Ancora reindicizzazioni, più CLONE_VFORK, CLONE_VM, CLONE_PTRACED
[gapil.git] / filedir.tex
1 %% filedir.tex
2 %%
3 %% Copyright (C) 2000-2015 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11
12 \chapter{La gestione di file e directory}
13 \label{cha:files_and_dirs}
14
15 In questo capitolo tratteremo in dettaglio le modalità con cui si gestiscono
16 file e directory, iniziando da un approfondimento dell'architettura del
17 sistema illustrata a grandi linee in sez.~\ref{sec:file_arch_overview} ed
18 illustrando le principali caratteristiche di un filesystem e le interfacce
19 che consentono di controllarne il montaggio e lo smontaggio. 
20
21 Esamineremo poi le funzioni di libreria che si usano per copiare, spostare e
22 cambiare i nomi di file e directory e l'interfaccia che permette la
23 manipolazione dei loro attributi. Tratteremo inoltre la struttura di base del
24 sistema delle protezioni e del controllo dell'accesso ai file e le successive
25 estensioni (\textit{Extended Attributes}, ACL, quote disco,
26 \textit{capabilities}). Tutto quello che riguarda invece la gestione dell'I/O
27 sui file è lasciato al capitolo successivo.
28
29
30
31 \section{L'architettura della gestione dei file}
32 \label{sec:file_arch_func}
33
34 In questa sezione tratteremo con maggiori dettagli rispetto a quanto visto in
35 sez.~\ref{sec:file_arch_overview} il \textit{Virtual File System} di Linux e
36 come il kernel può gestire diversi tipi di filesystem, descrivendo prima le
37 caratteristiche generali di un filesystem di un sistema unix-like, per poi
38 fare una panoramica sul filesystem più usato con Linux, l'\acr{ext2} ed i suoi
39 successori.
40
41
42 \subsection{Il funzionamento del \textit{Virtual File System} di Linux}
43 \label{sec:file_vfs_work}
44
45 % NOTE articolo interessante:
46 % http://www.ibm.com/developerworks/linux/library/l-virtual-filesystem-switch/index.html?ca=dgr-lnxw97Linux-VFSdth-LXdW&S_TACT=105AGX59&S_CMP=GRlnxw97
47
48 \itindbeg{Virtual~File~System~(VFS)}
49
50 Come illustrato brevemente in sez.~\ref{sec:file_arch_overview} in Linux il
51 concetto di \textit{everything is a file} è stato implementato attraverso il
52 \textit{Virtual File System}, la cui struttura generale è illustrata in
53 fig.~\ref{fig:file_VFS_scheme}.  Il VFS definisce un insieme di funzioni che
54 tutti i filesystem devono implementare per l'accesso ai file che contengono e
55 l'interfaccia che consente di eseguire l'I/O sui file, che questi siano di
56 dati o dispositivi. 
57
58 \itindbeg{inode}
59
60 L'interfaccia fornita dal VFS comprende in sostanza tutte le funzioni che
61 riguardano i file, le operazioni implementate dal VFS sono realizzate con una
62 astrazione che prevede quattro tipi di oggetti strettamente correlati: i
63 filesystem, le \textit{dentry}, gli \textit{inode} ed i file. A questi oggetti
64 corrispondono una serie di apposite strutture definite dal kernel che
65 contengono come campi le funzioni di gestione e realizzano l'infrastruttura
66 del VFS. L'interfaccia è molto complessa, ne faremo pertanto una trattazione
67 estremamente semplificata che consenta di comprenderne i principi
68 di funzionamento.
69
70 Il VFS usa una tabella mantenuta dal kernel che contiene il nome di ciascun
71 filesystem supportato, quando si vuole inserire il supporto di un nuovo
72 filesystem tutto quello che occorre è chiamare la funzione
73 \code{register\_filesystem} passando come argomento la struttura
74 \kstruct{file\_system\_type} (la cui definizione è riportata in
75 fig.~\ref{fig:kstruct_file_system_type}) relativa a quel filesystem. Questa
76 verrà inserita nella tabella, ed il nuovo filesystem comparirà in
77 \procfile{/proc/filesystems}.
78
79 \begin{figure}[!htb]
80   \footnotesize \centering
81   \begin{minipage}[c]{0.80\textwidth}
82     \includestruct{listati/file_system_type.h}
83   \end{minipage}
84   \normalsize 
85   \caption{Estratto della struttura \kstructd{file\_system\_type} usata dal
86     VFS (da \texttt{include/linux/fs.h}).}
87   \label{fig:kstruct_file_system_type}
88 \end{figure}
89
90 La struttura \kstruct{file\_system\_type}, oltre ad una serie di dati interni,
91 come il nome del tipo di filesystem nel campo \var{name},\footnote{quello che
92   viene riportato in \procfile{/proc/filesystems} e che viene usato come
93   valore del parametro dell'opzione \texttt{-t} del comando \texttt{mount} che
94   indica il tipo di filesystem.}  contiene i riferimenti alle funzioni di base
95 che consentono l'utilizzo di quel filesystem. In particolare la funzione
96 \code{mount} del quarto campo è quella che verrà invocata tutte le volte che
97 si dovrà effettuare il montaggio di un filesystem di quel tipo. Per ogni nuovo
98 filesystem si dovrà allocare una di queste strutture ed inizializzare i
99 relativi campi con i dati specifici di quel filesystem, ed in particolare si
100 dovrà creare anche la relativa versione della funzione \code{mount}.
101
102 \itindbeg{pathname}
103 \itindbeg{pathname~resolution}
104
105 Come illustrato in fig.~\ref{fig:kstruct_file_system_type} questa funzione
106 restituisce una \textit{dentry}, abbreviazione che sta per \textit{directory
107   entry}. Le \textit{dentry} sono gli oggetti che il kernel usa per eseguire
108 la \textit{pathname resolution}, ciascuna di esse corrisponde ad un
109 \textit{pathname} e contiene il riferimento ad un \textit{inode}, che come
110 vedremo a breve è l'oggetto usato dal kernel per identificare un un
111 file.\footnote{in questo caso si parla di file come di un qualunque oggetto
112   generico che sta sul filesystem e non dell'oggetto file del VFS cui
113   accennavamo prima.} La \textit{dentry} ottenuta dalla chiamata alla funzione
114 \code{mount} sarà inserita in corrispondenza al \textit{pathname} della
115 directory in cui il filesystem è stato montato.
116
117 % NOTA: struct dentry è dichiarata in include/linux/dcache.h
118
119 Le \textit{dentry} sono oggetti del VFS che vivono esclusivamente in memoria,
120 nella cosiddetta \textit{directory entry cache} (spesso chiamata in breve
121 \textit{dcache}). Ogni volta che una \textit{system call} specifica un
122 \textit{pathname} viene effettuata una ricerca nella \textit{dcache} per
123 ottenere immediatamente la \textit{dentry} corrispondente,\footnote{il buon
124   funzionamento della \textit{dcache} è in effetti di una delle parti più
125   critiche per le prestazioni del sistema.} che a sua volta ci darà, tramite
126 l'\textit{inode}, il riferimento al file.
127
128 Dato che normalmente non è possibile mantenere nella \textit{dcache} le
129 informazioni relative a tutto l'albero dei file la procedura della
130 \textit{pathname resolution} richiede un meccanismo con cui riempire gli
131 eventuali vuoti. Il meccanismo prevede che tutte le volte che si arriva ad una
132 \textit{dentry} mancante venga invocata la funzione \texttt{lookup}
133 dell'\textit{inode} associato alla \textit{dentry} precedente nella
134 risoluzione del \textit{pathname},\footnote{che a questo punto è una
135   directory, per cui si può cercare al suo interno il nome di un file.} il cui
136 scopo è risolvere il nome mancante e fornire la sua \textit{dentry} che a
137 questo punto verrà inserita nella cache.
138
139 Dato che tutte le volte che si monta un filesystem la funzione \texttt{mount}
140 (vedi sez.~\ref{sec:filesystem_mounting}) della corrispondente
141 \kstruct{file\_system\_type} inserisce la \textit{dentry} iniziale nel
142 \textit{mount point} dello stesso, si avrà comunque un punto di
143 partenza. Inoltre essendo questa \textit{dentry} relativa a quel tipo di
144 filesystem essa farà riferimento ad un \textit{inode} di quel filesystem, e
145 come vedremo questo farà sì che venga eseguita una \texttt{lookup} adatta per
146 effettuare la risoluzione dei nomi per quel filesystem.
147
148 \itindend{pathname}
149 \itindend{pathname~resolution}
150
151 % Un secondo effetto della chiamata funzione \texttt{mount} di
152 % \kstruct{file\_system\_type} è quello di allocare una struttura
153 % \kstruct{super\_block} per ciascuna istanza montata, che contiene le
154 % informazioni generali di un qualunque filesystem montato, come le opzioni di
155 % montaggio, le dimensioni dei blocchi, quando il filesystem è stato montato
156 % ecc. Fra queste però viene pure inserta, nel campo \var{s\_op}, una ulteriore
157 % struttura \kstruct{super\_operations}, il cui contenuto sono i puntatori
158 % alle funzioni di gestione di un filesystem, anche inizializzata in modo da
159 % utilizzare le versioni specifiche di quel filesystem.
160
161 L'oggetto più importante per il funzionamento del VFS è probabilmente
162 l'\textit{inode}, ma con questo nome si può fare riferimento a due cose
163 diverse.  La prima è la struttura su disco (su cui torneremo anche in
164 sez.~\ref{sec:file_filesystem}) che fa parte della organizzazione dei dati
165 realizzata dal filesystem e che contiene le informazioni relative alle
166 proprietà (i cosiddetti \textsl{metadati}) di ogni oggetto presente su di esso
167 (si intende al solito uno qualunque dei tipi di file di
168 tab.~\ref{tab:file_file_types}).
169
170 La seconda è la corrispondente struttura \kstruct{inode}, della cui
171 definizione si è riportato un estratto in
172 fig.~\ref{fig:kstruct_inode}.\footnote{l'estratto fa riferimento alla versione
173   del kernel 2.6.37.} Questa struttura viene mantenuta in memoria ed è a
174 questa che facevamo riferimento quando parlavamo dell'\textit{inode} associato
175 a ciascuna \textit{dentry}. Nella struttura in memoria sono presenti gli
176 stessi \textsl{metadati} memorizzati su disco, che vengono letti quando questa
177 struttura viene allocata e trascritti all'indietro se modificati.
178
179 \begin{figure}[!htb]
180   \footnotesize \centering
181   \begin{minipage}[c]{0.8\textwidth}
182     \includestruct{listati/inode.h}
183   \end{minipage}
184   \normalsize 
185   \caption{Estratto della struttura \kstructd{inode} del kernel (da
186     \texttt{include/linux/fs.h}).}
187   \label{fig:kstruct_inode}
188 \end{figure}
189
190 Il fatto che la struttura \kstruct{inode} sia mantenuta in memoria,
191 direttamente associata ad una \textit{dentry}, rende sostanzialmente immediate
192 le operazioni che devono semplicemente effettuare un accesso ai dati in essa
193 contenuti: è così ad esempio che viene realizzata la \textit{system call}
194 \func{stat} che vedremo in sez.~\ref{sec:file_stat}. Rispetto ai dati salvati
195 sul disco questa struttura contiene però anche quanto necessario alla
196 implementazione del VFS, ed in particolare è importante il campo \var{i\_op}
197 che, come illustrato in fig.~\ref{fig:kstruct_inode}, contiene il puntatore ad
198 una struttura di tipo \kstruct{inode\_operation}, la cui definizione si può
199 trovare nel file \texttt{include/kernel/fs.h} dei sorgenti del kernel.
200
201 Questa struttura non è altro che una tabella di funzioni, ogni suo membro cioè
202 è un puntatore ad una funzione e, come suggerisce il nome della struttura
203 stessa, queste funzioni sono quelle che definiscono le operazioni che il VFS
204 può compiere su un \textit{inode}. Si sono riportate in
205 tab.~\ref{tab:file_inode_operations} le più rilevanti.
206
207 \begin{table}[htb]
208   \centering
209   \footnotesize
210   \begin{tabular}[c]{|l|l|}
211     \hline
212     \textbf{Funzione} & \textbf{Operazione} \\
213     \hline
214     \hline
215     \textsl{\code{create}} & Chiamata per creare un nuovo file (vedi
216                              sez.~\ref{sec:file_open_close}).\\ 
217     \textsl{\code{link}}   & Crea un \textit{hard link} (vedi
218                              sez.~\ref{sec:link_symlink_rename}).\\
219     \textsl{\code{unlink}} & Cancella un \textit{hard link} (vedi
220                              sez.~\ref{sec:link_symlink_rename}).\\
221     \textsl{\code{symlink}}& Crea un collegamento simbolico (vedi
222                              sez.~\ref{sec:link_symlink_rename}).\\
223     \textsl{\code{mkdir}}  & Crea una directory (vedi
224                              sez.~\ref{sec:file_dir_creat_rem}).\\
225     \textsl{\code{rmdir}}  & Rimuove una directory (vedi
226                              sez.~\ref{sec:file_dir_creat_rem}).\\
227     \textsl{\code{mknod}}  & Crea un file speciale (vedi
228                              sez.~\ref{sec:file_mknod}).\\
229     \textsl{\code{rename}} & Cambia il nome di un file (vedi
230                              sez.~\ref{sec:link_symlink_rename}).\\
231     \textsl{\code{lookup}}&  Risolve il nome di un file.\\
232     \hline
233   \end{tabular}
234   \caption{Le principali operazioni sugli \textit{inode} definite tramite
235     \kstruct{inode\_operation}.} 
236   \label{tab:file_inode_operations}
237 \end{table}
238
239 Possiamo notare come molte di queste funzioni abbiano nomi sostanzialmente
240 identici alle varie \textit{system call} con le quali si gestiscono file e
241 directory, che tratteremo nel resto del capitolo. Quello che succede è che
242 tutte le volte che deve essere eseguita una \textit{system call}, o una
243 qualunque altra operazione su un \textit{inode} (come \texttt{lookup}) il VFS
244 andrà ad utilizzare la funzione corrispondente attraverso il puntatore
245 \var{i\_op}.
246
247 Sarà allora sufficiente che nella realizzazione di un filesystem si crei una
248 implementazione di queste funzioni per quel filesystem e si allochi una
249 opportuna istanza di \kstruct{inode\_operation} contenente i puntatori a dette
250 funzioni. A quel punto le strutture \kstruct{inode} usate per gli oggetti di
251 quel filesystem otterranno il puntatore alla relativa istanza di
252 \kstruct{inode\_operation} e verranno automaticamente usate le funzioni
253 corrette.
254
255 Si noti però come in tab.~\ref{tab:file_inode_operations} non sia presente la
256 funzione \texttt{open} che invece è citata in
257 tab.~\ref{tab:file_file_operations}.\footnote{essa può essere comunque
258   invocata dato che nella struttura \kstruct{inode} è presente anche il
259   puntatore \var{i\_fop} alla struttura \kstruct{file\_operation} che fornisce
260   detta funzione.} Questo avviene perché su Linux l'apertura di un file
261 richiede comunque un'altra operazione che mette in gioco l'omonimo oggetto del
262 VFS: l'allocazione di una struttura di tipo \kstruct{file} che viene associata
263 ad ogni file aperto nel sistema.  I motivi per cui viene usata una struttura a
264 parte sono diversi, anzitutto, come illustrato in sez.~\ref{sec:file_fd},
265 questa è necessaria per le operazioni eseguite dai processi con l'interfaccia
266 dei file descriptor. Ogni processo infatti mantiene il riferimento ad una
267 struttura \kstruct{file} per ogni file che ha aperto, ed è tramite essa che
268 esegue le operazioni di I/O. Inoltre il kernel mantiene un elenco di tutti i
269 file aperti nella \textit{file table} (torneremo su questo in
270 sez.~\ref{sec:file_fd}).
271
272 Inoltre se le operazioni relative agli \textit{inode} fanno riferimento ad
273 oggetti posti all'interno di un filesystem e vi si applicano quindi le
274 funzioni fornite nell'implementazione di quest'ultimo, quando si apre un file
275 questo può essere anche un file di dispositivo, ed in questo caso il VFS
276 invece di usare le operazioni fornite dal filesystem (come farebbe per un file
277 di dati) dovrà invece ricorrere a quelle fornite dal driver del dispositivo.
278
279 \itindend{inode}
280
281 \begin{figure}[!htb]
282   \footnotesize \centering
283   \begin{minipage}[c]{0.8\textwidth}
284     \includestruct{listati/file.h}
285   \end{minipage}
286   \normalsize 
287   \caption{Estratto della struttura \kstructd{file} del kernel (da
288     \texttt{include/linux/fs.h}).}
289   \label{fig:kstruct_file}
290 \end{figure}
291
292 Come si può notare dall'estratto di fig.~\ref{fig:kstruct_file}, la struttura
293 \kstruct{file} contiene, oltre ad alcune informazioni usate dall'interfaccia
294 dei file descriptor il cui significato emergerà più avanti, il puntatore
295 \var{f\_op} ad una struttura \kstruct{file\_operation}. Questa è l'analoga per
296 i file di \kstruct{inode\_operation}, e definisce le operazioni generiche
297 fornite dal VFS per i file. Si sono riportate in
298 tab.~\ref{tab:file_file_operations} le più significative.
299
300 \begin{table}[htb]
301   \centering
302   \footnotesize
303   \begin{tabular}[c]{|l|p{8cm}|}
304     \hline
305     \textbf{Funzione} & \textbf{Operazione} \\
306     \hline
307     \hline
308     \textsl{\code{open}}   & Apre il file (vedi
309                              sez.~\ref{sec:file_open_close}).\\ 
310     \textsl{\code{read}}   & Legge dal file (vedi sez.~\ref{sec:file_read}).\\
311     \textsl{\code{write}}  & Scrive sul file (vedi 
312                              sez.~\ref{sec:file_write}).\\
313     \textsl{\code{llseek}} & Sposta la posizione corrente sul file (vedi
314                              sez.~\ref{sec:file_lseek}).\\
315     \textsl{\code{ioctl}}  & Accede alle operazioni di controllo 
316                              (vedi sez.~\ref{sec:file_fcntl_ioctl}).\\
317     \textsl{\code{readdir}}& Legge il contenuto di una directory (vedi 
318                              sez.~\ref{sec:file_dir_read}).\\
319     \textsl{\code{poll}}   & Usata nell'I/O multiplexing (vedi
320                              sez.~\ref{sec:file_multiplexing}).\\
321     \textsl{\code{mmap}}   & Mappa il file in memoria (vedi 
322                              sez.~\ref{sec:file_memory_map}).\\
323     \textsl{\code{release}}& Chiamata quando l'ultimo riferimento a un file 
324                              aperto è chiuso.\\
325     \textsl{\code{fsync}}  & Sincronizza il contenuto del file (vedi
326                              sez.~\ref{sec:file_sync}).\\
327     \textsl{\code{fasync}} & Abilita l'I/O asincrono (vedi
328                              sez.~\ref{sec:file_asyncronous_io}) sul file.\\
329     \hline
330   \end{tabular}
331   \caption{Operazioni sui file definite tramite \kstruct{file\_operation}.}
332   \label{tab:file_file_operations}
333 \end{table}
334
335 Anche in questo caso tutte le volte che deve essere eseguita una
336 \textit{system call} o una qualunque altra operazione sul file il VFS andrà ad
337 utilizzare la funzione corrispondente attraverso il puntatore
338 \var{f\_op}. Dato che è cura del VFS quando crea la struttura all'apertura del
339 file assegnare a \var{f\_op} il puntatore alla versione di
340 \kstruct{file\_operation} corretta per quel file, sarà possibile scrivere allo
341 stesso modo sulla porta seriale come su un normale file di dati, e lavorare
342 sui file allo stesso modo indipendentemente dal filesystem.
343
344 Il VFS realizza la quasi totalità delle operazioni relative ai file grazie
345 alle funzioni presenti nelle due strutture \kstruct{inode\_operation} e
346 \kstruct{file\_operation}.  Ovviamente non è detto che tutte le operazioni
347 possibili siano poi disponibili in tutti i casi, ad esempio \code{llseek} non
348 sarà presente per un dispositivo come la porta seriale o per una fifo, mentre
349 sui file del filesystem \texttt{vfat} non saranno disponibili i permessi, ma
350 resta il fatto che grazie al VFS le \textit{system call} per le operazioni sui
351 file possono restare sempre le stesse nonostante le enormi differenze che
352 possono esserci negli oggetti a cui si applicano.
353  
354
355 \itindend{Virtual~File~System~(VFS)}
356
357 % NOTE: documentazione interessante:
358 %       * sorgenti del kernel: Documentation/filesystems/vfs.txt
359 %       * http://thecoffeedesk.com/geocities/rkfs.html
360 %       * http://www.linux.it/~rubini/docs/vfs/vfs.html
361
362
363
364 \subsection{Il funzionamento di un filesystem Unix}
365 \label{sec:file_filesystem}
366
367 Come già accennato in sez.~\ref{sec:file_arch_overview} Linux (ed ogni sistema
368 unix-like) organizza i dati che tiene su disco attraverso l'uso di un
369 filesystem. Una delle caratteristiche di Linux rispetto agli altri Unix è
370 quella di poter supportare, grazie al VFS, una enorme quantità di filesystem
371 diversi, ognuno dei quali avrà una sua particolare struttura e funzionalità
372 proprie.  Per questo non entreremo nei dettagli di un filesystem specifico, ma
373 daremo una descrizione a grandi linee che si adatta alle caratteristiche
374 comuni di qualunque filesystem di un sistema unix-like.
375
376 \itindbeg{superblock}
377
378 Una possibile strutturazione dell'informazione su un disco è riportata in
379 fig.~\ref{fig:file_disk_filesys}, dove si hanno tre filesystem su tre
380 partizioni. In essa per semplicità si è fatto riferimento alla struttura del
381 filesystem \acr{ext2}, che prevede una suddivisione dei dati in \textit{block
382   group}.  All'interno di ciascun \textit{block group} viene anzitutto
383 replicato il cosiddetto \textit{superblock}, (la struttura che contiene
384 l'indice iniziale del filesystem e che consente di accedere a tutti i dati
385 sottostanti) e creata una opportuna suddivisione dei dati e delle informazioni
386 per accedere agli stessi.  Sulle caratteristiche di \acr{ext2} e derivati
387 torneremo in sez.~\ref{sec:file_ext2}.
388
389 \itindend{superblock}
390 \itindbeg{inode}
391
392 È comunque caratteristica comune di tutti i filesystem per Unix,
393 indipendentemente da come poi viene strutturata nei dettagli questa
394 informazione, prevedere la presenza di due tipi di risorse: gli
395 \textit{inode}, cui abbiamo già accennato in sez.~\ref{sec:file_vfs_work}, che
396 sono le strutture che identificano i singoli oggetti sul filesystem, e i
397 blocchi, che invece attengono allo spazio disco che viene messo a disposizione
398 per i dati in essi contenuti.
399
400 \begin{figure}[!htb]
401   \centering
402   \includegraphics[width=11cm]{img/disk_struct}
403   \caption{Organizzazione dello spazio su un disco in partizioni e
404   filesystem.}
405   \label{fig:file_disk_filesys}
406 \end{figure}
407
408 Se si va ad esaminare con maggiore dettaglio la strutturazione
409 dell'informazione all'interno del filesystem \textsl{ext2}, tralasciando i
410 dettagli relativi al funzionamento del filesystem stesso come la
411 strutturazione in gruppi dei blocchi, il \textit{superblock} e tutti i dati di
412 gestione possiamo esemplificare la situazione con uno schema come quello
413 esposto in fig.~\ref{fig:file_filesys_detail}.
414
415 \begin{figure}[!htb]
416   \centering
417   \includegraphics[width=11cm]{img/filesys_struct}
418   \caption{Strutturazione dei dati all'interno di un filesystem.}
419   \label{fig:file_filesys_detail}
420 \end{figure}
421
422 Da fig.~\ref{fig:file_filesys_detail} si evidenziano alcune delle
423 caratteristiche di base di un filesystem, che restano le stesse anche su
424 filesystem la cui organizzazione dei dati è totalmente diversa da quella
425 illustrata, e sulle quali è bene porre attenzione visto che sono fondamentali
426 per capire il funzionamento delle funzioni che manipolano i file e le
427 directory che tratteremo nel prosieguo del capitolo. In particolare è
428 opportuno tenere sempre presente che:
429
430
431 \begin{enumerate}
432   
433 \item L'\textit{inode} contiene i cosiddetti \textsl{metadati}, vale dire le
434   informazioni riguardanti le proprietà del file come oggetto del filesystem:
435   il tipo di file, i permessi di accesso, le dimensioni, i puntatori ai
436   blocchi fisici che contengono i dati e così via. Le informazioni che la
437   funzione \func{stat} (vedi sez.~\ref{sec:file_stat}) fornisce provengono
438   dall'\textit{inode}.  Dentro una directory si troverà solo il nome del file
439   e il numero dell'\textit{inode} ad esso associato; il nome non è una
440   proprietà del file e non viene mantenuto nell'\textit{inode}. Da da qui in
441   poi chiameremo il nome del file contenuto in una directory
442   ``\textsl{voce}'', come traduzione della nomenclatura inglese
443   \textit{directory entry} che non useremo per evitare confusione con le
444   \textit{dentry} del kernel viste in sez.~\ref{sec:file_vfs_work}.
445   
446 \item Come mostrato in fig.~\ref{fig:file_filesys_detail} per i file
447   \texttt{macro.tex} e \texttt{gapil\_macro.tex}, ci possono avere più voci
448   che fanno riferimento allo stesso \textit{inode}. Fra le proprietà di un
449   file mantenute nell'\textit{inode} c'è anche il contatore con il numero di
450   riferimenti che sono stati fatti ad esso, il cosiddetto \textit{link
451     count}.\footnote{mantenuto anche nel campo \var{i\_nlink} della struttura
452     \kstruct{inode} di fig.~\ref{fig:kstruct_inode}.}  Solo quando questo
453   contatore si annulla i dati del file possono essere effettivamente rimossi
454   dal disco. Per questo la funzione per cancellare un file si chiama
455   \func{unlink} (vedi sez.~\ref{sec:link_symlink_rename}), ed in realtà non
456   cancella affatto i dati del file, ma si limita ad eliminare la relativa voce
457   da una directory e decrementare il numero di riferimenti
458   nell'\textit{inode}.
459   
460 \item All'interno di ogni filesystem ogni \textit{inode} è identificato da un
461   numero univoco. Il numero di \textit{inode} associato ad una voce in una
462   directory si riferisce ad questo numero e non ci può essere una directory
463   che contiene riferimenti ad \textit{inode} relativi ad altri filesystem.
464   Questa è la ragione che limita l'uso del comando \cmd{ln}, che crea una
465   nuova voce per un file esistente con la funzione \func{link} (vedi
466   sez.~\ref{sec:link_symlink_rename}), a operare su file nel filesystem
467   corrente.
468   
469 \item Quando si cambia nome ad un file senza cambiare filesystem il contenuto
470   del file non viene spostato fisicamente, viene semplicemente creata una
471   nuova voce per l'\textit{inode} in questione e rimossa la precedente, questa
472   è la modalità in cui opera normalmente il comando \cmd{mv} attraverso la
473   funzione \func{rename} (vedi sez.~\ref{sec:link_symlink_rename}). Questa
474   operazione non modifica minimamente neanche l'\textit{inode} del file, dato
475   che non si opera sul file ma sulla directory che lo contiene.
476
477 \item Gli \textit{inode} dei file, che contengono i \textsl{metadati}, ed i
478   blocchi di spazio disco, che contengono i dati, sono risorse indipendenti ed
479   in genere vengono gestite come tali anche dai diversi filesystem; è pertanto
480   possibile esaurire sia lo spazio disco (il caso più comune) che lo spazio
481   per gli \textit{inode}. Nel primo caso non sarà possibile allocare ulteriore
482   spazio, ma si potranno creare file (vuoti), nel secondo non si potranno
483   creare nuovi file, ma si potranno estendere quelli che ci
484   sono.\footnote{questo comportamento non è generale, alcuni filesystem
485     evoluti possono evitare il problema dell'esaurimento degli \textit{inode}
486     riallocando lo spazio disco libero per i blocchi.}
487
488 \end{enumerate}
489
490 \begin{figure}[!htb]
491   \centering 
492   \includegraphics[width=12cm]{img/dir_links}
493   \caption{Organizzazione dei \textit{link} per le directory.}
494   \label{fig:file_dirs_link}
495 \end{figure}
496
497 Infine tenga presente che, essendo file pure loro, il numero di riferimenti
498 esiste anche per le directory. Per questo se a partire dalla situazione
499 mostrata in fig.~\ref{fig:file_filesys_detail} creiamo una nuova directory
500 \file{img} nella directory \file{gapil}, avremo una situazione come quella
501 illustrata in fig.~\ref{fig:file_dirs_link}.
502
503 La nuova directory avrà un numero di riferimenti pari a due, in quanto è
504 referenziata dalla directory da cui si era partiti (in cui è inserita la nuova
505 voce che fa riferimento a \texttt{img}) e dalla voce interna ``\texttt{.}''
506 che è presente in ogni directory.  Questo è il valore che si troverà sempre
507 per ogni directory che non contenga a sua volta altre directory. Al contempo,
508 la directory da cui si era partiti avrà un numero di riferimenti di almeno
509 tre, in quanto adesso sarà referenziata anche dalla voce ``\texttt{..}'' di
510 \texttt{img}. L'aggiunta di una sottodirectory fa cioè crescere di uno il
511 \textit{link count} della directory genitrice.
512
513 \itindend{inode}
514
515
516 \subsection{Alcuni dettagli sul filesystem \textsl{ext2} e successori}
517 \label{sec:file_ext2}
518
519 Benché non esista ``il'' filesystem di Linux, dato che esiste un supporto
520 nativo di diversi filesystem che sono in uso da anni, quello che gli avvicina
521 di più è la famiglia di filesystem evolutasi a partire dal \textit{second
522   extended filesystem}, o \acr{ext2}. Il filesystem \acr{ext2} ha subito un
523 grande sviluppo e diverse evoluzioni, fra cui l'aggiunta del
524 \textit{journaling} con il passaggio ad \acr{ext3}, che probabilmente è ancora
525 il filesystem più diffuso, ed una serie di ulteriori miglioramenti con il
526 successivo \acr{ext4}, che sta iniziando a sostituirlo gradualmente. In futuro
527 è previsto che questo debba essere sostituito da un filesystem completamente
528 diverso, \acr{btrfs}, che dovrebbe diventare il filesystem standard di Linux,
529 ma questo al momento è ancora in fase di sviluppo.\footnote{si fa riferimento
530   al momento dell'ultima revisione di di questo paragrafo, l'inizio del 2012.}
531
532 Il filesystem \acr{ext2} nasce come filesystem nativo per Linux a partire
533 dalle prime versioni del kernel e supporta tutte le caratteristiche di un
534 filesystem standard Unix: è in grado di gestire nomi di file lunghi (256
535 caratteri, estensibili a 1012) e supporta una dimensione massima dei file fino
536 a 4~Tb. I successivi filesystem \acr{ext3} ed \acr{ext4} sono evoluzioni di
537 questo filesystem, e sia pure con molti miglioramenti ed estensioni
538 significative ne mantengono le caratteristiche fondamentali.
539
540 Oltre alle caratteristiche standard, \acr{ext2} fornisce alcune estensioni che
541 non sono presenti su un classico filesystem di tipo Unix; le principali sono
542 le seguenti:
543 \begin{itemize}
544 \item gli attributi estesi (vedi sez.~\ref{sec:file_xattr}) che consentono di
545   estendere le informazioni salvabili come metadati e le ACL (vedi
546   sez.~\ref{sec:file_ACL}) che consentono di estendere il modello tradizionale
547   dei permessi sui file.
548 \item sono supportate entrambe le semantiche di BSD e SVr4 come opzioni di
549   montaggio. La semantica BSD comporta che i file in una directory sono creati
550   con lo stesso identificatore di gruppo della directory che li contiene. La
551   semantica SVr4 comporta che i file vengono creati con l'identificatore del
552   gruppo primario del processo, eccetto il caso in cui la directory ha il bit
553   di \acr{sgid} impostato (per una descrizione dettagliata del significato di
554   questi termini si veda sez.~\ref{sec:file_access_control}), nel qual caso
555   file e subdirectory ereditano sia il \ids{GID} che lo \acr{sgid}.
556 \item l'amministratore può scegliere la dimensione dei blocchi del filesystem
557   in fase di creazione, a seconda delle sue esigenze: blocchi più grandi
558   permettono un accesso più veloce, ma sprecano più spazio disco.
559 \item il filesystem implementa collegamenti simbolici veloci, in cui il nome
560   del file non è salvato su un blocco, ma tenuto all'interno
561   dell'\textit{inode} (evitando letture multiple e spreco di spazio), non
562   tutti i nomi però possono essere gestiti così per limiti di spazio (il
563   limite è 60 caratteri).
564 \item vengono supportati i cosiddetti \textit{file attributes} (vedi
565   sez.~\ref{sec:file_perm_overview}) che attivano comportamenti specifici per
566   i file su cui vengono attivati come marcarli come immutabili (che possono
567   cioè essere soltanto letti) per la protezione di file di configurazione
568   sensibili, o come \textit{append-only} (che possono essere aperti in
569   scrittura solo per aggiungere dati) per la protezione dei file di log.
570 \end{itemize}
571
572 La struttura di \acr{ext2} è stata ispirata a quella del filesystem di BSD: un
573 filesystem è composto da un insieme di blocchi, la struttura generale è quella
574 riportata in fig.~\ref{fig:file_filesys_detail}, in cui la partizione è divisa
575 in gruppi di blocchi.
576
577 Ciascun gruppo di blocchi contiene una copia delle informazioni essenziali del
578 filesystem (i \textit{superblock} sono quindi ridondati) per una maggiore
579 affidabilità e possibilità di recupero in caso di corruzione del
580 \textit{superblock} principale. L'utilizzo di raggruppamenti di blocchi ha
581 inoltre degli effetti positivi nelle prestazioni dato che viene ridotta la
582 distanza fra i dati e la tabella degli \textit{inode}.
583
584 \begin{figure}[!htb]
585   \centering
586   \includegraphics[width=9cm]{img/dir_struct}  
587   \caption{Struttura delle directory nel \textit{second extended filesystem}.}
588   \label{fig:file_ext2_dirs}
589 \end{figure}
590
591
592 Le directory sono implementate come una \textit{linked list} con voci di
593 dimensione variabile. Ciascuna voce della lista contiene il numero di
594 \textit{inode}, la sua lunghezza, il nome del file e la sua lunghezza, secondo
595 lo schema in fig.~\ref{fig:file_ext2_dirs}; in questo modo è possibile
596 implementare nomi per i file anche molto lunghi (fino a 1024 caratteri) senza
597 sprecare spazio disco.
598
599 Con l'introduzione del filesystem \textit{ext3} sono state introdotte diverse
600 modifiche strutturali, la principale di queste è quella che \textit{ext3} è un
601 filesystem \textit{journaled}, è cioè in grado di eseguire una registrazione
602 delle operazioni di scrittura su un giornale (uno speciale file interno) in
603 modo da poter garantire il ripristino della coerenza dei dati del
604 filesystem\footnote{si noti bene che si è parlato di dati \textsl{del}
605   filesystem, non di dati \textsl{nel} filesystem, quello di cui viene
606   garantito un veloce ripristino è relativo ai dati della struttura interna
607   del filesystem, non di eventuali dati contenuti nei file che potrebbero
608   essere stati persi.} in brevissimo tempo in caso di interruzione improvvisa
609 della corrente o di crollo del sistema che abbia causato una interruzione
610 della scrittura dei dati sul disco.
611
612 Oltre a questo \textit{ext3} introduce ulteriori modifiche volte a migliorare
613 sia le prestazioni che la semplicità di gestione del filesystem, in
614 particolare per le directory si è passato all'uso di alberi binari con
615 indicizzazione tramite \textit{hash} al posto delle \textit{linked list} che
616 abbiamo illustrato, ottenendo un forte guadagno di prestazioni in caso di
617 directory contenenti un gran numero di file.
618
619 % TODO (bassa priorità) portare a ext3, ext4 e btrfs ed illustrare le
620 % problematiche che si possono incontrare (in particolare quelle relative alla
621 % perdita di contenuti in caso di crash del sistema)
622 % TODO (media priorità) trattare btrfs quando sarà usato come stabile
623
624
625 \subsection{La gestione dell'uso dei filesystem}
626 \label{sec:filesystem_mounting}
627
628 Come accennato in sez.~\ref{sec:file_arch_overview} per poter accedere ai file
629 occorre rendere disponibile al sistema il filesystem su cui essi sono
630 memorizzati. L'operazione di attivazione del filesystem è chiamata
631 \textsl{montaggio} e per far questo in Linux si usa la funzione di sistema
632 \funcd{mount}, il cui prototipo è:\footnote{la funzione è una versione
633   specifica di Linux che usa la omonima \textit{system call} e non è
634   portabile.}
635
636 \begin{funcproto}{
637 \fhead{sys/mount.h} 
638 \fdecl{mount(const char *source, const char *target, const char
639   *filesystemtype, \\ 
640 \phantom{mount(}unsigned long mountflags, const void *data)}
641 \fdesc{Monta un filesystem.} 
642 }
643 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
644   caso \var{errno} assumerà uno dei valori:
645   \begin{errlist}
646   \item[\errcode{EACCES}] non si ha il permesso di accesso su uno dei
647     componenti del \textit{pathname}, o si è cercato di montare un filesystem
648     disponibile in sola lettura senza aver specificato \const{MS\_RDONLY} o il
649     device \param{source} è su un filesystem montato con l'opzione
650     \const{MS\_NODEV}.
651   \item[\errcode{EBUSY}] \param{source} è già montato, o non può essere
652     rimontato in sola lettura perché ci sono ancora file aperti in scrittura,
653     o non può essere montato su \param{target} perché la directory è ancora in
654     uso.
655   \item[\errcode{EINVAL}] il dispositivo \param{source} presenta un
656     \textit{superblock} non valido, o si è cercato di rimontare un filesystem
657     non ancora montato, o di montarlo senza che \param{target} sia un
658     \textit{mount point} o di spostarlo quando \param{target} non è un
659     \textit{mount point} o è la radice.
660   \item[\errcode{ELOOP}] si è cercato di spostare un \textit{mount point} su
661     una sottodirectory di \param{source} o si sono incontrati troppi
662     collegamenti simbolici nella risoluzione di un nome.
663   \item[\errcode{EMFILE}] in caso di filesystem virtuale, la tabella dei
664     dispositivi fittizi (chiamati \textit{dummy} nella documentazione inglese)
665     è piena.
666   \item[\errcode{ENODEV}] il tipo \param{filesystemtype} non esiste o non è
667     configurato nel kernel.
668   \item[\errcode{ENOTBLK}] non si è usato un \textit{block device} per
669     \param{source} quando era richiesto.
670   \item[\errcode{ENXIO}] il \textit{major number} del
671     dispositivo \param{source} è sbagliato.
672   \item[\errcode{EPERM}] il processo non ha i privilegi di amministratore.
673   \end{errlist} 
674   ed inoltre \errval{EFAULT}, \errval{ENOMEM}, \errval{ENAMETOOLONG},
675   \errval{ENOENT}, \errval{ENOTDIR} nel loro significato generico.}
676 \end{funcproto}
677
678 \itindbeg{mount~point}
679
680 La funzione monta sulla directory indicata da \param{target}, detta
681 \textit{mount point}, il filesystem contenuto nel file di dispositivo indicato
682 da \param{source}. In entrambi i casi, come daremo per assunto da qui in
683 avanti tutte le volte che si parla di directory o file nel passaggio di un
684 argomento di una funzione, si intende che questi devono essere indicati con la
685 stringa contenente il loro \textit{pathname}.
686
687 Normalmente un filesystem è contenuto su un disco o una partizione, ma come
688 illustrato in sez.~\ref{sec:file_vfs_work} la struttura del \textit{Virtual
689   File System} è estremamente flessibile e può essere usata anche per oggetti
690 diversi da un disco. Ad esempio usando il \textit{loop device} si può montare
691 un file qualunque (come l'immagine di un CD-ROM o di un floppy) che contiene
692 l'immagine di un filesystem, inoltre alcuni tipi di filesystem, come
693 \texttt{proc} o \texttt{sysfs} sono virtuali e non hanno un supporto che ne
694 contenga i dati, che invece sono generati al volo ad ogni lettura, e passati
695 indietro al kernel ad ogni scrittura.\footnote{costituiscono quindi un
696   meccanismo di comunicazione, attraverso l'ordinaria interfaccia dei file,
697   con il kernel.}
698
699 Il tipo di filesystem che si vuole montare è specificato
700 dall'argomento \param{filesystemtype}, che deve essere una delle stringhe
701 riportate nel file \procfile{/proc/filesystems} che, come accennato in
702 sez.~\ref{sec:file_vfs_work}, contiene l'elenco dei filesystem supportati dal
703 kernel. Nel caso si sia indicato un filesystem virtuale, che non è associato a
704 nessun file di dispositivo, il contenuto di \param{source} viene ignorato.
705
706 L'argomento \param{data} viene usato per passare le impostazioni relative alle
707 caratteristiche specifiche di ciascun filesystem. Si tratta di una stringa di
708 parole chiave (separate da virgole e senza spazi) che indicano le cosiddette
709 ``\textsl{opzioni}'' del filesystem che devono essere impostate; in genere
710 viene usato direttamente il contenuto del parametro dell'opzione \texttt{-o}
711 del comando \texttt{mount}. I valori utilizzabili dipendono dal tipo di
712 filesystem e ciascuno ha i suoi, pertanto si rimanda alla documentazione della
713 pagina di manuale di questo comando e dei singoli filesystem.
714
715 Dopo l'esecuzione della funzione il contenuto del filesystem viene resto
716 disponibile nella directory specificata come \textit{mount point}, il
717 precedente contenuto di detta directory viene mascherato dal contenuto della
718 directory radice del filesystem montato. Fino ai kernel della serie 2.2.x non
719 era possibile montare un filesystem se un \textit{mount point} era già in uso.
720
721 A partire dal kernel 2.4.x inoltre è divenuto possibile sia spostare
722 atomicamente un \textit{mount point} da una directory ad un'altra, sia montare
723 lo stesso filesystem in diversi \textit{mount point}, sia montare più
724 filesystem sullo stesso \textit{mount point} impilandoli l'uno sull'altro, nel
725 qual caso vale comunque quanto detto in precedenza, e cioè che solo il
726 contenuto dell'ultimo filesystem montato sarà visibile.
727
728 \itindend{mount~point}
729
730 Oltre alle opzioni specifiche di ciascun filesystem, che si passano nella
731 forma della lista di parole chiave indicata con l'argomento \param{data},
732 esistono pure alcune opzioni che si possono applicare in generale, anche se
733 non è detto che tutti i filesystem le supportino, che si specificano tramite
734 l'argomento \param{mountflags}.  L'argomento inoltre può essere utilizzato per
735 modificare il comportamento della funzione \func{mount}, facendole compiere
736 una operazione diversa (ad esempio un rimontaggio, invece che un montaggio).
737
738 In Linux \param{mountflags} deve essere un intero a 32 bit; fino ai kernel
739 della serie 2.2.x i 16 più significativi avevano un valore riservato che
740 doveva essere specificato obbligatoriamente,\footnote{il valore era il
741   \textit{magic number} \code{0xC0ED}, si può usare la costante
742   \constd{MS\_MGC\_MSK} per ottenere la parte di \param{mountflags} riservata
743   al \textit{magic number}, mentre per specificarlo si può dare un OR
744   aritmetico con la costante \constd{MS\_MGC\_VAL}.} e si potevano usare solo i
745 16 meno significativi. Oggi invece, con un numero di opzioni superiore, sono
746 utilizzati tutti e 32 i bit, ma qualora nei 16 più significativi sia presente
747 detto valore, che non esprime una combinazione valida, esso viene ignorato. Il
748 valore dell'argomento deve essere espresso come maschera binaria e i vari bit
749 che lo compongono, detti anche \textit{mount flags}, devono essere impostati
750 con un OR aritmetico dei valori dalle costanti riportate nell'elenco seguente:
751
752 \begin{basedescript}{\desclabelwidth{2.cm}\desclabelstyle{\nextlinelabel}}
753 \itindbeg{bind~mount}
754 \item[\constd{MS\_BIND}] Effettua un cosiddetto \textit{bind mount}, in cui è
755   possibile montare una directory di un filesystem in un'altra directory,
756   l'opzione è disponibile a partire dai kernel della serie 2.4. In questo caso
757   verranno presi in considerazione solo gli argomenti \param{source}, che
758   stavolta indicherà la directory che si vuole montare e non un file di
759   dispositivo, e \param{target} che indicherà la directory su cui verrà
760   effettuato il \textit{bind mount}. Gli argomenti \param{filesystemtype}
761   e \param{data} vengono ignorati.
762
763   In sostanza quello che avviene è che in corrispondenza del \textit{pathname}
764   indicato da \param{target} viene montato l'\textit{inode} di \param{source},
765   così che la porzione di albero dei file presente sotto \param{source}
766   diventi visibile allo stesso modo sotto \param{target}. Trattandosi
767   esattamente dei dati dello stesso filesystem, ogni modifica fatta in uno
768   qualunque dei due rami di albero sarà visibile nell'altro, visto che
769   entrambi faranno riferimento agli stessi \textit{inode}.
770
771   Dal punto di vista del VFS l'operazione è analoga al montaggio di un
772   filesystem proprio nel fatto che anche in questo caso si inserisce in
773   corrispondenza della \textit{dentry} di \texttt{target} un diverso
774   \textit{inode}, che stavolta, invece di essere quello della radice del
775   filesystem indicato da un file di dispositivo, è quello di una directory già
776   montata.
777
778   Si tenga presente che proprio per questo sotto \param{target} comparirà il
779   contenuto che è presente sotto \param{source} all'interno del filesystem in
780   cui quest'ultima è contenuta. Questo potrebbe non corrispondere alla
781   porzione di albero che sta sotto \param{source} qualora in una
782   sottodirectory di quest'ultima si fosse effettuato un altro montaggio. In
783   tal caso infatti nella porzione di albero sotto \param{source} si troverebbe
784   il contenuto del nuovo filesystem (o di un altro \textit{bind mount}) mentre
785   sotto \param{target} ci sarebbe il contenuto presente nel filesystem
786   originale.\footnote{questo evita anche il problema dei \textit{loop} di
787     fig.~\ref{fig:file_link_loop}, dato che se anche si montasse su
788     \param{target} una directory in cui essa è contenuta, il cerchio non
789     potrebbe chiudersi perché ritornati a \param{target} dentro il
790     \textit{bind mount} vi si troverebbe solo il contenuto originale e non si
791     potrebbe tornare indietro.}
792
793   Fino al kernel 2.6.26 questo flag doveva essere usato da solo, in quanto il
794   \textit{bind mount} continuava ad utilizzare le stesse opzioni del montaggio
795   originale, dal 2.6.26 è stato introdotto il supporto per il cosiddetto
796   \textit{read-only bind mount} e viene onorata la presenza aggiuntiva del
797   flag \const{MS\_RDONLY}. In questo modo si ottiene che l'accesso ai file
798   sotto \param{target} sia effettuabile esclusivamente in sola lettura.
799
800   Il supporto per il \textit{bind mount} consente di superare i limiti
801   presenti per gli \textit{hard link} (di cui parleremo in
802   sez.~\ref{sec:link_symlink_rename}) con la possibilità di fare riferimento
803   alla porzione dell'albero dei file di un filesystem presente a partire da
804   una certa directory, utilizzando una qualunque altra directory, anche se
805   questa sta su un filesystem diverso. Si può così fornire una alternativa
806   all'uso dei collegamenti simbolici (di cui parleremo in
807   sez.~\ref{sec:link_symlink_rename}) che funziona correttamente anche
808   all'intero di un \textit{chroot} (argomento su cui torneremo in
809   sez.~\ref{sec:file_chroot}).  
810
811 \itindend{bind~mount}
812
813 \item[\constd{MS\_DIRSYNC}] Richiede che ogni modifica al contenuto di una
814   directory venga immediatamente registrata su disco in maniera sincrona
815   (introdotta a partire dai kernel della serie 2.6). L'opzione si applica a
816   tutte le directory del filesystem, ma su alcuni filesystem è possibile
817   impostarla a livello di singole directory o per i sottorami di una directory
818   con il comando \cmd{chattr}.\footnote{questo avviene tramite delle opportune
819     \texttt{ioctl} (vedi sez.~\ref{sec:file_fcntl_ioctl}).}
820
821   Questo consente di ridurre al minimo il rischio di perdita dei dati delle
822   directory in caso di crollo improvviso del sistema, al costo di una certa
823   perdita di prestazioni dato che le funzioni di scrittura relative ad
824   operazioni sulle directory non saranno più bufferizzate e si bloccheranno
825   fino all'arrivo dei dati sul disco prima che un programma possa proseguire.
826
827 \item[\constd{MS\_MANDLOCK}] Consente l'uso del \textit{mandatory locking}
828   (vedi sez.~\ref{sec:file_mand_locking}) sui file del filesystem. Per poterlo
829   utilizzare effettivamente però esso dovrà essere comunque attivato
830   esplicitamente per i singoli file impostando i permessi come illustrato in
831   sez.~\ref{sec:file_mand_locking}.
832
833 \item[\constd{MS\_MOVE}] Effettua uno del spostamento del \textit{mount point}
834   di un filesystem. La directory del \textit{mount point} originale deve
835   essere indicata nell'argomento \param{source}, e la sua nuova posizione
836   nell'argomento \param{target}. Tutti gli altri argomenti della funzione
837   vengono ignorati.
838
839   Lo spostamento avviene atomicamente, ed il ramo di albero presente
840   sotto \param{source} sarà immediatamente visibile sotto \param{target}. Non
841   esiste cioè nessun momento in cui il filesystem non risulti montato in una o
842   nell'altra directory e pertanto è garantito che la risoluzione di
843   \textit{pathname} relativi all'interno del filesystem non possa fallire.
844
845 \item[\constd{MS\_NOATIME}] Viene disabilitato sul filesystem l'aggiornamento
846   degli \textit{access time} (vedi sez.~\ref{sec:file_file_times}) per
847   qualunque tipo di file. Dato che l'aggiornamento degli \textit{access time}
848   è una funzionalità la cui utilità è spesso irrilevante ma comporta un costo
849   elevato visto che una qualunque lettura comporta comunque una scrittura su
850   disco,\footnote{e questo ad esempio ha conseguenze molto pesanti nell'uso
851     della batteria sui portatili.} questa opzione consente di disabilitarla
852   completamente. La soluzione può risultare troppo drastica dato che
853   l'informazione viene comunque utilizzata da alcuni programmi, per cui nello
854   sviluppo del kernel sono state introdotte altre opzioni che forniscono
855   soluzioni più appropriate e meno radicali.
856
857 \item[\constd{MS\_NODEV}] Viene disabilitato sul filesystem l'accesso ai file
858   di dispositivo eventualmente presenti su di esso. L'opzione viene usata come
859   misura di precauzione per rendere inutile la presenza di eventuali file di
860   dispositivo su filesystem che non dovrebbero contenerne.\footnote{si ricordi
861     che le convenzioni del \textit{Linux Filesystem Hierarchy Standard}
862     richiedono che questi siano mantenuti esclusivamente sotto \texttt{/dev}.}
863
864   Viene utilizzata, assieme a \const{MS\_NOEXEC} e \const{MS\_NOSUID}, per
865   fornire un accesso più controllato a quei filesystem di cui gli utenti hanno
866   il controllo dei contenuti, in particolar modo quelli posti su dispositivi
867   rimuovibili. In questo modo si evitano alla radice possibili situazioni in
868   cui un utente malizioso inserisce su uno di questi filesystem dei file di
869   dispositivo con permessi ``opportunamente'' ampliati che gli consentirebbero
870   di accedere anche a risorse cui non dovrebbe.
871
872 \item[\constd{MS\_NODIRATIME}] Viene disabilitato sul filesystem
873   l'aggiornamento degli \textit{access time} (vedi
874   sez.~\ref{sec:file_file_times}), ma soltanto per le directory. Costituisce
875   una alternativa per \const{MS\_NOATIME}, che elimina l'informazione per le
876   directory, che in pratica che non viene mai utilizzata, mantenendola per i
877   file in cui invece ha un impiego, sia pur limitato.
878
879 \item[\constd{MS\_NOEXEC}] Viene disabilitata sul filesystem l'esecuzione di un
880   qualunque file eseguibile eventualmente presente su di esso. L'opzione viene
881   usata come misura di precauzione per rendere impossibile l'uso di programmi
882   posti su filesystem che non dovrebbero contenerne.
883
884   Anche in questo caso viene utilizzata per fornire un accesso più controllato
885   a quei filesystem di cui gli utenti hanno il controllo dei contenuti. Da
886   questo punto di vista l'opzione è meno importante delle analoghe
887   \const{MS\_NODEV} e \const{MS\_NOSUID} in quanto l'esecuzione di un
888   programma creato dall'utente pone un livello di rischio nettamente
889   inferiore, ed è in genere consentita per i file contenuti nella sua home
890   directory.\footnote{cosa che renderebbe superfluo l'attivazione di questa
891     opzione, il cui uso ha senso solo per ambienti molto controllati in cui si
892     vuole che gli utenti eseguano solo i programmi forniti
893     dall'amministratore.}
894
895 \item[\constd{MS\_NOSUID}] Viene disabilitato sul filesystem l'effetto dei bit
896   dei permessi \acr{suid} e \acr{sgid} (vedi sez.~\ref{sec:file_special_perm})
897   eventualmente presenti sui file in esso contenuti. L'opzione viene usata
898   come misura di precauzione per rendere inefficace l'effetto di questi bit
899   per filesystem in cui non ci dovrebbero essere file dotati di questi
900   permessi.
901
902   Di nuovo viene utilizzata, analogamente a \const{MS\_NOEXEC} e
903   \const{MS\_NODEV}, per fornire un accesso più controllato a quei filesystem
904   di cui gli utenti hanno il controllo dei contenuti. In questo caso si evita
905   che un utente malizioso possa inserire su uno di questi filesystem un
906   eseguibile con il bit \acr{suid} attivo e di proprietà dell'amministratore o
907   di un altro utente, che gli consentirebbe di eseguirlo per conto di
908   quest'ultimo.
909
910 \item[\constd{MS\_PRIVATE}] Marca un \textit{mount point} come privato. Si
911   tratta di una delle nuove opzioni (insieme a \const{MS\_SHARED},
912   \const{MS\_SLAVE} e \const{MS\_UNBINDABLE}) facenti parte
913   dell'infrastruttura degli \textit{shared subtree} introdotta a partire dal
914   kernel 2.6.15, che estendono le funzionalità dei \textit{bind mount}. In
915   questo caso \param{target} dovrà fare riferimento al \textit{mount point}
916   che si intende marcare, e tutti gli altri argomenti verranno ignorati.
917
918   Di default, finché non lo si marca altrimenti con una delle altre opzioni
919   dell'interfaccia come \textit{shared subtree}, ogni \textit{mount point} è
920   privato. Ogni \textit{bind mount} ottenuto da un \textit{mount point} di
921   tipo \textit{private} si comporta come descritto nella trattazione di
922   \const{MS\_BIND}. Si usa questo flag principalmente per revocare gli effetti
923   delle altre opzioni e riportare il comportamento a quello ordinario.
924
925 \item[\constd{MS\_RDONLY}] Esegue il montaggio del filesystem in sola lettura,
926   non sarà possibile nessuna modifica ai suoi contenuti. Viene usato tutte le
927   volte che si deve accedere ai contenuti di un filesystem con la certezza che
928   questo non venga modificato (ad esempio per ispezionare un filesystem
929   corrotto). All'avvio di default il kernel monta la radice in questa
930   modalità.
931
932 \item[\constd{MS\_REC}] Applica ricorsivamente a tutti i \textit{mount point}
933   presenti al di sotto del \textit{mount point} indicato gli effetti della
934   opzione degli \textit{shared subtree} associata. Anche questo caso
935   l'argomento \param{target} deve fare riferimento ad un \textit{mount point}
936   e tutti gli altri argomenti sono ignorati, ed il flag deve essere indicato
937   assieme ad una fra \const{MS\_PRIVATE}, \const{MS\_SHARED},
938   \const{MS\_SLAVE} e \const{MS\_UNBINDABLE}.
939
940   % TODO trattare l'opzione \texttt{lazytime} introdotta con il kernel 4.0,
941   % vedi http://lwn.net/Articles/621046/
942
943 \item[\constd{MS\_RELATIME}] Indica di effettuare l'aggiornamento degli
944   \textit{access time} sul filesystem soltanto quando questo risulti
945   antecedente il valore corrente del \textit{modification time} o del
946   \textit{change time} (per i tempi dei file si veda
947   sez.~\ref{sec:file_file_times}). L'opzione è disponibile a partire dal
948   kernel 2.6.20, mentre dal 2.6.30 questo è diventato il comportamento di
949   default del sistema, che può essere riportato a quello tradizionale con
950   l'uso di \const{MS\_STRICTATIME}. Sempre dal 2.6.30 il comportamento è stato
951   anche modificato e l'\textit{access time} viene comunque aggiornato se è più
952   vecchio di un giorno.
953
954   L'opzione consente di evitare i problemi di prestazioni relativi
955   all'aggiornamento dell'\textit{access time} senza avere impatti negativi
956   riguardo le funzionalità, il comportamento adottato infatti consente di
957   rendere evidente che vi è stato un accesso dopo la scrittura, ed evitando al
958   contempo ulteriori operazioni su disco negli accessi successivi. In questo
959   modo l'informazione relativa al fatto che un file sia stato letto resta
960   disponibile, ed i programmi che ne fanno uso continuano a funzionare. Con
961   l'introduzione di questo comportamento l'uso delle alternative
962   \const{MS\_NOATIME} e \const{MS\_NODIRATIME} è sostanzialmente inutile.
963
964 \item[\constd{MS\_REMOUNT}] Consente di rimontare un filesystem già montato
965   cambiandone le opzioni di montaggio in maniera atomica. In questo modo si
966   possono modificare le opzioni del filesystem anche se questo è in uso. Gli
967   argomenti \param{source} e \param{target} devono essere gli stessi usati per
968   il montaggio originale, mentre sia \param{data} che \param{mountflags}
969   conterranno le nuove opzioni, \param{filesystemtype} viene ignorato.
970
971   Qualunque opzione specifica del filesystem indicata con \param{data} può
972   essere modificata, mentre con \param{mountflags} possono essere modificate
973   solo alcune opzioni generiche. Con i kernel più recenti queste sono soltanto
974   \const{MS\_MANDLOCK}, \const{MS\_RDONLY} e \const{MS\_SYNCHRONOUS}, prima
975   del kernel 2.6.16 potevano essere modificate anche le ulteriori
976   \const{MS\_NOATIME} e \const{MS\_NODIRATIME}, ed infine prima del kernel
977   2.4.10 anche \const{MS\_NODEV}, \const{MS\_NOEXEC} e \const{MS\_NOSUID}.
978
979 \itindbeg{shared~subtree}
980
981 \item[\constd{MS\_SHARED}] Marca un \textit{mount point} come \textit{shared
982     mount}. Si tratta di una delle nuove opzioni (insieme a
983   \const{MS\_PRIVATE}, \const{MS\_SLAVE} e \const{MS\_UNBINDABLE}) facenti
984   parte dell'infrastruttura dei cosiddetti \textit{shared subtree} introdotta
985   a partire dal kernel 2.6.15, che estendono le funzionalità dei \textit{bind
986     mount}.  In questo caso \param{target} dovrà fare riferimento al
987   \textit{mount point} che si intende marcare, e tutti gli altri argomenti
988   verranno ignorati.
989
990   Lo scopo dell'opzione è ottenere che tutti i successivi \textit{bind mount}
991   effettuati da un \textit{mount point} marcato da essa siano di tipo
992   \textit{shared}, cioè ``\textsl{condividano}'' con l'originale e fra di loro
993   ogni ulteriore operazione di montaggio o smontaggio che avviene su una
994   directory al di sotto di uno qualunque di essi. Le operazioni di montaggio e
995   smontaggio effettuate al di sotto di un qualunque \textit{mount point} così
996   marcato verranno ``\textsl{propagate}'' a tutti i \textit{mount point} della
997   stessa condivisione, e la sezione di albero di file vista al di sotto di
998   ciascuno di essi sarà sempre identica.
999
1000 \itindend{shared~subtree}
1001
1002 \item[\constd{MS\_SILENT}] Richiede la soppressione di alcuni messaggi di
1003   avvertimento nei log del kernel (vedi sez.~\ref{sec:sess_daemon}). L'opzione
1004   è presente a partire dal kernel 2.6.17 e sostituisce, utilizzando un nome
1005   non fuorviante, la precedente \const{MS\_VERBOSE}, introdotta nel kernel
1006   2.6.12, che aveva lo stesso effetto.
1007
1008 \item[\constd{MS\_SLAVE}] Marca un \textit{mount point} come \textit{slave
1009     mount}. Si tratta di una delle nuove opzioni (insieme a
1010   \const{MS\_PRIVATE}, \const{MS\_SHARED} e \const{MS\_UNBINDABLE}) facenti
1011   parte dell'infrastruttura degli \textit{shared subtree} introdotta a partire
1012   dal kernel 2.6.15, che estendono le funzionalità dei \textit{bind mount}.
1013   In questo caso \param{target} dovrà fare riferimento al \textit{mount point}
1014   che si intende marcare, e tutti gli altri argomenti verranno ignorati.
1015
1016   Lo scopo dell'opzione è ottenere che tutti i successivi \textit{bind mount}
1017   effettuati da un \textit{mount point} marcato da essa siano di tipo
1018   \textit{slave}, cioè ``\textsl{condividano}'' ogni ulteriore operazione di
1019   montaggio o smontaggio che avviene su una directory al di sotto del
1020   \textit{mount point} originale. Le operazioni di montaggio e smontaggio in
1021   questo caso vengono ``\textsl{propagate}'' soltanto dal \textit{mount point}
1022   originale (detto anche \textit{master}) verso gli \textit{slave}, mentre
1023   essi potranno eseguire al loro interno ulteriori montaggi che non saranno
1024   propagati né negli altri né nel \textit{mount point} originale.
1025
1026 \item[\constd{MS\_STRICTATIME}] Ripristina il comportamento tradizionale per
1027   cui l'\textit{access time} viene aggiornato ad ogni accesso al
1028   file. L'opzione è disponibile solo a partire dal kernel 2.6.30 quando il
1029   comportamento di default del kernel è diventato quello fornito da
1030   \const{MS\_RELATIME}.
1031
1032 \item[\constd{MS\_SYNCHRONOUS}] Abilita la scrittura sincrona richiedendo che
1033   ogni modifica al contenuto del filesystem venga immediatamente registrata su
1034   disco. Lo stesso comportamento può essere ottenuto con il flag
1035   \const{O\_SYNC} di \func{open} (vedi sez.~\ref{sec:file_open_close}).
1036
1037   Questa opzione consente di ridurre al minimo il rischio di perdita dei dati
1038   in caso di crollo improvviso del sistema, al costo di una pesante perdita di
1039   prestazioni dato che tutte le funzioni di scrittura non saranno più
1040   bufferizzate e si bloccheranno fino all'arrivo dei dati sul disco. Per un
1041   compromesso in cui questo comportamento avviene solo per le directory, ed ha
1042   quindi una incidenza nettamente minore, si può usare \const{MS\_DIRSYNC}.
1043
1044 \item[\constd{MS\_UNBINDABLE}] Marca un \textit{mount point} come
1045   \textit{unbindable mount}. Si tratta di una delle nuove opzioni (insieme a
1046   \const{MS\_PRIVATE}, \const{MS\_SHARED} e \const{MS\_SLAVE}) facenti parte
1047   dell'infrastruttura degli \textit{shared subtree} introdotta a partire dal
1048   kernel 2.6.15, che estendono le funzionalità dei \textit{bind mount}.  In
1049   questo caso \param{target} dovrà fare riferimento al \textit{mount point}
1050   che si intende marcare, e tutti gli altri argomenti verranno ignorati.
1051
1052   Un \textit{mount point} marcato in questo modo disabilita la capacità di
1053   eseguire dei \textit{bind mount} del suo contenuto. Si comporta cioè come
1054   allo stesso modo di un \textit{mount point} ordinario di tipo
1055   \textit{private} con in più la restrizione che nessuna sua sottodirectory
1056   (anche se relativa ad un ulteriore montaggio) possa essere utilizzata per un
1057   come sorgente di un \textit{bind mount}.
1058
1059 \end{basedescript}
1060
1061 % NOTE per \const{MS\_SLAVE},\const{MS\_SHARE}, \const{MS\_PRIVATE} e
1062 % \const{MS\_UNBINDABLE} dal 2.6.15 vedi shared subtrees, in particolare
1063 %  * http://lwn.net/Articles/159077/ e
1064 %  * Documentation/filesystems/sharedsubtree.txt
1065
1066 % TODO: (bassa priorità) non documentati ma presenti in sys/mount.h:
1067 %       * MS_POSIXACL
1068 %       * MS_KERNMOUNT
1069 %       * MS_I_VERSION
1070 %       * MS_ACTIVE
1071 %       * MS_NOUSER
1072
1073
1074 Una volta che non si voglia più utilizzare un certo filesystem è possibile
1075 ``\textsl{smontarlo}'' usando la funzione di sistema \funcd{umount}, il cui
1076 prototipo è:
1077
1078 \begin{funcproto}{
1079 \fhead{sys/mount.h}
1080 \fdecl{umount(const char *target)}
1081 \fdesc{Smonta un filesystem.} 
1082 }
1083 {La funzione ritorna  $0$ in caso di successo e $-1$ per un errore,
1084   nel qual caso \var{errno} assumerà uno dei valori: 
1085   \begin{errlist}
1086   \item[\errcode{EBUSY}] il filesystem è occupato.
1087   \item[\errcode{EINVAL}] \param{target} non è un \textit{mount point}.
1088   \item[\errcode{EPERM}] il processo non ha i privilegi di
1089     amministratore.\footnotemark 
1090   \end{errlist}
1091   ed inoltre \errval{EFAULT}, \errval{ELOOP}, \errval{ENAMETOOLONG},
1092   \errval{ENOENT}, \errval{ENOMEM} nel loro significato generico.  }
1093 \end{funcproto}
1094
1095 \footnotetext{più precisamente la capacità \const{CAP\_SYS\_ADMIN}, vedi
1096   sez.~\ref{sec:proc_capabilities}.}
1097
1098 La funzione prende il nome della directory su cui il filesystem è montato e
1099 non il file o il dispositivo che è stato montato,\footnote{questo è vero a
1100   partire dal kernel 2.3.99-pre7, prima esistevano due chiamate separate e la
1101   funzione poteva essere usata anche specificando il file di dispositivo.} in
1102 quanto a partire dai kernel della serie 2.4.x è possibile montare lo stesso
1103 dispositivo in più punti. Nel caso più di un filesystem sia stato montato
1104 sullo stesso \textit{mount point} viene smontato quello che è stato montato
1105 per ultimo. Si tenga presente che la funzione fallisce se il filesystem è
1106 ``\textsl{occupato}'', cioè quando ci sono ancora dei file aperti sul
1107 filesystem, se questo contiene la directory di lavoro (vedi
1108 sez.~\ref{sec:file_work_dir}) di un qualunque processo o il \textit{mount
1109   point} di un altro filesystem.
1110
1111 Linux provvede inoltre una seconda funzione di sistema, \funcd{umount2}, che
1112 consente un maggior controllo delle operazioni, come forzare lo smontaggio di
1113 un filesystem anche quando questo risulti occupato; il suo prototipo è:
1114
1115 \begin{funcproto}{
1116 \fhead{sys/mount.h}
1117 \fdecl{umount2(const char *target, int flags)}
1118 \fdesc{Smonta un filesystem.} 
1119 }
1120 {La funzione ritorna  $0$ in caso di successo e $-1$ per un errore,
1121   nel qual caso \var{errno} assumerà uno dei valori: 
1122   \begin{errlist}
1123      \item[\errcode{EAGAIN}] si è chiamata la funzione con \const{MNT\_EXPIRE}
1124        ed il filesystem non era occupato.
1125      \item[\errcode{EBUSY}] \param{target} è la directory di lavoro di qualche
1126        processo, o contiene dei file aperti, o un altro \textit{mount point}.
1127      \item[\errcode{EINVAL}] \param{target} non è un \textit{mount point} o si
1128        è usato \const{MNT\_EXPIRE} con \const{MNT\_FORCE} o
1129        \const{MNT\_DETACH} o si è specificato un flag non esistente.
1130   \end{errlist}
1131   e tutti gli altri valori visti per \func{umount} con lo stesso significato.}
1132 \end{funcproto}
1133
1134 Il valore di \param{flags} è una maschera binaria dei flag che controllano le
1135 modalità di smontaggio, che deve essere specificato con un OR aritmetico delle
1136 costanti illustrate in tab.~\ref{tab:umount2_flags}.  Specificando
1137 \constd{MNT\_FORCE} la funzione cercherà di liberare il filesystem anche se è
1138 occupato per via di una delle condizioni descritte in precedenza. A seconda
1139 del tipo di filesystem alcune (o tutte) possono essere superate, evitando
1140 l'errore di \errcode{EBUSY}. In tutti i casi prima dello smontaggio viene
1141 eseguita una sincronizzazione dei dati.
1142
1143 \begin{table}[!htb]
1144   \centering
1145   \footnotesize
1146   \begin{tabular}[c]{|l|p{8cm}|}
1147     \hline
1148     \textbf{Costante} & \textbf{Descrizione}\\
1149     \hline
1150     \hline
1151     \const{MNT\_FORCE}  & Forza lo smontaggio del filesystem anche se questo è
1152                            occupato (presente dai kernel della serie 2.2).\\
1153     \const{MNT\_DETACH} & Esegue uno smontaggio ``\textsl{pigro}'', in cui si
1154                            blocca l'accesso ma si aspetta che il filesystem si
1155                            liberi (presente dal kernel 2.4.11 e dalla
1156                            \acr{glibc} 2.11).\\ 
1157     \const{MNT\_EXPIRE} & Se non occupato marca un \textit{mount point} come
1158                            ``\textsl{in scadenza}'' in modo che ad una
1159                            successiva chiamata senza utilizzo del filesystem
1160                            questo venga smontato (presente dal 
1161                            kernel 2.6.8 e dalla \acr{glibc} 2.11).\\ 
1162     \const{UMOUNT\_NOFOLLOW}& Non dereferenzia \param{target} se questo è un
1163                                collegamento simbolico (vedi
1164                                sez.~\ref{sec:link_symlink_rename}) evitando
1165                                problemi di sicurezza (presente dal kernel
1166                                2.6.34).\\  
1167     \hline
1168   \end{tabular}
1169   \caption{Costanti che identificano i bit dell'argomento \param{flags}
1170     della funzione \func{umount2}.} 
1171   \label{tab:umount2_flags}
1172 \end{table}
1173
1174 Con l'opzione \constd{MNT\_DETACH} si richiede invece uno smontaggio
1175 ``\textsl{pigro}'' (o \textit{lazy umount}) in cui il filesystem diventa
1176 inaccessibile per i nuovi processi subito dopo la chiamata della funzione, ma
1177 resta accessibile per quelli che lo hanno ancora in uso e non viene smontato
1178 fintanto che resta occupato.
1179
1180 Con \constd{MNT\_EXPIRE}, che non può essere specificato insieme agli altri
1181 due, si marca il \textit{mount point} di un filesystem non occupato come
1182 ``\textsl{in scadenza}'', in tal caso \func{umount2} ritorna con un errore di
1183 \errcode{EAGAIN}, mentre in caso di filesystem occupato si sarebbe ricevuto
1184 \errcode{EBUSY}.  Una volta marcato, se nel frattempo non viene fatto nessun
1185 uso del filesystem, ad una successiva chiamata con \const{MNT\_EXPIRE} questo
1186 verrà smontato. Questo flag consente di realizzare un meccanismo che smonti
1187 automaticamente i filesystem che restano inutilizzati per un certo periodo di
1188 tempo.
1189
1190 Infine il flag \constd{UMOUNT\_NOFOLLOW} non dereferenzia \param{target} se
1191 questo è un collegamento simbolico (vedi
1192 sez.~\ref{sec:link_symlink_rename}). Questa è una misura di sicurezza
1193 introdotta per evitare, per quei filesystem per il quale è prevista una
1194 gestione diretta da parte degli utenti, come quelli basati su
1195 FUSE,\footnote{il \textit{Filesystem in USEr space} (FUSE) è una delle più
1196   interessanti applicazioni del VFS che consente, tramite un opportuno modulo,
1197   di implementarne le funzioni in \textit{user space}, così da rendere
1198   possibile l'implementazione di un qualunque filesystem (con applicazioni di
1199   grande interesse come il filesystem cifrato \textit{encfs} o il filesystem
1200   di rete \textit{sshfs}) che possa essere usato direttamente per conto degli
1201   utenti.}  che si possano passare ai programmi che effettuano lo smontaggio
1202 dei filesystem, che in genere sono privilegiati ma consentono di agire solo
1203 sui propri \textit{mount point}, dei collegamenti simbolici che puntano ad
1204 altri \textit{mount point}, ottenendo così la possibilità di smontare
1205 qualunque filesystem.
1206
1207
1208 Altre due funzioni di sistema specifiche di Linux,\footnote{esse si trovano
1209   anche su BSD, ma con una struttura diversa.} utili per ottenere in maniera
1210 diretta informazioni riguardo al filesystem su cui si trova un certo file,
1211 sono \funcd{statfs} e \funcd{fstatfs}, i cui prototipi sono:
1212
1213 \begin{funcproto}{
1214 \fhead{sys/vfs.h}
1215 \fdecl{int statfs(const char *path, struct statfs *buf)}
1216 \fdecl{int fstatfs(int fd, struct statfs *buf)}
1217 \fdesc{Restituiscono informazioni relative ad un filesystem.} 
1218 }
1219 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore,
1220   nel qual caso \var{errno} assumerà uno dei valori: 
1221   \begin{errlist}
1222   \item[\errcode{ENOSYS}] il filesystem su cui si trova il file specificato
1223     non supporta la funzione.
1224   \end{errlist} ed inoltre \errval{EFAULT} ed \errval{EIO} per entrambe,
1225   \errval{EBADF} per \func{fstatfs}, \errval{ENOTDIR}, \errval{ENAMETOOLONG},
1226   \errval{ENOENT}, \errval{EACCES}, \errval{ELOOP} per \func{statfs} nel loro
1227   significato generico.}
1228 \end{funcproto}
1229
1230 Queste funzioni permettono di ottenere una serie di informazioni generali
1231 riguardo al filesystem su cui si trova il file specificato con un
1232 \textit{pathname} per \func{statfs} e con un file descriptor (vedi
1233 sez.~\ref{sec:file_fd}) per \func{statfs}.  Le informazioni vengono restituite
1234 all'indirizzo \param{buf} di una struttura \struct{statfs} definita come in
1235 fig.~\ref{fig:sys_statfs}, ed i campi che sono indefiniti per il filesystem in
1236 esame sono impostati a zero.  I valori del campo \var{f\_type} sono definiti
1237 per i vari filesystem nei relativi file di header dei sorgenti del kernel da
1238 costanti del tipo \var{XXX\_SUPER\_MAGIC}, dove \var{XXX} in genere è il nome
1239 del filesystem stesso.
1240
1241 \begin{figure}[!htb]
1242   \footnotesize \centering
1243   \begin{minipage}[c]{0.8\textwidth}
1244     \includestruct{listati/statfs.h}
1245   \end{minipage}
1246   \normalsize 
1247   \caption{La struttura \structd{statfs}.} 
1248   \label{fig:sys_statfs}
1249 \end{figure}
1250
1251 \conffilebeg{/etc/mtab}
1252 La \acr{glibc} provvede infine una serie di funzioni per la gestione dei due
1253 file \conffiled{/etc/fstab}\footnote{più precisamente \funcm{setfsent},
1254   \funcm{getfsent}, \funcm{getfsfile}, \funcm{getfsspec}, \funcm{endfsent}.}
1255 ed \conffile{/etc/mtab}\footnote{più precisamente \funcm{setmntent},
1256   \funcm{getmntent},\funcm{getmntent\_r}, \funcm{addmntent},\funcm{endmntent},
1257   \funcm{hasmntopt}.} che convenzionalmente sono usati in quasi tutti i
1258 sistemi unix-like per mantenere rispettivamente le informazioni riguardo ai
1259 filesystem da montare e a quelli correntemente montati. Le funzioni servono a
1260 leggere il contenuto di questi file in opportune strutture \struct{fstab} e
1261 \struct{mntent}, e, nel caso di \conffile{/etc/mtab}, per inserire e rimuovere
1262 le voci presenti nel file.
1263
1264 In generale si dovrebbero usare queste funzioni, in particolare quelle
1265 relative a \conffile{/etc/mtab}, quando si debba scrivere un programma che
1266 effettua il montaggio di un filesystem. In realtà in questi casi è molto più
1267 semplice invocare direttamente il programma \cmd{mount}. Inoltre l'uso stesso
1268 di \conffile{/etc/mtab} è considerato una pratica obsoleta, in quanto se non
1269 aggiornato correttamente (cosa che è impossibile se la radice è montata in
1270 sola lettura) il suo contenuto diventa fuorviante.
1271
1272 Per questo motivo il suo utilizzo viene deprecato ed in molti casi viene già
1273 oggi sostituito da un collegamento simbolico a \procfile{/proc/mounts}, che
1274 contiene una versione degli stessi contenuti (vale a dire l'elenco dei
1275 filesystem montati) generata direttamente dal kernel, e quindi sempre
1276 disponibile e sempre aggiornata. Per questo motivo tralasceremo la
1277 trattazione, di queste funzioni, rimandando al manuale della \acr{glibc}
1278 \cite{GlibcMan} per la documentazione completa.
1279 \conffileend{/etc/mtab}
1280
1281 % TODO (bassa priorità) scrivere delle funzioni (getfsent e getmntent &C)
1282 % TODO (bassa priorità) documentare ? swapon e swapoff (man 2 ...) 
1283
1284
1285
1286 \section{La gestione di file e directory}
1287 \label{sec:file_dir}
1288
1289 In questa sezione esamineremo le funzioni usate per la manipolazione dei nomi
1290 file e directory, per la creazione di collegamenti simbolici e diretti, per la
1291 gestione e la lettura delle directory.  In particolare ci soffermeremo sulle
1292 conseguenze che derivano dalla architettura di un filesystem unix-like
1293 illustrata in sez.~\ref{sec:file_filesystem} per quanto attiene il
1294 comportamento e gli effetti delle varie funzioni. Tratteremo infine la
1295 directory di lavoro e le funzioni per la gestione di file speciali e
1296 temporanei.
1297
1298
1299 \subsection{La gestione dei nomi dei file}
1300 \label{sec:link_symlink_rename}
1301
1302 % \subsection{Le funzioni \func{link} e \func{unlink}}
1303 % \label{sec:file_link}
1304
1305 Una caratteristica comune a diversi sistemi operativi è quella di poter creare
1306 dei nomi alternativi, come gli alias del vecchio MacOS o i collegamenti di
1307 Windows o i nomi logici del VMS, che permettono di fare riferimento allo
1308 stesso file chiamandolo con nomi diversi o accedendovi da directory diverse.
1309 Questo è possibile anche in ambiente Unix, dove un nome alternativo viene
1310 usualmente chiamato ``\textsl{collegamento}'' (o \textit{link}).  Data
1311 l'architettura del sistema riguardo la gestione dei file vedremo però che ci
1312 sono due metodi sostanzialmente diversi per fare questa operazione.
1313
1314 \itindbeg{hard~link}
1315 \index{collegamento!diretto|(}
1316
1317 In sez.~\ref{sec:file_filesystem} abbiamo spiegato come la capacità di
1318 chiamare un file con nomi diversi sia connaturata con l'architettura di un
1319 filesystem per un sistema Unix, in quanto il nome del file che si trova in una
1320 directory è solo un'etichetta associata ad un puntatore che permette di
1321 ottenere il riferimento ad un \textit{inode}, e che è quest'ultimo che viene
1322 usato dal kernel per identificare univocamente gli oggetti sul filesystem.
1323
1324 Questo significa che fintanto che si resta sullo stesso filesystem la
1325 realizzazione di un \textit{link} è immediata: uno stesso file può avere tanti
1326 nomi diversi, dati da altrettante associazioni diverse allo stesso
1327 \textit{inode} effettuate tramite ``etichette'' diverse in directory
1328 diverse. Si noti anche come nessuno di questi nomi possa assumere una
1329 particolare preferenza o originalità rispetto agli altri, in quanto tutti
1330 fanno comunque riferimento allo stesso \textit{inode} e quindi tutti
1331 otterranno lo stesso file.
1332
1333 Quando si vuole aggiungere ad una directory una voce che faccia riferimento ad
1334 un file già esistente nella modalità appena descritta, per ottenere quello che
1335 viene denominato ``\textsl{collegamento diretto}'' (o \textit{hard link}), si
1336 deve usare la funzione di sistema \funcd{link}, il cui prototipo è:
1337
1338 \begin{funcproto}{
1339 \fhead{unistd.h}
1340 \fdecl{int link(const char *oldpath, const char *newpath)}
1341 \fdesc{Crea un nuovo collegamento diretto (\textit{hard link}).} 
1342 }
1343 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore,
1344   nel qual caso \var{errno} assumerà uno dei valori: 
1345   \begin{errlist}
1346   \item[\errcode{EEXIST}] un file (o una directory) di nome \param{newpath}
1347     esiste già.
1348   \item[\errcode{EMLINK}] ci sono troppi collegamenti al file \param{oldpath}
1349     (il numero massimo è specificato dalla variabile \const{LINK\_MAX}, vedi
1350     sez.~\ref{sec:sys_limits}).
1351   \item[\errcode{EPERM}] il filesystem che contiene \param{oldpath} e
1352     \param{newpath} non supporta i collegamenti diretti o è una directory.
1353   \item[\errcode{EXDEV}] i file \param{oldpath} e \param{newpath} non fanno
1354     riferimento ad un filesystem montato sullo stesso 
1355     \textit{mount point}.
1356   \end{errlist} ed inoltre \errval{EACCES}, \errval{EFAULT}, \errval{EIO},
1357   \errval{ELOOP}, \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOMEM},
1358   \errval{ENOSPC}, \errval{ENOTDIR}, \errval{EROFS} nel loro significato
1359   generico.}
1360 \end{funcproto}
1361
1362 La funzione crea in \param{newpath} un collegamento diretto al file indicato
1363 da \param{oldpath}. Per quanto detto la creazione di un nuovo collegamento
1364 diretto non copia il contenuto del file, ma si limita a creare la voce
1365 specificata da \param{newpath} nella directory corrispondente e l'unica
1366 proprietà del file che verrà modificata sarà il numero di riferimenti al file
1367 (il campo \var{i\_nlink} della struttura \kstruct{inode}, vedi
1368 fig.~\ref{fig:kstruct_inode}) che verrà aumentato di di uno. In questo modo lo
1369 stesso file potrà essere acceduto sia con \param{newpath} che
1370 con \param{oldpath}.
1371
1372 Per quanto dicevamo in sez.~\ref{sec:file_filesystem} la creazione di un
1373 collegamento diretto è possibile solo se entrambi i \textit{pathname} sono
1374 nello stesso filesystem ed inoltre esso deve supportare gli \textit{hard link}
1375 (il meccanismo non è disponibile ad esempio con il filesystem \acr{vfat} di
1376 Windows). In realtà la funzione ha un ulteriore requisito, e cioè che non solo
1377 che i due file siano sullo stesso filesystem, ma anche che si faccia
1378 riferimento ad essi all'interno dello stesso \textit{mount point}.\footnote{si
1379   tenga presente infatti, come detto in sez.~\ref{sec:filesystem_mounting},
1380   che a partire dal kernel 2.4 uno stesso filesystem può essere montato più
1381   volte su directory diverse.}
1382
1383 La funzione inoltre opera sia sui file ordinari che sugli altri oggetti del
1384 filesystem, con l'eccezione delle directory. In alcune versioni di Unix solo
1385 l'amministratore è in grado di creare un collegamento diretto ad un'altra
1386 directory: questo viene fatto perché con una tale operazione è possibile
1387 creare dei \textit{loop} nel filesystem (vedi fig.~\ref{fig:file_link_loop})
1388 che molti programmi non sono in grado di gestire e la cui rimozione
1389 diventerebbe piuttosto complicata.\footnote{in genere per questo tipo di
1390   errori occorre eseguire il programma \cmd{fsck} per riparare il filesystem,
1391   in quanto in caso di \textit{loop} la directory creata non sarebbe vuota e
1392   non si potrebbe più rimuoverla.}
1393
1394 Data la pericolosità di questa operazione e la disponibilità dei collegamenti
1395 simbolici (che vedremo a breve) e dei \textit{bind mount}
1396 (già visti in sez.~\ref{sec:filesystem_mounting}) che possono fornire la
1397 stessa funzionalità senza questi problemi, nel caso di Linux questa capacità è
1398 stata completamente disabilitata, e al tentativo di creare un collegamento
1399 diretto ad una directory la funzione \func{link} restituisce sempre l'errore
1400 \errcode{EPERM}.
1401
1402 Un ulteriore comportamento peculiare di Linux è quello in cui si crea un
1403 \textit{hard link} ad un collegamento simbolico. In questo caso lo standard
1404 POSIX.1-2001 prevederebbe che quest'ultimo venga risolto e che il collegamento
1405 sia effettuato rispetto al file cui esso punta, e che venga riportato un
1406 errore qualora questo non esista o non sia un file. Questo era anche il
1407 comportamento iniziale di Linux ma a partire dai kernel della serie
1408 2.0.x\footnote{per la precisione il comportamento era quello previsto dallo
1409   standard POSIX fino al kernel di sviluppo 1.3.56, ed è stato temporaneamente
1410   ripristinato anche durante lo sviluppo della serie 2.1.x, per poi tornare al
1411   comportamento attuale fino ad oggi (per riferimento si veda
1412   \url{http://lwn.net/Articles/293902}).} è stato adottato un comportamento
1413 che non segue più lo standard per cui l'\textit{hard link} viene creato nei
1414 confronti del collegamento simbolico, e non del file cui questo punta. La
1415 revisione POSIX.1-2008 lascia invece il comportamento dipendente
1416 dall'implementazione, cosa che rende Linux conforme a questa versione
1417 successiva dello standard.
1418
1419 \itindbeg{symbolic~link}
1420 \index{collegamento!simbolico|(}
1421
1422 La ragione di questa differenza rispetto al vecchio standard, presente anche
1423 in altri sistemi unix-like, è dovuta al fatto che un collegamento simbolico
1424 può fare riferimento anche ad un file non esistente o a una directory, per i
1425 quali l'\textit{hard link} non può essere creato, per cui la scelta di seguire
1426 il collegamento simbolico è stata ritenuta una scelta scorretta nella
1427 progettazione dell'interfaccia.  Infatti se non ci fosse il comportamento
1428 adottato da Linux sarebbe impossibile creare un \textit{hard link} ad un
1429 collegamento simbolico, perché la funzione lo risolverebbe e l'\textit{hard
1430   link} verrebbe creato verso la destinazione. Invece evitando di seguire lo
1431 standard l'operazione diventa possibile, ed anche il comportamento della
1432 funzione risulta molto più comprensibile. Tanto più che se proprio se si vuole
1433 creare un \textit{hard link} rispetto alla destinazione di un collegamento
1434 simbolico è sempre possibile farlo direttamente.\footnote{ciò non toglie che
1435   questo comportamento possa causare problemi, come nell'esempio descritto
1436   nell'articolo citato nella nota precedente, a programmi che non si aspettano
1437   questa differenza rispetto allo standard POSIX.}
1438
1439 Dato che \func{link} crea semplicemente dei nomi che fanno riferimenti agli
1440 \textit{inode}, essa può funzionare soltanto per file che risiedono sullo
1441 stesso filesystem e solo per un filesystem di tipo Unix.  Inoltre abbiamo
1442 visto che in Linux non è consentito eseguire un collegamento diretto ad una
1443 directory.
1444
1445 Per ovviare a queste limitazioni, come accennato all'inizio, i sistemi
1446 unix-like supportano un'altra forma di collegamento, detta
1447 ``\textsl{collegamento simbolico}'' (o anche \textit{soft link} o
1448 \textit{symbolic link}). In questo caso si tratta, come avviene in altri
1449 sistemi operativi, di file speciali che contengono semplicemente il
1450 riferimento ad un altro file (o directory). In questo modo è possibile
1451 effettuare \textit{link} anche attraverso filesystem diversi, a file posti in
1452 filesystem che non supportano i collegamenti diretti, a delle directory, ed
1453 anche a file che non esistono ancora.
1454
1455 \itindend{hard~link}
1456 \index{collegamento!diretto|)}
1457
1458 Il meccanismo funziona in quanto i \textit{symbolic link} sono riconosciuti
1459 come tali dal kernel\footnote{è uno dei diversi tipi di file visti in
1460   tab.~\ref{tab:file_file_types}, contrassegnato come tale nell'\textit{inode}
1461   e riconoscibile dal valore del campo \var{st\_mode} della struttura
1462   \struct{stat} (vedi sez.~\ref{sec:file_stat}).} e tutta una serie di
1463 funzioni di sistema (come \func{open} o \func{stat}) quando ricevono come
1464 argomento il \textit{pathname} di un collegamento simbolico vanno
1465 automaticamente ad operare sul file da esso specificato. La funzione di
1466 sistema che permette di creare un nuovo collegamento simbolico è
1467 \funcd{symlink}, ed il suo prototipo è:
1468
1469 \begin{funcproto}{
1470 \fhead{unistd.h}
1471 \fdecl{int symlink(const char *oldpath, const char *newpath)}
1472 \fdesc{Crea un nuovo collegamento simbolico (\textit{symbolic link}).} 
1473 }
1474 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore,
1475   nel qual caso \var{errno} assumerà uno dei valori: 
1476   \begin{errlist}
1477   \item[\errcode{EEXIST}] esiste già un file \param{newpath}.
1478   \item[\errcode{ENOENT}] una componente di \param{newpath} non esiste o
1479     \param{oldpath} è una stringa vuota.
1480   \item[\errcode{EPERM}] il filesystem che contiene \param{newpath} non
1481     supporta i collegamenti simbolici.
1482   \item[\errcode{EROFS}] \param{newpath} è su un filesystem montato in sola
1483     lettura.
1484   \end{errlist} ed inoltre \errval{EACCES}, \errval{EFAULT}, \errval{EIO},
1485   \errval{ELOOP}, \errval{ENAMETOOLONG}, \errval{ENOMEM}, \errval{ENOSPC} e
1486   \errval{ENOTDIR} nel loro significato generico.}
1487 \end{funcproto}
1488
1489 La funzione crea un nuovo collegamento simbolico \param{newpath} che fa
1490 riferimento ad \param{oldpath}.  Si tenga presente che la funzione non
1491 effettua nessun controllo sull'esistenza di un file di nome \param{oldpath},
1492 ma si limita ad inserire il \textit{pathname} nel collegamento
1493 simbolico. Pertanto un collegamento simbolico può anche riferirsi ad un file
1494 che non esiste ed in questo caso si ha quello che viene chiamato un
1495 \itindex{dangling~link} \textit{dangling link}, letteralmente un
1496 \index{collegamento!ciondolante} ``\textsl{collegamento ciondolante}''.
1497
1498 Come accennato i collegamenti simbolici sono risolti automaticamente dal
1499 kernel all'invocazione delle varie \textit{system call}. In
1500 tab.~\ref{tab:file_symb_effect} si è riportato un elenco dei comportamenti
1501 delle varie funzioni di sistema che operano sui file nei confronti della
1502 risoluzione dei collegamenti simbolici, specificando quali li seguono e quali
1503 invece possono operare direttamente sui loro contenuti.
1504 \begin{table}[htb]
1505   \centering
1506   \footnotesize
1507   \begin{tabular}[c]{|l|c|c|}
1508     \hline
1509     \textbf{Funzione} & \textbf{Segue il link} & \textbf{Non segue il link} \\
1510     \hline 
1511     \hline 
1512     \func{access}   & $\bullet$ & --        \\
1513     \func{chdir}    & $\bullet$ & --        \\
1514     \func{chmod}    & $\bullet$ & --        \\
1515     \func{chown}    & --        & $\bullet$ \\
1516     \func{creat}    & $\bullet$ & --        \\
1517     \func{exec}     & $\bullet$ & --        \\
1518     \func{lchown}   & $\bullet$ & --        \\
1519     \func{link}\footnotemark & --        & $\bullet$ \\
1520     \func{lstat}    & --        & $\bullet$ \\
1521     \func{mkdir}    & $\bullet$ & --        \\
1522     \func{mkfifo}   & $\bullet$ & --        \\
1523     \func{mknod}    & $\bullet$ & --        \\
1524     \func{open}     & $\bullet$ & --        \\
1525     \func{opendir}  & $\bullet$ & --        \\
1526     \func{pathconf} & $\bullet$ & --        \\
1527     \func{readlink} & --        & $\bullet$ \\
1528     \func{remove}   & --        & $\bullet$ \\
1529     \func{rename}   & --        & $\bullet$ \\
1530     \func{stat}     & $\bullet$ & --        \\
1531     \func{truncate} & $\bullet$ & --        \\
1532     \func{unlink}   & --        & $\bullet$ \\
1533     \hline 
1534   \end{tabular}
1535   \caption{Uso dei collegamenti simbolici da parte di alcune funzioni.}
1536   \label{tab:file_symb_effect}
1537 \end{table}
1538
1539 \footnotetext{a partire dalla serie 2.0, e contrariamente a quanto indicato
1540   dallo standard POSIX.1-2001.}
1541
1542 Si noti che non si è specificato il comportamento delle funzioni che operano
1543 con i file descriptor (che tratteremo nel prossimo capitolo), in quanto la
1544 risoluzione del collegamento simbolico viene in genere effettuata dalla
1545 funzione che restituisce il file descriptor (normalmente la \func{open}, vedi
1546 sez.~\ref{sec:file_open_close}) e tutte le operazioni seguenti fanno
1547 riferimento solo a quest'ultimo.
1548
1549 Dato che, come indicato in tab.~\ref{tab:file_symb_effect}, funzioni come la
1550 \func{open} seguono i collegamenti simbolici, occorrono funzioni apposite per
1551 accedere alle informazioni del collegamento invece che a quelle del file a cui
1552 esso fa riferimento. Quando si vuole leggere il contenuto di un collegamento
1553 simbolico si usa la funzione di sistema \funcd{readlink}, il cui prototipo è:
1554
1555 \begin{funcproto}{
1556 \fhead{unistd.h}
1557 \fdecl{int readlink(const char *path, char *buff, size\_t size)}
1558 \fdesc{Legge il contenuto di un collegamento simbolico.} 
1559 }
1560 {La funzione ritorna il numero di caratteri letti dentro \param{buff} in caso
1561   di successo e $-1$ per un errore,  nel qual caso \var{errno} assumerà uno
1562   dei valori:
1563   \begin{errlist}
1564   \item[\errcode{EINVAL}] \param{path} non è un collegamento simbolico
1565     o \param{size} non è positiva.
1566   \end{errlist} ed inoltre \errval{EACCES}, \errval{EFAULT}, \errval{EIO},
1567   \errval{ELOOP}, \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOMEM} e
1568   \errval{ENOTDIR} nel loro significato generico.}
1569 \end{funcproto}
1570
1571 La funzione legge il \textit{pathname} a cui fa riferimento il collegamento
1572 simbolico indicato dall'argomento \param{path} scrivendolo sul
1573 buffer \param{buff} di dimensione \param{size}. Si tenga presente che la
1574 funzione non termina la stringa con un carattere nullo e che se questa è
1575 troppo lunga la tronca alla dimensione specificata da \param{size} per evitare
1576 di sovrascrivere oltre le dimensioni del buffer.
1577
1578 \begin{figure}[htb]
1579   \centering
1580   \includegraphics[width=8.5cm]{img/link_loop}
1581   \caption{Esempio di loop nel filesystem creato con un collegamento
1582     simbolico.}
1583   \label{fig:file_link_loop}
1584 \end{figure}
1585
1586 Come accennato uno dei motivi per cui non sono consentiti \textit{hard link}
1587 alle directory è che questi possono creare dei \textit{loop} nella risoluzione
1588 dei nomi che non possono essere eliminati facilmente. Invece è sempre
1589 possibile, ed in genere anche molto utile, creare un collegamento simbolico ad
1590 una directory, anche se in questo caso si potranno ottenere anche dei
1591 \textit{loop}. La situazione è illustrata in fig.~\ref{fig:file_link_loop},
1592 che riporta la struttura della directory \file{/boot}. Come si vede si è
1593 creato al suo interno un collegamento simbolico che punta di nuovo a
1594 \file{/boot}.\footnote{il \textit{loop} mostrato in
1595   fig.~\ref{fig:file_link_loop} è stato usato per poter permettere a
1596   \cmd{grub} (un bootloader in grado di leggere direttamente da vari
1597   filesystem il file da lanciare come sistema operativo) di vedere i file
1598   contenuti nella directory \file{/boot} con lo stesso \textit{pathname} con
1599   cui verrebbero visti dal sistema operativo, anche se essi si trovano, come
1600   accade spesso, su una partizione separata (che \cmd{grub} all'avvio vedrebbe 
1601   come \file{/}).}
1602
1603 Questo però può causare problemi per tutti quei programmi che effettuano la
1604 scansione di una directory senza tener conto dei collegamenti simbolici, ad
1605 esempio se lanciassimo un comando del tipo \code{grep -r linux *}, il loop
1606 nella directory porterebbe il comando ad esaminare \file{/boot},
1607 \file{/boot/boot}, \file{/boot/boot/boot} e così via.
1608
1609 Per questo motivo il kernel e le librerie prevedono che nella risoluzione di
1610 un \textit{pathname} possano essere seguiti fino ad un certo numero massimo di
1611 collegamenti simbolici, il cui valore limite è specificato dalla costante
1612 \constd{MAXSYMLINKS}. Qualora questo limite venga superato viene generato un
1613 errore ed \var{errno} viene impostata al valore \errcode{ELOOP}, che nella
1614 quasi totalità dei casi indica appunto che si è creato un collegamento
1615 simbolico che fa riferimento ad una directory del suo stesso
1616 \textit{pathname}.
1617
1618 Un altro punto da tenere sempre presente è che, come abbiamo accennato, un
1619 collegamento simbolico può fare riferimento anche ad un file che non esiste;
1620 ad esempio possiamo usare il comando \cmd{ln} per creare un collegamento
1621 simbolico nella nostra directory con:
1622 \begin{Console}
1623 piccardi@hain:~/gapil$ \textbf{ln -s /tmp/tmp_file symlink}
1624 \end{Console}
1625 %$
1626 e questo avrà successo anche se \file{/tmp/tmp\_file} non esiste:
1627 \begin{Console}
1628 piccardi@hain:~/gapil$ \textbf{ls symlink}
1629 symlink
1630 \end{Console}
1631 %$
1632 ma questo può generare confusione, perché accedendo in sola lettura a
1633 \file{symlink}, ad esempio con \cmd{cat}, otterremmo un errore:
1634 \begin{Console}
1635 piccardi@hain:~/gapil$ \textbf{cat symlink}
1636 cat: symlink: No such file or directory
1637 \end{Console}
1638 %$
1639 con un errore che può sembrare sbagliato, dato che \cmd{ls} ci ha mostrato
1640 l'esistenza di \file{symlink}, se invece scrivessimo su \file{symlink}
1641 otterremmo la creazione di \file{/tmp/tmp\_file} senza errori.
1642
1643
1644 \itindend{symbolic~link}
1645 \index{collegamento!simbolico|)}
1646
1647 Un'altra funzione relativa alla gestione dei nomi dei file, anche se a prima
1648 vista parrebbe riguardare un argomento completamente diverso, è quella che per
1649 la cancellazione di un file. In realtà una \textit{system call} che serva
1650 proprio a cancellare un file non esiste neanche perché, come accennato in
1651 sez.~\ref{sec:file_filesystem}, quando in un sistema unix-like si richiede la
1652 rimozione di un file quella che si va a cancellare è soltanto la voce che
1653 referenzia il suo \textit{inode} all'interno di una directory.
1654
1655 La funzione di sistema che consente di effettuare questa operazione, il cui
1656 nome come si può notare ha poco a che fare con il concetto di rimozione, è
1657 \funcd{unlink}, ed il suo prototipo è:
1658
1659 \begin{funcproto}{
1660 \fhead{unistd.h}
1661 \fdecl{int unlink(const char *pathname)}
1662 \fdesc{Cancella un file.} 
1663 }
1664 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore,
1665   nel qual caso \var{errno} assumerà uno dei valori:\footnotemark  
1666   \begin{errlist}
1667   \item[\errcode{EACCES}] non si ha il permesso di scrittura sulla directory
1668     che contiene \param{pathname} o di attraversamento di una delle directory
1669     superiori. 
1670   \item[\errcode{EISDIR}] \param{pathname} si riferisce ad una
1671     directory.
1672   \item[\errcode{EPERM}] il filesystem non consente l'operazione, o la
1673     directory che contiene \param{pathname} ha lo \textit{sticky bit} e non si
1674     è il proprietario o non si hanno privilegi amministrativi. 
1675   \end{errlist} ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{ELOOP},
1676   \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOTDIR}, \errval{EROFS} nel loro
1677   significato generico.}
1678 \end{funcproto}
1679
1680 \footnotetext{questa funzione su Linux ha alcune peculiarità nei codici di
1681   errore, in particolare riguardo la rimozione delle directory che non è mai
1682   permessa e che causa l'errore \errcode{EISDIR}; questo è un valore specifico
1683   di Linux non conforme allo standard POSIX che prescrive invece l'uso di
1684   \errcode{EPERM} in caso l'operazione non sia consentita o il processo non
1685   abbia privilegi sufficienti, valore che invece Linux usa anche se il
1686   filesystem non supporta la funzione, inoltre il codice \errcode{EBUSY} nel
1687   caso la directory sia occupata su Linux non esiste.}
1688
1689 La funzione elimina il nome specificato dall'argomento \param{pathname} nella
1690 directory che lo contiene e decrementa il numero di riferimenti nel relativo
1691 \textit{inode}.\footnote{come per \func{link} queste due operazioni sono
1692   effettuate all'interno della \textit{system call} in maniera atomica.} Nel
1693 caso di socket, fifo o file di dispositivo rimuove il nome, ma come per i file
1694 normali i processi che hanno aperto uno di questi oggetti possono continuare
1695 ad utilizzarli.  Nel caso di cancellazione di un collegamento simbolico, che
1696 consiste solo nel rimando ad un altro file, questo viene immediatamente
1697 eliminato.
1698
1699 Per cancellare una voce in una directory è necessario avere il permesso di
1700 scrittura su di essa, dato che si va a rimuovere una voce dal suo contenuto, e
1701 il diritto di esecuzione/attraversamento sulla directory che la contiene
1702 (affronteremo in dettaglio l'argomento dei permessi di file e directory in
1703 sez.~\ref{sec:file_access_control}). Se inoltre lo \textit{sticky bit} (vedi
1704 sez.~\ref{sec:file_special_perm}) è impostato occorrerà anche essere
1705 proprietari del file o proprietari della directory o avere i privilegi di
1706 amministratore.
1707
1708 Si ricordi inoltre che anche se se ne è rimosso il nome da una directory, un
1709 file non viene eliminato dal disco fintanto che tutti i riferimenti ad esso
1710 sono stati cancellati: solo quando il numero di collegamenti mantenuto
1711 nell'\textit{inode} diventa nullo, questo viene disallocato e lo spazio
1712 occupato su disco viene liberato. Si tenga presente comunque che a questo si
1713 aggiunge sempre un'ulteriore condizione e cioè che non ci siano processi che
1714 abbiano il suddetto file aperto.\footnote{come vedremo in
1715   sez.~\ref{sec:file_unix_interface} il kernel mantiene anche una tabella dei
1716   file aperti nei vari processi, che a sua volta contiene i riferimenti agli
1717   \textit{inode} ad essi relativi; prima di procedere alla cancellazione dello
1718   spazio occupato su disco dal contenuto di un file il kernel controlla anche
1719   questa tabella, per verificare che anche in essa non ci sia più nessun
1720   riferimento all'\textit{inode} in questione.}
1721
1722 Questa caratteristica del sistema può essere usata per essere sicuri di non
1723 lasciare file temporanei su disco in caso di crash di un programma. La tecnica
1724 è quella di aprire un nuovo file e chiamare \func{unlink} su di esso subito
1725 dopo, in questo modo il contenuto del file sarà sempre disponibile all'interno
1726 del processo attraverso il suo file descriptor (vedi sez.~\ref{sec:file_fd}),
1727 ma non ne resta traccia in nessuna directory, e lo spazio occupato su disco
1728 viene immediatamente rilasciato alla conclusione del processo, quando tutti i
1729 file vengono chiusi.
1730
1731 Al contrario di quanto avviene con altri Unix, in Linux non è possibile usare
1732 la funzione \func{unlink} sulle directory, nel qual caso si otterrebbe un
1733 errore di \errcode{EISDIR}. Per cancellare una directory si deve usare la
1734 apposita funzione di sistema \func{rmdir} (che vedremo in
1735 sez.~\ref{sec:file_dir_creat_rem}), oppure la funzione \func{remove}.
1736 Quest'ultima è la funzione prevista dallo standard ANSI C per effettuare una
1737 cancellazione generica di un file o di una directory e funziona anche per i
1738 sistemi operativo che non supportano gli \textit{hard link}. Nei sistemi
1739 unix-like \funcd{remove} è equivalente ad usare in maniera trasparente
1740 \func{unlink} per i file ed \func{rmdir} per le directory; il suo prototipo è:
1741
1742 \begin{funcproto}{
1743 \fhead{stdio.h}
1744 \fdecl{int remove(const char *pathname)}
1745 \fdesc{Cancella un file o una directory.} 
1746 }
1747 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1748   caso \var{errno} assumerà uno dei valori relativi alla chiamata utilizzata,
1749   pertanto si può fare riferimento a quanto illustrato nelle descrizioni di
1750   \func{unlink} e \func{rmdir}.}
1751 \end{funcproto}
1752
1753 La funzione utilizza la funzione \func{unlink} per cancellare i file e la
1754 funzione \func{rmdir} (vedi sez.~\ref{sec:file_dir_creat_rem}) per cancellare
1755 le directory.\footnote{questo vale usando la \acr{glibc}; nella libc4 e nella
1756   libc5 la funzione \func{remove} era un semplice alias alla funzione
1757   \func{unlink} e quindi non poteva essere usata per le directory.} Si tenga
1758 presente che per alcune implementazioni del protocollo NFS utilizzare questa
1759 funzione può comportare la scomparsa di file ancora in uso.
1760
1761 Infine per cambiare nome ad un file o a una directory si usa la funzione di
1762 sistema \funcd{rename},\footnote{la funzione è definita dallo standard ANSI C,
1763   ma si applica solo per i file, lo standard POSIX estende la funzione anche
1764   alle directory.} il cui prototipo è:
1765
1766 \begin{funcproto}{
1767 \fhead{stdio.h}
1768 \fdecl{int rename(const char *oldpath, const char *newpath)}
1769 \fdesc{Rinomina un file o una directory.} 
1770 }
1771 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore,
1772   nel qual caso \var{errno} assumerà uno dei valori: 
1773   \begin{errlist}
1774   \item[\errcode{EACCESS}] non c'è permesso di scrivere nelle directory
1775     contenenti \param{oldpath} e \param{newpath} o di attraversare 
1776     quelle dei loro \textit{pathname} o di scrivere su \param{newpath}
1777     se questa è una directory.
1778   \item[\errcode{EBUSY}] o \param{oldpath} o \param{newpath} sono in uso da
1779     parte di qualche processo (come directory di lavoro o come radice) o del
1780     sistema (come \textit{mount point}) ed il sistema non riesce a risolvere
1781     la situazione.
1782   \item[\errcode{EEXIST}] \param{newpath} è una directory già esistente e
1783     non è vuota (anche \errcode{ENOTEMPTY}).
1784   \item[\errcode{EINVAL}] \param{newpath} contiene un prefisso di
1785     \param{oldpath} o più in generale si è cercato di creare una directory come
1786     sotto-directory di sé stessa.
1787   \item[\errcode{EISDIR}] \param{newpath} è una directory mentre
1788     \param{oldpath} non è una directory.
1789   \item[\errcode{ENOTDIR}] uno dei componenti dei \textit{pathname} non è una
1790     directory o \param{oldpath} è una directory e 
1791     \param{newpath} esiste e non è una directory.
1792   \item[\errval{EPERM}] la directory contenente \param{oldpath} o quella
1793     contenente un \param{newpath} esistente hanno lo \textit{sticky bit} e non
1794     si è i proprietari dei rispettivi file (o non si hanno privilegi
1795     amministrativi) oppure il filesystem non supporta l'operazione. 
1796   \item[\errcode{EXDEV}] \param{oldpath} e \param{newpath} non sono sullo
1797     stesso filesystem e sotto lo stesso \textit{mount point}. 
1798   \end{errlist} ed inoltre \errval{EFAULT}, \errval{ELOOP}, \errval{EMLINK},
1799   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOSPC} e
1800   \errval{EROFS} nel loro significato generico.}
1801 \end{funcproto}
1802
1803 La funzione rinomina in \param{newpath} il file o la directory indicati
1804 dall'argomento \param{oldpath}. Il nome viene eliminato nella directory
1805 originale e ricreato nella directory di destinazione mantenendo il riferimento
1806 allo stesso \textit{inode}. Non viene spostato nessun dato e l'\textit{inode}
1807 del file non subisce nessuna modifica in quanto le modifiche sono eseguite
1808 sulle directory che contengono \param{newpath} ed \param{oldpath}.
1809
1810 Il vantaggio nell'uso di questa funzione al posto della chiamata successiva di
1811 \func{link} e \func{unlink} è che l'operazione è eseguita atomicamente, non
1812 c'è modifica, per quanto temporanea, al \textit{link count} del file e non può
1813 esistere un istante in cui un altro processo possa trovare attivi entrambi i
1814 nomi per lo stesso file se la destinazione non esiste o in cui questa sparisca
1815 temporaneamente se già esiste.
1816
1817 Dato che opera in maniera analoga la funzione è soggetta alle stesse
1818 restrizioni di \func{link}, quindi è necessario che \param{oldpath}
1819 e \param{newpath} siano nello stesso filesystem e facciano riferimento allo
1820 stesso \textit{mount point}, e che il filesystem supporti questo tipo di
1821 operazione. Qualora questo non avvenga si dovrà effettuare l'operazione in
1822 maniera non atomica copiando il file a destinazione e poi cancellando
1823 l'originale.
1824
1825 Il comportamento della funzione è diverso a seconda che si voglia rinominare
1826 un file o una directory. Se ci riferisce ad un file allora \param{newpath}, se
1827 esiste, non deve essere una directory, altrimenti si avrà un errore di
1828 \errcode{EISDIR}. Se \param{newpath} indica un file già esistente questo verrà
1829 rimpiazzato atomicamente, ma nel caso in cui \func{rename} fallisca il kernel
1830 assicura che esso non sarà toccato. I caso di sovrascrittura però potrà
1831 esistere una breve finestra di tempo in cui sia \param{oldpath}
1832 che \param{newpath} potranno fare entrambi riferimento al file che viene
1833 rinominato.
1834
1835 Se \param{oldpath} è una directory allora \param{newpath}, se esistente, deve
1836 essere una directory vuota, altrimenti si avranno gli errori \errcode{ENOTDIR}
1837 (se non è una directory) o \errcode{ENOTEMPTY} o \errcode{EEXIST} (se non è
1838 vuota). Chiaramente \param{newpath} non potrà contenere \param{oldpath} nel
1839 suo \textit{pathname}, non essendo possibile rendere una directory una
1840 sottodirectory di sé stessa, se questo fosse il caso si otterrebbe un errore
1841 di \errcode{EINVAL}.
1842
1843 Se \param{oldpath} si riferisce ad un collegamento simbolico questo sarà
1844 rinominato restando tale senza nessun effetto sul file a cui fa riferimento.
1845 Se invece \param{newpath} esiste ed è un collegamento simbolico verrà
1846 cancellato come qualunque altro file.  Infine qualora \param{oldpath}
1847 e \param{newpath} siano due nomi che già fanno riferimento allo stesso file lo
1848 standard POSIX prevede che la funzione non ritorni un errore, e semplicemente
1849 non faccia nulla, lasciando entrambi i nomi.  Linux segue questo standard,
1850 anche se, come fatto notare dal manuale della \acr{glibc}, il comportamento
1851 più ragionevole sarebbe quello di cancellare \param{oldpath}.
1852
1853 In tutti i casi si dovranno avere i permessi di scrittura nelle directory
1854 contenenti \param{oldpath} e \param{newpath}, e nel caso \param{newpath} sia
1855 una directory vuota già esistente anche su di essa (perché dovrà essere
1856 aggiornata la voce ``\texttt{..}''). Se poi le directory
1857 contenenti \param{oldpath} o \param{newpath} hanno lo \textit{sticky bit}
1858 attivo (vedi sez.~\ref{sec:file_special_perm}) si dovrà essere i proprietari
1859 dei file (o delle directory) che si vogliono rinominare, o avere i permessi di
1860 amministratore.
1861
1862
1863 \subsection{La creazione e la cancellazione delle directory} 
1864 \label{sec:file_dir_creat_rem}
1865
1866 Benché in sostanza le directory non siano altro che dei file contenenti
1867 elenchi di nomi con riferimenti ai rispettivi \textit{inode}, non è possibile
1868 trattarle come file ordinari e devono essere create direttamente dal kernel
1869 attraverso una opportuna \textit{system call}.\footnote{questo è quello che
1870   permette anche, attraverso l'uso del VFS, l'utilizzo di diversi formati per
1871   la gestione dei suddetti elenchi, dalle semplici liste a strutture complesse
1872   come alberi binari, hash, ecc. che consentono una ricerca veloce quando il
1873   numero di file è molto grande.}  La funzione di sistema usata per creare una
1874 directory è \funcd{mkdir}, ed il suo prototipo è:
1875
1876 \begin{funcproto}{
1877 \fhead{sys/stat.h}
1878 \fhead{sys/types.h}
1879 \fdecl{int mkdir(const char *dirname, mode\_t mode)}
1880 \fdesc{Crea una nuova directory.} 
1881 }
1882 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1883   caso \var{errno} assumerà uno dei valori: 
1884   \begin{errlist}
1885   \item[\errcode{EACCES}] non c'è il permesso di scrittura per la directory in
1886     cui si vuole inserire la nuova directory o di attraversamento per le
1887     directory al di sopra di essa.
1888   \item[\errcode{EEXIST}] un file o una directory o un collegamento simbolico
1889     con quel nome esiste già.
1890   \item[\errcode{EMLINK}] la directory in cui si vuole creare la nuova
1891     directory contiene troppi file; sotto Linux questo normalmente non avviene
1892     perché il filesystem standard consente la creazione di un numero di file
1893     maggiore di quelli che possono essere contenuti nel disco, ma potendo
1894     avere a che fare anche con filesystem di altri sistemi questo errore può
1895     presentarsi.
1896   \item[\errcode{ENOSPC}] non c'è abbastanza spazio sul file system per creare
1897     la nuova directory o si è esaurita la quota disco dell'utente.
1898   \end{errlist}
1899   ed inoltre \errval{EFAULT}, \errval{ELOOP}, \errval{ENAMETOOLONG},
1900   \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOTDIR}, \errval{EPERM},
1901   \errval{EROFS} nel loro significato generico.}
1902 \end{funcproto}
1903
1904 La funzione crea una nuova directory vuota, che contiene cioè solo le due voci
1905 standard presenti in ogni directory (``\file{.}'' e ``\file{..}''), con il
1906 nome indicato dall'argomento \param{dirname}. 
1907
1908 I permessi di accesso (vedi sez.~\ref{sec:file_access_control}) con cui la
1909 directory viene creata sono specificati dall'argomento \param{mode}, i cui
1910 possibili valori sono riportati in tab.~\ref{tab:file_permission_const}; si
1911 tenga presente che questi sono modificati dalla maschera di creazione dei file
1912 (si veda sez.~\ref{sec:file_perm_management}).  La titolarità della nuova
1913 directory è impostata secondo quanto illustrato in
1914 sez.~\ref{sec:file_ownership_management}.
1915
1916 Come accennato in precedenza per eseguire la cancellazione di una directory è
1917 necessaria una specifica funzione di sistema, \funcd{rmdir}, il suo prototipo
1918 è:
1919
1920 \begin{funcproto}{
1921 \fhead{sys/stat.h}
1922 \fdecl{int rmdir(const char *dirname)}
1923 \fdesc{Cancella una directory.} 
1924 }
1925 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1926   caso \var{errno} assumerà uno dei valori: 
1927   \begin{errlist}
1928   \item[\errcode{EACCES}] non c'è il permesso di scrittura per la directory
1929     che contiene la directory che si vuole cancellare, o non c'è il permesso
1930     di attraversare (esecuzione) una delle directory specificate in
1931     \param{dirname}.
1932   \item[\errcode{EBUSY}] la directory specificata è la directory di lavoro o
1933     la radice di qualche processo o un \textit{mount point}.
1934   \item[\errcode{EINVAL}] si è usato ``\texttt{.}'' come ultimo componente
1935     di \param{dirname}.
1936   \item[\errcode{EPERM}] il filesystem non supporta la cancellazione di
1937     directory, oppure la directory che contiene \param{dirname} ha lo
1938     \textit{sticky bit} impostato e non si è i proprietari della directory o
1939     non si hanno privilegi amministrativi.
1940   \end{errlist}
1941   ed inoltre \errval{EFAULT}, \errval{ELOOP}, \errval{ENAMETOOLONG},
1942   \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOTDIR}, \errcode{ENOTEMPTY} e
1943   \errval{EROFS} nel loro significato generico.}
1944 \end{funcproto}
1945
1946
1947 La funzione cancella la directory \param{dirname}, che deve essere vuota, la
1948 directory deve cioè contenere le due voci standard ``\file{.}'' e
1949 ``\file{..}'' e niente altro.  Il nome può essere indicato con un
1950 \textit{pathname} assoluto o relativo, ma si deve fare riferimento al nome
1951 nella directory genitrice, questo significa che \textit{pathname} terminanti
1952 in ``\file{.}'' e ``\file{..}'' anche se validi in altri contesti, causeranno
1953 il fallimento della funzione.
1954
1955 Se la directory cancellata risultasse aperta in qualche processo per una
1956 lettura dei suoi contenuti (vedi sez.~\ref{sec:file_dir_read}), pur
1957 scomparendo dal filesystem e non essendo più possibile accedervi o crearvi
1958 altri file, le risorse ad essa associate verrebbero disallocate solo alla
1959 chiusura di tutti questi ulteriori riferimenti.
1960
1961
1962 \subsection{Lettura e scansione delle directory}
1963 \label{sec:file_dir_read}
1964
1965 Benché le directory alla fine non siano altro che dei file che contengono
1966 delle liste di nomi associati ai relativi \textit{inode}, per il ruolo che
1967 rivestono nella struttura del sistema non possono essere trattate come dei
1968 normali file di dati. Ad esempio, onde evitare inconsistenze all'interno del
1969 filesystem, solo il kernel può scrivere il contenuto di una directory, e non
1970 può essere un processo a inserirvi direttamente delle voci con le usuali
1971 funzioni di scrittura.
1972
1973 Ma se la scrittura e l'aggiornamento dei dati delle directory è compito del
1974 kernel, sono molte le situazioni in cui i processi necessitano di poterne
1975 leggere il contenuto. Benché questo possa essere fatto direttamente (vedremo
1976 in sez.~\ref{sec:file_open_close} che è possibile aprire una directory come se
1977 fosse un file, anche se solo in sola lettura) in generale il formato con cui
1978 esse sono scritte può dipendere dal tipo di filesystem, tanto che, come
1979 riportato in tab.~\ref{tab:file_file_operations}, il VFS prevede una apposita
1980 funzione per la lettura delle directory.
1981
1982 \itindbeg{directory~stream}
1983
1984 Tutto questo si riflette nello standard POSIX\footnote{le funzioni erano
1985   presenti in SVr4 e 4.3BSD, la loro specifica è riportata in POSIX.1-2001.}
1986 che ha introdotto una apposita interfaccia per la lettura delle directory,
1987 basata sui cosiddetti \textit{directory stream}, chiamati così per l'analogia
1988 con i \textit{file stream} dell'interfaccia standard ANSI C che vedremo in
1989 sez.~\ref{sec:files_std_interface}. La prima funzione di questa interfaccia è
1990 \funcd{opendir}, il cui prototipo è:
1991
1992 \begin{funcproto}{
1993 \fhead{sys/types.h}
1994 \fhead{dirent.h}
1995 \fdecl{DIR *opendir(const char *dirname)}
1996 \fdesc{Apre un \textit{directory stream}.} 
1997 }
1998 {La funzione ritorna un puntatore al \textit{directory stream} in caso di
1999   successo e \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno
2000   dei valori \errval{EACCES}, \errval{EMFILE}, \errval{ENFILE},
2001   \errval{ENOENT}, \errval{ENOMEM} e \errval{ENOTDIR} nel loro significato
2002   generico.}
2003 \end{funcproto}
2004
2005 La funzione apre un \textit{directory stream} per la directory
2006 \param{dirname}, ritornando il puntatore ad un oggetto di tipo \type{DIR} (che
2007 è il tipo opaco usato dalle librerie per gestire i \textit{directory stream})
2008 da usare per tutte le operazioni successive, la funzione inoltre posiziona lo
2009 \textit{stream} sulla prima voce contenuta nella directory.
2010
2011 Si tenga presente che comunque la funzione opera associando il
2012 \textit{directory stream} ad un opportuno file descriptor sottostante, sul
2013 quale vengono compiute le operazioni. Questo viene sempre aperto impostando il
2014 flag di \textit{close-on-exec} (si ricordi quanto detto in
2015 sez.~\ref{sec:proc_exec}), così da evitare che resti aperto in caso di
2016 esecuzione di un altro programma.
2017
2018 Nel caso in cui sia necessario conoscere il \textit{file descriptor} associato
2019 ad un \textit{directory stream} si può usare la funzione
2020 \funcd{dirfd},\footnote{questa funzione è una estensione introdotta con BSD
2021   4.3-Reno ed è presente in Linux con le libc5 (a partire dalla versione
2022   5.1.2) e con la \acr{glibc} ma non presente in POSIX fino alla revisione
2023   POSIX.1-2008, per questo per poterla utilizzare fino alla versione 2.10
2024   della \acr{glibc} era necessario definire le macro \macro{\_BSD\_SOURCE} o
2025   \macro{\_SVID\_SOURCE}, dalla versione 2.10 si possono usare anche
2026   \texttt{\macro{\_POSIX\_C\_SOURCE} >= 200809L} o
2027   \texttt{\macro{\_XOPEN\_SOURCE} >= 700}.}  il cui prototipo è:
2028
2029 \begin{funcproto}{
2030 \fhead{sys/types.h}
2031 \fhead{dirent.h}
2032 \fdecl{int dirfd(DIR *dir)}
2033 \fdesc{Legge il file descriptor associato ad un \textit{directory stream}.} 
2034 }
2035 {La funzione ritorna un valore positivo corrispondente al file descriptor in
2036   caso di successo e $-1$ per un errore, nel qual caso \var{errno} assumerà
2037   uno dei valori:
2038   \begin{errlist}
2039   \item[\errcode{EINVAL}] \param{dir} non è un puntatore ad un
2040     \textit{directory stream}. 
2041   \item[\errcode{ENOTSUP}] l'implementazione non supporta l'uso di un file
2042     descriptor per la directory.
2043   \end{errlist}
2044 }
2045 \end{funcproto}
2046
2047 La funzione restituisce il file descriptor associato al \textit{directory
2048   stream} \param{dir}. Di solito si utilizza questa funzione in abbinamento a
2049 funzioni che operano sui file descriptor, ad esempio si potrà usare
2050 \func{fstat} per ottenere le proprietà della directory, o \func{fchdir} per
2051 spostare su di essa la directory di lavoro (vedi sez.~\ref{sec:file_work_dir}).
2052
2053 Viceversa se si è aperto un file descriptor corrispondente ad una directory è
2054 possibile associarvi un \textit{directory stream} con la funzione
2055 \funcd{fdopendir},\footnote{questa funzione è però disponibile solo a partire
2056   dalla versione 2.4 della \acr{glibc}, ed è stata introdotta nello standard
2057   POSIX solo a partire dalla revisione POSIX.1-2008, prima della versione 2.10
2058   della \acr{glibc} per poterla utilizzare era necessario definire la macro
2059   \macro{\_GNU\_SOURCE}, dalla versione 2.10 si possono usare anche
2060   \texttt{\macro{\_POSIX\_C\_SOURCE} >= 200809L} o \texttt{\_XOPEN\_SOURCE >=
2061     700} .}  il cui prototipo è:
2062
2063 \begin{funcproto}{
2064 \fhead{sys/types.h}
2065 \fhead{dirent.h}
2066 \fdecl{DIR *fdopendir(int fd)}
2067 \fdesc{Associa un \textit{directory stream} ad un file descriptor.} 
2068 }
2069 {La funzione ritorna un puntatore al \textit{directory stream} in caso di
2070   successo e \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno
2071   dei valori \errval{EBADF} o \errval{ENOMEM} nel loro significato generico.}
2072 \end{funcproto}
2073
2074 La funzione è identica a \func{opendir}, ma ritorna un \textit{directory
2075   stream} facendo riferimento ad un file descriptor \param{fd} che deve essere
2076 stato aperto in precedenza; la funzione darà un errore qualora questo non
2077 corrisponda ad una directory. L'uso di questa funzione permette di rispondere
2078 agli stessi requisiti delle funzioni ``\textit{at}'' che vedremo in
2079 sez.~\ref{sec:file_openat}.
2080
2081 Una volta utilizzata il file descriptor verrà usato internamente dalle
2082 funzioni che operano sul \textit{directory stream} e non dovrà essere più
2083 utilizzato all'interno del proprio programma. In particolare dovrà essere
2084 chiuso attraverso il \textit{directory stream} con \func{closedir} e non
2085 direttamente. Si tenga presente inoltre che \func{fdopendir} non modifica lo
2086 stato di un eventuale flag di \textit{close-on-exec}, che pertanto dovrà
2087 essere impostato esplicitamente in fase di apertura del file descriptor.
2088
2089 Una volta che si sia aperto un \textit{directory stream} la lettura del
2090 contenuto della directory viene effettuata attraverso la funzione
2091 \funcd{readdir}, il cui prototipo è:
2092
2093 \begin{funcproto}{
2094 \fhead{sys/types.h}
2095 \fhead{dirent.h}
2096 \fdecl{struct dirent *readdir(DIR *dir)}
2097 \fdesc{Legge una voce dal \textit{directory stream}.} 
2098 }
2099 {La funzione ritorna il puntatore alla struttura contenente i dati in caso di
2100   successo e \val{NULL} per un errore o se si è raggiunta la fine dello
2101   \textit{stream}. Il solo codice di errore restituito in \var{errno} è
2102   \errval{EBADF} qualora \param{dir} non indichi un \textit{directory stream}
2103   valido.}
2104 \end{funcproto}
2105
2106 La funzione legge la voce corrente nella directory, posizionandosi sulla voce
2107 successiva. Pertanto se si vuole leggere l'intero contenuto di una directory
2108 occorrerà ripetere l'esecuzione della funzione fintanto che non si siano
2109 esaurite tutte le voci in essa presenti, che viene segnalata dalla
2110 restituzione di \val{NULL} come valore di ritorno. Si può distinguere questa
2111 condizione da un errore in quanto in questo caso \var{errno} non verrebbe
2112 modificata.
2113
2114 I dati letti da \func{readdir} vengono memorizzati in una struttura
2115 \struct{dirent}, la cui definizione è riportata in
2116 fig.~\ref{fig:file_dirent_struct}.\footnote{la definizione è quella usata da
2117   Linux, che si trova nel file \file{/usr/include/bits/dirent.h}, essa non
2118   contempla la presenza del campo \var{d\_namlen} che indica la lunghezza del
2119   nome del file.} La funzione non è rientrante e restituisce il puntatore ad
2120 una struttura allocata staticamente, che viene sovrascritta tutte le volte che
2121 si ripete la lettura di una voce sullo stesso \textit{directory stream}.
2122
2123 Di questa funzione esiste anche una versione rientrante,
2124 \funcd{readdir\_r},\footnote{per usarla è necessario definire una qualunque
2125   delle macro \texttt{\macro{\_POSIX\_C\_SOURCE} >= 1},
2126   \macro{\_XOPEN\_SOURCE}, \macro{\_BSD\_SOURCE}, \macro{\_SVID\_SOURCE},
2127   \macro{\_POSIX\_SOURCE}.} che non usa una struttura allocata staticamente, e
2128 può essere utilizzata anche con i \textit{thread}, il suo prototipo è:
2129
2130 \begin{funcproto}{
2131 \fhead{sys/types.h}
2132 \fhead{dirent.h}
2133 \fdecl{int readdir\_r(DIR *dir, struct dirent *entry, struct dirent **result)}
2134 \fdesc{Legge una voce dal \textit{directory stream}.} 
2135 }
2136 {La funzione ritorna $0$ in caso di successo ed un numero positivo per un
2137   errore, nel qual caso \var{errno} assumerà gli stessi valori di
2138   \func{readdir}.} 
2139 \end{funcproto}
2140
2141 La funzione restituisce in \param{result} come \textit{value result argument}
2142 l'indirizzo della struttura \struct{dirent} dove sono stati salvati i dati,
2143 che deve essere allocata dal chiamante, ed il cui indirizzo deve essere
2144 indicato con l'argomento \param{entry}.  Se si è raggiunta la fine del
2145 \textit{directory stream} invece in \param{result} viene restituito il valore
2146 \val{NULL}.
2147
2148 \begin{figure}[!htb]
2149   \footnotesize \centering
2150   \begin{minipage}[c]{0.8\textwidth}
2151     \includestruct{listati/dirent.c}
2152   \end{minipage} 
2153   \normalsize 
2154   \caption{La struttura \structd{dirent} per la lettura delle informazioni dei 
2155     file.}
2156   \label{fig:file_dirent_struct}
2157 \end{figure}
2158
2159 % Lo spazio per la \struct{dirent} dove vengono restituiti i dati della
2160 % directory deve essere allocato a cura del chiamante, dato che la dimensione
2161
2162
2163 I vari campi di \struct{dirent} contengono le informazioni relative alle voci
2164 presenti nella directory. Sia BSD che SVr4 che POSIX.1-2001\footnote{il
2165   vecchio standard POSIX prevedeva invece solo la presenza del campo
2166   \var{d\_fileno}, identico \var{d\_ino}, che in Linux era definito come alias
2167   di quest'ultimo, mentre il campo \var{d\_name} era considerato dipendente
2168   dall'implementazione.}  prevedono che siano sempre presenti il campo
2169 \var{d\_name}, che contiene il nome del file nella forma di una stringa
2170 terminata da uno zero, ed il campo \var{d\_ino}, che contiene il numero di
2171 \textit{inode} cui il file è associato e corrisponde al campo \var{st\_ino} di
2172 \struct{stat}.  La presenza di ulteriori campi opzionali oltre i due citati è
2173 segnalata dalla definizione di altrettante macro nella forma
2174 \code{\_DIRENT\_HAVE\_D\_XXX} dove \code{XXX} è il nome del relativo
2175 campo. Come si può evincere da fig.~\ref{fig:file_dirent_struct} nel caso di
2176 Linux sono pertanto definite le macro \macrod{\_DIRENT\_HAVE\_D\_TYPE},
2177 \macrod{\_DIRENT\_HAVE\_D\_OFF} e \macrod{\_DIRENT\_HAVE\_D\_RECLEN}, mentre non
2178 è definita la macro \macrod{\_DIRENT\_HAVE\_D\_NAMLEN}.
2179
2180 Dato che possono essere presenti campi opzionali e che lo standard
2181 POSIX.1-2001 non specifica una dimensione definita per il nome dei file (che
2182 può variare a seconda del filesystem), ma solo un limite superiore pari a
2183 \const{NAME\_MAX} (vedi tab.~\ref{tab:sys_file_macro}), in generale per
2184 allocare una struttura \struct{dirent} in maniera portabile occorre eseguire
2185 un calcolo per ottenere le dimensioni appropriate per il proprio
2186 sistema.\footnote{in SVr4 la lunghezza del campo è definita come
2187   \code{NAME\_MAX+1} che di norma porta al valore di 256 byte usato anche in
2188   fig.~\ref{fig:file_dirent_struct}.} Lo standard però richiede che il campo
2189 \var{d\_name} sia sempre l'ultimo della struttura, questo ci consente di
2190 ottenere la dimensione della prima parte con la macro di utilità generica
2191 \macro{offsetof}, che si può usare con il seguente prototipo:
2192
2193 {\centering
2194 \vspace{3pt}
2195 \begin{funcbox}{
2196 \fhead{stddef.h}
2197 \fdecl{size\_t \macrod{offsetof}(type, member)}
2198 \fdesc{Restituisce la posizione del campo \param{member} nella
2199   struttura \param{type}.}
2200
2201 \end{funcbox}
2202 }
2203
2204 Ottenuta allora con \code{offsetof(struct dirent, d\_name)} la dimensione
2205 della parte iniziale della struttura, basterà sommarci la dimensione massima
2206 dei nomi dei file nel filesystem che si sta usando, che si può ottenere
2207 attraverso la funzione \func{pathconf} (per la quale si rimanda a
2208 sez.~\ref{sec:sys_file_limits}) più un ulteriore carattere per la terminazione
2209 della stringa.
2210
2211 Per quanto riguarda il significato dei campi opzionali, il campo \var{d\_type}
2212 indica il tipo di file (se fifo, directory, collegamento simbolico, ecc.), e
2213 consente di evitare una successiva chiamata a \func{lstat} (vedi
2214 sez.~\ref{sec:file_stat}) per determinarlo. I suoi possibili valori sono
2215 riportati in tab.~\ref{tab:file_dtype_macro}. Si tenga presente che questo
2216 valore è disponibile solo per i filesystem che ne supportano la restituzione
2217 (fra questi i più noti sono \textsl{btrfs}, \textsl{ext2}, \textsl{ext3}, e
2218 \textsl{ext4}), per gli altri si otterrà sempre il valore
2219 \const{DT\_UNKNOWN}.\footnote{inoltre fino alla versione 2.1 della
2220   \acr{glibc}, pur essendo il campo \var{d\_type} presente, il suo uso non era
2221   implementato, e veniva restituito comunque il valore \const{DT\_UNKNOWN}.}
2222
2223 \begin{table}[htb]
2224   \centering
2225   \footnotesize
2226   \begin{tabular}[c]{|l|l|}
2227     \hline
2228     \textbf{Valore} & \textbf{Tipo di file} \\
2229     \hline
2230     \hline
2231     \constd{DT\_UNKNOWN} & Tipo sconosciuto.\\
2232     \constd{DT\_REG}     & File normale.\\
2233     \constd{DT\_DIR}     & Directory.\\
2234     \constd{DT\_LNK}     & Collegamento simbolico.\\
2235     \constd{DT\_FIFO}    & Fifo.\\
2236     \constd{DT\_SOCK}    & Socket.\\
2237     \constd{DT\_CHR}     & Dispositivo a caratteri.\\
2238     \constd{DT\_BLK}     & Dispositivo a blocchi.\\
2239     \hline    
2240   \end{tabular}
2241   \caption{Costanti che indicano i vari tipi di file nel campo \var{d\_type}
2242     della struttura \struct{dirent}.}
2243   \label{tab:file_dtype_macro}
2244 \end{table}
2245
2246 Per la conversione da e verso l'analogo valore mantenuto dentro il campo
2247 \var{st\_mode} di \struct{stat} (vedi fig.~\ref{fig:file_stat_struct}) sono
2248 definite anche due macro di conversione, \macro{IFTODT} e \macro{DTTOIF}:
2249
2250 {\centering
2251 \vspace{3pt}
2252 \begin{funcbox}{
2253 \fhead{dirent.h}
2254 \fdecl{int \macrod{IFTODT}(mode\_t MODE)}
2255 \fdesc{Converte il tipo di file dal formato di \var{st\_mode} a quello di
2256   \var{d\_type}.}
2257 \fdecl{mode\_t \macrod{DTTOIF}(int DTYPE)}
2258 \fdesc{Converte il tipo di file dal formato di \var{d\_type} a quello di
2259   \var{st\_mode}.}  
2260
2261 \end{funcbox}
2262 }
2263
2264 Il campo \var{d\_off} contiene invece la posizione della voce successiva della
2265 directory, mentre il campo \var{d\_reclen} la lunghezza totale della voce
2266 letta. Con questi due campi diventa possibile, determinando la posizione delle
2267 varie voci, spostarsi all'interno dello \textit{stream} usando la funzione
2268 \funcd{seekdir},\footnote{sia questa funzione che \func{telldir}, sono
2269   estensioni prese da BSD, ed introdotte nello standard POSIX solo a partire
2270   dalla revisione POSIX.1-2001, per poterle utilizzare deve essere definita
2271   una delle macro \macro{\_XOPEN\_SOURCE}, \macro{\_BSD\_SOURCE} o
2272   \macro{\_SVID\_SOURCE}.} il cui prototipo è:
2273
2274 \begin{funcproto}{
2275 \fhead{dirent.h}
2276 \fdecl{void seekdir(DIR *dir, off\_t offset)}
2277 \fdesc{Cambia la posizione all'interno di un \textit{directory stream}.} 
2278 }
2279 {La funzione non ritorna niente e non imposta errori.}
2280 \end{funcproto}
2281
2282 La funzione non ritorna nulla e non segnala errori, è però necessario che il
2283 valore dell'argomento \param{offset} sia valido per lo
2284 \textit{stream} \param{dir}; esso pertanto deve essere stato ottenuto o dal
2285 valore di \var{d\_off} di \struct{dirent} o dal valore restituito dalla
2286 funzione \funcd{telldir}, che legge la posizione corrente; il cui prototipo
2287 è:\footnote{prima della \acr{glibc} 2.1.1 la funzione restituiva un valore di
2288   tipo \type{off\_t}, sostituito a partire dalla versione 2.1.2 da \ctyp{long}
2289   per conformità a POSIX.1-2001.}
2290
2291 \begin{funcproto}{
2292 \fhead{dirent.h}
2293 \fdecl{long telldir(DIR *dir)}
2294 \fdesc{Ritorna la posizione corrente in un \textit{directory stream}.} 
2295 }
2296 {La funzione ritorna la posizione corrente nello \textit{stream} (un numero
2297   positivo) in caso di successo e $-1$ per un errore, nel qual caso
2298   \var{errno} assume solo il valore di \errval{EBADF}, corrispondente ad un
2299   valore errato per \param{dir}.  }
2300 \end{funcproto}
2301
2302 La sola funzione di posizionamento per un \textit{directory stream} prevista
2303 originariamente dallo standard POSIX è \funcd{rewinddir}, che riporta la
2304 posizione a quella iniziale; il suo prototipo è:
2305
2306 \begin{funcproto}{
2307 \fhead{sys/types.h}
2308 \fhead{dirent.h}
2309 \fdecl{void rewinddir(DIR *dir)}
2310 \fdesc{Si posiziona all'inizio di un \textit{directory stream}.} 
2311 }
2312 {La funzione non ritorna niente e non imposta errori.}
2313 \end{funcproto}
2314
2315 Una volta completate le operazioni si può chiudere il \textit{directory
2316   stream}, ed il file descriptor ad esso associato, con la funzione
2317 \funcd{closedir}, il cui prototipo è:
2318
2319 \begin{funcproto}{
2320 \fhead{sys/types.h}
2321 \fhead{dirent.h}
2322 \fdecl{int closedir(DIR *dir)}
2323 \fdesc{Chiude un \textit{directory stream}.} 
2324 }
2325 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2326   caso \var{errno} assume solo il valore \errval{EBADF}.}
2327 \end{funcproto}
2328
2329 A parte queste funzioni di base in BSD 4.3 venne introdotta un'altra funzione
2330 che permette di eseguire una scansione completa, con tanto di ricerca ed
2331 ordinamento, del contenuto di una directory; la funzione è
2332 \funcd{scandir}\footnote{in Linux questa funzione è stata introdotta fin dalle
2333   \acr{libc4} e richiede siano definite le macro \macro{\_BSD\_SOURCE} o
2334   \macro{\_SVID\_SOURCE}.} ed il suo prototipo è:
2335
2336 \begin{funcproto}{
2337 \fhead{dirent.h}
2338 \fdecl{int scandir(const char *dir, struct dirent ***namelist, \\
2339 \phantom{int scandir(}int(*filter)(const struct dirent *), \\
2340 \phantom{int scandir(}int(*compar)(const struct dirent **, const struct dirent **))}
2341 \fdesc{Esegue una scansione di un \textit{directory stream}.} 
2342 }
2343 {La funzione ritorna il numero di voci trovate in caso di successo e $-1$ per
2344   un errore, nel qual caso \var{errno} può assumere solo il valore
2345   \errval{ENOMEM}.}
2346 \end{funcproto}
2347
2348 Al solito, per la presenza fra gli argomenti di due puntatori a funzione, il
2349 prototipo non è molto comprensibile; queste funzioni però sono quelle che
2350 controllano rispettivamente la selezione di una voce, passata con
2351 l'argomento \param{filter}, e l'ordinamento di tutte le voci selezionate,
2352 specificata dell'argomento \param{compar}.
2353
2354 La funzione legge tutte le voci della directory indicata dall'argomento
2355 \param{dir}, passando un puntatore a ciascuna di esse (una struttura
2356 \struct{dirent}) come argomento della funzione di selezione specificata da
2357 \param{filter}; se questa ritorna un valore diverso da zero il puntatore viene
2358 inserito in un vettore che viene allocato dinamicamente con \func{malloc}.
2359 Qualora si specifichi un valore \val{NULL} per l'argomento \param{filter} non
2360 viene fatta nessuna selezione e si ottengono tutte le voci presenti.
2361
2362 Le voci selezionate possono essere riordinate tramite \funcm{qsort}, le
2363 modalità del riordinamento possono essere personalizzate usando la funzione
2364 \param{compar} come criterio di ordinamento di \funcm{qsort}, la funzione
2365 prende come argomenti le due strutture \struct{dirent} da confrontare
2366 restituendo un valore positivo, nullo o negativo per indicarne l'ordinamento;
2367 alla fine l'indirizzo della lista ordinata dei puntatori alle strutture
2368 \struct{dirent} viene restituito nell'argomento
2369 \param{namelist}.\footnote{la funzione alloca automaticamente la lista, e
2370   restituisce, come \textit{value result argument}, l'indirizzo della stessa;
2371   questo significa che \param{namelist} deve essere dichiarato come
2372   \code{struct dirent **namelist} ed alla funzione si deve passare il suo
2373   indirizzo.}
2374
2375 \itindend{directory~stream}
2376
2377 Per l'ordinamento, vale a dire come valori possibili per l'argomento
2378 \param{compar}, sono disponibili due funzioni predefinite, \funcd{alphasort} e
2379 \funcd{versionsort}, i cui prototipi sono:
2380
2381 \begin{funcproto}{
2382 \fhead{dirent.h}
2383 \fdecl{int alphasort(const void *a, const void *b)}
2384 \fdecl{int versionsort(const void *a, const void *b)}
2385 \fdesc{Riordinano le voci di \textit{directory stream}.} 
2386 }
2387 {Le funzioni restituiscono un valore minore, uguale o maggiore di zero qualora
2388   il primo argomento sia rispettivamente minore, uguale o maggiore del secondo
2389   e non forniscono errori.}
2390 \end{funcproto}
2391
2392 La funzione \func{alphasort} deriva da BSD ed è presente in Linux fin dalle
2393 \acr{libc4}\footnote{la versione delle \acr{libc4} e \acr{libc5} usa però come
2394   argomenti dei puntatori a delle strutture \struct{dirent}; la glibc usa il
2395   prototipo originario di BSD, mostrato anche nella definizione, che prevede
2396   puntatori a \ctyp{void}.} e deve essere specificata come argomento
2397 \param{compar} per ottenere un ordinamento alfabetico secondo il valore del
2398 campo \var{d\_name} delle varie voci. La \acr{glibc} prevede come
2399 estensione\footnote{la \acr{glibc}, a partire dalla versione 2.1, effettua
2400   anche l'ordinamento alfabetico tenendo conto delle varie localizzazioni,
2401   usando \funcm{strcoll} al posto di \funcm{strcmp}.} anche
2402 \func{versionsort}, che ordina i nomi tenendo conto del numero di versione,
2403 cioè qualcosa per cui \texttt{file10} viene comunque dopo \texttt{file4}.
2404
2405 \begin{figure}[!htbp]
2406   \footnotesize \centering
2407   \begin{minipage}[c]{\codesamplewidth}
2408     \includecodesample{listati/my_ls.c}
2409   \end{minipage}
2410   \caption{Esempio di codice per eseguire la lista dei file contenuti in una
2411     directory.} 
2412   \label{fig:file_my_ls}
2413 \end{figure}
2414
2415 Un semplice esempio dell'uso di queste funzioni è riportato in
2416 fig.~\ref{fig:file_my_ls}, dove si è riportata la sezione principale di un
2417 programma che, usando la funzione di scansione illustrata in
2418 fig.~\ref{fig:file_dirscan}, stampa i nomi dei file contenuti in una directory
2419 e la relativa dimensione, in sostanza una versione semplificata del comando
2420 \cmd{ls}.
2421
2422 Il programma è estremamente semplice; in fig.~\ref{fig:file_my_ls} si è omessa
2423 la parte di gestione delle opzioni, che prevede solo l'uso di una funzione per
2424 la stampa della sintassi, anch'essa omessa, ma il codice completo può essere
2425 trovato coi sorgenti allegati alla guida nel file \file{myls.c}.
2426
2427 In sostanza tutto quello che fa il programma, dopo aver controllato
2428 (\texttt{\small 12-15}) di avere almeno un argomento, che indicherà la
2429 directory da esaminare, è chiamare (\texttt{\small 16}) la funzione
2430 \myfunc{dir\_scan} per eseguire la scansione, usando la funzione \code{do\_ls}
2431 (\texttt{\small 22-29}) per fare tutto il lavoro.
2432
2433 Quest'ultima si limita (\texttt{\small 26}) a chiamare \func{stat} sul file
2434 indicato dalla directory entry passata come argomento (il cui nome è appunto
2435 \var{direntry->d\_name}), memorizzando in una opportuna struttura \var{data} i
2436 dati ad esso relativi, per poi provvedere (\texttt{\small 27}) a stampare il
2437 nome del file e la dimensione riportata in \var{data}.
2438
2439 Dato che la funzione verrà chiamata all'interno di \myfunc{dir\_scan} per ogni
2440 voce presente questo è sufficiente a stampare la lista completa dei file e
2441 delle relative dimensioni. Si noti infine come si restituisca sempre 0 come
2442 valore di ritorno per indicare una esecuzione senza errori.
2443
2444 \begin{figure}[!htbp]
2445   \footnotesize \centering
2446   \begin{minipage}[c]{\codesamplewidth}
2447     \includecodesample{listati/dir_scan.c}
2448   \end{minipage}
2449   \caption{Codice della funzione di scansione di una directory contenuta nel
2450     file \file{dir\_scan.c}.} 
2451   \label{fig:file_dirscan}
2452 \end{figure}
2453
2454 Tutto il grosso del lavoro è svolto dalla funzione \myfunc{dir\_scan},
2455 riportata in fig.~\ref{fig:file_dirscan}. La funzione è volutamente generica e
2456 permette di eseguire una funzione, passata come secondo argomento, su tutte le
2457 voci di una directory.  La funzione inizia con l'aprire (\texttt{\small
2458   18-22}) uno \textit{stream} sulla directory passata come primo argomento,
2459 stampando un messaggio in caso di errore.
2460
2461 Il passo successivo (\texttt{\small 23-24}) è cambiare directory di lavoro
2462 (vedi sez.~\ref{sec:file_work_dir}), usando in sequenza le funzioni
2463 \func{dirfd} e \func{fchdir} (in realtà si sarebbe potuto usare direttamente
2464 \func{chdir} su \var{dirname}), in modo che durante il successivo ciclo
2465 (\texttt{\small 26-30}) sulle singole voci dello \textit{stream} ci si trovi
2466 all'interno della directory.\footnote{questo è essenziale al funzionamento
2467   della funzione \code{do\_ls}, e ad ogni funzione che debba usare il campo
2468   \var{d\_name}, in quanto i nomi dei file memorizzati all'interno di una
2469   struttura \struct{dirent} sono sempre relativi alla directory in questione,
2470   e senza questo posizionamento non si sarebbe potuto usare \func{stat} per
2471   ottenere le dimensioni.}
2472
2473 Avendo usato lo stratagemma di fare eseguire tutte le manipolazioni necessarie
2474 alla funzione passata come secondo argomento, il ciclo di scansione della
2475 directory è molto semplice; si legge una voce alla volta (\texttt{\small 26})
2476 all'interno di una istruzione di \code{while} e fintanto che si riceve una
2477 voce valida, cioè un puntatore diverso da \val{NULL}, si esegue
2478 (\texttt{\small 27}) la funzione di elaborazione \var{compare} (che nel nostro
2479 caso sarà \code{do\_ls}), ritornando con un codice di errore (\texttt{\small
2480   28}) qualora questa presenti una anomalia, identificata da un codice di
2481 ritorno negativo. Una volta terminato il ciclo la funzione si conclude con la
2482 chiusura (\texttt{\small 32}) dello \textit{stream}\footnote{nel nostro caso,
2483   uscendo subito dopo la chiamata, questo non servirebbe, in generale però
2484   l'operazione è necessaria, dato che la funzione può essere invocata molte
2485   volte all'interno dello stesso processo, per cui non chiudere i
2486   \textit{directory stream} comporterebbe un consumo progressivo di risorse,
2487   con conseguente rischio di esaurimento delle stesse.} e la restituzione
2488 (\texttt{\small 32}) del codice di operazioni concluse con successo.
2489
2490
2491
2492 \subsection{La directory di lavoro}
2493 \label{sec:file_work_dir}
2494
2495 \index{directory~di~lavoro|(} 
2496
2497 Come accennato in sez.~\ref{sec:proc_fork} a ciascun processo è associata una
2498 directory nel filesystem,\footnote{questa viene mantenuta all'interno dei dati
2499   della sua \kstruct{task\_struct} (vedi fig.~\ref{fig:proc_task_struct}), più
2500   precisamente nel campo \texttt{pwd} della sotto-struttura
2501   \kstruct{fs\_struct}.} che è chiamata \textsl{directory corrente} o
2502 \textsl{directory di lavoro} (in inglese \textit{current working directory}).
2503 La directory di lavoro è quella da cui si parte quando un \textit{pathname} è
2504 espresso in forma relativa, dove il ``\textsl{relativa}'' fa riferimento
2505 appunto a questa directory.
2506
2507 Quando un utente effettua il login, questa directory viene impostata alla
2508 \textit{home directory} del suo account. Il comando \cmd{cd} della shell
2509 consente di cambiarla a piacere, spostandosi da una directory ad un'altra, il
2510 comando \cmd{pwd} la stampa sul terminale.  Siccome la directory di lavoro
2511 resta la stessa quando viene creato un processo figlio (vedi
2512 sez.~\ref{sec:proc_fork}), la directory di lavoro della shell diventa anche la
2513 directory di lavoro di qualunque comando da essa lanciato.
2514
2515 Dato che è il kernel che tiene traccia per ciascun processo
2516 dell'\textit{inode} della directory di lavoro, per ottenerne il
2517 \textit{pathname} occorre usare una apposita funzione,
2518 \funcd{getcwd},\footnote{con Linux \func{getcwd} è una \textit{system call}
2519   dalla versione 2.1.9, in precedenza il valore doveva essere ottenuto tramite
2520   il filesystem \texttt{/proc} da \procfile{/proc/self/cwd}.} il cui prototipo
2521 è:
2522
2523 \begin{funcproto}{
2524 \fhead{unistd.h}
2525 \fdecl{char *getcwd(char *buffer, size\_t size)}
2526 \fdesc{Legge il \textit{pathname} della directory di lavoro corrente.} 
2527 }
2528 {La funzione ritorna il puntatore a \param{buffer} in caso di successo e
2529   \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno dei valori: 
2530   \begin{errlist}
2531   \item[\errcode{EACCES}] manca il permesso di lettura o di attraversamento  su
2532     uno dei componenti del \textit{pathname} (cioè su una delle directory
2533     superiori alla corrente).
2534   \item[\errcode{EINVAL}] l'argomento \param{size} è zero e \param{buffer} non
2535     è nullo.
2536   \item[\errcode{ENOENT}] la directory di lavoro è stata eliminata. 
2537   \item[\errcode{ERANGE}] l'argomento \param{size} è più piccolo della
2538     lunghezza del \textit{pathname}. 
2539   \end{errlist}
2540   ed inoltre \errcode{EFAULT} nel suo significato generico.}
2541 \end{funcproto}
2542
2543 La funzione restituisce il \textit{pathname} completo della directory di
2544 lavoro corrente nella stringa puntata da \param{buffer}, che deve essere
2545 precedentemente allocata, per una dimensione massima di \param{size}.  Il
2546 buffer deve essere sufficientemente largo da poter contenere il
2547 \textit{pathname} completo più lo zero di terminazione della stringa. Qualora
2548 esso ecceda le dimensioni specificate con \param{size} la funzione restituisce
2549 un errore.
2550
2551 Si può anche specificare un puntatore nullo come
2552 \param{buffer},\footnote{questa è un'estensione allo standard POSIX.1,
2553   supportata da Linux e dalla \acr{glibc}.} nel qual caso la stringa sarà
2554 allocata automaticamente per una dimensione pari a \param{size} qualora questa
2555 sia diversa da zero, o della lunghezza esatta del \textit{pathname}
2556 altrimenti. In questo caso ci si deve ricordare di disallocare la stringa con
2557 \func{free} una volta cessato il suo utilizzo.
2558
2559 Un uso comune di \func{getcwd} è quello di salvarsi la directory di lavoro
2560 all'avvio del programma per poi potervi tornare in un tempo successivo, un
2561 metodo alternativo più veloce, se non si è a corto di file descriptor, è
2562 invece quello di aprire all'inizio la directory corrente (vale a dire
2563 ``\texttt{.}'') e tornarvi in seguito con \func{fchdir}.
2564
2565 Di questa funzione esiste una versione alternativa per compatibilità
2566 all'indietro con BSD, \funcm{getwd}, che non prevede l'argomento \param{size}
2567 e quindi non consente di specificare la dimensione di \param{buffer} che
2568 dovrebbe essere allocato in precedenza ed avere una dimensione sufficiente
2569 (per BSD maggiore \const{PATH\_MAX}, che di solito 256 byte, vedi
2570 sez.~\ref{sec:sys_limits}). Il problema è che su Linux non esiste una
2571 dimensione superiore per la lunghezza di un \textit{pathname}, per cui non è
2572 detto che il buffer sia sufficiente a contenere il nome del file, e questa è
2573 la ragione principale per cui questa funzione è deprecata, e non la tratteremo.
2574
2575 Una seconda funzione usata per ottenere la directory di lavoro è
2576 \funcm{get\_current\_dir\_name},\footnote{la funzione è una estensione GNU e
2577   presente solo nella \acr{glibc}.} che non prende nessun argomento ed è
2578 sostanzialmente equivalente ad una \code{getcwd(NULL, 0)}, con la differenza
2579 che se disponibile essa ritorna il valore della variabile di ambiente
2580 \envvar{PWD}, che essendo costruita dalla shell può contenere un
2581 \textit{pathname} comprendente anche dei collegamenti simbolici. Usando
2582 \func{getcwd} infatti, essendo il \textit{pathname} ricavato risalendo
2583 all'indietro l'albero della directory, si perderebbe traccia di ogni passaggio
2584 attraverso eventuali collegamenti simbolici.
2585
2586 Per cambiare la directory di lavoro si può usare la funzione di sistema
2587 \funcd{chdir}, equivalente del comando di shell \cmd{cd}, il cui nome sta
2588 appunto per \textit{change directory}, il suo prototipo è:
2589
2590 \begin{funcproto}{
2591 \fhead{unistd.h}
2592 \fdecl{int chdir(const char *pathname)}
2593 \fdesc{Cambia la directory di lavoro per \textit{pathname}.} 
2594 }
2595 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2596   caso \var{errno} assumerà uno dei valori: 
2597   \begin{errlist}
2598   \item[\errcode{EACCES}] manca il permesso di ricerca su uno dei componenti
2599     di \param{pathname}.
2600   \item[\errcode{ENOTDIR}] non si è specificata una directory.
2601   \end{errlist}
2602   ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{ELOOP},
2603   \errval{ENAMETOOLONG}, \errval{ENOENT} e \errval{ENOMEM} nel loro
2604   significato generico.}
2605 \end{funcproto}
2606
2607 La funzione cambia la directory di lavoro in \param{pathname} ed
2608 ovviamente \param{pathname} deve indicare una directory per la quale si hanno
2609 i permessi di accesso.
2610
2611 Dato che ci si può riferire ad una directory anche tramite un file descriptor,
2612 per cambiare directory di lavoro è disponibile anche la funzione di sistema
2613 \funcd{fchdir}, il cui prototipo è:
2614
2615 \begin{funcproto}{
2616 \fhead{unistd.h}
2617 \fdecl{int fchdir(int fd)}
2618 \fdesc{Cambia la directory di lavoro per file descriptor.} 
2619 }
2620 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2621   caso \var{errno} assumerà i valori \errval{EBADF} o \errval{EACCES} nel loro
2622   significato generico.}
2623 \end{funcproto}
2624
2625 La funzione è identica a \func{chdir}, ma prende come argomento un file
2626 descriptor \param{fd} invece di un \textit{pathname}. Anche in questo
2627 caso \param{fd} deve essere un file descriptor valido che fa riferimento ad
2628 una directory. Inoltre l'unico errore di accesso possibile (tutti gli altri
2629 sarebbero occorsi all'apertura di \param{fd}), è quello in cui il processo non
2630 ha il permesso di attraversamento alla directory specificata da \param{fd}.
2631
2632 \index{directory~di~lavoro|)} 
2633
2634
2635 \subsection{La creazione dei \textsl{file speciali}}
2636 \label{sec:file_mknod}
2637
2638 \index{file!di~dispositivo|(} 
2639 \index{file!speciali|(} 
2640
2641 Finora abbiamo parlato esclusivamente di file, directory e collegamenti
2642 simbolici, ma in sez.~\ref{sec:file_file_types} abbiamo visto che il sistema
2643 prevede anche degli altri tipi di file, che in genere vanno sotto il nome
2644 generico di \textsl{file speciali}, come i file di dispositivo, le fifo ed i
2645 socket.
2646
2647 La manipolazione delle caratteristiche di questi file speciali, il cambiamento
2648 di nome o la loro cancellazione può essere effettuata con le stesse funzioni
2649 che operano sugli altri file, ma quando li si devono creare sono necessarie,
2650 come per le directory, delle funzioni apposite. La prima di queste è la
2651 funzione di sistema \funcd{mknod}, il cui prototipo è:
2652
2653 \begin{funcproto}{
2654 \fhead{sys/types.h}
2655 \fhead{sys/stat.h}
2656 \fhead{fcntl.h}
2657 \fhead{unistd.h}
2658 \fdecl{int mknod(const char *pathname, mode\_t mode, dev\_t dev)}
2659 \fdesc{Crea un file speciale sul filesystem.} 
2660 }
2661 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2662   caso \var{errno} assumerà uno dei valori: 
2663   \begin{errlist}
2664   \item[\errcode{EEXIST}] \param{pathname} esiste già o è un collegamento
2665     simbolico. 
2666   \item[\errcode{EINVAL}] il valore di \param{mode} non indica un file, una
2667     fifo, un socket o un dispositivo.
2668   \item[\errcode{EPERM}] non si hanno privilegi sufficienti a creare
2669     l'\texttt{inode}, o il filesystem su cui si è cercato di
2670     creare \param{pathname} non supporta l'operazione.
2671   \end{errlist}
2672   ed inoltre \errval{EACCES}, \errval{EFAULT}, \errval{ELOOP},
2673   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOSPC},
2674   \errval{ENOTDIR} e \errval{EROFS} nel loro significato generico.}
2675 \end{funcproto}
2676
2677 La funzione permette di creare un \textit{inode} di tipo generico sul
2678 filesystem, e viene in genere utilizzata per creare i file di dispositivo, ma
2679 si può usare anche per creare qualunque tipo di file speciale ed anche file
2680 regolari. L'argomento \param{mode} specifica sia il tipo di file che si vuole
2681 creare che i relativi permessi, secondo i valori riportati in
2682 tab.~\ref{tab:file_mode_flags}, che vanno combinati con un OR aritmetico. I
2683 permessi sono comunque modificati nella maniera usuale dal valore di
2684 \textit{umask} (si veda sez.~\ref{sec:file_perm_management}).
2685
2686 Per il tipo di file può essere specificato solo uno fra i seguenti valori:
2687 \const{S\_IFREG} per un file regolare (che sarà creato vuoto),
2688 \const{S\_IFBLK} per un dispositivo a blocchi, \const{S\_IFCHR} per un
2689 dispositivo a caratteri, \const{S\_IFSOCK} per un socket e \const{S\_IFIFO}
2690 per una fifo;\footnote{con Linux la funzione non può essere usata per creare
2691   directory o collegamenti simbolici, si dovranno usare le funzioni
2692   \func{mkdir} e \func{symlink} a questo dedicate.} un valore diverso
2693 comporterà l'errore \errcode{EINVAL}. Inoltre \param{pathname} non deve
2694 esistere, neanche come collegamento simbolico.
2695
2696 Qualora si sia specificato in \param{mode} un file di dispositivo (vale a dire
2697 o \const{S\_IFBLK} o \const{S\_IFCHR}), il valore di \param{dev} dovrà essere
2698 usato per indicare a quale dispositivo si fa riferimento, altrimenti il suo
2699 valore verrà ignorato.  Solo l'amministratore può creare un file di
2700 dispositivo usando questa funzione (il processo deve avere la capacità
2701 \const{CAP\_MKNOD}), ma in Linux\footnote{questo è un comportamento specifico
2702   di Linux, la funzione non è prevista dallo standard POSIX.1 originale,
2703   mentre è presente in SVr4 e 4.4BSD, ma esistono differenze nei comportamenti
2704   e nei codici di errore, tanto che questa è stata introdotta in POSIX.1-2001
2705   con una nota che la definisce portabile solo quando viene usata per creare
2706   delle fifo, ma comunque deprecata essendo utilizzabile a tale scopo la
2707   specifica \func{mkfifo}.} l'uso per la creazione di un file ordinario, di
2708 una fifo o di un socket è consentito anche agli utenti normali.
2709
2710 I nuovi \textit{inode} creati con \func{mknod} apparterranno al proprietario e
2711 al gruppo del processo (usando \ids{UID} e \ids{GID} del gruppo effettivo) che
2712 li ha creati a meno non sia presente il bit \acr{sgid} per la directory o sia
2713 stata attivata la semantica BSD per il filesystem (si veda
2714 sez.~\ref{sec:file_ownership_management}) in cui si va a creare
2715 l'\textit{inode}, nel qual caso per il gruppo verrà usato il \ids{GID} del
2716 proprietario della directory.
2717
2718 \itindbeg{major~number}
2719 \itindbeg{minor~number}
2720
2721 Nella creazione di un file di dispositivo occorre poi specificare
2722 correttamente il valore di \param{dev}; questo infatti è di tipo
2723 \type{dev\_t}, che è un tipo primitivo (vedi
2724 tab.~\ref{tab:intro_primitive_types}) riservato per indicare un
2725 \textsl{numero} di dispositivo. Il kernel infatti identifica ciascun
2726 dispositivo con un valore numerico, originariamente questo era un intero a 16
2727 bit diviso in due parti di 8 bit chiamate rispettivamente \textit{major
2728   number} e \textit{minor number}, che sono poi i due numeri mostrati dal
2729 comando \texttt{ls -l} al posto della dimensione quando lo si esegue su un
2730 file di dispositivo.
2731
2732 Il \textit{major number} identifica una classe di dispositivi (ad esempio la
2733 seriale, o i dischi IDE) e serve in sostanza per indicare al kernel quale è il
2734 modulo che gestisce quella classe di dispositivi. Per identificare uno
2735 specifico dispositivo di quella classe (ad esempio una singola porta seriale,
2736 o uno dei dischi presenti) si usa invece il \textit{minor number}. L'elenco
2737 aggiornato di questi numeri con le relative corrispondenze ai vari dispositivi
2738 può essere trovato nel file \texttt{Documentation/devices.txt} allegato alla
2739 documentazione dei sorgenti del kernel.
2740
2741 Data la crescita nel numero di dispositivi supportati, ben presto il limite
2742 massimo di 256 si è rivelato troppo basso, e nel passaggio dai kernel della
2743 serie 2.4 alla serie 2.6 è stata aumentata a 32 bit la dimensione del tipo
2744 \type{dev\_t}, con delle dimensioni passate a 12 bit per il \textit{major
2745   number} e 20 bit per il \textit{minor number}. La transizione però ha
2746 comportato il fatto che \type{dev\_t} è diventato un tipo opaco, e la
2747 necessità di specificare il numero tramite delle opportune macro, così da non
2748 avere problemi di compatibilità con eventuali ulteriori estensioni.
2749
2750 Le macro sono definite nel file \headfile{sys/sysmacros.h},\footnote{se si usa
2751   la \acr{glibc} dalla versione 2.3.3 queste macro sono degli alias alle
2752   versioni specifiche di questa libreria, \macrod{gnu\_dev\_major},
2753   \macrod{gnu\_dev\_minor} e \macrod{gnu\_dev\_makedev} che si possono usare
2754   direttamente, al costo di una minore portabilità.} che viene automaticamente
2755 incluso quando si include \headfile{sys/types.h}. Si possono pertanto ottenere
2756 i valori del \textit{major number} e \textit{minor number} di un dispositivo
2757 rispettivamente con le macro \macro{major} e \macro{minor}:
2758
2759 {\centering
2760 \vspace{3pt}
2761 \begin{funcbox}{
2762 \fhead{sys/types.h}
2763 \fdecl{int \macrod{major}(dev\_t dev)}
2764 \fdesc{Restituisce il \textit{major number} del dispositivo \param{dev}.}
2765 \fdecl{int \macrod{minor}(dev\_t dev)}
2766 \fdesc{Restituisce il \textit{minor number} del dispositivo \param{dev}.}  
2767
2768 \end{funcbox}
2769 }
2770
2771 \noindent mentre una volta che siano noti \textit{major number} e
2772 \textit{minor number} si potrà costruire il relativo identificativo con la
2773 macro \macro{makedev}:
2774
2775 {\centering
2776 \vspace{3pt}
2777 \begin{funcbox}{
2778 \fhead{sys/types.h}
2779 \fdecl{dev\_t \macrod{makedev}(int major, int minor)}
2780 \fdesc{Dati \textit{major number} e \textit{minor number} restituisce
2781   l'identificativo di un dispositivo.} 
2782
2783 \end{funcbox}
2784 }
2785
2786
2787 \itindend{major~number}
2788 \itindend{minor~number}
2789 \index{file!di~dispositivo|)}
2790
2791 Dato che la funzione di sistema \func{mknod} presenta diverse varianti nei
2792 vari sistemi unix-like, lo standard POSIX.1-2001 la dichiara portabile solo in
2793 caso di creazione delle fifo, ma anche in questo caso alcune combinazioni
2794 degli argomenti restano non specificate, per cui nello stesso standard è stata
2795 introdotta una funzione specifica per creare una fifo deprecando l'uso di
2796 \func{mknod} a tale riguardo.  La funzione è \funcd{mkfifo} ed il suo
2797 prototipo è:
2798
2799 \begin{funcproto}{
2800 \fhead{sys/types.h}
2801 \fhead{sys/stat.h}
2802 \fdecl{int mkfifo(const char *pathname, mode\_t mode)}
2803 \fdesc{Crea una fifo.} 
2804 }
2805 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
2806   caso \var{errno} assumerà \errval{EACCES}, \errval{EEXIST},
2807   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOSPC}, \errval{ENOTDIR} e
2808   \errval{EROFS} nel loro significato generico.}
2809 \end{funcproto}
2810
2811 La funzione crea la fifo \param{pathname} con i permessi \param{mode}. Come
2812 per \func{mknod} il file \param{pathname} non deve esistere (neanche come
2813 collegamento simbolico); al solito i permessi specificati da \param{mode}
2814 vengono modificati dal valore di \textit{umask} (vedi
2815 sez.~\ref{sec:file_perm_management}).
2816
2817 \index{file!speciali|)} 
2818
2819
2820 \subsection{I file temporanei}
2821 \label{sec:file_temp_file}
2822
2823 In molte occasioni è utile poter creare dei file temporanei; benché la cosa
2824 sembri semplice, in realtà il problema è più sottile di quanto non appaia a
2825 prima vista. Infatti anche se sembrerebbe banale generare un nome a caso e
2826 creare il file dopo aver controllato che questo non esista, nel momento fra il
2827 controllo e la creazione si ha giusto lo spazio per una possibile \textit{race
2828   condition} (si ricordi quanto visto in sez.~\ref{sec:proc_race_cond}).
2829
2830 \itindbeg{symlink~attack}
2831
2832 Molti problemi di sicurezza derivano proprio da una creazione non accorta di
2833 file temporanei che lascia aperta questa \textit{race condition}. Un
2834 attaccante allora potrà sfruttarla con quello che viene chiamato
2835 ``\textit{symlink attack}'' dove nell'intervallo fra la generazione di un nome
2836 e l'accesso allo stesso, viene creato un collegamento simbolico con quel nome
2837 verso un file diverso, ottenendo, se il programma sotto attacco ne ha la
2838 capacità, un accesso privilegiato.
2839
2840 \itindend{symlink~attack}
2841
2842 La \acr{glibc} provvede varie funzioni per generare nomi di file temporanei,
2843 di cui si abbia certezza di unicità al momento della generazione; storicamente
2844 la prima di queste funzioni create a questo scopo era
2845 \funcd{tmpnam},\footnote{la funzione è stata deprecata nella revisione
2846   POSIX.1-2008 dello standard POSIX.} il cui prototipo è:
2847
2848 \begin{funcproto}{
2849 \fhead{stdio.h}
2850 \fdecl{char *tmpnam(char *string)}
2851 \fdesc{Genera un nome univoco per un file temporaneo.} 
2852 }
2853 {La funzione ritorna il puntatore alla stringa con il nome in caso di successo
2854   e \val{NULL} in caso di fallimento, non sono definiti errori.}
2855 \end{funcproto}
2856
2857 La funzione restituisce il puntatore ad una stringa contente un nome di file
2858 valido e non esistente al momento dell'invocazione. Se si è passato come
2859 argomento \param{string} un puntatore non nullo ad un buffer di caratteri
2860 questo deve essere di dimensione \constd{L\_tmpnam} ed il nome generato vi
2861 verrà copiato automaticamente, altrimenti il nome sarà generato in un buffer
2862 statico interno che verrà sovrascritto ad una chiamata successiva.  Successive
2863 invocazioni della funzione continueranno a restituire nomi unici fino ad un
2864 massimo di \constd{TMP\_MAX} volte, limite oltre il quale il comportamento è
2865 indefinito. Al nome viene automaticamente aggiunto come prefisso la directory
2866 specificata dalla costante \constd{P\_tmpdir}.\footnote{le costanti
2867   \const{L\_tmpnam}, \const{P\_tmpdir} e \const{TMP\_MAX} sono definite in
2868   \headfile{stdio.h}.}
2869
2870 Di questa funzione esiste una versione rientrante, \funcm{tmpnam\_r}, che non
2871 fa nulla quando si passa \val{NULL} come argomento.  Una funzione simile,
2872 \funcd{tempnam}, permette di specificare un prefisso per il file
2873 esplicitamente, il suo prototipo è:
2874
2875 \begin{funcproto}{
2876 \fhead{stdio.h}
2877 \fdecl{char *tempnam(const char *dir, const char *pfx)}
2878 \fdesc{Genera un nome univoco per un file temporaneo.} 
2879 }
2880 {La funzione ritorna il puntatore alla stringa con il nome in caso di successo
2881   e \val{NULL} per un errore, nel qual caso \var{errno} potrà assumere solo il
2882   valore \errval{ENOMEM} qualora fallisca l'allocazione della stringa.}
2883 \end{funcproto}
2884
2885 La funzione alloca con \code{malloc} la stringa in cui restituisce il nome,
2886 per cui è sempre rientrante, occorre però ricordarsi di disallocare con
2887 \code{free} il puntatore che restituisce.  L'argomento \param{pfx} specifica
2888 un prefisso di massimo 5 caratteri per il nome provvisorio. La funzione
2889 assegna come directory per il file temporaneo, verificando che esista e sia
2890 accessibile, la prima valida fra le seguenti:
2891 \begin{itemize*}
2892 \item la variabile di ambiente \envvar{TMPDIR} (non ha effetto se non è
2893   definita o se il programma chiamante è \acr{suid} o \acr{sgid}, vedi
2894   sez.~\ref{sec:file_special_perm}),
2895 \item il valore dell'argomento \param{dir} (se diverso da \val{NULL}),
2896 \item il valore della costante \const{P\_tmpdir},
2897 \item la directory \file{/tmp}.
2898 \end{itemize*}
2899
2900 In ogni caso, anche se con queste funzioni la generazione del nome è casuale,
2901 ed è molto difficile ottenere un nome duplicato, nulla assicura che un altro
2902 processo non possa avere creato, fra l'ottenimento del nome e l'apertura del
2903 file, un altro file o un collegamento simbolico con lo stesso nome. Per questo
2904 motivo quando si usa il nome ottenuto da una di queste funzioni occorre sempre
2905 assicurarsi che non si stia usando un collegamento simbolico e aprire il nuovo
2906 file in modalità di esclusione (cioè con l'opzione \const{O\_EXCL} per i file
2907 descriptor o con il flag ``\texttt{x}'' per gli \textit{stream}) che fa
2908 fallire l'apertura in caso il file sia già esistente. Essendo disponibili
2909 alternative migliori l'uso di queste funzioni è deprecato.
2910
2911 Per evitare di dovere effettuare a mano tutti questi controlli, lo standard
2912 POSIX definisce la funzione \funcd{tmpfile}, che permette di ottenere in
2913 maniera sicura l'accesso ad un file temporaneo, il suo prototipo è:
2914
2915 \begin{funcproto}{
2916 \fhead{stdio.h}
2917 \fdecl{FILE *tmpfile(void)}
2918 \fdesc{Apre un file temporaneo in lettura/scrittura.} 
2919 }
2920 {La funzione ritorna il puntatore allo \textit{stream} associato al file
2921   temporaneo in caso di successo e \val{NULL} per un errore, nel qual caso
2922   \var{errno} assumerà uno dei valori:
2923   \begin{errlist}
2924     \item[\errcode{EEXIST}] non è stato possibile generare un nome univoco.
2925     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
2926   \end{errlist}
2927   ed inoltre \errval{EFAULT}, \errval{EMFILE}, \errval{ENFILE},
2928   \errval{ENOSPC}, \errval{EROFS} e \errval{EACCES} nel loro significato
2929   generico.}
2930 \end{funcproto}
2931
2932
2933 La funzione restituisce direttamente uno \textit{stream} già aperto (in
2934 modalità \code{w+b}, si veda sez.~\ref{sec:file_fopen}) e pronto per l'uso,
2935 che viene automaticamente cancellato alla sua chiusura o all'uscita dal
2936 programma. Lo standard non specifica in quale directory verrà aperto il file,
2937 ma la \acr{glibc} prima tenta con \const{P\_tmpdir} e poi con
2938 \file{/tmp}. Questa funzione è rientrante e non soffre di problemi di
2939 \textit{race condition}.
2940
2941 Alcune versioni meno recenti di Unix non supportano queste funzioni; in questo
2942 caso si possono usare le vecchie funzioni \funcd{mktemp} e \func{mkstemp} che
2943 modificano una stringa di input che serve da modello e che deve essere
2944 conclusa da 6 caratteri ``\texttt{X}'' che verranno sostituiti da un codice
2945 unico. La prima delle due è analoga a \func{tmpnam} e genera soltanto un nome
2946 casuale, il suo prototipo è:
2947
2948 \begin{funcproto}{
2949 \fhead{stlib.h}
2950 \fdecl{char *mktemp(char *template)}
2951 \fdesc{Genera un nome univoco per un file temporaneo.} 
2952 }
2953 {La funzione ritorna  il puntatore a \param{template} in caso di successo e
2954   \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno dei valori: 
2955   \begin{errlist}
2956     \item[\errcode{EINVAL}] \param{template} non termina con \code{XXXXXX}.
2957   \end{errlist}}
2958 \end{funcproto}
2959
2960 La funzione genera un nome univoco sostituendo le \code{XXXXXX} finali di
2961 \param{template}; dato che \param{template} deve poter essere modificata dalla
2962 funzione non si può usare una stringa costante.  Tutte le avvertenze riguardo
2963 alle possibili \textit{race condition} date per \func{tmpnam} continuano a
2964 valere; inoltre in alcune vecchie implementazioni il valore usato per
2965 sostituire le \code{XXXXXX} viene formato con il \ids{PID} del processo più
2966 una lettera, il che mette a disposizione solo 26 possibilità diverse per il
2967 nome del file, e rende il nome temporaneo facile da indovinare.  Per tutti
2968 questi motivi la funzione è deprecata e non dovrebbe mai essere usata.
2969
2970 La seconda funzione, \funcd{mkstemp} è sostanzialmente equivalente a
2971 \func{tmpfile}, ma restituisce un file descriptor invece di un nome; il suo
2972 prototipo è:
2973
2974 \begin{funcproto}{
2975 \fhead{stlib.h}
2976 \fdecl{int mkstemp(char *template)}
2977 \fdesc{Apre un file temporaneo.} 
2978 }
2979
2980 {La funzione ritorna il file descriptor in caso di successo e $-1$ per un
2981   errore, nel qual 
2982   caso \var{errno} assumerà uno dei valori: 
2983   \begin{errlist}
2984     \item[\errcode{EEXIST}] non è riuscita a creare un file temporaneo, il
2985       contenuto di \param{template} è indefinito.
2986     \item[\errcode{EINVAL}] \param{template} non termina con \code{XXXXXX}.
2987   \end{errlist}}
2988 \end{funcproto}
2989
2990
2991 Come per \func{mktemp} anche in questo caso \param{template} non può essere
2992 una stringa costante. La funzione apre un file in lettura/scrittura con la
2993 funzione \func{open}, usando l'opzione \const{O\_EXCL} (si veda
2994 sez.~\ref{sec:file_open_close}), in questo modo al ritorno della funzione si
2995 ha la certezza di essere stati i creatori del file, i cui permessi (si veda
2996 sez.~\ref{sec:file_perm_overview}) sono impostati al valore \code{0600}
2997 (lettura e scrittura solo per il proprietario).\footnote{questo è vero a
2998   partire dalla \acr{glibc} 2.0.7, le versioni precedenti della \acr{glibc} e
2999   le vecchie \acr{libc5} e \acr{libc4} usavano il valore \code{0666} che
3000   permetteva a chiunque di leggere e scrivere i contenuti del file.}  Di
3001 questa funzione esiste una variante \funcd{mkostemp}, introdotta
3002 specificamente dalla \acr{glibc},\footnote{la funzione è stata introdotta
3003   nella versione 2.7 delle librerie e richiede che sia definita la macro
3004   \macro{\_GNU\_SOURCE}.} il cui prototipo è:
3005
3006 \begin{funcproto}{
3007 \fhead{stlib.h}
3008 \fdecl{int mkostemp(char *template, int flags)}
3009 \fdesc{Apre un file temporaneo.} 
3010 }
3011 {La funzione ritorna un file descriptor in caso di successo e $-1$ per un
3012   errore, nel qual caso \var{errno} assumerà  gli stessi valori di
3013   \func{mkstemp}.} 
3014 \end{funcproto}
3015 \noindent la cui sola differenza è la presenza dell'ulteriore argomento
3016 \var{flags} che consente di specificare i flag da passare ad \func{open}
3017 nell'apertura del file.
3018
3019
3020 In OpenBSD è stata introdotta un'altra funzione simile alle precedenti,
3021 \funcd{mkdtemp}, che crea invece una directory temporanea;\footnote{la
3022   funzione è stata introdotta nella \acr{glibc} a partire dalla versione
3023   2.1.91 ed inserita nello standard POSIX.1-2008.}  il suo prototipo è:
3024
3025 \begin{funcproto}{
3026 \fhead{stlib.h}
3027 \fdecl{char *mkdtemp(char *template)}
3028 \fdesc{Crea una directory temporanea.} 
3029 }
3030 {La funzione ritorna il puntatore al nome della directory in caso di successo
3031   e \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno dei
3032   valori:
3033   \begin{errlist}
3034     \item[\errcode{EINVAL}] \param{template} non termina con \code{XXXXXX}.
3035   \end{errlist}
3036   più gli altri eventuali codici di errore di \func{mkdir}.}
3037 \end{funcproto}
3038
3039 La funzione crea una directory temporanea il cui nome è ottenuto sostituendo
3040 le \code{XXXXXX} finali di \param{template} con permessi \code{0700} (si veda
3041 sez.~\ref{sec:file_perm_overview} per i dettagli). Dato che la creazione della
3042 directory è sempre esclusiva i precedenti problemi di \textit{race condition}
3043 non si pongono.
3044
3045
3046
3047
3048
3049 \section{La manipolazione delle caratteristiche dei file}
3050 \label{sec:file_infos}
3051
3052 Come spiegato in sez.~\ref{sec:file_filesystem} tutte le informazioni generali
3053 relative alle caratteristiche di ciascun file, a partire dalle informazioni
3054 relative al controllo di accesso, sono mantenute nell'\textit{inode}. Vedremo
3055 in questa sezione come sia possibile leggere tutte queste informazioni usando
3056 la funzione \func{stat}, che permette l'accesso a tutti i dati memorizzati
3057 nell'\textit{inode}; esamineremo poi le varie funzioni usate per manipolare
3058 tutte queste informazioni, eccetto quelle che riguardano la gestione del
3059 controllo di accesso, trattate in in sez.~\ref{sec:file_access_control}.
3060
3061
3062 \subsection{La lettura delle caratteristiche dei file}
3063 \label{sec:file_stat}
3064
3065 La lettura delle informazioni relative ai file è fatta attraverso la famiglia
3066 delle funzioni \func{stat} che sono quelle che usa il comando \cmd{ls} per
3067 poter ottenere e mostrare tutti i dati relativi ad un file; ne fanno parte le
3068 funzioni di sistema \funcd{stat}, \funcd{fstat} e \funcd{lstat}, i cui
3069 prototipi sono:
3070
3071 \begin{funcproto}{
3072 \fhead{sys/types.h}
3073 \fhead{sys/stat.h}
3074 \fhead{unistd.h}
3075 \fdecl{int stat(const char *file\_name, struct stat *buf)}
3076 \fdecl{int lstat(const char *file\_name, struct stat *buf)}
3077 \fdecl{int fstat(int filedes, struct stat *buf)}
3078 \fdesc{Leggono le informazioni di un file.} 
3079 }
3080 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
3081   caso \var{errno} assumerà uno dei valori:
3082   \begin{errlist}
3083     \item[\errcode{EOVERFLOW}] il file ha una dimensione che non può essere
3084       rappresentata nel tipo \type{off\_t} (può avvenire solo in caso di
3085       programmi compilati su piattaforme a 32 bit senza le estensioni
3086       (\texttt{-D \_FILE\_OFFSET\_BITS=64}) per file a 64 bit).
3087   \end{errlist}
3088   ed inoltre \errval{EFAULT} ed \errval{ENOMEM}, per \func{stat} e
3089   \func{lstat} anche \errval{EACCES}, \errval{ELOOP}, \errval{ENAMETOOLONG},
3090   \errval{ENOENT}, \errval{ENOTDIR}, per \func{fstat} anche \errval{EBADF}, 
3091   nel loro significato generico.}
3092 \end{funcproto}
3093
3094 La funzione \func{stat} legge le informazioni del file indicato
3095 da \param{file\_name} e le inserisce nel buffer puntato
3096 dall'argomento \param{buf}; la funzione \func{lstat} è identica a \func{stat}
3097 eccetto che se \param{file\_name} è un collegamento simbolico vengono lette le
3098 informazioni relative ad esso e non al file a cui fa riferimento. Infine
3099 \func{fstat} esegue la stessa operazione su un file già aperto, specificato
3100 tramite il suo file descriptor \param{filedes}.
3101
3102 La struttura \struct{stat} usata da queste funzioni è definita nell'header
3103 \headfile{sys/stat.h} e in generale dipende dall'implementazione; la versione
3104 usata da Linux è mostrata in fig.~\ref{fig:file_stat_struct}, così come
3105 riportata dalla pagina di manuale di \func{stat}. In realtà la definizione
3106 effettivamente usata nel kernel dipende dall'architettura e ha altri campi
3107 riservati per estensioni come tempi dei file più precisi (vedi
3108 sez.~\ref{sec:file_file_times}).
3109
3110 \begin{figure}[!htb]
3111   \footnotesize
3112   \centering
3113   \begin{minipage}[c]{0.8\textwidth}
3114     \includestruct{listati/stat.h}
3115   \end{minipage} 
3116   \normalsize 
3117   \caption{La struttura \structd{stat} per la lettura delle informazioni dei 
3118     file.}
3119   \label{fig:file_stat_struct}
3120 \end{figure}
3121
3122 Si noti come i vari membri della struttura siano specificati come tipi
3123 primitivi del sistema, di quelli definiti in
3124 tab.~\ref{tab:intro_primitive_types}, e dichiarati in \headfile{sys/types.h},
3125 con l'eccezione di \type{blksize\_t} e \type{blkcnt\_t} che sono nuovi tipi
3126 introdotti per rendersi indipendenti dalla piattaforma. 
3127
3128 Benché la descrizione dei commenti di fig.~\ref{fig:file_stat_struct} sia
3129 abbastanza chiara, vale la pena illustrare maggiormente il significato dei
3130 campi di \struct{stat} su cui non torneremo in maggior dettaglio nel resto di
3131 questa sezione:
3132 \begin{itemize*}
3133
3134 \item Il campo \var{st\_nlink} contiene il numero di \textit{hard link} che
3135   fanno riferimento al file (il cosiddetto \textit{link count}) di cui abbiamo
3136   già parlato in numerose occasioni.
3137
3138 \item Il campo \var{st\_ino} contiene il numero di \textit{inode} del file,
3139   quello viene usato all'interno del filesystem per identificarlo e che può
3140   essere usato da un programma per determinare se due \textit{pathname} fanno
3141   riferimento allo stesso file.
3142
3143 \item Il campo \var{st\_dev} contiene il numero del dispositivo su cui risiede
3144   il file (o meglio il suo filesystem). Si tratta dello stesso numero che si
3145   usa con \func{mknod} e che può essere decomposto in \textit{major number} e
3146   \textit{minor number} con le macro \macro{major} e \macro{minor} viste in
3147   sez.~\ref{sec:file_mknod}.
3148
3149 \item Il campo \var{st\_rdev} contiene il numero di dispositivo associato al
3150   file stesso ed ovviamente ha un valore significativo soltanto quando il file
3151   è un dispositivo a caratteri o a blocchi.
3152
3153 \item Il campo \var{st\_blksize} contiene la dimensione dei blocchi di dati
3154   usati nell'I/O su disco, che è anche la dimensione usata per la
3155   bufferizzazione dei dati dalle librerie del C per l'interfaccia degli
3156   \textit{stream}.  Leggere o scrivere blocchi di dati in dimensioni inferiori
3157   a questo valore è inefficiente in quanto le operazioni su disco usano
3158   comunque trasferimenti di questa dimensione.
3159
3160 \end{itemize*}
3161
3162
3163
3164 \subsection{I tipi di file}
3165 \label{sec:file_types}
3166
3167 Abbiamo sottolineato fin dall'introduzione che Linux, come ogni sistema
3168 unix-like, supporta oltre ai file ordinari e alle directory una serie di altri
3169 ``\textsl{tipi}'' di file che possono stare su un filesystem (elencati in
3170 tab.~\ref{tab:file_file_types}).  Il tipo di file viene ritornato dalle
3171 funzioni della famiglia \func{stat} all'interno del campo \var{st\_mode} di
3172 una struttura \struct{stat}. 
3173
3174 Il campo \var{st\_mode} è una maschera binaria in cui l'informazione viene
3175 suddivisa nei vari bit che compongono, ed oltre a quelle sul tipo di file,
3176 contiene anche le informazioni relative ai permessi su cui torneremo in
3177 sez.~\ref{sec:file_perm_overview}. Dato che i valori numerici usati per
3178 definire il tipo di file possono variare a seconda delle implementazioni, lo
3179 standard POSIX definisce un insieme di macro che consentono di verificare il
3180 tipo di file in maniera standardizzata.
3181
3182 \begin{table}[htb]
3183   \centering
3184   \footnotesize
3185   \begin{tabular}[c]{|l|l|}
3186     \hline
3187     \textbf{Macro} & \textbf{Tipo del file} \\
3188     \hline
3189     \hline
3190     \macrod{S\_ISREG}\texttt{(m)}  & File normale.\\
3191     \macrod{S\_ISDIR}\texttt{(m)}  & Directory.\\
3192     \macrod{S\_ISCHR}\texttt{(m)}  & Dispositivo a caratteri.\\
3193     \macrod{S\_ISBLK}\texttt{(m)}  & Dispositivo a blocchi.\\
3194     \macrod{S\_ISFIFO}\texttt{(m)} & Fifo.\\
3195     \macrod{S\_ISLNK}\texttt{(m)}  & Collegamento simbolico.\\
3196     \macrod{S\_ISSOCK}\texttt{(m)} & Socket.\\
3197     \hline    
3198   \end{tabular}
3199   \caption{Macro per i tipi di file (definite in \headfile{sys/stat.h}).}
3200   \label{tab:file_type_macro}
3201 \end{table}
3202
3203 Queste macro vengono usate anche da Linux che supporta pure le estensioni allo
3204 standard per i collegamenti simbolici e i socket definite da BSD.\footnote{le
3205   ultime due macro di tab.~\ref{tab:file_type_macro}, che non sono presenti
3206   nello standard POSIX fino alla revisione POSIX.1-1996.}  L'elenco completo
3207 delle macro con cui è possibile estrarre da \var{st\_mode} l'informazione
3208 relativa al tipo di file è riportato in tab.~\ref{tab:file_type_macro}, tutte
3209 le macro restituiscono un valore intero da usare come valore logico e prendono
3210 come argomento il valore di \var{st\_mode}.
3211
3212 \begin{table}[htb]
3213   \centering
3214   \footnotesize
3215   \begin{tabular}[c]{|l|c|l|}
3216     \hline
3217     \textbf{Flag} & \textbf{Valore} & \textbf{Significato} \\
3218     \hline
3219     \hline
3220     \constd{S\_IFMT}   &  0170000 & Maschera per i bit del tipo di file.\\
3221     \constd{S\_IFSOCK} &  0140000 & Socket.\\
3222     \constd{S\_IFLNK}  &  0120000 & Collegamento simbolico.\\
3223     \constd{S\_IFREG}  &  0100000 & File regolare.\\ 
3224     \constd{S\_IFBLK}  &  0060000 & Dispositivo a blocchi.\\
3225     \constd{S\_IFDIR}  &  0040000 & Directory.\\
3226     \constd{S\_IFCHR}  &  0020000 & Dispositivo a caratteri.\\
3227     \constd{S\_IFIFO}  &  0010000 & Fifo.\\
3228     \hline
3229     \constd{S\_ISUID}  &  0004000 & Set user ID (\acr{suid}) bit, vedi
3230                                    sez.~\ref{sec:file_special_perm}).\\
3231     \constd{S\_ISGID}  &  0002000 & Set group ID (\acr{sgid}) bit, vedi
3232                                    sez.~\ref{sec:file_special_perm}).\\
3233     \constd{S\_ISVTX}  &  0001000 & \acr{Sticky} bit, vedi
3234                                    sez.~\ref{sec:file_special_perm}).\\
3235     \hline
3236     \constd{S\_IRWXU}  &  00700   & Maschera per i permessi del proprietario.\\
3237     \constd{S\_IRUSR}  &  00400   & Il proprietario ha permesso di lettura.\\
3238     \constd{S\_IWUSR}  &  00200   & Il proprietario ha permesso di scrittura.\\
3239     \constd{S\_IXUSR}  &  00100   & Il proprietario ha permesso di esecuzione.\\
3240     \hline
3241     \constd{S\_IRWXG}  &  00070   & Maschera per i permessi del gruppo.\\
3242     \constd{S\_IRGRP}  &  00040   & Il gruppo ha permesso di lettura.\\
3243     \constd{S\_IWGRP}  &  00020   & Il gruppo ha permesso di scrittura.\\
3244     \constd{S\_IXGRP}  &  00010   & Il gruppo ha permesso di esecuzione.\\
3245     \hline
3246     \constd{S\_IRWXO}  &  00007   & Maschera per i permessi di tutti gli altri\\
3247     \constd{S\_IROTH}  &  00004   & Gli altri hanno permesso di lettura.\\
3248     \constd{S\_IWOTH}  &  00002   & Gli altri hanno permesso di esecuzione.\\
3249     \constd{S\_IXOTH}  &  00001   & Gli altri hanno permesso di esecuzione.\\
3250     \hline    
3251   \end{tabular}
3252   \caption{Costanti per l'identificazione dei vari bit che compongono il campo
3253     \var{st\_mode} (definite in \headfile{sys/stat.h}).}
3254   \label{tab:file_mode_flags}
3255 \end{table}
3256
3257 Oltre alle macro di tab.~\ref{tab:file_type_macro}, che semplificano
3258 l'operazione, è possibile usare direttamente il valore di \var{st\_mode} per
3259 ricavare il tipo di file controllando direttamente i vari bit in esso
3260 memorizzati. Per questo sempre in \headfile{sys/stat.h} sono definite le varie
3261 costanti numeriche riportate in tab.~\ref{tab:file_mode_flags}, che
3262 definiscono le maschere che consentono di selezionare non solo i dati relativi
3263 al tipo di file, ma anche le informazioni relative ai permessi su cui
3264 torneremo in sez.~\ref{sec:file_access_control}, ed identificare i rispettivi
3265 valori.
3266
3267 Le costanti che servono per la identificazione del tipo di file sono riportate
3268 nella prima sezione di tab.~\ref{tab:file_mode_flags}, mentre le sezioni
3269 successive attengono alle costanti usate per i permessi.  Il primo valore
3270 dell'elenco è la maschera binaria \const{S\_IFMT} che permette di estrarre da
3271 \var{st\_mode} (con un AND aritmetico) il blocco di bit nei quali viene
3272 memorizzato il tipo di file. I valori successivi sono le costanti
3273 corrispondenti ai vari tipi di file, e possono essere usate per verificare la
3274 presenza del tipo di file voluto ed anche, con opportune combinazioni,
3275 alternative fra più tipi di file. 
3276
3277 Si tenga presente però che a differenza dei permessi, l'informazione relativa
3278 al tipo di file non è una maschera binaria, per questo motivo se si volesse
3279 impostare una condizione che permetta di controllare se un file è una
3280 directory o un file ordinario non si possono controllare dei singoli bit, ma
3281 si dovrebbe usare una macro di preprocessore come:
3282 \includecodesnip{listati/is_regdir.h}
3283 in cui si estraggono ogni volta da \var{st\_mode} i bit relativi al tipo di
3284 file e poi si effettua il confronto con i due possibili tipi di file.
3285
3286
3287 \subsection{Le dimensioni dei file}
3288 \label{sec:file_file_size}
3289
3290 Abbiamo visto in fig.~\ref{fig:file_stat_struct} che campo \var{st\_size} di
3291 una struttura \struct{stat} contiene la dimensione del file in byte. Questo
3292 però è vero solo se si tratta di un file regolare, mentre nel caso di un
3293 collegamento simbolico la dimensione è quella del \textit{pathname} che il
3294 collegamento stesso contiene, infine per le fifo ed i file di dispositivo
3295 questo campo è sempre nullo.
3296
3297 Il campo \var{st\_blocks} invece definisce la lunghezza del file in blocchi di
3298 512 byte. La differenza con \var{st\_size} è che in questo caso si fa
3299 riferimento alla quantità di spazio disco allocata per il file, e non alla
3300 dimensione dello stesso che si otterrebbe leggendolo sequenzialmente.
3301
3302 Si deve tener presente infatti che la lunghezza del file riportata in
3303 \var{st\_size} non è detto che corrisponda all'occupazione dello spazio su
3304 disco, e non solo perché la parte finale del file potrebbe riempire
3305 parzialmente un blocco. In un sistema unix-like infatti è possibile
3306 l'esistenza dei cosiddetti \textit{sparse file}, cioè file in cui sono
3307 presenti dei ``\textsl{buchi}'' (\textit{holes} nella nomenclatura inglese)
3308 che si formano tutte le volte che si va a scrivere su un file dopo aver
3309 eseguito uno spostamento oltre la sua fine (tratteremo in dettaglio
3310 l'argomento in sez.~\ref{sec:file_lseek}).
3311
3312 In questo caso si avranno risultati differenti a seconda del modo in cui si
3313 calcola la lunghezza del file, ad esempio il comando \cmd{du}, (che riporta il
3314 numero di blocchi occupati) potrà dare una dimensione inferiore, mentre se si
3315 legge dal file (ad esempio usando il comando \cmd{wc -c}), dato che in tal
3316 caso per i ``\textsl{buchi}'' vengono restituiti degli zeri, si avrà lo stesso
3317 risultato di \cmd{ls}.
3318
3319 Se è sempre possibile allargare un file, scrivendoci sopra o usando la
3320 funzione \func{lseek} (vedi sez.~\ref{sec:file_lseek}) per spostarsi oltre la
3321 sua fine, esistono anche casi in cui si può avere bisogno di effettuare un
3322 troncamento, scartando i dati presenti al di là della dimensione scelta come
3323 nuova fine del file.
3324
3325 Un file può sempre essere troncato a zero aprendolo con il flag
3326 \const{O\_TRUNC}, ma questo è un caso particolare; per qualunque altra
3327 dimensione si possono usare le due funzioni di sistema \funcd{truncate} e
3328 \funcd{ftruncate}, i cui prototipi sono:
3329
3330 \begin{funcproto}{
3331 \fhead{unistd.h}
3332 \fdecl{int ftruncate(int fd, off\_t length))}
3333 \fdecl{int truncate(const char *file\_name, off\_t length)}
3334 \fdesc{Troncano un file.} 
3335 }
3336 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
3337   caso \var{errno} assumerà uno dei valori: 
3338   \begin{errlist}
3339   \item[\errcode{EINTR}] si è stati interrotti da un segnale.
3340   \item[\errcode{EINVAL}] \param{length} è negativa o maggiore delle
3341     dimensioni massime di un file.
3342   \item[\errcode{EPERM}] il filesystem non supporta il troncamento di un file.
3343   \item[\errcode{ETXTBSY}] il file è un programma in esecuzione.
3344   \end{errlist} 
3345   per entrambe, mentre per \func{ftruncate} si avranno anche: 
3346   \begin{errlist}
3347   \item[\errcode{EBADF}] \param{fd} non è un file descriptor.
3348   \item[\errcode{EINVAL}] \param{fd} non è un riferimento a un file o non è
3349     aperto in scrittura. 
3350   \end{errlist}
3351   e per \func{truncate} si avranno anche: 
3352   \begin{errlist}
3353   \item[\errcode{EACCES}] non si ha il permesso di scrittura sul file o il
3354     permesso di attraversamento di una delle componenti del \textit{pathname}.
3355   \item[\errcode{EISDIR}] \param{file\_name} fa riferimento ad una directory.
3356   \end{errlist}
3357   ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{ELOOP},
3358   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOTDIR} e \errval{EROFS}
3359   nel loro significato generico.}
3360 \end{funcproto}
3361
3362 Entrambe le funzioni fan sì che la dimensione del file sia troncata ad un
3363 valore massimo specificato da \param{length}, e si distinguono solo per il
3364 fatto che il file viene indicato con un \textit{pathname} per \func{truncate}
3365 e con un file descriptor per \funcd{ftruncate}. Si tenga presente che se il
3366 file è più lungo della lunghezza specificata i dati in eccesso saranno
3367 perduti.
3368
3369 Il comportamento in caso di lunghezza del file inferiore a \param{length} non
3370 è specificato e dipende dall'implementazione: il file può essere lasciato
3371 invariato o esteso fino alla lunghezza scelta. Nel caso di Linux viene esteso
3372 con la creazione di un \textsl{buco} nel file e ad una lettura si otterranno
3373 degli zeri, si tenga presente però che questo comportamento è supportato solo
3374 per filesystem nativi, ad esempio su un filesystem non nativo come il VFAT di
3375 Windows questo non è possibile.
3376
3377
3378 \subsection{I tempi dei file}
3379 \label{sec:file_file_times}
3380
3381 Il sistema mantiene per ciascun file tre tempi, che sono registrati
3382 nell'\textit{inode} insieme agli altri attributi del file. Questi possono
3383 essere letti tramite la funzione \func{stat}, che li restituisce attraverso
3384 tre campi della struttura \struct{stat} di fig.~\ref{fig:file_stat_struct}. Il
3385 significato di questi tempi e dei relativi campi della struttura \struct{stat}
3386 è illustrato nello schema di tab.~\ref{tab:file_file_times}, dove è anche
3387 riportato un esempio delle funzioni che effettuano cambiamenti su di essi. Il
3388 valore del tempo è espresso nel cosiddetto \textit{calendar time}, su cui
3389 torneremo in dettaglio in sez.~\ref{sec:sys_time}.
3390
3391 \begin{table}[htb]
3392   \centering
3393   \footnotesize
3394   \begin{tabular}[c]{|c|l|l|c|}
3395     \hline
3396     \textbf{Membro} & \textbf{Significato} & \textbf{Funzione} 
3397     & \textbf{Opzione di \cmd{ls}} \\
3398     \hline
3399     \hline
3400     \var{st\_atime}& ultimo accesso ai dati del file    &
3401                      \func{read}, \func{utime}          & \cmd{-u}\\
3402     \var{st\_mtime}& ultima modifica ai dati del file   &
3403                      \func{write}, \func{utime}         & default\\
3404     \var{st\_ctime}& ultima modifica ai dati dell'\textit{inode} &
3405                      \func{chmod}, \func{utime}         & \cmd{-c}\\
3406     \hline
3407   \end{tabular}
3408   \caption{I tre tempi associati a ciascun file.}
3409   \label{tab:file_file_times}
3410 \end{table}
3411
3412 Il primo punto da tenere presente è la differenza fra il cosiddetto tempo di
3413 ultima modifica (il \textit{modification time}) riportato in \var{st\_mtime},
3414 ed il tempo di ultimo cambiamento di stato (il \textit{change status time})
3415 riportato in \var{st\_ctime}. Il primo infatti fa riferimento ad una modifica
3416 del contenuto di un file, mentre il secondo ad una modifica dei metadati
3417 dell'\textit{inode}. Dato che esistono molte operazioni, come la funzione
3418 \func{link} e altre che vedremo in seguito, che modificano solo le
3419 informazioni contenute nell'\textit{inode} senza toccare il contenuto del
3420 file, diventa necessario l'utilizzo di questo secondo tempo.
3421
3422 Il tempo di ultima modifica viene usato ad esempio da programmi come
3423 \cmd{make} per decidere quali file necessitano di essere ricompilati perché
3424 più recenti dei loro sorgenti oppure dai programmi di backup, talvolta insieme
3425 anche al tempo di cambiamento di stato, per decidere quali file devono essere
3426 aggiornati nell'archiviazione.  Il tempo di ultimo accesso viene di solito
3427 usato per identificare i file che non vengono più utilizzati per un certo
3428 lasso di tempo. Ad esempio un programma come \texttt{leafnode} lo usa per
3429 cancellare gli articoli letti più vecchi, mentre \texttt{mutt} lo usa per
3430 marcare i messaggi di posta che risultano letti.  
3431
3432 Il sistema non tiene mai conto dell'ultimo accesso all'\textit{inode},
3433 pertanto funzioni come \func{access} o \func{stat} non hanno alcuna influenza
3434 sui tre tempi. Il comando \cmd{ls} (quando usato con le opzioni \cmd{-l} o
3435 \cmd{-t}) mostra i tempi dei file secondo lo schema riportato nell'ultima
3436 colonna di tab.~\ref{tab:file_file_times}. Si noti anche come non esista, a
3437 differenza di altri sistemi operativi, un \textsl{tempo di creazione} di un
3438 file.
3439
3440 L'aggiornamento del tempo di ultimo accesso è stato a lungo considerato un
3441 difetto progettuale di Unix, questo infatti comporta la necessità di
3442 effettuare un accesso in scrittura sul disco anche in tutti i casi in cui
3443 questa informazione non interessa e sarebbe possibile avere un semplice
3444 accesso in lettura sui dati bufferizzati. Questo comporta un ovvio costo sia
3445 in termini di prestazioni, che di consumo di risorse come la batteria per i
3446 portatili, o i cicli di riscrittura per i dischi su memorie riscrivibili.
3447
3448
3449 Per questo motivo abbiamo visto in sez.~\ref{sec:filesystem_mounting} come
3450 nello sviluppo del kernel siano stati introdotti degli opportuni \textit{mount
3451   flag} che consentissero di evitare di aggiornare continuamente una
3452 informazione che nella maggior parte dei casi non interessa. Per questo i
3453 valori che si possono trovare per l'\textit{access time} dipendono dalle
3454 opzioni di montaggio, ed anche, essendo stato cambiato il comportamento di
3455 default a partire dalla versione 2.6.30, dal kernel che si sta usando. 
3456
3457 In generale quello che si ha con i kernel più recenti è che il tempo di ultimo
3458 accesso viene aggiornato solo se è precedente al tempo di ultima modifica o
3459 cambiamento, o se è passato più di un giorno dall'ultimo accesso. Così si può
3460 rendere evidente che vi è stato un accesso dopo una modifica e che il file
3461 viene comunque osservato regolarmente, conservando tutte le informazioni
3462 veramente utili senza dover consumare risorse in scritture continue per
3463 mantenere costantemente aggiornata una informazione che a questo punto non ha
3464 più nessuna rilevanza pratica.\footnote{qualora ce ne fosse la necessità è
3465   comunque possibile, tramite l'opzione di montaggio \texttt{strictatime},
3466   richiedere in ogni caso il comportamento tradizionale.}
3467
3468 \begin{table}[htb]
3469   \centering
3470   \footnotesize
3471   \begin{tabular}[c]{|l|c|c|c|c|c|c|l|}
3472     \hline
3473     \multicolumn{1}{|p{2.8cm}|}{\centering{\vspace{6pt}\textbf{Funzione}}} &
3474     \multicolumn{3}{|p{3.2cm}|}{\centering{
3475         \textbf{File o directory del riferimento}}}&
3476     \multicolumn{3}{|p{3.2cm}|}{\centering{
3477         \textbf{Directory contenente il riferimento}}} 
3478     &\multicolumn{1}{|p{3.4cm}|}{\centering{\vspace{6pt}\textbf{Note}}} \\
3479     \cline{2-7}
3480     \cline{2-7}
3481     \multicolumn{1}{|p{2.8cm}|}{} 
3482     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(a)}}}
3483     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(m)}}}
3484     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(c)}}}
3485     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(a)}}}
3486     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(m)}}}
3487     &\multicolumn{1}{|p{.8cm}|}{\centering{\textsl{(c)}}}
3488     &\multicolumn{1}{|p{3cm}|}{} \\
3489     \hline
3490     \hline
3491     \func{chmod}, \func{fchmod} 
3492              & --      & --      &$\bullet$& --      & --      & --      &\\
3493     \func{chown}, \func{fchown} 
3494              & --      & --      &$\bullet$& --      & --      & --      &\\
3495     \func{creat}  
3496              &$\bullet$&$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$&  
3497              con \const{O\_CREATE} \\
3498     \func{creat}  
3499              & --      &$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$&   
3500              con \const{O\_TRUNC} \\
3501     \func{exec}  
3502              &$\bullet$& --      & --      & --      & --      & --      &\\
3503     \func{lchown}  
3504              & --      & --      &$\bullet$& --      & --      & --      &\\
3505     \func{link}
3506              & --      & --      &$\bullet$& --      &$\bullet$&$\bullet$&\\
3507     \func{mkdir}
3508              &$\bullet$&$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$&\\
3509     \func{mknod}
3510              &$\bullet$&$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$&\\
3511     \func{mkfifo}
3512              &$\bullet$&$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$&\\
3513     \func{open}
3514              &$\bullet$&$\bullet$&$\bullet$& --      &$\bullet$&$\bullet$& 
3515              con \const{O\_CREATE} \\
3516     \func{open}
3517              & --      &$\bullet$&$\bullet$& --      & --      & --      & 
3518              con \const{O\_TRUNC}  \\
3519     \func{pipe}
3520              &$\bullet$&$\bullet$&$\bullet$& --      & --      & --      &\\
3521     \func{read}
3522              &$\bullet$& --      & --      & --      & --      & --      &\\
3523     \func{remove}
3524              & --      & --      &$\bullet$& --      &$\bullet$&$\bullet$& 
3525              se esegue \func{unlink}\\
3526     \func{remove}
3527               & --      & --      & --      & --      &$\bullet$&$\bullet$& 
3528               se esegue \func{rmdir}\\
3529     \func{rename}
3530               & --      & --      &$\bullet$& --      &$\bullet$&$\bullet$& 
3531               per entrambi gli argomenti\\
3532     \func{rmdir}
3533               & --      & --      & --      & --      &$\bullet$&$\bullet$&\\ 
3534     \func{truncate}, \func{ftruncate}
3535               & --      &$\bullet$&$\bullet$& --      & --      & --      &\\ 
3536     \func{unlink}
3537               & --      & --      &$\bullet$& --      &$\bullet$&$\bullet$&\\ 
3538     \func{utime}
3539               &$\bullet$&$\bullet$&$\bullet$& --      & --      & --      &\\ 
3540     \func{utimes}
3541               &$\bullet$&$\bullet$&$\bullet$& --      & --      & --      &\\ 
3542     \func{write}
3543               & --      &$\bullet$&$\bullet$& --      & --      & --      &\\ 
3544     \hline
3545   \end{tabular}
3546   \caption{Prospetto dei cambiamenti effettuati sui tempi di ultimo 
3547     accesso \textsl{(a)}, ultima modifica \textsl{(m)} e ultimo cambiamento di
3548     stato \textsl{(c)} dalle varie funzioni operanti su file e directory.}
3549   \label{tab:file_times_effects}  
3550 \end{table}
3551
3552
3553 L'effetto delle varie funzioni di manipolazione dei file sui relativi tempi è
3554 illustrato in tab.~\ref{tab:file_times_effects}, facendo riferimento al
3555 comportamento classico per quanto riguarda \var{st\_atime}. Si sono riportati
3556 gli effetti sia per il file a cui si fa riferimento, sia per la directory che
3557 lo contiene. Questi ultimi possono essere capiti immediatamente se si tiene
3558 conto di quanto già detto e ripetuto a partire da
3559 sez.~\ref{sec:file_filesystem}, e cioè che anche le directory sono anch'esse
3560 file che contengono una lista di nomi, che il sistema tratta in maniera del
3561 tutto analoga a tutti gli altri.
3562
3563 Per questo motivo tutte le volte che compiremo un'operazione su un file che
3564 comporta una modifica del nome contenuto nella directory, andremo anche a
3565 scrivere sulla directory che lo contiene cambiandone il tempo di ultima
3566 modifica. Un esempio di questo tipo di operazione può essere la cancellazione
3567 di un file, invece leggere o scrivere o cambiare i permessi di un file ha
3568 effetti solo sui tempi di quest'ultimo.
3569
3570 Si ricordi infine come \var{st\_ctime} non è il tempo di creazione del file,
3571 che in Unix non esiste, anche se può corrispondervi per file che non sono mai
3572 stati modificati. Per questo motivo, a differenza di quanto avviene con altri
3573 sistemi operativi, quando si copia un file, a meno di preservare
3574 esplicitamente i tempi (ad esempio con l'opzione \cmd{-p} di \cmd{cp}) esso
3575 avrà sempre il tempo corrente in cui si è effettuata la copia come data di
3576 ultima modifica.
3577
3578 I tempi di ultimo accesso ed ultima modifica possono essere modificati
3579 esplicitamente usando la funzione di sistema \funcd{utime}, il cui prototipo
3580 è:
3581
3582 \begin{funcproto}{
3583 \fhead{utime.h}
3584 \fdecl{int utime(const char *filename, struct utimbuf *times)}
3585 \fdesc{Modifica i tempi di ultimo accesso ed ultima modifica di un file.} 
3586 }
3587
3588 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3589   caso \var{errno} assumerà uno dei valori: 
3590   \begin{errlist}
3591   \item[\errcode{EACCES}] non c'è il permesso di attraversamento per uno dei
3592     componenti di \param{filename} o \param{times} è \val{NULL} e non si ha il
3593     permesso di scrittura sul file, o non si è proprietari del file o non si
3594     hanno i privilegi di amministratore.
3595   \item[\errcode{EPERM}] \param{times} non è \val{NULL}, e non si è
3596     proprietari del file o non si hanno i privilegi di amministratore.
3597   \end{errlist}
3598   ed inoltre \errval{ENOENT} e \errval{EROFS} nel loro significato generico.}
3599 \end{funcproto}
3600
3601 La funzione cambia i tempi di ultimo accesso e di ultima modifica del file
3602 specificato dall'argomento \param{filename}, e richiede come secondo argomento
3603 il puntatore ad una struttura \struct{utimbuf}, la cui definizione è riportata
3604 in fig.~\ref{fig:struct_utimebuf}, con i nuovi valori di detti tempi
3605 (rispettivamente nei campi \var{actime} e \var{modtime}). Se si passa un
3606 puntatore nullo verrà impostato il tempo corrente.
3607
3608 \begin{figure}[!htb]
3609   \footnotesize \centering
3610   \begin{minipage}[c]{0.8\textwidth}
3611     \includestruct{listati/utimbuf.h}
3612   \end{minipage} 
3613   \normalsize 
3614   \caption{La struttura \structd{utimbuf}, usata da \func{utime} per modificare
3615     i tempi dei file.}
3616   \label{fig:struct_utimebuf}
3617 \end{figure}
3618
3619 L'effetto della funzione ed i privilegi necessari per eseguirla dipendono dal
3620 valore dell'argomento \param{times}. Se è \val{NULL} la funzione imposta il
3621 tempo corrente ed è sufficiente avere accesso in scrittura al file o essere
3622 proprietari del file o avere i privilegi di amministratore. Se invece si è
3623 specificato un valore diverso la funzione avrà successo solo se si è
3624 proprietari del file o se si hanno i privilegi di amministratore.\footnote{per
3625   essere precisi la capacità \const{CAP\_FOWNER}, vedi
3626   sez.~\ref{sec:proc_capabilities}.} In entrambi i casi per verificare la
3627 proprietà del file viene utilizzato l'\ids{UID} effettivo del processo.
3628
3629 Si tenga presente che non è possibile modificare manualmente il tempo di
3630 cambiamento di stato del file, che viene aggiornato direttamente dal kernel
3631 tutte le volte che si modifica l'\textit{inode}, e quindi anche alla chiamata
3632 di \func{utime}.  Questo serve anche come misura di sicurezza per evitare che
3633 si possa modificare un file nascondendo completamente le proprie tracce. In
3634 realtà la cosa resta possibile se si è in grado di accedere al file di
3635 dispositivo, scrivendo direttamente sul disco senza passare attraverso il
3636 filesystem, ma ovviamente in questo modo la cosa è più complicata da
3637 realizzare.\footnote{esistono comunque molti programmi che consentono di farlo
3638   con relativa semplicità per cui non si dia per scontato che il valore sia
3639   credibile in caso di macchina compromessa.}
3640
3641 A partire dal kernel 2.6 la risoluzione dei tempi dei file, che nei campi di
3642 tab.~\ref{tab:file_file_times} è espressa in secondi, è stata portata ai
3643 nanosecondi per la gran parte dei filesystem. La ulteriore informazione può
3644 essere acceduta attraverso altri campi appositamente aggiunti alla struttura
3645 \struct{stat}. Se si sono definite le macro \macro{\_BSD\_SOURCE} o
3646 \macro{\_SVID\_SOURCE} questi sono \var{st\_atim.tv\_nsec},
3647 \var{st\_mtim.tv\_nsec} e \var{st\_ctim.tv\_nsec} se queste non sono definite,
3648 \var{st\_atimensec}, \var{st\_mtimensec} e \var{st\_mtimensec}. Qualora il
3649 supporto per questa maggior precisione sia assente questi campi aggiuntivi
3650 saranno nulli.
3651
3652 Per la gestione di questi nuovi valori è stata definita una seconda funzione
3653 di sistema, \funcd{utimes}, che consente di specificare tempi con maggior
3654 precisione; il suo prototipo è:
3655
3656 \begin{funcproto}{
3657 \fhead{sys/time.h}
3658 \fdecl{int utimes(const char *filename, struct timeval times[2])}
3659 \fdesc{Modifica i tempi di ultimo accesso e ultima modifica di un file.} 
3660 }
3661 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3662   caso \var{errno} assumerà gli stessi valori di \func{utime}.}  
3663 \end{funcproto}
3664  
3665 La funzione è del tutto analoga alla precedente \func{utime} ma usa come
3666 secondo argomento un vettore di due strutture \struct{timeval}, la cui
3667 definizione è riportata in fig.~\ref{fig:sys_timeval_struct}, che consentono
3668 di indicare i tempi con una precisione del microsecondo. Il primo elemento
3669 di \param{times} indica il valore per il tempo di ultimo accesso, il secondo
3670 quello per il tempo di ultima modifica. Se si indica come secondo argomento un
3671 puntatore nullo di nuovo verrà utilizzato il tempo corrente.
3672
3673 \begin{figure}[!htb]
3674   \footnotesize \centering
3675   \begin{minipage}[c]{0.8\textwidth}
3676     \includestruct{listati/timeval.h}
3677   \end{minipage} 
3678   \normalsize 
3679   \caption{La struttura \structd{timeval} usata per indicare valori di tempo
3680     con la precisione del microsecondo.}
3681   \label{fig:sys_timeval_struct}
3682 \end{figure}
3683
3684 Oltre ad \func{utimes} su Linux sono presenti altre due funzioni,\footnote{le
3685   due funzioni non sono definite in nessuno standard, ma sono presenti, oltre
3686   che su Linux, anche su BSD.} \funcd{futimes} e \funcd{lutimes}, che
3687 consentono rispettivamente di effettuare la modifica utilizzando un file già
3688 aperto o di eseguirla direttamente su un collegamento simbolico. I relativi
3689 prototipi sono:
3690
3691 \begin{funcproto}{
3692 \fhead{sys/time.h}
3693 \fdecl{int futimes(int fd, const struct timeval tv[2])}
3694 \fdesc{Cambia i tempi di un file già aperto.} 
3695 \fdecl{int lutimes(const char *filename, const struct timeval tv[2])}
3696 \fdesc{Cambia i tempi di un collegamento simbolico.} 
3697 }
3698
3699 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
3700   caso \var{errno} assumerà uno gli stessi valori di \func{utimes}, con in più
3701   per \func{futimes}:
3702   \begin{errlist}
3703   \item[\errcode{EBADF}] \param{fd} non è un file descriptor.
3704   \item[\errcode{ENOSYS}] il filesystem \texttt{/proc} non è accessibile.
3705   \end{errlist}}  
3706 \end{funcproto}
3707
3708 Le due funzioni hanno lo stesso comportamento di \texttt{utimes} e richiedono
3709 gli stessi privilegi per poter operare, la differenza è che con \func{futimes}
3710 si può indicare il file su cui operare se questo è già aperto facendo
3711 riferimento al suo file descriptor, mentre con \func{lutimes} nel caso in
3712 cui \param{filename} sia un collegamento simbolico saranno modificati i suoi
3713 tempi invece di quelli del file a cui esso punta.
3714
3715 Nonostante il kernel nelle versioni più recenti supporti, come accennato,
3716 risoluzioni dei tempi dei file fino al nanosecondo, le funzioni fin qui
3717 esaminate non consentono di impostare valori con questa precisione. Per questo
3718 sono state introdotte due nuove funzioni di sistema, \funcd{futimens} e
3719 \funcd{utimensat}, in grado di eseguire questo compito; i rispettivi prototipi
3720 sono:
3721
3722 \begin{funcproto}{
3723 \fhead{sys/time.h}
3724 \fdecl{futimens(int fd, const struct timespec times[2])}
3725 \fdesc{Cambia i tempi di un file già aperto.} 
3726 \fdecl{int utimensat(int dirfd, const char *pathname, const struct
3727     timespec times[2], int flags)}
3728 \fdesc{Cambia i tempi di un file.} 
3729 }
3730
3731 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
3732   caso \var{errno} assumerà uno dei valori: 
3733   \begin{errlist}
3734   \item[\errcode{EACCES}] si è richiesta l'impostazione del tempo corrente ma
3735     non si ha il permesso di scrittura sul file, o non si è proprietari del
3736     file o non si hanno i privilegi di amministratore; oppure il file è
3737     immutabile (vedi sez.~\ref{sec:file_perm_overview}).
3738   \item[\errcode{EBADF}] \param{fd} non è un file descriptor valido (solo
3739     \func{futimens}), oppure \param{dirfd} non è \const{AT\_FDCWD} o un file
3740     descriptor valido (solo \func{utimensat}).
3741   \item[\errcode{EFAULT}] \param{times} non è un puntatore valido (per
3742     entrambe), oppure \param{dirfd} è \const{AT\_FDCWD} ma \param{pathname} è
3743     \var{NULL} o non è un puntatore valido (solo \func{utimensat}).
3744   \item[\errcode{EINVAL}] si sono usati dei valori non corretti per i tempi
3745     di \param{times} (per entrambe), oppure è si usato un valore non valido
3746     per \param{flags}, oppure \param{pathname} è \var{NULL}, \param{dirfd} non
3747     è \const{AT\_FDCWD} e \param{flags} contiene \const{AT\_SYMLINK\_NOFOLLOW}
3748     (solo \func{utimensat}).
3749   \item[\errcode{EPERM}] si è richiesto un cambiamento nei tempi non al tempo
3750     corrente, ma non si è proprietari del file o non si hanno i privilegi di
3751     amministratore; oppure il file è immutabile o \textit{append-only} (vedi
3752     sez.~\ref{sec:file_perm_overview}).
3753   \item[\errcode{ESRCH}] non c'è il permesso di attraversamento per una delle
3754     componenti di \param{pathname} (solo \func{utimensat})
3755   \end{errlist}
3756   ed inoltre per entrambe \errval{EROFS} e per \func{utimensat}
3757   \errval{ELOOP}, \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOTDIR} nel
3758   loro significato generico.}
3759 \end{funcproto}
3760
3761 Entrambe le funzioni utilizzano per indicare i valori dei tempi un
3762 vettore \param{times} di due strutture \struct{timespec}, la cui definizione è
3763 riportata in fig.~\ref{fig:sys_timespec_struct}, che permette di specificare
3764 un valore dei tempi con una precisione fino al nanosecondo.
3765
3766 \begin{figure}[!htb]
3767   \footnotesize \centering
3768   \begin{minipage}[c]{0.8\textwidth}
3769     \includestruct{listati/timespec.h}
3770   \end{minipage} 
3771   \normalsize 
3772   \caption{La struttura \structd{timespec} usata per indicare valori di tempo
3773     con la precisione del nanosecondo.}
3774   \label{fig:sys_timespec_struct}
3775 \end{figure}
3776
3777 Come per le precedenti funzioni il primo elemento di \param{times} indica il
3778 tempo di ultimo accesso ed il secondo quello di ultima modifica, e se si usa
3779 il valore \val{NULL} verrà impostato il tempo corrente sia per l'ultimo
3780 accesso che per l'ultima modifica. Nei singoli elementi di \param{times} si
3781 possono inoltre utilizzare due valori speciali per il campo \var{tv\_nsec}:
3782 con \constd{UTIME\_NOW} si richiede l'uso del tempo corrente, mentre con
3783 \constd{UTIME\_OMIT} si richiede di non impostare il tempo. Si può così
3784 aggiornare in maniera specifica soltanto uno fra il tempo di ultimo accesso e
3785 quello di ultima modifica. Quando si usa uno di questi valori speciali per
3786 \var{tv\_nsec} il corrispondente valore di \var{tv\_sec} viene ignorato.
3787
3788 Queste due funzioni sono una estensione definita nella revisione POSIX.1-2008
3789 dello standard POSIX, in Linux sono state introdotte a partire dal kernel
3790 2.6.22,\footnote{si tenga presente però che per kernel precedenti il 2.6.26 le
3791   due funzioni sono difettose nel rispetto di alcuni requisiti minori dello
3792   standard e nel controllo della correttezza dei tempi, per i dettagli dei
3793   quali si rimanda alla pagina di manuale.} e supportate dalla \acr{glibc} a
3794 partire dalla versione 2.6.\footnote{in precedenza, a partire dal kernel
3795   2.6.16, era stata introdotta una \textit{system call} \funcm{futimesat}
3796   seguendo una bozza della revisione dello standard poi modificata; questa
3797   funzione, sostituita da \func{utimensat}, è stata dichiarata obsoleta, non è
3798   supportata da nessuno standard e non deve essere più utilizzata: pertanto
3799   non ne parleremo.} La prima è sostanzialmente una estensione di
3800 \func{futimes} che consente di specificare i tempi con precisione maggiore, la
3801 seconda supporta invece, rispetto ad \func{utimes}, una sintassi più complessa
3802 che consente una indicazione sicura del file su cui operare specificando la
3803 directory su cui si trova tramite il file descriptor \param{dirfd} ed il suo
3804 nome come \textit{pathname relativo} in \param{pathname}.\footnote{su Linux
3805   solo \func{utimensat} è una \textit{system call} e \func{futimens} è una
3806   funzione di libreria, infatti se \param{pathname} è \var{NULL} \param{dirfd}
3807   viene considerato un file descriptor ordinario e il cambiamento del tempo
3808   applicato al file sottostante, qualunque esso sia, per cui
3809   \code{futimens(fd, times}) è del tutto equivalente a \code{utimensat(fd,
3810     NULL, times, 0)}.}
3811
3812 Torneremo su questa sintassi e sulla sua motivazione in
3813 sez.~\ref{sec:file_openat}, quando tratteremo tutte le altre funzioni (le
3814 cosiddette \textit{at-functions}) che la utilizzano; essa prevede comunque
3815 anche la presenza dell'argomento \param{flags} con cui attivare flag di
3816 controllo che modificano il comportamento della funzione, nel caso specifico
3817 l'unico valore consentito è \const{AT\_SYMLINK\_NOFOLLOW} che indica alla
3818 funzione di non dereferenziare i collegamenti simbolici, cosa che le permette
3819 di riprodurre le funzionalità di \func{lutimes}.
3820
3821
3822
3823
3824 \section{Il controllo di accesso ai file}
3825 \label{sec:file_access_control}
3826
3827 Una delle caratteristiche fondamentali di tutti i sistemi unix-like è quella
3828 del controllo di accesso ai file, che viene implementato per qualunque
3829 filesystem standard.\footnote{per standard si intende che implementa le
3830   caratteristiche previste dallo standard POSIX; in Linux sono utilizzabili
3831   anche filesystem di altri sistemi operativi, che non supportano queste
3832   caratteristiche.} In questa sezione ne esamineremo i concetti essenziali e
3833 le funzioni usate per gestirne i vari aspetti.
3834
3835
3836 \subsection{I permessi per l'accesso ai file}
3837 \label{sec:file_perm_overview}
3838
3839 Ad ogni file Linux associa sempre, oltre ad un insieme di permessi, l'utente
3840 che ne è proprietario (il cosiddetto \textit{owner}) ed un gruppo di
3841 appartenenza, indicati dagli identificatori di utente e gruppo (\ids{UID} e
3842 \ids{GID}) di cui abbiamo già parlato in
3843 sez.~\ref{sec:proc_access_id}.\footnote{questo è vero solo per filesystem di
3844   tipo Unix, ad esempio non è vero per il filesystem VFAT di Windows, che non
3845   fornisce nessun supporto per l'accesso multiutente, e per il quale queste
3846   proprietà vengono assegnate in maniera fissa con opportune opzioni di
3847   montaggio.}  Anche questi sono mantenuti sull'\textit{inode} insieme alle
3848 altre proprietà e sono accessibili da programma tramite la funzione
3849 \func{stat} (trattata in sez.~\ref{sec:file_stat}), che restituisce l'utente
3850 proprietario nel campo \var{st\_uid} ed il gruppo proprietario nel campo
3851 \var{st\_gid} della omonima struttura \struct{stat}.
3852
3853 Il controllo di accesso ai file segue un modello abbastanza semplice che
3854 prevede tre permessi fondamentali strutturati su tre livelli di accesso.
3855 Esistono varie estensioni a questo modello,\footnote{come le \textit{Access
3856     Control List} che sono state aggiunte ai filesystem standard con opportune
3857   estensioni (vedi sez.~\ref{sec:file_ACL}) per arrivare a meccanismi di
3858   controllo ancora più sofisticati come il \textit{Mandatory Access Control}
3859   di \textit{SELinux} e delle altre estensioni come \textit{Smack} o
3860   \textit{AppArmor}.} ma nella maggior parte dei casi il meccanismo standard è
3861 più che sufficiente a soddisfare tutte le necessità più comuni.  I tre
3862 permessi di base associati ad ogni file sono:
3863 \begin{itemize*}
3864 \item il permesso di lettura (indicato con la lettera \texttt{r}, dall'inglese
3865   \textit{read}).
3866 \item il permesso di scrittura (indicato con la lettera \texttt{w},
3867   dall'inglese \textit{write}).
3868 \item il permesso di esecuzione (indicato con la lettera \texttt{x},
3869   dall'inglese \textit{execute}).
3870 \end{itemize*}
3871 mentre i tre livelli su cui sono divisi i privilegi sono:
3872 \begin{itemize*}
3873 \item i privilegi per l'utente proprietario del file.
3874 \item i privilegi per un qualunque utente faccia parte del gruppo cui
3875   appartiene il file.
3876 \item i privilegi per tutti gli altri utenti.
3877 \end{itemize*}
3878
3879 L'insieme dei permessi viene espresso con un numero a 12 bit; di questi i nove
3880 meno significativi sono usati a gruppi di tre per indicare i permessi base di
3881 lettura, scrittura ed esecuzione e sono applicati rispettivamente
3882 rispettivamente al proprietario, al gruppo, a tutti gli altri.
3883
3884 \begin{figure}[htb]
3885   \centering
3886   \includegraphics[width=6cm]{img/fileperm}
3887   \caption{Lo schema dei bit utilizzati per specificare i permessi di un file
3888     contenuti nel campo \var{st\_mode} di \struct{stat}.}
3889   \label{fig:file_perm_bit}
3890 \end{figure}
3891
3892 I restanti tre bit (noti come \textit{suid bit}, \textit{sgid bit}, e
3893 \textit{sticky bit}) sono usati per indicare alcune caratteristiche più
3894 complesse del meccanismo del controllo di accesso su cui torneremo in seguito
3895 (in sez.~\ref{sec:file_special_perm}), lo schema di allocazione dei bit è
3896 riportato in fig.~\ref{fig:file_perm_bit}.  Come tutte le altre proprietà di
3897 un file anche i permessi sono memorizzati nell'\textit{inode}, e come
3898 accennato in sez.~\ref{sec:file_types} essi sono vengono restituiti in una
3899 parte del campo \var{st\_mode} della struttura \struct{stat} (si veda di nuovo
3900 fig.~\ref{fig:file_stat_struct}).
3901
3902 In genere ci si riferisce ai tre livelli dei privilegi usando le lettere
3903 \texttt{u} (per \textit{user}), \texttt{g} (per \textit{group}) e \texttt{o}
3904 (per \textit{other}), inoltre se si vuole indicare tutti i raggruppamenti
3905 insieme si usa la lettera \texttt{a} (per \textit{all}). Si tenga ben presente
3906 questa distinzione dato che in certi casi, mutuando la terminologia in uso a
3907 suo tempo nel VMS, si parla dei permessi base come di permessi per
3908 \textit{owner}, \textit{group} ed \textit{all}, le cui iniziali possono dar
3909 luogo a confusione.  Le costanti che permettono di accedere al valore numerico
3910 di questi bit nel campo \var{st\_mode}, già viste in
3911 tab.~\ref{tab:file_mode_flags}, sono riportate per chiarezza una seconda volta
3912 in tab.~\ref{tab:file_bit_perm}.
3913
3914 \begin{table}[htb]
3915   \centering
3916     \footnotesize
3917   \begin{tabular}[c]{|c|l|}
3918     \hline
3919     \textbf{\var{st\_mode}} bit & \textbf{Significato} \\
3920     \hline 
3921     \hline 
3922     \constd{S\_IRUSR} & \textit{user-read}, l'utente può leggere.\\
3923     \constd{S\_IWUSR} & \textit{user-write}, l'utente può scrivere.\\
3924     \constd{S\_IXUSR} & \textit{user-execute}, l'utente può eseguire.\\ 
3925     \hline            
3926     \constd{S\_IRGRP} & \textit{group-read}, il gruppo può leggere.\\
3927     \constd{S\_IWGRP} & \textit{group-write}, il gruppo può scrivere.\\
3928     \constd{S\_IXGRP} & \textit{group-execute}, il gruppo può eseguire.\\
3929     \hline            
3930     \constd{S\_IROTH} & \textit{other-read}, tutti possono leggere.\\
3931     \constd{S\_IWOTH} & \textit{other-write}, tutti possono scrivere.\\
3932     \constd{S\_IXOTH} & \textit{other-execute}, tutti possono eseguire.\\
3933     \hline              
3934   \end{tabular}
3935   \caption{I bit dei permessi di accesso ai file, come definiti in 
3936     \texttt{<sys/stat.h>}}
3937   \label{tab:file_bit_perm}
3938 \end{table}
3939
3940 I permessi vengono usati in maniera diversa dalle varie funzioni, e a seconda
3941 che si riferiscano a dei file, dei collegamenti simbolici o delle directory;
3942 qui ci limiteremo ad un riassunto delle regole generali, entrando nei dettagli
3943 più avanti.
3944
3945 La prima regola è che per poter accedere ad un file attraverso il suo
3946 \textit{pathname} occorre il permesso di esecuzione in ciascuna delle
3947 directory che compongono il \textit{pathname}; lo stesso vale per aprire un
3948 file nella directory corrente (per la quale appunto serve il diritto di
3949 esecuzione). Per una directory infatti il permesso di esecuzione significa che
3950 essa può essere attraversata nella risoluzione del \textit{pathname}, e per
3951 questo viene anche chiamato permesso di attraversamento. Esso è sempre
3952 distinto dal permesso di lettura che invece implica che si può leggere il
3953 contenuto della directory.
3954
3955 Questo significa che se si ha il permesso di esecuzione senza permesso di
3956 lettura si potrà lo stesso aprire un file all'interno di una una directory (se
3957 si hanno i permessi adeguati per il medesimo) ma non si potrà vederlo con
3958 \cmd{ls} mancando il permesso di leggere il contenuto della directory. Per
3959 crearlo o rinominarlo o cancellarlo invece occorrerà avere anche il permesso
3960 di scrittura per la directory.
3961
3962 Avere il permesso di lettura per un file consente di aprirlo con le opzioni
3963 (si veda quanto riportato in sez.~\ref{sec:file_open_close}) di sola lettura o
3964 di lettura/scrittura e leggerne il contenuto. Avere il permesso di scrittura
3965 consente di aprire un file in sola scrittura o lettura/scrittura e modificarne
3966 il contenuto, lo stesso permesso è necessario per poter troncare il file o per
3967 aggiornare il suo tempo di ultima modifica al tempo corrente, ma non per
3968 modificare arbitrariamente quest'ultimo, operazione per la quale, come per
3969 buona parte delle modifiche effettuate sui metadati del file, occorre esserne
3970 i proprietari.
3971
3972 Non si può creare un file fintanto che non si disponga del permesso di
3973 esecuzione e di quello di scrittura per la directory di destinazione. Gli
3974 stessi permessi occorrono per cancellare un file da una directory (si ricordi
3975 che questo non implica necessariamente la rimozione del contenuto del file dal
3976 disco). Per la cancellazione non è necessario nessun tipo di permesso per il
3977 file stesso dato che, come illustrato in sez.~\ref{sec:link_symlink_rename}
3978 esso non viene toccato, nella cancellazione infatti viene solo modificato il
3979 contenuto della directory, rimuovendo la voce che ad esso fa riferimento. Lo
3980 stesso vale per poter rinominare o spostare il file in altra directory, in
3981 entrambi i casi occorrerà il permesso di scrittura sulle directory che si
3982 vanno a modificare.
3983
3984 Per poter eseguire un file, che sia un programma compilato od uno script di
3985 shell, od un altro tipo di file eseguibile riconosciuto dal kernel, occorre
3986 oltre al permesso di lettura per accedere al contenuto avere anche il permesso
3987 di esecuzione. Inoltre solo i file regolari possono essere eseguiti. Per i
3988 file di dispositivo i permessi validi sono solo quelli di lettura e scrittura,
3989 che corrispondono al poter eseguire dette operazioni sulla periferica
3990 sottostante. 
3991
3992 I permessi per un collegamento simbolico sono ignorati, contano quelli del
3993 file a cui fa riferimento; per questo in genere il comando \cmd{ls} riporta
3994 per un collegamento simbolico tutti i permessi come concessi. Utente e gruppo
3995 a cui esso appartiene vengono pure ignorati quando il collegamento viene
3996 risolto, vengono controllati solo quando viene richiesta la rimozione del
3997 collegamento e quest'ultimo è in una directory con lo \textit{sticky bit}
3998 impostato (si veda sez.~\ref{sec:file_special_perm}).
3999
4000 La procedura con cui il kernel stabilisce se un processo possiede un certo
4001 permesso (di lettura, scrittura o esecuzione) si basa sul confronto fra
4002 l'utente e il gruppo a cui il file appartiene (i valori di \var{st\_uid} e
4003 \var{st\_gid} accennati in precedenza) e l'\ids{UID} effettivo, il \ids{GID}
4004 effettivo e gli eventuali \ids{GID} supplementari del processo.\footnote{in
4005   realtà Linux, per quanto riguarda l'accesso ai file, utilizza gli
4006   identificatori del gruppo \textit{filesystem} (si ricordi quanto esposto in
4007   sez.~\ref{sec:proc_perms}), ma essendo questi del tutto equivalenti ai primi,
4008   eccetto il caso in cui si voglia scrivere un server NFS, ignoreremo questa
4009   differenza.}
4010
4011 Per una spiegazione dettagliata degli identificatori associati ai processi si
4012 veda sez.~\ref{sec:proc_perms}; normalmente, a parte quanto vedremo in
4013 sez.~\ref{sec:file_special_perm}, l'\ids{UID} effettivo e il \ids{GID} effettivo
4014 corrispondono ai valori dell'\ids{UID} e del \ids{GID} dell'utente che ha
4015 lanciato il processo, mentre i \ids{GID} supplementari sono quelli dei gruppi
4016 cui l'utente appartiene.
4017
4018 I passi attraverso i quali viene stabilito se il processo possiede il diritto
4019 di accesso sono i seguenti:
4020 \begin{enumerate*}
4021 \item Se l'\ids{UID} effettivo del processo è zero (corrispondente
4022   all'amministratore) l'accesso è sempre garantito senza nessun controllo. Per
4023   questo motivo l'amministratore ha piena libertà di accesso a tutti i file.
4024 \item Se l'\ids{UID} effettivo del processo è uguale all'\ids{UID} del
4025   proprietario del file (nel qual caso si dice che il processo è proprietario
4026   del file) allora:
4027   \begin{itemize*}
4028   \item se il relativo\footnote{per relativo si intende il bit di
4029       \textit{user-read} se il processo vuole accedere in lettura, quello di
4030       \textit{user-write} per l'accesso in scrittura, ecc.} bit dei permessi
4031     d'accesso dell'utente è impostato, l'accesso è consentito;
4032   \item altrimenti l'accesso è negato.
4033   \end{itemize*}
4034 \item Se il \ids{GID} effettivo del processo o uno dei \ids{GID} supplementari
4035   del processo corrispondono al \ids{GID} del file allora:
4036   \begin{itemize*}
4037   \item se il bit dei permessi d'accesso del gruppo è impostato, l'accesso è
4038     consentito;
4039   \item altrimenti l'accesso è negato.
4040   \end{itemize*}
4041 \item Se il bit dei permessi d'accesso per tutti gli altri è impostato,
4042   l'accesso è consentito, altrimenti l'accesso è negato.
4043 \end{enumerate*}
4044
4045 Si tenga presente che questi passi vengono eseguiti esattamente in
4046 quest'ordine. Questo vuol dire che se un processo è il proprietario di un
4047 file, l'accesso è consentito o negato solo sulla base dei permessi per
4048 l'utente; i permessi per il gruppo non vengono neanche controllati. Lo stesso
4049 vale se il processo appartiene ad un gruppo appropriato, in questo caso i
4050 permessi per tutti gli altri non vengono controllati. 
4051
4052 Questo significa che se si è proprietari di un file ma non si ha il permesso
4053 di scrittura, non vi si potrà scrivere anche se questo fosse scrivibile per
4054 tutti gli altri. Permessi di questo tipo sono ovviamente poco ortodossi, e
4055 comunque, come vedremo in sez.~\ref{sec:file_perm_management}, il proprietario
4056 di un file può sempre modificarne i permessi, e riassegnarsi un eventuale
4057 permesso di scrittura mancante.
4058
4059 \itindbeg{file~attributes} 
4060
4061 A questi che sono i permessi ordinari si aggiungono, per i filesystem che
4062 supportano questa estensione, due permessi speciali mantenuti nei cosiddetti
4063 \textit{file attributes}, che si possono leggere ed impostare con i comandi
4064 \cmd{lsattr} e \cmd{chattr}.\footnote{per l'utilizzo di questi comandi e per
4065   le spiegazioni riguardo tutti gli altri \textit{file attributes} si rimanda
4066   alla sezione 1.4.4 di \cite{AGL}.}
4067
4068 Il primo è il cosiddetto attributo di immutabilità (\textit{immutable},
4069 identificato dalla lettera \texttt{i}) che impedisce ogni modifica al file,
4070 \textit{inode} compreso. Questo significa non solo che non se ne può cambiare
4071 il contenuto, ma neanche nessuna delle sue proprietà, ed in particolare non si
4072 può modificare nei permessi o nei tempi o nel proprietario ed inoltre, visto
4073 che non se può modificare il \textit{link count}, non si può neanche
4074 cancellare, rinominare, o creare \textit{hard link} verso di esso.
4075
4076 Il secondo è il cosiddetto attributo di \textit{append-only}, (identificato
4077 dalla lettera \texttt{a}) che consente soltanto la scrittura in coda al
4078 file. Il file cioè può essere soltanto esteso nel contenuto, ma i suoi
4079 metadati, a parte i tempi che però possono essere impostati al valore
4080 corrente, non possono essere modificati in alcun modo, quindi di nuovo non si
4081 potrà cancellare, rinominare, o modificare nei permessi o nelle altre
4082 proprietà.
4083
4084 Entrambi questi attributi attivano queste restrizioni a livello di filesystem,
4085 per cui a differenza dei permessi ordinari esse varranno per qualunque utente
4086 compreso l'amministratore. L'amministratore è l'unico che può attivare o
4087 disattivare questi attributi,\footnote{più precisamente un processo con la
4088   capacità \const{CAP\_LINUX\_IMMUTABLE}, vedi
4089   sez.~\ref{sec:proc_capabilities}.} e potendo rimuoverli è comunque capace di
4090 tornare in grado di eseguire qualunque operazione su un file immutabile o
4091 \textit{append-only}.
4092
4093 \itindend{file~attributes}
4094
4095
4096
4097 \subsection{I bit dei permessi speciali}
4098 \label{sec:file_special_perm}
4099
4100 \itindbeg{suid~bit}
4101 \itindbeg{sgid~bit}
4102
4103 Come si è accennato (in sez.~\ref{sec:file_perm_overview}) nei dodici bit del
4104 campo \var{st\_mode} di \struct{stat} che vengono usati per il controllo di
4105 accesso oltre ai bit dei permessi veri e propri, ci sono altri tre bit che
4106 vengono usati per indicare alcune proprietà speciali dei file.  Due di questi
4107 sono i bit detti \acr{suid} (da \textit{set-user-ID bit}) e \acr{sgid} (da
4108 \textit{set-group-ID bit}) che sono identificati dalle costanti
4109 \const{S\_ISUID} e \const{S\_ISGID}.
4110
4111 Come spiegato in dettaglio in sez.~\ref{sec:proc_exec}, quando si lancia un
4112 programma il comportamento normale del kernel è quello di impostare gli
4113 identificatori del gruppo \textit{effective} del nuovo processo al valore dei
4114 corrispondenti del gruppo \textit{real} del processo corrente, che normalmente
4115 corrispondono a quelli dell'utente con cui si è entrati nel sistema.
4116
4117 Se però il file del programma, che ovviamente deve essere
4118 eseguibile,\footnote{anzi più precisamente un binario eseguibile: per motivi
4119   di sicurezza il kernel ignora i bit \acr{suid} e \acr{sgid} per gli script
4120   eseguibili.} ha il bit \acr{suid} impostato, il kernel assegnerà come
4121 \ids{UID} effettivo al nuovo processo l'\ids{UID} del proprietario del file al
4122 posto dell'\ids{UID} del processo originario.  Avere il bit \acr{sgid}
4123 impostato ha lo stesso effetto sul \ids{GID} effettivo del processo. É
4124 comunque possibile riconoscere questa situazione perché il cambiamento viene
4125 effettuato solo sugli identificativi del gruppo \textit{effective}, mentre
4126 quelli dei gruppi \textit{real} e \textit{saved} restano quelli dell'utente
4127 che ha eseguito il programma.
4128
4129 I bit \acr{suid} e \acr{sgid} vengono usati per permettere agli utenti normali
4130 di usare programmi che richiedono privilegi speciali. L'esempio classico è il
4131 comando \cmd{passwd} che ha la necessità di modificare il file delle password,
4132 quest'ultimo ovviamente può essere scritto solo dall'amministratore, ma non è
4133 necessario chiamare l'amministratore per cambiare la propria password. Infatti
4134 il comando \cmd{passwd} appartiene in genere all'utente \textit{root} ma ha il
4135 bit \acr{suid} impostato, per cui quando viene lanciato da un utente normale
4136 ottiene comunque  i privilegi di amministratore.
4137
4138 Chiaramente avere un processo che ha privilegi superiori a quelli che avrebbe
4139 normalmente l'utente che lo ha lanciato comporta vari rischi, e questo tipo di
4140 programmi devono essere scritti accuratamente per evitare che possano essere
4141 usati per guadagnare privilegi non consentiti (l'argomento è affrontato in
4142 dettaglio in sez.~\ref{sec:proc_perms}).
4143
4144 La presenza dei bit \acr{suid} e \acr{sgid} su un file può essere rilevata con
4145 il comando \cmd{ls -l}, che visualizza una lettera ``\cmd{s}'' al posto della
4146 ``\cmd{x}'' in corrispondenza dei permessi di utente o gruppo. La stessa
4147 lettera ``\cmd{s}'' può essere usata nel comando \cmd{chmod} per impostare
4148 questi bit.  Infine questi bit possono essere controllati all'interno di
4149 \var{st\_mode} con l'uso delle due costanti \const{S\_ISUID} e
4150 \const{S\_IGID}, i cui valori sono riportati in
4151 tab.~\ref{tab:file_mode_flags}.
4152
4153 Gli stessi bit vengono ad assumere un significato completamente diverso per le
4154 directory, normalmente infatti Linux usa la convenzione di SVr4 per indicare
4155 con questi bit l'uso della semantica BSD nella creazione di nuovi file (si
4156 veda sez.~\ref{sec:file_ownership_management} per una spiegazione dettagliata
4157 al proposito).
4158
4159 Infine Linux utilizza il bit \acr{sgid} per un'ulteriore estensione mutuata da
4160 SVr4. Il caso in cui un file ha il bit \acr{sgid} impostato senza che lo sia
4161 anche il corrispondente bit di esecuzione viene utilizzato per attivare per
4162 quel file il \textit{mandatory locking} (affronteremo questo argomento in
4163 dettaglio più avanti, in sez.~\ref{sec:file_mand_locking}).
4164
4165 \itindend{suid~bit}
4166 \itindend{sgid~bit}
4167
4168 \itindbeg{sticky~bit}
4169
4170 L'ultimo dei bit rimanenti, identificato dalla costante \const{S\_ISVTX}, è in
4171 parte un rimasuglio delle origini dei sistemi Unix. A quell'epoca infatti la
4172 memoria virtuale e l'accesso ai file erano molto meno sofisticati e per
4173 ottenere la massima velocità possibile per i programmi usati più comunemente
4174 si poteva impostare questo bit.
4175
4176 L'effetto di questo bit era che il segmento di testo del programma (si veda
4177 sez.~\ref{sec:proc_mem_layout} per i dettagli) veniva scritto nella swap la
4178 prima volta che questo veniva lanciato, e vi permaneva fino al riavvio della
4179 macchina (da questo il nome di \textsl{sticky bit}); essendo la swap un file
4180 continuo o una partizione indicizzata direttamente si poteva risparmiare in
4181 tempo di caricamento rispetto alla ricerca attraverso la struttura del
4182 filesystem. Lo \textsl{sticky bit} è indicato usando la lettera ``\texttt{t}''
4183 al posto della ``\texttt{x}'' nei permessi per gli altri.
4184
4185 Ovviamente per evitare che gli utenti potessero intasare la swap solo
4186 l'amministratore era in grado di impostare questo bit, che venne chiamato
4187 anche con il nome di \textit{saved text bit}, da cui deriva quello della
4188 costante.  Le attuali implementazioni di memoria virtuale e filesystem rendono
4189 sostanzialmente inutile questo procedimento.
4190
4191 Benché ormai non venga più utilizzato per i file, lo \textit{sticky bit} ha
4192 invece assunto un uso importante per le directory;\footnote{lo \textit{sticky
4193     bit} per le directory è un'estensione non definita nello standard POSIX,
4194   Linux però la supporta, così come BSD e SVr4.} in questo caso se tale bit è
4195 impostato un file potrà essere rimosso dalla directory soltanto se l'utente ha
4196 il permesso di scrittura su di essa ed inoltre è vera una delle seguenti
4197 condizioni:
4198 \begin{itemize*}
4199 \item l'utente è proprietario del file,
4200 \item l'utente è proprietario della directory,
4201 \item l'utente è l'amministratore.
4202 \end{itemize*}
4203
4204 Un classico esempio di directory che ha questo bit impostato è \file{/tmp}, i
4205 cui permessi infatti di solito sono i seguenti:
4206 \begin{Console}
4207 piccardi@hain:~/gapil$ \textbf{ls -ld /tmp}
4208 drwxrwxrwt    6 root     root         1024 Aug 10 01:03 /tmp
4209 \end{Console}
4210 %$
4211 quindi con lo \textit{sticky bit} bit impostato. In questo modo qualunque
4212 utente nel sistema può creare dei file in questa directory, che come
4213 suggerisce il nome è normalmente utilizzata per la creazione di file
4214 temporanei, ma solo l'utente che ha creato un certo file potrà cancellarlo o
4215 rinominarlo. In questo modo si evita che un utente possa, più o meno
4216 consapevolmente, cancellare i file temporanei creati degli altri utenti.
4217
4218 \itindend{sticky~bit}
4219
4220
4221
4222 \subsection{Le funzioni per la gestione dei permessi dei file}
4223 \label{sec:file_perm_management}
4224
4225 Come visto in sez.~\ref{sec:file_access_control} il controllo di accesso ad un
4226 file viene fatto utilizzando l'\ids{UID} ed il \ids{GID} effettivo del processo;
4227 ci sono casi però in cui si può voler effettuare il controllo con l'\ids{UID}
4228 reale ed il \ids{GID} reale, vale a dire usando i valori di \ids{UID} e
4229 \ids{GID} relativi all'utente che ha lanciato il programma, e che, come
4230 accennato in sez.~\ref{sec:file_special_perm} e spiegato in dettaglio in
4231 sez.~\ref{sec:proc_perms}, non è detto siano uguali a quelli effettivi.
4232
4233 Per far questo si può usare la funzione di sistema \funcd{access}, il cui
4234 prototipo è:
4235
4236 \begin{funcproto}{
4237 \fhead{unistd.h}
4238 \fdecl{int access(const char *pathname, int mode)}
4239 \fdesc{Verifica i permessi di accesso.} 
4240 }
4241
4242 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
4243   caso \var{errno} assumerà uno dei valori: 
4244   \begin{errlist} 
4245   \item[\errcode{EACCES}] l'accesso al file non è consentito, o non si ha il
4246     permesso di attraversare una delle directory di \param{pathname}.
4247   \item[\errcode{EINVAL}] il valore di \param{mode} non è valido.
4248   \item[\errcode{EROFS}] si è richiesto l'accesso in scrittura per un file su
4249     un filesystem montato in sola lettura.
4250   \item[\errcode{ETXTBSY}] si è richiesto l'accesso in scrittura per un
4251     eseguibile binario correntemente in esecuzione.
4252   \end{errlist}
4253   ed inoltre \errval{EFAULT}, \errval{EIO}, \errval{ELOOP},
4254   \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOTDIR} nel loro
4255   significato generico.}
4256 \end{funcproto}
4257
4258 La funzione verifica i permessi di accesso, indicati da \param{mode}, per il
4259 file indicato da \param{pathname}. I valori possibili per l'argomento
4260 \param{mode} sono esprimibili come combinazione delle costanti numeriche
4261 riportate in tab.~\ref{tab:file_access_mode_val} (attraverso un OR binario
4262 delle stesse). I primi tre valori implicano anche la verifica dell'esistenza
4263 del file, se si vuole verificare solo quest'ultima si può usare \const{F\_OK},
4264 o anche direttamente \func{stat}. Nel caso in cui \param{pathname} si
4265 riferisca ad un collegamento simbolico, questo viene seguito ed il controllo è
4266 fatto sul file a cui esso fa riferimento.
4267
4268 La funzione controlla solo i bit dei permessi di accesso per \param{pathname},
4269 ma occorre poter risolvere quest'ultimo, e se non c'è il permesso di
4270 esecuzione per una qualunque delle sue componenti la funzione fallirà
4271 indipendentemente dai permessi del file.  Si tenga presente poi che il fatto
4272 che una directory abbia permesso di scrittura non significa che vi si possa
4273 scrivere come fosse un file, e che se un file ha il permesso di esecuzione non
4274 è detto che sia eseguibile. La funzione ha successo solo se tutti i permessi
4275 controllati sono disponibili.
4276
4277 \begin{table}[htb]
4278   \centering
4279   \footnotesize
4280   \begin{tabular}{|c|l|}
4281     \hline
4282     \textbf{\param{mode}} & \textbf{Significato} \\
4283     \hline
4284     \hline
4285     \constd{R\_OK} & Verifica il permesso di lettura. \\
4286     \constd{W\_OK} & Verifica il permesso di scrittura. \\
4287     \constd{X\_OK} & Verifica il permesso di esecuzione. \\
4288     \constd{F\_OK} & Verifica l'esistenza del file. \\
4289     \hline
4290   \end{tabular}
4291   \caption{Valori possibili per l'argomento \param{mode} della funzione 
4292     \func{access}.}
4293   \label{tab:file_access_mode_val}
4294 \end{table}
4295
4296 Un esempio tipico per l'uso di questa funzione è quello di un processo che sta
4297 eseguendo un programma coi privilegi di un altro utente (ad esempio attraverso
4298 l'uso del \textit{suid bit}) che vuole controllare se l'utente originale ha i
4299 permessi per accedere ad un certo file, ma eseguire questo controllo prima di
4300 aprire il file espone al rischio di una \textit{race condition} che apre ad un
4301 possibile \textit{symlink attack} fra il controllo e l'apertura del file. In
4302 questo caso è sempre opportuno usare invece la funzione \func{faccessat} che
4303 tratteremo insieme alle altre \textit{at-functions} in
4304 sez.~\ref{sec:file_openat}.
4305
4306 Del tutto analoghe a \func{access} sono le due funzioni \funcm{euidaccess} e
4307 \funcm{eaccess} che ripetono lo stesso controllo usando però gli
4308 identificatori del gruppo effettivo, verificando quindi le effettive capacità
4309 di accesso ad un file. Le funzioni hanno entrambe lo stesso
4310 prototipo\footnote{in realtà \funcm{eaccess} è solo un sinonimo di
4311   \funcm{euidaccess} fornita per compatibilità con l'uso di questo nome in
4312   altri sistemi.} che è del tutto identico a quello di \func{access}. Prendono
4313 anche gli stessi valori e restituiscono gli stessi risultati e gli stessi
4314 codici di errore.
4315
4316 Per cambiare i permessi di un file il sistema mette ad disposizione due
4317 funzioni \funcd{chmod} e \funcd{fchmod}, che operano rispettivamente su un
4318 filename e su un file descriptor, i loro prototipi sono:
4319
4320 \begin{funcproto}{
4321 \fhead{sys/types.h}
4322 \fhead{sys/stat.h}
4323 \fdecl{int chmod(const char *path, mode\_t mode)}
4324 \fdesc{Cambia i permessi del file indicato da \param{path} al valore indicato
4325   da \param{mode}.} 
4326 \fdecl{int fchmod(int fd, mode\_t mode)}
4327 \fdesc{Analoga alla precedente, ma usa il file descriptor \param{fd} per
4328   indicare il file.}  
4329
4330 }
4331
4332 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
4333   caso \var{errno} assumerà uno dei valori: 
4334   \begin{errlist}
4335   \item[\errcode{EPERM}] l'\ids{UID} effettivo non corrisponde a quello del
4336     proprietario del file o non si hanno i privilegi di amministratore.
4337   \item[\errcode{EROFS}] il file è su un filesystem in sola lettura.
4338   \end{errlist}
4339   ed inoltre per entrambe \errval{EIO}, per \func{chmod} \errval{EACCES},
4340   \errval{EFAULT}, \errval{ELOOP}, \errval{ENAMETOOLONG}, \errval{ENOENT},
4341   \errval{ENOMEM}, \errval{ENOTDIR}, per \func{fchmod} \errval{EBADF} nel loro
4342   significato generico.}
4343 \end{funcproto}
4344
4345
4346 Entrambe le funzioni utilizzano come secondo argomento \param{mode}, una
4347 variabile dell'apposito tipo primitivo \type{mode\_t} (vedi
4348 tab.~\ref{tab:intro_primitive_types}) utilizzato per specificare i permessi sui
4349 file.
4350
4351 \begin{table}[!htb]
4352   \centering
4353   \footnotesize
4354   \begin{tabular}[c]{|c|c|l|}
4355     \hline
4356     \textbf{\param{mode}} & \textbf{Valore} & \textbf{Significato} \\
4357     \hline
4358     \hline
4359     \constd{S\_ISUID} & 04000 & Set user ID  bit.\\
4360     \constd{S\_ISGID} & 02000 & Set group ID bit.\\
4361     \constd{S\_ISVTX} & 01000 & Sticky bit.\\
4362     \hline
4363     \constd{S\_IRWXU} & 00700 & L'utente ha tutti i permessi.\\
4364     \constd{S\_IRUSR} & 00400 & L'utente ha il permesso di lettura.\\
4365     \constd{S\_IWUSR} & 00200 & L'utente ha il permesso di scrittura.\\
4366     \constd{S\_IXUSR} & 00100 & L'utente ha il permesso di esecuzione.\\
4367     \hline
4368     \constd{S\_IRWXG} & 00070 & Il gruppo ha tutti i permessi.\\
4369     \constd{S\_IRGRP} & 00040 & Il gruppo ha il permesso di lettura.\\
4370     \constd{S\_IWGRP} & 00020 & Il gruppo ha il permesso di scrittura.\\
4371     \constd{S\_IXGRP} & 00010 & Il gruppo ha il permesso di esecuzione.\\
4372     \hline
4373     \constd{S\_IRWXO} & 00007 & Gli altri hanno tutti i permessi.\\
4374     \constd{S\_IROTH} & 00004 & Gli altri hanno il permesso di lettura.\\
4375     \constd{S\_IWOTH} & 00002 & Gli altri hanno il permesso di scrittura.\\
4376     \constd{S\_IXOTH} & 00001 & Gli altri hanno il permesso di esecuzione.\\
4377     \hline
4378   \end{tabular}
4379   \caption{Valori delle costanti usate per indicare i vari bit di
4380     \param{mode} utilizzato per impostare i permessi dei file.}
4381   \label{tab:file_permission_const}
4382 \end{table}
4383
4384 Le costanti con cui specificare i singoli bit di \param{mode} sono riportate
4385 in tab.~\ref{tab:file_permission_const}, e corrispondono agli stessi valori
4386 usati per \var{st\_mode} in tab.~\ref{tab:file_mode_flags}. Il valore
4387 di \param{mode} può essere ottenuto combinando fra loro con un OR binario le
4388 costanti simboliche relative ai vari bit, o specificato direttamente, come per
4389 l'omonimo comando di shell, con un valore numerico (la shell lo vuole in
4390 ottale, dato che i bit dei permessi sono divisibili in gruppi di tre), che si
4391 può calcolare direttamente usando lo schema di utilizzo dei bit illustrato in
4392 fig.~\ref{fig:file_perm_bit}.
4393
4394 Ad esempio i permessi standard assegnati ai nuovi file (lettura e scrittura
4395 per il proprietario, sola lettura per il gruppo e gli altri) sono
4396 corrispondenti al valore ottale $0644$, un programma invece avrebbe anche il
4397 bit di esecuzione attivo, con un valore di $0755$, se si volesse attivare il
4398 bit \acr{suid} il valore da fornire sarebbe $4755$.
4399
4400 Il cambiamento dei permessi di un file eseguito attraverso queste funzioni ha
4401 comunque alcune limitazioni, previste per motivi di sicurezza. L'uso delle
4402 funzioni infatti è possibile solo se l'\ids{UID} effettivo del processo
4403 corrisponde a quello del proprietario del file o dell'amministratore,
4404 altrimenti esse falliranno con un errore di \errcode{EPERM}.
4405
4406 Ma oltre a questa regola generale, di immediata comprensione, esistono delle
4407 limitazioni ulteriori. Per questo motivo, anche se si è proprietari del file,
4408 non tutti i valori possibili di \param{mode} sono permessi o hanno effetto;
4409 in particolare accade che:
4410 \begin{enumerate*}
4411 \item siccome solo l'amministratore può impostare lo \textit{sticky bit}, se
4412   l'\ids{UID} effettivo del processo non è zero esso viene automaticamente
4413   cancellato, senza notifica di errore, qualora sia stato indicato
4414   in \param{mode}.
4415 \item per quanto detto in sez.~\ref{sec:file_ownership_management} riguardo la
4416   creazione dei nuovi file, si può avere il caso in cui il file creato da un
4417   processo è assegnato ad un gruppo per il quale il processo non ha privilegi.
4418   Per evitare che si possa assegnare il bit \acr{sgid} ad un file appartenente
4419   ad un gruppo per cui non si hanno diritti, questo viene automaticamente
4420   cancellato da \param{mode}, senza notifica di errore, qualora il gruppo del
4421   file non corrisponda a quelli associati al processo; la cosa non avviene
4422   quando l'\ids{UID} effettivo del processo è zero.
4423 \end{enumerate*}
4424
4425 Per alcuni filesystem\footnote{i filesystem più comuni (\textsl{ext2},
4426   \textsl{ext3}, \textsl{ext4}, \textsl{ReiserFS}) supportano questa
4427   caratteristica, che è mutuata da BSD.} è inoltre prevista un'ulteriore
4428 misura di sicurezza, volta a scongiurare l'abuso dei bit \acr{suid} e
4429 \acr{sgid}; essa consiste nel cancellare automaticamente questi bit dai
4430 permessi di un file qualora un processo che non appartenga
4431 all'amministratore\footnote{per la precisione un processo che non dispone
4432   della capacità \const{CAP\_FSETID}, vedi sez.~\ref{sec:proc_capabilities}.}
4433 effettui una scrittura. In questo modo anche se un utente malizioso scopre un
4434 file \acr{suid} su cui può scrivere, un'eventuale modifica comporterà la
4435 perdita di questo privilegio.
4436
4437 Le funzioni \func{chmod} e \func{fchmod} ci permettono di modificare i
4438 permessi di un file, resta però il problema di quali sono i permessi assegnati
4439 quando il file viene creato. Le funzioni dell'interfaccia nativa di Unix, come
4440 vedremo in sez.~\ref{sec:file_open_close}, permettono di indicare
4441 esplicitamente i permessi di creazione di un file, ma questo non è possibile
4442 per le funzioni dell'interfaccia standard ANSI C che non prevede l'esistenza
4443 di utenti e gruppi, ed inoltre il problema si pone anche per l'interfaccia
4444 nativa quando i permessi non vengono indicati esplicitamente.
4445
4446 \itindbeg{umask} 
4447
4448 Per le funzioni dell'interfaccia standard ANSI C l'unico riferimento possibile
4449 è quello della modalità di apertura del nuovo file (lettura/scrittura o sola
4450 lettura), che però può fornire un valore che è lo stesso per tutti e tre i
4451 permessi di sez.~\ref{sec:file_perm_overview} (cioè $666$ nel primo caso e
4452 $222$ nel secondo). Per questo motivo il sistema associa ad ogni
4453 processo\footnote{è infatti contenuta nel campo \var{umask} della struttura
4454   \kstruct{fs\_struct}, vedi fig.~\ref{fig:proc_task_struct}.}  una maschera
4455 di bit, la cosiddetta \textit{umask}, che viene utilizzata per impedire che
4456 alcuni permessi possano essere assegnati ai nuovi file in sede di creazione. I
4457 bit indicati nella maschera vengono infatti cancellati dai permessi quando un
4458 nuovo file viene creato.\footnote{l'operazione viene fatta sempre: anche
4459   qualora si indichi esplicitamente un valore dei permessi nelle funzioni di
4460   creazione che lo consentono, i permessi contenuti nella \textit{umask}
4461   verranno tolti.}
4462
4463 La funzione di sistema che permette di impostare il valore di questa maschera
4464 di controllo è \funcd{umask}, ed il suo prototipo è:
4465
4466 \begin{funcproto}{
4467 \fhead{stat.h}
4468 \fdecl{mode\_t umask(mode\_t mask)}
4469 \fdesc{Imposta la maschera dei permessi.} 
4470 }
4471
4472 {La funzione ritorna ritorna il precedente valore della maschera, non sono
4473   previste condizioni di errore.}
4474 \end{funcproto}
4475
4476 La funzione imposta la maschera dei permessi dei bit al valore specificato
4477 da \param{mask}, di cui vengono presi solo i 9 bit meno significativi.  In
4478 genere si usa questa maschera per impostare un valore predefinito che escluda
4479 preventivamente alcuni permessi, il caso più comune è eliminare il permesso di
4480 scrittura per il gruppo e gli altri, corrispondente ad un valore
4481 per \param{mask} pari a $022$.  In questo modo è possibile cancellare
4482 automaticamente i permessi non voluti.  Di norma questo valore viene impostato
4483 una volta per tutte al login (a $022$ se non indicato altrimenti), e gli
4484 utenti non hanno motivi per modificarlo.
4485
4486 \itindend{umask} 
4487
4488
4489 \subsection{La gestione della titolarità dei file}
4490 \label{sec:file_ownership_management}
4491
4492 Vedremo in sez.~\ref{sec:file_open_close} con quali funzioni si possono creare
4493 nuovi file, in tale occasione vedremo che è possibile specificare in sede di
4494 creazione quali permessi applicare ad un file, però non si può indicare a
4495 quale utente e gruppo esso deve appartenere.  Lo stesso problema si presenta
4496 per la creazione di nuove directory (procedimento descritto in
4497 sez.~\ref{sec:file_dir_creat_rem}).
4498
4499 Lo standard POSIX prescrive che l'\ids{UID} del nuovo file corrisponda
4500 all'\ids{UID} effettivo del processo che lo crea; per il \ids{GID} invece
4501 prevede due diverse possibilità:
4502 \begin{itemize*}
4503 \item che il \ids{GID} del file corrisponda al \ids{GID} effettivo del
4504   processo.
4505 \item che il \ids{GID} del file corrisponda al \ids{GID} della directory in
4506   cui esso è creato.
4507 \end{itemize*}
4508
4509 In genere BSD usa sempre la seconda possibilità, che viene per questo chiamata
4510 semantica BSD. Linux invece segue normalmente quella che viene chiamata
4511 semantica SVr4: di norma un nuovo file viene creato, seguendo la prima
4512 opzione, con il \ids{GID} del processo, se però la directory in cui viene
4513 creato ha il bit \acr{sgid} impostato allora viene usata la seconda
4514 opzione. L'adozione di questa semantica però può essere controllata,
4515 all'interno di alcuni filesystem,\footnote{con il kernel 2.6.25 questi erano
4516   \acr{ext2}, \acr{ext3}, \acr{ext4}, e XFS.}  con l'uso dell'opzione di
4517 montaggio \texttt{grpid}, che se attivata fa passare all'uso della semantica
4518 BSD.
4519
4520 Usare la semantica BSD ha il vantaggio che il \ids{GID} viene sempre
4521 automaticamente propagato, restando coerente a quello della directory di
4522 partenza, in tutte le sotto-directory. La semantica SVr4 offre la possibilità
4523 di scegliere, ma per ottenere lo stesso risultato di coerenza che si ha con
4524 quella di BSD necessita che quando si creano nuove directory venga propagato
4525 il bit \acr{sgid}. Questo è il comportamento predefinito del comando
4526 \cmd{mkdir}, ed è in questo modo ad esempio che le varie distribuzioni
4527 assicurano che le sotto-directory create nella home di un utente restino
4528 sempre con il \ids{GID} del gruppo primario dello stesso.
4529
4530 La presenza del bit \acr{sgid} è inoltre molto comoda quando si hanno
4531 directory contenenti file condivisi da un gruppo di utenti in cui possono
4532 scrivere tutti i membri dello stesso, dato che assicura che i file che gli
4533 utenti vi creano appartengano allo gruppo stesso. Questo non risolve però
4534 completamente i problemi di accesso da parte di altri utenti dello stesso
4535 gruppo, in quanto di default i permessi assegnati al gruppo non sono
4536 sufficienti per un accesso in scrittura; in questo caso si deve aver cura di
4537 usare prima della creazione dei file un valore per \textit{umask} lasci il
4538 permesso di scrittura.\footnote{in tal caso si può assegnare agli utenti del
4539   gruppo una \textit{umask} di $002$, anche se la soluzione migliore in questo
4540   caso è usare una ACL di default (vedi sez.~\ref{sec:file_ACL}).}
4541
4542 Come avviene nel caso dei permessi esistono anche delle appropriate funzioni
4543 di sistema, \funcd{chown} \funcd{fchown} e \funcd{lchown}, che permettono di
4544 cambiare sia l'utente che il gruppo a cui un file appartiene; i rispettivi
4545 prototipi sono:
4546
4547 \begin{funcproto}{
4548 \fhead{sys/types.h}
4549 \fhead{sys/stat.h}
4550 \fdecl{int chown(const char *path, uid\_t owner, gid\_t group)}
4551 \fdecl{int fchown(int fd, uid\_t owner, gid\_t group)}
4552 \fdecl{int lchown(const char *path, uid\_t owner, gid\_t group)}
4553 \fdesc{Cambiano proprietario e gruppo proprietario di un file.} 
4554 }
4555
4556 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
4557   caso \var{errno} assumerà uno dei valori: 
4558   \begin{errlist}
4559   \item[\errcode{EPERM}] l'\ids{UID} effettivo non corrisponde a quello del
4560     proprietario del file o non è zero, o utente e gruppo non sono validi.
4561   \end{errlist}
4562   ed inoltre per tutte \errval{EROFS} e \errval{EIO}, per \func{chown}
4563   \errval{EACCES}, \errval{EFAULT}, \errval{ELOOP}, \errval{ENAMETOOLONG},
4564   \errval{ENOENT}, \errval{ENOMEM}, \errval{ENOTDIR}, per \func{fchown}
4565   \errval{EBADF} nel loro significato generico.}
4566 \end{funcproto}
4567
4568 Le funzioni cambiano utente e gruppo di appartenenza di un file ai valori
4569 specificati dalle variabili \param{owner} e \param{group}. Con Linux solo
4570 l'amministratore\footnote{o in generale un processo con la capacità
4571   \const{CAP\_CHOWN}, vedi sez.~\ref{sec:proc_capabilities}.} può cambiare il
4572 proprietario di un file; in questo viene seguita la semantica usata da BSD che
4573 non consente agli utenti di assegnare i loro file ad altri utenti evitando
4574 eventuali aggiramenti delle quote.  L'amministratore può cambiare sempre il
4575 gruppo di un file, il proprietario può cambiare il gruppo solo dei file che
4576 gli appartengono e solo se il nuovo gruppo è il suo gruppo primario o uno dei
4577 gruppi di cui fa parte.
4578
4579 La funzione \func{chown} segue i collegamenti simbolici, per operare
4580 direttamente su un collegamento simbolico si deve usare la funzione
4581 \func{lchown}.\footnote{fino alla versione 2.1.81 in Linux \func{chown} non
4582   seguiva i collegamenti simbolici, da allora questo comportamento è stato
4583   assegnato alla funzione \func{lchown}, introdotta per l'occasione, ed è
4584   stata creata una nuova \textit{system call} per \func{chown} che seguisse i
4585   collegamenti simbolici.} La funzione \func{fchown} opera su un file aperto,
4586 essa è mutuata da BSD, ma non è nello standard POSIX.  Un'altra estensione
4587 rispetto allo standard POSIX è che specificando -1 come valore
4588 per \param{owner} e \param{group} i valori restano immutati.
4589
4590 Quando queste funzioni sono chiamate con successo da un processo senza i
4591 privilegi di amministratore entrambi i bit \acr{suid} e \acr{sgid} vengono
4592 cancellati. Questo non avviene per il bit \acr{sgid} nel caso in cui esso sia
4593 usato (in assenza del corrispondente permesso di esecuzione) per indicare che
4594 per il file è attivo il \textit{mandatory locking} (vedi
4595 sez.~\ref{sec:file_mand_locking}).
4596
4597
4598 \subsection{Un quadro d'insieme sui permessi}
4599 \label{sec:file_riepilogo}
4600
4601 Avendo affrontato in maniera separata il comportamento delle varie funzioni
4602 che operano sui permessi dei file ed avendo trattato in sezioni diverse il
4603 significato dei singoli bit dei permessi, vale la pena di fare un riepilogo in
4604 cui si riassumano le caratteristiche di ciascuno di essi, in modo da poter
4605 fornire un quadro d'insieme.
4606
4607 \begin{table}[!htb]
4608   \centering
4609   \footnotesize
4610   \begin{tabular}[c]{|c|c|c|c|c|c|c|c|c|c|c|c|l|}
4611     \hline
4612     \multicolumn{3}{|c|}{special}&
4613     \multicolumn{3}{|c|}{user}&
4614     \multicolumn{3}{|c|}{group}&
4615     \multicolumn{3}{|c|}{other}&
4616     \multirow{2}{*}{\textbf{Significato per i file}} \\
4617     \cline{1-12}
4618     \texttt{s}&\texttt{s}&\texttt{t}&
4619     \texttt{r}&\texttt{w}&\texttt{x}&
4620     \texttt{r}&\texttt{w}&\texttt{x}&
4621     \texttt{r}&\texttt{w}&\texttt{x}& \\
4622     \hline
4623     \hline
4624    1&-&-&-&-&1&-&-&-&-&-&-&Eseguito conferisce l'\ids{UID} effettivo dell'utente.\\
4625    -&1&-&-&-&1&-&-&-&-&-&-&Eseguito conferisce il \ids{GID} effettivo del gruppo.\\
4626    -&1&-&-&-&0&-&-&-&-&-&-&Il \textit{mandatory locking} è abilitato.\\
4627    -&-&1&-&-&-&-&-&-&-&-&-&Non utilizzato.\\
4628    -&-&-&1&-&-&-&-&-&-&-&-&Permesso di lettura per l'utente.\\
4629    -&-&-&-&1&-&-&-&-&-&-&-&Permesso di scrittura per l'utente.\\
4630    -&-&-&-&-&1&-&-&-&-&-&-&Permesso di esecuzione per l'utente.\\
4631    -&-&-&-&-&-&1&-&-&-&-&-&Permesso di lettura per il gruppo.\\
4632    -&-&-&-&-&-&-&1&-&-&-&-&Permesso di scrittura per il gruppo.\\
4633    -&-&-&-&-&-&-&-&1&-&-&-&Permesso di esecuzione per il gruppo.\\
4634    -&-&-&-&-&-&-&-&-&1&-&-&Permesso di lettura per tutti gli altri.\\
4635    -&-&-&-&-&-&-&-&-&-&1&-&Permesso di scrittura per tutti gli altri.\\
4636    -&-&-&-&-&-&-&-&-&-&-&1&Permesso di esecuzione per tutti gli altri.\\
4637     \hline
4638     \hline
4639     \multicolumn{3}{|c|}{special}&
4640     \multicolumn{3}{|c|}{user}&
4641     \multicolumn{3}{|c|}{group}&
4642     \multicolumn{3}{|c|}{other}&
4643     \multirow{2}{*}{\textbf{Significato per le directory}} \\
4644     \cline{1-12}
4645     \texttt{s}&\texttt{s}&\texttt{t}&
4646     \texttt{r}&\texttt{w}&\texttt{x}&
4647     \texttt{r}&\texttt{w}&\texttt{x}&
4648     \texttt{r}&\texttt{w}&\texttt{x}& \\
4649     \hline
4650     \hline
4651     1&-&-&-&-&-&-&-&-&-&-&-&Non utilizzato.\\
4652     -&1&-&-&-&-&-&-&-&-&-&-&Propaga il gruppo ai nuovi file creati.\\
4653     -&-&1&-&-&-&-&-&-&-&-&-&Solo il proprietario di un file può rimuoverlo.\\
4654     -&-&-&1&-&-&-&-&-&-&-&-&Permesso di visualizzazione per l'utente.\\
4655     -&-&-&-&1&-&-&-&-&-&-&-&Permesso di aggiornamento per l'utente.\\
4656     -&-&-&-&-&1&-&-&-&-&-&-&Permesso di attraversamento per l'utente.\\
4657     -&-&-&-&-&-&1&-&-&-&-&-&Permesso di visualizzazione per il gruppo.\\
4658     -&-&-&-&-&-&-&1&-&-&-&-&Permesso di aggiornamento per il gruppo.\\
4659     -&-&-&-&-&-&-&-&1&-&-&-&Permesso di attraversamento per il gruppo.\\
4660     -&-&-&-&-&-&-&-&-&1&-&-&Permesso di visualizzazione per tutti gli altri.\\
4661     -&-&-&-&-&-&-&-&-&-&1&-&Permesso di aggiornamento per tutti gli altri.\\
4662     -&-&-&-&-&-&-&-&-&-&-&1&Permesso di attraversamento per tutti gli altri.\\
4663     \hline
4664   \end{tabular}
4665   \caption{Tabella riassuntiva del significato dei bit dei permessi per un
4666     file e directory.} 
4667   \label{tab:file_fileperm_bits}
4668 \end{table}
4669
4670 Nella parte superiore di tab.~\ref{tab:file_fileperm_bits} si è riassunto il
4671 significato dei vari bit dei permessi per un file ordinario; per quanto
4672 riguarda l'applicazione dei permessi per proprietario, gruppo ed altri si
4673 ricordi quanto illustrato in sez.~\ref{sec:file_perm_overview}.  Per
4674 compattezza, nella tabella si sono specificati i bit di \textit{suid},
4675 \textit{sgid} e \textit{sticky} con la notazione illustrata anche in
4676 fig.~\ref{fig:file_perm_bit}.  Nella parte inferiore si sono invece riassunti
4677 i significati dei vari bit dei permessi per una directory; anche in questo
4678 caso si è riapplicato ai bit di \textit{suid}, \textit{sgid} e \textit{sticky}
4679 la notazione illustrata in fig.~\ref{fig:file_perm_bit}.
4680
4681 Si ricordi infine che i permessi non hanno alcun significato per i
4682 collegamenti simbolici, mentre per i file di dispositivo hanno senso soltanto
4683 i permessi di lettura e scrittura, che si riflettono sulla possibilità di
4684 compiere dette operazioni sul dispositivo stesso.
4685
4686 Nella tabella si è indicato con il carattere ``-'' il fatto che il valore del
4687 bit in questione non è influente rispetto a quanto indicato nella riga della
4688 tabella; la descrizione del significato fa riferimento soltanto alla
4689 combinazione di bit per i quali è stato riportato esplicitamente un valore.
4690 Si rammenti infine che il valore dei bit dei permessi non ha alcun effetto
4691 qualora il processo possieda i privilegi di amministratore.
4692
4693
4694 \section{Caratteristiche e funzionalità avanzate}
4695 \label{sec:file_dir_advances}
4696
4697 Tratteremo qui alcune caratteristiche e funzionalità avanzate della gestione
4698 di file e directory, affrontando anche una serie di estensioni
4699 dell'interfaccia classica dei sistemi unix-like, principalmente utilizzate a
4700 scopi di sicurezza, che sono state introdotte nelle versioni più recenti di
4701 Linux.
4702
4703 \subsection{Gli attributi estesi}
4704 \label{sec:file_xattr}
4705
4706 \itindbeg{Extended~Attributes}
4707
4708 Nelle sezioni precedenti abbiamo trattato in dettaglio le varie informazioni
4709 che il sistema mantiene negli \textit{inode}, e le varie funzioni che
4710 permettono di modificarle.  Si sarà notato come in realtà queste informazioni
4711 siano estremamente ridotte.  Questo è dovuto al fatto che Unix origina negli
4712 anni '70, quando le risorse di calcolo e di spazio disco erano minime. Con il
4713 venir meno di queste restrizioni è incominciata ad emergere l'esigenza di
4714 poter associare ai file delle ulteriori informazioni astratte (quelli che
4715 abbiamo chiamato genericamente \textsl{metadati}) che però non potevano
4716 trovare spazio nei dati classici mantenuti negli \textit{inode}.
4717
4718 Per risolvere questo problema alcuni sistemi unix-like (e fra questi anche
4719 Linux) hanno introdotto un meccanismo generico, detto \textit{Extended
4720   Attributes} che consente di associare delle informazioni ulteriori ai
4721 singoli file.\footnote{essi ad esempio vengono usati per le ACL, che
4722   tratteremo in sez.~\ref{sec:file_ACL} e le \textit{file capabilities}, che
4723   vedremo in sez.~\ref{sec:proc_capabilities}.} Gli \textsl{attributi estesi}
4724 non sono altro che delle coppie nome/valore che sono associate permanentemente
4725 ad un oggetto sul filesystem, analoghi di quello che sono le variabili di
4726 ambiente (vedi sez.~\ref{sec:proc_environ}) per un processo.
4727
4728 Altri sistemi (come Solaris, MacOS e Windows) hanno adottato un meccanismo
4729 diverso in cui ad un file sono associati diversi flussi di dati, su cui
4730 possono essere mantenute ulteriori informazioni, che possono essere accedute
4731 con le normali operazioni di lettura e scrittura. Questi non vanno confusi con
4732 gli \textit{Extended Attributes} (anche se su Solaris hanno lo stesso nome),
4733 che sono un meccanismo molto più semplice, che pur essendo limitato (potendo
4734 contenere solo una quantità limitata di informazione) hanno il grande
4735 vantaggio di essere molto più semplici da realizzare, più
4736 efficienti,\footnote{cosa molto importante, specie per le applicazioni che
4737   richiedono una gran numero di accessi, come le ACL.} e di garantire
4738 l'atomicità di tutte le operazioni.
4739
4740 In Linux gli attributi estesi sono sempre associati al singolo \textit{inode}
4741 e l'accesso viene sempre eseguito in forma atomica, in lettura il valore
4742 corrente viene scritto su un buffer in memoria, mentre la scrittura prevede
4743 che ogni valore precedente sia sovrascritto.
4744
4745 Si tenga presente che non tutti i filesystem supportano gli \textit{Extended
4746   Attributes}; al momento della scrittura di queste dispense essi sono
4747 presenti solo sui vari \textsl{extN}, \textsl{ReiserFS}, \textsl{JFS},
4748 \textsl{XFS} e \textsl{Btrfs}.\footnote{l'elenco è aggiornato a Luglio 2011.}
4749 Inoltre a seconda della implementazione ci possono essere dei limiti sulla
4750 quantità di attributi che si possono utilizzare.\footnote{ad esempio nel caso
4751   di \textsl{ext2} ed \textsl{ext3} è richiesto che essi siano contenuti
4752   all'interno di un singolo blocco, pertanto con dimensioni massime pari a
4753   1024, 2048 o 4096 byte a seconda delle dimensioni di quest'ultimo impostate
4754   in fase di creazione del filesystem, mentre con \textsl{XFS} non ci sono
4755   limiti ed i dati vengono memorizzati in maniera diversa (nell'\textit{inode}
4756   stesso, in un blocco a parte, o in una struttura ad albero dedicata) per
4757   mantenerne la scalabilità.} Infine lo spazio utilizzato per mantenere gli
4758 attributi estesi viene tenuto in conto per il calcolo delle quote di utente e
4759 gruppo proprietari del file.
4760
4761 Come meccanismo per mantenere informazioni aggiuntive associate al singolo
4762 file, gli \textit{Extended Attributes} possono avere usi anche molto diversi
4763 fra loro.  Per poterli distinguere allora sono stati suddivisi in
4764 \textsl{classi}, a cui poter applicare requisiti diversi per l'accesso e la
4765 gestione. Per questo motivo il nome di un attributo deve essere sempre
4766 specificato nella forma \texttt{namespace.attribute}, dove \texttt{namespace}
4767 fa riferimento alla classe a cui l'attributo appartiene, mentre
4768 \texttt{attribute} è il nome ad esso assegnato. In tale forma il nome di un
4769 attributo esteso deve essere univoco. Al momento\footnote{della scrittura di
4770   questa sezione, kernel 2.6.23, ottobre 2007.} sono state definite le quattro
4771 classi di attributi riportate in tab.~\ref{tab:extended_attribute_class}.
4772
4773 \begin{table}[htb]
4774   \centering
4775   \footnotesize
4776   \begin{tabular}{|l|p{8cm}|}
4777     \hline
4778     \textbf{Nome} & \textbf{Descrizione} \\
4779     \hline
4780     \hline
4781     \texttt{security}&Gli \textit{extended security attributes}: vengono
4782                       utilizzati dalle estensioni di sicurezza del kernel (i
4783                       \textit{Linux Security Modules}), per le realizzazione
4784                       di meccanismi evoluti di controllo di accesso come
4785                       \textit{SELinux} o le \textit{capabilities} dei
4786                       file di sez.~\ref{sec:proc_capabilities}.\\ 
4787     \texttt{system} & Gli \textit{extended security attributes}: sono usati
4788                       dal kernel per memorizzare dati di sistema associati ai
4789                       file come le ACL (vedi sez.~\ref{sec:file_ACL}) o le
4790                       \textit{capabilities} (vedi
4791                       sez.~\ref{sec:proc_capabilities}).\\
4792     \texttt{trusted}& I \textit{trusted extended attributes}: vengono
4793                       utilizzati per poter realizzare in user space 
4794                       meccanismi che consentano di mantenere delle
4795                       informazioni sui file che non devono essere accessibili
4796                       ai processi ordinari.\\
4797     \texttt{user}   & Gli \textit{extended user attributes}: utilizzati per
4798                       mantenere informazioni aggiuntive sui file (come il
4799                       \textit{mime-type}, la codifica dei caratteri o del
4800                       file) accessibili dagli utenti.\\
4801     \hline
4802   \end{tabular}
4803   \caption{I nomi utilizzati valore di \texttt{namespace} per distinguere le
4804     varie classi di \textit{Extended Attributes}.}
4805   \label{tab:extended_attribute_class}
4806 \end{table}
4807
4808
4809 Dato che uno degli usi degli \textit{Extended Attributes} è di impiegarli per
4810 realizzare delle estensioni (come le ACL, \textit{SELinux}, ecc.) al
4811 tradizionale meccanismo dei controlli di accesso di Unix, l'accesso ai loro
4812 valori viene regolato in maniera diversa a seconda sia della loro classe che
4813 di quali, fra le estensioni che li utilizzano, sono poste in uso. In
4814 particolare, per ciascuna delle classi riportate in
4815 tab.~\ref{tab:extended_attribute_class}, si hanno i seguenti casi:
4816 \begin{basedescript}{\desclabelwidth{1.7cm}\desclabelstyle{\nextlinelabel}}
4817 \item[\texttt{security}] L'accesso agli \textit{extended security attributes}
4818   dipende dalle politiche di sicurezza stabilite da loro stessi tramite
4819   l'utilizzo di un sistema di controllo basato sui \textit{Linux Security
4820     Modules} (ad esempio \textit{SELinux}). Pertanto l'accesso in lettura o
4821   scrittura dipende dalle politiche di sicurezza implementate all'interno dal
4822   modulo di sicurezza che si sta utilizzando al momento (ciascuno avrà le
4823   sue). Se non è stato caricato nessun modulo di sicurezza l'accesso in
4824   lettura sarà consentito a tutti i processi, mentre quello in scrittura solo
4825   ai processi con privilegi amministrativi dotati della capacità
4826   \const{CAP\_SYS\_ADMIN}.
4827
4828 \item[\texttt{system}] Anche l'accesso agli \textit{extended system
4829     attributes} dipende dalle politiche di accesso che il kernel realizza
4830   anche utilizzando gli stessi valori in essi contenuti. Ad esempio nel caso
4831   delle ACL (vedi sez.~\ref{sec:file_ACL}) l'accesso è consentito in lettura
4832   ai processi che hanno la capacità di eseguire una ricerca sul file (cioè
4833   hanno il permesso di lettura sulla directory che contiene il file) ed in
4834   scrittura al proprietario del file o ai processi dotati della capacità
4835   \const{CAP\_FOWNER}.\footnote{vale a dire una politica di accesso analoga a
4836     quella impiegata per gli ordinari permessi dei file.}
4837
4838 \item[\texttt{trusted}] L'accesso ai \textit{trusted extended attributes}, sia
4839   per la lettura che per la scrittura, è consentito soltanto ai processi con
4840   privilegi amministrativi dotati della capacità \const{CAP\_SYS\_ADMIN}. In
4841   questo modo si possono utilizzare questi attributi per realizzare in user
4842   space dei meccanismi di controllo che accedono ad informazioni non
4843   disponibili ai processi ordinari.
4844
4845 \item[\texttt{user}] L'accesso agli \textit{extended user attributes} è
4846   regolato dai normali permessi dei file: occorre avere il permesso di lettura
4847   per leggerli e quello di scrittura per scriverli o modificarli. Dato l'uso
4848   di questi attributi si è scelto di applicare al loro accesso gli stessi
4849   criteri che si usano per l'accesso al contenuto dei file (o delle directory)
4850   cui essi fanno riferimento. Questa scelta vale però soltanto per i file e le
4851   directory ordinarie, se valesse in generale infatti si avrebbe un serio
4852   problema di sicurezza dato che esistono diversi oggetti sul filesystem per i
4853   quali è normale avere avere il permesso di scrittura consentito a tutti gli
4854   utenti, come i collegamenti simbolici, o alcuni file di dispositivo come
4855   \texttt{/dev/null}. Se fosse possibile usare su di essi gli \textit{extended
4856     user attributes} un utente qualunque potrebbe inserirvi dati a
4857   piacere.\footnote{la cosa è stata notata su XFS, dove questo comportamento
4858     permetteva, non essendovi limiti sullo spazio occupabile dagli
4859     \textit{Extended Attributes}, di bloccare il sistema riempiendo il disco.}
4860
4861   La semantica del controllo di accesso indicata inoltre non avrebbe alcun
4862   senso al di fuori di file e directory: i permessi di lettura e scrittura per
4863   un file di dispositivo attengono alle capacità di accesso al dispositivo
4864   sottostante,\footnote{motivo per cui si può formattare un disco anche se
4865     \texttt{/dev} è su un filesystem in sola lettura.} mentre per i
4866   collegamenti simbolici questi vengono semplicemente ignorati: in nessuno dei
4867   due casi hanno a che fare con il contenuto del file, e nella discussione
4868   relativa all'uso degli \textit{extended user attributes} nessuno è mai stato
4869   capace di indicare una qualche forma sensata di utilizzo degli stessi per
4870   collegamenti simbolici o file di dispositivo, e neanche per le fifo o i
4871   socket.  Per questo motivo essi sono stati completamente disabilitati per
4872   tutto ciò che non sia un file regolare o una directory.\footnote{si può
4873     verificare la semantica adottata consultando il file \texttt{fs/xattr.c}
4874     dei sorgenti del kernel.} Inoltre per le directory è stata introdotta una
4875   ulteriore restrizione, dovuta di nuovo alla presenza ordinaria di permessi
4876   di scrittura completi su directory come \texttt{/tmp}. Per questo motivo,
4877   per evitare eventuali abusi, se una directory ha lo \textit{sticky bit}
4878   attivo sarà consentito scrivere i suoi \textit{extended user attributes}
4879   soltanto se si è proprietari della stessa, o si hanno i privilegi
4880   amministrativi della capacità \const{CAP\_FOWNER}.
4881 \end{basedescript}
4882
4883 Le funzioni per la gestione degli attributi estesi, come altre funzioni di
4884 gestione avanzate specifiche di Linux, non fanno parte della \acr{glibc}, e
4885 sono fornite da una apposita libreria, \texttt{libattr}, che deve essere
4886 installata a parte;\footnote{la versione corrente della libreria è
4887   \texttt{libattr1}.}  pertanto se un programma le utilizza si dovrà indicare
4888 esplicitamente l'uso della suddetta libreria invocando il compilatore con
4889 l'opzione \texttt{-lattr}.  
4890
4891 Per poter leggere gli attributi estesi sono disponibili tre diverse funzioni
4892 di sistema, \funcd{getxattr}, \funcd{lgetxattr} e \funcd{fgetxattr}, che
4893 consentono rispettivamente di richiedere gli attributi relativi a un file, a
4894 un collegamento simbolico e ad un file descriptor; i rispettivi prototipi
4895 sono:
4896
4897 \begin{funcproto}{
4898 \fhead{sys/types.h}
4899 \fhead{attr/xattr.h}
4900 \fdecl{ssize\_t getxattr(const char *path, const char *name, void *value,
4901   size\_t size)}
4902 \fdecl{ssize\_t lgetxattr(const char *path, const char *name, void *value,
4903   size\_t size)}
4904 \fdecl{ssize\_t fgetxattr(int filedes, const char *name, void *value,
4905   size\_t size)}
4906 \fdesc{Leggono il valore di un attributo esteso.} 
4907 }
4908
4909 {Le funzioni ritornano un intero positivo che indica la dimensione
4910   dell'attributo richiesto in caso di successo e $-1$ per un errore, nel qual
4911   caso \var{errno} assumerà uno dei valori:
4912   \begin{errlist}
4913   \item[\errcode{ENOATTR}] l'attributo richiesto non esiste.
4914   \item[\errcode{ENOTSUP}] gli attributi estesi non sono supportati dal
4915     filesystem o sono disabilitati.
4916   \item[\errcode{ERANGE}] la dimensione \param{size} del buffer \param{value}
4917     non è sufficiente per contenere il risultato.
4918   \end{errlist}
4919   ed inoltre tutti gli errori delle analoghe della famiglia \func{stat} con lo
4920   stesso significato, ed in particolare \errcode{EPERM} se non si hanno i
4921   permessi di accesso all'attributo.}
4922 \end{funcproto}
4923
4924 Le funzioni \func{getxattr} e \func{lgetxattr} prendono come primo argomento
4925 un \textit{pathname} che indica il file di cui si vuole richiedere un
4926 attributo, la sola differenza è che la seconda, se il \textit{pathname} indica
4927 un collegamento simbolico, restituisce gli attributi di quest'ultimo e non
4928 quelli del file a cui esso fa riferimento. La funzione \func{fgetxattr} prende
4929 invece come primo argomento un numero di file descriptor, e richiede gli
4930 attributi del file ad esso associato.
4931
4932 Tutte e tre le funzioni richiedono di specificare nell'argomento \param{name}
4933 il nome dell'attributo di cui si vuole ottenere il valore. Il nome deve essere
4934 indicato comprensivo di prefisso del \textit{namespace} cui appartiene (uno
4935 dei valori di tab.~\ref{tab:extended_attribute_class}) nella forma
4936 \texttt{namespace.attributename}, come stringa terminata da un carattere NUL.
4937 Il suo valore verrà restituito nel buffer puntato dall'argomento \param{value}
4938 per una dimensione massima di \param{size} byte;\footnote{gli attributi estesi
4939   possono essere costituiti arbitrariamente da dati testuali o binari.}  se
4940 quest'ultima non è sufficiente si avrà un errore di \errcode{ERANGE}.
4941
4942 Per evitare di dover indovinare la dimensione di un attributo per tentativi si
4943 può eseguire una interrogazione utilizzando un valore nullo per \param{size};
4944 in questo caso non verrà letto nessun dato, ma verrà restituito come valore di
4945 ritorno della funzione chiamata la dimensione totale dell'attributo esteso
4946 richiesto, che si potrà usare come stima per allocare un buffer di dimensioni
4947 sufficienti.\footnote{si parla di stima perché anche se le funzioni
4948   restituiscono la dimensione esatta dell'attributo al momento in cui sono
4949   eseguite, questa potrebbe essere modificata in qualunque momento da un
4950   successivo accesso eseguito da un altro processo.}
4951
4952 Un secondo gruppo di funzioni è quello che consente di impostare il valore di
4953 un attributo esteso, queste sono \funcd{setxattr}, \funcd{lsetxattr} e
4954 \funcd{fsetxattr}, e consentono di operare rispettivamente su un file, su un
4955 collegamento simbolico o specificando un file descriptor; i loro prototipi sono:
4956
4957 \begin{funcproto}{
4958 \fhead{sys/types.h}
4959 \fhead{attr/xattr.h}
4960 \fdecl{int setxattr(const char *path, const char *name, const void *value,
4961   size\_t size, int flags)} 
4962 \fdecl{int lsetxattr(const char *path, const char *name, const void *value,
4963   size\_t size, int flags)} 
4964 \fdecl{int fsetxattr(int filedes, const char *name, const void *value, size\_t
4965   size, int flags)} 
4966 \fdesc{Impostano il valore di un attributo esteso.} 
4967 }
4968
4969 {Le funzioni ritornano un $0$ in caso di successo e $-1$ per un errore, nel qual
4970   caso \var{errno} assumerà uno dei valori:
4971   \begin{errlist}
4972   \item[\errcode{EEXIST}] si è usato il flag \const{XATTR\_CREATE} ma
4973     l'attributo esiste già.
4974   \item[\errcode{ENOATTR}] si è usato il flag \const{XATTR\_REPLACE} e
4975     l'attributo richiesto non esiste.
4976   \item[\errcode{ENOTSUP}] gli attributi estesi non sono supportati dal
4977     filesystem o sono disabilitati.
4978   \end{errlist}
4979   ed inoltre tutti gli errori delle analoghe della famiglia \func{stat} con lo
4980   stesso significato ed in particolare \errcode{EPERM} se non si hanno i
4981   permessi di accesso all'attributo.}
4982 \end{funcproto}
4983
4984 Le tre funzioni prendono come primo argomento un valore adeguato al loro
4985 scopo, usato in maniera del tutto identica a quanto visto in precedenza per le
4986 analoghe che leggono gli attributi estesi. Il secondo argomento \param{name}
4987 deve indicare, anche in questo caso con gli stessi criteri appena visti per le
4988 analoghe \func{getxattr}, \func{lgetxattr} e \func{fgetxattr}, il nome
4989 (completo di suffisso) dell'attributo su cui si vuole operare. 
4990
4991 Il valore che verrà assegnato all'attributo dovrà essere preparato nel buffer
4992 puntato da \param{value}, e la sua dimensione totale (in byte) sarà indicata
4993 dall'argomento \param{size}. Infine l'argomento \param{flag} consente di
4994 controllare le modalità di sovrascrittura dell'attributo esteso, esso può
4995 prendere due valori: con \constd{XATTR\_REPLACE} si richiede che l'attributo
4996 esista, nel qual caso verrà sovrascritto, altrimenti si avrà errore, mentre
4997 con \constd{XATTR\_CREATE} si richiede che l'attributo non esista, nel qual
4998 caso verrà creato, altrimenti si avrà errore ed il valore attuale non sarà
4999 modificato.  Utilizzando per \param{flag} un valore nullo l'attributo verrà
5000 modificato se è già presente, o creato se non c'è.
5001
5002 Le funzioni finora illustrate permettono di leggere o scrivere gli attributi
5003 estesi, ma sarebbe altrettanto utile poter vedere quali sono gli attributi
5004 presenti; a questo provvedono le funzioni di sistema \funcd{listxattr},
5005 \funcd{llistxattr} e \funcd{flistxattr} i cui prototipi sono:
5006
5007 \begin{funcproto}{
5008 \fhead{sys/types.h}
5009 \fhead{attr/xattr.h}
5010 \fdecl{ssize\_t listxattr(const char *path, char *list, size\_t size)} 
5011 \fdecl{ssize\_t llistxattr(const char *path, char *list, size\_t size)} 
5012 \fdecl{ssize\_t flistxattr(int filedes, char *list, size\_t size)} 
5013 \fdesc{Leggono la lista degli attributi estesi di un file.} 
5014 }
5015
5016 {Le funzioni ritornano un intero positivo che indica la dimensione della lista
5017   in caso di successo e $-1$ per un errore, nel qual caso \var{errno} assumerà
5018   uno dei valori:
5019   \begin{errlist}
5020   \item[\errcode{ENOTSUP}] gli attributi estesi non sono supportati dal
5021     filesystem o sono disabilitati.
5022   \item[\errcode{ERANGE}] la dimensione \param{size} del buffer \param{value}
5023     non è sufficiente per contenere il risultato.
5024   \end{errlist}
5025   ed inoltre tutti gli errori delle analoghe della famiglia \func{stat} con lo
5026   stesso significato ed in particolare \errcode{EPERM} se non si hanno i
5027   permessi di accesso all'attributo.}
5028 \end{funcproto}
5029
5030 Come per le precedenti le tre funzioni leggono gli attributi rispettivamente
5031 di un file, un collegamento simbolico o specificando un file descriptor, da
5032 specificare con il loro primo argomento. Gli altri due argomenti, identici per
5033 tutte e tre, indicano rispettivamente il puntatore \param{list} al buffer dove
5034 deve essere letta la lista e la dimensione \param{size} di quest'ultimo.
5035
5036 La lista viene fornita come sequenza non ordinata dei nomi dei singoli
5037 attributi estesi (sempre comprensivi del prefisso della loro classe) ciascuno
5038 dei quali è terminato da un carattere nullo. I nomi sono inseriti nel buffer
5039 uno di seguito all'altro. Il valore di ritorno della funzione indica la
5040 dimensione totale della lista in byte.
5041
5042 Come per le funzioni di lettura dei singoli attributi se le dimensioni del
5043 buffer non sono sufficienti si avrà un errore, ma è possibile ottenere dal
5044 valore di ritorno della funzione una stima della dimensione totale della lista
5045 usando per \param{size} un valore nullo. 
5046
5047 Infine per rimuovere semplicemente un attributo esteso, si ha a disposizione
5048 un ultimo gruppo di funzioni di sistema: \funcd{removexattr},
5049 \funcd{lremovexattr} e \funcd{fremovexattr}; i rispettivi prototipi sono:
5050
5051 \begin{funcproto}{
5052 \fhead{sys/types.h}
5053 \fhead{attr/xattr.h}
5054 \fdecl{int removexattr(const char *path, const char *name)} 
5055 \fdecl{int lremovexattr(const char *path, const char *name)} 
5056 \fdecl{int fremovexattr(int filedes, const char *name)} 
5057 \fdesc{Rimuovono un attributo esteso di un file.} 
5058 }
5059
5060 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
5061   caso \var{errno} assumerà uno dei valori:
5062   \begin{errlist}
5063   \item[\errcode{ENOATTR}] l'attributo richiesto non esiste.
5064   \item[\errcode{ENOTSUP}] gli attributi estesi non sono supportati dal
5065     filesystem o sono disabilitati.
5066   \end{errlist}
5067   ed inoltre tutti gli errori delle analoghe della famiglia \func{stat} con lo
5068   stesso significato ed in particolare \errcode{EPERM} se non si hanno i
5069   permessi di accesso all'attributo.}
5070 \end{funcproto}
5071
5072 Le tre funzioni rimuovono un attributo esteso operando rispettivamente su di
5073 un file, su un collegamento simbolico o un file descriptor, che vengono
5074 specificati dal valore passato con il loro primo argomento.  L'attributo da
5075 rimuovere deve essere anche in questo caso indicato con
5076 l'argomento \param{name} secondo le stesse modalità già illustrate in
5077 precedenza per le altre funzioni relative alla gestione degli attributi
5078 estesi.
5079
5080 \itindend{Extended~Attributes}
5081
5082
5083 \subsection{Le \textit{Access  Control List}}
5084 \label{sec:file_ACL}
5085
5086 % la documentazione di sistema è nei pacchetti libacl1-dev e acl 
5087 % vedi anche http://www.suse.de/~agruen/acl/linux-acls/online/
5088
5089 \itindbeg{Access~Control~List~(ACL)}
5090
5091 Il modello classico dei permessi di Unix, per quanto funzionale ed efficiente,
5092 è comunque piuttosto limitato e per quanto possa aver coperto per lunghi anni
5093 le esigenze più comuni con un meccanismo semplice e potente, non è in grado di
5094 rispondere in maniera adeguata a situazioni che richiedono una gestione
5095 complessa dei permessi di accesso.\footnote{già un requisito come quello di
5096   dare accesso in scrittura ad alcune persone ed in sola lettura ad altre non
5097   si può soddisfare in maniera semplice.}
5098
5099 Per questo motivo erano state progressivamente introdotte nelle varie versioni
5100 di Unix dei meccanismi di gestione dei permessi dei file più flessibili, nella
5101 forma delle cosiddette \textit{Access Control List} (indicate usualmente con
5102 la sigla ACL).  Nello sforzo di standardizzare queste funzionalità era stato
5103 creato un gruppo di lavoro il cui scopo era estendere lo standard POSIX 1003
5104 attraverso due nuovi insiemi di specifiche, la POSIX 1003.1e per l'interfaccia
5105 di programmazione e la POSIX 1003.2c per i comandi di shell.
5106
5107 Gli obiettivi del gruppo di lavoro erano però forse troppo ambizioni, e nel
5108 gennaio del 1998 i finanziamenti vennero ritirati senza che si fosse arrivati
5109 alla definizione dello standard richiesto. Dato però che una parte della
5110 documentazione prodotta era di alta qualità venne deciso di rilasciare al
5111 pubblico la diciassettesima bozza del documento, quella che va sotto il nome
5112 di \textit{POSIX 1003.1e Draft 17}, che è divenuta la base sulla quale si
5113 definiscono le cosiddette \textit{Posix ACL}.
5114
5115 A differenza di altri sistemi, come ad esempio FreeBSD, nel caso di Linux si è
5116 scelto di realizzare le ACL attraverso l'uso degli \textit{Extended
5117   Attributes} (appena trattati in sez.~\ref{sec:file_xattr}), e fornire tutte
5118 le relative funzioni di gestione tramite una libreria, \texttt{libacl} che
5119 nasconde i dettagli implementativi delle ACL e presenta ai programmi una
5120 interfaccia che fa riferimento allo standard POSIX 1003.1e.
5121
5122 Anche in questo caso le funzioni di questa libreria non fanno parte della
5123 \acr{glibc} e devono essere installate a parte;\footnote{la versione corrente
5124   della libreria è \texttt{libacl1}, e nel caso si usi Debian la si può
5125   installare con il pacchetto omonimo e con il collegato \texttt{libacl1-dev}
5126   per i file di sviluppo.}  pertanto se un programma le utilizza si dovrà
5127 indicare esplicitamente l'uso della libreria \texttt{libacl} invocando il
5128 compilatore con l'opzione \texttt{-lacl}. Si tenga presente inoltre che le ACL
5129 devono essere attivate esplicitamente montando il filesystem\footnote{che deve
5130   supportarle, ma questo è ormai vero per praticamente tutti i filesystem più
5131   comuni, con l'eccezione di NFS per il quale esiste però un supporto
5132   sperimentale.} su cui le si vogliono utilizzare con l'opzione \texttt{acl}
5133 attiva. Dato che si tratta di una estensione è infatti opportuno utilizzarle
5134 soltanto laddove siano necessarie.
5135
5136 Una ACL è composta da un insieme di voci, e ciascuna voce è a sua volta
5137 costituita da un \textsl{tipo}, da un eventuale
5138 \textsl{qualificatore},\footnote{deve essere presente soltanto per le voci di
5139   tipo \const{ACL\_USER} e \const{ACL\_GROUP}.} e da un insieme di permessi.
5140 Ad ogni oggetto sul filesystem si può associare una ACL che ne governa i
5141 permessi di accesso, detta \textit{access ACL}.  Inoltre per le directory si
5142 può impostare una ACL aggiuntiva, detta ``\textit{Default ACL}'', che serve ad
5143 indicare quale dovrà essere la ACL assegnata di default nella creazione di un
5144 file all'interno della directory stessa. Come avviene per i permessi le ACL
5145 possono essere impostate solo del proprietario del file, o da un processo con
5146 la capacità \const{CAP\_FOWNER}.
5147
5148 \begin{table}[htb]
5149   \centering
5150   \footnotesize
5151   \begin{tabular}{|l|p{8cm}|}
5152     \hline
5153     \textbf{Tipo} & \textbf{Descrizione} \\
5154     \hline
5155     \hline
5156     \constd{ACL\_USER\_OBJ}& Voce che contiene i diritti di accesso del
5157                              proprietario del file.\\
5158     \constd{ACL\_USER}     & Voce che contiene i diritti di accesso per
5159                              l'utente indicato dal rispettivo
5160                              qualificatore.\\  
5161     \constd{ACL\_GROUP\_OBJ}&Voce che contiene i diritti di accesso del
5162                              gruppo proprietario del file.\\
5163     \constd{ACL\_GROUP}    & Voce che contiene i diritti di accesso per
5164                              il gruppo indicato dal rispettivo
5165                              qualificatore.\\
5166     \constd{ACL\_MASK}     & Voce che contiene la maschera dei massimi
5167                              permessi di accesso che possono essere garantiti
5168                              da voci del tipo \const{ACL\_USER},
5169                              \const{ACL\_GROUP} e \const{ACL\_GROUP\_OBJ}.\\
5170     \constd{ACL\_OTHER}    & Voce che contiene i diritti di accesso di chi
5171                              non corrisponde a nessuna altra voce dell'ACL.\\
5172     \hline
5173   \end{tabular}
5174   \caption{Le costanti che identificano i tipi delle voci di una ACL.}
5175   \label{tab:acl_tag_types}
5176 \end{table}
5177
5178 L'elenco dei vari tipi di voci presenti in una ACL, con una breve descrizione
5179 del relativo significato, è riportato in tab.~\ref{tab:acl_tag_types}. Tre di
5180 questi tipi, \const{ACL\_USER\_OBJ}, \const{ACL\_GROUP\_OBJ} e
5181 \const{ACL\_OTHER}, corrispondono direttamente ai tre permessi ordinari dei
5182 file (proprietario, gruppo proprietario e tutti gli altri) e per questo una
5183 ACL valida deve sempre contenere una ed una sola voce per ciascuno di questi
5184 tipi.
5185
5186 Una ACL può poi contenere un numero arbitrario di voci di tipo
5187 \const{ACL\_USER} e \const{ACL\_GROUP}, ciascuna delle quali indicherà i
5188 permessi assegnati all'utente e al gruppo indicato dal relativo qualificatore.
5189 Ovviamente ciascuna di queste voci dovrà fare riferimento ad un utente o ad un
5190 gruppo diverso, e non corrispondenti a quelli proprietari del file. Inoltre se
5191 in una ACL esiste una voce di uno di questi due tipi, è obbligatoria anche la
5192 presenza di una ed una sola voce di tipo \const{ACL\_MASK}, che negli altri
5193 casi è opzionale.
5194
5195 Una voce di tipo \const{ACL\_MASK} serve a mantenere la maschera dei permessi
5196 che possono essere assegnati tramite voci di tipo \const{ACL\_USER},
5197 \const{ACL\_GROUP} e \const{ACL\_GROUP\_OBJ}. Se in una di queste voci si
5198 fosse specificato un permesso non presente in \const{ACL\_MASK} questo
5199 verrebbe ignorato. L'uso di una ACL di tipo \const{ACL\_MASK} è di particolare
5200 utilità quando essa associata ad una \textit{Default ACL} su una directory, in
5201 quanto i permessi così specificati verranno ereditati da tutti i file creati
5202 nella stessa directory. Si ottiene così una sorta di \textit{umask} associata
5203 ad un oggetto sul filesystem piuttosto che a un processo.
5204
5205 Dato che le ACL vengono a costituire una estensione dei permessi ordinari, uno
5206 dei problemi che si erano posti nella loro standardizzazione era appunto
5207 quello della corrispondenza fra questi e le ACL. Come accennato i permessi
5208 ordinari vengono mappati nelle tre voci di tipo \const{ACL\_USER\_OBJ},
5209 \const{ACL\_GROUP\_OBJ} e \const{ACL\_OTHER} che devono essere presenti in
5210 qualunque ACL; un cambiamento ad una di queste voci viene automaticamente
5211 riflesso sui permessi ordinari dei file e viceversa.\footnote{per permessi
5212   ordinari si intende quelli mantenuti nell'\textit{inode}, che devono restare
5213   dato che un filesystem può essere montato senza abilitare le ACL.}
5214
5215 In realtà la mappatura è diretta solo per le voci \const{ACL\_USER\_OBJ} e
5216 \const{ACL\_OTHER}, nel caso di \const{ACL\_GROUP\_OBJ} questo vale soltanto
5217 se non è presente una voce di tipo \const{ACL\_MASK}, che è quanto avviene
5218 normalmente se non sono presenti ACL aggiuntive rispetto ai permessi
5219 ordinari. Se invece questa è presente verranno tolti dai permessi di
5220 \const{ACL\_GROUP\_OBJ} (cioè dai permessi per il gruppo proprietario del
5221 file) tutti quelli non presenti in \const{ACL\_MASK}.\footnote{questo diverso
5222   comportamento a seconda delle condizioni è stato introdotto dalla
5223   standardizzazione \textit{POSIX 1003.1e Draft 17} per mantenere il
5224   comportamento invariato sui sistemi dotati di ACL per tutte quelle
5225   applicazioni che sono conformi soltanto all'ordinario standard \textit{POSIX
5226     1003.1}.}
5227
5228 Un secondo aspetto dell'incidenza delle ACL sul comportamento del sistema è
5229 quello relativo alla creazione di nuovi file,\footnote{o oggetti sul
5230   filesystem, il comportamento discusso vale per le funzioni \func{open} e
5231   \func{creat} (vedi sez.~\ref{sec:file_open_close}), \func{mkdir} (vedi
5232   sez.~\ref{sec:file_dir_creat_rem}), \func{mknod} e \func{mkfifo} (vedi
5233   sez.~\ref{sec:file_mknod}).} che come accennato può essere modificato dalla
5234 presenza di una \textit{Default ACL} sulla directory che andrà a contenerli.
5235 Se questa non c'è valgono le regole usuali illustrate in
5236 sez.~\ref{sec:file_perm_management}, per cui essi sono determinati dalla
5237 \textit{umask} del processo, e la sola differenza è che i permessi ordinari da
5238 esse risultanti vengono automaticamente rimappati anche su una ACL di accesso
5239 assegnata automaticamente al nuovo file, che contiene soltanto le tre
5240 corrispondenti voci di tipo \const{ACL\_USER\_OBJ}, \const{ACL\_GROUP\_OBJ} e
5241 \const{ACL\_OTHER}.
5242
5243 Se invece è presente una ACL di default sulla directory che contiene il nuovo
5244 file, essa diventerà automaticamente anche la ACL di accesso di quest'ultimo,
5245 a meno di non aver indicato, nelle funzioni di creazione che lo consentono,
5246 uno specifico valore per i permessi ordinari.\footnote{tutte le funzioni
5247   citate in precedenza supportano un argomento \var{mode} che indichi un
5248   insieme di permessi iniziale.} In tal caso saranno eliminati dalle voci
5249 corrispondenti che deriverebbero dalla ACL di default, tutti i permessi non
5250 presenti in tale indicazione.
5251
5252 Dato che questa è la ragione che ha portato alla loro creazione, la principale
5253 modifica introdotta nel sistema con la presenza della ACL è quella alle regole
5254 del controllo di accesso ai file che si sono illustrate in
5255 sez.~\ref{sec:file_perm_overview}.  Come nel caso ordinario per il controllo
5256 vengono sempre utilizzati gli identificatori del gruppo \textit{effective} del
5257 processo, ma in caso di presenza di una ACL sul file, i passi attraverso i
5258 quali viene stabilito se il processo ha il diritto di accesso sono i seguenti:
5259 \begin{enumerate}
5260 \item Se l'\ids{UID} del processo è nullo (se cioè si è l'amministratore)
5261   l'accesso è sempre garantito senza nessun controllo.\footnote{più
5262     precisamente se si devono avere le capacità \const{CAP\_DAC\_OVERRIDE} per
5263     i file e \const{CAP\_DAC\_READ\_SEARCH} per le directory, vedi
5264     sez.~\ref{sec:proc_capabilities}.}
5265 \item Se l'\ids{UID} del processo corrisponde al proprietario del file allora:
5266   \begin{itemize*}
5267   \item se la voce \const{ACL\_USER\_OBJ} contiene il permesso richiesto,
5268     l'accesso è consentito;
5269   \item altrimenti l'accesso è negato.
5270   \end{itemize*}
5271 \item Se l'\ids{UID} del processo corrisponde ad un qualunque qualificatore
5272   presente in una voce \const{ACL\_USER} allora:
5273   \begin{itemize*}
5274   \item se la voce \const{ACL\_USER} corrispondente e la voce
5275     \const{ACL\_MASK} contengono entrambe il permesso richiesto, l'accesso è
5276     consentito;
5277   \item altrimenti l'accesso è negato.
5278   \end{itemize*}
5279 \item Se è il \ids{GID} del processo o uno dei \ids{GID} supplementari
5280   corrisponde al gruppo proprietario del file allora: 
5281   \begin{itemize*}
5282   \item se la voce \const{ACL\_GROUP\_OBJ} e una eventuale voce
5283     \const{ACL\_MASK} (se non vi sono voci di tipo \const{ACL\_GROUP} questa
5284     può non essere presente) contengono entrambe il permesso richiesto,
5285     l'accesso è consentito;
5286   \item altrimenti l'accesso è negato.
5287   \end{itemize*}
5288 \item Se è il \ids{GID} del processo o uno dei \ids{GID} supplementari
5289   corrisponde ad un qualunque qualificatore presente in una voce
5290   \const{ACL\_GROUP} allora:
5291   \begin{itemize*}
5292   \item se la voce \const{ACL\_GROUP} corrispondente e la voce
5293     \const{ACL\_MASK} contengono entrambe il permesso richiesto, l'accesso è
5294     consentito;
5295   \item altrimenti l'accesso è negato.
5296   \end{itemize*}
5297 \item Se la voce \const{ACL\_USER\_OBJ} contiene il permesso richiesto,
5298   l'accesso è consentito, altrimenti l'accesso è negato.
5299 \end{enumerate}
5300
5301 I passi di controllo vengono eseguiti esattamente in questa sequenza, e la
5302 decisione viene presa non appena viene trovata una corrispondenza con gli
5303 identificatori del processo. Questo significa che i permessi presenti in una
5304 voce di tipo \const{ACL\_USER} hanno la precedenza sui permessi ordinari
5305 associati al gruppo proprietario del file (vale a dire su
5306 \const{ACL\_GROUP\_OBJ}).
5307
5308 Per la gestione delle ACL lo standard \textit{POSIX 1003.1e Draft 17} ha
5309 previsto delle apposite funzioni ed tutta una serie di tipi di dati
5310 dedicati;\footnote{fino a definire un tipo di dato e delle costanti apposite
5311   per identificare i permessi standard di lettura, scrittura ed esecuzione.}
5312 tutte le operazioni devono essere effettuate attraverso tramite questi tipi di
5313 dati, che incapsulano tutte le informazioni contenute nelle ACL. La prima di
5314 queste funzioni che prendiamo in esame è \funcd{acl\_init}, il cui prototipo
5315 è:
5316
5317 \begin{funcproto}{
5318 \fhead{sys/types.h}
5319 \fhead{sys/acl.h}
5320 \fdecl{acl\_t acl\_init(int count)}
5321 \fdesc{Inizializza un'area di lavoro per una ACL.} 
5322 }
5323
5324 {La funzione ritorna un oggetto di tipo \type{acl\_t} in caso di successo e
5325   \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno dei valori:
5326   \begin{errlist}
5327   \item[\errcode{EINVAL}] il valore di \param{count} è negativo.
5328   \item[\errcode{ENOMEM}] non c'è sufficiente memoria disponibile.
5329   \end{errlist}
5330 }
5331 \end{funcproto}
5332
5333 La funzione alloca ed inizializza un'area di memoria che verrà usata per
5334 mantenere i dati di una ACL contenente fino ad un massimo di \param{count}
5335 voci. La funzione ritorna un valore di tipo \type{acl\_t} da usare in tutte le
5336 altre funzioni che operano sulla ACL. La funzione si limita alla allocazione
5337 iniziale e non inserisce nessun valore nella ACL che resta vuota. 
5338
5339 Si tenga presente che pur essendo \type{acl\_t} un tipo opaco che identifica
5340 ``\textsl{l'oggetto}'' ACL, il valore restituito dalla funzione non è altro
5341 che un puntatore all'area di memoria allocata per i dati richiesti. Pertanto
5342 in caso di fallimento verrà restituito un puntatore nullo di tipo
5343 ``\code{(acl\_t) NULL}'' e si dovrà, in questa come in tutte le funzioni
5344 seguenti che restituiscono un oggetto di tipo \type{acl\_t}, confrontare il
5345 valore di ritorno della funzione con \val{NULL}.\footnote{a voler essere
5346   estremamente pignoli si dovrebbe usare ``\code{(acl\_t) NULL}'', ma è
5347   sufficiente fare un confronto direttamente con \val{NULL} essendo cura del
5348   compilatore fare le conversioni necessarie.}
5349
5350 Una volta che si siano completate le operazioni sui dati di una ACL la memoria
5351 allocata per un oggetto \type{acl\_t} dovrà essere liberata esplicitamente
5352 attraverso una chiamata alla funzione \funcd{acl\_free}, il cui prototipo è:
5353
5354 \begin{funcproto}{
5355 \fhead{sys/types.h}
5356 \fhead{sys/acl.h}
5357 \fdecl{int acl\_free(void *obj\_p)}
5358 \fdesc{Disalloca la memoria riservata per una ACL.} 
5359 }
5360
5361 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
5362   caso \var{errno} può assumere solo il valore:
5363   \begin{errlist}
5364   \item[\errcode{EINVAL}] \param{obj\_p} non è valido.
5365   \end{errlist}
5366 }
5367 \end{funcproto}
5368
5369 Si noti come la funzione usi come argomento un puntatore di tipo ``\ctyp{void
5370   *}'', essa infatti può essere usata non solo per liberare la memoria
5371 allocata per i dati di una ACL, ma anche per quella usata per creare le
5372 stringhe di descrizione testuale delle ACL o per ottenere i valori dei
5373 qualificatori della una voce di una ACL. L'uso del tipo generico ``\ctyp{void
5374   *}'' consente di evitare di eseguire un \textit{cast} al tipo di dato di cui
5375 si vuole effettuare la disallocazione.
5376
5377 Si tenga presente poi che oltre a \func{acl\_init} ci sono molte altre
5378 funzioni che possono allocare memoria per i dati delle ACL, è pertanto
5379 opportuno tenere traccia di tutte le chiamate a queste funzioni perché alla
5380 fine delle operazioni tutta la memoria allocata dovrà essere liberata con
5381 \func{acl\_free}.
5382
5383 Una volta che si abbiano a disposizione i dati di una ACL tramite il
5384 riferimento ad oggetto di tipo \type{acl\_t} questi potranno essere copiati
5385 con la funzione \funcd{acl\_dup}, il cui prototipo è:
5386
5387 \begin{funcproto}{
5388 \fhead{sys/types.h}
5389 \fhead{sys/acl.h}
5390 \fdecl{acl\_t acl\_dup(acl\_t acl)}
5391 \fdesc{Crea una copia di una ACL.} 
5392 }
5393
5394 {La funzione ritorna un oggetto di tipo \type{acl\_t} in caso di successo in
5395   caso di successo e \val{NULL} per un errore, nel qual caso \var{errno}
5396   assumerà assumerà uno dei valori:
5397   \begin{errlist}
5398   \item[\errcode{EINVAL}] l'argomento \param{acl} non è un puntatore valido
5399     per una ACL.
5400   \item[\errcode{ENOMEM}] non c'è sufficiente memoria disponibile per eseguire
5401     la copia.
5402   \end{errlist}
5403 }
5404 \end{funcproto}
5405
5406 La funzione crea una copia dei dati della ACL indicata tramite l'argomento
5407 \param{acl}, allocando autonomamente tutto spazio necessario alla copia e
5408 restituendo un secondo oggetto di tipo \type{acl\_t} come riferimento a
5409 quest'ultima.  Valgono per questo le stesse considerazioni fatte per il valore
5410 di ritorno di \func{acl\_init}, ed in particolare il fatto che occorrerà
5411 prevedere una ulteriore chiamata esplicita a \func{acl\_free} per liberare la
5412 memoria occupata dalla copia.
5413
5414 Se si deve creare una ACL manualmente l'uso di \func{acl\_init} è scomodo,
5415 dato che la funzione restituisce una ACL vuota, una alternativa allora è usare
5416 \funcd{acl\_from\_mode} che consente di creare una ACL a partire da un valore
5417 di permessi ordinari, il prototipo della funzione è:
5418
5419 \begin{funcproto}{
5420 \fhead{sys/types.h}
5421 \fhead{sys/acl.h}
5422 \fdecl{acl\_t acl\_from\_mode(mode\_t mode)}
5423 \fdesc{Crea una ACL inizializzata con i permessi ordinari.} 
5424 }
5425
5426 {La funzione ritorna un oggetto di tipo \type{acl\_t} in caso di successo e
5427   \val{NULL} per un errore, nel qual caso \var{errno} può assumere solo
5428   il valore \errval{ENOMEM}.}
5429 \end{funcproto}
5430
5431
5432 La funzione restituisce una ACL inizializzata con le tre voci obbligatorie
5433 \const{ACL\_USER\_OBJ}, \const{ACL\_GROUP\_OBJ} e \const{ACL\_OTHER} già
5434 impostate secondo la corrispondenza ai valori dei permessi ordinari indicati
5435 dalla maschera passata nell'argomento \param{mode}. Questa funzione è una
5436 estensione usata dalle ACL di Linux e non è portabile, ma consente di
5437 semplificare l'inizializzazione in maniera molto comoda. 
5438
5439 Altre due funzioni che consentono di creare una ACL già inizializzata sono
5440 \funcd{acl\_get\_fd} e \funcd{acl\_get\_file}, che consentono di leggere la
5441 ACL di un file; i rispettivi prototipi sono:
5442
5443 \begin{funcproto}{
5444 \fhead{sys/types.h}
5445 \fhead{sys/acl.h}
5446 \fdecl{acl\_t acl\_get\_file(const char *path\_p, acl\_type\_t type)}
5447 \fdecl{acl\_t acl\_get\_fd(int fd)}
5448 \fdesc{Leggono i dati delle ACL di un file.} 
5449 }
5450
5451 {Le funzioni ritornano un oggetto di tipo \type{acl\_t} in caso di successo e
5452   \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno dei valori:
5453   \begin{errlist}
5454   \item[\errcode{EACCESS}] non c'è accesso per una componente di
5455     \param{path\_p} o si è richiesta una ACL di default per un file (solo per
5456     \func{acl\_get\_file}).
5457   \item[\errcode{EINVAL}] \param{type} non ha un valore valido (solo per
5458     \func{acl\_get\_file}).
5459   \item[\errcode{ENOTSUP}] il filesystem cui fa riferimento il file non
5460     supporta le ACL.
5461   \end{errlist}
5462   ed inoltre \errval{ENOMEM} per entrambe, \errval{EBADF} per
5463   \func{acl\_get\_fd}, e \errval{ENAMETOOLONG}, \errval{ENOENT},
5464   \errval{ENOTDIR}, per \func{acl\_get\_file} nel loro significato generico. }
5465 \end{funcproto}
5466
5467 Le due funzioni ritornano, con un oggetto di tipo \type{acl\_t}, il valore
5468 della ACL correntemente associata ad un file, che può essere identificato
5469 tramite un file descriptor usando \func{acl\_get\_fd} o con un
5470 \textit{pathname} usando \func{acl\_get\_file}. Nel caso di quest'ultima
5471 funzione, che può richiedere anche la ACL relativa ad una directory, il
5472 secondo argomento \param{type} consente di specificare se si vuole ottenere la
5473 ACL di default o quella di accesso. Questo argomento deve essere di tipo
5474 \type{acl\_type\_t} e può assumere solo i due valori riportati in
5475 tab.~\ref{tab:acl_type}.
5476
5477 \begin{table}[htb]
5478   \centering
5479   \footnotesize
5480   \begin{tabular}{|l|l|}
5481     \hline
5482     \textbf{Tipo} & \textbf{Descrizione} \\
5483     \hline
5484     \hline
5485     \constd{ACL\_TYPE\_ACCESS} & Indica una ACL di accesso.\\
5486     \constd{ACL\_TYPE\_DEFAULT}& Indica una ACL di default.\\  
5487     \hline
5488   \end{tabular}
5489   \caption{Le costanti che identificano il tipo di ACL.}
5490   \label{tab:acl_type}
5491 \end{table}
5492
5493 Si tenga presente che nel caso di \func{acl\_get\_file} occorrerà che il
5494 processo chiamante abbia privilegi di accesso sufficienti a poter leggere gli
5495 attributi estesi dei file (come illustrati in sez.~\ref{sec:file_xattr});
5496 inoltre una ACL di tipo \const{ACL\_TYPE\_DEFAULT} potrà essere richiesta
5497 soltanto per una directory, e verrà restituita solo se presente, altrimenti
5498 verrà restituita una ACL vuota.
5499
5500 Infine si potrà creare una ACL direttamente dalla sua rappresentazione
5501 testuale con la funzione  \funcd{acl\_from\_text}, il cui prototipo è:
5502
5503 \begin{funcproto}{
5504 \fhead{sys/types.h}
5505 \fhead{sys/acl.h}
5506 \fdecl{acl\_t acl\_from\_text(const char *buf\_p)}
5507 \fdesc{Crea una ACL a partire dalla sua rappresentazione testuale.} 
5508 }
5509
5510 {La funzione ritorna un oggetto di tipo \type{acl\_t} in caso di successo e
5511   \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno
5512   dei valori:
5513   \begin{errlist}
5514   \item[\errcode{EINVAL}] la rappresentazione testuale all'indirizzo
5515     \param{buf\_p} non è valida.
5516   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare i dati.
5517    \end{errlist}
5518 }
5519 \end{funcproto}
5520
5521 La funzione prende come argomento il puntatore ad un buffer dove si è inserita
5522 la rappresentazione testuale della ACL che si vuole creare, la memoria
5523 necessaria viene automaticamente allocata ed in caso di successo viene
5524 restituito come valore di ritorno un oggetto di tipo \type{acl\_t} con il
5525 contenuto della stessa, che come per le precedenti funzioni, dovrà essere
5526 disallocato esplicitamente al termine del suo utilizzo.
5527
5528 La rappresentazione testuale di una ACL è quella usata anche dai comandi
5529 ordinari per la gestione delle ACL (\texttt{getfacl} e \texttt{setfacl}), che
5530 prevede due diverse forme, estesa e breve, entrambe supportate da
5531 \func{acl\_from\_text}. La forma estesa prevede che sia specificata una voce
5532 per riga, nella forma:
5533 \begin{Example}
5534 tipo:qualificatore:permessi
5535 \end{Example}
5536 dove il tipo può essere uno fra \texttt{user}, \texttt{group}, \texttt{other}
5537 e \texttt{mask}. Il qualificatore è presente solo per \texttt{user} e
5538 \texttt{group} e indica l'utente o il gruppo a cui la voce si riferisce; i
5539 permessi sono espressi con una tripletta di lettere analoga a quella usata per
5540 i permessi dei file.\footnote{vale a dire ``\texttt{r}'' per il permesso di
5541   lettura, ``\texttt{w}'' per il permesso di scrittura, ``\texttt{x}'' per il
5542   permesso di esecuzione (scritti in quest'ordine) e ``\texttt{-}'' per
5543   l'assenza del permesso.} 
5544
5545 Un possibile esempio di rappresentazione della ACL di un file ordinario a cui,
5546 oltre ai permessi ordinari, si è aggiunto un altro utente con un accesso in
5547 lettura, è il seguente:
5548 \begin{Example}
5549 user::rw-
5550 group::r--
5551 other::r--
5552 user:piccardi:r--
5553 \end{Example}
5554
5555 Va precisato che i due tipi \texttt{user} e \texttt{group} sono usati
5556 rispettivamente per indicare delle voci relative ad utenti e
5557 gruppi,\footnote{cioè per voci di tipo \const{ACL\_USER\_OBJ} e
5558   \const{ACL\_USER} per \texttt{user} e \const{ACL\_GROUP\_OBJ} e
5559   \const{ACL\_GROUP} per \texttt{group}.} applicate sia a quelli proprietari
5560 del file che a quelli generici; quelle dei proprietari si riconoscono per
5561 l'assenza di un qualificatore, ed in genere si scrivono per prima delle altre.
5562 Il significato delle voci di tipo \texttt{mask} e \texttt{mark} è evidente. In
5563 questa forma si possono anche inserire dei commenti precedendoli con il
5564 carattere ``\texttt{\#}''.
5565
5566 La forma breve prevede invece la scrittura delle singole voci su una riga,
5567 separate da virgole; come specificatori del tipo di voce si possono usare le
5568 iniziali dei valori usati nella forma estesa (cioè ``\texttt{u}'',
5569 ``\texttt{g}'', ``\texttt{o}'' e ``\texttt{m}''), mentre le altri parte della
5570 voce sono le stesse. In questo caso non sono consentiti permessi.
5571
5572 Per la conversione inversa, che consente di ottenere la rappresentazione
5573 testuale di una ACL, sono invece disponibili due funzioni. La prima delle due,
5574 di uso più immediato, è \funcd{acl\_to\_text}, ed il suo prototipo è:
5575
5576 \begin{funcproto}{
5577 \fhead{sys/types.h}
5578 \fhead{sys/acl.h}
5579 \fdecl{char *acl\_to\_text(acl\_t acl, ssize\_t *len\_p)}
5580 \fdesc{Produce la rappresentazione testuale di una ACL.} 
5581 }
5582
5583 {La funzione ritorna il puntatore ad una stringa con la rappresentazione
5584   testuale della ACL in caso di successo e \var{NULL} per un errore, nel qual
5585   caso \var{errno} assumerà uno dei valori:
5586   \begin{errlist}
5587   \item[\errcode{EINVAL}] la ACL indicata da \param{acl} non è valida.
5588   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare i dati.
5589   \end{errlist}
5590 }  
5591 \end{funcproto}
5592
5593 La funzione restituisce il puntatore ad una stringa terminata da NUL
5594 contenente la rappresentazione in forma estesa della ACL passata come
5595 argomento, ed alloca automaticamente la memoria necessaria. Questa dovrà poi
5596 essere liberata, quando non più necessaria, con \func{acl\_free}. Se
5597 nell'argomento \param{len\_p} si passa un valore puntatore ad una variabile
5598 intera in questa verrà restituita (come \textit{value result argument}) la
5599 dimensione della stringa con la rappresentazione testuale, non comprendente il
5600 carattere nullo finale.
5601
5602 La seconda funzione, che permette di controllare con una gran dovizia di
5603 particolari la generazione della stringa contenente la rappresentazione
5604 testuale della ACL, è \funcd{acl\_to\_any\_text}, ed il suo prototipo è:
5605
5606 \begin{funcproto}{
5607 \fhead{sys/types.h}
5608 \fhead{sys/acl.h}
5609 \fdecl{char *acl\_to\_any\_text(acl\_t acl, const char *prefix, char
5610     separator, int options)}
5611 \fdesc{Produce la rappresentazione testuale di una ACL.} 
5612 }
5613
5614 {La funzione ritorna il puntatore ad una stringa con la rappresentazione
5615   testuale della ACL in caso di successo e \val{NULL} per un errore, nel qual
5616   caso \var{errno} assumerà uno dei valori:
5617   \begin{errlist}
5618   \item[\errcode{EINVAL}] la ACL indicata da \param{acl} non è valida.
5619   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare i dati.
5620   \end{errlist}
5621 }  
5622 \end{funcproto}
5623
5624 La funzione converte in formato testo la ACL indicata dall'argomento
5625 \param{acl}, usando il carattere \param{separator} come separatore delle
5626 singole voci; se l'argomento \param{prefix} non è nullo la stringa da esso
5627 indicata viene utilizzata come prefisso per le singole voci. 
5628
5629 L'ultimo argomento, \param{options}, consente di controllare la modalità con
5630 cui viene generata la rappresentazione testuale. Un valore nullo fa si che
5631 vengano usati gli identificatori standard \texttt{user}, \texttt{group},
5632 \texttt{other} e \texttt{mask} con i nomi di utenti e gruppi risolti rispetto
5633 ai loro valori numerici. Altrimenti si può specificare un valore in forma di
5634 maschera binaria, da ottenere con un OR aritmetico dei valori riportati in
5635 tab.~\ref{tab:acl_to_text_options}.
5636
5637 \begin{table}[htb]
5638   \centering
5639   \footnotesize
5640   \begin{tabular}{|l|p{8cm}|}
5641     \hline
5642     \textbf{Tipo} & \textbf{Descrizione} \\
5643     \hline
5644     \hline
5645     \constd{TEXT\_ABBREVIATE}    & Stampa le voci in forma abbreviata.\\
5646     \constd{TEXT\_NUMERIC\_IDS}  & non effettua la risoluzione numerica di
5647                                    \ids{UID} e \ids{GID}.\\
5648     \constd{TEXT\_SOME\_EFFECTIVE}&Per ciascuna voce che contiene permessi che
5649                                    vengono eliminati dalla \const{ACL\_MASK}
5650                                    viene generato un commento con i permessi 
5651                                    effettivamente risultanti; il commento è
5652                                    separato con un tabulatore.\\
5653     \constd{TEXT\_ALL\_EFFECTIVE}& Viene generato un commento con i permessi
5654                                    effettivi per ciascuna voce che contiene
5655                                    permessi citati nella \const{ACL\_MASK},
5656                                    anche quando questi non vengono modificati
5657                                    da essa; il commento è separato con un
5658                                    tabulatore.\\
5659     \constd{TEXT\_SMART\_INDENT} & Da usare in combinazione con le precedenti
5660                                    opzioni \const{TEXT\_SOME\_EFFECTIVE} e
5661                                    \const{TEXT\_ALL\_EFFECTIVE}, aumenta
5662                                    automaticamente il numero di spaziatori
5663                                    prima degli eventuali commenti in modo da
5664                                    mantenerli allineati.\\
5665     \hline
5666   \end{tabular}
5667   \caption{Possibili valori per l'argomento \param{options} di
5668     \func{acl\_to\_any\_text}.} 
5669   \label{tab:acl_to_text_options}
5670 \end{table}
5671
5672 Come per \func{acl\_to\_text} anche in questo caso il buffer contenente la
5673 rappresentazione testuale dell'ACL, di cui la funzione restituisce
5674 l'indirizzo, viene allocato automaticamente, e dovrà essere esplicitamente
5675 disallocato con una chiamata ad \func{acl\_free}. Si tenga presente infine che
5676 questa funzione è una estensione specifica di Linux, e non è presente nella
5677 bozza dello standard POSIX.1e.
5678
5679 Per quanto utile per la visualizzazione o l'impostazione da riga di comando
5680 delle ACL, la forma testuale non è la più efficiente per poter memorizzare i
5681 dati relativi ad una ACL, ad esempio quando si vuole eseguirne una copia a
5682 scopo di archiviazione. Per questo è stata prevista la possibilità di
5683 utilizzare una rappresentazione delle ACL in una apposita forma binaria
5684 contigua e persistente. È così possibile copiare il valore di una ACL in un
5685 buffer e da questa rappresentazione tornare indietro e generare una ACL.
5686
5687 Lo standard POSIX.1e prevede a tale scopo tre funzioni, la prima e più
5688 semplice è \funcd{acl\_size}, che consente di ottenere la dimensione che avrà
5689 la citata rappresentazione binaria, in modo da poter allocare per essa un
5690 buffer di dimensione sufficiente, il suo prototipo è:
5691
5692 \begin{funcproto}{
5693 \fhead{sys/types.h}
5694 \fhead{sys/acl.h}
5695 \fdecl{ssize\_t acl\_size(acl\_t acl)}
5696 \fdesc{Determina la dimensione della rappresentazione binaria di una ACL.} 
5697 }
5698
5699 {La funzione ritorna la dimensione in byte della rappresentazione binaria
5700   della ACL in caso di successo e $-1$ per un errore, nel qual caso
5701   \var{errno} può assumere solo il valore:
5702   \begin{errlist}
5703   \item[\errcode{EINVAL}] la ACL indicata da \param{acl} non è valida.
5704   \end{errlist}
5705 }  
5706 \end{funcproto}
5707
5708 Ottenuta con \func{acl\_size} la dimensione per il buffer di una ACL lo si
5709 potrà allocare direttamente con \func{malloc}. La rappresentazione binaria di
5710 una ACL si potrà invece ottenere con la funzione \funcd{acl\_copy\_ext}, il
5711 cui prototipo è:
5712
5713 \begin{funcproto}{
5714 \fhead{sys/types.h}
5715 \fhead{sys/acl.h}
5716 \fdecl{ssize\_t acl\_copy\_ext(void *buf\_p, acl\_t acl, ssize\_t size)}
5717 \fdesc{Ottiene la rappresentazione binaria di una ACL.} 
5718 }
5719
5720 {La funzione ritorna la dimensione in byte della rappresentazione binaria
5721   della ACL in caso di successo e $-1$ per un errore, nel qual caso
5722   \var{errno} assumerà uno dei valori:
5723   \begin{errlist}
5724   \item[\errcode{EINVAL}] la ACL indicata da \param{acl} non è valida o
5725     \param{size} è negativo o nullo.
5726   \item[\errcode{ERANGE}] il valore di \param{size} è più piccolo della
5727     dimensione della rappresentazione della ACL.
5728   \end{errlist}
5729 }  
5730 \end{funcproto}
5731
5732 La funzione scriverà la rappresentazione binaria della ACL indicata da
5733 \param{acl} sul buffer di dimensione \param{size}
5734 all'indirizzo \param{buf\_p}, restituendo la dimensione della stessa come
5735 valore di ritorno. Qualora la dimensione della rappresentazione ecceda il
5736 valore di \param{size} la funzione fallirà con un errore di
5737 \errcode{ERANGE}. La funzione non ha nessun effetto sulla ACL indicata
5738 da \param{acl}.
5739
5740 Viceversa se si vuole ripristinare una ACL a partire da una rappresentazione
5741 binaria si potrà usare la funzione \funcd{acl\_copy\_int}, il cui prototipo è:
5742
5743 \begin{funcproto}{
5744 \fhead{sys/types.h} 
5745 \fhead{sys/acl.h}
5746 \fdecl{acl\_t acl\_copy\_int(const void *buf\_p)}
5747 \fdesc{Ripristina la rappresentazione binaria di una ACL.} 
5748 }
5749
5750 {La funzione ritorna un oggetto di tipo \type{acl\_t} in caso di successo e
5751   \val{NULL} per un errore, nel qual caso \var{errno} assumerà uno dei valori:
5752   \begin{errlist}
5753   \item[\errcode{EINVAL}] il buffer all'indirizzo \param{buf\_p} non contiene
5754     una rappresentazione corretta di una ACL.
5755   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per allocare un oggetto
5756     \type{acl\_t} per la ACL richiesta.
5757   \end{errlist}
5758 }
5759 \end{funcproto}
5760
5761 La funzione alloca autonomamente un oggetto di tipo \type{acl\_t}, restituito
5762 come valore di ritorno, con il contenuto della ACL rappresentata dai dati del
5763 buffer puntato da \param{buf\_p}. Al solito l'oggetto \type{acl\_t} dovrà
5764 essere disallocato esplicitamente al termine del suo utilizzo.
5765
5766 Una volta che si disponga della ACL desiderata, questa potrà essere impostata
5767 su un file o una directory. Per impostare una ACL sono disponibili due
5768 funzioni; la prima è \funcd{acl\_set\_file}, che opera sia su file che su
5769 directory, ed il cui prototipo è:
5770
5771 \begin{funcproto}{
5772 \fhead{sys/types.h}
5773 \fhead{sys/acl.h}
5774 \fdecl{int acl\_set\_file(const char *path, acl\_type\_t type, acl\_t acl)}
5775 \fdesc{Imposta una ACL su un file o una directory.} 
5776 }
5777
5778 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
5779   caso \var{errno} assumerà uno dei valori: 
5780   \begin{errlist}
5781   \item[\errcode{EACCES}] o un generico errore di accesso a \param{path} o il
5782     valore di \param{type} specifica una ACL il cui tipo non può essere
5783     assegnato a \param{path}.
5784   \item[\errcode{EINVAL}] o \param{acl} non è una ACL valida, o \param{type}
5785     ha un valore non corretto.
5786   \item[\errcode{ENOSPC}] non c'è spazio disco sufficiente per contenere i
5787     dati aggiuntivi della ACL.
5788   \item[\errcode{ENOTSUP}] si è cercato di impostare una ACL su un file
5789     contenuto in un filesystem che non supporta le ACL.
5790   \end{errlist}
5791   ed inoltre \errval{ENAMETOOLONG}, \errval{ENOENT}, \errval{ENOTDIR},
5792   \errval{EPERM}, \errval{EROFS} nel loro significato generico.}
5793 \end{funcproto}
5794
5795 La funzione consente di assegnare la ACL contenuta in \param{acl} al file o
5796 alla directory indicate dal \textit{pathname} \param{path}, mentre
5797 con \param{type} si indica il tipo di ACL utilizzando le costanti di
5798 tab.~\ref{tab:acl_type}, ma si tenga presente che le ACL di default possono
5799 essere solo impostate qualora \param{path} indichi una directory. Inoltre
5800 perché la funzione abbia successo la ACL dovrà essere valida, e contenere
5801 tutti le voci necessarie, unica eccezione è quella in cui si specifica una ACL
5802 vuota per cancellare la ACL di default associata a
5803 \param{path}.\footnote{questo però è una estensione della implementazione delle
5804   ACL di Linux, la bozza di standard POSIX.1e prevedeva l'uso della apposita
5805   funzione \funcd{acl\_delete\_def\_file}, che prende come unico argomento il
5806   \textit{pathname} della directory di cui si vuole cancellare l'ACL di
5807   default, per i dettagli si ricorra alla pagina di manuale.}  La seconda
5808 funzione che consente di impostare una ACL è \funcd{acl\_set\_fd}, ed il suo
5809 prototipo è:
5810
5811 \begin{funcproto}{
5812 \fhead{sys/types.h} 
5813 \fhead{sys/acl.h}
5814 \fdecl{int acl\_set\_fd(int fd, acl\_t acl)}
5815 \fdesc{Imposta una ACL su un file descriptor.} 
5816 }
5817
5818 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
5819   caso \var{errno} assumerà uno dei valori: 
5820   \begin{errlist}
5821   \item[\errcode{EINVAL}] o \param{acl} non è una ACL valida, o ha più voci di
5822     quante se ne possono assegnare al file indicato da \param{fd}.
5823   \item[\errcode{ENOSPC}] non c'è spazio disco sufficiente per contenere i
5824     dati aggiuntivi della ACL.
5825   \item[\errcode{ENOTSUP}] si è cercato di impostare una ACL su un file
5826     contenuto in un filesystem che non supporta le ACL.
5827   \end{errlist}
5828   ed inoltre \errval{EBADF}, \errval{EPERM}, \errval{EROFS} nel loro
5829   significato generico.
5830 }
5831 \end{funcproto}
5832
5833 La funzione è del tutto è analoga a \funcd{acl\_set\_file} ma opera
5834 esclusivamente sui file identificati tramite un file descriptor. Non dovendo
5835 avere a che fare con directory (e con la conseguente possibilità di avere una
5836 ACL di default) la funzione non necessita che si specifichi il tipo di ACL,
5837 che sarà sempre di accesso, e prende come unico argomento, a parte il file
5838 descriptor, la ACL da impostare.
5839
5840 Le funzioni viste finora operano a livello di una intera ACL, eseguendo in una
5841 sola volta tutte le operazioni relative a tutte le voci in essa contenuta. In
5842 generale è possibile modificare un singolo valore all'interno di una singola
5843 voce direttamente con le funzioni previste dallo standard POSIX.1e.  Queste
5844 funzioni però sono alquanto macchinose da utilizzare per cui è molto più
5845 semplice operare direttamente sulla rappresentazione testuale. Questo è il
5846 motivo per non tratteremo nei dettagli dette funzioni, fornendone solo una
5847 descrizione sommaria; chi fosse interessato potrà ricorrere alle pagine di
5848 manuale.
5849
5850 Se si vuole operare direttamente sui contenuti di un oggetto di tipo
5851 \type{acl\_t} infatti occorre fare riferimento alle singole voci tramite gli
5852 opportuni puntatori di tipo \type{acl\_entry\_t}, che possono essere ottenuti
5853 dalla funzione \funcm{acl\_get\_entry} (per una voce esistente) o dalla
5854 funzione \funcm{acl\_create\_entry} per una voce da aggiungere. Nel caso della
5855 prima funzione si potrà poi ripetere la lettura per ottenere i puntatori alle
5856 singole voci successive alla prima.
5857
5858 Una volta ottenuti detti puntatori si potrà operare sui contenuti delle singole
5859 voci; con le funzioni \funcm{acl\_get\_tag\_type}, \funcm{acl\_get\_qualifier},
5860 \funcm{acl\_get\_permset} si potranno leggere rispettivamente tipo,
5861 qualificatore e permessi mentre con le corrispondente funzioni
5862 \funcm{acl\_set\_tag\_type}, \funcm{acl\_set\_qualifier},
5863 \funcm{acl\_set\_permset} si possono impostare i valori; in entrambi i casi
5864 vengono utilizzati tipi di dato ad hoc.\footnote{descritti nelle singole
5865   pagine di manuale.} Si possono poi copiare i valori di una voce da una ACL
5866 ad un altra con \funcm{acl\_copy\_entry} o eliminare una voce da una ACL con
5867 \funcm{acl\_delete\_entry} e verificarne la validità prima di usarla con
5868 \funcm{acl\_valid} o \funcm{acl\_check}.
5869
5870 \itindend{Access~Control~List~(ACL)}
5871
5872 Come esempio di utilizzo di queste funzioni nei sorgenti allegati alla guida
5873 si è distribuito il programma \texttt{mygetfacl.c}, che consente di leggere le
5874 ACL di un file, passato come argomento.
5875
5876 \begin{figure}[!htbp]
5877   \footnotesize \centering
5878   \begin{minipage}[c]{\codesamplewidth}
5879     \includecodesample{listati/mygetfacl.c}
5880   \end{minipage} 
5881   \normalsize
5882   \caption{Corpo principale del programma \texttt{mygetfacl.c}.}
5883   \label{fig:proc_mygetfacl}
5884 \end{figure}
5885
5886 La sezione principale del programma, da cui si è rimossa la sezione sulla
5887 gestione delle opzioni, è riportata in fig.~\ref{fig:proc_mygetfacl}. Il
5888 programma richiede un unico argomento (\texttt{\small 16-20}) che indica il
5889 file di cui si vuole leggere la ACL. Se questo è presente si usa
5890 (\texttt{\small 22}) la funzione \func{get\_acl\_file} per leggerne la ACL, e
5891 si controlla (\texttt{\small 23-26}) se l'operazione ha successo, uscendo con
5892 un messaggio di errore in caso contrario. 
5893
5894 Ottenuta la ACL la si converte in formato testuale (\texttt{\small 27}) con la
5895 funzione \func{acl\_to\_text}, controllando di nuovo se l'operazione ha
5896 successo (\texttt{\small 28-31}) ed uscendo in caso contrario.  Si provvede
5897 infine a stampare la rappresentazione testuale (\texttt{\small 32}) e dopo
5898 aver liberato (\texttt{\small 33-34}) le risorse allocate automaticamente, si
5899 conclude l'esecuzione.
5900
5901
5902 \subsection{La gestione delle quote disco}
5903 \label{sec:disk_quota}
5904
5905 Quella delle quote disco è una funzionalità introdotta inizialmente da BSD e
5906 presente in Linux fino dai kernel dalla serie 2.0, che consente di porre dei
5907 tetti massimi al consumo delle risorse di un filesystem (spazio disco e
5908 \textit{inode}) da parte di utenti e gruppi.
5909
5910 Dato che la funzionalità ha senso solo per i filesystem su cui si mantengono i
5911 dati degli utenti\footnote{in genere la si attiva sul filesystem che contiene
5912   le \textit{home} degli utenti, dato che non avrebbe senso per i file di
5913   sistema che in genere appartengono all'amministratore.} essa deve essere
5914 attivata esplicitamente. Questo si fa, per tutti i filesystem che le
5915 supportano, tramite due distinte opzioni di montaggio, \texttt{usrquota} e
5916 \texttt{grpquota} che abilitano le quote rispettivamente per gli utenti e per
5917 i gruppi. Così è possibile usare le limitazioni sulle quote o sugli utenti o
5918 sui gruppi o su entrambi.
5919
5920 Il meccanismo prevede che per ciascun filesystem che supporta le quote disco
5921 (i vari \textit{extN}, \textit{btrfs}, \textit{XFS}, \textit{JFS},
5922 \textit{ReiserFS}) il kernel provveda sia a mantenere aggiornati i dati
5923 relativi al consumo delle risorse da parte degli utenti e dei gruppi, che a
5924 far rispettare i limiti imposti dal sistema, con la generazione di un errore
5925 di \errcode{EDQUOT} per tutte le operazioni sui file che porterebbero ad un
5926 superamento degli stessi. Si tenga presente che questi due compiti sono
5927 separati, il primo si attiva al montaggio del filesystem con il supporto per
5928 le quote, il secondo deve essere abilitato esplicitamente.
5929
5930 Per il mantenimento dei dati di consumo delle risorse vengono usati due file
5931 riservati nella directory radice del filesystem su cui si sono attivate le
5932 quote, uno per le quote utente e l'altro per le quote gruppo.\footnote{la cosa
5933   vale per tutti i filesystem tranne \textit{XFS} che mantiene i dati
5934   internamente.} Con la versione 2 del supporto delle quote, che da anni è
5935 l'unica rimasta in uso, questi file sono \texttt{aquota.user} e
5936 \texttt{aquota.group}, in precedenza erano \texttt{quota.user} e
5937 \texttt{quota.group}.
5938
5939 Dato che questi file vengono aggiornati soltanto se il filesystem è stato
5940 montato attivando il supporto delle quote, se si abilita il supporto in un
5941 secondo tempo e nel frattempo sono state eseguite delle operazioni sul
5942 filesystem quando il supporto era disabilitato, i dati contenuti possono non
5943 corrispondere esattamente allo stato corrente del consumo delle risorse. Per
5944 questo motivo prima di montare in scrittura un filesystem su cui sono
5945 abilitate le quote viene richiesto di utilizzare il comando \cmd{quotacheck}
5946 per verificare e aggiornare i dati.
5947
5948 Le restrizioni sul consumo delle risorse previste dal sistema delle quote
5949 prevedono sempre la presenza di due diversi limiti, il primo viene detto
5950 \textit{soft limit} e può essere superato per brevi periodi di tempo senza che
5951 causare errori per lo sforamento delle quote, il secondo viene detto
5952 \textit{hard limit} e non può mai essere superato.
5953
5954 Il periodo di tempo per cui è possibile eccedere rispetto alle restrizioni
5955 indicate dal \textit{soft limit} è detto ``\textsl{periodo di grazia}''
5956 (\textit{grace period}), che si attiva non appena si supera la quota da esso
5957 indicata. Se si continua a restare al di sopra del \textit{soft limit} una
5958 volta scaduto il \textit{grace period} questo verrà trattato allo stesso modo
5959 dell'\textit{hard limit} e si avrà l'emissione immediata di un errore.
5960
5961 Si tenga presente infine che entrambi i tipi di limiti (\textit{soft limit} e
5962 \textit{hard limit}) possono essere disposti separatamente su entrambe le
5963 risorse di un filesystem, essi cioè possono essere presenti in maniera
5964 indipendente sia sullo spazio disco, con un massimo per il numero di blocchi,
5965 che sui file, con un massimo per il numero di \textit{inode}.
5966
5967 La funzione di sistema che consente di controllare tutti i vari aspetti della
5968 gestione delle quote è \funcd{quotactl}, ed il suo prototipo è:
5969
5970 \begin{funcproto}{
5971 \fhead{sys/types.h}
5972 \fhead{sys/quota.h}
5973 \fdecl{int quotactl(int cmd, const char *dev, int id, caddr\_t addr)}
5974 \fdesc{Esegue una operazione di controllo sulle quote disco.} 
5975 }
5976
5977 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
5978   caso \var{errno} assumerà uno dei valori: 
5979   \begin{errlist}
5980   \item[\errcode{EACCES}] si è richiesto \const{Q\_QUOTAON}, ma il file delle
5981     quote indicato da \param{addr} non esiste o non è un file ordinario.
5982   \item[\errcode{EBUSY}] si è richiesto \const{Q\_QUOTAON}, ma le quote sono
5983     già attive.
5984   \item[\errcode{EFAULT}] \param{addr} non è un puntatore valido.
5985   \item[\errcode{EINVAL}] o \param{cmd} non è un comando valido,
5986     o il dispositivo \param{dev} non esiste.
5987   \item[\errcode{EIO}] errore di lettura/scrittura sul file delle quote.
5988   \item[\errcode{EMFILE}] non si può aprire il file delle quote avendo
5989     superato il limite sul numero di file aperti nel sistema. 
5990   \item[\errcode{ENODEV}] \param{dev} non corrisponde ad un \textit{mount
5991       point} attivo.
5992   \item[\errcode{ENOPKG}] il kernel è stato compilato senza supporto per le
5993     quote. 
5994   \item[\errcode{ENOTBLK}] \param{dev} non è un dispositivo a blocchi.
5995   \item[\errcode{EPERM}] non si hanno i permessi per l'operazione richiesta.
5996   \item[\errcode{ESRCH}] è stato richiesto uno fra \const{Q\_GETQUOTA},
5997     \const{Q\_SETQUOTA}, \const{Q\_SETUSE}, \const{Q\_SETQLIM} per un
5998     filesystem senza quote attivate.
5999   \end{errlist}
6000 }
6001 \end{funcproto}
6002
6003 % TODO rivedere gli errori
6004
6005 La funzione richiede che il filesystem sul quale si vuole operare, che deve
6006 essere specificato con il nome del relativo file di dispositivo
6007 nell'argomento \param{dev}, sia montato con il supporto delle quote
6008 abilitato. Per le operazioni che lo richiedono inoltre si dovrà indicare con
6009 l'argomento \param{id} l'utente o il gruppo (specificati rispettivamente per
6010 \ids{UID} e \ids{GID}) su cui si vuole operare, o altri dati relativi
6011 all'operazione. Alcune operazioni più complesse usano infine
6012 l'argomento \param{addr} per indicare un indirizzo ad un area di memoria il
6013 cui utilizzo dipende dall'operazione stessa.
6014
6015 La funzione prevede la possibilità di eseguire una serie operazioni sulle
6016 quote molto diverse fra loro, la scelta viene effettuata tramite il primo
6017 argomento, \param{cmd}, che però oltre all'operazione indica anche a quale
6018 tipo di quota (utente o gruppo) l'operazione deve applicarsi. Per questo il
6019 valore di questo argomento viene costruito con l'ausilio della di una apposita
6020 macro \macro{QCMD}:
6021
6022 {\centering
6023 \vspace{3pt}
6024 \begin{funcbox}{
6025 \fhead{sys/quota.h}
6026 \fdecl{int \macrod{QCMD}(subcmd,type)}
6027 \fdesc{Imposta il comando \param{subcmd} per il tipo di quote (utente o
6028   gruppo) \param{type}.}
6029
6030 \end{funcbox}
6031 }
6032
6033 La macro consente di specificare, oltre al tipo di operazione, da indicare con
6034 l'argomento \param{subcmd} se questa deve applicarsi alle quote utente o alle
6035 quote gruppo. Questo viene indicato dall'argomento \param{type} che deve
6036 essere sempre definito ed assegnato ad uno fra i due valori \const{USRQUOTA} o
6037 \const{GRPQUOTA}.
6038
6039 \begin{table}[htb]
6040   \centering
6041   \footnotesize
6042   \begin{tabular}{|l|p{10cm}|}
6043     \hline
6044     \textbf{Comando} & \textbf{Descrizione} \\
6045     \hline
6046     \hline
6047     \constd{Q\_QUOTAON} & Attiva l'applicazione delle quote disco per il
6048                           filesystem indicato da \param{dev}, si deve passare
6049                           in \param{addr} il \textit{pathname} al file che
6050                           mantiene le quote, che deve esistere, e \param{id}
6051                           deve indicare la versione del formato con uno dei
6052                           valori di tab.~\ref{tab:quotactl_id_format};
6053                           l'operazione richiede i privilegi di
6054                           amministratore.\\
6055     \constd{Q\_QUOTAOFF}& Disattiva l'applicazione delle quote disco per il
6056                           filesystem indicato da \param{dev}, \param{id}
6057                           e \param{addr} vengono ignorati; l'operazione
6058                           richiede i privilegi di amministratore.\\  
6059     \constd{Q\_GETQUOTA}& Legge i limiti ed i valori correnti delle quote nel
6060                           filesystem indicato da \param{dev} per l'utente o
6061                           il gruppo specificato da \param{id}; si devono avere
6062                           i privilegi di amministratore per leggere i dati
6063                           relativi ad altri utenti o a gruppi di cui non si fa
6064                           parte, il risultato viene restituito in una struttura
6065                           \struct{dqblk} all'indirizzo indicato
6066                           da \param{addr}.\\
6067     \constd{Q\_SETQUOTA}& Imposta i limiti per le quote nel filesystem
6068                           indicato da \param{dev} per l'utente o il gruppo
6069                           specificato da \param{id} secondo i valori ottenuti
6070                           dalla struttura \struct{dqblk} puntata
6071                           da \param{addr}; l'operazione richiede i privilegi
6072                           di amministratore.\\ 
6073     \constd{Q\_GETINFO} & Legge le informazioni (in sostanza i \textit{grace
6074                             time}) delle quote del filesystem indicato
6075                           da \param{dev} sulla struttura \struct{dqinfo} 
6076                           puntata da \param{addr}, \param{id} viene ignorato.\\
6077     \constd{Q\_SETINFO} & Imposta le informazioni delle quote del filesystem
6078                           indicato da \param{dev} come ottenuti dalla
6079                           struttura \struct{dqinfo} puntata
6080                           da \param{addr}, \param{id} viene ignorato;  
6081                           l'operazione richiede i privilegi di amministratore.\\
6082     \constd{Q\_GETFMT}  & Richiede il valore identificativo (quello di
6083                           tab.~\ref{tab:quotactl_id_format}) per il formato
6084                           delle quote attualmente in uso sul filesystem
6085                           indicato da \param{dev}, che sarà memorizzato
6086                           sul buffer di 4 byte puntato da \param{addr}.\\
6087     \constd{Q\_SYNC}    & Aggiorna la copia su disco dei dati delle quote del
6088                           filesystem indicato da \param{dev}; in questo
6089                           caso \param{dev} può anche essere \val{NULL} nel
6090                           qual caso verranno aggiornati i dati per tutti i
6091                           filesystem con quote attive, \param{id}
6092                           e \param{addr} vengono comunque ignorati.\\ 
6093     \constd{Q\_GETSTATS}& Ottiene statistiche ed altre informazioni generali 
6094                           relative al sistema delle quote per il filesystem
6095                           indicato da \param{dev}, richiede che si
6096                           passi come argomento \param{addr} l'indirizzo di una
6097                           struttura \struct{dqstats}, mentre i valori
6098                           di \param{id} e \param{dev} vengono ignorati;
6099                           l'operazione è obsoleta e non supportata nei kernel
6100                           più recenti, che espongono la stessa informazione
6101                           nei file sotto \procfile{/proc/self/fs/quota/}.\\
6102 %    \const{} & .\\
6103     \hline
6104   \end{tabular}
6105   \caption{Possibili valori per l'argomento \param{subcmd} di
6106     \macro{QCMD}.} 
6107   \label{tab:quotactl_commands}
6108 \end{table}
6109
6110 I possibili valori per l'argomento \param{subcmd} di \macro{QCMD} sono
6111 riportati in tab.~\ref{tab:quotactl_commands}, che illustra brevemente il
6112 significato delle operazioni associate a ciascuno di essi. In generale le
6113 operazioni di attivazione, disattivazione e di modifica dei limiti delle quote
6114 sono riservate e richiedono i privilegi di amministratore.\footnote{per essere
6115   precisi tutte le operazioni indicate come privilegiate in
6116   tab.~\ref{tab:quotactl_commands} richiedono la capacità
6117   \const{CAP\_SYS\_ADMIN}.} Inoltre gli utenti possono soltanto richiedere i
6118 dati relativi alle proprie quote, solo l'amministratore può ottenere i dati di
6119 tutti.
6120
6121
6122 Alcune delle operazioni di tab.~\ref{tab:quotactl_commands} sono alquanto
6123 complesse e richiedono un approfondimento maggiore. Le due più rilevanti sono
6124 probabilmente \const{Q\_GETQUOTA} e \const{Q\_SETQUOTA}, che consentono la
6125 gestione dei limiti delle quote. Entrambe fanno riferimento ad una specifica
6126 struttura \struct{dqblk}, la cui definizione è riportata in
6127 fig.~\ref{fig:dqblk_struct},\footnote{la definizione mostrata è quella usata
6128   fino dal kernel 2.4.22, non prenderemo in considerazione le versioni
6129   obsolete.} nella quale vengono inseriti i dati relativi alle quote di un
6130 singolo utente o gruppo.
6131
6132 \begin{figure}[!htb]
6133   \footnotesize \centering
6134   \begin{minipage}[c]{0.9\textwidth}
6135     \includestruct{listati/dqblk.h}
6136   \end{minipage} 
6137   \normalsize 
6138   \caption{La struttura \structd{dqblk} per i dati delle quote disco.}
6139   \label{fig:dqblk_struct}
6140 \end{figure}
6141
6142 La struttura \struct{dqblk} viene usata sia con \const{Q\_GETQUOTA} per
6143 ottenere i valori correnti dei limiti e dell'occupazione delle risorse, che
6144 con \const{Q\_SETQUOTA} per effettuare modifiche ai limiti. Come si può notare
6145 ci sono alcuni campi (in sostanza \val{dqb\_curspace}, \val{dqb\_curinodes},
6146 \val{dqb\_btime}, \val{dqb\_itime}) che hanno senso solo in lettura, in quanto
6147 riportano uno stato non modificabile da \func{quotactl} come l'uso corrente di
6148 spazio disco ed \textit{inode}, o il tempo che resta nel caso si sia superato
6149 un \textit{soft limit}.
6150
6151 Inoltre in caso di modifica di un limite si può voler operare solo su una
6152 delle risorse (blocchi o \textit{inode}),\footnote{non è possibile modificare
6153   soltanto uno dei limiti (\textit{hard} o \textit{soft}) occorre sempre
6154   rispecificarli entrambi.} per questo la struttura prevede un campo apposito,
6155 \val{dqb\_valid}, il cui scopo è quello di indicare quali sono gli altri campi
6156 che devono essere considerati validi. Questo campo è una maschera binaria che
6157 deve essere espressa nei termini di OR aritmetico delle apposite costanti di
6158 tab.~\ref{tab:quotactl_qif_const}, dove si è riportato il significato di
6159 ciascuna di esse ed i campi a cui fanno riferimento.
6160
6161 \begin{table}[!htb]
6162   \centering
6163   \footnotesize
6164   \begin{tabular}{|l|p{10cm}|}
6165     \hline
6166     \textbf{Costante} & \textbf{Descrizione} \\
6167     \hline
6168     \hline
6169     \constd{QIF\_BLIMITS}& Limiti sui blocchi di spazio disco
6170                            (\val{dqb\_bhardlimit} e \val{dqb\_bsoftlimit}).\\
6171     \constd{QIF\_SPACE}  & Uso corrente dello spazio disco
6172                            (\val{dqb\_curspace}).\\
6173     \constd{QIF\_ILIMITS}& Limiti sugli \textit{inode}
6174                            (\val{dqb\_ihardlimit} e \val{dqb\_isoftlimit}).\\
6175     \constd{QIF\_INODES} & Uso corrente degli \textit{inode}
6176                            (\val{dqb\_curinodes}).\\
6177     \constd{QIF\_BTIME}  & Tempo di sforamento del \textit{soft limit} sul
6178                            numero di blocchi (\val{dqb\_btime}).\\
6179     \constd{QIF\_ITIME}  & Tempo di sforamento del \textit{soft limit} sul
6180                            numero di \textit{inode} (\val{dqb\_itime}).\\ 
6181     \constd{QIF\_LIMITS} & L'insieme di \const{QIF\_BLIMITS} e
6182                            \const{QIF\_ILIMITS}.\\
6183     \constd{QIF\_USAGE}  & L'insieme di \const{QIF\_SPACE} e
6184                            \const{QIF\_INODES}.\\
6185     \constd{QIF\_TIMES}  & L'insieme di \const{QIF\_BTIME} e
6186                            \const{QIF\_ITIME}.\\ 
6187     \constd{QIF\_ALL}    & Tutti i precedenti.\\
6188     \hline
6189   \end{tabular}
6190   \caption{Costanti per il campo \val{dqb\_valid} di \struct{dqblk}.} 
6191   \label{tab:quotactl_qif_const}
6192 \end{table}
6193
6194 In lettura con \const{Q\_SETQUOTA} eventuali valori presenti in \struct{dqblk}
6195 vengono comunque ignorati, al momento la funzione sovrascrive tutti i campi
6196 che restituisce e li marca come validi in \val{dqb\_valid}. Si possono invece
6197 usare \const{QIF\_BLIMITS} o \const{QIF\_ILIMITS} per richiedere di impostare
6198 solo la rispettiva tipologia di limiti con \const{Q\_SETQUOTA}. Si tenga
6199 presente che il sistema delle quote richiede che l'occupazione di spazio disco
6200 sia indicata in termini di blocchi e non di byte, dato che la dimensione dei
6201 blocchi dipende da come si è creato il filesystem potrà essere necessario
6202 effettuare qualche conversione per avere un valore in byte.\footnote{in genere
6203   viene usato un default di 1024 byte per blocco, ma quando si hanno file di
6204   dimensioni medie maggiori può convenire usare valori più alti per ottenere
6205   prestazioni migliori in conseguenza di un minore frazionamento dei dati e di
6206   indici più corti.}
6207
6208 Come accennato realizzazione delle quote disco ha visto diverse revisioni, con
6209 modifiche sia del formato delle stesse che dei nomi dei file utilizzate. Per
6210 questo alcune operazioni di gestione (in particolare \const{Q\_QUOTAON} e
6211 \const{Q\_GETFMT}) e possono fare riferimento a queste versioni, che vengono
6212 identificate tramite le costanti di tab.~\ref{tab:quotactl_id_format}.
6213
6214 \begin{table}[htb]
6215   \centering
6216   \footnotesize
6217   \begin{tabular}{|l|p{10cm}|}
6218     \hline
6219     \textbf{Identificatore} & \textbf{Descrizione} \\
6220     \hline
6221     \hline
6222     \constd{QFMT\_VFS\_OLD}& Il vecchio (ed obsoleto) formato delle quote.\\
6223     \constd{QFMT\_VFS\_V0} & La versione 0 usata dal VFS di Linux, supporta
6224                              \ids{UID} e \ids{GID} a 32 bit e limiti fino a
6225                              $2^{42}$ byte e $2^{32}$ file.\\
6226     \constd{QFMT\_VFS\_V1} & La versione 1 usata dal VFS di Linux, supporta
6227                              \ids{UID} e \ids{GID} a 32 bit e limiti fino a
6228                              $2^{64}$ byte e $2^{64}$ file.\\
6229     \hline
6230   \end{tabular}
6231   \caption{Valori di identificazione del formato delle quote.} 
6232   \label{tab:quotactl_id_format}
6233 \end{table}
6234
6235 Altre due operazioni che necessitano di ulteriori spiegazioni sono
6236 \const{Q\_GETINFO} e \const{Q\_SETINFO}, che consentono di ottenere i dati
6237 relativi alle impostazioni delle altre proprietà delle quote, che al momento
6238 sono solo la durata del \textit{grace time} per i due tipi di limiti. Queste
6239 sono due proprietà generali identiche per tutti gli utenti (e i gruppi), per
6240 cui viene usata una operazione distinta dalle precedenti. Anche in questo caso
6241 le due operazioni richiedono l'uso di una apposita struttura \struct{dqinfo},
6242 la cui definizione è riportata in fig.~\ref{fig:dqinfo_struct}.
6243
6244 \begin{figure}[!htb]
6245   \footnotesize \centering
6246   \begin{minipage}[c]{0.8\textwidth}
6247     \includestruct{listati/dqinfo.h}
6248   \end{minipage} 
6249   \normalsize 
6250   \caption{La struttura \structd{dqinfo} per i dati delle quote disco.}
6251   \label{fig:dqinfo_struct}
6252 \end{figure}
6253
6254 Come per \struct{dqblk} anche in questo caso viene usato un campo della
6255 struttura, \val{dqi\_valid} come maschera binaria per dichiarare quale degli
6256 altri campi sono validi; le costanti usate per comporre questo valore sono
6257 riportate in tab.~\ref{tab:quotactl_iif_const} dove si è riportato il
6258 significato di ciascuna di esse ed i campi a cui fanno riferimento.
6259
6260 \begin{table}[htb]
6261   \centering
6262   \footnotesize
6263   \begin{tabular}{|l|l|}
6264     \hline
6265     \textbf{Costante} & \textbf{Descrizione} \\
6266     \hline
6267     \hline
6268     \constd{IIF\_BGRACE}& Il \textit{grace period} per i blocchi
6269                          (\val{dqi\_bgrace}).\\
6270     \constd{IIF\_IGRACE}& Il \textit{grace period} per gli \textit{inode} 
6271                          (\val{dqi\_igrace}).\\ 
6272     \constd{IIF\_FLAGS} & I flag delle quote (\val{dqi\_flags}) (inusato ?).\\
6273     \constd{IIF\_ALL}   & Tutti i precedenti.\\
6274     \hline
6275   \end{tabular}
6276   \caption{Costanti per il campo \val{dqi\_valid} di \struct{dqinfo}.} 
6277   \label{tab:quotactl_iif_const}
6278 \end{table}
6279
6280 Come in precedenza con \const{Q\_GETINFO} tutti i valori vengono letti
6281 sovrascrivendo il contenuto di \struct{dqinfo} e marcati come validi in
6282 \val{dqi\_valid}. In scrittura con \const{Q\_SETINFO} si può scegliere quali
6283 impostare, si tenga presente che i tempi dei campi \val{dqi\_bgrace} e
6284 \val{dqi\_igrace} devono essere specificati in secondi.
6285
6286 Come esempi dell'uso di \func{quotactl} utilizzeremo estratti del codice di un
6287 modulo Python usato per fornire una interfaccia diretta a \func{quotactl}
6288 senza dover passare dalla scansione dei risultati di un comando. Il modulo si
6289 trova fra i pacchetti Debian messi a disposizione da Truelite Srl,
6290 all'indirizzo \url{http://labs.truelite.it/projects/packages}.\footnote{in
6291   particolare il codice C del modulo è nel file \texttt{quotamodule.c}
6292   visionabile a partire dall'indirizzo indicato nella sezione
6293   \textit{Repository}.}
6294
6295 \begin{figure}[!htbp]
6296   \footnotesize \centering
6297   \begin{minipage}[c]{\codesamplewidth}
6298     \includecodesample{listati/get_quota.c}
6299   \end{minipage}
6300   \caption{Esempio di codice per ottenere i dati delle quote.} 
6301   \label{fig:get_quota}
6302 \end{figure}
6303
6304 Il primo esempio, riportato in fig.~\ref{fig:get_quota}, riporta il codice
6305 della funzione che consente di leggere le quote. La funzione fa uso
6306 dell'interfaccia dal C verso Python, che definisce i vari simboli \texttt{Py*}
6307 (tipi di dato e funzioni). Non staremo ad approfondire i dettagli di questa
6308 interfaccia, per la quale esistono numerose trattazioni dettagliate, ci
6309 interessa solo esaminare l'uso di \func{quotactl}. 
6310
6311 In questo caso la funzione prende come argomenti (\texttt{\small 1}) l'intero
6312 \texttt{who} che indica se si vuole operare sulle quote utente o gruppo,
6313 l'identificatore \texttt{id} dell'utente o del gruppo scelto, ed il nome del
6314 file di dispositivo del filesystem su cui si sono attivate le
6315 quote.\footnote{questi vengono passati come argomenti dalle funzioni mappate
6316   come interfaccia pubblica del modulo (una per gruppi ed una per gli utenti)
6317   che si incaricano di decodificare i dati passati da una chiamata nel codice
6318   Python.} Questi argomenti vengono passati direttamente alla chiamata a
6319 \func{quotactl} (\texttt{\small 5}), a parte \texttt{who} che viene abbinato
6320 con \macro{QCMD} al comando \const{Q\_GETQUOTA} per ottenere i dati.
6321
6322 La funzione viene eseguita all'interno di un condizionale (\texttt{\small
6323   5-16}) che in caso di successo provvede a costruire (\texttt{\small 6-12})
6324 opportunamente una risposta restituendo tramite la opportuna funzione di
6325 interfaccia un oggetto Python contenente i dati della struttura \struct{dqblk}
6326 relativi a uso corrente e limiti sia per i blocchi che per gli
6327 \textit{inode}. In caso di errore (\texttt{\small 13-15}) si usa un'altra
6328 funzione dell'interfaccia per passare il valore di \var{errno} come eccezione.
6329
6330 \begin{figure}[!htbp]
6331   \footnotesize \centering
6332   \begin{minipage}[c]{\codesamplewidth}
6333     \includecodesample{listati/set_block_quota.c}
6334   \end{minipage}
6335   \caption{Esempio di codice per impostare i limiti sullo spazio disco.}
6336   \label{fig:set_block_quota}
6337 \end{figure}
6338
6339 Per impostare i limiti sullo spazio disco si potrà usare una seconda funzione,
6340 riportata in fig.~\ref{fig:set_block_quota}, che prende gli stessi argomenti
6341 della precedente, con lo stesso significato, a cui si aggiungono i valori per
6342 il \textit{soft limit} e l'\textit{hard limit}. In questo caso occorrerà,
6343 prima di chiamare \func{quotactl}, inizializzare opportunamente
6344 (\texttt{\small 5-7}) i campi della struttura \struct{dqblk} che si vogliono
6345 utilizzare (quelli relativi ai limiti sui blocchi) e specificare gli stessi
6346 con \const{QIF\_BLIMITS} in \var{dq.dqb\_valid}. 
6347
6348 Fatto questo la chiamata a \func{quotactl}, stavolta con il comando
6349 \const{Q\_SETQUOTA}, viene eseguita come in precedenza all'interno di un
6350 condizionale (\texttt{\small 9-14}). In questo caso non essendovi da
6351 restituire nessun dato in caso di successo si usa (\texttt{\small 10}) una
6352 apposita funzione di uscita, mentre si restituisce come prima una eccezione
6353 con il valore di \var{errno} in caso di errore (\texttt{\small 12-13}).
6354
6355
6356 \subsection{La gestione delle \textit{capabilities}}
6357 \label{sec:proc_capabilities}
6358
6359 \itindbeg{capabilities} 
6360
6361 Come accennato in sez.~\ref{sec:proc_access_id} l'architettura classica della
6362 gestione dei privilegi in un sistema unix-like ha il sostanziale problema di
6363 fornire all'amministratore dei poteri troppo ampi. Questo comporta che anche
6364 quando si siano predisposte delle misure di protezione per in essere in grado
6365 di difendersi dagli effetti di una eventuale compromissione del sistema (come
6366 montare un filesystem in sola lettura per impedirne modifiche, o marcare un
6367 file come immutabile) una volta che questa sia stata effettuata e si siano
6368 ottenuti i privilegi di amministratore, queste misure potranno essere comunque
6369 rimosse (nei casi elencati nella precedente nota si potrà sempre rimontare il
6370 sistema in lettura-scrittura, o togliere l'attributo di immutabilità).
6371
6372 Il problema consiste nel fatto che nell'architettura tradizionale di un
6373 sistema unix-like i controlli di accesso sono basati su un solo livello di
6374 separazione: per i processi normali essi sono posti in atto, mentre per i
6375 processi con i privilegi di amministratore essi non vengono neppure eseguiti.
6376 Per questo motivo non era previsto alcun modo per evitare che un processo con
6377 diritti di amministratore non potesse eseguire certe operazioni, o per cedere
6378 definitivamente alcuni privilegi da un certo momento in poi. 
6379
6380 Per risolvere questo problema sono possibili varie soluzioni ed ad esempio dai
6381 kernel 2.5 è stata introdotta la struttura dei
6382 \itindex{Linux~Security~Modules} \textit{Linux Security Modules} che han
6383 permesso di aggiungere varie forme di \itindex{Mandatory~Access~Control~(DAC)}
6384 \textit{Mandatory Access Control} (MAC), in cui si potessero parcellizzare e
6385 controllare nei minimi dettagli tutti i privilegi e le modalità in cui questi
6386 possono essere usati dai programmi e trasferiti agli utenti, con la creazione
6387 di varie estensioni (come \textit{SELinux}, \textit{Smack}, \textit{Tomoyo},
6388 \textit{AppArmor}) che consentono di superare l'architettura tradizionale dei
6389 permessi basati sul modello classico del controllo di accesso chiamato
6390 \itindex{Discrectionary~Access~Control~(DAC)} \textit{Discrectionary Access
6391   Control} (DAC).
6392
6393 Ma già in precedenza, a partire dai kernel della serie 2.2, era stato
6394 introdotto un meccanismo, detto \textit{capabilities}, che consentisse di
6395 suddividere i vari privilegi tradizionalmente associati all'amministratore in
6396 un insieme di \textsl{capacità} distinte.  L'idea era che queste capacità
6397 potessero essere abilitate e disabilitate in maniera indipendente per ciascun
6398 processo con privilegi di amministratore, permettendo così una granularità
6399 molto più fine nella distribuzione degli stessi che evitasse la situazione
6400 originaria di ``\textsl{tutto o nulla}''.
6401
6402 \itindbeg{file~capabilities}
6403
6404 Il meccanismo completo delle \textit{capabilities} (l'implementazione si rifà
6405 ad una bozza di quello che doveva diventare lo standard POSIX.1e, poi
6406 abbandonato) prevede inoltre la possibilità di associare le stesse ai singoli
6407 file eseguibili, in modo da poter stabilire quali capacità possono essere
6408 utilizzate quando viene messo in esecuzione uno specifico programma; ma il
6409 supporto per questa funzionalità, chiamata \textit{file capabilities}, è stato
6410 introdotto soltanto a partire dal kernel 2.6.24. Fino ad allora doveva essere
6411 il programma stesso ad eseguire una riduzione esplicita delle sue capacità,
6412 cosa che ha reso l'uso di questa funzionalità poco diffuso, vista la presenza
6413 di meccanismi alternativi per ottenere limitazioni delle capacità
6414 dell'amministratore a livello di sistema operativo, come \textit{SELinux}.
6415
6416 Con questo supporto e con le ulteriori modifiche introdotte con il kernel
6417 2.6.25 il meccanismo delle \textit{capabilities} è stato totalmente
6418 rivoluzionato, rendendolo più aderente alle intenzioni originali dello
6419 standard POSIX, rimuovendo il significato che fino ad allora aveva avuto la
6420 capacità \const{CAP\_SETPCAP} e cambiando le modalità di funzionamento del
6421 cosiddetto \textit{capabilities bounding set}. Ulteriori modifiche sono state
6422 apportate con il kernel 2.6.26 per consentire la rimozione non ripristinabile
6423 dei privilegi di amministratore. Questo fa sì che il significato ed il
6424 comportamento del kernel finisca per dipendere dalla versione dello stesso e
6425 dal fatto che le nuove \textit{file capabilities} siano abilitate o meno. Per
6426 capire meglio la situazione e cosa è cambiato conviene allora spiegare con
6427 maggiori dettagli come funziona il meccanismo delle \textit{capabilities}.
6428
6429 Il primo passo per frazionare i privilegi garantiti all'amministratore,
6430 supportato fin dalla introduzione iniziale del kernel 2.2, è stato quello in
6431 cui a ciascun processo sono stati associati tre distinti insiemi di
6432 \textit{capabilities}, denominati rispettivamente \textit{permitted},
6433 \textit{inheritable} ed \textit{effective}. Questi insiemi vengono mantenuti
6434 in forma di tre diverse maschere binarie,\footnote{il kernel li mantiene, come
6435   i vari identificatori di sez.~\ref{sec:proc_setuid}, all'interno della
6436   \struct{task\_struct} di ciascun processo (vedi
6437   fig.~\ref{fig:proc_task_struct}), nei tre campi \texttt{cap\_effective},
6438   \texttt{cap\_inheritable}, \texttt{cap\_permitted} del tipo
6439   \texttt{kernel\_cap\_t}; questo era, fino al kernel 2.6.25 definito come
6440   intero a 32 bit per un massimo di 32 \textit{capabilities} distinte,
6441   attualmente è stato aggiornato ad un vettore in grado di mantenerne fino a
6442   64.} in cui ciascun bit corrisponde ad una capacità diversa.
6443
6444 L'utilizzo di tre distinti insiemi serve a fornire una interfaccia flessibile
6445 per l'uso delle \textit{capabilities}, con scopi analoghi a quelli per cui
6446 sono mantenuti i diversi insiemi di identificatori di
6447 sez.~\ref{sec:proc_setuid}; il loro significato, che è rimasto sostanzialmente
6448 lo stesso anche dopo le modifiche seguite alla introduzione delle
6449 \textit{file capabilities} è il seguente:
6450 \begin{basedescript}{\desclabelwidth{2.1cm}\desclabelstyle{\nextlinelabel}}
6451 \item[\textit{permitted}] l'insieme delle \textit{capabilities}
6452   ``\textsl{permesse}'', cioè l'insieme di quelle capacità che un processo
6453   \textsl{può} impostare come \textsl{effettive} o come
6454   \textsl{ereditabili}. Se un processo cancella una capacità da questo insieme
6455   non potrà più riassumerla.\footnote{questo nei casi ordinari, sono
6456     previste però una serie di eccezioni, dipendenti anche dal tipo di
6457     supporto, che vedremo meglio in seguito dato il notevole intreccio nella
6458     casistica.}
6459 \item[\textit{inheritable}] l'insieme delle \textit{capabilities}
6460   ``\textsl{ereditabili}'', cioè di quelle che verranno trasmesse come insieme
6461   delle \textsl{permesse} ad un nuovo programma eseguito attraverso una
6462   chiamata ad \func{exec}.
6463 \item[\textit{effective}] l'insieme delle \textit{capabilities}
6464   ``\textsl{effettive}'', cioè di quelle che vengono effettivamente usate dal
6465   kernel quando deve eseguire il controllo di accesso per le varie operazioni
6466   compiute dal processo.
6467 \label{sec:capabilities_set}
6468 \end{basedescript}
6469
6470 Con l'introduzione delle \textit{file capabilities} sono stati introdotti
6471 altri tre insiemi associabili a ciascun file.\footnote{la realizzazione viene
6472   eseguita con l'uso di uno specifico attributo esteso,
6473   \texttt{security.capability}, la cui modifica è riservata, (come illustrato
6474   in sez.~\ref{sec:file_xattr}) ai processi dotato della capacità
6475   \const{CAP\_SYS\_ADMIN}.} Le \textit{file capabilities} hanno effetto
6476 soltanto quando il file che le porta viene eseguito come programma con una
6477 \func{exec}, e forniscono un meccanismo che consente l'esecuzione dello stesso
6478 con maggiori privilegi; in sostanza sono una sorta di estensione del
6479 \acr{suid} bit limitato ai privilegi di amministratore. Anche questi tre
6480 insiemi sono identificati con gli stessi nomi di quello dei processi, ma il
6481 loro significato è diverso:
6482 \begin{basedescript}{\desclabelwidth{2.1cm}\desclabelstyle{\nextlinelabel}}
6483 \item[\textit{permitted}] (chiamato originariamente \textit{forced}) l'insieme
6484   delle capacità che con l'esecuzione del programma verranno aggiunte alle
6485   capacità \textsl{permesse} del processo.
6486 \item[\textit{inheritable}] (chiamato originariamente \textit{allowed})
6487   l'insieme delle capacità che con l'esecuzione del programma possono essere
6488   ereditate dal processo originario (che cioè non vengono tolte
6489   dall'\textit{inheritable set} del processo originale all'esecuzione di
6490   \func{exec}).
6491 \item[\textit{effective}] in questo caso non si tratta di un insieme ma di un
6492   unico valore logico; se attivo all'esecuzione del programma tutte le
6493   capacità che risulterebbero \textsl{permesse} verranno pure attivate,
6494   inserendole automaticamente nelle \textsl{effettive}, se disattivato nessuna
6495   capacità verrà attivata (cioè l'\textit{effective set} resterà vuoto).
6496 \end{basedescript}
6497
6498 \itindbeg{capabilities~bounding~set}
6499
6500 Infine come accennato, esiste un ulteriore insieme, chiamato
6501 \textit{capabilities bounding set}, il cui scopo è quello di costituire un
6502 limite alle capacità che possono essere attivate per un programma. Il suo
6503 funzionamento però è stato notevolmente modificato con l'introduzione delle
6504 \textit{file capabilities} e si deve pertanto prendere in considerazione una
6505 casistica assai complessa.
6506
6507 Per i kernel fino al 2.6.25, o se non si attiva il supporto per le
6508 \textit{file capabilities}, il \textit{capabilities bounding set} è un
6509 parametro generale di sistema, il cui valore viene riportato nel file
6510 \sysctlfile{kernel/cap-bound}. Il suo valore iniziale è definito in sede di
6511 compilazione del kernel, e da sempre ha previsto come default la presenza di
6512 tutte le \textit{capabilities} eccetto \const{CAP\_SETPCAP}. In questa
6513 situazione solo il primo processo eseguito nel sistema (quello con
6514 \textsl{pid} 1, di norma \texttt{/sbin/init}) ha la possibilità di
6515 modificarlo; ogni processo eseguito successivamente, se dotato dei privilegi
6516 di amministratore, è in grado soltanto di rimuovere una delle
6517 \textit{capabilities} già presenti dell'insieme.\footnote{per essere precisi
6518   occorre la capacità \const{CAP\_SYS\_MODULE}.}
6519
6520 In questo caso l'effetto complessivo del \textit{capabilities bounding set} è
6521 che solo le capacità in esso presenti possono essere trasmesse ad un altro
6522 programma attraverso una \func{exec}. Questo in sostanza significa che se un
6523 qualunque programma elimina da esso una capacità, considerato che
6524 \texttt{init} (almeno nelle versioni ordinarie) non supporta la reimpostazione
6525 del \textit{bounding set}, questa non sarà più disponibile per nessun processo
6526 a meno di un riavvio, eliminando così in forma definitiva quella capacità per
6527 tutti, compreso l'amministratore.\footnote{la qual cosa, visto il default
6528   usato per il \textit{capabilities bounding set}, significa anche che
6529   \const{CAP\_SETPCAP} non è stata praticamente mai usata nella sua forma
6530   originale.}
6531
6532 Con il kernel 2.6.25 e le \textit{file capabilities} il \textit{bounding set}
6533 è diventato una proprietà di ciascun processo, che viene propagata invariata
6534 sia attraverso una \func{fork} che una \func{exec}. In questo caso il file
6535 \sysctlfile{kernel/cap-bound} non esiste e \texttt{init} non ha nessun
6536 ruolo speciale, inoltre in questo caso all'avvio il valore iniziale prevede la
6537 presenza di tutte le capacità (compresa \const{CAP\_SETPCAP}). 
6538
6539 Con questo nuovo meccanismo il \textit{bounding set} continua a ricoprire un
6540 ruolo analogo al precedente nel passaggio attraverso una \func{exec}, come
6541 limite alle capacità che possono essere aggiunte al processo in quanto
6542 presenti nel \textit{permitted set} del programma messo in esecuzione, in
6543 sostanza il nuovo programma eseguito potrà ricevere una capacità presente nel
6544 suo \textit{permitted set} (quello del file) solo se questa è anche nel
6545 \textit{bounding set} (del processo). In questo modo si possono rimuovere
6546 definitivamente certe capacità da un processo, anche qualora questo dovesse
6547 eseguire un programma privilegiato che prevede di riassegnarle.
6548
6549 Si tenga presente però che in questo caso il \textit{bounding set} blocca
6550 esclusivamente le capacità indicate nel \textit{permitted set} del programma
6551 che verrebbero attivate in caso di esecuzione, e non quelle eventualmente già
6552 presenti nell'\textit{inheritable set} del processo (ad esempio perché
6553 presenti prima di averle rimosse dal \textit{bounding set}). In questo caso
6554 eseguendo un programma che abbia anche lui dette capacità nel suo
6555 \textit{inheritable set} queste verrebbero assegnate.
6556
6557 In questa seconda versione inoltre il \textit{bounding set} costituisce anche
6558 un limite per le capacità che possono essere aggiunte all'\textit{inheritable
6559   set} del processo stesso con \func{capset}, sempre nel senso che queste
6560 devono essere presenti nel \textit{bounding set} oltre che nel
6561 \textit{permitted set} del processo. Questo limite vale anche per processi con
6562 i privilegi di amministratore,\footnote{si tratta sempre di avere la
6563   \textit{capability} \const{CAP\_SETPCAP}.} per i quali invece non vale la
6564 condizione che le \textit{capabilities} da aggiungere nell'\textit{inheritable
6565   set} debbano essere presenti nel proprio \textit{permitted set}.\footnote{lo
6566   scopo anche in questo caso è ottenere una rimozione definitiva della
6567   possibilità di passare una capacità rimossa dal \textit{bounding set}.}
6568
6569 Come si può notare per fare ricorso alle \textit{capabilities} occorre
6570 comunque farsi carico di una notevole complessità di gestione, aggravata dalla
6571 presenza di una radicale modifica del loro funzionamento con l'introduzione
6572 delle \textit{file capabilities}. Considerato che il meccanismo originale era
6573 incompleto e decisamente problematico nel caso di programmi che non ne
6574 sapessero tener conto,\footnote{c'è stato un grosso problema di sicurezza con
6575   \texttt{sendmail}, riuscendo a rimuovere \const{CAP\_SETGID}
6576   dall'\textit{inheritable set} di un processo si ottenne di far fallire
6577   \func{setuid} in maniera inaspettata per il programma (che aspettandosi
6578   sempre il successo della funzione non ne controllava lo stato di uscita) con
6579   la conseguenza di effettuare come amministratore operazioni che altrimenti
6580   sarebbero state eseguite, senza poter apportare danni, da utente normale.}
6581 ci soffermeremo solo sulla implementazione completa presente a partire dal
6582 kernel 2.6.25, tralasciando ulteriori dettagli riguardo la versione
6583 precedente.
6584
6585 Riassumendo le regole finora illustrate tutte le \textit{capabilities} vengono
6586 ereditate senza modifiche attraverso una \func{fork} mentre, indicati con
6587 \texttt{orig\_*} i valori degli insiemi del processo chiamante, con
6588 \texttt{file\_*} quelli del file eseguito e con \texttt{bound\_set} il
6589 \textit{capabilities bounding set}, dopo l'invocazione di \func{exec} il
6590 processo otterrà dei nuovi insiemi di capacità \texttt{new\_*} secondo la
6591 formula espressa dal seguente pseudo-codice C:
6592
6593 \includecodesnip{listati/cap-results.c}
6594
6595 % \begin{figure}[!htbp]
6596 %   \footnotesize \centering
6597 %   \begin{minipage}[c]{12cm}
6598 %     \includecodesnip{listati/cap-results.c}
6599 %   \end{minipage}
6600 %   \caption{Espressione della modifica delle \textit{capabilities} attraverso
6601 %     una \func{exec}.}
6602 %   \label{fig:cap_across_exec}
6603 % \end{figure}
6604
6605 \noindent e si noti come in particolare il \textit{capabilities bounding set}
6606 non venga comunque modificato e resti lo stesso sia attraverso una \func{fork}
6607 che attraverso una \func{exec}.
6608
6609
6610 \itindend{capabilities~bounding~set}
6611
6612 A queste regole se ne aggiungono delle altre che servono a riprodurre il
6613 comportamento tradizionale di un sistema unix-like in tutta una serie di
6614 circostanze. La prima di queste è relativa a quello che avviene quando si
6615 esegue un file senza \textit{capabilities}; se infatti si considerasse questo
6616 equivalente al non averne assegnata alcuna, non essendo presenti capacità né
6617 nel \textit{permitted set} né nell'\textit{inheritable set} del file,
6618 nell'esecuzione di un qualunque programma l'amministratore perderebbe tutti i
6619 privilegi originali dal processo.
6620
6621 Per questo motivo se un programma senza \textit{capabilities} assegnate viene
6622 eseguito da un processo con \ids{UID} reale 0, esso verrà trattato come
6623 se tanto il \textit{permitted set} che l'\textit{inheritable set} fossero con
6624 tutte le \textit{capabilities} abilitate, con l'\textit{effective set} attivo,
6625 col risultato di fornire comunque al processo tutte le capacità presenti nel
6626 proprio \textit{bounding set}. Lo stesso avviene quando l'eseguibile ha attivo
6627 il \acr{suid} bit ed appartiene all'amministratore, in entrambi i casi si
6628 riesce così a riottenere il comportamento classico di un sistema unix-like.
6629
6630 Una seconda circostanza è quella relativa a cosa succede alle
6631 \textit{capabilities} di un processo nelle possibili transizioni da \ids{UID}
6632 nullo a \ids{UID} non nullo o viceversa (corrispondenti rispettivamente a
6633 cedere o riottenere i i privilegi di amministratore) che si possono effettuare
6634 con le varie funzioni viste in sez.~\ref{sec:proc_setuid}. In questo caso la
6635 casistica è di nuovo alquanto complessa, considerata anche la presenza dei
6636 diversi gruppi di identificatori illustrati in tab.~\ref{tab:proc_uid_gid}, si
6637 avrà allora che:
6638 \begin{enumerate*}
6639 \item se si passa da \ids{UID} effettivo nullo a non nullo
6640   l'\textit{effective set} del processo viene totalmente azzerato, se
6641   viceversa si passa da \ids{UID} effettivo non nullo a nullo il
6642   \textit{permitted set} viene copiato nell'\textit{effective set};
6643 \item se si passa da \textit{file system} \ids{UID} nullo a non nullo verranno
6644   cancellate dall'\textit{effective set} del processo tutte le capacità
6645   attinenti i file, e cioè \const{CAP\_LINUX\_IMMUTABLE}, \const{CAP\_MKNOD},
6646   \const{CAP\_DAC\_OVERRIDE}, \const{CAP\_DAC\_READ\_SEARCH},
6647   \const{CAP\_MAC\_OVERRIDE}, \const{CAP\_CHOWN}, \const{CAP\_FSETID} e
6648   \const{CAP\_FOWNER} (le prime due a partire dal kernel 2.2.30), nella
6649   transizione inversa verranno invece inserite nell'\textit{effective set}
6650   quelle capacità della precedente lista che sono presenti nel suo
6651   \textit{permitted set}.
6652 \item se come risultato di una transizione riguardante gli identificativi dei
6653   gruppi \textit{real}, \textit{saved} ed \textit{effective} in cui si passa
6654   da una situazione in cui uno di questi era nullo ad una in cui sono tutti
6655   non nulli,\footnote{in sostanza questo è il caso di quando si chiama
6656     \func{setuid} per rimuovere definitivamente i privilegi di amministratore
6657     da un processo.} verranno azzerati completamente sia il \textit{permitted
6658     set} che l'\textit{effective set}.
6659 \end{enumerate*}
6660 \label{sec:capability-uid-transition}
6661
6662 La combinazione di tutte queste regole consente di riprodurre il comportamento
6663 ordinario di un sistema di tipo Unix tradizionale, ma può risultare
6664 problematica qualora si voglia passare ad una configurazione di sistema
6665 totalmente basata sull'applicazione delle \textit{capabilities}; in tal caso
6666 infatti basta ad esempio eseguire un programma con \acr{suid} bit di proprietà
6667 dell'amministratore per far riottenere ad un processo tutte le capacità
6668 presenti nel suo \textit{bounding set}, anche se si era avuta la cura di
6669 cancellarle dal \textit{permitted set}.
6670
6671 \itindbeg{securebits}
6672
6673 Per questo motivo a partire dal kernel 2.6.26, se le \textit{file
6674   capabilities} sono abilitate, ad ogni processo viene stata associata una
6675 ulteriore maschera binaria, chiamata \textit{securebits flags}, su cui sono
6676 mantenuti una serie di flag (vedi tab.~\ref{tab:securebits_values}) il cui
6677 valore consente di modificare queste regole speciali che si applicano ai
6678 processi con \ids{UID} nullo. La maschera viene sempre mantenuta
6679 attraverso una \func{fork}, mentre attraverso una \func{exec} viene sempre
6680 cancellato il flag \const{SECURE\_KEEP\_CAPS}.
6681
6682 \begin{table}[htb]
6683   \centering
6684   \footnotesize
6685   \begin{tabular}{|l|p{10cm}|}
6686     \hline
6687     \textbf{Flag} & \textbf{Descrizione} \\
6688     \hline
6689     \hline
6690     \constd{SECURE\_KEEP\_CAPS}&Il processo non subisce la cancellazione delle
6691                                 sue \textit{capabilities} quando tutti i suoi
6692                                 \ids{UID} passano ad un valore non
6693                                 nullo (regola di compatibilità per il cambio
6694                                 di \ids{UID} n.~3 del precedente
6695                                 elenco), sostituisce il precedente uso
6696                                 dell'operazione \const{PR\_SET\_KEEPCAPS} di
6697                                 \func{prctl}.\\
6698     \constd{SECURE\_NO\_SETUID\_FIXUP}&Il processo non subisce le modifiche
6699                                 delle sue \textit{capabilities} nel passaggio
6700                                 da nullo a non nullo degli \ids{UID}
6701                                 dei gruppi \textit{effective} e
6702                                 \textit{file system} (regole di compatibilità
6703                                 per il cambio di \ids{UID} nn.~1 e 2 del
6704                                 precedente elenco).\\
6705     \constd{SECURE\_NOROOT}   & Il processo non assume nessuna capacità
6706                                 aggiuntiva quando esegue un programma, anche
6707                                 se ha \ids{UID} nullo o il programma ha
6708                                 il \acr{suid} bit attivo ed appartiene
6709                                 all'amministratore (regola di compatibilità
6710                                 per l'esecuzione di programmi senza
6711                                 \textit{capabilities}).\\
6712     \hline
6713   \end{tabular}
6714   \caption{Costanti identificative dei flag che compongono la maschera dei
6715     \textit{securebits}.}  
6716   \label{tab:securebits_values}
6717 \end{table}
6718
6719 A ciascuno dei flag di tab.~\ref{tab:securebits_values} è inoltre abbinato un
6720 corrispondente flag di blocco, identificato da una costante omonima con
6721 l'estensione \texttt{\_LOCKED}, la cui attivazione è irreversibile ed ha
6722 l'effetto di rendere permanente l'impostazione corrente del corrispondente
6723 flag ordinario; in sostanza con \constd{SECURE\_KEEP\_CAPS\_LOCKED} si rende
6724 non più modificabile \const{SECURE\_KEEP\_CAPS}, ed analogamente avviene con
6725 \constd{SECURE\_NO\_SETUID\_FIXUP\_LOCKED} per
6726 \const{SECURE\_NO\_SETUID\_FIXUP} e con \constd{SECURE\_NOROOT\_LOCKED} per
6727 \const{SECURE\_NOROOT}.
6728
6729 Per l'impostazione di questi flag sono state predisposte due specifiche
6730 operazioni di \func{prctl} (vedi sez.~\ref{sec:process_prctl}),
6731 \const{PR\_GET\_SECUREBITS}, che consente di ottenerne il valore, e
6732 \const{PR\_SET\_SECUREBITS}, che consente di modificarne il valore; per
6733 quest'ultima sono comunque necessari i privilegi di amministratore ed in
6734 particolare la capacità \const{CAP\_SETPCAP}. Prima dell'introduzione dei
6735 \textit{securebits} era comunque possibile ottenere lo stesso effetto di
6736 \const{SECURE\_KEEP\_CAPS} attraverso l'uso di un'altra operazione di
6737 \func{prctl}, \const{PR\_SET\_KEEPCAPS}.
6738
6739 \itindend{securebits}
6740
6741 Oltre alla gestione dei \textit{securebits} la nuova versione delle
6742 \textit{file capabilities} prevede l'uso di \func{prctl} anche per la gestione
6743 del \textit{capabilities bounding set}, attraverso altre due operazioni
6744 dedicate, \const{PR\_CAPBSET\_READ} per controllarne il valore e
6745 \const{PR\_CAPBSET\_DROP} per modificarlo; quest'ultima di nuovo è una
6746 operazione privilegiata che richiede la capacità \const{CAP\_SETPCAP} e che,
6747 come indica chiaramente il nome, permette solo la rimozione di una
6748 \textit{capability} dall'insieme; per i dettagli sull'uso di tutte queste
6749 operazioni si rimanda alla rilettura di sez.~\ref{sec:process_prctl}.
6750
6751 \itindend{file~capabilities}
6752
6753
6754 % NOTE per dati relativi al process capability bounding set, vedi:
6755 % http://git.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=3b7391de67da515c91f48aa371de77cb6cc5c07e
6756
6757 % NOTE riferimenti ai vari cambiamenti vedi:
6758 % http://lwn.net/Articles/280279/  
6759 % http://lwn.net/Articles/256519/
6760 % http://lwn.net/Articles/211883/
6761
6762
6763 Un elenco delle delle \textit{capabilities} disponibili su Linux, con una
6764 breve descrizione ed il nome delle costanti che le identificano, è riportato
6765 in tab.~\ref{tab:proc_capabilities};\footnote{l'elenco presentato questa
6766   tabella, ripreso dalla pagina di manuale (accessibile con \texttt{man
6767     capabilities}) e dalle definizioni in
6768   \texttt{include/linux/capabilities.h}, è aggiornato al kernel 3.2.} la
6769 tabella è divisa in due parti, la prima riporta le \textit{capabilities}
6770 previste anche nella bozza dello standard POSIX1.e, la seconda quelle
6771 specifiche di Linux.  Come si può notare dalla tabella alcune
6772 \textit{capabilities} attengono a singole funzionalità e sono molto
6773 specializzate, mentre altre hanno un campo di applicazione molto vasto, che è
6774 opportuno dettagliare maggiormente.
6775
6776 \begin{table}[!h!btp]
6777   \centering
6778   \footnotesize
6779   \begin{tabular}{|l|p{10cm}|}
6780     \hline
6781     \textbf{Capacità}&\textbf{Descrizione}\\
6782     \hline
6783     \hline
6784 %
6785 % POSIX-draft defined capabilities.
6786 %
6787     \constd{CAP\_AUDIT\_CONTROL}& Abilitare e disabilitare il
6788                               controllo dell'auditing (dal kernel 2.6.11).\\ 
6789     \constd{CAP\_AUDIT\_WRITE}&Scrivere dati nel giornale di
6790                               auditing del kernel (dal kernel 2.6.11).\\ 
6791     % TODO verificare questa roba dell'auditing
6792     \constd{CAP\_BLOCK\_SUSPEND}&Utilizzare funzionalità che possono bloccare 
6793                               la sospensione del sistema (dal kernel 3.5).\\ 
6794     \constd{CAP\_CHOWN}     & Cambiare proprietario e gruppo
6795                               proprietario di un file (vedi
6796                               sez.~\ref{sec:file_ownership_management}).\\
6797     \constd{CAP\_DAC\_OVERRIDE}& Evitare il controllo dei
6798                                permessi di lettura, scrittura ed esecuzione dei
6799                                file, (vedi sez.~\ref{sec:file_access_control}).\\ 
6800     \constd{CAP\_DAC\_READ\_SEARCH}& Evitare il controllo dei
6801                               permessi di lettura ed esecuzione per
6802                               le directory (vedi
6803                               sez.~\ref{sec:file_access_control}).\\
6804     \const{CAP\_FOWNER}     & Evitare il controllo della proprietà di un file
6805                               per tutte le operazioni privilegiate non coperte
6806                               dalle precedenti \const{CAP\_DAC\_OVERRIDE} e
6807                               \const{CAP\_DAC\_READ\_SEARCH}.\\
6808     \constd{CAP\_FSETID}    & Evitare la cancellazione automatica dei bit
6809                               \acr{suid} e \acr{sgid} quando un file
6810                               per i quali sono impostati viene modificato da
6811                               un processo senza questa capacità e la capacità
6812                               di impostare il bit \acr{sgid} su un file anche
6813                               quando questo è relativo ad un gruppo cui non si
6814                               appartiene (vedi
6815                               sez.~\ref{sec:file_perm_management}).\\ 
6816     \constd{CAP\_KILL}      & Mandare segnali a qualunque
6817                               processo (vedi sez.~\ref{sec:sig_kill_raise}).\\
6818     \constd{CAP\_SETFCAP}   & Impostare le \textit{capabilities} di un file
6819                               (dal kernel 2.6.24).\\ 
6820     \constd{CAP\_SETGID}    & Manipolare i group ID dei
6821                               processi, sia il principale che i supplementari,
6822                               (vedi sez.~\ref{sec:proc_setgroups}) che quelli
6823                               trasmessi tramite i socket \textit{unix domain}
6824                               (vedi sez.~\ref{sec:unix_socket}).\\
6825     \constd{CAP\_SETUID}    & Manipolare gli user ID del
6826                               processo (vedi sez.~\ref{sec:proc_setuid}) e di
6827                               trasmettere un user ID arbitrario nel passaggio
6828                               delle credenziali coi socket \textit{unix
6829                                 domain} (vedi sez.~\ref{sec:unix_socket}).\\ 
6830 %
6831 % Linux specific capabilities
6832 %
6833 \hline
6834     \constd{CAP\_IPC\_LOCK} & Effettuare il \textit{memory locking} con le
6835                               funzioni \func{mlock}, \func{mlockall},
6836                               \func{shmctl}, \func{mmap} (vedi
6837                               sez.~\ref{sec:proc_mem_lock} e 
6838                               sez.~\ref{sec:file_memory_map}). \\ 
6839 % TODO verificare l'interazione con SHM_HUGETLB
6840     \constd{CAP\_IPC\_OWNER}& Evitare il controllo dei permessi
6841                               per le operazioni sugli oggetti di
6842                               intercomunicazione fra processi (vedi
6843                               sez.~\ref{sec:ipc_sysv}).\\  
6844     \constd{CAP\_LEASE}     & Creare dei \textit{file lease} (vedi
6845                               sez.~\ref{sec:file_asyncronous_lease})
6846                               pur non essendo proprietari del file (dal kernel
6847                               2.4).\\ 
6848     \constd{CAP\_LINUX\_IMMUTABLE}& Impostare sui file gli attributi 
6849                              \textit{immutable} e \textit{append-only} (vedi
6850                              sez.~\ref{sec:file_perm_overview}) se
6851                              supportati.\\
6852     \constd{CAP\_MAC\_ADMIN}& Amministrare il \textit{Mandatory
6853                                Access Control} di \textit{Smack} (dal kernel
6854                               2.6.25).\\
6855     \constd{CAP\_MAC\_OVERRIDE}& Evitare il \textit{Mandatory
6856                                Access Control} di \textit{Smack} (dal kernel
6857                               2.6.25).\\   
6858     \constd{CAP\_MKNOD}     & Creare file di dispositivo con \func{mknod} (vedi
6859                               sez.~\ref{sec:file_mknod}) (dal kernel 2.4).\\ 
6860     \const{CAP\_NET\_ADMIN} & Eseguire alcune operazioni
6861                               privilegiate sulla rete.\\
6862     \constd{CAP\_NET\_BIND\_SERVICE}& Porsi in ascolto su porte riservate (vedi 
6863                               sez.~\ref{sec:TCP_func_bind}).\\ 
6864     \constd{CAP\_NET\_BROADCAST}& Consentire l'uso di socket in
6865                               \textit{broadcast} e \textit{multicast}.\\ 
6866     \constd{CAP\_NET\_RAW}  & Usare socket \texttt{RAW} e \texttt{PACKET}
6867                               (vedi sez.~\ref{sec:sock_type}).\\ 
6868     \const{CAP\_SETPCAP}    & Effettuare modifiche privilegiate alle
6869                               \textit{capabilities}.\\   
6870     \const{CAP\_SYS\_ADMIN} & Eseguire una serie di compiti amministrativi.\\
6871     \constd{CAP\_SYS\_BOOT} & Eseguire un riavvio del sistema (vedi
6872                               sez.~\ref{sec:sys_reboot}).\\ 
6873     \constd{CAP\_SYS\_CHROOT}& Eseguire la funzione \func{chroot} (vedi 
6874                               sez.~\ref{sec:file_chroot}).\\
6875     \constd{CAP\_SYS\_MODULE}& Caricare e rimuovere moduli del kernel.\\ 
6876     \const{CAP\_SYS\_NICE}  & Modificare le varie priorità dei processi (vedi 
6877                               sez.~\ref{sec:proc_priority}).\\
6878     \constd{CAP\_SYS\_PACCT}& Usare le funzioni di \textit{accounting} dei 
6879                               processi (vedi
6880                               sez.~\ref{sec:sys_bsd_accounting}).\\  
6881     \constd{CAP\_SYS\_PTRACE}& La capacità di tracciare qualunque processo con
6882                               \func{ptrace} (vedi 
6883                               sez.~\ref{sec:process_ptrace}).\\
6884     \constd{CAP\_SYS\_RAWIO}& Operare sulle porte di I/O con \func{ioperm} e
6885                                \func{iopl} (vedi
6886                               sez.~\ref{sec:process_io_port}).\\
6887     \const{CAP\_SYS\_RESOURCE}& Superare le varie limitazioni sulle risorse.\\ 
6888     \constd{CAP\_SYS\_TIME} & Modificare il tempo di sistema (vedi 
6889                               sez.~\ref{sec:sys_time}).\\ 
6890     \constd{CAP\_SYS\_TTY\_CONFIG}&Simulare un \textit{hangup} della console,
6891                               con la funzione \func{vhangup}.\\
6892     \constd{CAP\_SYSLOG}    & Gestire il buffer dei messaggi
6893                               del kernel, (vedi sez.~\ref{sec:sess_daemon}),
6894                               introdotta dal kernel 2.6.38 come capacità
6895                               separata da \const{CAP\_SYS\_ADMIN}.\\
6896     \constd{CAP\_WAKE\_ALARM}&Usare i timer di tipo
6897                               \const{CLOCK\_BOOTTIME\_ALARM} e
6898                               \const{CLOCK\_REALTIME\_ALARM}, vedi
6899                               sez.~\ref{sec:sig_timer_adv} (dal kernel 3.0).\\  
6900     \hline
6901   \end{tabular}
6902   \caption{Le costanti che identificano le \textit{capabilities} presenti nel
6903     kernel.}
6904 \label{tab:proc_capabilities}
6905 \end{table}
6906
6907 \constbeg{CAP\_SETPCAP}
6908
6909 Prima di dettagliare il significato della capacità più generiche, conviene
6910 però dedicare un discorso a parte a \const{CAP\_SETPCAP}, il cui significato è
6911 stato completamente cambiato con l'introduzione delle \textit{file
6912   capabilities} nel kernel 2.6.24. In precedenza questa capacità era quella
6913 che permetteva al processo che la possedeva di impostare o rimuovere le
6914 \textit{capabilities} presenti nel suo \textit{permitted set} su un qualunque
6915 altro processo. In realtà questo non è mai stato l'uso inteso nelle bozze
6916 dallo standard POSIX, ed inoltre, come si è già accennato, dato che questa
6917 capacità è sempre stata assente (a meno di specifiche ricompilazioni del
6918 kernel) nel \textit{capabilities bounding set} usato di default, essa non è
6919 neanche mai stata realmente disponibile.
6920
6921 Con l'introduzione \textit{file capabilities} e il cambiamento del significato
6922 del \textit{capabilities bounding set} la possibilità di modificare le
6923 capacità di altri processi è stata completamente rimossa, e
6924 \const{CAP\_SETPCAP} ha acquisito quello che avrebbe dovuto essere il suo
6925 significato originario, e cioè la capacità del processo di poter inserire nel
6926 suo \textit{inheritable set} qualunque capacità presente nel \textit{bounding
6927   set}. Oltre a questo la disponibilità di \const{CAP\_SETPCAP} consente ad un
6928 processo di eliminare una capacità dal proprio \textit{bounding set} (con la
6929 conseguente impossibilità successiva di eseguire programmi con quella
6930 capacità), o di impostare i \textit{securebits} delle \textit{capabilities}.
6931
6932 \constend{CAP\_SETPCAP}
6933 \constbeg{CAP\_FOWNER}
6934
6935 La prima fra le capacità ``\textsl{ampie}'' che occorre dettagliare
6936 maggiormente è \const{CAP\_FOWNER}, che rimuove le restrizioni poste ad un
6937 processo che non ha la proprietà di un file in un vasto campo di
6938 operazioni;\footnote{vale a dire la richiesta che l'\ids{UID} effettivo del
6939   processo (o meglio l'\ids{UID} di filesystem, vedi
6940   sez.~\ref{sec:proc_setuid}) coincida con quello del proprietario.}  queste
6941 comprendono i cambiamenti dei permessi e dei tempi del file (vedi
6942 sez.~\ref{sec:file_perm_management} e sez.~\ref{sec:file_file_times}), le
6943 impostazioni degli attributi dei file e delle ACL (vedi
6944 sez.~\ref{sec:file_xattr} e \ref{sec:file_ACL}), poter ignorare lo
6945 \textit{sticky bit} nella cancellazione dei file (vedi
6946 sez.~\ref{sec:file_special_perm}), la possibilità di impostare il flag di
6947 \const{O\_NOATIME} con \func{open} e \func{fcntl} (vedi
6948 sez.~\ref{sec:file_open_close} e sez.~\ref{sec:file_fcntl_ioctl}) senza
6949 restrizioni.
6950
6951 \constend{CAP\_FOWNER}
6952 \constbeg{CAP\_NET\_ADMIN}
6953
6954 Una seconda capacità che copre diverse operazioni, in questo caso riguardanti
6955 la rete, è \const{CAP\_NET\_ADMIN}, che consente di impostare le opzioni
6956 privilegiate dei socket (vedi sez.~\ref{sec:sock_generic_options}), abilitare
6957 il \textit{multicasting} (vedi sez.\ref{sec:sock_ipv4_options}), eseguire la
6958 configurazione delle interfacce di rete (vedi
6959 sez.~\ref{sec:sock_ioctl_netdevice}) ed impostare la tabella di instradamento.
6960
6961 \constend{CAP\_NET\_ADMIN}
6962 \constbeg{CAP\_SYS\_ADMIN}
6963
6964 Una terza \textit{capability} con vasto campo di applicazione è
6965 \const{CAP\_SYS\_ADMIN}, che copre una serie di operazioni amministrative,
6966 come impostare le quote disco (vedi sez.\ref{sec:disk_quota}), attivare e
6967 disattivare la swap, montare, rimontare e smontare filesystem (vedi
6968 sez.~\ref{sec:filesystem_mounting}), effettuare operazioni di controllo su
6969 qualunque oggetto dell'IPC di SysV (vedi sez.~\ref{sec:ipc_sysv}), operare
6970 sugli attributi estesi dei file di classe \texttt{security} o \texttt{trusted}
6971 (vedi sez.~\ref{sec:file_xattr}), specificare un \ids{UID} arbitrario nella
6972 trasmissione delle credenziali dei socket (vedi
6973 sez.~\ref{sec:socket_credential_xxx}), assegnare classi privilegiate
6974 (\const{IOPRIO\_CLASS\_RT} e prima del kernel 2.6.25 anche
6975 \const{IOPRIO\_CLASS\_IDLE}) per lo scheduling dell'I/O (vedi
6976 sez.~\ref{sec:io_priority}), superare il limite di sistema sul numero massimo
6977 di file aperti,\footnote{quello indicato da \sysctlfile{fs/file-max}.}
6978 effettuare operazioni privilegiate sulle chiavi mantenute dal kernel (vedi
6979 sez.~\ref{sec:keyctl_management}), usare la funzione \func{lookup\_dcookie},
6980 usare \const{CLONE\_NEWNS} con \func{unshare} e \func{clone}, (vedi
6981 sez.~\ref{sec:process_clone}).
6982
6983 \constend{CAP\_SYS\_ADMIN}
6984 \constbeg{CAP\_SYS\_NICE}
6985
6986 Originariamente \const{CAP\_SYS\_NICE} riguardava soltanto la capacità di
6987 aumentare le priorità di esecuzione dei processi, come la diminuzione del
6988 valore di \textit{nice} (vedi sez.~\ref{sec:proc_sched_stand}), l'uso delle
6989 priorità \textit{real-time} (vedi sez.~\ref{sec:proc_real_time}), o
6990 l'impostazione delle affinità di processore (vedi
6991 sez.~\ref{sec:proc_sched_multiprocess}); ma con l'introduzione di priorità
6992 anche riguardo le operazioni di accesso al disco, e, nel caso di sistemi NUMA,
6993 alla memoria, essa viene a coprire anche la possibilità di assegnare priorità
6994 arbitrarie nell'accesso a disco (vedi sez.~\ref{sec:io_priority}) e nelle
6995 politiche di allocazione delle pagine di memoria ai nodi di un sistema NUMA.
6996
6997 \constend{CAP\_SYS\_NICE}
6998 \constbeg{CAP\_SYS\_RESOURCE}
6999
7000 Infine la \textit{capability} \const{CAP\_SYS\_RESOURCE} attiene alla
7001 possibilità di superare i limiti imposti sulle risorse di sistema, come usare
7002 lo spazio disco riservato all'amministratore sui filesystem che lo supportano,
7003 usare la funzione \func{ioctl} per controllare il \textit{journaling} sul
7004 filesystem \acr{ext3}, non subire le quote disco, aumentare i limiti sulle
7005 risorse di un processo (vedi sez.~\ref{sec:sys_resource_limit}) e quelle sul
7006 numero di processi, ed i limiti sulle dimensioni dei messaggi delle code del
7007 SysV IPC (vedi sez.~\ref{sec:ipc_sysv_mq}).
7008
7009 \constend{CAP\_SYS\_RESOURCE}
7010
7011 Per la gestione delle \textit{capabilities} il kernel mette a disposizione due
7012 funzioni che permettono rispettivamente di leggere ed impostare i valori dei
7013 tre insiemi illustrati in precedenza. Queste due funzioni di sistema sono
7014 \funcd{capget} e \funcd{capset} e costituiscono l'interfaccia di gestione
7015 basso livello; i loro rispettivi prototipi sono:
7016
7017 \begin{funcproto}{
7018 \fhead{sys/capability.h}
7019 \fdecl{int capget(cap\_user\_header\_t hdrp, cap\_user\_data\_t datap)}
7020 \fdesc{Legge le \textit{capabilities}.} 
7021 \fdecl{int capset(cap\_user\_header\_t hdrp, const cap\_user\_data\_t datap)} 
7022 \fdesc{Imposta le \textit{capabilities}.} 
7023 }
7024
7025 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
7026   caso \var{errno} assumerà uno dei valori: 
7027   \begin{errlist}
7028   \item[\errcode{EFAULT}] si è indicato un puntatore sbagliato o nullo
7029     per \param{hdrp} o \param{datap} (quest'ultimo può essere nullo solo se si
7030     usa \func{capget} per ottenere la versione delle \textit{capabilities}
7031     usata dal kernel).
7032   \item[\errcode{EINVAL}] si è specificato un valore non valido per uno dei
7033     campi di \param{hdrp}, in particolare una versione non valida della
7034     versione delle \textit{capabilities}.
7035   \item[\errcode{EPERM}] si è tentato di aggiungere una capacità nell'insieme
7036     delle \textit{capabilities} permesse, o di impostare una capacità non
7037     presente nell'insieme di quelle permesse negli insieme delle effettive o
7038     ereditate, o si è cercato di impostare una \textit{capability} di un altro
7039     processo senza avare \const{CAP\_SETPCAP}.
7040   \item[\errcode{ESRCH}] si è fatto riferimento ad un processo inesistente.
7041   \end{errlist}
7042 }
7043 \end{funcproto}
7044
7045 Queste due funzioni prendono come argomenti due tipi di dati dedicati,
7046 definiti come puntatori a due strutture specifiche di Linux, illustrate in
7047 fig.~\ref{fig:cap_kernel_struct}.  Per un certo periodo di tempo era anche
7048 indicato che per poterle utilizzare fosse necessario che la macro
7049 \macro{\_POSIX\_SOURCE} risultasse non definita (ed era richiesto di inserire
7050 una istruzione \texttt{\#undef \_POSIX\_SOURCE} prima di includere
7051 \headfile{sys/capability.h}) requisito che non risulta più
7052 presente.\footnote{e non è chiaro neanche quanto sia mai stato davvero
7053   necessario.}
7054
7055 \begin{figure}[!htb]
7056   \footnotesize
7057   \centering
7058   \begin{minipage}[c]{0.8\textwidth}
7059     \includestruct{listati/cap_user_header_t.h}
7060   \end{minipage} 
7061   \normalsize 
7062   \caption{Definizione delle strutture a cui fanno riferimento i puntatori
7063     \structd{cap\_user\_header\_t} e \structd{cap\_user\_data\_t} usati per
7064     l'interfaccia di gestione di basso livello delle \textit{capabilities}.}
7065   \label{fig:cap_kernel_struct}
7066 \end{figure}
7067
7068 Si tenga presente che le strutture di fig.~\ref{fig:cap_kernel_struct}, come i
7069 prototipi delle due funzioni \func{capget} e \func{capset}, sono soggette ad
7070 essere modificate con il cambiamento del kernel (in particolare i tipi di dati
7071 delle strutture) ed anche se finora l'interfaccia è risultata stabile, non c'è
7072 nessuna assicurazione che questa venga mantenuta,\footnote{viene però
7073   garantito che le vecchie funzioni continuino a funzionare.} Pertanto se si
7074 vogliono scrivere programmi portabili che possano essere eseguiti senza
7075 modifiche o adeguamenti su qualunque versione del kernel è opportuno
7076 utilizzare le interfacce di alto livello che vedremo più avanti.
7077
7078 La struttura a cui deve puntare l'argomento \param{hdrp} serve ad indicare,
7079 tramite il campo \var{pid}, il \ids{PID} del processo del quale si vogliono
7080 leggere o modificare le \textit{capabilities}. Con \func{capset} questo, se si
7081 usano le \textit{file capabilities}, può essere solo 0 o il \ids{PID} del
7082 processo chiamante, che sono equivalenti. Non tratteremo, essendo comunque di
7083 uso irrilevante, il caso in cui, in mancanza di tale supporto, la funzione può
7084 essere usata per modificare le \textit{capabilities} di altri processi, per il
7085 quale si rimanda, se interessati, alla lettura della pagina di manuale.
7086
7087 Il campo \var{version} deve essere impostato al valore della versione delle
7088 stesse usata dal kernel (quello indicato da una delle costanti
7089 \texttt{\_LINUX\_CAPABILITY\_VERSION\_n} di fig.~\ref{fig:cap_kernel_struct})
7090 altrimenti le funzioni ritorneranno con un errore di \errcode{EINVAL},
7091 restituendo nel campo stesso il valore corretto della versione in uso. La
7092 versione due è comunque deprecata e non deve essere usata, ed il kernel
7093 stamperà un avviso se lo si fa.
7094
7095 I valori delle \textit{capabilities} devono essere passati come maschere
7096 binarie;\footnote{e si tenga presente che i valori di
7097   tab.~\ref{tab:proc_capabilities} non possono essere combinati direttamente,
7098   indicando il numero progressivo del bit associato alla relativa capacità.}
7099 con l'introduzione delle \textit{capabilities} a 64 bit inoltre il
7100 puntatore \param{datap} non può essere più considerato come relativo ad una
7101 singola struttura, ma ad un vettore di due strutture.\footnote{è questo cambio
7102   di significato che ha portato a deprecare la versione 2, che con
7103   \func{capget} poteva portare ad un buffer overflow per vecchie applicazioni
7104   che continuavano a considerare \param{datap} come puntatore ad una singola
7105   struttura.}
7106
7107 Dato che le precedenti funzioni, oltre ad essere specifiche di Linux, non
7108 garantiscono la stabilità nell'interfaccia, è sempre opportuno effettuare la
7109 gestione delle \textit{capabilities} utilizzando le funzioni di libreria a
7110 questo dedicate. Queste funzioni, che seguono quanto previsto nelle bozze
7111 dello standard POSIX.1e, non fanno parte della \acr{glibc} e sono fornite in
7112 una libreria a parte,\footnote{la libreria è \texttt{libcap2}, nel caso di
7113   Debian può essere installata con il pacchetto omonimo.} pertanto se un
7114 programma le utilizza si dovrà indicare esplicitamente al compilatore l'uso
7115 della suddetta libreria attraverso l'opzione \texttt{-lcap}.
7116
7117 \itindbeg{capability~state}
7118
7119 Le funzioni dell'interfaccia alle \textit{capabilities} definite nelle bozze
7120 dello standard POSIX.1e prevedono l'uso di un tipo di dato opaco,
7121 \type{cap\_t}, come puntatore ai dati mantenuti nel cosiddetto
7122 \textit{capability state},\footnote{si tratta in sostanza di un puntatore ad
7123   una struttura interna utilizzata dalle librerie, i cui campi non devono mai
7124   essere acceduti direttamente.} in sono memorizzati tutti i dati delle
7125 \textit{capabilities}.
7126
7127 In questo modo è possibile mascherare i dettagli della gestione di basso
7128 livello, che potranno essere modificati senza dover cambiare le funzioni
7129 dell'interfaccia, che fanno riferimento soltanto ad oggetti di questo tipo.
7130 L'interfaccia pertanto non soltanto fornisce le funzioni per modificare e
7131 leggere le \textit{capabilities}, ma anche quelle per gestire i dati
7132 attraverso i \textit{capability state}, che presentano notevoli affinità,
7133 essendo parte di bozze dello stesso standard, con quelle già viste per le ACL.
7134
7135 La prima funzione dell'interfaccia è quella che permette di inizializzare un
7136 \textit{capability state}, allocando al contempo la memoria necessaria per i
7137 relativi dati. La funzione è \funcd{cap\_init} ed il suo prototipo è:
7138
7139 \begin{funcproto}{
7140 \fhead{sys/capability.h}
7141 \fdecl{cap\_t cap\_init(void)}
7142 \fdesc{Crea ed inizializza un \textit{capability state}.} 
7143 }
7144
7145 {La funzione ritorna un \textit{capability state} in caso di successo e
7146   \val{NULL} per un errore, nel qual caso \var{errno} potrà assumere solo il
7147   valore \errval{ENOMEM}.  }
7148 \end{funcproto}
7149
7150 La funzione restituisce il puntatore \type{cap\_t} ad uno stato inizializzato
7151 con tutte le \textit{capabilities} azzerate. In caso di errore (cioè quando
7152 non c'è memoria sufficiente ad allocare i dati) viene restituito \val{NULL}
7153 ed \var{errno} viene impostata a \errval{ENOMEM}.  
7154
7155 La memoria necessaria a mantenere i dati viene automaticamente allocata da
7156 \func{cap\_init}, ma dovrà essere disallocata esplicitamente quando non è più
7157 necessaria utilizzando, per questo l'interfaccia fornisce una apposita
7158 funzione, \funcd{cap\_free}, il cui prototipo è:
7159
7160 \begin{funcproto}{
7161 \fhead{sys/capability.h}
7162 \fdecl{int cap\_free(void *obj\_d)}
7163 \fdesc{Disalloca la memoria allocata per i dati delle \textit{capabilities}..} 
7164 }
7165
7166 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
7167   caso \var{errno} potrà assumere solo il valore \errval{EINVAL}.
7168 }
7169 \end{funcproto}
7170
7171
7172 La funzione permette di liberare la memoria allocata dalle altre funzioni
7173 della libreria sia per un \textit{capability state}, nel qual caso l'argomento
7174 sarà un dato di tipo \type{cap\_t}, che per una descrizione testuale dello
7175 stesso,\footnote{cioè quanto ottenuto tramite la funzione
7176   \func{cap\_to\_text}.} nel qual caso l'argomento sarà un dato di tipo
7177 \texttt{char *}. Per questo motivo l'argomento \param{obj\_d} è dichiarato
7178 come \texttt{void *}, per evitare la necessità di eseguire un \textit{cast},
7179 ma dovrà comunque corrispondere ad un puntatore ottenuto tramite le altre
7180 funzioni della libreria, altrimenti la funzione fallirà con un errore di
7181 \errval{EINVAL}.
7182
7183 Infine si può creare una copia di un \textit{capability state} ottenuto in
7184 precedenza tramite la funzione \funcd{cap\_dup}, il cui prototipo è:
7185
7186 \begin{funcproto}{
7187 \fhead{sys/capability.h}
7188 \fdecl{cap\_t cap\_dup(cap\_t cap\_p)}
7189 \fdesc{Duplica un \textit{capability state} restituendone una copia.} 
7190 }
7191
7192 {La funzione ritorna un \textit{capability state} in caso di successo e
7193   \val{NULL} per un errore, nel qual caso \var{errno} assumerà i valori
7194   \errval{ENOMEM} o \errval{EINVAL} nel loro significato generico.}
7195 \end{funcproto}
7196
7197
7198 La funzione crea una copia del \textit{capability state} posto all'indirizzo
7199 \param{cap\_p} che si è passato come argomento, restituendo il puntatore alla
7200 copia, che conterrà gli stessi valori delle \textit{capabilities} presenti
7201 nell'originale. La memoria necessaria viene allocata automaticamente dalla
7202 funzione. Una volta effettuata la copia i due \textit{capability state}
7203 potranno essere modificati in maniera completamente indipendente, ed alla fine
7204 delle operazioni si dovrà disallocare anche la copia, oltre all'originale.
7205
7206 Una seconda classe di funzioni di servizio previste dall'interfaccia sono
7207 quelle per la gestione dei dati contenuti all'interno di un \textit{capability
7208   state}; la prima di queste è \funcd{cap\_clear}, il cui prototipo è:
7209
7210 \begin{funcproto}{
7211 \fhead{sys/capability.h}
7212 \fdecl{int cap\_clear(cap\_t cap\_p)}
7213 \fdesc{Inizializza un \textit{capability state} cancellando tutte le
7214   \textit{capabilities}.}
7215 }
7216
7217 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
7218   caso \var{errno} potrà assumere solo il valore \errval{EINVAL}.
7219 }
7220 \end{funcproto}
7221
7222 La funzione si limita ad azzerare tutte le \textit{capabilities} presenti nel
7223 \textit{capability state} all'indirizzo \param{cap\_p} passato come argomento,
7224 restituendo uno stato \textsl{vuoto}, analogo a quello che si ottiene nella
7225 creazione con \func{cap\_init}.
7226
7227 Una variante di \func{cap\_clear} è \funcd{cap\_clear\_flag} che cancella da
7228 un \textit{capability state} tutte le \textit{capabilities} di un certo
7229 insieme fra quelli elencati a pag.~\pageref{sec:capabilities_set}, il suo
7230 prototipo è:
7231
7232 \begin{funcproto}{
7233 \fhead{sys/capability.h}
7234 \fdecl{int cap\_clear\_flag(cap\_t cap\_p, cap\_flag\_t flag)} 
7235 \fdesc{Cancella delle \textit{capabilities} da un \textit{capability state}.} 
7236 }
7237
7238 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
7239   caso \var{errno}  potrà assumere solo il valore \errval{EINVAL}.
7240 }
7241 \end{funcproto}
7242
7243 La funzione richiede che si indichi quale degli insiemi si intente cancellare
7244 da \param{cap\_p} con l'argomento \param{flag}. Questo deve essere specificato
7245 con una variabile di tipo \type{cap\_flag\_t} che può assumere
7246 esclusivamente\footnote{si tratta in effetti di un tipo enumerato, come si può
7247   verificare dalla sua definizione che si trova in
7248   \headfile{sys/capability.h}.} uno dei valori illustrati in
7249 tab.~\ref{tab:cap_set_identifier}.
7250
7251 \begin{table}[htb]
7252   \centering
7253   \footnotesize
7254   \begin{tabular}[c]{|l|l|}
7255     \hline
7256     \textbf{Valore} & \textbf{Significato} \\
7257     \hline
7258     \hline
7259     \constd{CAP\_EFFECTIVE}  & Capacità dell'insieme \textsl{effettivo}.\\
7260     \constd{CAP\_PERMITTED}  & Capacità dell'insieme \textsl{permesso}.\\ 
7261     \constd{CAP\_INHERITABLE}& Capacità dell'insieme \textsl{ereditabile}.\\
7262     \hline
7263   \end{tabular}
7264   \caption{Valori possibili per il tipo di dato \type{cap\_flag\_t} che
7265     identifica gli insiemi delle \textit{capabilities}.}
7266   \label{tab:cap_set_identifier}
7267 \end{table}
7268
7269 Si possono inoltre confrontare in maniera diretta due diversi
7270 \textit{capability state} con la funzione \funcd{cap\_compare}; il suo
7271 prototipo è:
7272
7273 \begin{funcproto}{
7274 \fhead{sys/capability.h}
7275 \fdecl{int cap\_compare(cap\_t cap\_a, cap\_t cap\_b)}
7276 \fdesc{Confronta due \textit{capability state}.} 
7277 }
7278
7279 {La funzione ritorna $0$ se i \textit{capability state} sono identici
7280     ed un valore positivo se differiscono, non sono previsti errori.}
7281 \end{funcproto}
7282
7283
7284 La funzione esegue un confronto fra i due \textit{capability state} passati
7285 come argomenti e ritorna in un valore intero il risultato, questo è nullo se
7286 sono identici o positivo se vi sono delle differenze. Il valore di ritorno
7287 della funzione consente inoltre di per ottenere ulteriori informazioni su
7288 quali sono gli insiemi di \textit{capabilities} che risultano differenti.  Per
7289 questo si può infatti usare la apposita macro \macro{CAP\_DIFFERS}:
7290
7291 {\centering
7292 \vspace{3pt}
7293 \begin{funcbox}{
7294 \fhead{sys/capability.h}
7295 \fdecl{int \macrod{CAP\_DIFFERS}(value, flag)}
7296 \fdesc{Controlla lo stato di eventuali differenze delle \textit{capabilities}
7297   nell'insieme \texttt{flag}.}
7298 }
7299 \end{funcbox}
7300 }
7301
7302 La macro richiede che si passi nell'argomento \texttt{value} il risultato
7303 della funzione \func{cap\_compare} e in \texttt{flag} l'indicazione (coi
7304 valori di tab.~\ref{tab:cap_set_identifier}) dell'insieme che si intende
7305 controllare; restituirà un valore diverso da zero se le differenze rilevate da
7306 \func{cap\_compare} sono presenti nell'insieme indicato.
7307
7308 Per la gestione dei singoli valori delle \textit{capabilities} presenti in un
7309 \textit{capability state} l'interfaccia prevede due funzioni specifiche,
7310 \funcd{cap\_get\_flag} e \funcd{cap\_set\_flag}, che permettono
7311 rispettivamente di leggere o impostare il valore di una capacità all'interno
7312 in uno dei tre insiemi già citati; i rispettivi prototipi sono:
7313
7314 \begin{funcproto}{
7315 \fhead{sys/capability.h}
7316 \fdecl{int cap\_get\_flag(cap\_t cap\_p, cap\_value\_t cap, cap\_flag\_t 
7317 flag,\\
7318 \phantom{int cap\_get\_flag(}cap\_flag\_value\_t *value\_p)}
7319 \fdesc{Legge il valore di una \textit{capability}.}
7320 \fdecl{int cap\_set\_flag(cap\_t cap\_p, cap\_flag\_t flag, int ncap,
7321   cap\_value\_t *caps, \\
7322 \phantom{int cap\_set\_flag(}cap\_flag\_value\_t value)} 
7323 \fdesc{Imposta il valore di una \textit{capability}.} 
7324 }
7325
7326 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
7327   caso \var{errno} potrà assumere solo il valore \errval{EINVAL}.  
7328 }
7329 \end{funcproto}
7330
7331 In entrambe le funzioni l'argomento \param{cap\_p} indica il puntatore al
7332 \textit{capability state} su cui operare, mentre l'argomento \param{flag}
7333 indica su quale dei tre insiemi si intende operare, sempre con i valori di
7334 tab.~\ref{tab:cap_set_identifier}.  La capacità che si intende controllare o
7335 impostare invece deve essere specificata attraverso una variabile di tipo
7336 \type{cap\_value\_t}, che può prendere come valore uno qualunque di quelli
7337 riportati in tab.~\ref{tab:proc_capabilities}, in questo caso però non è
7338 possibile combinare diversi valori in una maschera binaria, una variabile di
7339 tipo \type{cap\_value\_t} può indicare una sola capacità.\footnote{in
7340   \headfile{sys/capability.h} il tipo \type{cap\_value\_t} è definito come
7341   \ctyp{int}, ma i valori validi sono soltanto quelli di
7342   tab.~\ref{tab:proc_capabilities}.}
7343
7344 Infine lo stato di una capacità è descritto ad una variabile di tipo
7345 \type{cap\_flag\_value\_t}, che a sua volta può assumere soltanto
7346 uno\footnote{anche questo è un tipo enumerato.} dei valori di
7347 tab.~\ref{tab:cap_value_type}.
7348
7349 \begin{table}[htb]
7350   \centering
7351   \footnotesize
7352   \begin{tabular}[c]{|l|l|}
7353     \hline
7354     \textbf{Valore} & \textbf{Significato} \\
7355     \hline
7356     \hline
7357     \constd{CAP\_CLEAR}& La capacità non è impostata.\\ 
7358     \constd{CAP\_SET}  & La capacità è impostata.\\
7359     \hline
7360   \end{tabular}
7361   \caption{Valori possibili per il tipo di dato \type{cap\_flag\_value\_t} che
7362     indica lo stato di una capacità.}
7363   \label{tab:cap_value_type}
7364 \end{table}
7365
7366 La funzione \func{cap\_get\_flag} legge lo stato della capacità indicata
7367 dall'argomento \param{cap} all'interno dell'insieme indicato dall'argomento
7368 \param{flag} e lo restituisce come \textit{value result argument} nella
7369 variabile puntata dall'argomento \param{value\_p}. Questa deve essere di tipo
7370 \type{cap\_flag\_value\_t} ed assumerà uno dei valori di
7371 tab.~\ref{tab:cap_value_type}. La funzione consente pertanto di leggere solo
7372 lo stato di una capacità alla volta.
7373
7374 La funzione \func{cap\_set\_flag} può invece impostare in una sola chiamata
7375 più \textit{capabilities}, anche se solo all'interno dello stesso insieme ed
7376 allo stesso valore. Per questo motivo essa prende un vettore di valori di tipo
7377 \type{cap\_value\_t} nell'argomento \param{caps}, la cui dimensione viene
7378 specificata dall'argomento \param{ncap}. Il tipo di impostazione da eseguire
7379 (cancellazione o attivazione) per le capacità elencate in \param{caps} viene
7380 indicato dall'argomento \param{value} sempre con i valori di
7381 tab.~\ref{tab:cap_value_type}.
7382
7383 Per semplificare la gestione delle \textit{capabilities} l'interfaccia prevede
7384 che sia possibile utilizzare anche una rappresentazione testuale del contenuto
7385 di un \textit{capability state} e fornisce le opportune funzioni di
7386 gestione;\footnote{entrambe erano previste dalla bozza dello standard
7387   POSIX.1e.} la prima di queste, che consente di ottenere la rappresentazione
7388 testuale, è \funcd{cap\_to\_text}, il cui prototipo è:
7389
7390 \begin{funcproto}{
7391 \fhead{sys/capability.h}
7392 \fdecl{char *cap\_to\_text(cap\_t caps, ssize\_t *length\_p)}
7393 \fdesc{Genera una visualizzazione testuale delle \textit{capabilities}.} 
7394 }
7395
7396 {La funzione ritorna un puntatore alla stringa con la descrizione delle
7397   \textit{capabilities} in caso di successo e \val{NULL} per un errore, nel
7398   qual caso \var{errno} assumerà i valori \errval{EINVAL} o \errval{ENOMEM}
7399   nel loro significato generico.}
7400 \end{funcproto}
7401
7402 La funzione ritorna l'indirizzo di una stringa contente la descrizione
7403 testuale del contenuto del \textit{capability state} \param{caps} passato come
7404 argomento, e, qualora l'argomento \param{length\_p} sia diverso da \val{NULL},
7405 restituisce come \textit{value result argument} nella variabile intera da
7406 questo puntata la lunghezza della stringa. La stringa restituita viene
7407 allocata automaticamente dalla funzione e pertanto dovrà essere liberata con
7408 \func{cap\_free}.
7409
7410 La rappresentazione testuale, che viene usata anche dai programmi di gestione a
7411 riga di comando, prevede che lo stato venga rappresentato con una stringa di
7412 testo composta da una serie di proposizioni separate da spazi, ciascuna delle
7413 quali specifica una operazione da eseguire per creare lo stato finale. Nella
7414 rappresentazione si fa sempre conto di partire da uno stato in cui tutti gli
7415 insiemi sono vuoti e si provvede a impostarne i contenuti.
7416
7417 Ciascuna proposizione è nella forma di un elenco di capacità, espresso con i
7418 nomi di tab.~\ref{tab:proc_capabilities} separati da virgole, seguito da un
7419 operatore, e dall'indicazione degli insiemi a cui l'operazione si applica. I
7420 nomi delle capacità possono essere scritti sia maiuscoli che minuscoli, viene
7421 inoltre riconosciuto il nome speciale \texttt{all} che è equivalente a
7422 scrivere la lista completa. Gli insiemi sono identificati dalle tre lettere
7423 iniziali: ``\texttt{p}'' per il \textit{permitted}, ``\texttt{i}'' per
7424 l'\textit{inheritable} ed ``\texttt{e}'' per l'\textit{effective} che devono
7425 essere sempre minuscole, e se ne può indicare più di uno.
7426
7427 Gli operatori possibili sono solo tre: ``\texttt{+}'' che aggiunge le capacità
7428 elencate agli insiemi indicati, ``\texttt{-}'' che le toglie e ``\texttt{=}''
7429 che le assegna esattamente. I primi due richiedono che sia sempre indicato sia
7430 un elenco di capacità che gli insiemi a cui esse devono applicarsi, e
7431 rispettivamente attiveranno o disattiveranno le capacità elencate nell'insieme
7432 o negli insiemi specificati, ignorando tutto il resto. I due operatori possono
7433 anche essere combinati nella stessa proposizione, per aggiungere e togliere le
7434 capacità dell'elenco da insiemi diversi.
7435
7436 L'assegnazione si applica invece su tutti gli insiemi allo stesso tempo,
7437 pertanto l'uso di ``\texttt{=}'' è equivalente alla cancellazione preventiva
7438 di tutte le capacità ed alla impostazione di quelle elencate negli insiemi
7439 specificati, questo significa che in genere lo si usa una sola volta
7440 all'inizio della stringa. In tal caso l'elenco delle capacità può non essere
7441 indicato e viene assunto che si stia facendo riferimento a tutte quante senza
7442 doverlo scrivere esplicitamente.
7443
7444 Come esempi avremo allora che un processo non privilegiato di un utente, che
7445 non ha nessuna capacità attiva, avrà una rappresentazione nella forma
7446 ``\texttt{=}'' che corrisponde al fatto che nessuna capacità viene assegnata a
7447 nessun insieme (vale la cancellazione preventiva), mentre un processo con
7448 privilegi di amministratore avrà una rappresentazione nella forma
7449 ``\texttt{=ep}'' in cui tutte le capacità vengono assegnate agli insiemi
7450 \textit{permitted} ed \textit{effective} (e l'\textit{inheritable} è ignorato
7451 in quanto per le regole viste a pag.~\ref{sec:capability-uid-transition} le
7452 capacità verranno comunque attivate attraverso una \func{exec}). Infine, come
7453 esempio meno banale dei precedenti, otterremo per \texttt{init} una
7454 rappresentazione nella forma ``\texttt{=ep cap\_setpcap-e}'' dato che come
7455 accennato tradizionalmente \const{CAP\_SETPCAP} è sempre stata rimossa da
7456 detto processo.
7457
7458 Viceversa per ottenere un \textit{capability state} dalla sua rappresentazione
7459 testuale si può usare la funzione \funcd{cap\_from\_text}, il cui prototipo è:
7460
7461 \begin{funcproto}{
7462 \fhead{sys/capability.h}
7463 \fdecl{cap\_t cap\_from\_text(const char *string)}
7464 \fdesc{Crea un \textit{capability state} dalla sua rappresentazione testuale.} 
7465 }
7466
7467 {La funzione ritorna un \textit{capability state} in caso di successo e
7468   \val{NULL} per un errore, nel qual caso \var{errno} assumerà i valori
7469   \errval{EINVAL} o \errval{ENOMEM} nel loro significato generico.}
7470 \end{funcproto}
7471
7472
7473 La funzione restituisce il puntatore ad un \textit{capability state}
7474 inizializzato con i valori indicati nella stringa \param{string} che ne
7475 contiene la rappresentazione testuale. La memoria per il \textit{capability
7476   state} viene allocata automaticamente dalla funzione e dovrà essere liberata
7477 con \func{cap\_free}.
7478
7479 Alle due funzioni citate se ne aggiungono altre due che consentono di
7480 convertire i valori delle costanti di tab.~\ref{tab:proc_capabilities} nelle
7481 stringhe usate nelle rispettive rappresentazioni e viceversa. Le due funzioni,
7482 \funcd{cap\_to\_name} e \funcd{cap\_from\_name}, sono estensioni specifiche di
7483 Linux ed i rispettivi prototipi sono:
7484
7485 \begin{funcproto}{
7486 \fhead{sys/capability.h}
7487 \fdecl{char *cap\_to\_name(cap\_value\_t cap)}
7488 \fdesc{Converte il valore numerico di una \textit{capabilities} alla sua
7489   rappresentazione testuale.} 
7490 \fdecl{int cap\_from\_name(const char *name, cap\_value\_t *cap\_p)}
7491
7492 \fdesc{Converte la rappresentazione testuale di una \textit{capabilities} al
7493   suo valore numerico.} 
7494 }
7495
7496 {La funzione \func{cap\_to\_name} ritorna un puntatore ad una stringa in caso
7497   di successo e \val{NULL} per un errore, mentre \func{cap\_to\_name} ritorna
7498   $0$ in caso di successo e $-1$ per un errore, per entrambe in caso di errore
7499   \var{errno} assumerà i valori \errval{EINVAL} o \errval{ENOMEM} nel loro
7500   significato generico.  
7501 }
7502 \end{funcproto}
7503
7504 La prima funzione restituisce la stringa (allocata automaticamente e che dovrà
7505 essere liberata con \func{cap\_free}) che corrisponde al valore della
7506 capacità \param{cap}, mentre la seconda restituisce nella variabile puntata
7507 da \param{cap\_p}, come \textit{value result argument}, il valore della
7508 capacità rappresentata dalla stringa \param{name}.
7509
7510 Fin quei abbiamo trattato solo le funzioni di servizio relative alla
7511 manipolazione dei \textit{capability state} come strutture di dati;
7512 l'interfaccia di gestione prevede però anche le funzioni per trattare le
7513 \textit{capabilities} presenti nei processi. La prima di queste funzioni è
7514 \funcd{cap\_get\_proc} che consente la lettura delle \textit{capabilities} del
7515 processo corrente, il suo prototipo è:
7516
7517 \begin{funcproto}{
7518 \fhead{sys/capability.h}
7519 \fdecl{cap\_t cap\_get\_proc(void)}
7520 \fdesc{Legge le \textit{capabilities} del processo corrente.} 
7521 }
7522
7523 {La funzione ritorna un \textit{capability state} in caso di successo e
7524   \val{NULL} per un errore, nel qual caso \var{errno} assumerà i valori
7525   \errval{EINVAL}, \errval{EPERM} o \errval{ENOMEM} nel loro significato
7526   generico.}
7527 \end{funcproto}
7528
7529 La funzione legge il valore delle \textit{capabilities} associate al processo
7530 da cui viene invocata, restituendo il risultato tramite il puntatore ad un
7531 \textit{capability state} contenente tutti i dati che provvede ad allocare
7532 autonomamente e che di nuovo occorrerà liberare con \func{cap\_free} quando
7533 non sarà più utilizzato.
7534
7535 Se invece si vogliono leggere le \textit{capabilities} di un processo
7536 specifico occorre usare la funzione \funcd{cap\_get\_pid}, il cui
7537 prototipo\footnote{su alcune pagine di manuale la funzione è descritta con un
7538   prototipo sbagliato, che prevede un valore di ritorno di tipo \type{cap\_t},
7539   ma il valore di ritorno è intero, come si può verificare anche dalla
7540   dichiarazione della stessa in \headfile{sys/capability.h}.} è:
7541
7542 \begin{funcproto}{
7543 \fhead{sys/capability.h}
7544 \fdecl{cap\_t cap\_get\_pid(pid\_t pid)}
7545 \fdesc{Legge le \textit{capabilities} di un processo.} 
7546 }
7547
7548 {La funzione ritorna un \textit{capability state} in caso di successo e
7549   \val{NULL} per un errore, nel qual caso \var{errno} assumerà i valori
7550   \errval{ESRCH} o \errval{ENOMEM} nel loro significato generico.  }
7551 \end{funcproto}
7552
7553 La funzione legge il valore delle \textit{capabilities} del processo indicato
7554 con l'argomento \param{pid}, e restituisce il risultato tramite il puntatore
7555 ad un \textit{capability state} contenente tutti i dati che provvede ad
7556 allocare autonomamente e che al solito deve essere disallocato con
7557 \func{cap\_free}. Qualora il processo indicato non esista si avrà un errore di
7558 \errval{ESRCH}. Gli stessi valori possono essere letti direttamente nel
7559 filesystem \textit{proc}, nei file \texttt{/proc/<pid>/status}; ad esempio per
7560 \texttt{init} si otterrà qualcosa del tipo:
7561 \begin{Console}
7562 piccardi@hain:~/gapil$ \textbf{cat /proc/1/status}
7563 ...
7564 CapInh: 0000000000000000
7565 CapPrm: 00000000fffffeff
7566 CapEff: 00000000fffffeff  
7567 ...
7568 \end{Console}
7569 %$
7570
7571 \itindend{capability~state}
7572
7573 Infine per impostare le \textit{capabilities} del processo corrente (nella
7574 bozza dello standard POSIX.1e non esiste una funzione che permetta di cambiare
7575 le \textit{capabilities} di un altro processo) si deve usare la funzione
7576 \funcd{cap\_set\_proc}, il cui prototipo è:
7577
7578 \begin{funcproto}{
7579 \fhead{sys/capability.h}
7580 \fdecl{int cap\_set\_proc(cap\_t cap\_p)}
7581 \fdesc{Imposta le \textit{capabilities} del processo corrente.} 
7582 }
7583
7584 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
7585   caso \var{errno} assumerà i valori:
7586   \begin{errlist}
7587   \item[\errcode{EPERM}] si è cercato di attivare una capacità non permessa.
7588   \end{errlist} ed inoltre \errval{EINVAL} nel suo significato generico.}
7589 \end{funcproto}
7590
7591 La funzione modifica le \textit{capabilities} del processo corrente secondo
7592 quanto specificato con l'argomento \param{cap\_p}, posto che questo sia
7593 possibile nei termini spiegati in precedenza (non sarà ad esempio possibile
7594 impostare capacità non presenti nell'insieme di quelle permesse). 
7595
7596 In caso di successo i nuovi valori saranno effettivi al ritorno della
7597 funzione, in caso di fallimento invece lo stato delle capacità resterà
7598 invariato. Si tenga presente che \textsl{tutte} le capacità specificate
7599 tramite \param{cap\_p} devono essere permesse; se anche una sola non lo è la
7600 funzione fallirà, e per quanto appena detto, lo stato delle
7601 \textit{capabilities} non verrà modificato (neanche per le parti eventualmente
7602 permesse).
7603
7604 Oltre a queste funzioni su Linux sono presenti due ulteriori funzioni,
7605 \funcm{capgetp} e \funcm{capsetp}, che svolgono un compito analogo. Queste
7606 funzioni risalgono alla implementazione iniziale delle \textit{capabilities}
7607 ed in particolare \funcm{capsetp} consentirebbe anche, come possibile in quel
7608 caso, di cambiare le capacità di un altro processo. Le due funzioni oggi sono
7609 deprecate e pertanto eviteremo di trattarle, per chi fosse interessato si
7610 rimanda alla lettura della loro pagina di manuale.
7611
7612 Come esempio di utilizzo di queste funzioni nei sorgenti allegati alla guida
7613 si è distribuito il programma \texttt{getcap.c}, che consente di leggere le
7614 \textit{capabilities} del processo corrente\footnote{vale a dire di sé stesso,
7615   quando lo si lancia, il che può sembrare inutile, ma serve a mostrarci quali
7616   sono le \textit{capabilities} standard che ottiene un processo lanciato
7617   dalla riga di comando.} o tramite l'opzione \texttt{-p}, quelle di un
7618 processo qualunque il cui \ids{PID} viene passato come parametro dell'opzione.
7619
7620 \begin{figure}[!htbp]
7621   \footnotesize \centering
7622   \begin{minipage}[c]{\codesamplewidth}
7623     \includecodesample{listati/getcap.c}
7624   \end{minipage} 
7625   \normalsize
7626   \caption{Corpo principale del programma \texttt{getcap.c}.}
7627   \label{fig:proc_getcap}
7628 \end{figure}
7629
7630 La sezione principale del programma è riportata in fig.~\ref{fig:proc_getcap},
7631 e si basa su una condizione sulla variabile \var{pid} che se si è usato
7632 l'opzione \texttt{-p} è impostata (nella sezione di gestione delle opzioni,
7633 che si è tralasciata) al valore del \ids{PID} del processo di cui si vuole
7634 leggere le \textit{capabilities} e nulla altrimenti. Nel primo caso
7635 (\texttt{\small 1-6}) si utilizza (\texttt{\small 2}) \func{cap\_get\_proc}
7636 per ottenere lo stato delle capacità del processo, nel secondo (\texttt{\small
7637   7-13}) si usa invece \func{cap\_get\_pid} (\texttt{\small 8}) per leggere
7638 il valore delle capacità del processo indicato.
7639
7640 Il passo successivo è utilizzare (\texttt{\small 15}) \func{cap\_to\_text} per
7641 tradurre in una stringa lo stato, e poi (\texttt{\small 16}) stamparlo; infine
7642 (\texttt{\small 18-19}) si libera la memoria allocata dalle precedenti
7643 funzioni con \func{cap\_free} per poi ritornare dal ciclo principale della
7644 funzione.
7645
7646 \itindend{capabilities}
7647
7648 % TODO vedi http://lwn.net/Articles/198557/ e 
7649 % http://www.madore.org/~david/linux/newcaps/
7650
7651
7652
7653 \subsection{La gestione dei {chroot}}
7654 \label{sec:file_chroot}
7655
7656 % TODO: valutare se introdurre una nuova sezione sulle funzionalità di
7657 % sicurezza avanzate, con dentro chroot SELinux e AppArmor, Tomoyo, Smack,
7658 % cgroup o altro
7659
7660 % TODO: spostare chroot e le funzioni affini relative ai container da qualche
7661 % parte diversa se è il caso. 
7662
7663 % TODO Inheriting capabilities vedi http://lwn.net/Articles/632520/ eambient
7664 % capabilities introdotte con il kernel 4.3, vedi 
7665 % http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=58319057b7847667f0c9585b9de0e8932b0fdb08
7666
7667 Benché non abbia niente a che fare con permessi, utenti e gruppi, la funzione
7668 \func{chroot} viene usata spesso per restringere le capacità di accesso di un
7669 programma ad una sezione limitata del filesystem, per cui ne parleremo in
7670 questa sezione.
7671
7672 Come accennato in sez.~\ref{sec:proc_fork} ogni processo oltre ad una
7673 directory di lavoro, ha anche una directory \textsl{radice}\footnote{entrambe
7674   sono contenute in due campi (rispettivamente \var{pwd} e \var{root}) di
7675   \kstruct{fs\_struct}; vedi fig.~\ref{fig:proc_task_struct}.} che, pur
7676 essendo di norma corrispondente alla radice dell'albero dei file dell'intero
7677 sistema, ha per il processo il significato specifico di directory rispetto
7678 alla quale vengono risolti i \textit{pathname} assoluti.\footnote{cioè quando
7679   un processo chiede la risoluzione di un \textit{pathname}, il kernel usa
7680   sempre questa directory come punto di partenza.} Il fatto che questo valore
7681 sia specificato per ogni processo apre allora la possibilità di modificare le
7682 modalità di risoluzione dei \textit{pathname} assoluti da parte di un processo
7683 cambiando questa directory, così come si fa coi \textit{pathname} relativi
7684 cambiando la directory di lavoro.
7685
7686 Normalmente la directory radice di un processo coincide con la radice generica
7687 dell'albero dei file, che è la directory che viene montata direttamente dal
7688 kernel all'avvio secondo quanto illustrato in sez.~\ref{sec:file_pathname}.
7689 Questo avviene perché, come visto in sez.~\ref{cha:process_handling} la
7690 directory radice di un processo viene ereditata dal padre attraverso una
7691 \func{fork} e mantenuta attraverso una \func{exec}, e siccome tutti i processi
7692 derivano da \cmd{init}, che ha come radice quella montata dal kernel, questa
7693 verrà mantenuta.
7694
7695 In certe situazioni però è utile poter impedire che un processo possa accedere
7696 a tutto l'albero dei file iniziale; per far questo si può cambiare la sua
7697 directory radice con la funzione di sistema \funcd{chroot}, il cui prototipo
7698 è:
7699
7700 \begin{funcproto}{
7701 \fhead{unistd.h}
7702 \fdecl{int chroot(const char *path)}
7703 \fdesc{Cambia la directory radice del processo.} 
7704 }
7705
7706 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
7707   caso \var{errno} assumerà uno dei valori: 
7708   \begin{errlist}
7709   \item[\errcode{EPERM}] non si hanno i privilegi di amministratore.
7710   \end{errlist}
7711   ed inoltre \errval{EFAULT}, \errval{ENAMETOOLONG}, \errval{ENOENT},
7712   \errval{ENOMEM}, \errval{ENOTDIR}, \errval{EACCES}, \errval{ELOOP};
7713   \errval{EROFS} e \errval{EIO} nel loro significato generico.}
7714 \end{funcproto}
7715
7716 La funzione imposta la directory radice del processo a quella specificata da
7717 \param{path} (che ovviamente deve esistere) ed ogni \textit{pathname} assoluto
7718 usato dalle funzioni chiamate nel processo sarà risolto a partire da essa,
7719 rendendo impossibile accedere alla parte di albero sovrastante. Si ha così
7720 quella che viene chiamata una \textit{chroot jail}, in quanto il processo non
7721 può più accedere a file al di fuori della sezione di albero in cui è stato
7722 \textsl{imprigionato}.
7723
7724 Solo un processo con i privilegi di amministratore può usare questa
7725 funzione,\footnote{più precisamente se possiede la capacità
7726   \const{CAP\_SYS\_CHROOT}.} e la nuova radice, per quanto detto in
7727 sez.~\ref{sec:proc_fork}, sarà ereditata da tutti i suoi processi figli. Si
7728 tenga presente però che la funzione non cambia la directory di lavoro del
7729 processo, che potrebbe restare fuori dalla \textit{chroot jail}.
7730
7731 Questo è il motivo per cui la funzione è efficace nel restringere un processo
7732 ad un ramo di albero solo se dopo averla eseguita si cedono i privilegi di
7733 amministratore. Infatti se per un qualunque motivo il processo resta con la
7734 sua directory di lavoro al di fuori dalla \textit{chroot jail}, potrà accedere
7735 a tutto il resto del filesystem usando dei \textit{pathname} relativi, dato
7736 che in tal caso è possibile, grazie all'uso di ``\texttt{..}'', risalire
7737 all'indietro fino alla radice effettiva dell'albero dei file.
7738
7739 Potrebbe sembrare che per risolvere il problema sia sufficiente ricordarsi di
7740 eseguire preventivamente anche una \func{chdir} sulla directory su cui si
7741 andrà ad eseguire \func{chroot}, così da assicurarsi che le directory di
7742 lavoro sia all'interno della \textit{chroot jail}.  Ma se ad un processo
7743 restano i privilegi di amministratore esso potrà comunque portare la sua
7744 directory di lavoro fuori dalla \textit{chroot jail} in cui si trova. Basterà
7745 infatti eseguire di nuovo \func{chroot} su una qualunque directory contenuta
7746 nell'attuale directory di lavoro perché quest'ultima risulti al di fuori della
7747 nuova \textit{chroot jail}.  Per questo motivo l'uso di questa funzione non ha
7748 molto senso quando un processo di cui si vuole limitare l'accesso necessita
7749 comunque dei privilegi di amministratore per le sue normali operazioni.
7750
7751 Nonostante queste limitazioni la funzione risulta utile qualora la si possa
7752 applicare correttamente cedendo completamente i privilegi di amministratore
7753 una volta eseguita.  Ed esempio caso tipico di uso di \func{chroot} è quello
7754 di un server FTP anonimo in si vuole che il server veda solo i file che deve
7755 trasferire. In tal caso si esegue una \func{chroot} sulla directory che
7756 contiene i file, che il server dovrà in grado di leggere come utente
7757 ordinario, e poi si cedono tutti i privilegi di amministratore.  Si tenga
7758 presente però che in casi come questo occorrerà fornire all'interno della
7759 \textit{chroot jail} un accesso anche a tutti i file (in genere programmi e
7760 librerie) di cui il server potrebbe avere bisogno.
7761
7762
7763 % LocalWords:  sez like filesystem unlink MacOS Windows VMS inode kernel unistd
7764 % LocalWords:  int const char oldpath newpath errno EXDEV EPERM st Smack SysV
7765 % LocalWords:  EEXIST EMLINK EACCES ENAMETOOLONG ENOTDIR EFAULT ENOMEM EROFS ls
7766 % LocalWords:  ELOOP ENOSPC EIO pathname nlink stat vfat fsck EISDIR ENOENT cap
7767 % LocalWords:  POSIX socket fifo sticky root system call count crash init linux
7768 % LocalWords:  descriptor remove rename rmdir stdio glibc libc NFS DT obj dup
7769 % LocalWords:  ENOTEMPTY EBUSY mount point EINVAL soft symbolic tab symlink fig
7770 % LocalWords:  dangling access chdir chmod chown creat exec lchown lstat mkdir
7771 % LocalWords:  mkfifo mknod opendir pathconf readlink truncate path buff size
7772 % LocalWords:  grub bootloader grep MAXSYMLINKS cat VFS sys dirname fcntl tv Py
7773 % LocalWords:  dev umask IFREG IFBLK IFCHR IFIFO SVr sgid BSD SVID NULL from to
7774 % LocalWords:  stream dirent EMFILE ENFILE dirfd SOURCE fchdir readdir struct
7775 % LocalWords:  EBADF namlen HAVE thread entry result value argument fileno ext
7776 % LocalWords:  name TYPE OFF RECLEN UNKNOWN REG SOCK CHR BLK type IFTODT DTTOIF
7777 % LocalWords:  DTYPE off reclen seekdir telldir void rewinddir closedir select
7778 % LocalWords:  namelist compar malloc qsort alphasort versionsort strcoll myls
7779 % LocalWords:  strcmp direntry while current working home shell pwd get stddef
7780 % LocalWords:  getcwd ERANGE getwd change fd race condition tmpnam getfacl mark
7781 % LocalWords:  string tmpdir TMP tempnam pfx TMPNAME suid tmp EXCL tmpfile pid
7782 % LocalWords:  EINTR mktemp mkstemp stlib template filename XXXXXX OpenBSD buf
7783 % LocalWords:  mkdtemp fstat filedes nell'header padding ISREG ISDIR ISCHR IFMT
7784 % LocalWords:  ISBLK ISFIFO ISLNK ISSOCK IFSOCK IFLNK IFDIR ISUID UID ISGID GID
7785 % LocalWords:  ISVTX IRUSR IWUSR IXUSR IRGRP IWGRP IXGRP IROTH IWOTH IXOTH  OLD
7786 % LocalWords:  blocks blksize holes lseek TRUNC ftruncate ETXTBSY length QCMD
7787 % LocalWords:  hole atime read utime mtime write ctime modification leafnode cp
7788 % LocalWords:  make fchmod fchown utimbuf times actime modtime Mac owner uid fs
7789 % LocalWords:  gid Control List patch mandatory control execute group other all
7790 % LocalWords:  effective passwd IGID locking swap saved text IRWXU IRWXG subcmd
7791 % LocalWords:  IRWXO capability FSETID mask capabilities chroot jail QUOTAOFF
7792 % LocalWords:  FTP filter Attributes Solaris FreeBSD libacl hash at dqblk SYNC
7793 % LocalWords:  XFS SELinux namespace attribute security trusted Draft Modules
7794 % LocalWords:  attributes mime ADMIN FOWNER libattr lattr getxattr lgetxattr of
7795 % LocalWords:  fgetxattr attr ssize ENOATTR ENOTSUP NUL setxattr lsetxattr list
7796 % LocalWords:  fsetxattr flags XATTR REPLACE listxattr llistxattr flistxattr by
7797 % LocalWords:  removexattr lremovexattr fremovexattr attributename acl GETINFO
7798 % LocalWords:  OBJ setfacl len any prefix separator options NUMERIC IDS SMART
7799 % LocalWords:  INDENT major number IDE Documentation makedev proc copy LNK long
7800 % LocalWords:  euidaccess eaccess delete def tag qualifier permset calendar NOW
7801 % LocalWords:  mutt noatime relatime strictatime atim nsec mtim ctim atimensec
7802 % LocalWords:  mtimensec utimes timeval futimes lutimes ENOSYS futimens OMIT PR
7803 % LocalWords:  utimensat timespec sec futimesat LIDS DAC OVERRIDE SEARCH chattr
7804 % LocalWords:  Discrectionary KILL SETGID domain SETUID setuid setreuid SETPCAP
7805 % LocalWords:  setresuid setfsuid IMMUTABLE immutable append only BIND SERVICE
7806 % LocalWords:  BROADCAST broadcast multicast multicasting RAW PACKET IPC LOCK
7807 % LocalWords:  memory mlock mlockall shmctl mmap MODULE RAWIO ioperm iopl PACCT
7808 % LocalWords:  ptrace accounting NICE RESOURCE TTY CONFIG hangup vhangup dell'
7809 % LocalWords:  LEASE lease SETFCAP AUDIT permitted inherited inheritable AND nn
7810 % LocalWords:  bounding execve fork capget capset header hdrp datap ESRCH undef
7811 % LocalWords:  version libcap lcap clear ncap caps pag capgetp CapInh CapPrm RT
7812 % LocalWords:  fffffeff CapEff getcap scheduling lookup  dqinfo SETINFO GETFMT
7813 % LocalWords:  NEWNS unshare nice NUMA ioctl journaling close XOPEN fdopendir
7814 % LocalWords:  btrfs mkostemp extN ReiserFS JFS Posix usrquota grpquota EDQUOT
7815 % LocalWords:  aquota quotacheck limit grace period quotactl cmd caddr addr dqb
7816 % LocalWords:  QUOTAON ENODEV ENOPKG ENOTBLK GETQUOTA SETQUOTA SETUSE SETQLIM
7817 % LocalWords:  forced allowed sendmail SYSLOG WAKE ALARM CLOCK BOOTTIME dqstats
7818 % LocalWords:  REALTIME securebits GETSTATS QFMT curspace curinodes btime itime
7819 % LocalWords:  QIF BLIMITS bhardlimit bsoftlimit ILIMITS ihardlimit isoftlimit
7820 % LocalWords:  INODES LIMITS USAGE valid dqi IIF BGRACE bgrace IGRACE igrace is
7821 % LocalWords:  Python Truelite Srl quotamodule Repository who nell' dall' KEEP
7822 % LocalWords:  SECURE KEEPCAPS prctl FIXUP NOROOT LOCKED dell'IPC dell'I IOPRIO
7823 % LocalWords:  CAPBSET CLASS IDLE dcookie overflow DIFFERS Virtual everything
7824 % LocalWords:  dentry register resolution cache dcache operation llseek poll ln
7825 % LocalWords:  multiplexing fsync fasync seek block superblock gapil tex img du
7826 % LocalWords:  second linked journaled source filesystemtype unsigned device
7827 % LocalWords:  mountflags NODEV ENXIO dummy devfs magic MGC RDONLY NOSUID MOVE
7828 % LocalWords:  NOEXEC SYNCHRONOUS REMOUNT MANDLOCK NODIRATIME umount MNT statfs
7829 % LocalWords:  fstatfs fstab mntent ino bound orig new setpcap metadati sysfs
7830 % LocalWords:  bind DIRSYNC lsattr Hierarchy FHS SHARED UNBINDABLE shared REC
7831 % LocalWords:  subtree SILENT log unbindable BUSY EAGAIN EXPIRE DETACH NOFOLLOW
7832 % LocalWords:  lazy encfs sshfs setfsent getfsent getfsfile getfsspec endfsent
7833 % LocalWords:  setmntent getmntent addmntent endmntent hasmntopt such offsetof
7834 % LocalWords:  member scan attack EOVERFLOW BITS blkcnt rdev FDCWD functions
7835 % LocalWords:  faccessat grpid lacl AppArmor capsetp mygetfacl
7836
7837 %%% Local Variables: 
7838 %%% mode: latex
7839 %%% TeX-master: "gapil"
7840 %%% End: