Inizio revisione capitolo 6.
[gapil.git] / ipc.tex
1 %% ipc.tex
2 %%
3 %% Copyright (C) 2000-2012 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{L'intercomunicazione fra processi}
13 \label{cha:IPC}
14
15
16 Uno degli aspetti fondamentali della programmazione in un sistema unix-like è
17 la comunicazione fra processi. In questo capitolo affronteremo solo i
18 meccanismi più elementari che permettono di mettere in comunicazione processi
19 diversi, come quelli tradizionali che coinvolgono \textit{pipe} e
20 \textit{fifo} e i meccanismi di intercomunicazione di System V e quelli POSIX.
21
22 Tralasceremo invece tutte le problematiche relative alla comunicazione
23 attraverso la rete (e le relative interfacce) che saranno affrontate in
24 dettaglio in un secondo tempo.  Non affronteremo neanche meccanismi più
25 complessi ed evoluti come le RPC (\textit{Remote Procedure Calls}) e CORBA
26 (\textit{Common Object Request Brocker Architecture}) che in genere sono
27 implementati con un ulteriore livello sopra i meccanismi elementari.
28
29
30 \section{L'intercomunicazione fra processi tradizionale}
31 \label{sec:ipc_unix}
32
33 Il primo meccanismo di comunicazione fra processi introdotto nei sistemi Unix,
34 è quello delle cosiddette \textit{pipe}; esse costituiscono una delle
35 caratteristiche peculiari del sistema, in particolar modo dell'interfaccia a
36 linea di comando. In questa sezione descriveremo le sue basi, le funzioni che
37 ne gestiscono l'uso e le varie forme in cui si è evoluto.
38
39
40 \subsection{Le \textit{pipe} standard}
41 \label{sec:ipc_pipes}
42
43 Le \textit{pipe} nascono sostanzialmente con Unix, e sono il primo, e tuttora
44 uno dei più usati, meccanismi di comunicazione fra processi. Si tratta in
45 sostanza di una coppia di file descriptor\footnote{si tenga presente che
46   le pipe sono oggetti creati dal kernel e non risiedono su disco.} connessi
47 fra di loro in modo che se quanto scrive su di uno si può rileggere
48 dall'altro. Si viene così a costituire un canale di comunicazione tramite i
49 due file descriptor, nella forma di un \textsl{tubo} (da cui il nome)
50 attraverso cui fluiscono i dati.
51
52 La funzione che permette di creare questa speciale coppia di file descriptor
53 associati ad una \textit{pipe} è appunto \funcd{pipe}, ed il suo prototipo è:
54 \begin{prototype}{unistd.h}
55 {int pipe(int filedes[2])} 
56   
57 Crea una coppia di file descriptor associati ad una \textit{pipe}.
58   
59   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
60     errore, nel qual caso \var{errno} potrà assumere i valori \errval{EMFILE},
61     \errval{ENFILE} e \errval{EFAULT}.}
62 \end{prototype}
63
64 La funzione restituisce la coppia di file descriptor nel vettore
65 \param{filedes}; il primo è aperto in lettura ed il secondo in scrittura. Come
66 accennato concetto di funzionamento di una pipe è semplice: quello che si
67 scrive nel file descriptor aperto in scrittura viene ripresentato tale e quale
68 nel file descriptor aperto in lettura. I file descriptor infatti non sono
69 connessi a nessun file reale, ma, come accennato in
70 sez.~\ref{sec:file_sendfile_splice}, ad un buffer nel kernel, la cui
71 dimensione è specificata dal parametro di sistema \const{PIPE\_BUF}, (vedi
72 sez.~\ref{sec:sys_file_limits}). Lo schema di funzionamento di una pipe è
73 illustrato in fig.~\ref{fig:ipc_pipe_singular}, in cui sono illustrati i due
74 capi della pipe, associati a ciascun file descriptor, con le frecce che
75 indicano la direzione del flusso dei dati.
76
77 % TODO: la dimensione è cambiata a 64k (vedi man 7 pipe) e può essere
78 % modificata con F_SETPIPE_SZ dal 2.6.35 (vedi fcntl)
79
80 \begin{figure}[!htb]
81   \centering
82   \includegraphics[height=5cm]{img/pipe}
83   \caption{Schema della struttura di una pipe.}
84   \label{fig:ipc_pipe_singular}
85 \end{figure}
86
87 Chiaramente creare una pipe all'interno di un singolo processo non serve a
88 niente; se però ricordiamo quanto esposto in sez.~\ref{sec:file_shared_access}
89 riguardo al comportamento dei file descriptor nei processi figli, è immediato
90 capire come una pipe possa diventare un meccanismo di intercomunicazione. Un
91 processo figlio infatti condivide gli stessi file descriptor del padre,
92 compresi quelli associati ad una pipe (secondo la situazione illustrata in
93 fig.~\ref{fig:ipc_pipe_fork}). In questo modo se uno dei processi scrive su un
94 capo della pipe, l'altro può leggere.
95
96 \begin{figure}[!htb]
97   \centering
98   \includegraphics[height=5cm]{img/pipefork}
99   \caption{Schema dei collegamenti ad una pipe, condivisi fra processo padre e
100     figlio dopo l'esecuzione \func{fork}.}
101   \label{fig:ipc_pipe_fork}
102 \end{figure}
103
104 Tutto ciò ci mostra come sia immediato realizzare un meccanismo di
105 comunicazione fra processi attraverso una pipe, utilizzando le proprietà
106 ordinarie dei file, ma ci mostra anche qual è il principale\footnote{Stevens
107   in \cite{APUE} riporta come limite anche il fatto che la comunicazione è
108   unidirezionale, ma in realtà questo è un limite facilmente superabile usando
109   una coppia di pipe.} limite nell'uso delle pipe. È necessario infatti che i
110 processi possano condividere i file descriptor della pipe, e per questo essi
111 devono comunque essere \textsl{parenti} (dall'inglese \textit{siblings}), cioè
112 o derivare da uno stesso processo padre in cui è avvenuta la creazione della
113 pipe, o, più comunemente, essere nella relazione padre/figlio.
114
115 A differenza di quanto avviene con i file normali, la lettura da una pipe può
116 essere bloccante (qualora non siano presenti dati), inoltre se si legge da una
117 pipe il cui capo in scrittura è stato chiuso, si avrà la ricezione di un EOF
118 (vale a dire che la funzione \func{read} ritornerà restituendo 0).  Se invece
119 si esegue una scrittura su una pipe il cui capo in lettura non è aperto il
120 processo riceverà il segnale \signal{SIGPIPE}, e la funzione di scrittura
121 restituirà un errore di \errcode{EPIPE} (al ritorno del gestore, o qualora il
122 segnale sia ignorato o bloccato).
123
124 La dimensione del buffer della pipe (\const{PIPE\_BUF}) ci dà inoltre un'altra
125 importante informazione riguardo il comportamento delle operazioni di lettura
126 e scrittura su di una pipe; esse infatti sono atomiche fintanto che la
127 quantità di dati da scrivere non supera questa dimensione. Qualora ad esempio
128 si effettui una scrittura di una quantità di dati superiore l'operazione verrà
129 effettuata in più riprese, consentendo l'intromissione di scritture effettuate
130 da altri processi.
131
132
133 \subsection{Un esempio dell'uso delle pipe}
134 \label{sec:ipc_pipe_use}
135
136 Per capire meglio il funzionamento delle pipe faremo un esempio di quello che
137 è il loro uso più comune, analogo a quello effettuato della shell, e che
138 consiste nell'inviare l'output di un processo (lo standard output) sull'input
139 di un altro. Realizzeremo il programma di esempio nella forma di un
140 \textit{CGI}\footnote{un CGI (\textit{Common Gateway Interface}) è un
141   programma che permette la creazione dinamica di un oggetto da inserire
142   all'interno di una pagina HTML.}  per Apache, che genera una immagine JPEG
143 di un codice a barre, specificato come argomento in ingresso.
144
145 Un programma che deve essere eseguito come \textit{CGI} deve rispondere a
146 delle caratteristiche specifiche, esso infatti non viene lanciato da una
147 shell, ma dallo stesso web server, alla richiesta di una specifica URL, che di
148 solito ha la forma:
149 \begin{verbatim}
150     http://www.sito.it/cgi-bin/programma?argomento
151 \end{verbatim}
152 ed il risultato dell'elaborazione deve essere presentato (con una intestazione
153 che ne descrive il mime-type) sullo standard output, in modo che il web-server
154 possa reinviarlo al browser che ha effettuato la richiesta, che in questo modo
155 è in grado di visualizzarlo opportunamente.
156
157 Per realizzare quanto voluto useremo in sequenza i programmi \cmd{barcode} e
158 \cmd{gs}, il primo infatti è in grado di generare immagini PostScript di
159 codici a barre corrispondenti ad una qualunque stringa, mentre il secondo
160 serve per poter effettuare la conversione della stessa immagine in formato
161 JPEG. Usando una pipe potremo inviare l'output del primo sull'input del
162 secondo, secondo lo schema mostrato in fig.~\ref{fig:ipc_pipe_use}, in cui la
163 direzione del flusso dei dati è data dalle frecce continue.
164
165 \begin{figure}[!htb]
166   \centering
167   \includegraphics[height=5cm]{img/pipeuse}
168   \caption{Schema dell'uso di una pipe come mezzo di comunicazione fra
169     due processi attraverso l'esecuzione una \func{fork} e la chiusura dei
170     capi non utilizzati.}
171   \label{fig:ipc_pipe_use}
172 \end{figure}
173
174 Si potrebbe obiettare che sarebbe molto più semplice salvare il risultato
175 intermedio su un file temporaneo. Questo però non tiene conto del fatto che un
176 \textit{CGI} deve poter gestire più richieste in concorrenza, e si avrebbe una
177 evidente \itindex{race~condition} \textit{race condition} in caso di accesso
178 simultaneo a detto file.\footnote{il problema potrebbe essere superato
179   determinando in anticipo un nome appropriato per il file temporaneo, che
180   verrebbe utilizzato dai vari sotto-processi, e cancellato alla fine della
181   loro esecuzione; ma a questo punto le cose non sarebbero più tanto
182   semplici.}  L'uso di una pipe invece permette di risolvere il problema in
183 maniera semplice ed elegante, oltre ad essere molto più efficiente, dato che
184 non si deve scrivere su disco.
185
186 Il programma ci servirà anche come esempio dell'uso delle funzioni di
187 duplicazione dei file descriptor che abbiamo trattato in
188 sez.~\ref{sec:file_dup}, in particolare di \func{dup2}. È attraverso queste
189 funzioni infatti che è possibile dirottare gli stream standard dei processi
190 (che abbiamo visto in tab.~\ref{tab:file_std_files} e
191 sez.~\ref{sec:file_stream}) sulla pipe. In fig.~\ref{fig:ipc_barcodepage_code}
192 abbiamo riportato il corpo del programma, il cui codice completo è disponibile
193 nel file \file{BarCodePage.c} che si trova nella directory dei sorgenti.
194
195 \begin{figure}[!htbp]
196   \footnotesize \centering
197   \begin{minipage}[c]{\codesamplewidth}
198     \includecodesample{listati/BarCodePage.c}
199   \end{minipage} 
200   \normalsize 
201   \caption{Sezione principale del codice del \textit{CGI} 
202     \file{BarCodePage.c}.}
203   \label{fig:ipc_barcodepage_code}
204 \end{figure}
205
206 La prima operazione del programma (\texttt{\small 4--12}) è quella di creare
207 le due pipe che serviranno per la comunicazione fra i due comandi utilizzati
208 per produrre il codice a barre; si ha cura di controllare la riuscita della
209 chiamata, inviando in caso di errore un messaggio invece dell'immagine
210 richiesta.\footnote{la funzione \func{WriteMess} non è riportata in
211   fig.~\ref{fig:ipc_barcodepage_code}; essa si incarica semplicemente di
212   formattare l'uscita alla maniera dei CGI, aggiungendo l'opportuno
213   \textit{mime type}, e formattando il messaggio in HTML, in modo che
214   quest'ultimo possa essere visualizzato correttamente da un browser.}
215
216 Una volta create le pipe, il programma può creare (\texttt{\small 13-17}) il
217 primo processo figlio, che si incaricherà (\texttt{\small 19--25}) di eseguire
218 \cmd{barcode}. Quest'ultimo legge dallo standard input una stringa di
219 caratteri, la converte nell'immagine PostScript del codice a barre ad essa
220 corrispondente, e poi scrive il risultato direttamente sullo standard output.
221
222 Per poter utilizzare queste caratteristiche prima di eseguire \cmd{barcode} si
223 chiude (\texttt{\small 20}) il capo aperto in scrittura della prima pipe, e se
224 ne collega (\texttt{\small 21}) il capo in lettura allo standard input, usando
225 \func{dup2}. Si ricordi che invocando \func{dup2} il secondo file, qualora
226 risulti aperto, viene, come nel caso corrente, chiuso prima di effettuare la
227 duplicazione. Allo stesso modo, dato che \cmd{barcode} scrive l'immagine
228 PostScript del codice a barre sullo standard output, per poter effettuare una
229 ulteriore redirezione il capo in lettura della seconda pipe viene chiuso
230 (\texttt{\small 22}) mentre il capo in scrittura viene collegato allo standard
231 output (\texttt{\small 23}).
232
233 In questo modo all'esecuzione (\texttt{\small 25}) di \cmd{barcode} (cui si
234 passa in \var{size} la dimensione della pagina per l'immagine) quest'ultimo
235 leggerà dalla prima pipe la stringa da codificare che gli sarà inviata dal
236 padre, e scriverà l'immagine PostScript del codice a barre sulla seconda.
237
238 Al contempo una volta lanciato il primo figlio, il processo padre prima chiude
239 (\texttt{\small 26}) il capo inutilizzato della prima pipe (quello in input) e
240 poi scrive (\texttt{\small 27}) la stringa da convertire sul capo in output,
241 così che \cmd{barcode} possa riceverla dallo standard input. A questo punto
242 l'uso della prima pipe da parte del padre è finito ed essa può essere
243 definitivamente chiusa (\texttt{\small 28}), si attende poi (\texttt{\small
244   29}) che l'esecuzione di \cmd{barcode} sia completata.
245
246 Alla conclusione della sua esecuzione \cmd{barcode} avrà inviato l'immagine
247 PostScript del codice a barre sul capo in scrittura della seconda pipe; a
248 questo punto si può eseguire la seconda conversione, da PS a JPEG, usando il
249 programma \cmd{gs}. Per questo si crea (\texttt{\small 30--34}) un secondo
250 processo figlio, che poi (\texttt{\small 35--42}) eseguirà questo programma
251 leggendo l'immagine PostScript creata da \cmd{barcode} dallo standard input,
252 per convertirla in JPEG.
253
254 Per fare tutto ciò anzitutto si chiude (\texttt{\small 37}) il capo in
255 scrittura della seconda pipe, e se ne collega (\texttt{\small 38}) il capo in
256 lettura allo standard input. Per poter formattare l'output del programma in
257 maniera utilizzabile da un browser, si provvede anche \texttt{\small 40}) alla
258 scrittura dell'apposita stringa di identificazione del mime-type in testa allo
259 standard output. A questo punto si può invocare \texttt{\small 41}) \cmd{gs},
260 provvedendo gli appositi switch che consentono di leggere il file da
261 convertire dallo standard input e di inviare la conversione sullo standard
262 output.
263
264 Per completare le operazioni il processo padre chiude (\texttt{\small 44}) il
265 capo in scrittura della seconda pipe, e attende la conclusione del figlio
266 (\texttt{\small 45}); a questo punto può (\texttt{\small 46}) uscire. Si tenga
267 conto che l'operazione di chiudere il capo in scrittura della seconda pipe è
268 necessaria, infatti, se non venisse chiusa, \cmd{gs}, che legge il suo
269 standard input da detta pipe, resterebbe bloccato in attesa di ulteriori dati
270 in ingresso (l'unico modo che un programma ha per sapere che l'input è
271 terminato è rilevare che lo standard input è stato chiuso), e la \func{wait}
272 non ritornerebbe.
273
274
275 \subsection{Le funzioni \func{popen} e \func{pclose}}
276 \label{sec:ipc_popen}
277
278 Come si è visto la modalità più comune di utilizzo di una pipe è quella di
279 utilizzarla per fare da tramite fra output ed input di due programmi invocati
280 in sequenza; per questo motivo lo standard POSIX.2 ha introdotto due funzioni
281 che permettono di sintetizzare queste operazioni. La prima di esse si chiama
282 \funcd{popen} ed il suo prototipo è:
283 \begin{prototype}{stdio.h}
284 {FILE *popen(const char *command, const char *type)}
285
286 Esegue il programma \param{command}, di cui, a seconda di \param{type},
287 restituisce, lo standard input o lo standard output nella pipe collegata allo
288 stream restituito come valore di ritorno.
289   
290 \bodydesc{La funzione restituisce l'indirizzo dello stream associato alla pipe
291   in caso di successo e \val{NULL} per un errore, nel qual caso \var{errno}
292   potrà assumere i valori relativi alle sottostanti invocazioni di \func{pipe}
293   e \func{fork} o \errcode{EINVAL} se \param{type} non è valido.}
294 \end{prototype}
295
296 La funzione crea una pipe, esegue una \func{fork}, ed invoca il programma
297 \param{command} attraverso la shell (in sostanza esegue \file{/bin/sh} con il
298 flag \code{-c}); l'argomento \param{type} deve essere una delle due stringhe
299 \verb|"w"| o \verb|"r"|, per indicare se la pipe sarà collegata allo standard
300 input o allo standard output del comando invocato.
301
302 La funzione restituisce il puntatore allo stream associato alla pipe creata,
303 che sarà aperto in sola lettura (e quindi associato allo standard output del
304 programma indicato) in caso si sia indicato \code{"r"}, o in sola scrittura (e
305 quindi associato allo standard input) in caso di \code{"w"}.
306
307 Lo \textit{stream} restituito da \func{popen} è identico a tutti gli effetti
308 ai \textit{file stream} visti in sez.~\ref{sec:files_std_interface}, anche se
309 è collegato ad una pipe e non ad un file, e viene sempre aperto in modalità
310 \textit{fully-buffered} (vedi sez.~\ref{sec:file_buffering}); l'unica
311 differenza con gli usuali stream è che dovrà essere chiuso dalla seconda delle
312 due nuove funzioni, \funcd{pclose}, il cui prototipo è:
313 \begin{prototype}{stdio.h}
314 {int pclose(FILE *stream)}
315
316 Chiude il file \param{stream}, restituito da una precedente \func{popen}
317 attendendo la terminazione del processo ad essa associato.
318   
319 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
320   errore; nel quel caso il valore di \var{errno} deriva dalle sottostanti
321   chiamate.}
322 \end{prototype}
323 \noindent che oltre alla chiusura dello stream si incarica anche di attendere
324 (tramite \func{wait4}) la conclusione del processo creato dalla precedente
325 \func{popen}.
326
327 Per illustrare l'uso di queste due funzioni riprendiamo il problema
328 precedente: il programma mostrato in fig.~\ref{fig:ipc_barcodepage_code} per
329 quanto funzionante, è (volutamente) codificato in maniera piuttosto complessa,
330 inoltre nella pratica sconta un problema di \cmd{gs} che non è in
331 grado\footnote{nella versione GNU Ghostscript 6.53 (2002-02-13).} di
332 riconoscere correttamente l'Encapsulated PostScript, per cui deve essere usato
333 il PostScript e tutte le volte viene generata una pagina intera, invece che
334 una immagine delle dimensioni corrispondenti al codice a barre.
335
336 Se si vuole generare una immagine di dimensioni appropriate si deve usare un
337 approccio diverso. Una possibilità sarebbe quella di ricorrere ad ulteriore
338 programma, \cmd{epstopsf}, per convertire in PDF un file EPS (che può essere
339 generato da \cmd{barcode} utilizzando lo switch \cmd{-E}).  Utilizzando un PDF
340 al posto di un EPS \cmd{gs} esegue la conversione rispettando le dimensioni
341 originarie del codice a barre e produce un JPEG di dimensioni corrette.
342
343 Questo approccio però non funziona, per via di una delle caratteristiche
344 principali delle pipe. Per poter effettuare la conversione di un PDF infatti è
345 necessario, per la struttura del formato, potersi spostare (con \func{lseek})
346 all'interno del file da convertire; se si esegue la conversione con \cmd{gs}
347 su un file regolare non ci sono problemi, una pipe però è rigidamente
348 sequenziale, e l'uso di \func{lseek} su di essa fallisce sempre con un errore
349 di \errcode{ESPIPE}, rendendo impossibile la conversione.  Questo ci dice che
350 in generale la concatenazione di vari programmi funzionerà soltanto quando
351 tutti prevedono una lettura sequenziale del loro input.
352
353 Per questo motivo si è dovuto utilizzare un procedimento diverso, eseguendo
354 prima la conversione (sempre con \cmd{gs}) del PS in un altro formato
355 intermedio, il PPM,\footnote{il \textit{Portable PixMap file format} è un
356   formato usato spesso come formato intermedio per effettuare conversioni, è
357   infatti molto facile da manipolare, dato che usa caratteri ASCII per
358   memorizzare le immagini, anche se per questo è estremamente inefficiente.}
359 dal quale poi si può ottenere un'immagine di dimensioni corrette attraverso
360 vari programmi di manipolazione (\cmd{pnmcrop}, \cmd{pnmmargin}) che può
361 essere infine trasformata in PNG (con \cmd{pnm2png}).
362
363 In questo caso però occorre eseguire in sequenza ben quattro comandi diversi,
364 inviando l'output di ciascuno all'input del successivo, per poi ottenere il
365 risultato finale sullo standard output: un caso classico di utilizzazione
366 delle pipe, in cui l'uso di \func{popen} e \func{pclose} permette di
367 semplificare notevolmente la stesura del codice.
368
369 Nel nostro caso, dato che ciascun processo deve scrivere il suo output sullo
370 standard input del successivo, occorrerà usare \func{popen} aprendo la pipe in
371 scrittura. Il codice del nuovo programma è riportato in
372 fig.~\ref{fig:ipc_barcode_code}.  Come si può notare l'ordine di invocazione
373 dei programmi è l'inverso di quello in cui ci si aspetta che vengano
374 effettivamente eseguiti. Questo non comporta nessun problema dato che la
375 lettura su una pipe è bloccante, per cui ciascun processo, per quanto lanciato
376 per primo, si bloccherà in attesa di ricevere sullo standard input il
377 risultato dell'elaborazione del precedente, benché quest'ultimo venga invocato
378 dopo.
379
380 \begin{figure}[!htbp]
381   \footnotesize \centering
382   \begin{minipage}[c]{\codesamplewidth}
383     \includecodesample{listati/BarCode.c}
384   \end{minipage} 
385   \normalsize 
386   \caption{Codice completo del \textit{CGI} \file{BarCode.c}.}
387   \label{fig:ipc_barcode_code}
388 \end{figure}
389
390 Nel nostro caso il primo passo (\texttt{\small 14}) è scrivere il mime-type
391 sullo standard output; a questo punto il processo padre non necessita più di
392 eseguire ulteriori operazioni sullo standard output e può tranquillamente
393 provvedere alla redirezione.
394
395 Dato che i vari programmi devono essere lanciati in successione, si è
396 approntato un ciclo (\texttt{\small 15--19}) che esegue le operazioni in
397 sequenza: prima crea una pipe (\texttt{\small 17}) per la scrittura eseguendo
398 il programma con \func{popen}, in modo che essa sia collegata allo standard
399 input, e poi redirige (\texttt{\small 18}) lo standard output su detta pipe.
400
401 In questo modo il primo processo ad essere invocato (che è l'ultimo della
402 catena) scriverà ancora sullo standard output del processo padre, ma i
403 successivi, a causa di questa redirezione, scriveranno sulla pipe associata
404 allo standard input del processo invocato nel ciclo precedente.
405
406 Alla fine tutto quello che resta da fare è lanciare (\texttt{\small 21}) il
407 primo processo della catena, che nel caso è \cmd{barcode}, e scrivere
408 (\texttt{\small 23}) la stringa del codice a barre sulla pipe, che è collegata
409 al suo standard input, infine si può eseguire (\texttt{\small 24--27}) un
410 ciclo che chiuda, nell'ordine inverso rispetto a quello in cui le si sono
411 create, tutte le pipe create con \func{pclose}.
412
413
414 \subsection{Le \textit{pipe} con nome, o \textit{fifo}}
415 \label{sec:ipc_named_pipe}
416
417 Come accennato in sez.~\ref{sec:ipc_pipes} il problema delle \textit{pipe} è
418 che esse possono essere utilizzate solo da processi con un progenitore comune
419 o nella relazione padre/figlio; per superare questo problema lo standard
420 POSIX.1 ha definito dei nuovi oggetti, le \textit{fifo}, che hanno le stesse
421 caratteristiche delle pipe, ma che invece di essere strutture interne del
422 kernel, visibili solo attraverso un file descriptor, sono accessibili
423 attraverso un \itindex{inode} inode che risiede sul filesystem, così che i
424 processi le possono usare senza dovere per forza essere in una relazione di
425 \textsl{parentela}.
426
427 Utilizzando una \textit{fifo} tutti i dati passeranno, come per le pipe,
428 attraverso un apposito buffer nel kernel, senza transitare dal filesystem;
429 \itindex{inode} l'inode allocato sul filesystem serve infatti solo a fornire un
430 punto di riferimento per i processi, che permetta loro di accedere alla stessa
431 fifo; il comportamento delle funzioni di lettura e scrittura è identico a
432 quello illustrato per le pipe in sez.~\ref{sec:ipc_pipes}.
433
434 Abbiamo già visto in sez.~\ref{sec:file_mknod} le funzioni \func{mknod} e
435 \func{mkfifo} che permettono di creare una fifo; per utilizzarne una un
436 processo non avrà che da aprire il relativo \index{file!speciali} file
437 speciale o in lettura o scrittura; nel primo caso sarà collegato al capo di
438 uscita della fifo, e dovrà leggere, nel secondo al capo di ingresso, e dovrà
439 scrivere.
440
441 Il kernel crea una singola pipe per ciascuna fifo che sia stata aperta, che può
442 essere acceduta contemporaneamente da più processi, sia in lettura che in
443 scrittura. Dato che per funzionare deve essere aperta in entrambe le
444 direzioni, per una fifo di norma la funzione \func{open} si blocca se viene
445 eseguita quando l'altro capo non è aperto.
446
447 Le fifo però possono essere anche aperte in modalità \textsl{non-bloccante},
448 nel qual caso l'apertura del capo in lettura avrà successo solo quando anche
449 l'altro capo è aperto, mentre l'apertura del capo in scrittura restituirà
450 l'errore di \errcode{ENXIO} fintanto che non verrà aperto il capo in lettura.
451
452 In Linux è possibile aprire le fifo anche in lettura/scrittura,\footnote{lo
453   standard POSIX lascia indefinito il comportamento in questo caso.}
454 operazione che avrà sempre successo immediato qualunque sia la modalità di
455 apertura (bloccante e non bloccante); questo può essere utilizzato per aprire
456 comunque una fifo in scrittura anche se non ci sono ancora processi il
457 lettura; è possibile anche usare la fifo all'interno di un solo processo, nel
458 qual caso però occorre stare molto attenti alla possibili situazioni di
459 stallo.\footnote{se si cerca di leggere da una fifo che non contiene dati si
460   avrà un \itindex{deadlock} deadlock immediato, dato che il processo si
461   blocca e non potrà quindi mai eseguire le funzioni di scrittura.}
462
463 Per la loro caratteristica di essere accessibili attraverso il filesystem, è
464 piuttosto frequente l'utilizzo di una fifo come canale di comunicazione nelle
465 situazioni un processo deve ricevere informazioni da altri. In questo caso è
466 fondamentale che le operazioni di scrittura siano atomiche; per questo si deve
467 sempre tenere presente che questo è vero soltanto fintanto che non si supera
468 il limite delle dimensioni di \const{PIPE\_BUF} (si ricordi quanto detto in
469 sez.~\ref{sec:ipc_pipes}).
470
471 A parte il caso precedente, che resta probabilmente il più comune, Stevens
472 riporta in \cite{APUE} altre due casistiche principali per l'uso delle fifo:
473 \begin{itemize}
474 \item Da parte dei comandi di shell, per evitare la creazione di file
475   temporanei quando si devono inviare i dati di uscita di un processo
476   sull'input di parecchi altri (attraverso l'uso del comando \cmd{tee}).
477   
478 \item Come canale di comunicazione fra client ed server (il modello
479   \textit{client-server} è illustrato in sez.~\ref{sec:net_cliserv}).
480 \end{itemize}
481
482 Nel primo caso quello che si fa è creare tante fifo, da usare come standard
483 input, quanti sono i processi a cui i vogliono inviare i dati, questi ultimi
484 saranno stati posti in esecuzione ridirigendo lo standard input dalle fifo, si
485 potrà poi eseguire il processo che fornisce l'output replicando quest'ultimo,
486 con il comando \cmd{tee}, sulle varie fifo.
487
488 Il secondo caso è relativamente semplice qualora si debba comunicare con un
489 processo alla volta (nel qual caso basta usare due fifo, una per leggere ed
490 una per scrivere), le cose diventano invece molto più complesse quando si
491 vuole effettuare una comunicazione fra il server ed un numero imprecisato di
492 client; se il primo infatti può ricevere le richieste attraverso una fifo
493 ``\textsl{nota}'', per le risposte non si può fare altrettanto, dato che, per
494 la struttura sequenziale delle fifo, i client dovrebbero sapere, prima di
495 leggerli, quando i dati inviati sono destinati a loro.
496
497 Per risolvere questo problema, si può usare un'architettura come quella
498 illustrata in fig.~\ref{fig:ipc_fifo_server_arch} in cui i client inviano le
499 richieste al server su una fifo nota mentre le risposte vengono reinviate dal
500 server a ciascuno di essi su una fifo temporanea creata per l'occasione.
501
502 \begin{figure}[!htb]
503   \centering
504   \includegraphics[height=9cm]{img/fifoserver}
505   \caption{Schema dell'utilizzo delle fifo nella realizzazione di una
506   architettura di comunicazione client/server.}
507   \label{fig:ipc_fifo_server_arch}
508 \end{figure}
509
510 Come esempio di uso questa architettura e dell'uso delle fifo, abbiamo scritto
511 un server di \textit{fortunes}, che restituisce, alle richieste di un client,
512 un detto a caso estratto da un insieme di frasi; sia il numero delle frasi
513 dell'insieme, che i file da cui esse vengono lette all'avvio, sono importabili
514 da riga di comando. Il corpo principale del server è riportato in
515 fig.~\ref{fig:ipc_fifo_server}, dove si è tralasciata la parte che tratta la
516 gestione delle opzioni a riga di comando, che effettua il settaggio delle
517 variabili \var{fortunefilename}, che indica il file da cui leggere le frasi,
518 ed \var{n}, che indica il numero di frasi tenute in memoria, ad un valore
519 diverso da quelli preimpostati. Il codice completo è nel file
520 \file{FortuneServer.c}.
521
522 \begin{figure}[!htbp]
523   \footnotesize \centering
524   \begin{minipage}[c]{\codesamplewidth}
525     \includecodesample{listati/FortuneServer.c}
526   \end{minipage} 
527   \normalsize 
528   \caption{Sezione principale del codice del server di \textit{fortunes}
529     basato sulle fifo.}
530   \label{fig:ipc_fifo_server}
531 \end{figure}
532
533 Il server richiede (\texttt{\small 12}) che sia stata impostata una dimensione
534 dell'insieme delle frasi non nulla, dato che l'inizializzazione del vettore
535 \var{fortune} avviene solo quando questa dimensione viene specificata, la
536 presenza di un valore nullo provoca l'uscita dal programma attraverso la
537 funzione (non riportata) che ne stampa le modalità d'uso.  Dopo di che
538 installa (\texttt{\small 13--15}) la funzione che gestisce i segnali di
539 interruzione (anche questa non è riportata in fig.~\ref{fig:ipc_fifo_server})
540 che si limita a rimuovere dal filesystem la fifo usata dal server per
541 comunicare.
542
543 Terminata l'inizializzazione (\texttt{\small 16}) si effettua la chiamata alla
544 funzione \code{FortuneParse} che legge dal file specificato in
545 \var{fortunefilename} le prime \var{n} frasi e le memorizza (allocando
546 dinamicamente la memoria necessaria) nel vettore di puntatori \var{fortune}.
547 Anche il codice della funzione non è riportato, in quanto non direttamente
548 attinente allo scopo dell'esempio.
549
550 Il passo successivo (\texttt{\small 17--22}) è quello di creare con
551 \func{mkfifo} la fifo nota sulla quale il server ascolterà le richieste,
552 qualora si riscontri un errore il server uscirà (escludendo ovviamente il caso
553 in cui la funzione \func{mkfifo} fallisce per la precedente esistenza della
554 fifo).
555
556 Una volta che si è certi che la fifo di ascolto esiste la procedura di
557 inizializzazione è completata. A questo punto si può chiamare (\texttt{\small
558   23}) la funzione \func{daemon} per far proseguire l'esecuzione del programma
559 in background come demone.  Si può quindi procedere (\texttt{\small 24--33})
560 alla apertura della fifo: si noti che questo viene fatto due volte, prima in
561 lettura e poi in scrittura, per evitare di dover gestire all'interno del ciclo
562 principale il caso in cui il server è in ascolto ma non ci sono client che
563 effettuano richieste.  Si ricordi infatti che quando una fifo è aperta solo
564 dal capo in lettura, l'esecuzione di \func{read} ritorna con zero byte (si ha
565 cioè una condizione di end-of-file).
566
567 Nel nostro caso la prima apertura si bloccherà fintanto che un qualunque
568 client non apre a sua volta la fifo nota in scrittura per effettuare la sua
569 richiesta. Pertanto all'inizio non ci sono problemi, il client però, una volta
570 ricevuta la risposta, uscirà, chiudendo tutti i file aperti, compresa la fifo.
571 A questo punto il server resta (se non ci sono altri client che stanno
572 effettuando richieste) con la fifo chiusa sul lato in lettura, ed in questo
573 stato la funzione \func{read} non si bloccherà in attesa di input, ma
574 ritornerà in continuazione, restituendo un end-of-file.\footnote{si è usata
575   questa tecnica per compatibilità, Linux infatti supporta l'apertura delle
576   fifo in lettura/scrittura, per cui si sarebbe potuto effettuare una singola
577   apertura con \const{O\_RDWR}, la doppia apertura comunque ha il vantaggio
578   che non si può scrivere per errore sul capo aperto in sola lettura.}
579
580 Per questo motivo, dopo aver eseguito l'apertura in lettura (\texttt{\small
581   24--28}),\footnote{di solito si effettua l'apertura del capo in lettura di
582   una fifo in modalità non bloccante, per evitare il rischio di uno stallo: se
583   infatti nessuno apre la fifo in scrittura il processo non ritornerà mai
584   dalla \func{open}. Nel nostro caso questo rischio non esiste, mentre è
585   necessario potersi bloccare in lettura in attesa di una richiesta.} si
586 esegue una seconda apertura in scrittura (\texttt{\small 29--32}), scartando
587 il relativo file descriptor, che non sarà mai usato, in questo modo però la
588 fifo resta comunque aperta anche in scrittura, cosicché le successive chiamate
589 a \func{read} possono bloccarsi.
590
591 A questo punto si può entrare nel ciclo principale del programma che fornisce
592 le risposte ai client (\texttt{\small 34--50}); questo viene eseguito
593 indefinitamente (l'uscita del server viene effettuata inviando un segnale, in
594 modo da passare attraverso la funzione di chiusura che cancella la fifo).
595
596 Il server è progettato per accettare come richieste dai client delle stringhe
597 che contengono il nome della fifo sulla quale deve essere inviata la risposta.
598 Per cui prima (\texttt{\small 35--39}) si esegue la lettura dalla stringa di
599 richiesta dalla fifo nota (che a questo punto si bloccherà tutte le volte che
600 non ci sono richieste). Dopo di che, una volta terminata la stringa
601 (\texttt{\small 40}) e selezionato (\texttt{\small 41}) un numero casuale per
602 ricavare la frase da inviare, si procederà (\texttt{\small 42--46})
603 all'apertura della fifo per la risposta, che poi \texttt{\small 47--48}) vi
604 sarà scritta. Infine (\texttt{\small 49}) si chiude la fifo di risposta che
605 non serve più.
606
607 Il codice del client è invece riportato in fig.~\ref{fig:ipc_fifo_client},
608 anche in questo caso si è omessa la gestione delle opzioni e la funzione che
609 stampa a video le informazioni di utilizzo ed esce, riportando solo la sezione
610 principale del programma e le definizioni delle variabili. Il codice completo
611 è nel file \file{FortuneClient.c} dei sorgenti allegati.
612
613 \begin{figure}[!htbp]
614   \footnotesize \centering
615   \begin{minipage}[c]{\codesamplewidth}
616     \includecodesample{listati/FortuneClient.c}
617   \end{minipage} 
618   \normalsize 
619   \caption{Sezione principale del codice del client di \textit{fortunes}
620     basato sulle fifo.}
621   \label{fig:ipc_fifo_client}
622 \end{figure}
623
624 La prima istruzione (\texttt{\small 12}) compone il nome della fifo che dovrà
625 essere utilizzata per ricevere la risposta dal server.  Si usa il \ids{PID}
626 del processo per essere sicuri di avere un nome univoco; dopo di che
627 (\texttt{\small 13-18}) si procede alla creazione del relativo file, uscendo
628 in caso di errore (a meno che il file non sia già presente sul filesystem).
629
630 A questo punto il client può effettuare l'interrogazione del server, per
631 questo prima si apre la fifo nota (\texttt{\small 19--23}), e poi ci si scrive
632 (\texttt{\small 24}) la stringa composta in precedenza, che contiene il nome
633 della fifo da utilizzare per la risposta. Infine si richiude la fifo del
634 server che a questo punto non serve più (\texttt{\small 25}).
635
636 Inoltrata la richiesta si può passare alla lettura della risposta; anzitutto
637 si apre (\texttt{\small 26--30}) la fifo appena creata, da cui si deve
638 riceverla, dopo di che si effettua una lettura (\texttt{\small 31})
639 nell'apposito buffer; si è supposto, come è ragionevole, che le frasi inviate
640 dal server siano sempre di dimensioni inferiori a \const{PIPE\_BUF},
641 tralasciamo la gestione del caso in cui questo non è vero. Infine si stampa
642 (\texttt{\small 32}) a video la risposta, si chiude (\texttt{\small 33}) la
643 fifo e si cancella (\texttt{\small 34}) il relativo file.
644 Si noti come la fifo per la risposta sia stata aperta solo dopo aver inviato
645 la richiesta, se non si fosse fatto così si avrebbe avuto uno stallo, in
646 quanto senza la richiesta, il server non avrebbe potuto aprirne il capo in
647 scrittura e l'apertura si sarebbe bloccata indefinitamente.
648
649 Verifichiamo allora il comportamento dei nostri programmi, in questo, come in
650 altri esempi precedenti, si fa uso delle varie funzioni di servizio, che sono
651 state raccolte nella libreria \file{libgapil.so}, per poter usare quest'ultima
652 occorrerà definire la variabile di ambiente \envvar{LD\_LIBRARY\_PATH} in modo
653 che il linker dinamico possa accedervi.
654
655 In generale questa variabile indica il \textit{pathname} della directory
656 contenente la libreria. Nell'ipotesi (che daremo sempre per verificata) che si
657 facciano le prove direttamente nella directory dei sorgenti (dove di norma
658 vengono creati sia i programmi che la libreria), il comando da dare sarà
659 \code{export LD\_LIBRARY\_PATH=./}; a questo punto potremo lanciare il server,
660 facendogli leggere una decina di frasi, con:
661 \begin{Verbatim}
662 [piccardi@gont sources]$ ./fortuned -n10
663 \end{Verbatim}
664 %$
665
666 Avendo usato \func{daemon} per eseguire il server in background il comando
667 ritornerà immediatamente, ma potremo verificare con \cmd{ps} che in effetti il
668 programma resta un esecuzione in background, e senza avere associato un
669 terminale di controllo (si ricordi quanto detto in sez.~\ref{sec:sess_daemon}):
670 \begin{Verbatim}
671 [piccardi@gont sources]$ ps aux
672 ...
673 piccardi 27489  0.0  0.0  1204  356 ?        S    01:06   0:00 ./fortuned -n10
674 piccardi 27492  3.0  0.1  2492  764 pts/2    R    01:08   0:00 ps aux
675 \end{Verbatim}
676 %$
677 e si potrà verificare anche che in \file{/tmp} è stata creata la fifo di
678 ascolto \file{fortune.fifo}. A questo punto potremo interrogare il server con
679 il programma client; otterremo così:
680 \begin{Verbatim}
681 [piccardi@gont sources]$ ./fortune
682 Linux ext2fs has been stable for a long time, now it's time to break it
683         -- Linuxkongreß '95 in Berlin
684 [piccardi@gont sources]$ ./fortune
685 Let's call it an accidental feature.
686         --Larry Wall
687 [piccardi@gont sources]$ ./fortune
688 .........    Escape the 'Gates' of Hell
689   `:::'                  .......  ......
690    :::  *                  `::.    ::'
691    ::: .::  .:.::.  .:: .::  `::. :'
692    :::  ::   ::  ::  ::  ::    :::.
693    ::: .::. .::  ::.  `::::. .:'  ::.
694 ...:::.....................::'   .::::..
695         -- William E. Roadcap
696 [piccardi@gont sources]$ ./fortune
697 Linux ext2fs has been stable for a long time, now it's time to break it
698         -- Linuxkongreß '95 in Berlin
699 \end{Verbatim}
700 %$
701 e ripetendo varie volte il comando otterremo, in ordine casuale, le dieci
702 frasi tenute in memoria dal server.
703
704 Infine per chiudere il server basterà inviare un segnale di terminazione con
705 \code{killall fortuned} e potremo verificare che il gestore del segnale ha
706 anche correttamente cancellato la fifo di ascolto da \file{/tmp}.
707
708 Benché il nostro sistema client-server funzioni, la sua struttura è piuttosto
709 complessa e continua ad avere vari inconvenienti\footnote{lo stesso Stevens,
710   che esamina questa architettura in \cite{APUE}, nota come sia impossibile
711   per il server sapere se un client è andato in crash, con la possibilità di
712   far restare le fifo temporanee sul filesystem, di come sia necessario
713   intercettare \signal{SIGPIPE} dato che un client può terminare dopo aver
714   fatto una richiesta, ma prima che la risposta sia inviata (cosa che nel
715   nostro esempio non è stata fatta).}; in generale infatti l'interfaccia delle
716 fifo non è adatta a risolvere questo tipo di problemi, che possono essere
717 affrontati in maniera più semplice ed efficace o usando i socket (che
718 tratteremo in dettaglio a partire da cap.~\ref{cha:socket_intro}) o ricorrendo
719 a meccanismi di comunicazione diversi, come quelli che esamineremo in seguito.
720
721
722
723 \subsection{La funzione \func{socketpair}}
724 \label{sec:ipc_socketpair}
725
726 Un meccanismo di comunicazione molto simile alle pipe, ma che non presenta il
727 problema della unidirezionalità del flusso dei dati, è quello dei cosiddetti
728 \textsl{socket locali} (o \textit{Unix domain socket}). Tratteremo l'argomento
729 dei socket in cap.~\ref{cha:socket_intro},\footnote{si tratta comunque di
730   oggetti di comunicazione che, come le pipe, sono utilizzati attraverso dei
731   file descriptor.} nell'ambito dell'interfaccia generale che essi forniscono
732 per la programmazione di rete; e vedremo anche
733 (in~sez.~\ref{sec:sock_sa_local}) come si possono definire dei
734 \index{file!speciali} file speciali (di tipo socket, analoghi a quello
735 associati alle fifo) cui si accede però attraverso quella medesima
736 interfaccia; vale però la pena esaminare qui una modalità di uso dei socket
737 locali\footnote{la funzione \func{socketpair} è stata introdotta in BSD4.4, ma
738   è supportata in genere da qualunque sistema che fornisca l'interfaccia dei
739   socket.} che li rende sostanzialmente identici ad una pipe bidirezionale.
740
741 La funzione \funcd{socketpair} infatti consente di creare una coppia di file
742 descriptor connessi fra di loro (tramite un socket, appunto), senza dover
743 ricorrere ad un \index{file!speciali} file speciale sul filesystem, i
744 descrittori sono del tutto analoghi a quelli che si avrebbero con una chiamata
745 a \func{pipe}, con la sola differenza è che in questo caso il flusso dei dati
746 può essere effettuato in entrambe le direzioni. Il prototipo della funzione è:
747 \begin{functions}
748   \headdecl{sys/types.h} 
749   \headdecl{sys/socket.h} 
750   
751   \funcdecl{int socketpair(int domain, int type, int protocol, int sv[2])}
752   
753   Crea una coppia di socket connessi fra loro.
754   
755   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
756     errore, nel qual caso \var{errno} assumerà uno dei valori:
757   \begin{errlist}
758   \item[\errcode{EAFNOSUPPORT}] i socket locali non sono supportati.
759   \item[\errcode{EPROTONOSUPPORT}] il protocollo specificato non è supportato.
760   \item[\errcode{EOPNOTSUPP}] il protocollo specificato non supporta la
761   creazione di coppie di socket.
762   \end{errlist}
763   ed inoltre \errval{EMFILE},  \errval{EFAULT}.
764 }
765 \end{functions}
766
767 La funzione restituisce in \param{sv} la coppia di descrittori connessi fra di
768 loro: quello che si scrive su uno di essi sarà ripresentato in input
769 sull'altro e viceversa. Gli argomenti \param{domain}, \param{type} e
770 \param{protocol} derivano dall'interfaccia dei socket (vedi
771 sez.~\ref{sec:sock_creation}) che è quella che fornisce il substrato per
772 connettere i due descrittori, ma in questo caso i soli valori validi che
773 possono essere specificati sono rispettivamente \const{AF\_UNIX},
774 \const{SOCK\_STREAM} e \val{0}.
775
776 L'utilità di chiamare questa funzione per evitare due chiamate a \func{pipe}
777 può sembrare limitata; in realtà l'utilizzo di questa funzione (e dei socket
778 locali in generale) permette di trasmettere attraverso le linea non solo dei
779 dati, ma anche dei file descriptor: si può cioè passare da un processo ad un
780 altro un file descriptor, con una sorta di duplicazione dello stesso non
781 all'interno di uno stesso processo, ma fra processi distinti (torneremo su
782 questa funzionalità in sez.~\ref{sec:sock_fd_passing}).
783
784
785 \section{L'intercomunicazione fra processi di System V}
786 \label{sec:ipc_sysv}
787
788 Benché le pipe e le fifo siano ancora ampiamente usate, esse scontano il
789 limite fondamentale che il meccanismo di comunicazione che forniscono è
790 rigidamente sequenziale: una situazione in cui un processo scrive qualcosa che
791 molti altri devono poter leggere non può essere implementata con una pipe.
792
793 Per questo nello sviluppo di System V vennero introdotti una serie di nuovi
794 oggetti per la comunicazione fra processi ed una nuova interfaccia di
795 programmazione, che fossero in grado di garantire una maggiore flessibilità.
796 In questa sezione esamineremo come Linux supporta quello che viene chiamato il
797 \textsl{Sistema di comunicazione fra processi} di System V, cui da qui in
798 avanti faremo riferimento come \textit{SysV IPC} (dove IPC è la sigla di
799 \textit{Inter-Process Comunication}).
800
801
802
803 \subsection{Considerazioni generali}
804 \label{sec:ipc_sysv_generic}
805
806 La principale caratteristica del \textit{SysV IPC} è quella di essere basato
807 su oggetti permanenti che risiedono nel kernel. Questi, a differenza di quanto
808 avviene per i file descriptor, non mantengono un contatore dei riferimenti, e
809 non vengono cancellati dal sistema una volta che non sono più in uso.
810
811 Questo comporta due problemi: il primo è che, al contrario di quanto avviene
812 per pipe e fifo, la memoria allocata per questi oggetti non viene rilasciata
813 automaticamente quando non c'è più nessuno che li utilizzi, ed essi devono
814 essere cancellati esplicitamente, se non si vuole che restino attivi fino al
815 riavvio del sistema. Il secondo problema è che, dato che non c'è, come per i
816 file, un contatore del numero di riferimenti che ne indichi l'essere in uso,
817 essi possono essere cancellati anche se ci sono dei processi che li stanno
818 utilizzando, con tutte le conseguenze (negative) del caso.
819
820 Un'ulteriore caratteristica negativa è che gli oggetti usati nel \textit{SysV
821   IPC} vengono creati direttamente dal kernel, e sono accessibili solo
822 specificando il relativo \textsl{identificatore}. Questo è un numero
823 progressivo (un po' come il \ids{PID} dei processi) che il kernel assegna a
824 ciascuno di essi quanto vengono creati (sul procedimento di assegnazione
825 torneremo in sez.~\ref{sec:ipc_sysv_id_use}). L'identificatore viene restituito
826 dalle funzioni che creano l'oggetto, ed è quindi locale al processo che le ha
827 eseguite. Dato che l'identificatore viene assegnato dinamicamente dal kernel
828 non è possibile prevedere quale sarà, né utilizzare un qualche valore statico,
829 si pone perciò il problema di come processi diversi possono accedere allo
830 stesso oggetto.
831
832 Per risolvere il problema nella struttura \struct{ipc\_perm} che il kernel
833 associa a ciascun oggetto, viene mantenuto anche un campo apposito che
834 contiene anche una \textsl{chiave}, identificata da una variabile del tipo
835 primitivo \type{key\_t}, da specificare in fase di creazione dell'oggetto, e
836 tramite la quale è possibile ricavare l'identificatore.\footnote{in sostanza
837   si sposta il problema dell'accesso dalla classificazione in base
838   all'identificatore alla classificazione in base alla chiave, una delle tante
839   complicazioni inutili presenti nel \textit{SysV IPC}.} Oltre la chiave, la
840 struttura, la cui definizione è riportata in fig.~\ref{fig:ipc_ipc_perm},
841 mantiene varie proprietà ed informazioni associate all'oggetto.
842
843 \begin{figure}[!htb]
844   \footnotesize \centering
845   \begin{minipage}[c]{\textwidth}
846     \includestruct{listati/ipc_perm.h}
847   \end{minipage} 
848   \normalsize 
849   \caption{La struttura \structd{ipc\_perm}, come definita in
850     \headfile{sys/ipc.h}.}
851   \label{fig:ipc_ipc_perm}
852 \end{figure}
853
854 Usando la stessa chiave due processi diversi possono ricavare l'identificatore
855 associato ad un oggetto ed accedervi. Il problema che sorge a questo punto è
856 come devono fare per accordarsi sull'uso di una stessa chiave. Se i processi
857 sono \textsl{imparentati} la soluzione è relativamente semplice, in tal caso
858 infatti si può usare il valore speciale \texttt{IPC\_PRIVATE} per creare un
859 nuovo oggetto nel processo padre, l'identificatore così ottenuto sarà
860 disponibile in tutti i figli, e potrà essere passato come argomento attraverso
861 una \func{exec}.
862
863 Però quando i processi non sono \textsl{imparentati} (come capita tutte le
864 volte che si ha a che fare con un sistema client-server) tutto questo non è
865 possibile; si potrebbe comunque salvare l'identificatore su un file noto, ma
866 questo ovviamente comporta lo svantaggio di doverselo andare a rileggere.  Una
867 alternativa più efficace è quella che i programmi usino un valore comune per
868 la chiave (che ad esempio può essere dichiarato in un header comune), ma c'è
869 sempre il rischio che questa chiave possa essere stata già utilizzata da
870 qualcun altro.  Dato che non esiste una convenzione su come assegnare queste
871 chiavi in maniera univoca l'interfaccia mette a disposizione una funzione
872 apposita, \funcd{ftok}, che permette di ottenere una chiave specificando il
873 nome di un file ed un numero di versione; il suo prototipo è:
874 \begin{functions}
875   \headdecl{sys/types.h} 
876   \headdecl{sys/ipc.h} 
877   
878   \funcdecl{key\_t ftok(const char *pathname, int proj\_id)}
879   
880   Restituisce una chiave per identificare un oggetto del \textit{SysV IPC}.
881   
882   \bodydesc{La funzione restituisce la chiave in caso di successo e -1
883     altrimenti, nel qual caso \var{errno} sarà uno dei possibili codici di
884     errore di \func{stat}.}
885 \end{functions}
886
887 La funzione determina un valore della chiave sulla base di \param{pathname},
888 che deve specificare il \textit{pathname} di un file effettivamente esistente
889 e di un numero di progetto \param{proj\_id)}, che di norma viene specificato
890 come carattere, dato che ne vengono utilizzati solo gli 8 bit meno
891 significativi.\footnote{nelle libc4 e libc5, come avviene in SunOS,
892   l'argomento \param{proj\_id} è dichiarato tipo \ctyp{char}, la \acr{glibc}
893   usa il prototipo specificato da XPG4, ma vengono lo stesso utilizzati gli 8
894   bit meno significativi.}
895
896 Il problema è che anche così non c'è la sicurezza che il valore della chiave
897 sia univoco, infatti esso è costruito combinando il byte di \param{proj\_id)}
898 con i 16 bit meno significativi \itindex{inode} dell'inode del file
899 \param{pathname} (che vengono ottenuti attraverso \func{stat}, da cui derivano
900 i possibili errori), e gli 8 bit meno significativi del numero del dispositivo
901 su cui è il file.  Diventa perciò relativamente facile ottenere delle
902 collisioni, specie se i file sono su dispositivi con lo stesso
903 \itindex{minor~number} \textit{minor number}, come \file{/dev/hda1} e
904 \file{/dev/sda1}.
905
906 In genere quello che si fa è utilizzare un file comune usato dai programmi che
907 devono comunicare (ad esempio un header comune, o uno dei programmi che devono
908 usare l'oggetto in questione), utilizzando il numero di progetto per ottenere
909 le chiavi che interessano. In ogni caso occorre sempre controllare, prima di
910 creare un oggetto, che la chiave non sia già stata utilizzata. Se questo va
911 bene in fase di creazione, le cose possono complicarsi per i programmi che
912 devono solo accedere, in quanto, a parte gli eventuali controlli sugli altri
913 attributi di \struct{ipc\_perm}, non esiste una modalità semplice per essere
914 sicuri che l'oggetto associato ad una certa chiave sia stato effettivamente
915 creato da chi ci si aspetta.
916
917 Questo è, insieme al fatto che gli oggetti sono permanenti e non mantengono un
918 contatore di riferimenti per la cancellazione automatica, il principale
919 problema del \textit{SysV IPC}. Non esiste infatti una modalità chiara per
920 identificare un oggetto, come sarebbe stato se lo si fosse associato ad in
921 file, e tutta l'interfaccia è inutilmente complessa.  Per questo ne è stata
922 effettuata una revisione completa nello standard POSIX.1b, che tratteremo in
923 sez.~\ref{sec:ipc_posix}.
924
925
926 \subsection{Il controllo di accesso}
927 \label{sec:ipc_sysv_access_control}
928
929 Oltre alle chiavi, abbiamo visto che ad ogni oggetto sono associate in
930 \struct{ipc\_perm} ulteriori informazioni, come gli identificatori del creatore
931 (nei campi \var{cuid} e \var{cgid}) e del proprietario (nei campi \var{uid} e
932 \var{gid}) dello stesso, e un insieme di permessi (nel campo \var{mode}). In
933 questo modo è possibile definire un controllo di accesso sugli oggetti di IPC,
934 simile a quello che si ha per i file (vedi sez.~\ref{sec:file_perm_overview}).
935
936 Benché questo controllo di accesso sia molto simile a quello dei file, restano
937 delle importanti differenze. La prima è che il permesso di esecuzione non
938 esiste (e se specificato viene ignorato), per cui si può parlare solo di
939 permessi di lettura e scrittura (nel caso dei semafori poi quest'ultimo è più
940 propriamente un permesso di modifica). I valori di \var{mode} sono gli stessi
941 ed hanno lo stesso significato di quelli riportati in
942 tab.~\ref{tab:file_mode_flags}\footnote{se però si vogliono usare le costanti
943   simboliche ivi definite occorrerà includere il file \headfile{sys/stat.h},
944   alcuni sistemi definiscono le costanti \const{MSG\_R} (\texttt{0400}) e
945   \const{MSG\_W} (\texttt{0200}) per indicare i permessi base di lettura e
946   scrittura per il proprietario, da utilizzare, con gli opportuni shift, pure
947   per il gruppo e gli altri, in Linux, visto la loro scarsa utilità, queste
948   costanti non sono definite.} e come per i file definiscono gli accessi per
949 il proprietario, il suo gruppo e tutti gli altri.
950
951 Quando l'oggetto viene creato i campi \var{cuid} e \var{uid} di
952 \struct{ipc\_perm} ed i campi \var{cgid} e \var{gid} vengono impostati
953 rispettivamente al valore dell'\ids{UID} e del \ids{GID} effettivo del processo
954 che ha chiamato la funzione, ma, mentre i campi \var{uid} e \var{gid} possono
955 essere cambiati, i campi \var{cuid} e \var{cgid} restano sempre gli stessi.
956
957 Il controllo di accesso è effettuato a due livelli. Il primo livello è nelle
958 funzioni che richiedono l'identificatore di un oggetto data la chiave. Queste
959 specificano tutte un argomento \param{flag}, in tal caso quando viene
960 effettuata la ricerca di una chiave, qualora \param{flag} specifichi dei
961 permessi, questi vengono controllati e l'identificatore viene restituito solo
962 se corrispondono a quelli dell'oggetto. Se ci sono dei permessi non presenti
963 in \var{mode} l'accesso sarà negato. Questo controllo però è di utilità
964 indicativa, dato che è sempre possibile specificare per \param{flag} un valore
965 nullo, nel qual caso l'identificatore sarà restituito comunque.
966
967 Il secondo livello di controllo è quello delle varie funzioni che accedono
968 direttamente (in lettura o scrittura) all'oggetto. In tal caso lo schema dei
969 controlli è simile a quello dei file, ed avviene secondo questa sequenza:
970 \begin{itemize*}
971 \item se il processo ha i privilegi di amministratore l'accesso è sempre
972   consentito. 
973 \item se l'\ids{UID} effettivo del processo corrisponde o al valore del campo
974   \var{cuid} o a quello del campo \var{uid} ed il permesso per il proprietario
975   in \var{mode} è appropriato\footnote{per appropriato si intende che è
976     impostato il permesso di scrittura per le operazioni di scrittura e quello
977     di lettura per le operazioni di lettura.} l'accesso è consentito.
978 \item se il \ids{GID} effettivo del processo corrisponde o al
979   valore del campo \var{cgid} o a quello del campo \var{gid} ed il permesso
980   per il gruppo in \var{mode} è appropriato l'accesso è consentito.
981 \item se il permesso per gli altri è appropriato l'accesso è consentito.
982 \end{itemize*}
983 solo se tutti i controlli elencati falliscono l'accesso è negato. Si noti che
984 a differenza di quanto avviene per i permessi dei file, fallire in uno dei
985 passi elencati non comporta il fallimento dell'accesso. Un'ulteriore
986 differenza rispetto a quanto avviene per i file è che per gli oggetti di IPC
987 il valore di \itindex{umask} \textit{umask} (si ricordi quanto esposto in
988 sez.~\ref{sec:file_perm_management}) non ha alcun significato.
989
990
991 \subsection{Gli identificatori ed il loro utilizzo}
992 \label{sec:ipc_sysv_id_use}
993
994 L'unico campo di \struct{ipc\_perm} del quale non abbiamo ancora parlato è
995 \var{seq}, che in fig.~\ref{fig:ipc_ipc_perm} è qualificato con un criptico
996 ``\textsl{numero di sequenza}'', ne parliamo adesso dato che esso è
997 strettamente attinente alle modalità con cui il kernel assegna gli
998 identificatori degli oggetti del sistema di IPC.
999
1000 Quando il sistema si avvia, alla creazione di ogni nuovo oggetto di IPC viene
1001 assegnato un numero progressivo, pari al numero di oggetti di quel tipo
1002 esistenti. Se il comportamento fosse sempre questo sarebbe identico a quello
1003 usato nell'assegnazione dei file descriptor nei processi, ed i valori degli
1004 identificatori tenderebbero ad essere riutilizzati spesso e restare di piccole
1005 dimensioni (inferiori al numero massimo di oggetti disponibili).
1006
1007 Questo va benissimo nel caso dei file descriptor, che sono locali ad un
1008 processo, ma qui il comportamento varrebbe per tutto il sistema, e per
1009 processi del tutto scorrelati fra loro. Così si potrebbero avere situazioni
1010 come quella in cui un server esce e cancella le sue code di messaggi, ed il
1011 relativo identificatore viene immediatamente assegnato a quelle di un altro
1012 server partito subito dopo, con la possibilità che i client del primo non
1013 facciano in tempo ad accorgersi dell'avvenuto, e finiscano con l'interagire
1014 con gli oggetti del secondo, con conseguenze imprevedibili.
1015
1016 Proprio per evitare questo tipo di situazioni il sistema usa il valore di
1017 \var{seq} per provvedere un meccanismo che porti gli identificatori ad
1018 assumere tutti i valori possibili, rendendo molto più lungo il periodo in cui
1019 un identificatore può venire riutilizzato.
1020
1021 Il sistema dispone sempre di un numero fisso di oggetti di IPC,\footnote{fino
1022   al kernel 2.2.x questi valori, definiti dalle costanti \const{MSGMNI},
1023   \const{SEMMNI} e \const{SHMMNI}, potevano essere cambiati (come tutti gli
1024   altri limiti relativi al \textit{SysV IPC}) solo con una ricompilazione del
1025   kernel, andando a modificarne la definizione nei relativi header file.  A
1026   partire dal kernel 2.4.x è possibile cambiare questi valori a sistema attivo
1027   scrivendo sui file \sysctlrelfile{kernel}{shmmni},
1028   \sysctlrelfile{kernel}{msgmni} e \sysctlrelfile{kernel}{sem}
1029   di \file{/proc/sys/kernel} o con l'uso di \func{sysctl}.} e per ciascuno di
1030 essi viene mantenuto in \var{seq} un numero di sequenza progressivo che viene
1031 incrementato di uno ogni volta che l'oggetto viene cancellato. Quando
1032 l'oggetto viene creato usando uno spazio che era già stato utilizzato in
1033 precedenza per restituire l'identificatore al numero di oggetti presenti viene
1034 sommato il valore di \var{seq} moltiplicato per il numero massimo di oggetti
1035 di quel tipo,\footnote{questo vale fino ai kernel della serie 2.2.x, dalla
1036   serie 2.4.x viene usato lo stesso fattore per tutti gli oggetti, esso è dato
1037   dalla costante \const{IPCMNI}, definita in \file{include/linux/ipc.h}, che
1038   indica il limite massimo per il numero di tutti oggetti di IPC, ed il cui
1039   valore è 32768.}  si evita così il riutilizzo degli stessi numeri, e si fa
1040 sì che l'identificatore assuma tutti i valori possibili.
1041
1042 \begin{figure}[!htbp]
1043   \footnotesize \centering
1044   \begin{minipage}[c]{\codesamplewidth}
1045     \includecodesample{listati/IPCTestId.c}
1046   \end{minipage} 
1047   \normalsize 
1048   \caption{Sezione principale del programma di test per l'assegnazione degli
1049     identificatori degli oggetti di IPC \file{IPCTestId.c}.}
1050   \label{fig:ipc_sysv_idtest}
1051 \end{figure}
1052
1053 In fig.~\ref{fig:ipc_sysv_idtest} è riportato il codice di un semplice
1054 programma di test che si limita a creare un oggetto (specificato a riga di
1055 comando), stamparne il numero di identificatore e cancellarlo per un numero
1056 specificato di volte. Al solito non si è riportato il codice della gestione
1057 delle opzioni a riga di comando, che permette di specificare quante volte
1058 effettuare il ciclo \var{n}, e su quale tipo di oggetto eseguirlo.
1059
1060 La figura non riporta il codice di selezione delle opzioni, che permette di
1061 inizializzare i valori delle variabili \var{type} al tipo di oggetto voluto, e
1062 \var{n} al numero di volte che si vuole effettuare il ciclo di creazione,
1063 stampa, cancellazione. I valori di default sono per l'uso delle code di
1064 messaggi e un ciclo di 5 volte. Se si lancia il comando si otterrà qualcosa
1065 del tipo:
1066 \begin{Verbatim}
1067 piccardi@gont sources]$ ./ipctestid
1068 Identifier Value 0 
1069 Identifier Value 32768 
1070 Identifier Value 65536 
1071 Identifier Value 98304 
1072 Identifier Value 131072 
1073 \end{Verbatim}
1074 %$
1075 il che ci mostra che abbiamo un kernel della serie 2.4.x nel quale non avevamo
1076 ancora usato nessuna coda di messaggi. Se ripetiamo il comando otterremo
1077 ancora:
1078 \begin{Verbatim}
1079 [piccardi@gont sources]$ ./ipctestid
1080 Identifier Value 163840 
1081 Identifier Value 196608 
1082 Identifier Value 229376 
1083 Identifier Value 262144 
1084 Identifier Value 294912 
1085 \end{Verbatim}
1086 %$
1087 che ci mostra come il valore di \var{seq} sia in effetti una quantità
1088 mantenuta staticamente all'interno del sistema.
1089
1090
1091 \subsection{Code di messaggi}
1092 \label{sec:ipc_sysv_mq}
1093
1094 Il primo oggetto introdotto dal \textit{SysV IPC} è quello delle code di
1095 messaggi.  Le code di messaggi sono oggetti analoghi alle pipe o alle fifo,
1096 anche se la loro struttura è diversa, ed il loro scopo principale è appunto
1097 quello di permettere a processi diversi di scambiarsi dei dati.
1098
1099 La funzione che permette di richiedere al sistema l'identificatore di una coda
1100 di messaggi esistente (o di crearne una se questa non esiste) è
1101 \funcd{msgget}; il suo prototipo è:
1102 \begin{functions}
1103   \headdecl{sys/types.h} 
1104   \headdecl{sys/ipc.h} 
1105   \headdecl{sys/msg.h} 
1106   
1107   \funcdecl{int msgget(key\_t key, int flag)}
1108   
1109   Restituisce l'identificatore di una coda di messaggi.
1110   
1111   \bodydesc{La funzione restituisce l'identificatore (un intero positivo) o -1
1112     in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
1113   \begin{errlist}
1114   \item[\errcode{EACCES}] il processo chiamante non ha i privilegi per accedere
1115   alla coda richiesta.  
1116   \item[\errcode{EEXIST}] si è richiesta la creazione di una coda che già
1117   esiste, ma erano specificati sia \const{IPC\_CREAT} che \const{IPC\_EXCL}. 
1118   \item[\errcode{EIDRM}] la coda richiesta è marcata per essere cancellata.
1119   \item[\errcode{ENOENT}] si è cercato di ottenere l'identificatore di una coda
1120     di messaggi specificando una chiave che non esiste e \const{IPC\_CREAT}
1121     non era specificato.
1122   \item[\errcode{ENOSPC}] si è cercato di creare una coda di messaggi quando è
1123     stato superato il limite massimo di code (\const{MSGMNI}).
1124   \end{errlist}
1125   ed inoltre \errval{ENOMEM}.
1126 }
1127 \end{functions}
1128
1129 Le funzione (come le analoghe che si usano per gli altri oggetti) serve sia a
1130 ottenere l'identificatore di una coda di messaggi esistente, che a crearne una
1131 nuova. L'argomento \param{key} specifica la chiave che è associata
1132 all'oggetto, eccetto il caso in cui si specifichi il valore
1133 \const{IPC\_PRIVATE}, nel qual caso la coda è creata ex-novo e non vi è
1134 associata alcuna chiave, il processo (ed i suoi eventuali figli) potranno
1135 farvi riferimento solo attraverso l'identificatore.
1136
1137 Se invece si specifica un valore diverso da \const{IPC\_PRIVATE}\footnote{in
1138   Linux questo significa un valore diverso da zero.} l'effetto della funzione
1139 dipende dal valore di \param{flag}, se questo è nullo la funzione si limita ad
1140 effettuare una ricerca sugli oggetti esistenti, restituendo l'identificatore
1141 se trova una corrispondenza, o fallendo con un errore di \errcode{ENOENT} se
1142 non esiste o di \errcode{EACCES} se si sono specificati dei permessi non
1143 validi.
1144
1145 Se invece si vuole creare una nuova coda di messaggi \param{flag} non può
1146 essere nullo e deve essere fornito come maschera binaria, impostando il bit
1147 corrispondente al valore \const{IPC\_CREAT}. In questo caso i nove bit meno
1148 significativi di \param{flag} saranno usati come permessi per il nuovo
1149 oggetto, secondo quanto illustrato in sez.~\ref{sec:ipc_sysv_access_control}.
1150 Se si imposta anche il bit corrispondente a \const{IPC\_EXCL} la funzione avrà
1151 successo solo se l'oggetto non esiste già, fallendo con un errore di
1152 \errcode{EEXIST} altrimenti.
1153
1154 Si tenga conto che l'uso di \const{IPC\_PRIVATE} non impedisce ad altri
1155 processi di accedere alla coda (se hanno privilegi sufficienti) una volta che
1156 questi possano indovinare o ricavare (ad esempio per tentativi)
1157 l'identificatore ad essa associato. Per come sono implementati gli oggetti di
1158 IPC infatti non esiste una maniera che  garantisca l'accesso esclusivo ad una
1159 coda di messaggi.  Usare \const{IPC\_PRIVATE} o const{IPC\_CREAT} e
1160 \const{IPC\_EXCL} per \param{flag} comporta solo la creazione di una nuova
1161 coda.
1162
1163 \begin{table}[htb]
1164   \footnotesize
1165   \centering
1166   \begin{tabular}[c]{|c|r|l|l|}
1167     \hline
1168     \textbf{Costante} & \textbf{Valore} & \textbf{File in \texttt{proc}}
1169     & \textbf{Significato} \\
1170     \hline
1171     \hline
1172     \const{MSGMNI}&   16& \file{msgmni} & Numero massimo di code di
1173                                           messaggi.\\
1174     \const{MSGMAX}& 8192& \file{msgmax} & Dimensione massima di un singolo
1175                                           messaggio.\\
1176     \const{MSGMNB}&16384& \file{msgmnb} & Dimensione massima del contenuto di 
1177                                           una coda.\\
1178     \hline
1179   \end{tabular}
1180   \caption{Valori delle costanti associate ai limiti delle code di messaggi.}
1181   \label{tab:ipc_msg_limits}
1182 \end{table}
1183
1184 Le code di messaggi sono caratterizzate da tre limiti fondamentali, definiti
1185 negli header e corrispondenti alle prime tre costanti riportate in
1186 tab.~\ref{tab:ipc_msg_limits}, come accennato però in Linux è possibile
1187 modificare questi limiti attraverso l'uso di \func{sysctl} o scrivendo nei
1188 file \sysctlrelfile{kernel}{msgmax},
1189 \sysctlrelfile{kernel}{msgmnb} e
1190 \sysctlrelfile{kernel}{msgmni} di \file{/proc/sys/kernel/}.
1191
1192 \begin{figure}[!htb]
1193   \centering \includegraphics[width=13cm]{img/mqstruct}
1194   \caption{Schema della struttura di una coda messaggi.}
1195   \label{fig:ipc_mq_schema}
1196 \end{figure}
1197
1198
1199 Una coda di messaggi è costituita da una \itindex{linked~list} \textit{linked
1200   list};\footnote{una \itindex{linked~list} \textit{linked list} è una tipica
1201   struttura di dati, organizzati in una lista in cui ciascun elemento contiene
1202   un puntatore al successivo. In questo modo la struttura è veloce
1203   nell'estrazione ed immissione dei dati dalle estremità dalla lista (basta
1204   aggiungere un elemento in testa o in coda ed aggiornare un puntatore), e
1205   relativamente veloce da attraversare in ordine sequenziale (seguendo i
1206   puntatori), è invece relativamente lenta nell'accesso casuale e nella
1207   ricerca.}  i nuovi messaggi vengono inseriti in coda alla lista e vengono
1208 letti dalla cima, in fig.~\ref{fig:ipc_mq_schema} si è riportato lo schema con
1209 cui queste strutture vengono mantenute dal kernel.\footnote{lo schema
1210   illustrato in fig.~\ref{fig:ipc_mq_schema} è in realtà una semplificazione
1211   di quello usato effettivamente fino ai kernel della serie 2.2.x, nei kernel
1212   della serie 2.4.x la gestione delle code di messaggi è stata modificata ed è
1213   effettuata in maniera diversa; abbiamo mantenuto lo schema precedente in
1214   quanto illustra comunque in maniera più che adeguata i principi di
1215   funzionamento delle code di messaggi.}
1216
1217 \begin{figure}[!htb]
1218   \footnotesize \centering
1219   \begin{minipage}[c]{\textwidth}
1220     \includestruct{listati/msqid_ds.h}
1221   \end{minipage} 
1222   \normalsize 
1223   \caption{La struttura \structd{msqid\_ds}, associata a ciascuna coda di
1224     messaggi.}
1225   \label{fig:ipc_msqid_ds}
1226 \end{figure}
1227
1228 A ciascuna coda è associata una struttura \struct{msqid\_ds}, la cui
1229 definizione, è riportata in fig.~\ref{fig:ipc_msqid_ds}. In questa struttura
1230 il kernel mantiene le principali informazioni riguardo lo stato corrente della
1231 coda.\footnote{come accennato questo vale fino ai kernel della serie 2.2.x,
1232   essa viene usata nei kernel della serie 2.4.x solo per compatibilità in
1233   quanto è quella restituita dalle funzioni dell'interfaccia.  Si noti come ci
1234   sia una differenza con i campi mostrati nello schema di
1235   fig.~\ref{fig:ipc_mq_schema} che sono presi dalla definizione di
1236   \file{include/linux/msg.h}, e fanno riferimento alla definizione della
1237   omonima struttura usata nel kernel.} In fig.~\ref{fig:ipc_msqid_ds} sono
1238 elencati i campi significativi definiti in \headfile{sys/msg.h}, a cui si sono
1239 aggiunti gli ultimi tre campi che sono previsti dalla implementazione
1240 originale di System V, ma non dallo standard Unix98.
1241
1242 Quando si crea una nuova coda con \func{msgget} questa struttura viene
1243 inizializzata, in particolare il campo \var{msg\_perm} viene inizializzato
1244 come illustrato in sez.~\ref{sec:ipc_sysv_access_control}, per quanto riguarda
1245 gli altri campi invece:
1246 \begin{itemize*}
1247 \item il campo \var{msg\_qnum}, che esprime il numero di messaggi presenti
1248   sulla coda, viene inizializzato a 0.
1249 \item i campi \var{msg\_lspid} e \var{msg\_lrpid}, che esprimono
1250   rispettivamente il \ids{PID} dell'ultimo processo che ha inviato o ricevuto
1251   un messaggio sulla coda, sono inizializzati a 0.
1252 \item i campi \var{msg\_stime} e \var{msg\_rtime}, che esprimono
1253   rispettivamente il tempo in cui è stato inviato o ricevuto l'ultimo
1254   messaggio sulla coda, sono inizializzati a 0.
1255 \item il campo \var{msg\_ctime}, che esprime il tempo di creazione della coda,
1256   viene inizializzato al tempo corrente.
1257 \item il campo \var{msg\_qbytes} che esprime la dimensione massima del
1258   contenuto della coda (in byte) viene inizializzato al valore preimpostato
1259   del sistema (\const{MSGMNB}).
1260 \item i campi \var{msg\_first} e \var{msg\_last} che esprimono l'indirizzo del
1261   primo e ultimo messaggio sono inizializzati a \val{NULL} e
1262   \var{msg\_cbytes}, che esprime la dimensione in byte dei messaggi presenti è
1263   inizializzato a zero. Questi campi sono ad uso interno dell'implementazione
1264   e non devono essere utilizzati da programmi in user space).
1265 \end{itemize*}
1266
1267 Una volta creata una coda di messaggi le operazioni di controllo vengono
1268 effettuate con la funzione \funcd{msgctl}, che (come le analoghe \func{semctl}
1269 e \func{shmctl}) fa le veci di quello che \func{ioctl} è per i file; il suo
1270 prototipo è:
1271 \begin{functions}
1272   \headdecl{sys/types.h} 
1273   \headdecl{sys/ipc.h} 
1274   \headdecl{sys/msg.h} 
1275   
1276   \funcdecl{int msgctl(int msqid, int cmd, struct msqid\_ds *buf)}
1277   
1278   Esegue l'operazione specificata da \param{cmd} sulla coda \param{msqid}.
1279   
1280   \bodydesc{La funzione restituisce 0 in caso di successo o $-1$ in caso di
1281     errore, nel qual caso \var{errno} assumerà uno dei valori:
1282   \begin{errlist}
1283   \item[\errcode{EACCES}] si è richiesto \const{IPC\_STAT} ma processo
1284     chiamante non ha i privilegi di lettura sulla coda.
1285   \item[\errcode{EIDRM}] la coda richiesta è stata cancellata.
1286   \item[\errcode{EPERM}] si è richiesto \const{IPC\_SET} o \const{IPC\_RMID} ma
1287     il processo non ha i privilegi, o si è richiesto di aumentare il valore di
1288     \var{msg\_qbytes} oltre il limite \const{MSGMNB} senza essere
1289     amministratore.
1290   \end{errlist}
1291   ed inoltre \errval{EFAULT} ed \errval{EINVAL}.
1292 }
1293 \end{functions}
1294
1295 La funzione permette di accedere ai valori della struttura \struct{msqid\_ds},
1296 mantenuta all'indirizzo \param{buf}, per la coda specificata
1297 dall'identificatore \param{msqid}. Il comportamento della funzione dipende dal
1298 valore dell'argomento \param{cmd}, che specifica il tipo di azione da
1299 eseguire; i valori possibili sono:
1300 \begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
1301 \item[\const{IPC\_STAT}] Legge le informazioni riguardo la coda nella
1302   struttura indicata da \param{buf}. Occorre avere il permesso di lettura
1303   sulla coda.
1304 \item[\const{IPC\_RMID}] Rimuove la coda, cancellando tutti i dati, con
1305   effetto immediato. Tutti i processi che cercheranno di accedere alla coda
1306   riceveranno un errore di \errcode{EIDRM}, e tutti processi in attesa su
1307   funzioni di lettura o di scrittura sulla coda saranno svegliati ricevendo
1308   il medesimo errore. Questo comando può essere eseguito solo da un processo
1309   con \ids{UID} effettivo corrispondente al creatore o al proprietario della
1310   coda, o all'amministratore.
1311 \item[\const{IPC\_SET}] Permette di modificare i permessi ed il proprietario
1312   della coda, ed il limite massimo sulle dimensioni del totale dei messaggi in
1313   essa contenuti (\var{msg\_qbytes}). I valori devono essere passati in una
1314   struttura \struct{msqid\_ds} puntata da \param{buf}.  Per modificare i valori
1315   di \var{msg\_perm.mode}, \var{msg\_perm.uid} e \var{msg\_perm.gid} occorre
1316   essere il proprietario o il creatore della coda, oppure l'amministratore; lo
1317   stesso vale per \var{msg\_qbytes}, ma l'amministratore ha la facoltà di
1318   incrementarne il valore a limiti superiori a \const{MSGMNB}.
1319 \end{basedescript}
1320
1321
1322 Una volta che si abbia a disposizione l'identificatore, per inviare un
1323 messaggio su una coda si utilizza la funzione \funcd{msgsnd}; il suo prototipo
1324 è:
1325 \begin{functions}
1326   \headdecl{sys/types.h} 
1327   \headdecl{sys/ipc.h} 
1328   \headdecl{sys/msg.h} 
1329   
1330   \funcdecl{int msgsnd(int msqid, struct msgbuf *msgp, size\_t msgsz, int
1331     msgflg)} 
1332
1333   Invia un messaggio sulla coda \param{msqid}.
1334   
1335   \bodydesc{La funzione restituisce 0, e $-1$ in caso di errore, nel qual caso
1336     \var{errno} assumerà uno dei valori:
1337   \begin{errlist}
1338   \item[\errcode{EACCES}] non si hanno i privilegi di accesso sulla coda.
1339   \item[\errcode{EIDRM}] la coda è stata cancellata.
1340   \item[\errcode{EAGAIN}] il messaggio non può essere inviato perché si è
1341   superato il limite \var{msg\_qbytes} sul numero massimo di byte presenti
1342   sulla coda, e si è richiesto \const{IPC\_NOWAIT} in \param{flag}.
1343   \item[\errcode{EINVAL}] si è specificato un \param{msgid} invalido, o un
1344     valore non positivo per \param{mtype}, o un valore di \param{msgsz}
1345     maggiore di \const{MSGMAX}.
1346   \end{errlist}
1347   ed inoltre \errval{EFAULT}, \errval{EINTR} ed \errval{ENOMEM}.  }
1348 \end{functions}
1349
1350 La funzione inserisce il messaggio sulla coda specificata da \param{msqid}; il
1351 messaggio ha lunghezza specificata da \param{msgsz} ed è passato attraverso il
1352 l'argomento \param{msgp}.  Quest'ultimo deve venire passato sempre come
1353 puntatore ad una struttura \struct{msgbuf} analoga a quella riportata in
1354 fig.~\ref{fig:ipc_msbuf} che è quella che deve contenere effettivamente il
1355 messaggio.  La dimensione massima per il testo di un messaggio non può
1356 comunque superare il limite \const{MSGMAX}.
1357
1358 La struttura di fig.~\ref{fig:ipc_msbuf} è comunque solo un modello, tanto che
1359 la definizione contenuta in \headfile{sys/msg.h} usa esplicitamente per il
1360 secondo campo il valore \code{mtext[1]}, che non è di nessuna utilità ai fini
1361 pratici.  La sola cosa che conta è che la struttura abbia come primo membro un
1362 campo \var{mtype} come nell'esempio; esso infatti serve ad identificare il
1363 tipo di messaggio e deve essere sempre specificato come intero positivo di
1364 tipo \ctyp{long}.  Il campo \var{mtext} invece può essere di qualsiasi tipo e
1365 dimensione, e serve a contenere il testo del messaggio.
1366
1367 In generale pertanto per inviare un messaggio con \func{msgsnd} si usa
1368 ridefinire una struttura simile a quella di fig.~\ref{fig:ipc_msbuf}, adattando
1369 alle proprie esigenze il campo \var{mtype}, (o ridefinendo come si vuole il
1370 corpo del messaggio, anche con più campi o con strutture più complesse) avendo
1371 però la cura di mantenere nel primo campo un valore di tipo \ctyp{long} che ne
1372 indica il tipo.
1373
1374 Si tenga presente che la lunghezza che deve essere indicata in questo
1375 argomento è solo quella del messaggio, non quella di tutta la struttura, se
1376 cioè \var{message} è una propria struttura che si passa alla funzione,
1377 \param{msgsz} dovrà essere uguale a \code{sizeof(message)-sizeof(long)}, (se
1378 consideriamo il caso dell'esempio in fig.~\ref{fig:ipc_msbuf}, \param{msgsz}
1379 dovrà essere pari a \const{LENGTH}).
1380
1381 \begin{figure}[!htb]
1382   \footnotesize \centering
1383   \begin{minipage}[c]{\textwidth}
1384     \includestruct{listati/msgbuf.h}
1385   \end{minipage} 
1386   \normalsize 
1387   \caption{Schema della struttura \structd{msgbuf}, da utilizzare come
1388     argomento per inviare/ricevere messaggi.}
1389   \label{fig:ipc_msbuf}
1390 \end{figure}
1391
1392 Per capire meglio il funzionamento della funzione riprendiamo in
1393 considerazione la struttura della coda illustrata in
1394 fig.~\ref{fig:ipc_mq_schema}. Alla chiamata di \func{msgsnd} il nuovo messaggio
1395 sarà aggiunto in fondo alla lista inserendo una nuova struttura \struct{msg},
1396 il puntatore \var{msg\_last} di \struct{msqid\_ds} verrà aggiornato, come pure
1397 il puntatore al messaggio successivo per quello che era il precedente ultimo
1398 messaggio; il valore di \var{mtype} verrà mantenuto in \var{msg\_type} ed il
1399 valore di \param{msgsz} in \var{msg\_ts}; il testo del messaggio sarà copiato
1400 all'indirizzo specificato da \var{msg\_spot}.
1401
1402 Il valore dell'argomento \param{flag} permette di specificare il comportamento
1403 della funzione. Di norma, quando si specifica un valore nullo, la funzione
1404 ritorna immediatamente a meno che si sia ecceduto il valore di
1405 \var{msg\_qbytes}, o il limite di sistema sul numero di messaggi, nel qual
1406 caso si blocca mandando il processo in stato di \textit{sleep}.  Se si
1407 specifica per \param{flag} il valore \const{IPC\_NOWAIT} la funzione opera in
1408 modalità non bloccante, ed in questi casi ritorna immediatamente con un errore
1409 di \errcode{EAGAIN}.
1410
1411 Se non si specifica \const{IPC\_NOWAIT} la funzione resterà bloccata fintanto
1412 che non si liberano risorse sufficienti per poter inserire nella coda il
1413 messaggio, nel qual caso ritornerà normalmente. La funzione può ritornare, con
1414 una condizione di errore anche in due altri casi: quando la coda viene rimossa
1415 (nel qual caso si ha un errore di \errcode{EIDRM}) o quando la funzione viene
1416 interrotta da un segnale (nel qual caso si ha un errore di \errcode{EINTR}).
1417
1418 Una volta completato con successo l'invio del messaggio sulla coda, la
1419 funzione aggiorna i dati mantenuti in \struct{msqid\_ds}, in particolare
1420 vengono modificati:
1421 \begin{itemize*}
1422 \item Il valore di \var{msg\_lspid}, che viene impostato al \ids{PID} del
1423   processo chiamante.
1424 \item Il valore di \var{msg\_qnum}, che viene incrementato di uno.
1425 \item Il valore \var{msg\_stime}, che viene impostato al tempo corrente.
1426 \end{itemize*}
1427
1428 La funzione che viene utilizzata per estrarre un messaggio da una coda è
1429 \funcd{msgrcv}; il suo prototipo è:
1430 \begin{functions}
1431   \headdecl{sys/types.h} 
1432   \headdecl{sys/ipc.h} 
1433   \headdecl{sys/msg.h} 
1434
1435   \funcdecl{ssize\_t msgrcv(int msqid, struct msgbuf *msgp, size\_t msgsz,
1436     long msgtyp, int msgflg)}
1437   
1438   Legge un messaggio dalla coda \param{msqid}.
1439   
1440   \bodydesc{La funzione restituisce il numero di byte letti in caso di
1441     successo, e -1 in caso di errore, nel qual caso \var{errno} assumerà uno
1442     dei valori:
1443   \begin{errlist}
1444   \item[\errcode{EACCES}] non si hanno i privilegi di accesso sulla coda.
1445   \item[\errcode{EIDRM}] la coda è stata cancellata.
1446   \item[\errcode{E2BIG}] il testo del messaggio è più lungo di \param{msgsz} e
1447     non si è specificato \const{MSG\_NOERROR} in \param{msgflg}.
1448   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale mentre
1449     era in attesa di ricevere un messaggio.
1450   \item[\errcode{EINVAL}] si è specificato un \param{msgid} invalido o un
1451     valore di \param{msgsz} negativo.
1452   \end{errlist}
1453   ed inoltre \errval{EFAULT}.
1454 }
1455 \end{functions}
1456
1457 La funzione legge un messaggio dalla coda specificata, scrivendolo sulla
1458 struttura puntata da \param{msgp}, che dovrà avere un formato analogo a quello
1459 di fig.~\ref{fig:ipc_msbuf}.  Una volta estratto, il messaggio sarà rimosso
1460 dalla coda.  L'argomento \param{msgsz} indica la lunghezza massima del testo
1461 del messaggio (equivalente al valore del parametro \const{LENGTH} nell'esempio
1462 di fig.~\ref{fig:ipc_msbuf}).
1463
1464 Se il testo del messaggio ha lunghezza inferiore a \param{msgsz} esso viene
1465 rimosso dalla coda; in caso contrario, se \param{msgflg} è impostato a
1466 \const{MSG\_NOERROR}, il messaggio viene troncato e la parte in eccesso viene
1467 perduta, altrimenti il messaggio non viene estratto e la funzione ritorna con
1468 un errore di \errcode{E2BIG}.
1469
1470 L'argomento \param{msgtyp} permette di restringere la ricerca ad un
1471 sottoinsieme dei messaggi presenti sulla coda; la ricerca infatti è fatta con
1472 una scansione della struttura mostrata in fig.~\ref{fig:ipc_mq_schema},
1473 restituendo il primo messaggio incontrato che corrisponde ai criteri
1474 specificati (che quindi, visto come i messaggi vengono sempre inseriti dalla
1475 coda, è quello meno recente); in particolare:
1476 \begin{itemize}
1477 \item se \param{msgtyp} è 0 viene estratto il messaggio in cima alla coda, cioè
1478   quello fra i presenti che è stato inserito per primo. 
1479 \item se \param{msgtyp} è positivo viene estratto il primo messaggio il cui
1480   tipo (il valore del campo \var{mtype}) corrisponde al valore di
1481   \param{msgtyp}.
1482 \item se \param{msgtyp} è negativo viene estratto il primo fra i messaggi con
1483   il valore più basso del tipo, fra tutti quelli il cui tipo ha un valore
1484   inferiore al valore assoluto di \param{msgtyp}.
1485 \end{itemize}
1486
1487 Il valore di \param{msgflg} permette di controllare il comportamento della
1488 funzione, esso può essere nullo o una maschera binaria composta da uno o più
1489 valori.  Oltre al precedente \const{MSG\_NOERROR}, sono possibili altri due
1490 valori: \const{MSG\_EXCEPT}, che permette, quando \param{msgtyp} è positivo,
1491 di leggere il primo messaggio nella coda con tipo diverso da \param{msgtyp}, e
1492 \const{IPC\_NOWAIT} che causa il ritorno immediato della funzione quando non
1493 ci sono messaggi sulla coda.
1494
1495 Il comportamento usuale della funzione infatti, se non ci sono messaggi
1496 disponibili per la lettura, è di bloccare il processo in stato di
1497 \textit{sleep}. Nel caso però si sia specificato \const{IPC\_NOWAIT} la
1498 funzione ritorna immediatamente con un errore \errcode{ENOMSG}. Altrimenti la
1499 funzione ritorna normalmente non appena viene inserito un messaggio del tipo
1500 desiderato, oppure ritorna con errore qualora la coda sia rimossa (con
1501 \var{errno} impostata a \errcode{EIDRM}) o se il processo viene interrotto da
1502 un segnale (con \var{errno} impostata a \errcode{EINTR}).
1503
1504 Una volta completata con successo l'estrazione del messaggio dalla coda, la
1505 funzione aggiorna i dati mantenuti in \struct{msqid\_ds}, in particolare
1506 vengono modificati:
1507 \begin{itemize*}
1508 \item Il valore di \var{msg\_lrpid}, che viene impostato al \ids{PID} del
1509   processo chiamante.
1510 \item Il valore di \var{msg\_qnum}, che viene decrementato di uno.
1511 \item Il valore \var{msg\_rtime}, che viene impostato al tempo corrente.
1512 \end{itemize*}
1513
1514 Le code di messaggi presentano il solito problema di tutti gli oggetti del
1515 SysV IPC; essendo questi permanenti restano nel sistema occupando risorse
1516 anche quando un processo è terminato, al contrario delle pipe per le quali
1517 tutte le risorse occupate vengono rilasciate quanto l'ultimo processo che le
1518 utilizzava termina. Questo comporta che in caso di errori si può saturare il
1519 sistema, e che devono comunque essere esplicitamente previste delle funzioni
1520 di rimozione in caso di interruzioni o uscite dal programma (come vedremo in
1521 fig.~\ref{fig:ipc_mq_fortune_server}).
1522
1523 L'altro problema è non facendo uso di file descriptor le tecniche di
1524 \textit{I/O multiplexing} descritte in sez.~\ref{sec:file_multiplexing} non
1525 possono essere utilizzate, e non si ha a disposizione niente di analogo alle
1526 funzioni \func{select} e \func{poll}. Questo rende molto scomodo usare più di
1527 una di queste strutture alla volta; ad esempio non si può scrivere un server
1528 che aspetti un messaggio su più di una coda senza fare ricorso ad una tecnica
1529 di \itindex{polling} \textit{polling} che esegua un ciclo di attesa su
1530 ciascuna di esse.
1531
1532 Come esempio dell'uso delle code di messaggi possiamo riscrivere il nostro
1533 server di \textit{fortunes} usando queste al posto delle fifo. In questo caso
1534 useremo una sola coda di messaggi, usando il tipo di messaggio per comunicare
1535 in maniera indipendente con client diversi.
1536
1537 \begin{figure}[!htbp]
1538   \footnotesize \centering
1539   \begin{minipage}[c]{\codesamplewidth}
1540     \includecodesample{listati/MQFortuneServer.c}
1541   \end{minipage} 
1542   \normalsize 
1543   \caption{Sezione principale del codice del server di \textit{fortunes}
1544     basato sulle \textit{message queue}.}
1545   \label{fig:ipc_mq_fortune_server}
1546 \end{figure}
1547
1548 In fig.~\ref{fig:ipc_mq_fortune_server} si è riportato un estratto delle parti
1549 principali del codice del nuovo server (il codice completo è nel file
1550 \file{MQFortuneServer.c} nei sorgenti allegati). Il programma è basato su un
1551 uso accorto della caratteristica di poter associate un ``tipo'' ai messaggi
1552 per permettere una comunicazione indipendente fra il server ed i vari client,
1553 usando il \ids{PID} di questi ultimi come identificativo. Questo è possibile
1554 in quanto, al contrario di una fifo, la lettura di una coda di messaggi può
1555 non essere sequenziale, proprio grazie alla classificazione dei messaggi sulla
1556 base del loro tipo.
1557
1558 Il programma, oltre alle solite variabili per il nome del file da cui leggere
1559 le \textit{fortunes} e per il vettore di stringhe che contiene le frasi,
1560 definisce due strutture appositamente per la comunicazione; con
1561 \var{msgbuf\_read} (\texttt{\small 8--11}) vengono passate le richieste mentre
1562 con \var{msgbuf\_write} (\texttt{\small 12--15}) vengono restituite le frasi.
1563
1564 La gestione delle opzioni si è al solito omessa, essa si curerà di impostare
1565 in \var{n} il numero di frasi da leggere specificato a linea di comando ed in
1566 \var{fortunefilename} il file da cui leggerle; dopo aver installato
1567 (\texttt{\small 19--21}) i gestori dei segnali per trattare l'uscita dal
1568 server, viene prima controllato (\texttt{\small 22}) il numero di frasi
1569 richieste abbia senso (cioè sia maggiore di zero), le quali poi
1570 (\texttt{\small 23}) vengono lette nel vettore in memoria con la stessa
1571 funzione \code{FortuneParse} usata anche per il server basato sulle fifo.
1572
1573 Una volta inizializzato il vettore di stringhe coi messaggi presi dal file
1574 delle \textit{fortune} si procede (\texttt{\small 25}) con la generazione di
1575 una chiave per identificare la coda di messaggi (si usa il nome del file dei
1576 sorgenti del server) con la quale poi si esegue (\texttt{\small 26}) la
1577 creazione della stessa (si noti come si sia chiamata \func{msgget} con un
1578 valore opportuno per l'argomento \param{flag}), avendo cura di abortire il
1579 programma (\texttt{\small 27--29}) in caso di errore.
1580
1581 Finita la fase di inizializzazione il server prima (\texttt{\small 32}) chiama
1582 la funzione \func{daemon} per andare in background e poi esegue in permanenza
1583 il ciclo principale (\texttt{\small 33--40}). Questo inizia (\texttt{\small
1584   34}) con il porsi in attesa di un messaggio di richiesta da parte di un
1585 client; si noti infatti come \func{msgrcv} richieda un messaggio con
1586 \var{mtype} uguale a 1: questo è il valore usato per le richieste dato che
1587 corrisponde al \ids{PID} di \cmd{init}, che non può essere un client. L'uso
1588 del flag \const{MSG\_NOERROR} è solo per sicurezza, dato che i messaggi di
1589 richiesta sono di dimensione fissa (e contengono solo il \ids{PID} del
1590 client).
1591
1592 Se non sono presenti messaggi di richiesta \func{msgrcv} si bloccherà,
1593 ritornando soltanto in corrispondenza dell'arrivo sulla coda di un messaggio
1594 di richiesta da parte di un client, in tal caso il ciclo prosegue
1595 (\texttt{\small 35}) selezionando una frase a caso, copiandola (\texttt{\small
1596   36}) nella struttura \var{msgbuf\_write} usata per la risposta e
1597 calcolandone (\texttt{\small 37}) la dimensione.
1598
1599 Per poter permettere a ciascun client di ricevere solo la risposta indirizzata
1600 a lui il tipo del messaggio in uscita viene inizializzato (\texttt{\small 38})
1601 al valore del \ids{PID} del client ricevuto nel messaggio di richiesta.
1602 L'ultimo passo del ciclo (\texttt{\small 39}) è inviare sulla coda il
1603 messaggio di risposta. Si tenga conto che se la coda è piena anche questa
1604 funzione potrà bloccarsi fintanto che non venga liberato dello spazio.
1605
1606 Si noti che il programma può terminare solo grazie ad una interruzione da
1607 parte di un segnale; in tal caso verrà eseguito (\texttt{\small 45--48}) il
1608 gestore \code{HandSIGTERM}, che semplicemente si limita a cancellare la coda
1609 (\texttt{\small 46}) ed ad uscire (\texttt{\small 47}).
1610
1611 \begin{figure}[!htbp]
1612   \footnotesize \centering
1613   \begin{minipage}[c]{\codesamplewidth}
1614     \includecodesample{listati/MQFortuneClient.c}
1615   \end{minipage} 
1616   \normalsize 
1617   \caption{Sezione principale del codice del client di \textit{fortunes}
1618     basato sulle \textit{message queue}.}
1619   \label{fig:ipc_mq_fortune_client}
1620 \end{figure}
1621
1622 In fig.~\ref{fig:ipc_mq_fortune_client} si è riportato un estratto il codice
1623 del programma client.  Al solito il codice completo è con i sorgenti allegati,
1624 nel file \file{MQFortuneClient.c}.  Come sempre si sono rimosse le parti
1625 relative alla gestione delle opzioni, ed in questo caso, anche la
1626 dichiarazione delle variabili, che, per la parte relative alle strutture usate
1627 per la comunicazione tramite le code, sono le stesse viste in
1628 fig.~\ref{fig:ipc_mq_fortune_server}.
1629
1630 Il client in questo caso è molto semplice; la prima parte del programma
1631 (\texttt{\small 4--9}) si occupa di accedere alla coda di messaggi, ed è
1632 identica a quanto visto per il server, solo che in questo caso \func{msgget}
1633 non viene chiamata con il flag di creazione in quanto la coda deve essere
1634 preesistente. In caso di errore (ad esempio se il server non è stato avviato)
1635 il programma termina immediatamente. 
1636
1637 Una volta acquisito l'identificatore della coda il client compone il
1638 messaggio di richiesta (\texttt{\small 12--13}) in \var{msg\_read}, usando 1
1639 per il tipo ed inserendo il proprio \ids{PID} come dato da passare al server.
1640 Calcolata (\texttt{\small 14}) la dimensione, provvede (\texttt{\small 15}) ad
1641 immettere la richiesta sulla coda. 
1642
1643 A questo punto non resta che (\texttt{\small 16}) rileggere dalla coda la
1644 risposta del server richiedendo a \func{msgrcv} di selezionare i messaggi di
1645 tipo corrispondente al valore del \ids{PID} inviato nella richiesta. L'ultimo
1646 passo (\texttt{\small 17}) prima di uscire è quello di stampare a video il
1647 messaggio ricevuto.
1648  
1649 Proviamo allora il nostro nuovo sistema, al solito occorre definire
1650 \code{LD\_LIBRARY\_PATH} per accedere alla libreria \file{libgapil.so}, dopo di
1651 che, in maniera del tutto analoga a quanto fatto con il programma che usa le
1652 fifo, potremo far partire il server con:
1653 \begin{verbatim}
1654 [piccardi@gont sources]$ ./mqfortuned -n10
1655 \end{verbatim}%$
1656 come nel caso precedente, avendo eseguito il server in background, il comando
1657 ritornerà immediatamente; potremo però verificare con \cmd{ps} che il
1658 programma è effettivamente in esecuzione, e che ha creato una coda di
1659 messaggi:
1660 \begin{verbatim}
1661 [piccardi@gont sources]$ ipcs
1662
1663 ------ Shared Memory Segments --------
1664 key        shmid      owner      perms      bytes      nattch     status      
1665
1666 ------ Semaphore Arrays --------
1667 key        semid      owner      perms      nsems     
1668
1669 ------ Message Queues --------
1670 key        msqid      owner      perms      used-bytes   messages    
1671 0x0102dc6a 0          piccardi   666        0            0           
1672 \end{verbatim}
1673 a questo punto potremo usare il client per ottenere le nostre frasi:
1674 \begin{verbatim}
1675 [piccardi@gont sources]$ ./mqfortune
1676 Linux ext2fs has been stable for a long time, now it's time to break it
1677         -- Linuxkongreß '95 in Berlin
1678 [piccardi@gont sources]$ ./mqfortune
1679 Let's call it an accidental feature.
1680         --Larry Wall
1681 \end{verbatim}
1682 con un risultato del tutto equivalente al precedente. Infine potremo chiudere
1683 il server inviando il segnale di terminazione con il comando \code{killall
1684   mqfortuned} verificando che effettivamente la coda di messaggi viene rimossa.
1685
1686 Benché funzionante questa architettura risente dello stesso inconveniente
1687 visto anche nel caso del precedente server basato sulle fifo; se il client
1688 viene interrotto dopo l'invio del messaggio di richiesta e prima della lettura
1689 della risposta, quest'ultima resta nella coda (così come per le fifo si aveva
1690 il problema delle fifo che restavano nel filesystem). In questo caso però il
1691 problemi sono maggiori, sia perché è molto più facile esaurire la memoria
1692 dedicata ad una coda di messaggi che gli \itindex{inode} inode di un filesystem,
1693 sia perché, con il riutilizzo dei \ids{PID} da parte dei processi, un client
1694 eseguito in un momento successivo potrebbe ricevere un messaggio non
1695 indirizzato a lui.
1696
1697
1698
1699 \subsection{Semafori}
1700 \label{sec:ipc_sysv_sem}
1701
1702 I semafori non sono meccanismi di intercomunicazione diretta come quelli
1703 (pipe, fifo e code di messaggi) visti finora, e non consentono di scambiare
1704 dati fra processi, ma servono piuttosto come meccanismi di sincronizzazione o
1705 di protezione per le \index{sezione~critica} \textsl{sezioni critiche} del
1706 codice (si ricordi quanto detto in sez.~\ref{sec:proc_race_cond}).
1707
1708 Un semaforo è uno speciale contatore, mantenuto nel kernel, che permette, a
1709 seconda del suo valore, di consentire o meno la prosecuzione dell'esecuzione
1710 di un programma. In questo modo l'accesso ad una risorsa condivisa da più
1711 processi può essere controllato, associando ad essa un semaforo che consente
1712 di assicurare che non più di un processo alla volta possa usarla.
1713
1714 Il concetto di semaforo è uno dei concetti base nella programmazione ed è
1715 assolutamente generico, così come del tutto generali sono modalità con cui lo
1716 si utilizza. Un processo che deve accedere ad una risorsa eseguirà un
1717 controllo del semaforo: se questo è positivo il suo valore sarà decrementato,
1718 indicando che si è consumato una unità della risorsa, ed il processo potrà
1719 proseguire nell'utilizzo di quest'ultima, provvedendo a rilasciarla, una volta
1720 completate le operazioni volute, reincrementando il semaforo.
1721
1722 Se al momento del controllo il valore del semaforo è nullo, siamo invece in
1723 una situazione in cui la risorsa non è disponibile, ed il processo si
1724 bloccherà in stato di \textit{sleep} fin quando chi la sta utilizzando non la
1725 rilascerà, incrementando il valore del semaforo. Non appena il semaforo torna
1726 positivo, indicando che la risorsa è disponibile, il processo sarà svegliato,
1727 e si potrà operare come nel caso precedente (decremento del semaforo, accesso
1728 alla risorsa, incremento del semaforo).
1729
1730 Per poter implementare questo tipo di logica le operazioni di controllo e
1731 decremento del contatore associato al semaforo devono essere atomiche,
1732 pertanto una realizzazione di un oggetto di questo tipo è necessariamente
1733 demandata al kernel. La forma più semplice di semaforo è quella del
1734 \textsl{semaforo binario}, o \textit{mutex}, in cui un valore diverso da zero
1735 (normalmente 1) indica la libertà di accesso, e un valore nullo l'occupazione
1736 della risorsa. In generale però si possono usare semafori con valori interi,
1737 utilizzando il valore del contatore come indicatore del ``numero di risorse''
1738 ancora disponibili.
1739
1740 Il sistema di comunicazione inter-processo di \textit{SysV IPC} prevede anche i
1741 semafori, ma gli oggetti utilizzati non sono semafori singoli, ma gruppi di
1742 semafori detti \textsl{insiemi} (o \textit{semaphore set}); la funzione che
1743 permette di creare o ottenere l'identificatore di un insieme di semafori è
1744 \funcd{semget}, ed il suo prototipo è:
1745 \begin{functions}
1746   \headdecl{sys/types.h} 
1747   \headdecl{sys/ipc.h} 
1748   \headdecl{sys/sem.h} 
1749   
1750   \funcdecl{int semget(key\_t key, int nsems, int flag)}
1751   
1752   Restituisce l'identificatore di un insieme di semafori.
1753   
1754   \bodydesc{La funzione restituisce l'identificatore (un intero positivo) o -1
1755     in caso di errore, nel qual caso \var{errno} assumerà i valori:
1756     \begin{errlist}
1757     \item[\errcode{ENOSPC}] si è cercato di creare una insieme di semafori
1758       quando è stato superato o il limite per il numero totale di semafori
1759       (\const{SEMMNS}) o quello per il numero totale degli insiemi
1760       (\const{SEMMNI}) nel sistema.
1761     \item[\errcode{EINVAL}] l'argomento \param{nsems} è minore di zero o
1762       maggiore del limite sul numero di semafori per ciascun insieme
1763       (\const{SEMMSL}), o se l'insieme già esiste, maggiore del numero di
1764       semafori che contiene.
1765     \item[\errcode{ENOMEM}] il sistema non ha abbastanza memoria per poter
1766       contenere le strutture per un nuovo insieme di semafori.
1767     \end{errlist}
1768     ed inoltre \errval{EACCES}, \errval{ENOENT}, \errval{EEXIST},
1769     \errval{EIDRM}, con lo stesso significato che hanno per \func{msgget}.}
1770 \end{functions}
1771
1772 La funzione è del tutto analoga a \func{msgget}, solo che in questo caso
1773 restituisce l'identificatore di un insieme di semafori, in particolare è
1774 identico l'uso degli argomenti \param{key} e \param{flag}, per cui non
1775 ripeteremo quanto detto al proposito in sez.~\ref{sec:ipc_sysv_mq}. L'argomento
1776 \param{nsems} permette di specificare quanti semafori deve contenere l'insieme
1777 quando se ne richieda la creazione, e deve essere nullo quando si effettua una
1778 richiesta dell'identificatore di un insieme già esistente.
1779
1780 Purtroppo questa implementazione complica inutilmente lo schema elementare che
1781 abbiamo descritto, dato che non è possibile definire un singolo semaforo, ma
1782 se ne deve creare per forza un insieme.  Ma questa in definitiva è solo una
1783 complicazione inutile, il problema è che i semafori del \textit{SysV IPC}
1784 soffrono di altri due, ben più gravi, difetti.
1785
1786 Il primo difetto è che non esiste una funzione che permetta di creare ed
1787 inizializzare un semaforo in un'unica chiamata; occorre prima creare l'insieme
1788 dei semafori con \func{semget} e poi inizializzarlo con \func{semctl}, si
1789 perde così ogni possibilità di eseguire l'operazione atomicamente.
1790
1791 Il secondo difetto deriva dalla caratteristica generale degli oggetti del
1792 \textit{SysV IPC} di essere risorse globali di sistema, che non vengono
1793 cancellate quando nessuno le usa più; ci si così a trova a dover affrontare
1794 esplicitamente il caso in cui un processo termina per un qualche errore,
1795 lasciando un semaforo occupato, che resterà tale fino al successivo riavvio
1796 del sistema. Come vedremo esistono delle modalità per evitare tutto ciò, ma
1797 diventa necessario indicare esplicitamente che si vuole il ripristino del
1798 semaforo all'uscita del processo.
1799
1800 \begin{figure}[!htb]
1801   \footnotesize \centering
1802   \begin{minipage}[c]{\textwidth}
1803     \includestruct{listati/semid_ds.h}
1804   \end{minipage} 
1805   \normalsize 
1806   \caption{La struttura \structd{semid\_ds}, associata a ciascun insieme di
1807     semafori.}
1808   \label{fig:ipc_semid_ds}
1809 \end{figure}
1810
1811 A ciascun insieme di semafori è associata una struttura \struct{semid\_ds},
1812 riportata in fig.~\ref{fig:ipc_semid_ds}.\footnote{non si sono riportati i
1813   campi ad uso interno del kernel, che vedremo in
1814   fig.~\ref{fig:ipc_sem_schema}, che dipendono dall'implementazione.} Come nel
1815 caso delle code di messaggi quando si crea un nuovo insieme di semafori con
1816 \func{semget} questa struttura viene inizializzata, in particolare il campo
1817 \var{sem\_perm} viene inizializzato come illustrato in
1818 sez.~\ref{sec:ipc_sysv_access_control} (si ricordi che in questo caso il
1819 permesso di scrittura è in realtà permesso di alterare il semaforo), per
1820 quanto riguarda gli altri campi invece:
1821 \begin{itemize*}
1822 \item il campo \var{sem\_nsems}, che esprime il numero di semafori
1823   nell'insieme, viene inizializzato al valore di \param{nsems}.
1824 \item il campo \var{sem\_ctime}, che esprime il tempo di creazione
1825   dell'insieme, viene inizializzato al tempo corrente.
1826 \item il campo \var{sem\_otime}, che esprime il tempo dell'ultima operazione
1827   effettuata, viene inizializzato a zero.
1828 \end{itemize*}
1829
1830 Ciascun semaforo dell'insieme è realizzato come una struttura di tipo
1831 \struct{sem} che ne contiene i dati essenziali, la sua definizione\footnote{si
1832   è riportata la definizione originaria del kernel 1.0, che contiene la prima
1833   realizzazione del \textit{SysV IPC} in Linux. In realtà questa struttura
1834   ormai è ridotta ai soli due primi membri, e gli altri vengono calcolati
1835   dinamicamente. La si è utilizzata a scopo di esempio, perché indica tutti i
1836   valori associati ad un semaforo, restituiti dalle funzioni di controllo, e
1837   citati dalle pagine di manuale.} è riportata in fig.~\ref{fig:ipc_sem}.
1838 Questa struttura, non è accessibile in user space, ma i valori in essa
1839 specificati possono essere letti in maniera indiretta, attraverso l'uso delle
1840 funzioni di controllo.
1841
1842 \begin{figure}[!htb]
1843   \footnotesize \centering
1844   \begin{minipage}[c]{\textwidth}
1845     \includestruct{listati/sem.h}
1846   \end{minipage} 
1847   \normalsize 
1848   \caption{La struttura \structd{sem}, che contiene i dati di un singolo
1849     semaforo.} 
1850   \label{fig:ipc_sem}
1851 \end{figure}
1852
1853 I dati mantenuti nella struttura, ed elencati in fig.~\ref{fig:ipc_sem},
1854 indicano rispettivamente:
1855 \begin{description*}
1856 \item[\var{semval}] il valore numerico del semaforo.
1857 \item[\var{sempid}] il \ids{PID} dell'ultimo processo che ha eseguito una
1858   operazione sul semaforo.
1859 \item[\var{semncnt}] il numero di processi in attesa che esso venga
1860   incrementato.
1861 \item[\var{semzcnt}] il numero di processi in attesa che esso si annulli.
1862 \end{description*}
1863
1864 \begin{table}[htb]
1865   \footnotesize
1866   \centering
1867   \begin{tabular}[c]{|c|r|p{8cm}|}
1868     \hline
1869     \textbf{Costante} & \textbf{Valore} & \textbf{Significato} \\
1870     \hline
1871     \hline
1872     \const{SEMMNI}&          128 & Numero massimo di insiemi di semafori.\\
1873     \const{SEMMSL}&          250 & Numero massimo di semafori per insieme.\\
1874     \const{SEMMNS}&\const{SEMMNI}*\const{SEMMSL}& Numero massimo di semafori
1875                                    nel sistema.\\
1876     \const{SEMVMX}&        32767 & Massimo valore per un semaforo.\\
1877     \const{SEMOPM}&           32 & Massimo numero di operazioni per chiamata a
1878                                    \func{semop}. \\
1879     \const{SEMMNU}&\const{SEMMNS}& Massimo numero di strutture di ripristino.\\
1880     \const{SEMUME}&\const{SEMOPM}& Massimo numero di voci di ripristino.\\
1881     \const{SEMAEM}&\const{SEMVMX}& Valore massimo per l'aggiustamento
1882                                    all'uscita. \\
1883     \hline
1884   \end{tabular}
1885   \caption{Valori delle costanti associate ai limiti degli insiemi di
1886     semafori, definite in \file{linux/sem.h}.} 
1887   \label{tab:ipc_sem_limits}
1888 \end{table}
1889
1890 Come per le code di messaggi anche per gli insiemi di semafori esistono una
1891 serie di limiti, i cui valori sono associati ad altrettante costanti, che si
1892 sono riportate in tab.~\ref{tab:ipc_sem_limits}. Alcuni di questi limiti sono
1893 al solito accessibili e modificabili attraverso \func{sysctl} o scrivendo
1894 direttamente nel file \sysctlfile{kernel/sem}.
1895
1896 La funzione che permette di effettuare le varie operazioni di controllo sui
1897 semafori (fra le quali, come accennato, è impropriamente compresa anche la
1898 loro inizializzazione) è \funcd{semctl}; il suo prototipo è:
1899 \begin{functions}
1900   \headdecl{sys/types.h} 
1901   \headdecl{sys/ipc.h} 
1902   \headdecl{sys/sem.h} 
1903   
1904   \funcdecl{int semctl(int semid, int semnum, int cmd)}
1905   \funcdecl{int semctl(int semid, int semnum, int cmd, union semun arg)}
1906   
1907   Esegue le operazioni di controllo su un semaforo o un insieme di semafori.
1908   
1909   \bodydesc{La funzione restituisce in caso di successo un valore positivo
1910     quanto usata con tre argomenti ed un valore nullo quando usata con
1911     quattro. In caso di errore restituisce -1, ed \var{errno} assumerà uno dei
1912     valori:
1913     \begin{errlist}
1914     \item[\errcode{EACCES}] il processo non ha i privilegi per eseguire
1915       l'operazione richiesta.
1916     \item[\errcode{EIDRM}] l'insieme di semafori è stato cancellato.
1917     \item[\errcode{EPERM}] si è richiesto \const{IPC\_SET} o \const{IPC\_RMID}
1918       ma il processo non ha privilegi sufficienti ad eseguire l'operazione.
1919     \item[\errcode{ERANGE}] si è richiesto \const{SETALL} \const{SETVAL} ma il
1920       valore a cui si vuole impostare il semaforo è minore di zero o maggiore
1921       di \const{SEMVMX}.
1922   \end{errlist}
1923   ed inoltre \errval{EFAULT} ed \errval{EINVAL}.
1924 }
1925 \end{functions}
1926
1927 La funzione può avere tre o quattro argomenti, a seconda dell'operazione
1928 specificata con \param{cmd}, ed opera o sull'intero insieme specificato da
1929 \param{semid} o sul singolo semaforo di un insieme, specificato da
1930 \param{semnum}. 
1931
1932 \begin{figure}[!htb]
1933   \footnotesize \centering
1934   \begin{minipage}[c]{\textwidth}
1935     \includestruct{listati/semun.h}
1936   \end{minipage} 
1937   \normalsize 
1938   \caption{La definizione dei possibili valori di una \direct{union}
1939     \structd{semun}, usata come quarto argomento della funzione
1940     \func{semctl}.}
1941   \label{fig:ipc_semun}
1942 \end{figure}
1943
1944 Qualora la funzione operi con quattro argomenti \param{arg} è un argomento
1945 generico, che conterrà un dato diverso a seconda dell'azione richiesta; per
1946 unificare l'argomento esso deve essere passato come una \struct{semun}, la cui
1947 definizione, con i possibili valori che può assumere, è riportata in
1948 fig.~\ref{fig:ipc_semun}.
1949
1950 Come già accennato sia il comportamento della funzione che il numero di
1951 argomenti con cui deve essere invocata dipendono dal valore dell'argomento
1952 \param{cmd}, che specifica l'azione da intraprendere; i valori validi (che
1953 cioè non causano un errore di \errcode{EINVAL}) per questo argomento sono i
1954 seguenti:
1955 \begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
1956 \item[\const{IPC\_STAT}] Legge i dati dell'insieme di semafori, copiando il
1957   contenuto della relativa struttura \struct{semid\_ds} all'indirizzo
1958   specificato con \var{arg.buf}. Occorre avere il permesso di lettura.
1959   L'argomento \param{semnum} viene ignorato.
1960 \item[\const{IPC\_RMID}] Rimuove l'insieme di semafori e le relative strutture
1961   dati, con effetto immediato. Tutti i processi che erano stato di
1962   \textit{sleep} vengono svegliati, ritornando con un errore di
1963   \errcode{EIDRM}.  L'\ids{UID} effettivo del processo deve corrispondere o al
1964   creatore o al proprietario dell'insieme, o all'amministratore. L'argomento
1965   \param{semnum} viene ignorato.
1966 \item[\const{IPC\_SET}] Permette di modificare i permessi ed il proprietario
1967   dell'insieme. I valori devono essere passati in una struttura
1968   \struct{semid\_ds} puntata da \param{arg.buf} di cui saranno usati soltanto i
1969   campi \var{sem\_perm.uid}, \var{sem\_perm.gid} e i nove bit meno
1970   significativi di \var{sem\_perm.mode}. L'\ids{UID} effettivo del processo deve
1971   corrispondere o al creatore o al proprietario dell'insieme, o
1972   all'amministratore.  L'argomento \param{semnum} viene ignorato.
1973 \item[\const{GETALL}] Restituisce il valore corrente di ciascun semaforo
1974   dell'insieme (corrispondente al campo \var{semval} di \struct{sem}) nel
1975   vettore indicato da \param{arg.array}. Occorre avere il permesso di lettura.
1976   L'argomento \param{semnum} viene ignorato.
1977 \item[\const{GETNCNT}] Restituisce come valore di ritorno della funzione il
1978   numero di processi in attesa che il semaforo \param{semnum} dell'insieme
1979   \param{semid} venga incrementato (corrispondente al campo \var{semncnt} di
1980   \struct{sem}); va invocata con tre argomenti.  Occorre avere il permesso di
1981   lettura.
1982 \item[\const{GETPID}] Restituisce come valore di ritorno della funzione il
1983   \ids{PID} dell'ultimo processo che ha compiuto una operazione sul semaforo
1984   \param{semnum} dell'insieme \param{semid} (corrispondente al campo
1985   \var{sempid} di \struct{sem}); va invocata con tre argomenti.  Occorre avere
1986   il permesso di lettura.
1987 \item[\const{GETVAL}] Restituisce come valore di ritorno della funzione il il
1988   valore corrente del semaforo \param{semnum} dell'insieme \param{semid}
1989   (corrispondente al campo \var{semval} di \struct{sem}); va invocata con tre
1990   argomenti.  Occorre avere il permesso di lettura.
1991 \item[\const{GETZCNT}] Restituisce come valore di ritorno della funzione il
1992   numero di processi in attesa che il valore del semaforo \param{semnum}
1993   dell'insieme \param{semid} diventi nullo (corrispondente al campo
1994   \var{semncnt} di \struct{sem}); va invocata con tre argomenti.  Occorre avere
1995   il permesso di lettura.
1996 \item[\const{SETALL}] Inizializza il valore di tutti i semafori dell'insieme,
1997   aggiornando il campo \var{sem\_ctime} di \struct{semid\_ds}. I valori devono
1998   essere passati nel vettore indicato da \param{arg.array}.  Si devono avere i
1999   privilegi di scrittura sul semaforo.  L'argomento \param{semnum} viene
2000   ignorato.
2001 \item[\const{SETVAL}] Inizializza il semaforo \param{semnum} al valore passato
2002   dall'argomento \param{arg.val}, aggiornando il campo \var{sem\_ctime} di
2003   \struct{semid\_ds}.  Si devono avere i privilegi di scrittura sul semaforo.
2004 \end{basedescript}
2005
2006 Quando si imposta il valore di un semaforo (sia che lo si faccia per tutto
2007 l'insieme con \const{SETALL}, che per un solo semaforo con \const{SETVAL}), i
2008 processi in attesa su di esso reagiscono di conseguenza al cambiamento di
2009 valore.  Inoltre la coda delle operazioni di ripristino viene cancellata per
2010 tutti i semafori il cui valore viene modificato.
2011
2012 \begin{table}[htb]
2013   \footnotesize
2014   \centering
2015   \begin{tabular}[c]{|c|l|}
2016     \hline
2017     \textbf{Operazione}  & \textbf{Valore restituito} \\
2018     \hline
2019     \hline
2020     \const{GETNCNT}& Valore di \var{semncnt}.\\
2021     \const{GETPID} & Valore di \var{sempid}.\\
2022     \const{GETVAL} & Valore di \var{semval}.\\
2023     \const{GETZCNT}& Valore di \var{semzcnt}.\\
2024     \hline
2025   \end{tabular}
2026   \caption{Valori di ritorno della funzione \func{semctl}.} 
2027   \label{tab:ipc_semctl_returns}
2028 \end{table}
2029
2030 Il valore di ritorno della funzione in caso di successo dipende
2031 dall'operazione richiesta; per tutte le operazioni che richiedono quattro
2032 argomenti esso è sempre nullo, per le altre operazioni, elencate in
2033 tab.~\ref{tab:ipc_semctl_returns} viene invece restituito il valore richiesto,
2034 corrispondente al campo della struttura \struct{sem} indicato nella seconda
2035 colonna della tabella.
2036
2037 Le operazioni ordinarie sui semafori, come l'acquisizione o il rilascio degli
2038 stessi (in sostanza tutte quelle non comprese nell'uso di \func{semctl})
2039 vengono effettuate con la funzione \funcd{semop}, il cui prototipo è:
2040 \begin{functions}
2041   \headdecl{sys/types.h} 
2042   \headdecl{sys/ipc.h} 
2043   \headdecl{sys/sem.h} 
2044   
2045   \funcdecl{int semop(int semid, struct sembuf *sops, unsigned nsops)}
2046   
2047   Esegue le operazioni ordinarie su un semaforo o un insieme di semafori.
2048   
2049   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2050     errore, nel qual caso \var{errno} assumerà uno dei valori:
2051     \begin{errlist}
2052     \item[\errcode{EACCES}] il processo non ha i privilegi per eseguire
2053       l'operazione richiesta.
2054     \item[\errcode{EIDRM}] l'insieme di semafori è stato cancellato.
2055     \item[\errcode{ENOMEM}] si è richiesto un \const{SEM\_UNDO} ma il sistema
2056       non ha le risorse per allocare la struttura di ripristino.
2057     \item[\errcode{EAGAIN}] un'operazione comporterebbe il blocco del processo,
2058       ma si è specificato \const{IPC\_NOWAIT} in \var{sem\_flg}.
2059     \item[\errcode{EINTR}] la funzione, bloccata in attesa dell'esecuzione
2060       dell'operazione, viene interrotta da un segnale.
2061     \item[\errcode{E2BIG}] l'argomento \param{nsops} è maggiore del numero
2062       massimo di operazioni \const{SEMOPM}.
2063     \item[\errcode{ERANGE}] per alcune operazioni il valore risultante del
2064       semaforo viene a superare il limite massimo \const{SEMVMX}.
2065   \end{errlist}
2066   ed inoltre \errval{EFAULT} ed \errval{EINVAL}.
2067 }
2068 \end{functions}
2069
2070 La funzione permette di eseguire operazioni multiple sui singoli semafori di
2071 un insieme. La funzione richiede come primo argomento l'identificatore
2072 \param{semid} dell'insieme su cui si vuole operare. Il numero di operazioni da
2073 effettuare viene specificato con l'argomento \param{nsop}, mentre il loro
2074 contenuto viene passato con un puntatore ad un vettore di strutture
2075 \struct{sembuf} nell'argomento \param{sops}. Le operazioni richieste vengono
2076 effettivamente eseguite se e soltanto se è possibile effettuarle tutte quante.
2077
2078 \begin{figure}[!htb]
2079   \footnotesize \centering
2080   \begin{minipage}[c]{\textwidth}
2081     \includestruct{listati/sembuf.h}
2082   \end{minipage} 
2083   \normalsize 
2084   \caption{La struttura \structd{sembuf}, usata per le operazioni sui
2085     semafori.}
2086   \label{fig:ipc_sembuf}
2087 \end{figure}
2088
2089 Il contenuto di ciascuna operazione deve essere specificato attraverso una
2090 opportuna struttura \struct{sembuf} (la cui definizione è riportata in
2091 fig.~\ref{fig:ipc_sembuf}) che il programma chiamante deve avere cura di
2092 allocare in un opportuno vettore. La struttura permette di indicare il
2093 semaforo su cui operare, il tipo di operazione, ed un flag di controllo.
2094 Il campo \var{sem\_num} serve per indicare a quale semaforo dell'insieme fa
2095 riferimento l'operazione; si ricordi che i semafori sono numerati come in un
2096 vettore, per cui il primo semaforo corrisponde ad un valore nullo di
2097 \var{sem\_num}.
2098
2099 Il campo \var{sem\_flg} è un flag, mantenuto come maschera binaria, per il
2100 quale possono essere impostati i due valori \const{IPC\_NOWAIT} e
2101 \const{SEM\_UNDO}.  Impostando \const{IPC\_NOWAIT} si fa si che, invece di
2102 bloccarsi (in tutti quei casi in cui l'esecuzione di una operazione richiede
2103 che il processo vada in stato di \textit{sleep}), \func{semop} ritorni
2104 immediatamente con un errore di \errcode{EAGAIN}.  Impostando \const{SEM\_UNDO}
2105 si richiede invece che l'operazione venga registrata in modo che il valore del
2106 semaforo possa essere ripristinato all'uscita del processo.
2107
2108 Infine \var{sem\_op} è il campo che controlla l'operazione che viene eseguita
2109 e determina il comportamento della chiamata a \func{semop}; tre sono i casi
2110 possibili:
2111 \begin{basedescript}{\desclabelwidth{2.0cm}}
2112 \item[\var{sem\_op}$>0$] In questo caso il valore di \var{sem\_op} viene
2113   aggiunto al valore corrente di \var{semval}. La funzione ritorna
2114   immediatamente (con un errore di \errcode{ERANGE} qualora si sia superato il
2115   limite \const{SEMVMX}) ed il processo non viene bloccato in nessun caso.
2116   Specificando \const{SEM\_UNDO} si aggiorna il contatore per il ripristino
2117   del valore del semaforo. Al processo chiamante è richiesto il privilegio di
2118   alterazione (scrittura) sull'insieme di semafori.
2119   
2120 \item[\var{sem\_op}$=0$] Nel caso \var{semval} sia zero l'esecuzione procede
2121   immediatamente. Se \var{semval} è diverso da zero il comportamento è
2122   controllato da \var{sem\_flg}, se è stato impostato \const{IPC\_NOWAIT} la
2123   funzione ritorna con un errore di \errcode{EAGAIN}, altrimenti viene
2124   incrementato \var{semzcnt} di uno ed il processo resta in stato di
2125   \textit{sleep} fintanto che non si ha una delle condizioni seguenti:
2126   \begin{itemize*}
2127   \item \var{semval} diventa zero, nel qual caso \var{semzcnt} viene
2128     decrementato di uno.
2129   \item l'insieme di semafori viene rimosso, nel qual caso \func{semop} ritorna
2130     un errore di \errcode{EIDRM}.
2131   \item il processo chiamante riceve un segnale, nel qual caso \var{semzcnt}
2132     viene decrementato di uno e \func{semop} ritorna un errore di
2133     \errcode{EINTR}.
2134   \end{itemize*}
2135   Al processo chiamante è richiesto il privilegio di lettura dell'insieme dei
2136   semafori.
2137   
2138 \item[\var{sem\_op}$<0$] Nel caso in cui \var{semval} è maggiore o uguale del
2139   valore assoluto di \var{sem\_op} (se cioè la somma dei due valori resta
2140   positiva o nulla) i valori vengono sommati e la funzione ritorna
2141   immediatamente; qualora si sia impostato \const{SEM\_UNDO} viene anche
2142   aggiornato il contatore per il ripristino del valore del semaforo. In caso
2143   contrario (quando cioè la somma darebbe luogo ad un valore di \var{semval}
2144   negativo) se si è impostato \const{IPC\_NOWAIT} la funzione ritorna con un
2145   errore di \errcode{EAGAIN}, altrimenti viene incrementato di uno
2146   \var{semncnt} ed il processo resta in stato di \textit{sleep} fintanto che
2147   non si ha una delle condizioni seguenti:
2148   \begin{itemize*}
2149   \item \var{semval} diventa maggiore o uguale del valore assoluto di
2150     \var{sem\_op}, nel qual caso \var{semncnt} viene decrementato di uno, il
2151     valore di \var{sem\_op} viene sommato a \var{semval}, e se era stato
2152     impostato \const{SEM\_UNDO} viene aggiornato il contatore per il
2153     ripristino del valore del semaforo.
2154   \item l'insieme di semafori viene rimosso, nel qual caso \func{semop}
2155     ritorna un errore di \errcode{EIDRM}.
2156   \item il processo chiamante riceve un segnale, nel qual caso \var{semncnt}
2157     viene decrementato di uno e \func{semop} ritorna un errore di
2158     \errcode{EINTR}.
2159   \end{itemize*}    
2160   Al processo chiamante è richiesto il privilegio di alterazione (scrittura)
2161   sull'insieme di semafori.
2162 \end{basedescript}
2163
2164 In caso di successo della funzione viene aggiornato il campo \var{sempid} per
2165 ogni semaforo modificato al valore del \ids{PID} del processo chiamante;
2166 inoltre vengono pure aggiornati al tempo corrente i campi \var{sem\_otime} e
2167 \var{sem\_ctime}.
2168
2169 Dato che, come già accennato in precedenza, in caso di uscita inaspettata i
2170 semafori possono restare occupati, abbiamo visto come \func{semop} permetta di
2171 attivare un meccanismo di ripristino attraverso l'uso del flag
2172 \const{SEM\_UNDO}. Il meccanismo è implementato tramite una apposita struttura
2173 \kstruct{sem\_undo}, associata ad ogni processo per ciascun semaforo che esso
2174 ha modificato; all'uscita i semafori modificati vengono ripristinati, e le
2175 strutture disallocate.  Per mantenere coerente il comportamento queste
2176 strutture non vengono ereditate attraverso una \func{fork} (altrimenti si
2177 avrebbe un doppio ripristino), mentre passano inalterate nell'esecuzione di
2178 una \func{exec} (altrimenti non si avrebbe ripristino).
2179
2180 Tutto questo però ha un problema di fondo. Per capire di cosa si tratta
2181 occorre fare riferimento all'implementazione usata in Linux, che è riportata
2182 in maniera semplificata nello schema di fig.~\ref{fig:ipc_sem_schema}.  Si è
2183 presa come riferimento l'architettura usata fino al kernel 2.2.x che è più
2184 semplice (ed illustrata in dettaglio in \cite{tlk}); nel kernel 2.4.x la
2185 struttura del \textit{SysV IPC} è stata modificata, ma le definizioni relative
2186 a queste strutture restano per compatibilità.\footnote{in particolare con le
2187   vecchie versioni delle librerie del C, come le libc5.}
2188
2189 \begin{figure}[!htb]
2190   \centering \includegraphics[width=13cm]{img/semtruct}
2191   \caption{Schema della struttura di un insieme di semafori.}
2192   \label{fig:ipc_sem_schema}
2193 \end{figure}
2194
2195 Alla creazione di un nuovo insieme viene allocata una nuova strutture
2196 \struct{semid\_ds} ed il relativo vettore di strutture \struct{sem}. Quando si
2197 richiede una operazione viene anzitutto verificato che tutte le operazioni
2198 possono avere successo; se una di esse comporta il blocco del processo il
2199 kernel crea una struttura \kstruct{sem\_queue} che viene aggiunta in fondo alla
2200 coda di attesa associata a ciascun insieme di semafori\footnote{che viene
2201   referenziata tramite i campi \var{sem\_pending} e \var{sem\_pending\_last}
2202   di \struct{semid\_ds}.}. 
2203
2204 Nella struttura viene memorizzato il riferimento alle operazioni richieste
2205 (nel campo \var{sops}, che è un puntatore ad una struttura \struct{sembuf}) e
2206 al processo corrente (nel campo \var{sleeper}) poi quest'ultimo viene messo
2207 stato di attesa e viene invocato lo \itindex{scheduler} scheduler per passare
2208 all'esecuzione di un altro processo.
2209
2210 Se invece tutte le operazioni possono avere successo queste vengono eseguite
2211 immediatamente, dopo di che il kernel esegue una scansione della coda di
2212 attesa (a partire da \var{sem\_pending}) per verificare se qualcuna delle
2213 operazioni sospese in precedenza può essere eseguita, nel qual caso la
2214 struttura \kstruct{sem\_queue} viene rimossa e lo stato del processo associato
2215 all'operazione (\var{sleeper}) viene riportato a \textit{running}; il tutto
2216 viene ripetuto fin quando non ci sono più operazioni eseguibili o si è
2217 svuotata la coda.  Per gestire il meccanismo del ripristino tutte le volte che
2218 per un'operazione si è specificato il flag \const{SEM\_UNDO} viene mantenuta
2219 per ciascun insieme di semafori una apposita struttura \kstruct{sem\_undo} che
2220 contiene (nel vettore puntato dal campo \var{semadj}) un valore di
2221 aggiustamento per ogni semaforo cui viene sommato l'opposto del valore usato
2222 per l'operazione.
2223
2224 %TODO verificare queste strutture \kstruct{sem\_queue} e \kstruct{sem\_undo}
2225
2226 Queste strutture sono mantenute in due liste,\footnote{rispettivamente
2227   attraverso i due campi \var{id\_next} e \var{proc\_next}.} una associata
2228 all'insieme di cui fa parte il semaforo, che viene usata per invalidare le
2229 strutture se questo viene cancellato o per azzerarle se si è eseguita una
2230 operazione con \func{semctl}; l'altra associata al processo che ha eseguito
2231 l'operazione;\footnote{attraverso il campo \var{semundo} di
2232   \kstruct{task\_struct}, come mostrato in \ref{fig:ipc_sem_schema}.} quando un
2233 processo termina, la lista ad esso associata viene scandita e le operazioni
2234 applicate al semaforo.  Siccome un processo può accumulare delle richieste di
2235 ripristino per semafori differenti chiamate attraverso diverse chiamate a
2236 \func{semop}, si pone il problema di come eseguire il ripristino dei semafori
2237 all'uscita del processo, ed in particolare se questo può essere fatto
2238 atomicamente.
2239
2240 Il punto è cosa succede quando una delle operazioni previste per il ripristino
2241 non può essere eseguita immediatamente perché ad esempio il semaforo è
2242 occupato; in tal caso infatti, se si pone il processo in stato di
2243 \textit{sleep} aspettando la disponibilità del semaforo (come faceva
2244 l'implementazione originaria) si perde l'atomicità dell'operazione. La scelta
2245 fatta dal kernel è pertanto quella di effettuare subito le operazioni che non
2246 prevedono un blocco del processo e di ignorare silenziosamente le altre;
2247 questo però comporta il fatto che il ripristino non è comunque garantito in
2248 tutte le occasioni.
2249
2250 Come esempio di uso dell'interfaccia dei semafori vediamo come implementare
2251 con essa dei semplici \textit{mutex} (cioè semafori binari), tutto il codice
2252 in questione, contenuto nel file \file{Mutex.c} allegato ai sorgenti, è
2253 riportato in fig.~\ref{fig:ipc_mutex_create}. Utilizzeremo l'interfaccia per
2254 creare un insieme contenente un singolo semaforo, per il quale poi useremo un
2255 valore unitario per segnalare la disponibilità della risorsa, ed un valore
2256 nullo per segnalarne l'indisponibilità. 
2257
2258 \begin{figure}[!htbp]
2259   \footnotesize \centering
2260   \begin{minipage}[c]{\codesamplewidth}
2261     \includecodesample{listati/Mutex.c}
2262   \end{minipage} 
2263   \normalsize 
2264   \caption{Il codice delle funzioni che permettono di creare o recuperare
2265     l'identificatore di un semaforo da utilizzare come \textit{mutex}.}
2266   \label{fig:ipc_mutex_create}
2267 \end{figure}
2268
2269 La prima funzione (\texttt{\small 2--15}) è \func{MutexCreate} che data una
2270 chiave crea il semaforo usato per il mutex e lo inizializza, restituendone
2271 l'identificatore. Il primo passo (\texttt{\small 6}) è chiamare \func{semget}
2272 con \const{IPC\_CREATE} per creare il semaforo qualora non esista,
2273 assegnandogli i privilegi di lettura e scrittura per tutti. In caso di errore
2274 (\texttt{\small 7--9}) si ritorna subito il risultato di \func{semget},
2275 altrimenti (\texttt{\small 10}) si inizializza il semaforo chiamando
2276 \func{semctl} con il comando \const{SETVAL}, utilizzando l'unione
2277 \struct{semunion} dichiarata ed avvalorata in precedenza (\texttt{\small 4})
2278 ad 1 per significare che risorsa è libera. In caso di errore (\texttt{\small
2279   11--13}) si restituisce il valore di ritorno di \func{semctl}, altrimenti
2280 (\texttt{\small 14}) si ritorna l'identificatore del semaforo.
2281
2282 La seconda funzione (\texttt{\small 17--20}) è \func{MutexFind}, che, data una
2283 chiave, restituisce l'identificatore del semaforo ad essa associato. La
2284 comprensione del suo funzionamento è immediata in quanto essa è soltanto un
2285 \textit{wrapper}\footnote{si chiama così una funzione usata per fare da
2286   \textsl{involucro} alla chiamata di un altra, usata in genere per
2287   semplificare un'interfaccia (come in questo caso) o per utilizzare con la
2288   stessa funzione diversi substrati (librerie, ecc.)  che possono fornire le
2289   stesse funzionalità.} di una chiamata a \func{semget} per cercare
2290 l'identificatore associato alla chiave, il valore di ritorno di quest'ultima
2291 viene passato all'indietro al chiamante.
2292
2293 La terza funzione (\texttt{\small 22--25}) è \func{MutexRead} che, dato un
2294 identificatore, restituisce il valore del semaforo associato al mutex. Anche
2295 in questo caso la funzione è un \textit{wrapper} per una chiamata a
2296 \func{semctl} con il comando \const{GETVAL}, che permette di restituire il
2297 valore del semaforo.
2298
2299 La quarta e la quinta funzione (\texttt{\small 36--44}) sono \func{MutexLock},
2300 e \func{MutexUnlock}, che permettono rispettivamente di bloccare e sbloccare
2301 il mutex. Entrambe fanno da wrapper per \func{semop}, utilizzando le due
2302 strutture \var{sem\_lock} e \var{sem\_unlock} definite in precedenza
2303 (\texttt{\small 27--34}). Si noti come per queste ultime si sia fatto uso
2304 dell'opzione \const{SEM\_UNDO} per evitare che il semaforo resti bloccato in
2305 caso di terminazione imprevista del processo.
2306
2307 L'ultima funzione (\texttt{\small 46--49}) della serie, è \func{MutexRemove},
2308 che rimuove il mutex. Anche in questo caso si ha un wrapper per una chiamata a
2309 \func{semctl} con il comando \const{IPC\_RMID}, che permette di cancellare il
2310 semaforo; il valore di ritorno di quest'ultima viene passato all'indietro.
2311
2312 Chiamare \func{MutexLock} decrementa il valore del semaforo: se questo è
2313 libero (ha già valore 1) sarà bloccato (valore nullo), se è bloccato la
2314 chiamata a \func{semop} si bloccherà fintanto che la risorsa non venga
2315 rilasciata. Chiamando \func{MutexUnlock} il valore del semaforo sarà
2316 incrementato di uno, sbloccandolo qualora fosse bloccato.  
2317
2318 Si noti che occorre eseguire sempre prima \func{MutexLock} e poi
2319 \func{MutexUnlock}, perché se per un qualche errore si esegue più volte
2320 quest'ultima il valore del semaforo crescerebbe oltre 1, e \func{MutexLock}
2321 non avrebbe più l'effetto aspettato (bloccare la risorsa quando questa è
2322 considerata libera).  Infine si tenga presente che usare \func{MutexRead} per
2323 controllare il valore dei mutex prima di proseguire in una operazione di
2324 sblocco non servirebbe comunque, dato che l'operazione non sarebbe atomica.
2325 Vedremo in sez.~\ref{sec:ipc_lock_file} come sia possibile ottenere
2326 un'interfaccia analoga a quella appena illustrata, senza incorrere in questi
2327 problemi, usando il \itindex{file~locking} \textit{file locking}.
2328
2329
2330 \subsection{Memoria condivisa}
2331 \label{sec:ipc_sysv_shm}
2332
2333 Il terzo oggetto introdotto dal \textit{SysV IPC} è quello dei segmenti di
2334 memoria condivisa. La funzione che permette di ottenerne uno è \funcd{shmget},
2335 ed il suo prototipo è:
2336 \begin{functions}
2337   \headdecl{sys/types.h} 
2338   \headdecl{sys/ipc.h} 
2339   \headdecl{sys/shm.h}
2340   
2341   \funcdecl{int shmget(key\_t key, int size, int flag)}
2342   
2343   Restituisce l'identificatore di una memoria condivisa.
2344   
2345   \bodydesc{La funzione restituisce l'identificatore (un intero positivo) o -1
2346     in caso di errore, nel qual caso \var{errno} assumerà i valori:
2347     \begin{errlist}
2348     \item[\errcode{ENOSPC}] si è superato il limite (\const{SHMMNI}) sul numero
2349       di segmenti di memoria nel sistema, o cercato di allocare un segmento le
2350       cui dimensioni fanno superare il limite di sistema (\const{SHMALL}) per
2351       la memoria ad essi riservata.
2352     \item[\errcode{EINVAL}] si è richiesta una dimensione per un nuovo segmento
2353       maggiore di \const{SHMMAX} o minore di \const{SHMMIN}, o se il segmento
2354       già esiste \param{size} è maggiore delle sue dimensioni.
2355     \item[\errcode{ENOMEM}] il sistema non ha abbastanza memoria per poter
2356       contenere le strutture per un nuovo segmento di memoria condivisa.
2357     \end{errlist}
2358     ed inoltre \errval{EACCES}, \errval{ENOENT}, \errval{EEXIST},
2359     \errval{EIDRM}, con lo stesso significato che hanno per \func{msgget}.}
2360 \end{functions}
2361
2362 La funzione, come \func{semget}, è del tutto analoga a \func{msgget}, ed
2363 identico è l'uso degli argomenti \param{key} e \param{flag} per cui non
2364 ripeteremo quanto detto al proposito in sez.~\ref{sec:ipc_sysv_mq}. L'argomento
2365 \param{size} specifica invece la dimensione, in byte, del segmento, che viene
2366 comunque arrotondata al multiplo superiore di \const{PAGE\_SIZE}.
2367
2368 La memoria condivisa è la forma più veloce di comunicazione fra due processi,
2369 in quanto permette agli stessi di vedere nel loro spazio di indirizzi una
2370 stessa sezione di memoria.  Pertanto non è necessaria nessuna operazione di
2371 copia per trasmettere i dati da un processo all'altro, in quanto ciascuno può
2372 accedervi direttamente con le normali operazioni di lettura e scrittura dei
2373 dati in memoria.
2374
2375 Ovviamente tutto questo ha un prezzo, ed il problema fondamentale della
2376 memoria condivisa è la sincronizzazione degli accessi. È evidente infatti che
2377 se un processo deve scambiare dei dati con un altro, si deve essere sicuri che
2378 quest'ultimo non acceda al segmento di memoria condivisa prima che il primo
2379 non abbia completato le operazioni di scrittura, inoltre nel corso di una
2380 lettura si deve essere sicuri che i dati restano coerenti e non vengono
2381 sovrascritti da un accesso in scrittura sullo stesso segmento da parte di un
2382 altro processo. Per questo in genere la memoria condivisa viene sempre
2383 utilizzata in abbinamento ad un meccanismo di sincronizzazione, il che, di
2384 norma, significa insieme a dei semafori.
2385
2386 \begin{figure}[!htb]
2387   \footnotesize \centering
2388   \begin{minipage}[c]{\textwidth}
2389     \includestruct{listati/shmid_ds.h}
2390   \end{minipage} 
2391   \normalsize 
2392   \caption{La struttura \structd{shmid\_ds}, associata a ciascun segmento di
2393     memoria condivisa.}
2394   \label{fig:ipc_shmid_ds}
2395 \end{figure}
2396
2397 A ciascun segmento di memoria condivisa è associata una struttura
2398 \struct{shmid\_ds}, riportata in fig.~\ref{fig:ipc_shmid_ds}.  Come nel caso
2399 delle code di messaggi quando si crea un nuovo segmento di memoria condivisa
2400 con \func{shmget} questa struttura viene inizializzata, in particolare il
2401 campo \var{shm\_perm} viene inizializzato come illustrato in
2402 sez.~\ref{sec:ipc_sysv_access_control}, e valgono le considerazioni ivi fatte
2403 relativamente ai permessi di accesso; per quanto riguarda gli altri campi
2404 invece:
2405 \begin{itemize}
2406 \item il campo \var{shm\_segsz}, che esprime la dimensione del segmento, viene
2407   inizializzato al valore di \param{size}.
2408 \item il campo \var{shm\_ctime}, che esprime il tempo di creazione del
2409   segmento, viene inizializzato al tempo corrente.
2410 \item i campi \var{shm\_atime} e \var{shm\_dtime}, che esprimono
2411   rispettivamente il tempo dell'ultima volta che il segmento è stato
2412   agganciato o sganciato da un processo, vengono inizializzati a zero.
2413 \item il campo \var{shm\_lpid}, che esprime il \ids{PID} del processo che ha
2414   eseguito l'ultima operazione, viene inizializzato a zero.
2415 \item il campo \var{shm\_cpid}, che esprime il \ids{PID} del processo che ha
2416   creato il segmento, viene inizializzato al \ids{PID} del processo chiamante.
2417 \item il campo \var{shm\_nattac}, che esprime il numero di processi agganciati
2418   al segmento viene inizializzato a zero.
2419 \end{itemize}
2420
2421 Come per le code di messaggi e gli insiemi di semafori, anche per i segmenti
2422 di memoria condivisa esistono una serie di limiti imposti dal sistema.  Alcuni
2423 di questi limiti sono al solito accessibili e modificabili attraverso
2424 \func{sysctl} o scrivendo direttamente nei rispettivi file di
2425 \file{/proc/sys/kernel/}. 
2426
2427 In tab.~\ref{tab:ipc_shm_limits} si sono riportate le
2428 costanti simboliche associate a ciascuno di essi, il loro significato, i
2429 valori preimpostati, e, quando presente, il file in \file{/proc/sys/kernel/}
2430 che permettono di cambiarne il valore. 
2431
2432
2433 \begin{table}[htb]
2434   \footnotesize
2435   \centering
2436   \begin{tabular}[c]{|c|r|c|p{7cm}|}
2437     \hline
2438     \textbf{Costante} & \textbf{Valore} & \textbf{File in \texttt{proc}}
2439     & \textbf{Significato} \\
2440     \hline
2441     \hline
2442     \const{SHMALL}& 0x200000&\sysctlrelfile{kernel}{shmall}
2443                             & Numero massimo di pagine che 
2444                               possono essere usate per i segmenti di
2445                               memoria condivisa.\\
2446     \const{SHMMAX}&0x2000000&\sysctlrelfile{kernel}{shmmax} 
2447                             & Dimensione massima di un segmento di memoria
2448                               condivisa.\\ 
2449     \const{SHMMNI}&     4096&\sysctlrelfile{kernel}{msgmni}
2450                             & Numero massimo di segmenti di memoria condivisa
2451                               presenti nel kernel.\\ 
2452     \const{SHMMIN}&        1& ---         & Dimensione minima di un segmento di
2453                                             memoria condivisa.\\
2454     \const{SHMLBA}&\const{PAGE\_SIZE}&--- & Limite inferiore per le dimensioni
2455                                             minime di un segmento (deve essere
2456                                             allineato alle dimensioni di una
2457                                             pagina di memoria).\\
2458     \const{SHMSEG}&   ---   &     ---     & Numero massimo di segmenti di
2459                                             memoria condivisa per ciascun
2460                                             processo.\\
2461
2462
2463     \hline
2464   \end{tabular}
2465   \caption{Valori delle costanti associate ai limiti dei segmenti di memoria
2466     condivisa, insieme al relativo file in \file{/proc/sys/kernel/} ed al
2467     valore preimpostato presente nel sistema.} 
2468   \label{tab:ipc_shm_limits}
2469 \end{table}
2470
2471 Al solito la funzione che permette di effettuare le operazioni di controllo su
2472 un segmento di memoria condivisa è \funcd{shmctl}; il suo prototipo è:
2473 \begin{functions}
2474   \headdecl{sys/ipc.h} 
2475   \headdecl{sys/shm.h}
2476   
2477   \funcdecl{int shmctl(int shmid, int cmd, struct shmid\_ds *buf)}
2478   
2479   Esegue le operazioni di controllo su un segmento di memoria condivisa.
2480   
2481   \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2482     errore, nel qual caso \var{errno} assumerà i valori:
2483     \begin{errlist}
2484     \item[\errcode{EACCES}] si è richiesto \const{IPC\_STAT} ma i permessi non
2485       consentono l'accesso in lettura al segmento.
2486     \item[\errcode{EINVAL}] o \param{shmid} non è un identificatore valido o
2487       \param{cmd} non è un comando valido.
2488     \item[\errcode{EIDRM}] l'argomento \param{shmid} fa riferimento ad un
2489       segmento che è stato cancellato.
2490     \item[\errcode{EPERM}] si è specificato un comando con \const{IPC\_SET} o
2491       \const{IPC\_RMID} senza i permessi necessari.
2492     \item[\errcode{EOVERFLOW}] si è tentato il comando \const{IPC\_STAT} ma il
2493       valore del \ids{GID} o dell'\ids{UID} è troppo grande per essere
2494       memorizzato nella struttura puntata da \param{buf}.
2495     \item[\errcode{EFAULT}] l'indirizzo specificato con \param{buf} non è
2496       valido.
2497     \end{errlist}
2498 }
2499 \end{functions}
2500
2501 Il comando specificato attraverso l'argomento \param{cmd} determina i diversi
2502 effetti della funzione; i possibili valori che esso può assumere, ed il
2503 corrispondente comportamento della funzione, sono i seguenti:
2504
2505 \begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
2506 \item[\const{IPC\_STAT}] Legge le informazioni riguardo il segmento di memoria
2507   condivisa nella struttura \struct{shmid\_ds} puntata da \param{buf}. Occorre
2508   che il processo chiamante abbia il permesso di lettura sulla segmento.
2509 \item[\const{IPC\_RMID}] Marca il segmento di memoria condivisa per la
2510   rimozione, questo verrà cancellato effettivamente solo quando l'ultimo
2511   processo ad esso agganciato si sarà staccato. Questo comando può essere
2512   eseguito solo da un processo con \ids{UID} effettivo corrispondente o al
2513   creatore del segmento, o al proprietario del segmento, o all'amministratore.
2514 \item[\const{IPC\_SET}] Permette di modificare i permessi ed il proprietario
2515   del segmento.  Per modificare i valori di \var{shm\_perm.mode},
2516   \var{shm\_perm.uid} e \var{shm\_perm.gid} occorre essere il proprietario o
2517   il creatore del segmento, oppure l'amministratore. Compiuta l'operazione
2518   aggiorna anche il valore del campo \var{shm\_ctime}.
2519 \item[\const{SHM\_LOCK}] Abilita il \itindex{memory~locking} \textit{memory
2520     locking}\footnote{impedisce cioè che la memoria usata per il segmento
2521     venga salvata su disco dal meccanismo della \index{memoria~virtuale}
2522     memoria virtuale; si ricordi quanto trattato in
2523     sez.~\ref{sec:proc_mem_lock}.} sul segmento di memoria condivisa. Solo
2524   l'amministratore può utilizzare questo comando.
2525 \item[\const{SHM\_UNLOCK}] Disabilita il \itindex{memory~locking}
2526   \textit{memory locking} sul segmento di memoria condivisa.  Solo
2527   l'amministratore può utilizzare questo comando.
2528 \end{basedescript}
2529 i primi tre comandi sono gli stessi già visti anche per le code di messaggi e
2530 gli insiemi di semafori, gli ultimi due sono delle estensioni specifiche
2531 previste da Linux, che permettono di abilitare e disabilitare il meccanismo
2532 della \index{memoria~virtuale} memoria virtuale per il segmento.
2533
2534 L'argomento \param{buf} viene utilizzato solo con i comandi \const{IPC\_STAT}
2535 e \const{IPC\_SET} nel qual caso esso dovrà puntare ad una struttura
2536 \struct{shmid\_ds} precedentemente allocata, in cui nel primo caso saranno
2537 scritti i dati del segmento di memoria restituiti dalla funzione e da cui, nel
2538 secondo caso, verranno letti i dati da impostare sul segmento.
2539
2540 Una volta che lo si è creato, per utilizzare un segmento di memoria condivisa
2541 l'interfaccia prevede due funzioni, \funcd{shmat} e \func{shmdt}. La prima di
2542 queste serve ad agganciare un segmento al processo chiamante, in modo che
2543 quest'ultimo possa inserirlo nel suo spazio di indirizzi per potervi accedere;
2544 il suo prototipo è:
2545 \begin{functions}
2546   \headdecl{sys/types.h} 
2547   \headdecl{sys/shm.h}
2548   
2549   \funcdecl{void *shmat(int shmid, const void *shmaddr, int shmflg)}
2550   Aggancia al processo un segmento di memoria condivisa.
2551   
2552   \bodydesc{La funzione restituisce l'indirizzo del segmento in caso di
2553     successo, e -1 in caso di errore, nel qual caso \var{errno} assumerà i
2554     valori:
2555     \begin{errlist}
2556     \item[\errcode{EACCES}] il processo non ha i privilegi per accedere al
2557       segmento nella modalità richiesta.
2558     \item[\errcode{EINVAL}] si è specificato un identificatore invalido per
2559       \param{shmid}, o un indirizzo non allineato sul confine di una pagina
2560       per \param{shmaddr}.
2561     \end{errlist}
2562     ed inoltre \errval{ENOMEM}.}
2563 \end{functions}
2564
2565 La funzione inserisce un segmento di memoria condivisa all'interno dello
2566 spazio di indirizzi del processo, in modo che questo possa accedervi
2567 direttamente, la situazione dopo l'esecuzione di \func{shmat} è illustrata in
2568 fig.~\ref{fig:ipc_shmem_layout} (per la comprensione del resto dello schema si
2569 ricordi quanto illustrato al proposito in sez.~\ref{sec:proc_mem_layout}). In
2570 particolare l'indirizzo finale del segmento dati (quello impostato da
2571 \func{brk}, vedi sez.~\ref{sec:proc_mem_alloc}) non viene influenzato.
2572 Si tenga presente infine che la funzione ha successo anche se il segmento è
2573 stato marcato per la cancellazione.
2574
2575 \begin{figure}[!htb]
2576   \centering \includegraphics[height=10cm]{img/sh_memory_layout}
2577   \caption{Disposizione dei segmenti di memoria di un processo quando si è
2578     agganciato un segmento di memoria condivisa.}
2579   \label{fig:ipc_shmem_layout}
2580 \end{figure}
2581
2582 L'argomento \param{shmaddr} specifica a quale indirizzo\footnote{lo standard
2583   SVID prevede che l'argomento \param{shmaddr} sia di tipo \ctyp{char *}, così
2584   come il valore di ritorno della funzione; in Linux è stato così con le
2585   \acr{libc4} e le \acr{libc5}, con il passaggio alla \acr{glibc} il tipo di
2586   \param{shmaddr} è divenuto un \ctyp{const void *} e quello del valore di
2587   ritorno un \ctyp{void *}.} deve essere associato il segmento, se il valore
2588 specificato è \val{NULL} è il sistema a scegliere opportunamente un'area di
2589 memoria libera (questo è il modo più portabile e sicuro di usare la funzione).
2590 Altrimenti il kernel aggancia il segmento all'indirizzo specificato da
2591 \param{shmaddr}; questo però può avvenire solo se l'indirizzo coincide con il
2592 limite di una pagina, cioè se è un multiplo esatto del parametro di sistema
2593 \const{SHMLBA}, che in Linux è sempre uguale \const{PAGE\_SIZE}. 
2594
2595 Si tenga presente però che quando si usa \val{NULL} come valore di
2596 \param{shmaddr}, l'indirizzo restituito da \func{shmat} può cambiare da
2597 processo a processo; pertanto se nell'area di memoria condivisa si salvano
2598 anche degli indirizzi, si deve avere cura di usare valori relativi (in genere
2599 riferiti all'indirizzo di partenza del segmento).
2600
2601 L'argomento \param{shmflg} permette di cambiare il comportamento della
2602 funzione; esso va specificato come maschera binaria, i bit utilizzati sono
2603 solo due e sono identificati dalle costanti \const{SHM\_RND} e
2604 \const{SHM\_RDONLY}, che vanno combinate con un OR aritmetico.  Specificando
2605 \const{SHM\_RND} si evita che \func{shmat} ritorni un errore quando
2606 \param{shmaddr} non è allineato ai confini di una pagina. Si può quindi usare
2607 un valore qualunque per \param{shmaddr}, e il segmento verrà comunque
2608 agganciato, ma al più vicino multiplo di \const{SHMLBA} (il nome della
2609 costante sta infatti per \textit{rounded}, e serve per specificare un
2610 indirizzo come arrotondamento, in Linux è equivalente a \const{PAGE\_SIZE}).
2611
2612 L'uso di \const{SHM\_RDONLY} permette di agganciare il segmento in sola
2613 lettura (si ricordi che anche le pagine di memoria hanno dei permessi), in tal
2614 caso un tentativo di scrivere sul segmento comporterà una
2615 \itindex{segment~violation} violazione di accesso con l'emissione di un
2616 segnale di \signal{SIGSEGV}. Il comportamento usuale di \func{shmat} è quello
2617 di agganciare il segmento con l'accesso in lettura e scrittura (ed il processo
2618 deve aver questi permessi in \var{shm\_perm}), non è prevista la possibilità
2619 di agganciare un segmento in sola scrittura.
2620
2621 In caso di successo la funzione aggiorna anche i seguenti campi di
2622 \struct{shmid\_ds}:
2623 \begin{itemize*}
2624 \item il tempo \var{shm\_atime} dell'ultima operazione di aggancio viene
2625   impostato al tempo corrente.
2626 \item il \ids{PID} \var{shm\_lpid} dell'ultimo processo che ha operato sul
2627   segmento viene impostato a quello del processo corrente.
2628 \item il numero \var{shm\_nattch} di processi agganciati al segmento viene
2629   aumentato di uno.
2630 \end{itemize*} 
2631
2632 Come accennato in sez.~\ref{sec:proc_fork} un segmento di memoria condivisa
2633 agganciato ad un processo viene ereditato da un figlio attraverso una
2634 \func{fork}, dato che quest'ultimo riceve una copia dello spazio degli
2635 indirizzi del padre. Invece, dato che attraverso una \func{exec} viene
2636 eseguito un diverso programma con uno spazio di indirizzi completamente
2637 diverso, tutti i segmenti agganciati al processo originario vengono
2638 automaticamente sganciati. Lo stesso avviene all'uscita del processo
2639 attraverso una \func{exit}.
2640
2641 Una volta che un segmento di memoria condivisa non serve più, si può
2642 sganciarlo esplicitamente dal processo usando l'altra funzione
2643 dell'interfaccia, \funcd{shmdt}, il cui prototipo è:
2644 \begin{functions}
2645   \headdecl{sys/types.h} 
2646   \headdecl{sys/shm.h}
2647
2648   \funcdecl{int shmdt(const void *shmaddr)}
2649   Sgancia dal processo un segmento di memoria condivisa.
2650   
2651   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
2652     errore, la funzione fallisce solo quando non c'è un segmento agganciato
2653     all'indirizzo \param{shmaddr}, con \var{errno} che assume il valore
2654     \errval{EINVAL}.}
2655 \end{functions}
2656
2657 La funzione sgancia dallo spazio degli indirizzi del processo un segmento di
2658 memoria condivisa; questo viene identificato con l'indirizzo \param{shmaddr}
2659 restituito dalla precedente chiamata a \func{shmat} con il quale era stato
2660 agganciato al processo.
2661
2662 In caso di successo la funzione aggiorna anche i seguenti campi di
2663 \struct{shmid\_ds}:
2664 \begin{itemize*}
2665 \item il tempo \var{shm\_dtime} dell'ultima operazione di sganciamento viene
2666   impostato al tempo corrente.
2667 \item il \ids{PID} \var{shm\_lpid} dell'ultimo processo che ha operato sul
2668   segmento viene impostato a quello del processo corrente.
2669 \item il numero \var{shm\_nattch} di processi agganciati al segmento viene
2670   decrementato di uno.
2671 \end{itemize*} 
2672 inoltre la regione di indirizzi usata per il segmento di memoria condivisa
2673 viene tolta dallo spazio di indirizzi del processo.
2674
2675 \begin{figure}[!htbp]
2676   \footnotesize \centering
2677   \begin{minipage}[c]{\codesamplewidth}
2678     \includecodesample{listati/SharedMem.c}
2679   \end{minipage} 
2680   \normalsize 
2681   \caption{Il codice delle funzioni che permettono di creare, trovare e
2682     rimuovere un segmento di memoria condivisa.}
2683   \label{fig:ipc_sysv_shm_func}
2684 \end{figure}
2685
2686 Come esempio di uso di queste funzioni vediamo come implementare una serie di
2687 funzioni di libreria che ne semplifichino l'uso, automatizzando le operazioni
2688 più comuni; il codice, contenuto nel file \file{SharedMem.c}, è riportato in
2689 fig.~\ref{fig:ipc_sysv_shm_func}.
2690
2691 La prima funzione (\texttt{\small 3--16}) è \func{ShmCreate} che, data una
2692 chiave, crea il segmento di memoria condivisa restituendo il puntatore allo
2693 stesso. La funzione comincia (\texttt{\small 6}) con il chiamare
2694 \func{shmget}, usando il flag \const{IPC\_CREATE} per creare il segmento
2695 qualora non esista, ed assegnandogli i privilegi specificati dall'argomento
2696 \var{perm} e la dimensione specificata dall'argomento \var{shm\_size}.  In
2697 caso di errore (\texttt{\small 7--9}) si ritorna immediatamente un puntatore
2698 nullo, altrimenti (\texttt{\small 10}) si prosegue agganciando il segmento di
2699 memoria condivisa al processo con \func{shmat}. In caso di errore
2700 (\texttt{\small 11--13}) si restituisce di nuovo un puntatore nullo, infine
2701 (\texttt{\small 14}) si inizializza con \func{memset} il contenuto del
2702 segmento al valore costante specificato dall'argomento \var{fill}, e poi si
2703 ritorna il puntatore al segmento stesso.
2704
2705 La seconda funzione (\texttt{\small 17--31}) è \func{ShmFind}, che, data una
2706 chiave, restituisce l'indirizzo del segmento ad essa associato. Anzitutto
2707 (\texttt{\small 22}) si richiede l'identificatore del segmento con
2708 \func{shmget}, ritornando (\texttt{\small 23--25}) un puntatore nullo in caso
2709 di errore. Poi si prosegue (\texttt{\small 26}) agganciando il segmento al
2710 processo con \func{shmat}, restituendo (\texttt{\small 27--29}) di nuovo un
2711 puntatore nullo in caso di errore, se invece non ci sono errori si restituisce
2712 il puntatore ottenuto da \func{shmat}.
2713
2714 La terza funzione (\texttt{\small 32--51}) è \func{ShmRemove} che, data la
2715 chiave ed il puntatore associati al segmento di memoria condivisa, prima lo
2716 sgancia dal processo e poi lo rimuove. Il primo passo (\texttt{\small 37}) è
2717 la chiamata a \func{shmdt} per sganciare il segmento, restituendo
2718 (\texttt{\small 38--39}) un valore -1 in caso di errore. Il passo successivo
2719 (\texttt{\small 41}) è utilizzare \func{shmget} per ottenere l'identificatore
2720 associato al segmento data la chiave \var{key}. Al solito si restituisce un
2721 valore di -1 (\texttt{\small 42--45}) in caso di errore, mentre se tutto va
2722 bene si conclude restituendo un valore nullo.
2723
2724 Benché la memoria condivisa costituisca il meccanismo di intercomunicazione
2725 fra processi più veloce, essa non è sempre il più appropriato, dato che, come
2726 abbiamo visto, si avrà comunque la necessità di una sincronizzazione degli
2727 accessi.  Per questo motivo, quando la comunicazione fra processi è
2728 sequenziale, altri meccanismi come le pipe, le fifo o i socket, che non
2729 necessitano di sincronizzazione esplicita, sono da preferire. Essa diventa
2730 l'unico meccanismo possibile quando la comunicazione non è
2731 sequenziale\footnote{come accennato in sez.~\ref{sec:ipc_sysv_mq} per la
2732   comunicazione non sequenziale si possono usare le code di messaggi,
2733   attraverso l'uso del campo \var{mtype}, ma solo se quest'ultima può essere
2734   effettuata in forma di messaggio.} o quando non può avvenire secondo una
2735 modalità predefinita.
2736
2737 Un esempio classico di uso della memoria condivisa è quello del
2738 ``\textit{monitor}'', in cui viene per scambiare informazioni fra un processo
2739 server, che vi scrive dei dati di interesse generale che ha ottenuto, e i
2740 processi client interessati agli stessi dati che così possono leggerli in
2741 maniera completamente asincrona.  Con questo schema di funzionamento da una
2742 parte si evita che ciascun processo client debba compiere l'operazione,
2743 potenzialmente onerosa, di ricavare e trattare i dati, e dall'altra si evita
2744 al processo server di dover gestire l'invio a tutti i client di tutti i dati
2745 (non potendo il server sapere quali di essi servono effettivamente al singolo
2746 client).
2747
2748 Nel nostro caso implementeremo un ``\textsl{monitor}'' di una directory: un
2749 processo si incaricherà di tenere sotto controllo alcuni parametri relativi ad
2750 una directory (il numero dei file contenuti, la dimensione totale, quante
2751 directory, link simbolici, file normali, ecc.) che saranno salvati in un
2752 segmento di memoria condivisa cui altri processi potranno accedere per
2753 ricavare la parte di informazione che interessa.
2754
2755 In fig.~\ref{fig:ipc_dirmonitor_main} si è riportata la sezione principale del
2756 corpo del programma server, insieme alle definizioni delle altre funzioni
2757 usate nel programma e delle \index{variabili!globali} variabili globali,
2758 omettendo tutto quello che riguarda la gestione delle opzioni e la stampa
2759 delle istruzioni di uso a video; al solito il codice completo si trova con i
2760 sorgenti allegati nel file \file{DirMonitor.c}.
2761
2762 \begin{figure}[!htbp]
2763   \footnotesize \centering
2764   \begin{minipage}[c]{\codesamplewidth}
2765     \includecodesample{listati/DirMonitor.c}
2766   \end{minipage} 
2767   \normalsize 
2768   \caption{Codice della funzione principale del programma \file{DirMonitor.c}.}
2769   \label{fig:ipc_dirmonitor_main}
2770 \end{figure}
2771
2772 Il programma usa delle \index{variabili!globali} variabili globali
2773 (\texttt{\small 2--14}) per mantenere i valori relativi agli oggetti usati per
2774 la comunicazione inter-processo; si è definita inoltre una apposita struttura
2775 \struct{DirProp} che contiene i dati relativi alle proprietà che si vogliono
2776 mantenere nella memoria condivisa, per l'accesso da parte dei client.
2777
2778 Il programma, dopo la sezione, omessa, relativa alla gestione delle opzioni da
2779 riga di comando (che si limitano alla eventuale stampa di un messaggio di
2780 aiuto a video ed all'impostazione della durata dell'intervallo con cui viene
2781 ripetuto il calcolo delle proprietà della directory) controlla (\texttt{\small
2782   20--23}) che sia stato specificato l'argomento necessario contenente il nome
2783 della directory da tenere sotto controllo, senza il quale esce immediatamente
2784 con un messaggio di errore.
2785
2786 Poi, per verificare che l'argomento specifichi effettivamente una directory,
2787 si esegue (\texttt{\small 24--26}) su di esso una \func{chdir}, uscendo
2788 immediatamente in caso di errore.  Questa funzione serve anche per impostare
2789 la \index{directory~di~lavoro} directory di lavoro del programma nella
2790 directory da tenere sotto controllo, in vista del successivo uso della
2791 funzione \func{daemon}.\footnote{si noti come si è potuta fare questa scelta,
2792   nonostante le indicazioni illustrate in sez.~\ref{sec:sess_daemon}, per il
2793   particolare scopo del programma, che necessita comunque di restare
2794   all'interno di una directory.} Infine (\texttt{\small 27--29}) si installano
2795 i gestori per i vari segnali di terminazione che, avendo a che fare con un
2796 programma che deve essere eseguito come server, sono il solo strumento
2797 disponibile per concluderne l'esecuzione.
2798
2799 Il passo successivo (\texttt{\small 30--39}) è quello di creare gli oggetti di
2800 intercomunicazione necessari. Si inizia costruendo (\texttt{\small 30}) la
2801 chiave da usare come riferimento con il nome del programma,\footnote{si è
2802   usato un riferimento relativo alla home dell'utente, supposto che i sorgenti
2803   di GaPiL siano stati installati direttamente in essa. Qualora si effettui
2804   una installazione diversa si dovrà correggere il programma.} dopo di che si
2805 richiede (\texttt{\small 31}) la creazione di un segmento di memoria condivisa
2806 con usando la funzione \func{ShmCreate} illustrata in precedenza (una pagina
2807 di memoria è sufficiente per i dati che useremo), uscendo (\texttt{\small
2808   32--35}) qualora la creazione ed il successivo agganciamento al processo non
2809 abbia successo. Con l'indirizzo \var{shmptr} così ottenuto potremo poi
2810 accedere alla memoria condivisa, che, per come abbiamo lo abbiamo definito,
2811 sarà vista nella forma data da \struct{DirProp}. Infine (\texttt{\small
2812   36--39}) utilizzando sempre la stessa chiave, si crea, tramite le funzioni
2813 di interfaccia già descritte in sez.~\ref{sec:ipc_sysv_sem}, anche un mutex,
2814 che utilizzeremo per regolare l'accesso alla memoria condivisa.
2815
2816 \begin{figure}[!htbp]
2817   \footnotesize \centering
2818   \begin{minipage}[c]{\codesamplewidth}
2819     \includecodesample{listati/ComputeValues.c}
2820   \end{minipage} 
2821   \normalsize 
2822   \caption{Codice delle funzioni ausiliarie usate da \file{DirMonitor.c}.}
2823   \label{fig:ipc_dirmonitor_sub}
2824 \end{figure}
2825
2826 Completata l'inizializzazione e la creazione degli oggetti di
2827 intercomunicazione il programma entra nel ciclo principale (\texttt{\small
2828   40--49}) dove vengono eseguite indefinitamente le attività di monitoraggio.
2829 Il primo passo (\texttt{\small 41}) è eseguire \func{daemon} per proseguire
2830 con l'esecuzione in background come si conviene ad un programma demone; si
2831 noti che si è mantenuta, usando un valore non nullo del primo argomento, la
2832 \index{directory~di~lavoro} directory di lavoro corrente.  Una volta che il
2833 programma è andato in background l'esecuzione prosegue (\texttt{\small
2834   42--48}) all'interno di un ciclo infinito: si inizia (\texttt{\small 43})
2835 bloccando il mutex con \func{MutexLock} per poter accedere alla memoria
2836 condivisa (la funzione si bloccherà automaticamente se qualche client sta
2837 leggendo), poi (\texttt{\small 44}) si cancellano i valori precedentemente
2838 immagazzinati nella memoria condivisa con \func{memset}, e si esegue
2839 (\texttt{\small 45}) un nuovo calcolo degli stessi utilizzando la funzione
2840 \myfunc{dir\_scan}; infine (\texttt{\small 46}) si sblocca il mutex con
2841 \func{MutexUnlock}, e si attende (\texttt{\small 47}) per il periodo di tempo
2842 specificato a riga di comando con l'opzione \code{-p} con una \func{sleep}.
2843
2844 Si noti come per il calcolo dei valori da mantenere nella memoria condivisa si
2845 sia usata ancora una volta la funzione \myfunc{dir\_scan}, già utilizzata (e
2846 descritta in dettaglio) in sez.~\ref{sec:file_dir_read}, che ci permette di
2847 effettuare la scansione delle voci della directory, chiamando per ciascuna di
2848 esse la funzione \func{ComputeValues}, che esegue tutti i calcoli necessari.
2849
2850 Il codice di quest'ultima è riportato in fig.~\ref{fig:ipc_dirmonitor_sub}.
2851 Come si vede la funzione (\texttt{\small 2--16}) è molto semplice e si limita
2852 a chiamare (\texttt{\small 5}) la funzione \func{stat} sul file indicato da
2853 ciascuna voce, per ottenerne i dati, che poi utilizza per incrementare i vari
2854 contatori nella memoria condivisa, cui accede grazie alla
2855 \index{variabili!globali} variabile globale \var{shmptr}.
2856
2857 Dato che la funzione è chiamata da \myfunc{dir\_scan}, si è all'interno del
2858 ciclo principale del programma, con un mutex acquisito, perciò non è
2859 necessario effettuare nessun controllo e si può accedere direttamente alla
2860 memoria condivisa usando \var{shmptr} per riempire i campi della struttura
2861 \struct{DirProp}; così prima (\texttt{\small 6--7}) si sommano le dimensioni
2862 dei file ed il loro numero, poi, utilizzando le macro di
2863 tab.~\ref{tab:file_type_macro}, si contano (\texttt{\small 8--14}) quanti ce
2864 ne sono per ciascun tipo.
2865
2866 In fig.~\ref{fig:ipc_dirmonitor_sub} è riportato anche il codice
2867 (\texttt{\small 17--23}) del gestore dei segnali di terminazione, usato per
2868 chiudere il programma. Esso, oltre a provocare l'uscita del programma, si
2869 incarica anche di cancellare tutti gli oggetti di intercomunicazione non più
2870 necessari.  Per questo anzitutto (\texttt{\small 19}) acquisisce il mutex con
2871 \func{MutexLock}, per evitare di operare mentre un client sta ancora leggendo
2872 i dati, dopo di che (\texttt{\small 20}) distacca e rimuove il segmento di
2873 memoria condivisa usando \func{ShmRemove}.  Infine (\texttt{\small 21})
2874 rimuove il mutex con \func{MutexRemove} ed esce (\texttt{\small 22}).
2875
2876 \begin{figure}[!htbp]
2877   \footnotesize \centering
2878   \begin{minipage}[c]{\codesamplewidth}
2879     \includecodesample{listati/ReadMonitor.c}
2880   \end{minipage} 
2881   \normalsize 
2882   \caption{Codice del programma client del monitor delle proprietà di una
2883     directory, \file{ReadMonitor.c}.}
2884   \label{fig:ipc_dirmonitor_client}
2885 \end{figure}
2886
2887 Il codice del client usato per leggere le informazioni mantenute nella memoria
2888 condivisa è riportato in fig.~\ref{fig:ipc_dirmonitor_client}. Al solito si è
2889 omessa la sezione di gestione delle opzioni e la funzione che stampa a video
2890 le istruzioni; il codice completo è nei sorgenti allegati, nel file
2891 \file{ReadMonitor.c}.
2892
2893 Una volta conclusa la gestione delle opzioni a riga di comando il programma
2894 rigenera (\texttt{\small 7}) con \func{ftok} la stessa chiave usata dal server
2895 per identificare il segmento di memoria condivisa ed il mutex, poi
2896 (\texttt{\small 8}) richiede con \func{ShmFind} l'indirizzo della memoria
2897 condivisa agganciando al contempo il segmento al processo, Infine
2898 (\texttt{\small 17--20}) con \func{MutexFind} si richiede l'identificatore del
2899 mutex.  Completata l'inizializzazione ed ottenuti i riferimenti agli oggetti
2900 di intercomunicazione necessari viene eseguito il corpo principale del
2901 programma (\texttt{\small 21--33}); si comincia (\texttt{\small 22})
2902 acquisendo il mutex con \func{MutexLock}; qui avviene il blocco del processo
2903 se la memoria condivisa non è disponibile.  Poi (\texttt{\small 23--31}) si
2904 stampano i vari valori mantenuti nella memoria condivisa attraverso l'uso di
2905 \var{shmptr}.  Infine (\texttt{\small 41}) con \func{MutexUnlock} si rilascia
2906 il mutex, prima di uscire.
2907
2908 Verifichiamo allora il funzionamento dei nostri programmi; al solito, usando
2909 le funzioni di libreria occorre definire opportunamente
2910 \code{LD\_LIBRARY\_PATH}; poi si potrà lanciare il server con:
2911 \begin{Verbatim}
2912 [piccardi@gont sources]$ ./dirmonitor ./
2913 \end{Verbatim}
2914 %$
2915 ed avendo usato \func{daemon} il comando ritornerà immediatamente. Una volta
2916 che il server è in esecuzione, possiamo passare ad invocare il client per
2917 verificarne i risultati, in tal caso otterremo:
2918 \begin{Verbatim}
2919 [piccardi@gont sources]$ ./readmon 
2920 Ci sono 68 file dati
2921 Ci sono 3 directory
2922 Ci sono 0 link
2923 Ci sono 0 fifo
2924 Ci sono 0 socket
2925 Ci sono 0 device a caratteri
2926 Ci sono 0 device a blocchi
2927 Totale  71 file, per 489831 byte
2928 \end{Verbatim}
2929 %$
2930 ed un rapido calcolo (ad esempio con \code{ls -a | wc} per contare i file) ci
2931 permette di verificare che il totale dei file è giusto. Un controllo con
2932 \cmd{ipcs} ci permette inoltre di verificare la presenza di un segmento di
2933 memoria condivisa e di un semaforo:
2934 \begin{Verbatim}
2935 [piccardi@gont sources]$ ipcs
2936 ------ Shared Memory Segments --------
2937 key        shmid      owner      perms      bytes      nattch     status      
2938 0xffffffff 54067205   piccardi  666        4096       1                       
2939
2940 ------ Semaphore Arrays --------
2941 key        semid      owner      perms      nsems     
2942 0xffffffff 229376     piccardi  666        1         
2943
2944 ------ Message Queues --------
2945 key        msqid      owner      perms      used-bytes   messages    
2946 \end{Verbatim}
2947 %$
2948
2949 Se a questo punto aggiungiamo un file, ad esempio con \code{touch prova},
2950 potremo verificare che, passati nel peggiore dei casi almeno 10 secondi (o
2951 l'eventuale altro intervallo impostato per la rilettura dei dati) avremo:
2952 \begin{Verbatim}
2953 [piccardi@gont sources]$ ./readmon 
2954 Ci sono 69 file dati
2955 Ci sono 3 directory
2956 Ci sono 0 link
2957 Ci sono 0 fifo
2958 Ci sono 0 socket
2959 Ci sono 0 device a caratteri
2960 Ci sono 0 device a blocchi
2961 Totale  72 file, per 489887 byte
2962 \end{Verbatim}
2963 %$
2964
2965 A questo punto possiamo far uscire il server inviandogli un segnale di
2966 \signal{SIGTERM} con il comando \code{killall dirmonitor}, a questo punto
2967 ripetendo la lettura, otterremo un errore:
2968 \begin{Verbatim}
2969 [piccardi@gont sources]$ ./readmon 
2970 Cannot find shared memory: No such file or directory
2971 \end{Verbatim}
2972 %$
2973 e inoltre potremo anche verificare che anche gli oggetti di intercomunicazione
2974 visti in precedenza sono stati regolarmente  cancellati:
2975 \begin{Verbatim}
2976 [piccardi@gont sources]$ ipcs
2977 ------ Shared Memory Segments --------
2978 key        shmid      owner      perms      bytes      nattch     status      
2979
2980 ------ Semaphore Arrays --------
2981 key        semid      owner      perms      nsems     
2982
2983 ------ Message Queues --------
2984 key        msqid      owner      perms      used-bytes   messages    
2985 \end{Verbatim}
2986 %$
2987
2988
2989 %% Per capire meglio il funzionamento delle funzioni facciamo ancora una volta
2990 %% riferimento alle strutture con cui il kernel implementa i segmenti di memoria
2991 %% condivisa; uno schema semplificato della struttura è illustrato in
2992 %% fig.~\ref{fig:ipc_shm_struct}. 
2993
2994 %% \begin{figure}[!htb]
2995 %%   \centering
2996 %%   \includegraphics[width=10cm]{img/shmstruct}
2997 %%    \caption{Schema dell'implementazione dei segmenti di memoria condivisa in
2998 %%     Linux.}
2999 %%   \label{fig:ipc_shm_struct}
3000 %% \end{figure}
3001
3002
3003
3004
3005 \section{Tecniche alternative}
3006 \label{sec:ipc_alternatives}
3007
3008 Come abbiamo detto in sez.~\ref{sec:ipc_sysv_generic}, e ripreso nella
3009 descrizione dei singoli oggetti che ne fan parte, il \textit{SysV IPC}
3010 presenta numerosi problemi; in \cite{APUE}\footnote{in particolare nel
3011   capitolo 14.}  Stevens ne effettua una accurata analisi (alcuni dei concetti
3012 sono già stati accennati in precedenza) ed elenca alcune possibili tecniche
3013 alternative, che vogliamo riprendere in questa sezione.
3014
3015
3016 \subsection{Alternative alle code di messaggi}
3017 \label{sec:ipc_mq_alternative}
3018  
3019 Le code di messaggi sono probabilmente il meno usato degli oggetti del
3020 \textit{SysV IPC}; esse infatti nacquero principalmente come meccanismo di
3021 comunicazione bidirezionale quando ancora le pipe erano unidirezionali; con la
3022 disponibilità di \func{socketpair} (vedi sez.~\ref{sec:ipc_socketpair}) o
3023 utilizzando una coppia di pipe, si può ottenere questo risultato senza
3024 incorrere nelle complicazioni introdotte dal \textit{SysV IPC}.
3025
3026 In realtà, grazie alla presenza del campo \var{mtype}, le code di messaggi
3027 hanno delle caratteristiche ulteriori, consentendo una classificazione dei
3028 messaggi ed un accesso non rigidamente sequenziale; due caratteristiche che
3029 sono impossibili da ottenere con le pipe e i socket di \func{socketpair}.  A
3030 queste esigenze però si può comunque ovviare in maniera diversa con un uso
3031 combinato della memoria condivisa e dei meccanismi di sincronizzazione, per
3032 cui alla fine l'uso delle code di messaggi classiche è relativamente poco
3033 diffuso.
3034
3035 % TODO: trattare qui, se non ssis trova posto migliore, copy_from_process e
3036 % copy_to_process, introdotte con il kernel 3.2. Vedi
3037 % http://lwn.net/Articles/405346/ e
3038 % http://ozlabs.org/~cyeoh/cma/process_vm_readv.txt 
3039
3040
3041 \subsection{I \textsl{file di lock}}
3042 \label{sec:ipc_file_lock}
3043
3044 \index{file!di lock|(}
3045
3046 Come illustrato in sez.~\ref{sec:ipc_sysv_sem} i semafori del \textit{SysV IPC}
3047 presentano una interfaccia inutilmente complessa e con alcuni difetti
3048 strutturali, per questo quando si ha una semplice esigenza di sincronizzazione
3049 per la quale basterebbe un semaforo binario (quello che abbiamo definito come
3050 \textit{mutex}), per indicare la disponibilità o meno di una risorsa, senza la
3051 necessità di un contatore come i semafori, si possono utilizzare metodi
3052 alternativi.
3053
3054 La prima possibilità, utilizzata fin dalle origini di Unix, è quella di usare
3055 dei \textsl{file di lock} (per i quali esiste anche una opportuna directory,
3056 \file{/var/lock}, nel filesystem standard). Per questo si usa la
3057 caratteristica della funzione \func{open} (illustrata in
3058 sez.~\ref{sec:file_open_close}) che prevede\footnote{questo è quanto dettato dallo
3059   standard POSIX.1, ciò non toglie che in alcune implementazioni questa
3060   tecnica possa non funzionare; in particolare per Linux, nel caso di NFS, si
3061   è comunque soggetti alla possibilità di una \itindex{race~condition}
3062   \textit{race condition}.} che essa ritorni un errore quando usata con i
3063 flag di \const{O\_CREAT} e \const{O\_EXCL}. In tal modo la creazione di un
3064 \textsl{file di lock} può essere eseguita atomicamente, il processo che crea
3065 il file con successo si può considerare come titolare del lock (e della
3066 risorsa ad esso associata) mentre il rilascio si può eseguire con una chiamata
3067 ad \func{unlink}.
3068
3069 Un esempio dell'uso di questa funzione è mostrato dalle funzioni
3070 \func{LockFile} ed \func{UnlockFile} riportate in fig.~\ref{fig:ipc_file_lock}
3071 (sono contenute in \file{LockFile.c}, un altro dei sorgenti allegati alla
3072 guida) che permettono rispettivamente di creare e rimuovere un \textsl{file di
3073   lock}. Come si può notare entrambe le funzioni sono elementari; la prima
3074 (\texttt{\small 4--10}) si limita ad aprire il file di lock (\texttt{\small
3075   9}) nella modalità descritta, mentre la seconda (\texttt{\small 11--17}) lo
3076 cancella con \func{unlink}.
3077
3078 \begin{figure}[!htbp]
3079   \footnotesize \centering
3080   \begin{minipage}[c]{\codesamplewidth}
3081     \includecodesample{listati/LockFile.c}
3082   \end{minipage} 
3083   \normalsize 
3084   \caption{Il codice delle funzioni \func{LockFile} e \func{UnlockFile} che
3085     permettono di creare e rimuovere un \textsl{file di lock}.}
3086   \label{fig:ipc_file_lock}
3087 \end{figure}
3088
3089 Uno dei limiti di questa tecnica è che, come abbiamo già accennato in
3090 sez.~\ref{sec:file_open_close}, questo comportamento di \func{open} può non
3091 funzionare (la funzione viene eseguita, ma non è garantita l'atomicità
3092 dell'operazione) se il filesystem su cui si va ad operare è su NFS; in tal
3093 caso si può adottare una tecnica alternativa che prevede l'uso della
3094 \func{link} per creare come \textsl{file di lock} un hard link ad un file
3095 esistente; se il link esiste già e la funzione fallisce, significa che la
3096 risorsa è bloccata e potrà essere sbloccata solo con un \func{unlink},
3097 altrimenti il link è creato ed il lock acquisito; il controllo e l'eventuale
3098 acquisizione sono atomici; la soluzione funziona anche su NFS, ma ha un altro
3099 difetto è che è quello di poterla usare solo se si opera all'interno di uno
3100 stesso filesystem.
3101
3102 In generale comunque l'uso di un \textsl{file di lock} presenta parecchi
3103 problemi che non lo rendono una alternativa praticabile per la
3104 sincronizzazione: anzitutto in caso di terminazione imprevista del processo,
3105 si lascia allocata la risorsa (il \textsl{file di lock}) e questa deve essere
3106 sempre cancellata esplicitamente.  Inoltre il controllo della disponibilità
3107 può essere eseguito solo con una tecnica di \itindex{polling}
3108 \textit{polling}, ed è quindi molto inefficiente.
3109
3110 La tecnica dei file di lock ha comunque una sua utilità, e può essere usata
3111 con successo quando l'esigenza è solo quella di segnalare l'occupazione di una
3112 risorsa, senza necessità di attendere che questa si liberi; ad esempio la si
3113 usa spesso per evitare interferenze sull'uso delle porte seriali da parte di
3114 più programmi: qualora si trovi un file di lock il programma che cerca di
3115 accedere alla seriale si limita a segnalare che la risorsa non è disponibile.
3116
3117 \index{file!di lock|)}
3118
3119
3120 \subsection{La sincronizzazione con il \textit{file locking}}
3121 \label{sec:ipc_lock_file}
3122
3123 Dato che i \index{file!di lock} file di lock presentano gli inconvenienti
3124 illustrati in precedenza, la tecnica alternativa di sincronizzazione più
3125 comune è quella di fare ricorso al \itindex{file~locking} \textit{file
3126   locking} (trattato in sez.~\ref{sec:file_locking}) usando \func{fcntl} su un
3127 file creato per l'occasione per ottenere un write lock. In questo modo potremo
3128 usare il lock come un \textit{mutex}: per bloccare la risorsa basterà
3129 acquisire il lock, per sbloccarla basterà rilasciare il lock. Una richiesta
3130 fatta con un write lock metterà automaticamente il processo in stato di
3131 attesa, senza necessità di ricorrere al \itindex{polling} \textit{polling} per
3132 determinare la disponibilità della risorsa, e al rilascio della stessa da
3133 parte del processo che la occupava si otterrà il nuovo lock atomicamente.
3134
3135 Questo approccio presenta il notevole vantaggio che alla terminazione di un
3136 processo tutti i lock acquisiti vengono rilasciati automaticamente (alla
3137 chiusura dei relativi file) e non ci si deve preoccupare di niente; inoltre
3138 non consuma risorse permanentemente allocate nel sistema. Lo svantaggio è che,
3139 dovendo fare ricorso a delle operazioni sul filesystem, esso è in genere
3140 leggermente più lento.
3141
3142 \begin{figure}[!htbp]
3143   \footnotesize \centering
3144   \begin{minipage}[c]{\codesamplewidth}
3145     \includecodesample{listati/MutexLocking.c}
3146   \end{minipage} 
3147   \normalsize 
3148   \caption{Il codice delle funzioni che permettono per la gestione dei 
3149     \textit{mutex} con il \itindex{file~locking} \textit{file locking}.}
3150   \label{fig:ipc_flock_mutex}
3151 \end{figure}
3152
3153 Il codice delle varie funzioni usate per implementare un mutex utilizzando il
3154 \textit{file locking} \itindex{file~locking} è riportato in
3155 fig.~\ref{fig:ipc_flock_mutex}; si è mantenuta volutamente una struttura
3156 analoga alle precedenti funzioni che usano i semafori, anche se le due
3157 interfacce non possono essere completamente equivalenti, specie per quanto
3158 riguarda la rimozione del mutex.
3159
3160 La prima funzione (\texttt{\small 1--5}) è \func{CreateMutex}, e serve a
3161 creare il mutex; la funzione è estremamente semplice, e si limita
3162 (\texttt{\small 4}) a creare, con una opportuna chiamata ad \func{open}, il
3163 file che sarà usato per il successivo \textit{file locking}, assicurandosi che
3164 non esista già (nel qual caso segnala un errore); poi restituisce il file
3165 descriptor che sarà usato dalle altre funzioni per acquisire e rilasciare il
3166 mutex.
3167
3168 La seconda funzione (\texttt{\small 6--10}) è \func{FindMutex}, che, come la
3169 precedente, è stata definita per mantenere una analogia con la corrispondente
3170 funzione basata sui semafori. Anch'essa si limita (\texttt{\small 9}) ad
3171 aprire il file da usare per il \itindex{file~locking} \textit{file locking},
3172 solo che in questo caso le opzioni di \func{open} sono tali che il file in
3173 questione deve esistere di già.
3174
3175 La terza funzione (\texttt{\small 11--22}) è \func{LockMutex} e serve per
3176 acquisire il mutex. La funzione definisce (\texttt{\small 14}) e inizializza
3177 (\texttt{\small 16--19}) la struttura \var{lock} da usare per acquisire un
3178 write lock sul file, che poi (\texttt{\small 21}) viene richiesto con
3179 \func{fcntl}, restituendo il valore di ritorno di quest'ultima. Se il file è
3180 libero il lock viene acquisito e la funzione ritorna immediatamente;
3181 altrimenti \func{fcntl} si bloccherà (si noti che la si è chiamata con
3182 \const{F\_SETLKW}) fino al rilascio del lock.
3183
3184 La quarta funzione (\texttt{\small 24--34}) è \func{UnlockMutex} e serve a
3185 rilasciare il mutex. La funzione è analoga alla precedente, solo che in questo
3186 caso si inizializza (\texttt{\small 28--31}) la struttura \var{lock} per il
3187 rilascio del lock, che viene effettuato (\texttt{\small 33}) con la opportuna
3188 chiamata a \func{fcntl}. Avendo usato il \itindex{file~locking} \textit{file
3189   locking} in semantica POSIX (si riveda quanto detto
3190 sez.~\ref{sec:file_posix_lock}) solo il processo che ha precedentemente
3191 eseguito il lock può sbloccare il mutex.
3192
3193 La quinta funzione (\texttt{\small 36--39}) è \func{RemoveMutex} e serve a
3194 cancellare il mutex. Anche questa funzione è stata definita per mantenere una
3195 analogia con le funzioni basate sui semafori, e si limita a cancellare
3196 (\texttt{\small 38}) il file con una chiamata ad \func{unlink}. Si noti che in
3197 questo caso la funzione non ha effetto sui mutex già ottenuti con precedenti
3198 chiamate a \func{FindMutex} o \func{CreateMutex}, che continueranno ad essere
3199 disponibili fintanto che i relativi file descriptor restano aperti. Pertanto
3200 per rilasciare un mutex occorrerà prima chiamare \func{UnlockMutex} oppure
3201 chiudere il file usato per il lock.
3202
3203 La sesta funzione (\texttt{\small 41--55}) è \func{ReadMutex} e serve a
3204 leggere lo stato del mutex. In questo caso si prepara (\texttt{\small 46--49})
3205 la solita struttura \var{lock} come l'acquisizione del lock, ma si effettua
3206 (\texttt{\small 51}) la chiamata a \func{fcntl} usando il comando
3207 \const{F\_GETLK} per ottenere lo stato del lock, e si restituisce
3208 (\texttt{\small 52}) il valore di ritorno in caso di errore, ed il valore del
3209 campo \var{l\_type} (che descrive lo stato del lock) altrimenti
3210 (\texttt{\small 54}). Per questo motivo la funzione restituirà -1 in caso di
3211 errore e uno dei due valori \const{F\_UNLCK} o \const{F\_WRLCK}\footnote{non
3212   si dovrebbe mai avere il terzo valore possibile, \const{F\_RDLCK}, dato che
3213   la nostra interfaccia usa solo i write lock. Però è sempre possibile che
3214   siano richiesti altri lock sul file al di fuori dell'interfaccia, nel qual
3215   caso si potranno avere, ovviamente, interferenze indesiderate.} in caso di
3216 successo, ad indicare che il mutex è, rispettivamente, libero o occupato.
3217
3218 Basandosi sulla semantica dei file lock POSIX valgono tutte le considerazioni
3219 relative al comportamento di questi ultimi fatte in
3220 sez.~\ref{sec:file_posix_lock}; questo significa ad esempio che, al contrario
3221 di quanto avveniva con l'interfaccia basata sui semafori, chiamate multiple a
3222 \func{UnlockMutex} o \func{LockMutex} non si cumulano e non danno perciò
3223 nessun inconveniente.
3224
3225
3226 \subsection{Il \textit{memory mapping} anonimo}
3227 \label{sec:ipc_mmap_anonymous}
3228
3229 \itindbeg{memory~mapping}
3230 Abbiamo già visto che quando i processi sono \textsl{correlati}\footnote{se
3231   cioè hanno almeno un progenitore comune.} l'uso delle pipe può costituire
3232 una valida alternativa alle code di messaggi; nella stessa situazione si può
3233 evitare l'uso di una memoria condivisa facendo ricorso al cosiddetto
3234 \textit{memory mapping} anonimo.
3235
3236 In sez.~\ref{sec:file_memory_map} abbiamo visto come sia possibile mappare il
3237 contenuto di un file nella memoria di un processo, e che, quando viene usato
3238 il flag \const{MAP\_SHARED}, le modifiche effettuate al contenuto del file
3239 vengono viste da tutti i processi che lo hanno mappato. Utilizzare questa
3240 tecnica per creare una memoria condivisa fra processi diversi è estremamente
3241 inefficiente, in quanto occorre passare attraverso il disco. Però abbiamo
3242 visto anche che se si esegue la mappatura con il flag \const{MAP\_ANONYMOUS}
3243 la regione mappata non viene associata a nessun file, anche se quanto scritto
3244 rimane in memoria e può essere riletto; allora, dato che un processo figlio
3245 mantiene nel suo spazio degli indirizzi anche le regioni mappate, esso sarà
3246 anche in grado di accedere a quanto in esse è contenuto.
3247
3248 In questo modo diventa possibile creare una memoria condivisa fra processi
3249 diversi, purché questi abbiano almeno un progenitore comune che ha effettuato
3250 il \textit{memory mapping} anonimo.\footnote{nei sistemi derivati da SysV una
3251   funzionalità simile a questa viene implementata mappando il file speciale
3252   \file{/dev/zero}. In tal caso i valori scritti nella regione mappata non
3253   vengono ignorati (come accade qualora si scriva direttamente sul file), ma
3254   restano in memoria e possono essere riletti secondo le stesse modalità usate
3255   nel \textit{memory mapping} anonimo.} Vedremo come utilizzare questa tecnica
3256 più avanti, quando realizzeremo una nuova versione del monitor visto in
3257 sez.~\ref{sec:ipc_sysv_shm} che possa restituisca i risultati via rete.
3258 \itindend{memory~mapping}
3259
3260 % TODO: fare esempio di mmap anonima
3261
3262 % TODO: con il kernel 3.2 è stata introdotta un nuovo meccanismo di
3263 % intercomunicazione veloce chiamato Cross Memory Attach, da capire se e come
3264 % trattarlo qui, vedi http://lwn.net/Articles/405346/
3265 % https://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=fcf634098c00dd9cd247447368495f0b79be12d1
3266
3267 \section{L'intercomunicazione fra processi di POSIX}
3268 \label{sec:ipc_posix}
3269
3270 Per superare i numerosi problemi del \textit{SysV IPC}, evidenziati per i suoi
3271 aspetti generali in coda a sez.~\ref{sec:ipc_sysv_generic} e per i singoli
3272 oggetti nei paragrafi successivi, lo standard POSIX.1b ha introdotto dei nuovi
3273 meccanismi di comunicazione, che vanno sotto il nome di POSIX IPC, definendo
3274 una interfaccia completamente nuova, che tratteremo in questa sezione.
3275
3276
3277 \subsection{Considerazioni generali}
3278 \label{sec:ipc_posix_generic}
3279
3280 Oggi Linux supporta tutti gli oggetti definito nello standard POSIX per l'IPC,
3281 ma a lungo non è stato così; la memoria condivisa è presente a partire dal
3282 kernel 2.4.x, i semafori sono forniti dalla \acr{glibc} nella sezione che
3283 implementa i \itindex{thread} \textit{thread} POSIX di nuova generazione che
3284 richiedono il kernel 2.6, le code di messaggi sono supportate a partire dal
3285 kernel 2.6.6.
3286
3287 La caratteristica fondamentale dell'interfaccia POSIX è l'abbandono dell'uso
3288 degli identificatori e delle chiavi visti nel SysV IPC, per passare ai
3289 \itindex{POSIX~IPC~names} \textit{POSIX IPC names}, che sono sostanzialmente
3290 equivalenti ai nomi dei file. Tutte le funzioni che creano un oggetto di IPC
3291 POSIX prendono come primo argomento una stringa che indica uno di questi nomi;
3292 lo standard è molto generico riguardo l'implementazione, ed i nomi stessi
3293 possono avere o meno una corrispondenza sul filesystem; tutto quello che è
3294 richiesto è che:
3295 \begin{itemize*}
3296 \item i nomi devono essere conformi alle regole che caratterizzano i
3297   \textit{pathname}, in particolare non essere più lunghi di \const{PATH\_MAX}
3298   byte e terminati da un carattere nullo.
3299 \item se il nome inizia per una \texttt{/} chiamate differenti allo stesso
3300   nome fanno riferimento allo stesso oggetto, altrimenti l'interpretazione del
3301   nome dipende dall'implementazione.
3302 \item l'interpretazione di ulteriori \texttt{/} presenti nel nome dipende
3303   dall'implementazione.
3304 \end{itemize*}
3305
3306 Data la assoluta genericità delle specifiche, il comportamento delle funzioni
3307 è subordinato in maniera quasi completa alla relativa
3308 implementazione.\footnote{tanto che Stevens in \cite{UNP2} cita questo caso
3309   come un esempio della maniera standard usata dallo standard POSIX per
3310   consentire implementazioni non standardizzabili.} Nel caso di Linux, sia per
3311 quanto riguarda la memoria condivisa ed i semafori, che per quanto riguarda le
3312 code di messaggi, tutto viene creato usando come radici delle opportune
3313 directory (rispettivamente \file{/dev/shm} e \file{/dev/mqueue}, per i
3314 dettagli si faccia riferimento a sez.~\ref{sec:ipc_posix_shm},
3315 sez.~\ref{sec:ipc_posix_sem} e sez.~\ref{sec:ipc_posix_mq}) ed i nomi
3316 specificati nelle relative funzioni sono considerati come un
3317 \itindsub{pathname}{assoluto} \textit{pathname} assoluto (comprendente
3318 eventuali sottodirectory) rispetto a queste radici.
3319
3320 Il vantaggio degli oggetti di IPC POSIX è comunque che essi vengono inseriti
3321 nell'albero dei file, e possono essere maneggiati con le usuali funzioni e
3322 comandi di accesso ai file,\footnote{questo è vero nel caso di Linux, che usa
3323   una implementazione che lo consente, non è detto che altrettanto valga per
3324   altri kernel; in particolare, come si può facilmente verificare con uno
3325   \cmd{strace}, sia per la memoria condivisa che per le code di messaggi le
3326   system call utilizzate da Linux sono le stesse di quelle dei file, essendo
3327   detti oggetti realizzati come tali in appositi filesystem.}  che funzionano
3328 come su dei file normali.
3329
3330 In particolare i permessi associati agli oggetti di IPC POSIX sono identici ai
3331 permessi dei file, ed il controllo di accesso segue esattamente la stessa
3332 semantica (quella illustrata in sez.~\ref{sec:file_access_control}), e non
3333 quella particolare (si ricordi quanto visto in
3334 sez.~\ref{sec:ipc_sysv_access_control}) che viene usata per gli oggetti del
3335 SysV IPC.  Per quanto riguarda l'attribuzione dell'utente e del gruppo
3336 proprietari dell'oggetto alla creazione di quest'ultimo essa viene effettuata
3337 secondo la semantica SysV: corrispondono cioè a \ids{UID} e \ids{GID} effettivi
3338 del processo che esegue la creazione.
3339
3340
3341 \subsection{Code di messaggi}
3342 \label{sec:ipc_posix_mq}
3343
3344 Le code di messaggi POSIX sono supportate da Linux a partire dalla versione
3345 2.6.6-rc1 del kernel,\footnote{l'implementazione è dovuta a Michal Wronski e
3346   Krzysztof Benedyczak, e le relative informazioni si possono trovare su
3347   \url{http://www.geocities.com/wronski12/posix_ipc/index.html}.} In
3348 generale, come le corrispettive del SysV IPC, le code di messaggi sono poco
3349 usate, dato che i socket, nei casi in cui sono sufficienti, sono più comodi, e
3350 che in casi più complessi la comunicazione può essere gestita direttamente con
3351 mutex (o semafori) e memoria condivisa con tutta la flessibilità che occorre.
3352
3353 Per poter utilizzare le code di messaggi, oltre ad utilizzare un kernel
3354 superiore al 2.6.6 (o precedente, se sono stati opportunamente applicati i
3355 relativi patch) occorre utilizzare la libreria \file{libmqueue}\footnote{i
3356   programmi che usano le code di messaggi cioè devono essere compilati
3357   aggiungendo l'opzione \code{-lmqueue} al comando \cmd{gcc}; in
3358   corrispondenza all'inclusione del supporto nel kernel ufficiale anche
3359   \file{libmqueue} è stata inserita nella \acr{glibc}, a partire dalla
3360   versione 2.3.4 delle medesime.} che contiene le funzioni dell'interfaccia
3361 POSIX.\footnote{in realtà l'implementazione è realizzata tramite delle
3362   opportune chiamate ad \func{ioctl} sui file del filesystem speciale su cui
3363   vengono mantenuti questi oggetti di IPC.}
3364
3365 La libreria inoltre richiede la presenza dell'apposito filesystem di tipo
3366 \texttt{mqueue} montato su \file{/dev/mqueue}; questo può essere fatto
3367 aggiungendo ad \conffile{/etc/fstab} una riga come:
3368 \begin{verbatim}
3369 mqueue   /dev/mqueue       mqueue    defaults        0      0
3370 \end{verbatim}
3371 ed esso sarà utilizzato come radice sulla quale vengono risolti i nomi delle
3372 code di messaggi che iniziano con una ``\texttt{/}''. Le opzioni di mount
3373 accettate sono \texttt{uid}, \texttt{gid} e \texttt{mode} che permettono
3374 rispettivamente di impostare l'utente, il gruppo ed i permessi associati al
3375 filesystem.
3376
3377
3378 La funzione che permette di aprire (e crearla se non esiste ancora) una coda
3379 di messaggi POSIX è \funcd{mq\_open}, ed il suo prototipo è:
3380 \begin{functions}
3381   \headdecl{mqueue.h} 
3382   
3383   \funcdecl{mqd\_t mq\_open(const char *name, int oflag)}
3384   
3385   \funcdecl{mqd\_t mq\_open(const char *name, int oflag, unsigned long mode,
3386     struct mq\_attr *attr)}
3387   
3388   Apre una coda di messaggi POSIX impostandone le caratteristiche.
3389   
3390   \bodydesc{La funzione restituisce il descrittore associato alla coda in caso
3391     di successo e -1 per un errore; nel quel caso \var{errno} assumerà i
3392     valori:
3393     \begin{errlist}
3394     \item[\errcode{EACCES}] il processo non ha i privilegi per accedere al
3395       alla memoria secondo quanto specificato da \param{oflag}.
3396     \item[\errcode{EEXIST}] si è specificato \const{O\_CREAT} e
3397       \const{O\_EXCL} ma la coda già esiste.
3398     \item[\errcode{EINVAL}] il file non supporta la funzione, o si è
3399       specificato \const{O\_CREAT} con una valore non nullo di \param{attr} e
3400       valori non validi di \var{mq\_maxmsg} e \var{mq\_msgsize}.
3401     \item[\errcode{ENOENT}] non si è specificato \const{O\_CREAT} ma la coda
3402       non esiste.
3403     \end{errlist}
3404     ed inoltre \errval{ENOMEM}, \errval{ENOSPC}, \errval{EFAULT},
3405     \errval{EMFILE}, \errval{EINTR} ed \errval{ENFILE}.
3406 }
3407 \end{functions}
3408
3409 La funzione apre la coda di messaggi identificata dall'argomento \param{name}
3410 restituendo il descrittore ad essa associato, del tutto analogo ad un file
3411 descriptor, con l'unica differenza che lo standard prevede un apposito tipo
3412 \type{mqd\_t}.\footnote{nel caso di Linux si tratta in effetti proprio di un
3413   normale file descriptor; pertanto, anche se questo comportamento non è
3414   portabile, lo si può tenere sotto osservazione con le funzioni dell'I/O
3415   multiplexing (vedi sez.~\ref{sec:file_multiplexing}) come possibile
3416   alternativa all'uso dell'interfaccia di notifica di \func{mq\_notify} (che
3417   vedremo a breve).} Se la coda esiste già il descrittore farà riferimento
3418 allo stesso oggetto, consentendo così la comunicazione fra due processi
3419 diversi.
3420
3421 La funzione è del tutto analoga ad \func{open} ed analoghi sono i valori che
3422 possono essere specificati per \param{oflag}, che deve essere specificato come
3423 maschera binaria; i valori possibili per i vari bit sono quelli visti in
3424 sez.~\ref{sec:file_open_close} dei quali però \func{mq\_open} riconosce solo i
3425 seguenti:
3426 \begin{basedescript}{\desclabelwidth{2.2cm}\desclabelstyle{\nextlinelabel}}
3427 \item[\const{O\_RDONLY}] Apre la coda solo per la ricezione di messaggi. Il
3428   processo potrà usare il descrittore con \func{mq\_receive} ma non con
3429   \func{mq\_send}.
3430 \item[\const{O\_WRONLY}] Apre la coda solo per la trasmissione di messaggi. Il
3431   processo potrà usare il descrittore con \func{mq\_send} ma non con
3432   \func{mq\_receive}.
3433 \item[\const{O\_RDWR}] Apre la coda solo sia per la trasmissione che per la
3434   ricezione. 
3435 \item[\const{O\_CREAT}] Necessario qualora si debba creare la coda; la
3436   presenza di questo bit richiede la presenza degli ulteriori argomenti
3437   \param{mode} e \param{attr}.
3438 \item[\const{O\_EXCL}] Se usato insieme a \const{O\_CREAT} fa fallire la
3439   chiamata se la coda esiste già, altrimenti esegue la creazione atomicamente.
3440 \item[\const{O\_NONBLOCK}] Imposta la coda in modalità non bloccante, le
3441   funzioni di ricezione e trasmissione non si bloccano quando non ci sono le
3442   risorse richieste, ma ritornano immediatamente con un errore di
3443   \errcode{EAGAIN}.
3444 \end{basedescript}
3445
3446 I primi tre bit specificano la modalità di apertura della coda, e sono fra
3447 loro esclusivi. Ma qualunque sia la modalità in cui si è aperta una coda,
3448 questa potrà essere riaperta più volte in una modalità diversa, e vi si potrà
3449 sempre accedere attraverso descrittori diversi, esattamente come si può fare
3450 per i file normali.
3451
3452 Se la coda non esiste e la si vuole creare si deve specificare
3453 \const{O\_CREAT}, in tal caso occorre anche specificare i permessi di
3454 creazione con l'argomento \param{mode};\footnote{fino al 2.6.14 per un bug i
3455   valori della \textit{umask} del processo non venivano applicati a questi
3456   permessi.} i valori di quest'ultimo sono identici a quelli usati per
3457 \func{open}, anche se per le code di messaggi han senso solo i permessi di
3458 lettura e scrittura. Oltre ai permessi di creazione possono essere specificati
3459 anche gli attributi specifici della coda tramite l'argomento \param{attr};
3460 quest'ultimo è un puntatore ad una apposita struttura \struct{mq\_attr}, la
3461 cui definizione è riportata in fig.~\ref{fig:ipc_mq_attr}.
3462
3463 \begin{figure}[!htb]
3464   \footnotesize \centering
3465   \begin{minipage}[c]{\textwidth}
3466     \includestruct{listati/mq_attr.h}
3467   \end{minipage} 
3468   \normalsize
3469   \caption{La struttura \structd{mq\_attr}, contenente gli attributi di una
3470     coda di messaggi POSIX.}
3471   \label{fig:ipc_mq_attr}
3472 \end{figure}
3473
3474 Per la creazione della coda i campi della struttura che devono essere
3475 specificati sono \var{mq\_maxmsg} e \var{mq\_msgsize}, che indicano
3476 rispettivamente il numero massimo di messaggi che può contenere e la
3477 dimensione massima di un messaggio. Il valore dovrà essere positivo e minore
3478 dei rispettivi limiti di sistema \const{MQ\_MAXMSG} e \const{MQ\_MSGSIZE},
3479 altrimenti la funzione fallirà con un errore di \errcode{EINVAL}.
3480 Se \param{attr} è un puntatore nullo gli attributi della coda saranno
3481 impostati ai valori predefiniti.
3482
3483 Quando l'accesso alla coda non è più necessario si può chiudere il relativo
3484 descrittore con la funzione \funcd{mq\_close}, il cui prototipo è:
3485 \begin{prototype}{mqueue.h}
3486 {int mq\_close(mqd\_t mqdes)}
3487
3488 Chiude la coda \param{mqdes}.
3489   
3490 \bodydesc{La funzione restituisce 0 in caso di successo e -1 per un errore;
3491   nel quel caso \var{errno} assumerà i valori \errval{EBADF} o
3492   \errval{EINTR}.}
3493 \end{prototype}
3494
3495 La funzione è analoga a \func{close},\footnote{in Linux, dove le code sono
3496   implementate come file su un filesystem dedicato, è esattamente la stessa
3497   funzione.} dopo la sua esecuzione il processo non sarà più in grado di usare
3498 il descrittore della coda, ma quest'ultima continuerà ad esistere nel sistema
3499 e potrà essere acceduta con un'altra chiamata a \func{mq\_open}. All'uscita di
3500 un processo tutte le code aperte, così come i file, vengono chiuse
3501 automaticamente. Inoltre se il processo aveva agganciato una richiesta di
3502 notifica sul descrittore che viene chiuso, questa sarà rilasciata e potrà
3503 essere richiesta da qualche altro processo.
3504
3505
3506 Quando si vuole effettivamente rimuovere una coda dal sistema occorre usare la
3507 funzione \funcd{mq\_unlink}, il cui prototipo è:
3508 \begin{prototype}{mqueue.h}
3509 {int mq\_unlink(const char *name)}
3510
3511 Rimuove una coda di messaggi.
3512   
3513 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
3514   errore; nel quel caso \var{errno} assumerà gli stessi valori riportati da
3515   \func{unlink}.}
3516 \end{prototype}
3517
3518 Anche in questo caso il comportamento della funzione è analogo a quello di
3519 \func{unlink} per i file,\footnote{di nuovo l'implementazione di Linux usa
3520   direttamente \func{unlink}.} la funzione rimuove la coda \param{name}, così
3521 che una successiva chiamata a \func{mq\_open} fallisce o crea una coda
3522 diversa. 
3523
3524 Come per i file ogni coda di messaggi ha un contatore di riferimenti, per cui
3525 la coda non viene effettivamente rimossa dal sistema fin quando questo non si
3526 annulla. Pertanto anche dopo aver eseguito con successo \func{mq\_unlink} la
3527 coda resterà accessibile a tutti i processi che hanno un descrittore aperto su
3528 di essa.  Allo stesso modo una coda ed i suoi contenuti resteranno disponibili
3529 all'interno del sistema anche quando quest'ultima non è aperta da nessun
3530 processo (questa è una delle differenze più rilevanti nei confronti di pipe e
3531 fifo).  La sola differenza fra code di messaggi POSIX e file normali è che,
3532 essendo il filesystem delle code di messaggi virtuale e basato su oggetti
3533 interni al kernel, il suo contenuto viene perduto con il riavvio del sistema.
3534
3535 Come accennato ad ogni coda di messaggi è associata una struttura
3536 \struct{mq\_attr}, che può essere letta e modificata attraverso le due
3537 funzioni \funcd{mq\_getattr} e \funcd{mq\_setattr}, i cui prototipi sono:
3538 \begin{functions}
3539   \headdecl{mqueue.h} 
3540   
3541   \funcdecl{int mq\_getattr(mqd\_t mqdes, struct mq\_attr *mqstat)}
3542   Legge gli attributi di una coda di messaggi POSIX.
3543   
3544   \funcdecl{int mq\_setattr(mqd\_t mqdes, const struct mq\_attr *mqstat,
3545     struct mq\_attr *omqstat)}
3546   Modifica gli attributi di una coda di messaggi POSIX.
3547   
3548   \bodydesc{Entrambe le funzioni restituiscono 0 in caso di successo e -1 in
3549     caso di errore; nel quel caso \var{errno} assumerà i valori \errval{EBADF}
3550     o \errval{EINVAL}.}
3551 \end{functions}
3552
3553 La funzione \func{mq\_getattr} legge i valori correnti degli attributi della
3554 coda nella struttura puntata da \param{mqstat}; di questi l'unico relativo
3555 allo stato corrente della coda è \var{mq\_curmsgs} che indica il numero di
3556 messaggi da essa contenuti, gli altri indicano le caratteristiche generali
3557 della stessa.
3558
3559 La funzione \func{mq\_setattr} permette di modificare gli attributi di una
3560 coda tramite i valori contenuti nella struttura puntata da \param{mqstat}, ma
3561 può essere modificato solo il campo \var{mq\_flags}, gli altri campi vengono
3562 ignorati. In particolare i valori di \var{mq\_maxmsg} e \var{mq\_msgsize}
3563 possono essere specificati solo in fase ci creazione della coda.  Inoltre i
3564 soli valori possibili per \var{mq\_flags} sono 0 e \const{O\_NONBLOCK}, per
3565 cui alla fine la funzione può essere utilizzata solo per abilitare o
3566 disabilitare la modalità non bloccante. L'argomento \param{omqstat} viene
3567 usato, quando diverso da \val{NULL}, per specificare l'indirizzo di una
3568 struttura su cui salvare i valori degli attributi precedenti alla chiamata
3569 della funzione.
3570
3571 Per inserire messaggi su di una coda sono previste due funzioni,
3572 \funcd{mq\_send} e \funcd{mq\_timedsend}, i cui prototipi sono:
3573 \begin{functions}
3574   \headdecl{mqueue.h} 
3575   
3576   \funcdecl{int mq\_send(mqd\_t mqdes, const char *msg\_ptr, size\_t msg\_len,
3577     unsigned int msg\_prio)} 
3578   Esegue l'inserimento di un messaggio su una coda.
3579   
3580   \funcdecl{int mq\_timedsend(mqd\_t mqdes, const char *msg\_ptr, size\_t
3581     msg\_len, unsigned msg\_prio, const struct timespec *abs\_timeout)}   
3582   Esegue l'inserimento di un messaggio su una coda entro il tempo
3583   \param{abs\_timeout}.
3584
3585   
3586   \bodydesc{Le funzioni restituiscono 0 in caso di successo e $-1$ per un
3587     errore; nel quel caso \var{errno} assumerà i valori:
3588     \begin{errlist}
3589     \item[\errcode{EAGAIN}] si è aperta la coda con \const{O\_NONBLOCK}, e la
3590       coda è piena.
3591     \item[\errcode{EMSGSIZE}] la lunghezza del messaggio \param{msg\_len}
3592       eccede il limite impostato per la coda.
3593     \item[\errcode{EINVAL}] si è specificato un valore nullo per
3594       \param{msg\_len}, o un valore di \param{msg\_prio} fuori dai limiti, o
3595       un valore non valido per \param{abs\_timeout}.
3596     \item[\errcode{ETIMEDOUT}] l'inserimento del messaggio non è stato
3597       effettuato entro il tempo stabilito.
3598     \end{errlist}    
3599     ed inoltre \errval{EBADF}, \errval{ENOMEM} ed \errval{EINTR}.}
3600 \end{functions}
3601
3602 Entrambe le funzioni richiedono un puntatore al testo del messaggio
3603 nell'argomento \param{msg\_ptr} e la relativa lunghezza in \param{msg\_len}.
3604 Se quest'ultima eccede la dimensione massima specificata da \var{mq\_msgsize}
3605 le funzioni ritornano immediatamente con un errore di \errcode{EMSGSIZE}.
3606
3607 L'argomento \param{msg\_prio} indica la priorità dell'argomento; i messaggi di
3608 priorità maggiore vengono inseriti davanti a quelli di priorità inferiore (e
3609 quindi saranno riletti per primi). A parità del valore della priorità il
3610 messaggio sarà inserito in coda a tutti quelli con la stessa priorità. Il
3611 valore della priorità non può eccedere il limite di sistema
3612 \const{MQ\_PRIO\_MAX}, che nel caso è pari a 32768.
3613
3614 Qualora la coda sia piena, entrambe le funzioni si bloccano, a meno che non
3615 sia stata selezionata in fase di apertura la modalità non
3616 bloccante,\footnote{o si sia impostato il flag \const{O\_NONBLOCK} sul file
3617   descriptor della coda.} nel qual caso entrambe ritornano \errcode{EAGAIN}.
3618 La sola differenza fra le due funzioni è che la seconda, passato il tempo
3619 massimo impostato con l'argomento \param{abs\_timeout},\footnote{deve essere
3620   specificato un tempo assoluto tramite una struttura \struct{timespec} (vedi
3621   fig.~\ref{fig:sys_timespec_struct}) indicato in numero di secondi e
3622   nanosecondi a partire dal 1 gennaio 1970.} ritorna comunque con un errore di
3623 \errcode{ETIMEDOUT}, se invece il tempo è già scaduto al momento della
3624 chiamata e la coda è vuota la funzione ritorna immediatamente.
3625
3626 Come per l'inserimento, anche per l'estrazione dei messaggi da una coda sono
3627 previste due funzioni, \funcd{mq\_receive} e \funcd{mq\_timedreceive}, i cui
3628 prototipi sono:
3629 \begin{functions}
3630   \headdecl{mqueue.h} 
3631   
3632   \funcdecl{ssize\_t mq\_receive(mqd\_t mqdes, char *msg\_ptr, size\_t
3633     msg\_len, unsigned int *msg\_prio)}   
3634   Effettua la ricezione di un messaggio da una coda.
3635   
3636   \funcdecl{ssize\_t mq\_timedreceive(mqd\_t mqdes, char *msg\_ptr, size\_t
3637     msg\_len, unsigned int *msg\_prio, const struct timespec *abs\_timeout)}
3638   Effettua la ricezione di un messaggio da una coda entro il tempo
3639   \param{abs\_timeout}.
3640   
3641   \bodydesc{Le funzioni restituiscono il numero di byte del messaggio in caso
3642     di successo e -1 in caso di errore; nel quel caso \var{errno} assumerà i
3643     valori:
3644     \begin{errlist}
3645     \item[\errcode{EAGAIN}] si è aperta la coda con \const{O\_NONBLOCK}, e la
3646       coda è vuota.
3647     \item[\errcode{EMSGSIZE}] la lunghezza del messaggio sulla coda eccede il
3648       valore \param{msg\_len} specificato per la ricezione.
3649     \item[\errcode{EINVAL}] si è specificato un valore nullo per
3650       \param{msg\_ptr}, o un valore non valido per \param{abs\_timeout}.
3651     \item[\errcode{ETIMEDOUT}] la ricezione del messaggio non è stata
3652       effettuata entro il tempo stabilito.
3653     \end{errlist}    
3654     ed inoltre \errval{EBADF}, \errval{EINTR}, \errval{ENOMEM}, o
3655     \errval{EINVAL}.}
3656 \end{functions}
3657
3658 La funzione estrae dalla coda il messaggio a priorità più alta, o il più
3659 vecchio fra quelli della stessa priorità. Una volta ricevuto il messaggio
3660 viene tolto dalla coda e la sua dimensione viene restituita come valore di
3661 ritorno.\footnote{si tenga presente che 0 è una dimensione valida e che la
3662   condizione di errore è restituita dal valore -1; Stevens in \cite{UNP2} fa
3663   notare che questo è uno dei casi in cui vale ciò che lo standard
3664   \textsl{non} dice, una dimensione nulla infatti, pur non essendo citata, non
3665   viene proibita.}
3666
3667 Se la dimensione specificata da \param{msg\_len} non è sufficiente a contenere
3668 il messaggio, entrambe le funzioni, al contrario di quanto avveniva nelle code
3669 di messaggi di SysV, ritornano un errore di \errcode{EMSGSIZE} senza estrarre
3670 il messaggio.  È pertanto opportuno eseguire sempre una chiamata a
3671 \func{mq\_getattr} prima di eseguire una ricezione, in modo da ottenere la
3672 dimensione massima dei messaggi sulla coda, per poter essere in grado di
3673 allocare dei buffer sufficientemente ampi per la lettura.
3674
3675 Se si specifica un puntatore per l'argomento \param{msg\_prio} il valore della
3676 priorità del messaggio viene memorizzato all'indirizzo da esso indicato.
3677 Qualora non interessi usare la priorità dei messaggi si può specificare
3678 \var{NULL}, ed usare un valore nullo della priorità nelle chiamate a
3679 \func{mq\_send}.
3680
3681 Si noti che con le code di messaggi POSIX non si ha la possibilità di
3682 selezionare quale messaggio estrarre con delle condizioni sulla priorità, a
3683 differenza di quanto avveniva con le code di messaggi di SysV che permettono
3684 invece la selezione in base al valore del campo \var{mtype}. 
3685
3686 % TODO inserire i dati di /proc/sys/fs/mqueue 
3687
3688 Qualora la coda sia vuota entrambe le funzioni si bloccano, a meno che non si
3689 sia selezionata la modalità non bloccante; in tal caso entrambe ritornano
3690 immediatamente con l'errore \errcode{EAGAIN}. Anche in questo caso la sola
3691 differenza fra le due funzioni è che la seconda non attende indefinitamente e
3692 passato il tempo massimo \param{abs\_timeout} ritorna comunque con un errore
3693 di \errcode{ETIMEDOUT}.
3694
3695 Uno dei problemi sottolineati da Stevens in \cite{UNP2}, comuni ad entrambe le
3696 tipologie di code messaggi, è che non è possibile per chi riceve identificare
3697 chi è che ha inviato il messaggio, in particolare non è possibile sapere da
3698 quale utente esso provenga. Infatti, in mancanza di un meccanismo interno al
3699 kernel, anche se si possono inserire delle informazioni nel messaggio, queste
3700 non possono essere credute, essendo completamente dipendenti da chi lo invia.
3701 Vedremo però come, attraverso l'uso del meccanismo di notifica, sia possibile
3702 superare in parte questo problema.
3703
3704 Una caratteristica specifica delle code di messaggi POSIX è la possibilità di
3705 usufruire di un meccanismo di notifica asincrono; questo può essere attivato
3706 usando la funzione \funcd{mq\_notify}, il cui prototipo è:
3707 \begin{prototype}{mqueue.h}
3708 {int mq\_notify(mqd\_t mqdes, const struct sigevent *notification)}
3709
3710 Attiva il meccanismo di notifica per la coda \param{mqdes}.
3711   
3712 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
3713   errore; nel quel caso \var{errno} assumerà i valori: 
3714     \begin{errlist}
3715     \item[\errcode{EBUSY}] c'è già un processo registrato per la notifica.
3716     \item[\errcode{EBADF}] il descrittore non fa riferimento ad una coda di
3717       messaggi.
3718     \end{errlist}}
3719 \end{prototype}
3720
3721 Il meccanismo di notifica permette di segnalare in maniera asincrona ad un
3722 processo la presenza di dati sulla coda, in modo da evitare la necessità di
3723 bloccarsi nell'attesa. Per far questo un processo deve registrarsi con la
3724 funzione \func{mq\_notify}, ed il meccanismo è disponibile per un solo
3725 processo alla volta per ciascuna coda.
3726
3727 Il comportamento di \func{mq\_notify} dipende dal valore dell'argomento
3728 \param{notification}, che è un puntatore ad una apposita struttura
3729 \struct{sigevent}, (definita in fig.~\ref{fig:struct_sigevent}) introdotta
3730 dallo standard POSIX.1b per gestire la notifica di eventi; per altri dettagli
3731 si può vedere quanto detto in sez.~\ref{sec:sig_timer_adv} a proposito
3732 dell'uso della stessa struttura per la notifica delle scadenze dei
3733 \textit{timer}.
3734
3735 Attraverso questa struttura si possono impostare le modalità con cui viene
3736 effettuata la notifica nel campo \var{sigev\_notify}, che può assumere i
3737 valori di tab.~\ref{tab:sigevent_sigev_notify}.\footnote{la pagina di manuale
3738   riporta soltanto i primi tre (inizialmente era possibile solo
3739   \const{SIGEV\_SIGNAL}).} Il metodo consigliato è quello di usare
3740 \const{SIGEV\_SIGNAL} usando il campo \var{sigev\_signo} per indicare il quale
3741 segnale deve essere inviato al processo. Inoltre il campo \var{sigev\_value} è
3742 un puntatore ad una struttura \struct{sigval} (definita in
3743 fig.~\ref{fig:sig_sigval}) che permette di restituire al gestore del segnale
3744 un valore numerico o un indirizzo,\footnote{per il suo uso si riveda la
3745   trattazione fatta in sez.~\ref{sec:sig_real_time} a proposito dei segnali
3746   \textit{real-time}.} posto che questo sia installato nella forma estesa
3747 vista in sez.~\ref{sec:sig_sigaction}.
3748
3749 La funzione registra il processo chiamante per la notifica se
3750 \param{notification} punta ad una struttura \struct{sigevent} opportunamente
3751 inizializzata, o cancella una precedente registrazione se è \val{NULL}. Dato
3752 che un solo processo alla volta può essere registrato, la funzione fallisce
3753 con \errcode{EBUSY} se c'è un altro processo già registrato.\footnote{questo
3754   significa anche che se si registra una notifica con \const{SIGEV\_NONE} il
3755   processo non la riceverà, ma impedirà anche che altri possano registrarsi
3756   per poterlo fare.}  Si tenga presente inoltre che alla chiusura del
3757 descrittore associato alla coda (e quindi anche all'uscita del processo) ogni
3758 eventuale registrazione di notifica presente viene cancellata.
3759
3760 La notifica del segnale avviene all'arrivo di un messaggio in una coda vuota
3761 (cioè solo se sulla coda non ci sono messaggi) e se non c'è nessun processo
3762 bloccato in una chiamata a \func{mq\_receive}, in questo caso infatti il
3763 processo bloccato ha la precedenza ed il messaggio gli viene immediatamente
3764 inviato, mentre per il meccanismo di notifica tutto funziona come se la coda
3765 fosse rimasta vuota.
3766
3767 Quando un messaggio arriva su una coda vuota al processo che si era registrato
3768 viene inviato il segnale specificato da \code{notification->sigev\_signo}, e
3769 la coda diventa disponibile per una ulteriore registrazione.  Questo comporta
3770 che se si vuole mantenere il meccanismo di notifica occorre ripetere la
3771 registrazione chiamando nuovamente \func{mq\_notify} all'interno del gestore
3772 del segnale di notifica. A differenza della situazione simile che si aveva con
3773 i segnali non affidabili,\footnote{l'argomento è stato affrontato in
3774   \ref{sec:sig_semantics}.} questa caratteristica non configura una
3775 \itindex{race~condition} \textit{race condition} perché l'invio di un segnale
3776 avviene solo se la coda è vuota; pertanto se si vuole evitare di correre il
3777 rischio di perdere eventuali ulteriori segnali inviati nel lasso di tempo che
3778 occorre per ripetere la richiesta di notifica basta avere cura di eseguire
3779 questa operazione prima di estrarre i messaggi presenti dalla coda.
3780
3781 L'invio del segnale di notifica avvalora alcuni campi di informazione
3782 restituiti al gestore attraverso la struttura \struct{siginfo\_t} (definita in
3783 fig.~\ref{fig:sig_siginfo_t}). In particolare \var{si\_pid} viene impostato al
3784 valore del \ids{PID} del processo che ha emesso il segnale, \var{si\_uid}
3785 all'userid effettivo, \var{si\_code} a \const{SI\_MESGQ}, e \var{si\_errno} a
3786 0. Questo ci dice che, se si effettua la ricezione dei messaggi usando
3787 esclusivamente il meccanismo di notifica, è possibile ottenere le informazioni
3788 sul processo che ha inserito un messaggio usando un gestore per il segnale in
3789 forma estesa.\footnote{di nuovo si faccia riferimento a quanto detto al
3790   proposito in sez.~\ref{sec:sig_sigaction} e sez.~\ref{sec:sig_real_time}.}
3791
3792
3793
3794 \subsection{Memoria condivisa}
3795 \label{sec:ipc_posix_shm}
3796
3797 La memoria condivisa è stato il primo degli oggetti di IPC POSIX inserito nel
3798 kernel ufficiale; il supporto a questo tipo di oggetti è realizzato attraverso
3799 il filesystem \texttt{tmpfs}, uno speciale filesystem che mantiene tutti i
3800 suoi contenuti in memoria, che viene attivato abilitando l'opzione
3801 \texttt{CONFIG\_TMPFS} in fase di compilazione del kernel.
3802
3803 Per potere utilizzare l'interfaccia POSIX per la memoria condivisa la
3804 \acr{glibc}\footnote{le funzioni sono state introdotte con la versione 2.2.}
3805 richiede di compilare i programmi con l'opzione \code{-lrt}; inoltre è
3806 necessario che in \file{/dev/shm} sia montato un filesystem \texttt{tmpfs};
3807 questo di norma viene fatto aggiungendo una riga del tipo di:
3808 \begin{verbatim}
3809 tmpfs   /dev/shm        tmpfs   defaults        0      0
3810 \end{verbatim}
3811 ad \conffile{/etc/fstab}. In realtà si può montare un filesystem \texttt{tmpfs}
3812 dove si vuole, per usarlo come RAM disk, con un comando del tipo:
3813 \begin{verbatim}
3814 mount -t tmpfs -o size=128M,nr_inodes=10k,mode=700 tmpfs /mytmpfs
3815 \end{verbatim}
3816
3817 Il filesystem riconosce, oltre quelle mostrate, le opzioni \texttt{uid} e
3818 \texttt{gid} che identificano rispettivamente utente e gruppo cui assegnarne
3819 la titolarità, e \texttt{nr\_blocks} che permette di specificarne la
3820 dimensione in blocchi, cioè in multipli di \const{PAGECACHE\_SIZE} che in
3821 questo caso è l'unità di allocazione elementare.
3822
3823 La funzione che permette di aprire un segmento di memoria condivisa POSIX, ed
3824 eventualmente di crearlo se non esiste ancora, è \funcd{shm\_open}; il suo
3825 prototipo è:
3826 \begin{functions}
3827   \headdecl{sys/mman.h} 
3828   \headdecl{sys/stat.h} 
3829   \headdecl{fcntl.h} 
3830
3831   \funcdecl{int shm\_open(const char *name, int oflag, mode\_t mode)} 
3832
3833   Apre un segmento di memoria condivisa.
3834   
3835   \bodydesc{La funzione restituisce un file descriptor positivo in caso di
3836     successo e -1 in caso di errore; nel quel caso \var{errno} assumerà gli
3837     stessi valori riportati da \func{open}.}
3838 \end{functions}
3839
3840 La funzione apre un segmento di memoria condivisa identificato dal nome
3841 \param{name}. Come già spiegato in sez.~\ref{sec:ipc_posix_generic} questo
3842 nome può essere specificato in forma standard solo facendolo iniziare per
3843 ``\file{/}'' e senza ulteriori ``\file{/}''. Linux supporta comunque nomi
3844 generici, che verranno interpretati prendendo come radice
3845 \file{/dev/shm}.\footnote{occorre pertanto evitare di specificare qualcosa del
3846   tipo \file{/dev/shm/nome} all'interno di \param{name}, perché questo
3847   comporta, da parte delle funzioni di libreria, il tentativo di accedere a
3848   \file{/dev/shm/dev/shm/nome}.}
3849
3850 La funzione è del tutto analoga ad \func{open} ed analoghi sono i valori che
3851 possono essere specificati per \param{oflag}, che deve essere specificato come
3852 maschera binaria comprendente almeno uno dei due valori \const{O\_RDONLY} e
3853 \const{O\_RDWR}; i valori possibili per i vari bit sono quelli visti in
3854 sez.~\ref{sec:file_open_close} dei quali però \func{shm\_open} riconosce solo
3855 i seguenti:
3856 \begin{basedescript}{\desclabelwidth{2.0cm}\desclabelstyle{\nextlinelabel}}
3857 \item[\const{O\_RDONLY}] Apre il file descriptor associato al segmento di
3858   memoria condivisa per l'accesso in sola lettura.
3859 \item[\const{O\_RDWR}] Apre il file descriptor associato al segmento di
3860   memoria condivisa per l'accesso in lettura e scrittura.
3861 \item[\const{O\_CREAT}] Necessario qualora si debba creare il segmento di
3862   memoria condivisa se esso non esiste; in questo caso viene usato il valore
3863   di \param{mode} per impostare i permessi, che devono essere compatibili con
3864   le modalità con cui si è aperto il file.
3865 \item[\const{O\_EXCL}] Se usato insieme a \const{O\_CREAT} fa fallire la
3866   chiamata a \func{shm\_open} se il segmento esiste già, altrimenti esegue la
3867   creazione atomicamente.
3868 \item[\const{O\_TRUNC}] Se il segmento di memoria condivisa esiste già, ne
3869   tronca le dimensioni a 0 byte.
3870 \end{basedescript}
3871
3872 In caso di successo la funzione restituisce un file descriptor associato al
3873 segmento di memoria condiviso con le stesse modalità di
3874 \func{open}\footnote{in realtà, come accennato, \func{shm\_open} è un semplice
3875   wrapper per \func{open}, usare direttamente quest'ultima avrebbe lo stesso
3876   effetto.}  viste in sez.~\ref{sec:file_open_close}; in particolare viene impostato
3877 il flag \const{FD\_CLOEXEC}.  Chiamate effettuate da diversi processi usando
3878 lo stesso nome, restituiranno file descriptor associati allo stesso segmento
3879 (così come, nel caso di file di dati, essi sono associati allo stesso
3880 \itindex{inode} inode).  In questo modo è possibile effettuare una chiamata ad
3881 \func{mmap} sul file descriptor restituito da \func{shm\_open} ed i processi
3882 vedranno lo stesso segmento di memoria condivisa.
3883
3884 Quando il nome non esiste il segmento può essere creato specificando
3885 \const{O\_CREAT}; in tal caso il segmento avrà (così come i nuovi file)
3886 lunghezza nulla. Dato che un segmento di lunghezza nulla è di scarsa utilità,
3887 per impostarne la dimensione si deve usare \func{ftruncate} (vedi
3888 sez.~\ref{sec:file_file_size}), prima di mapparlo in memoria con \func{mmap}.
3889 Si tenga presente che una volta chiamata \func{mmap} si può chiudere il file
3890 descriptor (con \func{close}), senza che la mappatura ne risenta.
3891
3892 Come per i file, quando si vuole effettivamente rimuovere segmento di memoria
3893 condivisa, occorre usare la funzione \funcd{shm\_unlink}, il cui prototipo è:
3894 \begin{prototype}{sys/mman.h}
3895 {int shm\_unlink(const char *name)}
3896
3897 Rimuove un segmento di memoria condivisa.
3898   
3899 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
3900   errore; nel quel caso \var{errno} assumerà gli stessi valori riportati da
3901   \func{unlink}.}
3902 \end{prototype}
3903
3904 La funzione è del tutto analoga ad \func{unlink}, e si limita a cancellare il
3905 nome del segmento da \file{/dev/shm}, senza nessun effetto né sui file
3906 descriptor precedentemente aperti con \func{shm\_open}, né sui segmenti già
3907 mappati in memoria; questi verranno cancellati automaticamente dal sistema
3908 solo con le rispettive chiamate a \func{close} e \func{munmap}.  Una volta
3909 eseguita questa funzione però, qualora si richieda l'apertura di un segmento
3910 con lo stesso nome, la chiamata a \func{shm\_open} fallirà, a meno di non aver
3911 usato \const{O\_CREAT}, in quest'ultimo caso comunque si otterrà un file
3912 descriptor che fa riferimento ad un segmento distinto da eventuali precedenti.
3913
3914 \begin{figure}[!htbp]
3915   \footnotesize \centering
3916   \begin{minipage}[c]{\codesamplewidth}
3917     \includecodesample{listati/MemShared.c}
3918   \end{minipage} 
3919   \normalsize 
3920   \caption{Il codice delle funzioni di gestione dei segmenti di memoria
3921     condivisa POSIX.}
3922   \label{fig:ipc_posix_shmmem}
3923 \end{figure}
3924
3925 Come esempio per l'uso di queste funzioni vediamo come è possibile riscrivere
3926 una interfaccia semplificata analoga a quella vista in
3927 fig.~\ref{fig:ipc_sysv_shm_func} per la memoria condivisa in stile SysV. Il
3928 codice, riportato in fig.~\ref{fig:ipc_posix_shmmem}, è sempre contenuto nel
3929 file \file{SharedMem.c} dei sorgenti allegati.
3930
3931 La prima funzione (\texttt{\small 1--24}) è \func{CreateShm} che, dato un nome
3932 nell'argomento \var{name} crea un nuovo segmento di memoria condivisa,
3933 accessibile in lettura e scrittura, e ne restituisce l'indirizzo. Anzitutto si
3934 definiscono (\texttt{\small 8}) i flag per la successiva (\texttt{\small 9})
3935 chiamata a \func{shm\_open}, che apre il segmento in lettura e scrittura
3936 (creandolo se non esiste, ed uscendo in caso contrario) assegnandogli sul
3937 filesystem i permessi specificati dall'argomento \var{perm}. In caso di errore
3938 (\texttt{\small 10--12}) si restituisce un puntatore nullo, altrimenti si
3939 prosegue impostando (\texttt{\small 14}) la dimensione del segmento con
3940 \func{ftruncate}. Di nuovo (\texttt{\small 15--16}) si esce immediatamente
3941 restituendo un puntatore nullo in caso di errore. Poi si passa (\texttt{\small
3942   18}) a mappare in memoria il segmento con \func{mmap} specificando dei
3943 diritti di accesso corrispondenti alla modalità di apertura.  Di nuovo si
3944 restituisce (\texttt{\small 19--21}) un puntatore nullo in caso di errore,
3945 altrimenti si inizializza (\texttt{\small 22}) il contenuto del segmento al
3946 valore specificato dall'argomento \var{fill} con \func{memset}, e se ne
3947 restituisce (\texttt{\small 23}) l'indirizzo.
3948
3949 La seconda funzione (\texttt{\small 25--40}) è \func{FindShm} che trova un
3950 segmento di memoria condiviso già esistente, restituendone l'indirizzo. In
3951 questo caso si apre (\texttt{\small 31}) il segmento con \func{shm\_open}
3952 richiedendo che il segmento sia già esistente, in caso di errore
3953 (\texttt{\small 31--33}) si ritorna immediatamente un puntatore nullo.
3954 Ottenuto il file descriptor del segmento lo si mappa (\texttt{\small 35}) in
3955 memoria con \func{mmap}, restituendo (\texttt{\small 36--38}) un puntatore
3956 nullo in caso di errore, o l'indirizzo (\texttt{\small 39}) dello stesso in
3957 caso di successo.
3958
3959 La terza funzione (\texttt{\small 40--45}) è \func{RemoveShm}, e serve a
3960 cancellare un segmento di memoria condivisa. Dato che al contrario di quanto
3961 avveniva con i segmenti del SysV IPC gli oggetti allocati nel kernel vengono
3962 rilasciati automaticamente quando nessuna li usa più, tutto quello che c'è da
3963 fare (\texttt{\small 44}) in questo caso è chiamare \func{shm\_unlink},
3964 restituendo al chiamante il valore di ritorno.
3965
3966
3967
3968
3969 \subsection{Semafori}
3970 \label{sec:ipc_posix_sem}
3971
3972 Fino alla serie 2.4.x del kernel esisteva solo una implementazione parziale
3973 dei semafori POSIX che li realizzava solo a livello di \itindex{thread}
3974 \textit{thread} e non di processi,\footnote{questo significava che i semafori
3975   erano visibili solo all'interno dei \itindex{thread} \textit{thread} creati
3976   da un singolo processo, e non potevano essere usati come meccanismo di
3977   sincronizzazione fra processi diversi.} fornita attraverso la sezione delle
3978 estensioni \textit{real-time} della \acr{glibc}.\footnote{quelle che si
3979   accedono collegandosi alla libreria \texttt{librt}.} Esisteva inoltre una
3980 libreria che realizzava (parzialmente) l'interfaccia POSIX usando le funzioni
3981 dei semafori di SysV IPC (mantenendo così tutti i problemi sottolineati in
3982 sez.~\ref{sec:ipc_sysv_sem}).
3983
3984 A partire dal kernel 2.5.7 è stato introdotto un meccanismo di
3985 sincronizzazione completamente nuovo, basato sui cosiddetti
3986 \textit{futex},\footnote{la sigla sta per \textit{fast user mode mutex}.} con
3987 il quale è stato possibile implementare una versione nativa dei semafori
3988 POSIX.  Grazie a questo con i kernel della serie 2.6 e le nuove versioni della
3989 \acr{glibc} che usano questa nuova infrastruttura per quella che viene quella
3990 che viene chiamata \textit{New Posix Thread Library}, sono state implementate
3991 anche tutte le funzioni dell'interfaccia dei semafori POSIX.
3992
3993 Anche in questo caso è necessario appoggiarsi alla libreria per le estensioni
3994 \textit{real-time} \texttt{librt}, questo significa che se si vuole utilizzare
3995 questa interfaccia, oltre ad utilizzare gli opportuni file di definizione,
3996 occorrerà compilare i programmi con l'opzione \texttt{-lrt}. 
3997
3998 La funzione che permette di creare un nuovo semaforo POSIX, creando il
3999 relativo file, o di accedere ad uno esistente, è \funcd{sem\_open}, questa
4000 prevede due forme diverse a seconda che sia utilizzata per aprire un semaforo
4001 esistente o per crearne uno nuovi, i relativi prototipi sono:
4002 \begin{functions}
4003   \headdecl{semaphore.h} 
4004   
4005   \funcdecl{sem\_t *sem\_open(const char *name, int oflag)}
4006   
4007   \funcdecl{sem\_t *sem\_open(const char *name, int oflag, mode\_t mode,
4008     unsigned int value)} 
4009
4010   Crea un semaforo o ne apre uno esistente.
4011   
4012   \bodydesc{La funzione restituisce l'indirizzo del semaforo in caso di
4013     successo e \const{SEM\_FAILED} in caso di errore; nel quel caso
4014     \var{errno} assumerà i valori:
4015     \begin{errlist}
4016     \item[\errcode{EACCES}] il semaforo esiste ma non si hanno permessi
4017       sufficienti per accedervi.
4018     \item[\errcode{EEXIST}] si sono specificati \const{O\_CREAT} e
4019       \const{O\_EXCL} ma il semaforo esiste.
4020     \item[\errcode{EINVAL}] il valore di \param{value} eccede
4021       \const{SEM\_VALUE\_MAX}.
4022     \item[\errcode{ENAMETOOLONG}] si è utilizzato un nome troppo lungo.
4023     \item[\errcode{ENOENT}] non si è usato \const{O\_CREAT} ed il nome
4024       specificato non esiste.
4025     \end{errlist}    
4026     ed inoltre \errval{ENFILE} ed \errval{ENOMEM}.}
4027 \end{functions}
4028
4029 L'argomento \param{name} definisce il nome del semaforo che si vuole
4030 utilizzare, ed è quello che permette a processi diversi di accedere allo
4031 stesso semaforo. Questo deve essere specificato con un \textit{pathname} nella
4032 forma \texttt{/qualchenome}, che non ha una corrispondenza diretta con un
4033 \textit{pathname} reale; con Linux infatti i file associati ai semafori sono
4034 mantenuti nel filesystem virtuale \texttt{/dev/shm}, e gli viene assegnato
4035 automaticamente un nome nella forma \texttt{sem.qualchenome}.\footnote{si ha
4036   cioè una corrispondenza per cui \texttt{/qualchenome} viene rimappato, nella
4037   creazione tramite \func{sem\_open}, su \texttt{/dev/shm/sem.qualchenome}.}
4038
4039 L'argomento \param{oflag} è quello che controlla le modalità con cui opera la
4040 funzione, ed è passato come maschera binaria; i bit corrispondono a quelli
4041 utilizzati per l'analogo argomento di \func{open}, anche se dei possibili
4042 valori visti in sez.~\ref{sec:file_open_close} sono utilizzati soltanto
4043 \const{O\_CREAT} e \const{O\_EXCL}.
4044
4045 Se si usa \const{O\_CREAT} si richiede la creazione del semaforo qualora
4046 questo non esista, ed in tal caso occorre utilizzare la seconda forma della
4047 funzione, in cui si devono specificare sia un valore iniziale con l'argomento
4048 \param{value},\footnote{e si noti come così diventa possibile, differenza di
4049   quanto avviene per i semafori del \textit{SysV IPC}, effettuare in maniera
4050   atomica creazione ed inizializzazione di un semaforo usando una unica
4051   funzione.} che una maschera dei permessi con l'argomento
4052 \param{mode};\footnote{anche questo argomento prende gli stessi valori
4053   utilizzati per l'analogo di \func{open}, che si sono illustrati in dettaglio
4054   sez.~\ref{sec:file_perm_overview}.} questi verranno assegnati al semaforo
4055 appena creato. Se il semaforo esiste già i suddetti valori saranno invece
4056 ignorati. Usando il flag \const{O\_EXCL} si richiede invece la verifica che il
4057 semaforo non esiste, usandolo insieme ad \const{O\_CREAT} la funzione fallisce
4058 qualora un semaforo con lo stesso nome sia già presente.
4059
4060 La funzione restituisce in caso di successo un puntatore all'indirizzo del
4061 semaforo con un valore di tipo \ctyp{sem\_t *}, è questo valore che dovrà
4062 essere passato alle altre funzioni per operare sul semaforo stesso. Si tenga
4063 presente che, come accennato in sez.~\ref{sec:ipc_posix_generic}, i semafori
4064 usano la semantica standard dei file per quanto riguarda i controlli di
4065 accesso. 
4066
4067 Questo significa che un nuovo semaforo viene sempre creato con l'\ids{UID} ed
4068 il \ids{GID} effettivo del processo chiamante, e che i permessi indicati con
4069 \param{mode} vengono filtrati dal valore della \itindex{umask} \textit{umask}
4070 del processo.  Inoltre per poter aprire un semaforo è necessario avere su di
4071 esso sia il permesso di lettura che quello di scrittura.
4072
4073 Una volta che si sia ottenuto l'indirizzo di un semaforo, sarà possibile
4074 utilizzarlo; se si ricorda quanto detto all'inizio di
4075 sez.~\ref{sec:ipc_sysv_sem}, dove si sono introdotti i concetti generali
4076 relativi ai semafori, le operazioni principali sono due, quella che richiede
4077 l'uso di una risorsa bloccando il semaforo e quella che rilascia la risorsa
4078 liberando il semaforo. La prima operazione è effettuata dalla funzione
4079 \funcd{sem\_wait}, il cui prototipo è:
4080 \begin{functions}
4081   \headdecl{semaphore.h} 
4082   
4083   \funcdecl{int sem\_wait(sem\_t *sem)}
4084   
4085   Blocca il semaforo \param{sem}.
4086   
4087   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4088     errore; nel quel caso \var{errno} assumerà i valori:
4089     \begin{errlist}
4090     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
4091     \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
4092     \end{errlist}    
4093 }
4094 \end{functions}
4095
4096 La funzione cerca di decrementare il valore del semaforo indicato dal
4097 puntatore \param{sem}, se questo ha un valore positivo, cosa che significa che
4098 la risorsa è disponibile, la funzione ha successo, il valore del semaforo
4099 viene diminuito di 1 ed essa ritorna immediatamente; se il valore è nullo la
4100 funzione si blocca fintanto che il valore del semaforo non torni
4101 positivo\footnote{ovviamente per opera di altro processo che lo rilascia
4102   chiamando \func{sem\_post}.} così che poi essa possa decrementarlo con
4103 successo e proseguire. 
4104
4105 Si tenga presente che la funzione può sempre essere interrotta da un segnale
4106 (nel qual caso si avrà un errore di \const{EINTR}) e che questo avverrà
4107 comunque, anche se si è richiesta la semantica BSD installando il relativo
4108 gestore con \const{SA\_RESTART} (vedi sez.~\ref{sec:sig_sigaction}) per
4109 riavviare le system call interrotte.
4110
4111 Della funzione \func{sem\_wait} esistono due varianti che consentono di
4112 gestire diversamente le modalità di attesa in caso di risorsa occupata, la
4113 prima di queste è \funcd{sem\_trywait}, che serve ad effettuare un tentativo
4114 di acquisizione senza bloccarsi; il suo prototipo è:
4115 \begin{functions}
4116   \headdecl{semaphore.h} 
4117   
4118   \funcdecl{int sem\_trywait(sem\_t *sem)}
4119   
4120   Tenta di bloccare il semaforo \param{sem}.
4121   
4122   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4123     errore; nel quel caso \var{errno} assumerà gli stessi valori:
4124     \begin{errlist}
4125     \item[\errcode{EAGAIN}] il semaforo non può essere acquisito senza
4126       bloccarsi. 
4127     \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
4128     \end{errlist}    
4129 }
4130 \end{functions}
4131
4132 La funzione è identica a \func{sem\_wait} ed se la risorsa è libera ha lo
4133 stesso effetto, vale a dire che in caso di semaforo diverso da zero la
4134 funzione lo decrementa e ritorna immediatamente; la differenza è che nel caso
4135 in cui il semaforo è occupato essa non si blocca e di nuovo ritorna
4136 immediatamente, restituendo però un errore di \errval{EAGAIN}, così che il
4137 programma possa proseguire.
4138
4139 La seconda variante di \func{sem\_wait} è una estensione specifica che può
4140 essere utilizzata soltanto se viene definita la macro \macro{\_XOPEN\_SOURCE}
4141 ad un valore di 600 prima di includere \headfile{semaphore.h}, la funzione è
4142 \funcd{sem\_timedwait}, ed il suo prototipo è:
4143 \begin{functions}
4144   \headdecl{semaphore.h} 
4145
4146   \funcdecl{int sem\_timedwait(sem\_t *sem, const struct timespec
4147     *abs\_timeout)}
4148   
4149   Blocca il semaforo \param{sem}.
4150   
4151   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4152     errore; nel quel caso \var{errno} assumerà gli stessi valori:
4153     \begin{errlist}
4154     \item[\errcode{ETIMEDOUT}] è scaduto il tempo massimo di attesa. 
4155     \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
4156     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
4157     \end{errlist}    
4158 }
4159 \end{functions}
4160
4161 Anche in questo caso il comportamento della funzione è identico a quello di
4162 \func{sem\_wait}, la sola differenza consiste nel fatto che con questa
4163 funzione è possibile impostare tramite l'argomento \param{abs\_timeout} un
4164 tempo limite per l'attesa, scaduto il quale la funzione ritorna comunque,
4165 anche se non è possibile acquisire il semaforo. In tal caso la funzione
4166 fallirà, riportando un errore di \errval{ETIMEDOUT}.
4167
4168 La seconda funzione principale utilizzata per l'uso dei semafori è
4169 \funcd{sem\_post}, che viene usata per rilasciare un semaforo occupato o, in
4170 generale, per aumentare di una unità il valore dello stesso anche qualora non
4171 fosse occupato;\footnote{si ricordi che in generale un semaforo viene usato
4172   come indicatore di un numero di risorse disponibili.} il suo prototipo è:
4173 \begin{functions}
4174   \headdecl{semaphore.h} 
4175   
4176   \funcdecl{int sem\_post(sem\_t *sem)}
4177   
4178   Rilascia il semaforo \param{sem}.
4179   
4180   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4181     errore; nel quel caso \var{errno} assumerà i valori:
4182     \begin{errlist}
4183     \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
4184     \end{errlist}    
4185 }
4186 \end{functions}
4187
4188 La funzione incrementa di uno il valore corrente del semaforo indicato
4189 dall'argomento \param{sem}, se questo era nullo la relativa risorsa risulterà
4190 sbloccata, cosicché un altro processo (o \itindex{thread} \textit{thread})
4191 eventualmente bloccato in una \func{sem\_wait} sul semaforo potrà essere
4192 svegliato e rimesso in esecuzione.  Si tenga presente che la funzione è sicura
4193 \index{funzioni!sicure} per l'uso all'interno di un gestore di segnali (si
4194 ricordi quanto detto in sez.~\ref{sec:sig_signal_handler}).
4195
4196 Se invece di operare su un semaforo se ne vuole solamente leggere il valore,
4197 si può usare la funzione \funcd{sem\_getvalue}, il cui prototipo è:
4198 \begin{functions}
4199   \headdecl{semaphore.h} 
4200   
4201   \funcdecl{int sem\_getvalue(sem\_t *sem, int *sval)}
4202   
4203   Richiede il valore del semaforo \param{sem}.
4204   
4205   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4206     errore; nel quel caso \var{errno} assumerà i valori:
4207     \begin{errlist}
4208     \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
4209     \end{errlist}    
4210 }
4211 \end{functions}
4212
4213 La funzione legge il valore del semaforo indicato dall'argomento \param{sem} e
4214 lo restituisce nella variabile intera puntata dall'argomento
4215 \param{sval}. Qualora ci siano uno o più processi bloccati in attesa sul
4216 semaforo lo standard prevede che la funzione possa restituire un valore nullo
4217 oppure il numero di processi bloccati in una \func{sem\_wait} sul suddetto
4218 semaforo; nel caso di Linux vale la prima opzione.
4219
4220 Questa funzione può essere utilizzata per avere un suggerimento sullo stato di
4221 un semaforo, ovviamente non si può prendere il risultato riportato in
4222 \param{sval} che come indicazione, il valore del semaforo infatti potrebbe
4223 essere già stato modificato al ritorno della funzione.
4224
4225 % TODO verificare comportamento sem_getvalue
4226
4227 Una volta che non ci sia più la necessità di operare su un semaforo se ne può
4228 terminare l'uso con la funzione \funcd{sem\_close}, il cui prototipo è:
4229 \begin{functions}
4230   \headdecl{semaphore.h} 
4231   
4232   \funcdecl{int sem\_close(sem\_t *sem)}
4233   
4234   Chiude il semaforo \param{sem}.
4235   
4236   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4237     errore; nel quel caso \var{errno} assumerà i valori:
4238     \begin{errlist}
4239     \item[\errcode{EINVAL}] il semaforo \param{sem} non esiste.
4240     \end{errlist}    
4241 }
4242 \end{functions}
4243
4244 La funzione chiude il semaforo indicato dall'argomento \param{sem}; questo
4245 comporta che tutte le risorse che il sistema può avere assegnato al processo
4246 nell'uso dello stesso vengono rilasciate. Questo significa che un altro
4247 processo bloccato sul semaforo a causa della acquisizione da parte del
4248 processo che chiama \func{sem\_close} potrà essere riavviato.
4249
4250 Si tenga presente poi che come per i file all'uscita di un processo tutti i
4251 semafori che questo aveva aperto vengono automaticamente chiusi; questo
4252 comportamento risolve il problema che si aveva con i semafori del \textit{SysV
4253   IPC} (di cui si è parlato in sez.~\ref{sec:ipc_sysv_sem}) per i quali le
4254 risorse possono restare bloccate. Si tenga poi presente che, a differenza di
4255 quanto avviene per i file, in caso di una chiamata ad \func{execve} tutti i
4256 semafori vengono chiusi automaticamente.
4257
4258 Come per i semafori del \textit{SysV IPC} anche quelli POSIX hanno una
4259 persistenza di sistema; questo significa che una volta che si è creato un
4260 semaforo con \func{sem\_open} questo continuerà ad esistere fintanto che il
4261 kernel resta attivo (vale a dire fino ad un successivo riavvio) a meno che non
4262 lo si cancelli esplicitamente. Per far questo si può utilizzare la funzione
4263 \funcd{sem\_unlink}, il cui prototipo è:
4264 \begin{functions}
4265   \headdecl{semaphore.h} 
4266   
4267   \funcdecl{int sem\_unlink(const char *name)}
4268   
4269   Rimuove il semaforo \param{name}.
4270   
4271   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4272     errore; nel quel caso \var{errno} assumerà i valori:
4273     \begin{errlist}
4274     \item[\errcode{EACCES}] non si hanno i permessi necessari a cancellare il
4275       semaforo.
4276     \item[\errcode{ENAMETOOLONG}] il nome indicato è troppo lungo.
4277     \item[\errcode{ENOENT}] il semaforo \param{name} non esiste.
4278     \end{errlist}    
4279 }
4280 \end{functions}
4281
4282 La funzione rimuove il semaforo indicato dall'argomento \param{name}, che
4283 prende un valore identico a quello usato per creare il semaforo stesso con
4284 \func{sem\_open}. Il semaforo viene rimosso dal filesystem immediatamente; ma
4285 il semaforo viene effettivamente cancellato dal sistema soltanto quando tutti
4286 i processi che lo avevano aperto lo chiudono. Si segue cioè la stessa
4287 semantica usata con \func{unlink} per i file, trattata in dettaglio in
4288 sez.~\ref{sec:link_symlink_rename}.
4289
4290 Una delle caratteristiche peculiari dei semafori POSIX è che questi possono
4291 anche essere utilizzati anche in forma anonima, senza necessità di fare
4292 ricorso ad un nome sul filesystem o ad altri indicativi.  In questo caso si
4293 dovrà porre la variabile che contiene l'indirizzo del semaforo in un tratto di
4294 memoria che sia accessibile a tutti i processi in gioco.  La funzione che
4295 consente di inizializzare un semaforo anonimo è \funcd{sem\_init}, il cui
4296 prototipo è:
4297 \begin{functions}
4298   \headdecl{semaphore.h} 
4299   
4300   \funcdecl{int sem\_init(sem\_t *sem, int pshared, unsigned int value)}
4301
4302   Inizializza il semaforo anonimo \param{sem}.
4303   
4304   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4305     errore; nel quel caso \var{errno} assumerà i valori:
4306     \begin{errlist}
4307     \item[\errcode{EINVAL}] il valore di \param{value} eccede
4308       \const{SEM\_VALUE\_MAX}.
4309     \item[\errcode{ENOSYS}] il valore di \param{pshared} non è nullo ed il
4310       sistema non supporta i semafori per i processi.
4311     \end{errlist}
4312 }
4313 \end{functions}
4314
4315 La funzione inizializza un semaforo all'indirizzo puntato dall'argomento
4316 \param{sem}, e come per \func{sem\_open} consente di impostare un valore
4317 iniziale con \param{value}. L'argomento \param{pshared} serve ad indicare se
4318 il semaforo deve essere utilizzato dai \itindex{thread} \textit{thread} di uno
4319 stesso processo (con un valore nullo) o condiviso fra processi diversi (con un
4320 valore non nullo).
4321
4322 Qualora il semaforo debba essere condiviso dai \itindex{thread}
4323 \textit{thread} di uno stesso processo (nel qual caso si parla di
4324 \textit{thread-shared semaphore}), occorrerà che \param{sem} sia l'indirizzo
4325 di una variabile visibile da tutti i \itindex{thread} \textit{thread}, si
4326 dovrà usare cioè una \index{variabili!globali} variabile globale o una
4327 variabile allocata dinamicamente nello \itindex{heap} \textit{heap}.
4328
4329 Qualora il semaforo debba essere condiviso fra più processi (nel qual caso si
4330 parla di \textit{process-shared semaphore}) la sola scelta possibile per
4331 renderlo visibile a tutti è di porlo in un tratto di memoria condivisa. Questo
4332 potrà essere ottenuto direttamente sia con \func{shmget} (vedi
4333 sez.~\ref{sec:ipc_sysv_shm}) che con \func{shm\_open} (vedi
4334 sez.~\ref{sec:ipc_posix_shm}), oppure, nel caso che tutti i processi in gioco
4335 abbiano un genitore comune, con una mappatura anonima con \func{mmap} (vedi
4336 sez.~\ref{sec:file_memory_map}),\footnote{si ricordi che i tratti di memoria
4337   condivisa vengono mantenuti nei processi figli attraverso la funzione
4338   \func{fork}.} a cui essi poi potranno accedere.
4339
4340 Una volta inizializzato il semaforo anonimo con \func{sem\_init} lo si potrà
4341 utilizzare nello stesso modo dei semafori normali con \func{sem\_wait} e
4342 \func{sem\_post}. Si tenga presente però che inizializzare due volte lo stesso
4343 semaforo può dar luogo ad un comportamento indefinito. 
4344
4345 Una volta che non si intenda più utilizzare un semaforo anonimo questo può
4346 essere eliminato dal sistema; per far questo di deve utilizzare una apposita
4347 funzione, \funcd{sem\_destroy}, il cui prototipo è:
4348 \begin{functions}
4349   \headdecl{semaphore.h} 
4350   
4351   \funcdecl{int sem\_destroy(sem\_t *sem)}
4352
4353   Elimina il semaforo anonimo \param{sem}.
4354   
4355   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4356     errore; nel quel caso \var{errno} assumerà i valori:
4357     \begin{errlist}
4358     \item[\errcode{EINVAL}] il valore di \param{value} eccede
4359       \const{SEM\_VALUE\_MAX}.
4360     \end{errlist}
4361 }
4362 \end{functions}
4363
4364 La funzione prende come unico argomento l'indirizzo di un semaforo che deve
4365 essere stato inizializzato con \func{sem\_init}; non deve quindi essere
4366 applicata a semafori creati con \func{sem\_open}. Inoltre si deve essere
4367 sicuri che il semaforo sia effettivamente inutilizzato, la distruzione di un
4368 semaforo su cui sono presenti processi (o \itindex{thread} \textit{thread}) in
4369 attesa (cioè bloccati in una \func{sem\_wait}) provoca un comportamento
4370 indefinito.
4371
4372 Si tenga presente infine che utilizzare un semaforo che è stato distrutto con
4373 \func{sem\_destroy} di nuovo può dare esito a comportamenti indefiniti.  Nel
4374 caso ci si trovi in una tale evenienza occorre reinizializzare il semaforo una
4375 seconda volta con \func{sem\_init}.
4376
4377 Come esempio di uso sia della memoria condivisa che dei semafori POSIX si sono
4378 scritti due semplici programmi con i quali è possibile rispettivamente
4379 monitorare il contenuto di un segmento di memoria condivisa e modificarne il
4380 contenuto. 
4381
4382 \begin{figure}[!htbp]
4383   \footnotesize \centering
4384   \begin{minipage}[c]{\codesamplewidth}
4385     \includecodesample{listati/message_getter.c}
4386   \end{minipage} 
4387   \normalsize 
4388   \caption{Sezione principale del codice del programma
4389     \file{message\_getter.c}.}
4390   \label{fig:ipc_posix_sem_shm_message_server}
4391 \end{figure}
4392
4393 Il corpo principale del primo dei due, il cui codice completo è nel file
4394 \file{message\_getter.c} dei sorgenti allegati, è riportato in
4395 fig.~\ref{fig:ipc_posix_sem_shm_message_server}; si è tralasciata la parte che
4396 tratta la gestione delle opzioni a riga di comando (che consentono di
4397 impostare un nome diverso per il semaforo e il segmento di memoria condivisa)
4398 ed il controllo che al programma venga fornito almeno un argomento, contenente
4399 la stringa iniziale da inserire nel segmento di memoria condivisa.
4400
4401 Lo scopo del programma è quello di creare un segmento di memoria condivisa su
4402 cui registrare una stringa, e tenerlo sotto osservazione stampando la stessa
4403 una volta al secondo. Si utilizzerà un semaforo per proteggere l'accesso in
4404 lettura alla stringa, in modo che questa non possa essere modificata
4405 dall'altro programma prima di averla finita di stampare.
4406
4407 La parte iniziale del programma contiene le definizioni (\texttt{\small 1--8})
4408 del gestore del segnale usato per liberare le risorse utilizzate, delle
4409 \index{variabili!globali} variabili globali contenenti i nomi di default del
4410 segmento di memoria condivisa e del semaforo (il default scelto è
4411 \texttt{messages}), e delle altre variabili utilizzate dal programma.
4412
4413 Come prima istruzione (\texttt{\small 10}) si è provveduto ad installare un
4414 gestore di segnale che consentirà di effettuare le operazioni di pulizia
4415 (usando la funzione \func{Signal} illustrata in
4416 fig.~\ref{fig:sig_Signal_code}), dopo di che (\texttt{\small 10--16}) si è
4417 creato il segmento di memoria condivisa con la funzione \func{CreateShm} che
4418 abbiamo appena trattato in sez.~\ref{sec:ipc_posix_shm}, uscendo con un
4419 messaggio in caso di errore. 
4420
4421 Si tenga presente che la funzione \func{CreateShm} richiede che il segmento
4422 non sia già presente e fallirà qualora un'altra istanza, o un altro programma
4423 abbia già allocato un segmento con quello stesso nome. Per semplicità di
4424 gestione si è usata una dimensione fissa pari a 256 byte, definita tramite la
4425 costante \texttt{MSGMAXSIZE}.
4426
4427 Il passo successivo (\texttt{\small 17--21}) è quello della creazione del
4428 semaforo che regola l'accesso al segmento di memoria condivisa con
4429 \func{sem\_open}; anche in questo caso si gestisce l'uscita con stampa di un
4430 messaggio in caso di errore. Anche per il semaforo, avendo specificato la
4431 combinazione di flag \code{O\_CREAT|O\_EXCL} come secondo argomento, si esce
4432 qualora fosse già esistente; altrimenti esso verrà creato con gli opportuni
4433 permessi specificati dal terzo argomento, (indicante lettura e scrittura in
4434 notazione ottale). Infine il semaforo verrà inizializzato ad un valore nullo
4435 (il quarto argomento), corrispondete allo stato in cui risulta bloccato.
4436
4437 A questo punto (\texttt{\small 23}) si potrà inizializzare il messaggio posto
4438 nel segmento di memoria condivisa usando la stringa passata come argomento al
4439 programma. Essendo il semaforo stato creato già bloccato non ci si dovrà
4440 preoccupare di eventuali \itindex{race~condition} \textit{race condition}
4441 qualora il programma di modifica del messaggio venisse lanciato proprio in
4442 questo momento.  Una volta inizializzato il messaggio occorrerà però
4443 rilasciare il semaforo (\texttt{\small 25--28}) per consentirne l'uso; in
4444 tutte queste operazioni si provvederà ad uscire dal programma con un opportuno
4445 messaggio in caso di errore.
4446
4447 Una volta completate le inizializzazioni il ciclo principale del programma
4448 (\texttt{\small 29--47}) viene ripetuto indefinitamente (\texttt{\small 29})
4449 per stampare sia il contenuto del messaggio che una serie di informazioni di
4450 controllo. Il primo passo (\texttt{\small 30--34}) è quello di acquisire (con
4451 \func{sem\_getvalue}, con uscita in caso di errore) e stampare il valore del
4452 semaforo ad inizio del ciclo; seguito (\texttt{\small 35--36}) dal tempo
4453 corrente.
4454
4455 \begin{figure}[!htbp]
4456   \footnotesize \centering
4457   \begin{minipage}[c]{\codesamplewidth}
4458     \includecodesample{listati/HandSigInt.c}
4459   \end{minipage} 
4460   \normalsize 
4461   \caption{Codice del gestore di segnale del programma
4462     \file{message\_getter.c}.}
4463   \label{fig:ipc_posix_sem_shm_message_server_handler}
4464 \end{figure}
4465
4466 Prima della stampa del messaggio invece si deve acquisire il semaforo
4467 (\texttt{\small 31--34}) per evitare accessi concorrenti alla stringa da parte
4468 del programma di modifica. Una volta eseguita la stampa (\texttt{\small 41})
4469 il semaforo dovrà essere rilasciato (\texttt{\small 42--45}). Il passo finale
4470 (\texttt{\small 46}) è attendere per un secondo prima di eseguire da capo il
4471 ciclo. 
4472
4473 Per uscire in maniera corretta dal programma sarà necessario interromperlo con
4474 il break da tastiera (\texttt{C-c}), che corrisponde all'invio del segnale
4475 \signal{SIGINT}, per il quale si è installato (\texttt{\small 10}) una
4476 opportuna funzione di gestione, riportata in
4477 fig.~\ref{fig:ipc_posix_sem_shm_message_server_handler}. La funzione è molto
4478 semplice e richiama le funzioni di rimozione sia per il segmento di memoria
4479 condivisa che per il semaforo, garantendo così che possa essere riaperto
4480 ex-novo senza errori in un futuro riutilizzo del comando.
4481
4482 \begin{figure}[!htbp]
4483   \footnotesize \centering
4484   \begin{minipage}[c]{\codesamplewidth}
4485     \includecodesample{listati/message_setter.c}
4486   \end{minipage} 
4487   \normalsize 
4488   \caption{Sezione principale del codice del programma
4489     \file{message\_setter.c}.}
4490   \label{fig:ipc_posix_sem_shm_message_setter}
4491 \end{figure}
4492
4493 Il secondo programma di esempio è \file{message\_setter.c}, di cui si è
4494 riportato il corpo principale in
4495 fig.~\ref{fig:ipc_posix_sem_shm_message_setter},\footnote{al solito il codice
4496   completo è nel file dei sorgenti allegati.} dove si è tralasciata, non
4497 essendo significativa per quanto si sta trattando, la parte relativa alla
4498 gestione delle opzioni a riga di comando e degli argomenti, che sono identici
4499 a quelli usati da \file{message\_getter}, con l'unica aggiunta di un'opzione
4500 ``\texttt{-t}'' che consente di indicare un tempo di attesa (in secondi) in
4501 cui il programma si ferma tenendo bloccato il semaforo.
4502
4503 Una volta completata la gestione delle opzioni e degli argomenti (ne deve
4504 essere presente uno solo, contenente la nuova stringa da usare come
4505 messaggio), il programma procede (\texttt{\small 10--14}) con l'acquisizione
4506 del segmento di memoria condivisa usando la funzione \func{FindShm} (trattata
4507 in sez.~\ref{sec:ipc_posix_shm}) che stavolta deve già esistere.  Il passo
4508 successivo (\texttt{\small 16--19}) è quello di aprire il semaforo, e a
4509 differenza di \file{message\_getter}, in questo caso si richiede a
4510 \func{sem\_open} che questo esista, passando uno zero come secondo ed unico
4511 argomento.
4512
4513 Una volta completate con successo le precedenti inizializzazioni, il passo
4514 seguente (\texttt{\small 21--24}) è quello di acquisire il semaforo, dopo di
4515 che sarà possibile eseguire la sostituzione del messaggio (\texttt{\small 25})
4516 senza incorrere in possibili \itindex{race~condition} \textit{race condition}
4517 con la stampa dello stesso da parte di \file{message\_getter}.
4518
4519 Una volta effettuata la modifica viene stampato (\texttt{\small 26}) il tempo
4520 di attesa impostato con l'opzione ``\texttt{-t}'' dopo di che (\texttt{\small
4521   27}) viene eseguita la stessa, senza rilasciare il semaforo che resterà
4522 quindi bloccato (causando a questo punto una interruzione delle stampe
4523 eseguite da \file{message\_getter}). Terminato il tempo di attesa si rilascerà
4524 (\texttt{\small 29--32}) il semaforo per poi uscire.
4525
4526 Per verificare il funzionamento dei programmi occorrerà lanciare per primo
4527 \file{message\_getter}\footnote{lanciare per primo \file{message\_setter} darà
4528   luogo ad un errore, non essendo stati creati il semaforo ed il segmento di
4529   memoria condivisa.} che inizierà a stampare una volta al secondo il
4530 contenuto del messaggio ed i suoi dati, con qualcosa del tipo:
4531 \begin{Verbatim}
4532 piccardi@hain:~/gapil/sources$  ./message_getter messaggio
4533 sem=1, Fri Dec 31 14:12:41 2010
4534 message: messaggio
4535 sem=1, Fri Dec 31 14:12:42 2010
4536 message: messaggio
4537 ...
4538 \end{Verbatim}
4539 %$
4540 proseguendo indefinitamente fintanto che non si prema \texttt{C-c} per farlo
4541 uscire. Si noti come il valore del semaforo risulti sempre pari ad 1 (in
4542 quanto al momento esso sarà sempre libero). 
4543
4544 A questo punto si potrà lanciare \file{message\_setter} per cambiare il
4545 messaggio, nel nostro caso per rendere evidente il funzionamento del blocco
4546 richiederemo anche una attesa di 3 secondi, ed otterremo qualcosa del tipo:
4547 \begin{Verbatim}
4548 piccardi@hain:~/gapil/sources$ ./message_setter -t 3 ciao
4549 Sleeping for 3 seconds
4550 \end{Verbatim}
4551 %$
4552 dove il programma si fermerà per 3 secondi prima di rilasciare il semaforo e
4553 terminare. 
4554
4555 L'effetto di questo programma si potrà però apprezzare meglio nell'uscita di
4556 \file{message\_getter}, che verrà interrotta per questo stesso tempo, prima di
4557 ricominciare con il nuovo testo:
4558 \begin{Verbatim}
4559 ...
4560 sem=1, Fri Dec 31 14:16:27 2010
4561 message: messaggio
4562 sem=1, Fri Dec 31 14:16:28 2010
4563 message: messaggio
4564 sem=0, Fri Dec 31 14:16:29 2010
4565 message: ciao
4566 sem=1, Fri Dec 31 14:16:32 2010
4567 message: ciao
4568 sem=1, Fri Dec 31 14:16:33 2010
4569 message: ciao
4570 ...
4571 \end{Verbatim}
4572 %$
4573
4574 E si noterà come nel momento in cui si è lanciato \file{message\_setter} le
4575 stampe di \file{message\_getter} si bloccheranno, come corretto, dopo aver
4576 registrato un valore nullo per il semaforo.  Il programma infatti resterà
4577 bloccato nella \func{sem\_wait} (quella di riga (\texttt{\small 37}) in
4578 fig.~\ref{fig:ipc_posix_sem_shm_message_server}) fino alla scadenza
4579 dell'attesa di \file{message\_setter} (con l'esecuzione della \func{sem\_post}
4580 della riga (\texttt{\small 29}) di
4581 fig.~\ref{fig:ipc_posix_sem_shm_message_setter}), e riprenderanno con il nuovo
4582 testo alla terminazione di quest'ultimo.
4583
4584
4585 % LocalWords:  like fifo System POSIX RPC Calls Common Object Request Brocker
4586 % LocalWords:  Architecture descriptor kernel unistd int filedes errno EMFILE
4587 % LocalWords:  ENFILE EFAULT BUF sez fig fork Stevens siblings EOF read SIGPIPE
4588 % LocalWords:  EPIPE shell CGI Gateway Interface HTML JPEG URL mime type gs dup
4589 % LocalWords:  barcode PostScript race condition stream BarCodePage WriteMess
4590 % LocalWords:  size PS switch wait popen pclose stdio const char command NULL
4591 % LocalWords:  EINVAL cap fully buffered Ghostscript l'Encapsulated epstopsf of
4592 % LocalWords:  PDF EPS lseek ESPIPE PPM Portable PixMap format pnmcrop PNG pnm
4593 % LocalWords:  pnmmargin png BarCode inode filesystem l'inode mknod mkfifo RDWR
4594 % LocalWords:  ENXIO deadlock client reinviate fortunes fortunefilename daemon
4595 % LocalWords:  FortuneServer FortuneParse FortuneClient pid libgapil  LD librt
4596 % LocalWords:  PATH linker pathname ps tmp killall fortuned crash socket domain
4597 % LocalWords:  socketpair BSD sys protocol sv EAFNOSUPPORT EPROTONOSUPPORT AF
4598 % LocalWords:  EOPNOTSUPP SOCK SysV IPC Process Comunication ipc perm key exec
4599 % LocalWords:  header ftok proj stat libc SunOS glibc XPG dell'inode number uid
4600 % LocalWords:  cuid cgid gid tab MSG shift group umask seq MSGMNI SEMMNI SHMMNI
4601 % LocalWords:  shmmni msgmni sem sysctl IPCMNI IPCTestId msgget EACCES EEXIST
4602 % LocalWords:  CREAT EXCL EIDRM ENOENT ENOSPC ENOMEM novo proc MSGMAX msgmax ds
4603 % LocalWords:  MSGMNB msgmnb linked list msqid msgid linux msg qnum lspid lrpid
4604 % LocalWords:  rtime ctime qbytes first last cbytes msgctl semctl shmctl ioctl
4605 % LocalWords:  cmd struct buf EPERM RMID msgsnd msgbuf msgp msgsz msgflg EAGAIN
4606 % LocalWords:  NOWAIT EINTR mtype mtext long message sizeof LENGTH ts sleep BIG
4607 % LocalWords:  msgrcv ssize msgtyp NOERROR EXCEPT ENOMSG multiplexing select ls
4608 % LocalWords:  poll polling queue MQFortuneServer write init HandSIGTERM  l'IPC
4609 % LocalWords:  MQFortuneClient mqfortuned mutex risorse' inter semaphore semget
4610 % LocalWords:  nsems SEMMNS SEMMSL semid otime semval sempid semncnt semzcnt nr
4611 % LocalWords:  SEMVMX SEMOPM semop SEMMNU SEMUME SEMAEM semnum union semun arg
4612 % LocalWords:  ERANGE SETALL SETVAL GETALL array GETNCNT GETPID GETVAL GETZCNT
4613 % LocalWords:  sembuf sops unsigned nsops UNDO flg nsop num undo pending semadj
4614 % LocalWords:  sleeper scheduler running next semundo MutexCreate semunion lock
4615 % LocalWords:  MutexFind wrapper MutexRead MutexLock MutexUnlock unlock locking
4616 % LocalWords:  MutexRemove shmget SHMALL SHMMAX SHMMIN shmid shm segsz atime FD
4617 % LocalWords:  dtime lpid cpid nattac shmall shmmax SHMLBA SHMSEG EOVERFLOW brk
4618 % LocalWords:  memory shmat shmdt void shmaddr shmflg SVID RND RDONLY rounded
4619 % LocalWords:  SIGSEGV nattch exit SharedMem ShmCreate memset fill ShmFind home
4620 % LocalWords:  ShmRemove DirMonitor DirProp chdir GaPiL shmptr ipcs NFS
4621 % LocalWords:  ComputeValues ReadMonitor touch SIGTERM dirmonitor unlink fcntl
4622 % LocalWords:  LockFile UnlockFile CreateMutex FindMutex LockMutex SETLKW GETLK
4623 % LocalWords:  UnlockMutex RemoveMutex ReadMutex UNLCK WRLCK RDLCK mapping MAP
4624 % LocalWords:  SHARED ANONYMOUS thread patch names strace system call userid Di
4625 % LocalWords:  groupid Michal Wronski Krzysztof Benedyczak wrona posix mqueue
4626 % LocalWords:  lmqueue gcc mount mqd name oflag attr maxmsg msgsize receive ptr
4627 % LocalWords:  send WRONLY NONBLOCK close mqdes EBADF getattr setattr mqstat to
4628 % LocalWords:  omqstat curmsgs flags timedsend len prio timespec abs EMSGSIZE
4629 % LocalWords:  ETIMEDOUT timedreceive getaddr notify sigevent notification l'I
4630 % LocalWords:  EBUSY sigev SIGNAL signo value sigval siginfo all'userid MESGQ
4631 % LocalWords:  Konstantin Knizhnik futex tmpfs ramfs cache shared swap CONFIG
4632 % LocalWords:  lrt blocks PAGECACHE TRUNC CLOEXEC mmap ftruncate munmap FindShm
4633 % LocalWords:  CreateShm RemoveShm LIBRARY Library libmqueue FAILED has
4634 % LocalWords:  ENAMETOOLONG qualchenome RESTART trywait XOPEN SOURCE timedwait
4635 % LocalWords:  process getvalue sval execve pshared ENOSYS heap PAGE destroy it
4636 % LocalWords:  xffffffff Arrays owner perms Queues used bytes messages device
4637 % LocalWords:  Cannot find such Segments getter Signal MSGMAXSIZE been stable
4638 % LocalWords:  for now it's break Berlin sources Let's an accidental feature
4639 % LocalWords:  Larry Wall Escape the Hell William ipctestid Identifier segment
4640 % LocalWords:  violation dell'I SIGINT setter Fri Dec Sleeping seconds
4641
4642
4643 %%% Local Variables: 
4644 %%% mode: latex
4645 %%% TeX-master: "gapil"
4646 %%% End: