoconfigurazione, possibile quando
1427 l'indirizzo globale può essere ricavato dall'indirizzo link-local cambiando
1428 semplicemente il prefisso a quello assegnato dal provider per ottenere un
1429 indirizzo globale.
1430
1431 La procedura di configurazione è la seguente: all'avvio tutti i nodi IPv6
1432 iniziano si devono aggregare al gruppo multicast \textit{all-nodes}
1433 programmando la propria interfaccia per ricevere i messaggi dall'indirizzo
1434 multicast \texttt{FF02::1} (vedi \secref{sec:IP_ipv6_multicast}); a questo
1435 punto devono inviare un messaggio ICMP \textit{Router solicitation} a tutti i
1436 router locali usando l'indirizzo multicast \texttt{FF02::2} usando come
1437 sorgente il proprio indirizzo link-local.
1438
1439 Il router risponderà con un messaggio ICMP \textit{Router Advertisement} che
1440 fornisce il prefisso e la validità nel tempo del medesimo, questo tipo di
1441 messaggio può essere trasmesso anche a intervalli regolari. Il messaggio
1442 contiene anche l'informazione che autorizza un nodo a autocostruire
1443 l'indirizzo, nel qual caso, se il prefisso unito all'indirizzo link-local non
1444 supera i 128 bit, la stazione ottiene automaticamente il suo indirizzo
1445 globale.
1446
1447 \subsection{Autoconfigurazione stateful}
1448 \label{sec:stateful}
1449
1450 Benché estremamente semplice l'autoconfigurazione stateless presenta alcuni
1451 problemi; il primo è che l'uso degli indirizzi delle schede di rete è
1452 molto inefficiente; nel caso in cui ci siano esigenze di creare una gerarchia
1453 strutturata su parecchi livelli possono non restare 48~bit per l'indirizzo
1454 della singola stazione; il secondo problema è di sicurezza, dato che basta
1455 introdurre in una rete una stazione autoconfigurante per ottenere un accesso
1456 legale.
1457
1458 Per questi motivi è previsto anche un protocollo stateful basato su un
1459 server che offra una versione IPv6 del DHCP; un apposito gruppo di multicast
1460 \texttt{FF02::1:0} è stato riservato per questi server; in questo caso il
1461 nodo interrogherà il server su questo indirizzo di multicast con l'indirizzo
1462 link-local e riceverà un indirizzo unicast globale.
1463
1464
1465
1466 %%% Local Variables: 
1467 %%% mode: latex
1468 %%% TeX-master: "gapil"
1469 %%% End: