Aggiunta la shell di Alessio per generare le figure.
[gapil.git] / filedir.tex
1 \chapter{File e directory}
2 \label{cha:files_and_dirs}
3
4 In questo capitolo tratteremo in dettaglio le modalità con cui si gestiscono
5 file e directory, iniziando dalle funzioni di libreria che si usano per
6 copiarli, spostarli e cambiarne i nomi. Esamineremo poi l'interfaccia che
7 permette la manipolazione dei vari attributi di file e directory ed alla fine
8 faremo una trattazione dettagliata su come è strutturato il sistema base di
9 protezioni e controllo dell'accesso ai file e sulle funzioni che ne permettono
10 la gestione. Tutto quello che riguarda invece la manipolazione del contenuto
11 dei file è lasciato ai capitoli successivi.
12
13
14
15 \section{La gestione di file e directory}
16
17 Come già accennato in \secref{sec:file_filesystem} in un sistema unix-like la
18 gestione dei file ha delle caratteristiche specifiche che derivano
19 direttamente dall'architettura del sistema; in questa sezione esamineremo le
20 funzioni usate per manipolazione nel filesytem di file e directory, per la
21 creazione di link simbolici e diretti, per la gestione e la lettura delle
22 directory; il tutto mettendo in evidenza le conseguenze della struttura
23 standard della gestione dei file in un sistema unix-like, introdotta nel
24 capitolo precedente.
25
26
27 \subsection{Le funzioni \func{link} e \func{unlink}}
28 \label{sec:file_link}
29
30 Una caratteristica comune a diversi sistemi operativi è quella di poter creare
31 dei nomi fittizi (come gli alias del MacOS o i collegamenti di Windows) che
32 permettono di fare riferimento allo stesso file chiamandolo con nomi diversi
33 o accedendovi da directory diverse.
34
35 Questo è possibile anche in ambiente Unix, dove tali collegamenti sono
36 usualmente chiamati \textit{link}; ma data la struttura del sistema di
37 gestione dei file (ed in particolare quanto trattato in
38 \secref{sec:file_arch_func}) ci sono due metodi sostanzialmente diversi per
39 fare questa operazione.
40
41 Come spiegato in \secref{sec:file_filesystem} l'accesso al contenuto di un
42 file su disco avviene attraverso il suo inode\index{inode}, e il nome che si
43 trova in una directory è solo una etichetta associata ad un puntatore a che fa
44 riferimento al suddetto inode.
45
46 Questo significa che la realizzazione di un link è immediata in quanto uno
47 stesso file può avere tanti nomi diversi allo stesso tempo, dati da
48 altrettante diverse associazioni allo stesso inode; si noti poi che nessuno di
49 questi nomi viene ad assumere una particolare preferenza o originalità
50 rispetto agli altri.
51
52 Per aggiungere un nome ad un inode si utilizza la funzione \func{link}; si
53 suole chiamare questo tipo di associazione un collegamento diretto (o
54 \textit{hard link}).  Il prototipo della funzione e le sue caratteristiche
55 principali, come risultano dalla man page, sono le seguenti:
56 \begin{prototype}{unistd.h}
57 {int link(const char *oldpath, const char *newpath)}
58   Crea un nuovo collegamento diretto al file indicato da \var{oldpath}
59   dandogli nome \var{newpath}.
60   
61   \bodydesc{La funzione restituisce zero in caso di successo e -1 in
62     caso di errore. La variabile \var{errno} viene settata
63     opportunamente, i principali codici di errore sono:
64   \begin{errlist}
65   \item[\macro{EXDEV}] \var{oldpath} e \var{newpath} non sono sullo
66     stesso filesystem.
67   \item[\macro{EPERM}] il filesystem che contiene \var{oldpath} e
68     \macro{newpath} non supporta i link diretti o è una directory.
69   \item[\macro{EEXIST}] un file (o una directory) con quel nome esiste di
70     già.
71   \item[\macro{EMLINK}] ci sono troppi link al file \var{oldpath} (il
72     numero massimo è specificato dalla variabile \macro{LINK\_MAX}, vedi
73     \secref{sec:sys_limits}).
74   \end{errlist}
75   ed inoltre \macro{EACCES}, \macro{ENAMETOOLONG}, \macro{ENOTDIR},
76   \macro{EFAULT}, \macro{ENOMEM}, \macro{EROFS}, \macro{ELOOP},
77   \macro{ENOSPC}, \macro{EIO}.}
78 \end{prototype}
79
80 La creazione di un nuovo collegamento diretto non copia il contenuto del file,
81 ma si limita a creare una voce nella directory specificata con \var{newpath} e
82 ad aumentare di uno il numero di referenze al file (riportato nel campo
83 \var{st\_nlink} della struttura \var{stat}, vedi \secref{sec:file_stat})
84 aggiungendo il nuovo nome ai precedenti. Si noti che uno stesso file può
85 essere così chiamato con vari nomi in diverse directory.
86  
87 Per quanto dicevamo in \secref{sec:file_filesystem} la creazione di un
88 collegamento diretto è possibile solo se entrambi i pathname sono nello stesso
89 filesystem; inoltre il filesystem deve supportare i collegamenti diretti (il
90 meccanismo non è disponibile ad esempio con il filesystem \acr{vfat} di
91 Windows). 
92
93 La funzione inoltre opera sia sui file ordinari che sugli altri oggetti del
94 filesystem, con l'eccezione delle directory. In alcune versioni di Unix solo
95 l'amministratore è in grado di creare un collegamento diretto ad un'altra
96 directory: questo viene fatto perché con una tale operazione è possibile
97 creare dei circoli nel filesystem (vedi l'esempio mostrato in
98 \secref{sec:file_symlink}, dove riprenderemo il discorso) che molti programmi
99 non sono in grado di gestire e la cui rimozione diventerebbe estremamente
100 complicata (in genere per questo tipo di errori occorre far girare il
101 programma \cmd{fsck} per riparare il filesystem).
102
103 Data la pericolosità di questa operazione e la disponibilità dei link
104 simbolici che possono fornire la stessa funzionalità senza questi problemi,
105 nei filesystem usati in Linux questa caratteristica è stata completamente
106 disabilitata, e al tentativo di creare un link diretto ad una directory la
107 funzione restituisce l'errore \macro{EPERM}.
108
109 La rimozione di un file (o più precisamente della voce che lo referenzia
110 all'interno di una directory) si effettua con la funzione \func{unlink}; il
111 suo prototipo è il seguente:
112 \begin{prototype}{unistd.h}{int unlink(const char *pathname)}
113   Cancella il nome specificato dal pathname nella relativa directory e
114   decrementa il numero di riferimenti nel relativo inode. Nel caso di link
115   simbolico cancella il link simbolico; nel caso di socket, fifo o file di
116   dispositivo rimuove il nome, ma come per i file i processi che hanno aperto
117   uno di questi oggetti possono continuare ad utilizzarlo.
118   
119   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
120     errore, nel qual caso il file non viene toccato. La variabile
121     \var{errno} viene settata secondo i seguenti codici di errore:
122   \begin{errlist}
123   \item[\macro{EISDIR}] \var{pathname} si riferisce ad una directory
124     (valore specifico ritornato da Linux che non consente l'uso di
125     \var{unlink} con le directory, e non conforme allo standard POSIX, che
126     prescrive invece l'uso di \macro{EPERM} in caso l'operazione non sia
127     consentita o il processo non abbia privilegi sufficienti).
128   \item[\macro{EROFS}] \var{pathname} è su un filesystem montato in sola
129   lettura.
130   \item[\macro{EISDIR}] \var{pathname} fa riferimento a una directory.
131   \end{errlist}
132   ed inoltre: \macro{EACCES}, \macro{EFAULT}, \macro{ENOENT}, \macro{ENOTDIR},
133   \macro{ENOMEM}, \macro{EROFS}, \macro{ELOOP}, \macro{EIO}.}
134 \end{prototype}
135
136 Per cancellare una voce in una directory è necessario avere il permesso di
137 scrittura su di essa (dato che si va a rimuovere una voce dal suo contenuto) e
138 il diritto di esecuzione sulla directory che la contiene (torneremo in
139 dettaglio sui permessi e gli attributi in \secref{sec:file_access_control}),
140 se inoltre lo \textit{sticky} bit è settato occorrerà anche essere proprietari
141 del file o proprietari della directory (o root, per cui nessuna delle
142 restrizioni è applicata).
143
144 Una delle caratteristiche di queste funzioni è che la creazione/rimozione
145 della nome dalla directory e l'incremento/decremento del numero di riferimenti
146 nell'inode devono essere effettuati in maniera atomica (si veda
147 \secref{sec:proc_atom_oper}) senza possibili interruzioni fra le due
148 operazioni, per questo entrambe queste funzioni sono realizzate tramite una
149 singola system call.
150
151 Si ricordi infine che il file non viene eliminato dal disco fintanto che tutti
152 i riferimenti ad esso sono stati cancellati, solo quando il \textit{link
153   count} mantenuto nell'inode diventa zero lo spazio occupato viene rimosso. A
154 questo però si aggiunge una altra condizione, e cioè che non ci siano processi
155 che abbiano detto file aperto.  
156
157 Questa proprietà viene spesso usata per essere sicuri di non lasciare file
158 temporanei su disco in caso di crash dei programmi; la tecnica è quella di
159 aprire il file e chiamare \func{unlink} subito dopo, in questo modo il
160 contenuto del file è sempre disponibile all'interno del processo attraverso il
161 suo file descriptor (vedi \secref{sec:file_fd}) fintanto che il processo non
162 chiude il file, ma non ne resta traccia in nessuna directory, e lo spazio
163 occupato su disco viene immediatamente rilasciato alla conclusione del
164 processo (quando tutti i file vengono chiusi).
165
166
167 \subsection{Le funzioni \func{remove} e \func{rename}}
168 \label{sec:file_remove}
169
170 Al contrario di quanto avviene con altri unix in Linux non è possibile usare
171 \func{unlink} sulle directory; per cancellare una directory si può usare la
172 funzione \func{rmdir} (vedi \secref{sec:file_dir_creat_rem}), oppure la
173 funzione \func{remove}. Questa è la funzione prevista dallo standard ANSI C
174 per cancellare un file o una directory (e funziona anche per i sistemi che non
175 supportano i link diretti). Per i file è identica a \func{unlink} e per le
176 directory è identica a \func{rmdir}:
177 \begin{prototype}{stdio.h}{int remove(const char *pathname)}
178   Cancella un nome dal filesystem. Usa \func{unlink} per i file e
179   \func{rmdir} per le directory.
180   
181   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
182     errore, nel qual caso il file non viene toccato. Per i codici di
183     errore vedi quanto riportato nelle descrizioni di \func{unlink} e
184     \func{rmdir}.}
185 \end{prototype}
186
187 Per cambiare nome ad un file o a una directory (che devono comunque essere
188 nello stesso filesystem) si usa invece la funzione \func{rename}\footnote{la
189   funzione è definita dallo standard ANSI C solo per i file, POSIX estende la
190   funzione anche alle directory}, il cui prototipo è:
191 \begin{prototype}{stdio.h}
192   {int rename(const char *oldpath, const char *newpath)} 
193   
194   Rinomina \var{oldpath} in \var{newpath}, eseguendo se necessario lo
195   spostamento di un file fra directory diverse. Eventuali altri link diretti
196   allo stesso file non vengono influenzati.
197   
198   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
199     errore, nel qual caso il file non viene toccato. La variabile
200     \var{errno} viene settata secondo i seguenti codici di errore:
201   \begin{errlist} 
202   \item[\macro{EISDIR}] \var{newpath} è una directory mentre \var{oldpath} non
203     è una directory.
204   \item[\macro{EXDEV}] \var{oldpath} e \var{newpath} non sono sullo stesso
205     filesystem.
206   \item[\macro{ENOTEMPTY}] \var{newpath} è una directory già esistente e non
207     vuota.
208   \item[\macro{EBUSY}] o \var{oldpath} o \var{newpath} sono in uso da parte di
209     qualche processo (come directory di lavoro o come radice) o del sistema
210     (come mount point).
211   \item[\macro{EINVAL}] \var{newpath} contiene un prefisso di \var{oldpath} o
212     più in generale si è cercato di creare una directory come sottodirectory
213     di se stessa.
214   \item[\macro{ENOTDIR}] Uno dei componenti dei pathname non è una directory o
215     \var{oldpath} è una directory e \var{newpath} esiste e non è una
216     directory.
217   \end{errlist} 
218   ed inoltre \macro{EACCESS}, \macro{EPERM}, \macro{EMLINK}, \macro{ENOENT},
219   \macro{ENOMEM}, \macro{EROFS}, \macro{ELOOP} e \macro{ENOSPC}.}
220 \end{prototype}
221
222 Il comportamento della funzione è diverso a seconda che si voglia rinominare
223 un file o una directory; se ci riferisce a un file allora \var{newpath}, se
224 esiste, non deve essere una directory (altrimenti si ha l'errore
225 \macro{EISDIR}). Nel caso \var{newpath} indichi un file esistente questo viene
226 cancellato e rimpiazzato (atomicamente).
227
228 Se \var{oldpath} è una directory allora \var{newpath}, se esiste, deve essere
229 una directory vuota, altrimenti si avranno gli errori \macro{ENOTDIR} (se non
230 è una directory) o \macro{ENOTEMPTY} (se non è vuota). Chiaramente
231 \var{newpath} non può contenere \var{oldpath} altrimenti si avrà un errore
232 \macro{EINVAL}.
233
234 Se \var{oldpath} si riferisce a un link simbolico questo sarà rinominato; se
235 \var{newpath} è un link simbolico verrà cancellato come qualunque altro file.
236 Infine qualora \var{oldpath} e \var{newpath} siano due nomi dello stesso file
237 lo standard POSIX prevede che la funzione non dia errore, e non faccia nulla,
238 lasciando entrambi i nomi; Linux segue questo standard, anche se, come fatto
239 notare dal manuale delle \textit{glibc}, il comportamento più ragionevole
240 sarebbe quello di cancellare \var{oldpath}.
241
242 Il vantaggio nell'uso di questa funzione al posto della chiamata successiva di
243 \func{link} e \func{unlink} è che l'operazione è eseguita atomicamente, non
244 può esistere cioè nessun istante in cui un altro processo può trovare attivi
245 entrambi i nomi dello stesso file, o, in caso di sostituzione di un file
246 esistente, non trovare quest'ultimo prima che la sostituzione sia stata
247 eseguita.
248
249 In ogni caso se \var{newpath} esiste e l'operazione fallisce per un qualche
250 motivo (come un crash del kernel), \func{rename} garantisce di lasciare
251 presente una istanza di \var{newpath}. Tuttavia nella sovrascrittura potrà
252 esistere una finestra in cui sia \var{oldpath} che \var{newpath} fanno
253 riferimento allo stesso file.
254
255
256 \subsection{I link simbolici}
257 \label{sec:file_symlink}
258
259 Come abbiamo visto in \secref{sec:file_link} la funzione \func{link} crea
260 riferimenti agli inodes, pertanto può funzionare soltanto per file che
261 risiedono sullo stesso filesystem e solo per un filesystem di tipo Unix.
262 Inoltre abbiamo visto che in Linux non è consentito eseguire un link diretto
263 ad una directory.
264
265 Per ovviare a queste limitazioni i sistemi Unix supportano un'altra forma di
266 link (i cosiddetti \textit{soft link} o \textit{symbolic link}), che sono,
267 come avviene in altri sistemi operativi, dei file speciali che contengono il
268 semplicemente il riferimento ad un altro file (o directory). In questo modo è
269 possibile effettuare link anche attraverso filesystem diversi, a file posti
270 in filesystem che non supportano i link diretti, a delle directory, ed anche a
271 file che non esistono ancora.
272
273 Il sistema funziona in quanto i link simbolici sono contrassegnati come tali
274 al kernel (analogamente a quanto avviene per le directory) per cui per alcune
275 funzioni di libreria (come \func{open} o \func{stat}) dare come parametro un
276 link simbolico comporta l'applicazione della funzione al file da esso
277 specificato. La funzione che permette di creare un nuovo link simbolico è
278 \func{symlink}; il suo prototipo è:
279 \begin{prototype}{unistd.h}
280   {int symlink(const char *oldpath, const char *newpath)} 
281   Crea un nuovo link simbolico di nome \param{newpath} il cui contenuto è
282   \param{oldpath}.
283   
284   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
285     errore, nel qual caso la variabile \var{errno} restituisce i valori:
286   \begin{errlist}
287   \item[\macro{EPERM}] il filesystem che contiene \param{newpath} non supporta
288     i link simbolici.
289   \item[\macro{ENOENT}] una componente di \param{newpath} non esiste o
290     \param{oldpath} è una stringa vuota.
291   \item[\macro{EEXIST}] esiste già un file \param{newpath}.
292   \item[\macro{EROFS}] \param{newpath} è su un filesystem montato in sola
293     lettura.
294   \end{errlist}
295   ed inoltre \macro{EFAULT}, \macro{EACCES}, \macro{ENAMETOOLONG},
296   \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP}, \macro{ENOSPC} e
297   \macro{EIO}.}
298 \end{prototype}
299
300 Si tenga presente che la funzione non effettua nessun controllo sull'esistenza
301 di un file di nome \param{oldpath}, ma si limita ad inserire quella stringa
302 nel link simbolico. Pertanto un link simbolico può anche riferirsi ad un file
303 che non esiste: in questo caso si ha quello che viene chiamato un
304 \textit{dangling link}, letteralmente un \textsl{link ciondolante}.
305
306 Come accennato i link simbolici sono risolti automaticamente dal kernel
307 all'invocazione delle varie system call; in \ntab\ si è riportato un elenco
308 dei comportamenti delle varie funzioni di libreria che operano sui file nei
309 confronti della risoluzione dei link simbolici, specificando quali seguono il
310 link simbolico e quali invece possono operare direttamente sul suo contenuto.
311 \begin{table}[htb]
312   \centering
313   \footnotesize
314   \begin{tabular}[c]{|l|c|c|}
315     \hline
316     \textbf{Funzione} & \textbf{Segue il link} & \textbf{Non segue il link} \\
317     \hline 
318     \hline 
319     \func{access}   & $\bullet$ &           \\
320     \func{chdir}    & $\bullet$ &           \\
321     \func{chmod}    & $\bullet$ &           \\
322     \func{chown}    &           & $\bullet$ \\
323     \func{creat}    & $\bullet$ &           \\
324     \func{exec}     & $\bullet$ &           \\
325     \func{lchown}   & $\bullet$ & $\bullet$ \\
326     \func{link}     &           &           \\
327     \func{lstat}    &           & $\bullet$ \\
328     \func{mkdir}    & $\bullet$ &           \\
329     \func{mkfifo}   & $\bullet$ &           \\
330     \func{mknod}    & $\bullet$ &           \\
331     \func{open}     & $\bullet$ &           \\
332     \func{opendir}  & $\bullet$ &           \\
333     \func{pathconf} & $\bullet$ &           \\
334     \func{readlink} &           & $\bullet$ \\
335     \func{remove}   &           & $\bullet$ \\
336     \func{rename}   &           & $\bullet$ \\
337     \func{stat}     & $\bullet$ &           \\
338     \func{truncate} & $\bullet$ &           \\
339     \func{unlink}   &           & $\bullet$ \\
340     \hline 
341   \end{tabular}
342   \caption{Uso dei link simbolici da parte di alcune funzioni.}
343   \label{tab:file_symb_effect}
344 \end{table}
345
346 Si noti che non si è specificato il comportamento delle funzioni che operano
347 con i file descriptor, in quanto la risoluzione del link simbolico viene in
348 genere effettuata dalla funzione che restituisce il file descriptor
349 (normalmente la \func{open}) e tutte le operazioni seguenti fanno riferimento
350 solo a quest'ultimo.
351
352 Dato che, come indicato in \tabref{tab:file_symb_effect}, funzioni come la
353 \func{open} seguono i link simbolici, occorrono funzioni apposite per accedere
354 alle informazioni del link invece che a quelle del file a cui esso fa
355 riferimento. Quando si vuole leggere il contenuto di un link simbolico si usa
356 la funzione \func{readlink}, il cui prototipo è:
357 \begin{prototype}{unistd.h}
358 {int readlink(const char *path, char *buff, size\_t size)} 
359   Legge il contenuto del link simbolico indicato da \var{path} nel buffer
360   \var{buff} di dimensione \var{size}.
361   
362   \bodydesc{La funzione restituisce il numero di caratteri letti dentro
363     \var{buff} o -1 per un errore, nel qual caso la variabile
364     \var{errno} viene settata a:
365   \begin{errlist}
366   \item[\macro{EINVAL}] \param{path} non è un link simbolico o \param{size}
367     non è positiva.
368   \end{errlist}
369   ed inoltre \macro{ENOTDIR}, \macro{ENAMETOOLONG}, \macro{ENOENT},
370   \macro{EACCES}, \macro{ELOOP}, \macro{EIO}, \macro{EFAULT} e
371   \macro{ENOMEM}.}
372 \end{prototype}
373
374 La funzione apre il link simbolico, ne legge il contenuto, lo scrive nel
375 buffer, e lo richiude. Si tenga presente che la funzione non termina la
376 stringa con un carattere nullo e la tronca alla dimensione specificata da
377 \var{size} per evitare di sovrascrivere oltre le dimensioni del buffer.
378
379
380 \begin{figure}[htb]
381   \centering
382   \includegraphics[width=7cm]{img/link_loop}
383   \caption{Esempio di loop nel filesystem creato con un link simbolico.}
384   \label{fig:file_link_loop}
385 \end{figure}
386
387 Un caso comune che si può avere con i link simbolici è la creazione dei
388 cosiddetti \textit{loop}. La situazione è illustrata in \curfig, che riporta
389 la struttura della directory \file{/boot}. Come si vede si è creato al suo
390 interno un link simbolico che punta di nuovo a \file{/boot}\footnote{Questo
391   tipo di loop è stato effettuato per poter permettere a \cmd{grub} (un
392   bootloader in grado di leggere direttamente da vari filesystem il file da
393   lanciare come sistema operativo) di vedere i file in questa directory con lo
394   stesso path con cui verrebbero visti dal sistema operativo, anche se essi si
395   trovano, come è solito, su una partizione separata (e che \cmd{grub}
396   vedrebbe come radice).}.
397
398 Questo può causare problemi per tutti quei programmi che effettuano la
399 scansione di una directory senza tener conto dei link simbolici, ad esempio se
400 lanciassimo un comando del tipo \code{grep -r linux *}, il loop nella
401 directory porterebbe il comando ad esaminare \file{/boot}, \file{/boot/boot},
402 \file{/boot/boot/boot} e così via.
403
404 Per questo motivo il kernel e le librerie prevedono che nella risoluzione di
405 un pathname possano essere seguiti un numero limitato di link simbolici, il
406 cui valore limite è specificato dalla costante \macro{MAXSYMLINKS}. Qualora
407 questo limite venga superato viene generato un errore ed \var{errno} viene
408 settata al valore \macro{ELOOP}.
409
410 Un punto da tenere sempre presente è che, come abbiamo accennato, un link
411 simbolico può fare riferimento anche ad un file che non esiste; ad esempio
412 possiamo creare un file temporaneo nella nostra directory con un link del
413 tipo:
414 \begin{verbatim}
415 $ ln -s /tmp/tmp_file temporaneo
416 \end{verbatim}%$
417 anche se \file{/tmp/tmp\_file} non esiste. Questo può generare confusione, in
418 quanto aprendo in scrittura \file{temporaneo} verrà creato
419 \file{/tmp/tmp\_file} e scritto; ma accedendo in sola lettura a
420 \file{temporaneo}, ad esempio con \cmd{cat}, otterremmo:
421 \begin{verbatim}
422 $ cat temporaneo
423 cat: temporaneo: No such file or directory
424 \end{verbatim}%$
425 con un errore che può sembrare sbagliato, dato che una ispezione con \cmd{ls}
426 ci mostrerebbe invece l'esistenza di \file{temporaneo}.
427
428
429 \subsection{La creazione e la cancellazione delle directory} 
430 \label{sec:file_dir_creat_rem}
431
432 Per creare e cancellare delle directory si usano le due funzioni (omonime
433 degli analoghi comandi di shell) \func{mkdir} e \func{rmdir}.  Per poter
434 accedere ai tipi usati da queste funzioni si deve includere il file
435 \file{sys/types.h}, il prototipo della prima è:
436 \begin{prototype}{sys/stat.h}
437   {int mkdir(const char *dirname, mode\_t mode)} 
438   Crea una nuova directory vuota con il nome indicato da \var{dirname},
439   assegnandole i permessi indicati da \var{mode}. Il nome può essere indicato
440   con il pathname assoluto o relativo.
441   
442   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
443     errore, nel qual caso \var{errno} assumerà i valori:
444   \begin{errlist}
445   \item[\macro{EEXIST}] Un file (o una directory) con quel nome esiste di già. 
446   \item[\macro{EACCESS}] 
447     Non c'è il permesso di scrittura per la directory in cui si vuole inserire
448     la nuova directory.
449   \item[\macro{EMLINK}] La directory in cui si vuole creare la nuova directory
450     contiene troppi file. Sotto Linux questo normalmente non avviene perché il
451     filesystem standard consente la creazione di un numero di file maggiore di
452     quelli che possono essere contenuti nel disco, ma potendo avere a che
453     fare anche con filesystem di altri sistemi questo errore può presentarsi.
454   \item[\macro{ENOSPC}] Non c'è abbastanza spazio sul file system per creare
455     la nuova directory o si è esaurita la quota disco dell'utente.
456   \end{errlist}
457   ed inoltre anche \macro{EPERM}, \macro{EFAULT}, \macro{ENAMETOOLONG},
458   \macro{ENOENT}, \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP},
459   \macro{EROFS}.}
460 \end{prototype}
461
462 La funzione crea una nuova directory vuota (che contiene solo le due voci
463 standard \file{.} e \file{..}). I permessi di accesso (vedi la trattazione in
464 \secref{sec:file_access_control}) specificati da \var{mode} (i cui possibili
465 valori sono riportati in \tabref{tab:file_permission_const}) sono modificati
466 dalla maschera di creazione dei file (si veda \secref{sec:file_umask}).  La
467 titolarità della nuova directory è settata secondo quanto riportato in
468 \secref{sec:file_ownership}.
469
470 La seconda funzione serve ad eliminare una directory già vuota (la directory
471 deve cioè contenere soltanto le due voci standard \file{.} e \file{..}); il
472 suo prototipo è:
473 \begin{prototype}{sys/stat.h}{int rmdir(const char *dirname)} 
474   Cancella la directory \var{dirname}, che deve essere vuota.  Il nome può
475   essere indicato con il pathname assoluto o relativo.
476   
477   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
478     errore, nel qual caso \var{errno} assumerà i valori:
479   \begin{errlist}
480   \item[\macro{EPERM}] Il filesystem non supporta la cancellazione di
481     directory, oppure la directory che contiene \var{dirname} ha lo sticky bit
482     settato e l'\textit{effective user id} del processo non corrisponde al
483     proprietario della directory. 
484   \item[\macro{EACCESS}] Non c'è il permesso di scrittura per la directory che
485     contiene la directory che si vuole cancellare, o non c'è il permesso di
486     attraversare (esecuzione) una delle directory specificate in
487     \var{dirname}.
488   \item[\macro{EBUSY}] La directory specificata è la directory di lavoro o la
489     radice di qualche processo.
490   \item[\macro{ENOTEMPTY}] La directory non è vuota.
491   \end{errlist}
492   ed inoltre anche \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT},
493   \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP}, \macro{EROFS}.}
494 \end{prototype}
495
496 La modalità con cui avviene la cancellazione è analoga a quella di
497 \func{unlink}: fintanto che il numero di link all'inode della directory non
498 diventa nullo e nessun processo ha la directory aperta lo spazio occupato su
499 disco non viene rilasciato. Se un processo ha la directory aperta la funzione
500 rimuove il link all'inode e nel caso sia l'ultimo, pure le voci standard
501 \file{.} e \file{..}, a questo punto il kernel non consentirà di creare più
502 nuovi file nella directory.
503
504
505 \subsection{La creazione di file speciali}
506 \label{sec:file_mknod}
507
508 Finora abbiamo parlato esclusivamente di file, directory e link simbolici; in
509 \secref{sec:file_file_types} abbiamo visto però che il sistema preveda pure
510 degli altri tipi di file, come i file di dispositivo e le fifo (i socket sono
511 un caso a parte, che vedremo in \secref{cha:socket_intro}). 
512
513 La manipolazione delle caratteristiche di questi file e la loro cancellazione
514 può essere effettuata con le stesse funzioni che operano sui file normali; ma
515 quando li si devono creare sono necessarie delle funzioni apposite. La prima
516 di queste funzioni è \func{mknod}, il suo prototipo è:
517 \begin{functions}
518   \headdecl{sys/types.h}
519   \headdecl{sys/stat.h}
520   \headdecl{fnctl.h}
521   \headdecl{unistd.h}
522   \funcdecl{int mknod(const char *pathname, mode\_t mode, dev\_t dev)} Crea un
523   inode, si usa per creare i file speciali.
524   
525   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
526     errore, nel qual caso \var{errno} assumerà i valori:
527   \begin{errlist}
528   \item[\macro{EPERM}] Non si hanno privilegi sufficienti a creare l'inode, o
529     il filesystem su cui si è cercato di creare \func{pathname} non supporta
530     l'operazione.
531   \item[\macro{EINVAL}] Il valore di \var{mode} non indica un file, una fifo o
532     un dipositivo.
533   \item[\macro{EEXIST}] \param{pathname} esiste già o è un link simbolico.
534   \end{errlist}
535   ed inoltre anche \macro{EFAULT}, \macro{EACCESS}, \macro{ENAMETOOLONG},
536   \macro{ENOENT}, \macro{ENOTDIR}, \macro{ENOMEM}, \macro{ELOOP},
537   \macro{ENOSPC}, \macro{EROFS}.}
538 \end{functions}
539
540 La funzione permette di creare un file speciale, ma si può usare anche per
541 creare file normali e fifo; l'argomento \param{mode} specifica il tipo di file
542 che si vuole creare ed i relativi permessi, secondo i valori riportati in
543 \tabref{tab:file_mode_flags}, che vanno combinati con un OR binario. I
544 permessi sono comunque modificati nella maniera usuale dal valore di
545 \var{umask} (si veda \secref{sec:file_umask}).
546
547 Per il tipo di file può essere specificato solo uno fra: \macro{S\_IFREG} per
548 un file normale (che sarà creato vuoto), \macro{S\_IFBLK} per un device a
549 blocchi, \macro{S\_IFCHR} per un device a caratteri e \macro{S\_IFIFO} per una
550 fifo. Un valore diverso comporterà l'errore \macro{EINVAL}. Qualora si sia
551 specificato in \param{mode} un file di dispositivo, il valore di \param{dev}
552 viene usato per indicare a quale dispositivo si fa riferimento. 
553
554 Solo l'amministratore può creare un file di dispositivo o un file regolare
555 usando questa funzione; ma in Linux\footnote{la funzione non è prevista dallo
556   standard POSIX, e deriva da SVr4, con appunto questa differenza e diversi
557   codici di errore.} l'uso per la creazione di una fifo è consentito anche
558 agli utenti normali.
559
560 I nuovi inode creati con \func{mknod} apparterranno al proprietario e al
561 gruppo del processo che li ha creati, a meno che non si sia attivato il bit
562 \acr{sgid} per la directory o sia stata attivata la semantica BSD per il
563 filesystem (si veda \secref{sec:file_ownership}) in cui si va a creare
564 l'inode.
565
566 Per creare una fifo (un file speciale, su cui torneremo in dettaglio in
567 \secref{sec:ipc_named_pipe}) lo standard POSIX specifica l'uso della funzione
568 \func{mkfifo}, il cui prototipo è:
569 \begin{functions}
570   \headdecl{sys/types.h} \headdecl{sys/stat.h} 
571   
572   \funcdecl{int mkfifo(const char *pathname, mode\_t mode)} Crea una fifo.
573   
574   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
575     errore, nel qual caso \var{errno} assumerà i valori \macro{EACCESS},
576     \macro{EEXIST}, \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOSPC},
577     \macro{ENOTDIR} e \macro{EROFS}.}
578 \end{functions}
579 \noindent come per \func{mknod} il file \param{pathname} non deve esistere
580 (neanche come link simbolico); al solito i permessi specificati da
581 \param{mode} vengono modificati dal valore di \var{umask}.
582
583
584
585 \subsection{Accesso alle directory}
586 \label{sec:file_dir_read}
587
588 Benché le directory siano oggetti del filesystem come tutti gli altri non ha
589 ovviamente senso aprirle come fossero dei file di dati. Può però essere utile
590 poterne leggere il contenuto ad esempio per fare la lista dei file che esse
591 contengono o ricerche sui medesimi. Solo il kernel può scrivere direttamente
592 in una directory (onde evitare inconsistenze all'interno del filesystem), i
593 processi devono creare i file usando le apposite funzioni.
594
595 Per accedere al contenuto delle directory si usano i cosiddetti
596 \textit{directory streams} (chiamati così per l'analogia con i file stream di
597 \capref{cha:files_std_interface}); la funzione \func{opendir} apre uno di
598 questi stream e la funzione \func{readdir} legge il contenuto della directory,
599 i cui elementi sono le \textit{directory entry} (da distinguersi da quelle
600 della cache di cui parlavamo in \secref{sec:file_vfs}) in una opportuna
601 struttura \var{struct dirent}.
602
603 (NdA Il resto va scritto!!! É noioso e lo farò più avanti).
604
605
606 \subsection{La directory di lavoro}
607 \label{sec:file_work_dir}
608
609 A ciascun processo è associato ad una directory nel filesystem che è chiamata
610 directory corrente o directory di lavoro (\textit{current working directory})
611 che è quella a cui si fa riferimento quando un filename è espresso in forma
612 relativa, dove il relativa fa riferimento appunto a questa directory.
613
614 Quando un utente effettua il login questa directory viene settata alla
615 \textit{home directory} del suo account. Il comando \cmd{cd} della shell
616 consente di cambiarla a piacere, spostandosi da una directory ad un'altra, il
617 comando \cmd{pwd} la stampa sul terminale.  Siccome la directory corrente
618 resta la stessa quando viene creato un processo figlio (vedi
619 \secref{sec:proc_fork}), la directory corrente della shell diventa anche la
620 directory corrente di qualunque comando da essa lanciato.
621
622 In genere il kernel tiene traccia per ciascun processo dell'inode della
623 directory di lavoro corrente, per ottenere il pathname occorre usare una
624 apposita funzione di libreria,  \func{getcwd}, il cui prototipo è:
625 \begin{prototype}{unistd.h}{char *getcwd(char *buffer, size\_t size)}
626   Restituisce il filename completo della directory di lavoro corrente nella
627   stringa puntata da \var{buffer}, che deve essere precedentemente
628   allocata, per una dimensione massima di \var{size}.
629   
630   \bodydesc{La funzione restituisce il puntatore \var{buffer} se riesce,
631     \macro{NULL} se fallisce, in quest'ultimo caso la variabile
632     \var{errno} è settata con i seguenti codici di errore:
633   \begin{errlist}
634   \item[\macro{EINVAL}] L'argomento \var{size} è zero e \var{buffer} non
635     è nullo.
636   \item[\macro{ERANGE}] L'argomento \var{size} è più piccolo della
637     lunghezza del pathname. 
638   \item[\macro{EACCESS}] Manca il permesso di lettura o di ricerca su uno dei
639     componenti del pathname (cioè su una delle directory superiori alla
640     corrente).
641   \end{errlist}}
642 \end{prototype}
643
644 Il buffer deve essere sufficientemente lungo da poter contenere il pathname
645 completo più lo zero di terminazione della stringa. Qualora esso ecceda le
646 dimensioni specificate con \var{size} la funzione restituisce un errore.  Si
647 può anche specificare un puntatore nullo come \var{buffer}\footnote{questa è
648   una estensione allo standard POSIX.1, supportata da Linux}, nel qual caso la
649 stringa sarà allocata automaticamente per una dimensione pari a \var{size}
650 qualora questa sia diversa da zero, o della lunghezza esatta del pathname
651 altrimenti. In questo caso ci si deve ricordare di disallocare la stringa una
652 volta cessato il suo utilizzo.
653
654 Di questa funzione esiste una versione \code{char *getwd(char *buffer)}
655 fatta per compatibilità all'indietro con BSD, che non consente di specificare
656 la dimensione del buffer; esso deve essere allocato in precedenza ed avere una
657 dimensione superiore a \macro{PATH\_MAX} (di solito 256 byte, vedi
658 \secref{sec:sys_limits}); il problema è che in Linux non esiste una dimensione
659 superiore per un pathname, per cui non è detto che il buffer sia sufficiente a
660 contenere il nome del file, e questa è la ragione principale per cui questa
661 funzione è deprecata.
662
663 Una seconda funzione simile è \code{char *get\_current\_dir\_name(void)} che è
664 sostanzialmente equivalente ad una \code{getcwd(NULL, 0)}, con la sola
665 differenza che essa ritorna il valore della variabile di ambiente \macro{PWD},
666 che essendo costruita dalla shell può contenere un pathname comprendente anche
667 con dei link simbolici. Usando \func{getcwd} infatti, essendo il
668 pathname ricavato risalendo all'indietro l'albero della directory, si
669 perderebbe traccia di ogni passaggio attraverso eventuali link simbolici.
670
671 Per cambiare la directory di lavoro corrente si può usare la funzione
672 \func{chdir} (equivalente del comando di shell \cmd{cd}) il cui nome sta
673 appunto per \textit{change directory}, il suo prototipo è:
674 \begin{prototype}{unistd.h}{int chdir(const char *pathname)} 
675   Cambia la directory di lavoro corrente in \param{pathname}.
676   
677   \bodydesc{La funzione restituisce 0 in caso di successo e -1 per un errore,
678     nel qual caso \var{errno} viene settata a:
679   \begin{errlist}
680   \item[\macro{ENOTDIR}] Non si è specificata una directory.
681   \item[\macro{EACCESS}] Manca il permesso di ricerca su uno dei componenti di
682     \param{path}.
683   \end{errlist}
684   ed inoltre \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT},
685   \macro{ENOMEM}, \macro{ELOOP} e \macro{EIO}.}
686 \end{prototype}
687 \noindent ed ovviamente \param{pathname} deve indicare una directory per la
688 quale si hanno i permessi di accesso.
689
690 Dato che anche le directory sono file, è possibile riferirsi ad esse anche
691 tramite il file descriptor, e non solo tramite il filename, per fare questo si
692 usa \func{fchdir}, il cui prototipo è:
693 \begin{prototype}{unistd.h}{int fchdir(int fd)} 
694   Identica a \func{chdir}, ma usa il file descriptor \param{fd} invece del
695   pathname.
696   
697   \bodydesc{La funzione restituisce zero in caso di successo e -1 per un
698     errore, in caso di errore \var{errno} viene settata ai valori
699     \macro{EBADF} o \macro{EACCES}.}
700 \end{prototype}
701 \noindent anche in questo caso \param{fd} deve essere un file descriptor
702 valido che fa riferimento ad una directory. Inoltre l'unico errore di accesso
703 possibile (tutti gli altri sarebbero occorsi all'apertura di \func{fd}), è
704 quello in cui il processo non ha il permesso di accesso alla directory
705 specificata da \param{fd}.
706
707
708
709 \subsection{I file temporanei}
710 \label{sec:file_temp_file}
711
712 In molte occasioni è utile poter creare dei file temporanei; benché la cosa
713 sembri semplice in realtà il problema è più sottile di quanto non appaia a
714 prima vista. Infatti anche se sembrerebbe banale generare un nome a caso e
715 creare il file dopo aver controllato che questo non esista, nel momento fra il
716 controllo e la creazione si ha giusto lo spazio per una \textit{race
717   condition} (si ricordi quanto visto in \secref{sec:proc_race_cond}).
718
719 Le \acr{glibc} provvedono varie funzioni per generare nomi di file temporanei,
720 di cui si abbia certezza di unicità (al momento della generazione); la prima
721 di queste funzioni è \func{tmpnam} il cui prototipo è:
722 \begin{prototype}{stdio.h}{char *tmpnam(char *string)}
723   Restituisce il puntatore ad una stringa contente un nome di file valido e
724   non esistente al momento dell'invocazione. 
725
726   \bodydesc{La funzione ritorna il puntatore alla stringa con il nome o
727   \macro{NULL} in caso di fallimento. Non sono definiti errori.}
728 \end{prototype}
729 \noindent se si è passato un puntatore \param{string} non nullo questo deve
730 essere di dimensione \macro{L\_tmpnam} (costante definita in \file{stdio.h},
731 come \macro{P\_tmpdir} e \macro{TMP\_MAX}) ed il nome generato vi verrà
732 copiato automaticamente; altrimenti il nome sarà generato in un buffer statico
733 interno che verrà sovrascritto ad una chiamata successiva.  Successive
734 invocazioni della funzione continueranno a restituire nomi unici fino ad un
735 massimo di \macro{TMP\_MAX} volte. Al nome viene automaticamente aggiunto come
736 prefisso la directory specificata da \macro{P\_tmpdir}.
737
738 Di questa funzione esiste una versione rientrante, \func{tmpnam\_r}, che non
739 fa nulla quando si passa \macro{NULL} come parametro. Una funzione simile,
740 \func{tempnam}, permette di specificare un prefisso per il file
741 esplicitamente, il suo prototipo è:
742 \begin{prototype}{stdio.h}{char *tempnam(const char *dir, const char *pfx)}
743   Restituisce il puntatore ad una stringa contente un nome di file valido e
744   non esistente al momento dell'invocazione.
745
746   \bodydesc{La funzione ritorna il puntatore alla stringa con il nome o
747   \macro{NULL} in caso di fallimento, \var{errno} viene settata a
748   \macro{ENOMEM} qualora fallisca l'allocazione della stringa.}
749 \end{prototype}
750
751 La funzione alloca con \code{malloc} la stringa in cui restituisce il nome,
752 per cui è sempre rientrante, occorre però ricordarsi di disallocare il
753 puntatore che restituisce.  L'argomento \param{pfx} specifica un prefisso di
754 massimo 5 caratteri per il nome provvisorio. La funzione assegna come
755 directory per il file temporaneo (verificando che esista e sia accessibili),
756 la prima valida delle seguenti:
757 \begin{itemize*}
758 \item La variabile di ambiente \macro{TMPNAME} (non ha effetto se non è
759   definita o se il programma chiamante è \acr{suid} o \acr{sgid}, vedi
760   \secref{sec:file_suid_sgid}).
761 \item il valore dell'argomento \param{dir} (se diverso da \macro{NULL}).
762 \item Il valore della costante \macro{P\_tmpdir}.
763 \item la directory \file{/tmp}.
764 \end{itemize*}
765
766 In ogni caso, anche se la generazione del nome è casuale, ed è molto difficile
767 ottere un nome duplicato, nulla assicura che un altro processo non possa avere
768 creato, fra l'ottenimento del nome e l'apertura del file, un altro file con lo
769 stesso nome; per questo motivo quando si usa il nome ottenuto da una di queste
770 funzioni occorre sempre aprire il nuovo file in modalità di esclusione (cioè
771 con l'opzione \macro{O\_EXCL} per i file descriptor o con il flag \code{x} per
772 gli stream) che fa fallire l'apertura in caso il file sia già esistente.
773
774 Per evitare di dovere effettuare a mano tutti questi controlli, lo standard
775 POSIX definisce la funzione \func{tempfile}, il cui prototipo è:
776 \begin{prototype}{stdio.h}{FILE *tmpfile (void)}
777   Restituisce un file temporaneo aperto in lettura/scrittura.
778   
779   \bodydesc{La funzione ritorna il puntatore allo stream associato al file
780     temporaneo in caso di successo e \macro{NULL} in caso di errore, nel qual
781     caso \var{errno} viene settata a
782     \begin{errlist}
783     \item[\macro{EINTR}] La funzione è stata interrotta da un segnale.
784     \item[\macro{EEXIST}] Non è stato possibile generare un nome univoco.
785     \end{errlist}
786     ed inoltre \macro{EFAULT}, \macro{EMFILE}, \macro{ENFILE}, \macro{ENOSPC},
787     \macro{EROFS} e \macro{EACCESS}.}
788 \end{prototype}
789 \noindent essa restituisce direttamente uno stream già aperto (in modalità
790 \code{r+b}, si veda \secref{sec:file_fopen}) e pronto per l'uso, che viene
791 automaticamente cancellato alla sua chiusura o all'uscita dal programma. Lo
792 standard non specifica in quale directory verrà aperto il file, ma \acr{glibc}
793 prima tentano con \macro{P\_tmpdir} e poi con \file{/tmp}. Questa funzione è
794 rientrante e non soffre di problemi di \textit{race condition}.
795
796 Alcune versioni meno recenti di Unix non supportano queste funzioni; in questo
797 caso si possono usare le vecchie funzioni \func{mktemp} e \func{mkstemp} che
798 modificano una stringa di input che serve da modello e che deve essere
799 conclusa da 6 caratteri \code{X} che verranno sostituiti da un codice
800 unico. La prima delle due è analoga a \func{tmpnam} e genera un nome casuale,
801 il suo prototipo è:
802 \begin{prototype}{stlib.h}{char *mktemp(char *template)}
803   Genera un filename univoco sostituendo le \code{XXXXXX} finali di
804   \param{template}.
805   
806   \bodydesc{La funzione ritorna il puntatore \param{template} in caso di
807     successo e \macro{NULL} in caso di errore, nel qual caso \var{errno} viene
808     settata a:
809     \begin{errlist}
810     \item[\macro{EINVAL}] \param{template} non termina con \code{XXXXXX}.
811     \end{errlist}}
812 \end{prototype}
813 \noindent dato che \param{template} deve poter essere modificata dalla
814 funzione non si può usare una stringa costante.  Tutte le avvertenze riguardo
815 alle possibili \textit{race condition} date per \func{tmpnam} continuano a
816 valere; inoltre in alcune vecchie implementazioni il valore di usato per
817 sostituire le \code{XXXXXX} viene formato con il \acr{pid} del processo più
818 una lettera, il che mette a disposizione solo 26 possibilità diverse per il
819 nome del file, e rende il nome temporaneo facile da indovinare. Per tutti
820 questi motivi la funzione è deprecata e non dovrebbe mai essere usata.
821
822
823
824 La seconda funzione, \func{mkstemp} è sostanzialmente equivalente a
825 \func{tmpfile}, ma restituisce un file descriptor invece di uno stream; il suo
826 prototipo è:
827 \begin{prototype}{stlib.h}{int mkstemp(char *template)}
828   Genera un file temporaneo con un nome ottenuto sostituendo le \code{XXXXXX}
829   finali di \param{template}.
830   
831   \bodydesc{La funzione ritorna il file descriptor in caso successo e
832     -1 in caso di errore, nel qual caso \var{errno} viene settata a:
833     \begin{errlist}
834     \item[\macro{EINVAL}] \param{template} non termina con \code{XXXXXX}.
835     \item[\macro{EEXIST}] non è riuscita a creare un file temporano, il
836       contenuto di \param{template} è indefinito.
837     \end{errlist}}
838 \end{prototype}
839 \noindent come per \func{mktemp} anche in questo caso \param{template} non può
840 essere una stringa costante. La funzione apre un file in lettura/scrittura con
841 la funzione \func{open}, usando l'opzione \macro{O\_EXCL} (si veda
842 \secref{sec:file_open}), in questo modo al ritorno della funzione si ha la
843 certezza di essere i soli utenti del file. I permessi sono settati al valore
844 \code{0600}\footnote{questo è vero a partire dalle \acr{glibc} 2.0.7, le
845   versioni precedenti delle \acr{glibc} e le vecchie \acr{libc5} e \acr{libc4}
846   usavano il valore \code{0666} che permetteva a chiunque di leggere i
847   contenuti del file.} (si veda \secref{sec:file_perm_overview}).
848
849 In OpenBSD è stata introdotta un'altra funzione\footnote{introdotta anche in
850   Linux a partire dalle \acr{glibc} 2.1.91.} simile alle precedenti,
851 \func{mkdtemp}, che crea una directory temporanea; il suo prototipo è:
852 \begin{prototype}{stlib.h}{char *mkdtemp(char *template)}
853   Genera una directory temporaneo il cui nome è ottenuto sostituendo le
854   \code{XXXXXX} finali di \param{template}.
855   
856   \bodydesc{La funzione ritorna il puntatore al nome della directory in caso
857     successo e \macro{NULL} in caso di errore, nel qual caso \var{errno} viene
858     settata a:
859     \begin{errlist}
860     \item[\macro{EINVAL}] \param{template} non termina con \code{XXXXXX}.
861     \end{errlist}
862     più gli altri eventuali codici di errore di \func{mkdir}.}
863 \end{prototype}
864 \noindent la directory è creata con permessi \code{0700} (al solito si veda
865 \capref{cha:file_unix_interface} per i dettagli); dato che la creazione della
866 directory è sempre esclusiva i precedenti problemi di \textit{race condition}
867 non si pongono.
868
869
870 \section{La manipolazione delle caratteristiche dei files}
871 \label{sec:file_infos}
872
873 Come spiegato in \secref{sec:file_filesystem} tutte le informazioni
874 generali relative alle caratteristiche di ciascun file, a partire dalle
875 informazioni relative al controllo di accesso, sono mantenute nell'inode.
876
877 Vedremo in questa sezione come sia possibile leggere tutte queste informazioni
878 usando la funzione \func{stat}, che permette l'accesso a tutti i dati
879 memorizzati nell'inode; esamineremo poi le varie funzioni usate per manipolare
880 tutte queste informazioni (eccetto quelle che riguardano la gestione del
881 controllo di accesso, trattate in in \secref{sec:file_access_control}).
882
883
884 \subsection{Le funzioni \func{stat}, \func{fstat} e \func{lstat}}
885 \label{sec:file_stat}
886
887 La lettura delle informazioni relative ai file è fatta attraverso la famiglia
888 delle funzioni \func{stat}; questa è la funzione che ad esempio usa il comando
889 \cmd{ls} per poter ottenere e mostrare tutti i dati dei files. I prototipi di
890 queste funzioni sono i seguenti:
891 \begin{functions}
892   \headdecl{sys/types.h} 
893   \headdecl{sys/stat.h} 
894   \headdecl{unistd.h}
895
896   \funcdecl{int stat(const char *file\_name, struct stat *buf)} Legge le
897   informazione del file specificato da \var{file\_name} e le inserisce in
898   \var{buf}.
899   
900   \funcdecl{int lstat(const char *file\_name, struct stat *buf)} Identica a
901   \func{stat} eccetto che se il \var{file\_name} è un link simbolico vengono
902   lette le informazioni relativa ad esso e non al file a cui fa riferimento.
903   
904   \funcdecl{int fstat(int filedes, struct stat *buf)} Identica a \func{stat}
905   eccetto che si usa con un file aperto, specificato tramite il suo file
906   descriptor \var{filedes}.
907   
908   \bodydesc{Le funzioni restituiscono zero in caso di successo e -1 per
909     un errore, in caso di errore \var{errno} può assumere uno dei
910     valori: \macro{EBADF}, \macro{ENOENT}, \macro{ENOTDIR},
911     \macro{ELOOP}, \macro{EFAULT}, \macro{EACCESS}, \macro{ENOMEM},
912     \macro{ENAMETOOLONG}.}
913 \end{functions}
914 \noindent il loro comportamento è identico, solo che operano rispettivamente
915 su un file, su un link simbolico e su un file descriptor.
916
917 La struttura \var{stat} usata da queste funzioni è definita nell'header
918 \file{sys/stat.h} e in generale dipende dall'implementazione, la versione
919 usata da Linux è mostrata in \nfig, così come riportata dalla man page di
920 \func{stat} (in realtà la definizione effettivamente usata nel kernel dipende
921 dall'architettura e ha altri campi riservati per estensioni come tempi più
922 precisi, o per il padding dei campi).
923
924 \begin{figure}[!htb]
925   \footnotesize
926   \centering
927   \begin{minipage}[c]{15cm}
928     \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
929 struct stat {
930     dev_t         st_dev;      /* device */
931     ino_t         st_ino;      /* inode */
932     mode_t        st_mode;     /* protection */
933     nlink_t       st_nlink;    /* number of hard links */
934     uid_t         st_uid;      /* user ID of owner */
935     gid_t         st_gid;      /* group ID of owner */
936     dev_t         st_rdev;     /* device type (if inode device) */
937     off_t         st_size;     /* total size, in bytes */
938     unsigned long st_blksize;  /* blocksize for filesystem I/O */
939     unsigned long st_blocks;   /* number of blocks allocated */
940     time_t        st_atime;    /* time of last access */
941     time_t        st_mtime;    /* time of last modification */
942     time_t        st_ctime;    /* time of last change */
943 };
944     \end{lstlisting}
945   \end{minipage} 
946   \normalsize 
947   \caption{La struttura \var{stat} per la lettura delle informazioni dei 
948     file}
949   \label{fig:file_stat_struct}
950 \end{figure}
951
952 Si noti come i vari membri della struttura siano specificati come tipi nativi
953 del sistema (di quelli definiti in \tabref{tab:xxx_sys_types}, e dichiarati in
954 \file{sys/types.h}). 
955
956
957 \subsection{I tipi di file}
958 \label{sec:file_types}
959
960 Come riportato in \tabref{tab:file_file_types} in Linux oltre ai file e alle
961 directory esistono vari altri oggetti che possono stare su un filesystem.  Il
962 tipo di file è ritornato dalla \func{stat} come maschera binaria nel campo
963 \var{st\_mode} (che che contiene anche le informazioni relative ai permessi).
964
965 Dato che il valore numerico può variare a seconda delle implementazioni, lo
966 standard POSIX definisce un insieme di macro per verificare il tipo di files,
967 queste vengono usate anche da Linux che supporta pure le estensioni allo
968 standard per i link simbolici e i socket definite da BSD; l'elenco completo
969 delle macro con cui è possibile estrarre l'informazione da \var{st\_mode} è
970 riportato in \ntab.
971 \begin{table}[htb]
972   \centering
973   \footnotesize
974   \begin{tabular}[c]{|l|l|}
975     \hline
976     \textbf{Macro} & \textbf{Tipo del file} \\
977     \hline
978     \hline
979     \macro{S\_ISREG(m)}  & file regolare \\
980     \macro{S\_ISDIR(m)}  & directory \\
981     \macro{S\_ISCHR(m)}  & device a caratteri \\
982     \macro{S\_ISBLK(m)}  & device a blocchi\\
983     \macro{S\_ISFIFO(m)} & fifo \\
984     \macro{S\_ISLNK(m)}  & link simbolico \\
985     \macro{S\_ISSOCK(m)} & socket \\
986     \hline    
987   \end{tabular}
988   \caption{Macro per i tipi di file (definite in \texttt{sys/stat.h})}
989   \label{tab:file_type_macro}
990 \end{table}
991
992 Oltre alle macro di \tabref{tab:file_type_macro} è possibile usare
993 direttamente il valore di \var{st\_mode} per ricavare il tipo di file
994 controllando direttamente i vari bit in esso memorizzati. Per questo sempre in
995 \file{sys/stat.h} sono definite le costanti numeriche riportate in \ntab.
996
997 Il primo valore dell'elenco di \secref{tab:file_mode_flags} è la maschera
998 binaria che permette di estrarre i bit nei quali viene memorizzato il tipo di
999 file, i valori successivi sono le costanti corrispondenti ai singoli bit, e
1000 possono essere usati per effettuare la selezione sul tipo di file voluto, con
1001 una opportuna combinazione.
1002
1003 \begin{table}[htb]
1004   \centering
1005   \footnotesize
1006   \begin{tabular}[c]{|l|c|l|}
1007     \hline
1008     \textbf{Flag} & \textbf{Valore} & \textbf{Significato} \\
1009     \hline
1010     \hline
1011     \macro{S\_IFMT}   &  0170000 & bitmask per i bit del tipo di file \\
1012     \macro{S\_IFSOCK} &  0140000 & socket             \\
1013     \macro{S\_IFLNK}  &  0120000 & link simbolico     \\
1014     \macro{S\_IFREG}  &  0100000 & file regolare      \\ 
1015     \macro{S\_IFBLK}  &  0060000 & device a blocchi   \\
1016     \macro{S\_IFDIR}  &  0040000 & directory          \\ 
1017     \macro{S\_IFCHR}  &  0020000 & device a caratteri \\
1018     \macro{S\_IFIFO}  &  0010000 & fifo               \\
1019     \hline
1020     \macro{S\_ISUID}  &  0004000 & set UID bit   \\
1021     \macro{S\_ISGID}  &  0002000 & set GID bit   \\
1022     \macro{S\_ISVTX}  &  0001000 & sticky bit    \\
1023     \hline
1024 %    \macro{S\_IRWXU}  &  00700   & bitmask per i permessi del proprietario  \\
1025     \macro{S\_IRUSR}  &  00400   & il proprietario ha permesso di lettura   \\
1026     \macro{S\_IWUSR}  &  00200   & il proprietario ha permesso di scrittura \\
1027     \macro{S\_IXUSR}  &  00100   & il proprietario ha permesso di esecuzione\\
1028     \hline
1029 %    \macro{S\_IRWXG}  &  00070   & bitmask per i permessi del gruppo        \\
1030     \macro{S\_IRGRP}  &  00040   & il gruppo ha permesso di lettura         \\
1031     \macro{S\_IWGRP}  &  00020   & il gruppo ha permesso di scrittura       \\
1032     \macro{S\_IXGRP}  &  00010   & il gruppo ha permesso di esecuzione      \\
1033     \hline
1034 %    \macro{S\_IRWXO}  &  00007   & bitmask per i permessi di tutti gli altri\\
1035     \macro{S\_IROTH}  &  00004   & gli altri hanno permesso di lettura      \\
1036     \macro{S\_IWOTH}  &  00002   & gli altri hanno permesso di esecuzione   \\
1037     \macro{S\_IXOTH}  &  00001   & gli altri hanno permesso di esecuzione   \\
1038     \hline    
1039   \end{tabular}
1040   \caption{Costanti per l'identificazione dei vari bit che compongono il campo
1041     \var{st\_mode} (definite in \file{sys/stat.h})}
1042   \label{tab:file_mode_flags}
1043 \end{table}
1044
1045 Ad esempio se si volesse impostare una condizione che permetta di controllare
1046 se un file è una directory o un file ordinario si potrebbe definire la macro
1047 di preprocessore:
1048 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
1049 #define IS_FILE_DIR(x) (((x) & S_IFMT) & (S_IFDIR | S_IFREG))
1050 \end{lstlisting}
1051 in cui prima si estraggono da \var{st\_mode} i bit relativi al tipo di file e
1052 poi si effettua il confronto con la combinazione di tipi scelta.
1053
1054
1055 \subsection{Le dimensioni dei file}
1056 \label{sec:file_file_size}
1057
1058 Il membro \var{st\_size} contiene la dimensione del file in byte (se il file è
1059 un file normale, nel caso di un link simbolico la dimensione è quella del
1060 pathname che contiene).
1061
1062 Il campo \var{st\_blocks} definisce la lunghezza del file in blocchi di 512
1063 byte. Il campo \var{st\_blksize} infine definisce la dimensione preferita per
1064 i trasferimenti sui file (che è la dimensione usata anche dalle librerie del C
1065 per l'interfaccia degli stream); scrivere sul file a blocchi di dati di
1066 dimensione inferiore sarebbe inefficiente.
1067
1068 Si tenga conto che lunghezza del file riportata in \var{st\_size} non è detto
1069 che corrisponda all'occupazione dello spazio su disco per via della possibile
1070 esistenza dei cosiddetti \textit{holes} (letteralmente \textsl{buchi}) che
1071 si formano tutte le volte che si va a scrivere su un file dopo aver eseguito
1072 una \func{lseek} (vedi \secref{sec:file_lseek}) oltre la sua conclusione
1073 corrente.
1074
1075 In questo caso si avranno risultati differenti a seconda del modo in cui si
1076 calcola la lunghezza del file, ad esempio il comando \cmd{du}, (che riporta il
1077 numero di blocchi occupati) potrà dare una dimensione inferiore, mentre se si
1078 legge dal file (ad esempio usando il comando \cmd{wc -c}), dato che in tal
1079 caso per le parti non scritte vengono restituiti degli zeri, si avrà lo stesso
1080 risultato di \cmd{ls}.
1081
1082 Se è sempre possibile allargare un file, scrivendoci sopra od usando la
1083 funzione \func{lseek} per spostarsi oltre la sua fine, esistono anche casi in
1084 cui si può avere bisogno di effettuare un troncamento, scartando i dati
1085 presenti al di là della dimensione scelta come nuova fine del file.
1086
1087 Un file può sempre essere troncato a zero aprendolo con il flag
1088 \macro{O\_TRUNC}, ma questo è un caso particolare; per qualunque altra
1089 dimensione si possono usare le due funzioni \func{truncate} e
1090 \func{ftruncate}, i cui prototipi sono:
1091 \begin{functions}
1092   \headdecl{unistd.h} \funcdecl{int truncate(const char *file\_name, off\_t
1093     length)} Fa si che la dimensione del file \var{file\_name} sia troncata ad
1094     un valore massimo specificato da \var{lenght}. 
1095   
1096   \funcdecl{int ftruncate(int fd, off\_t length))} Identica a \func{truncate}
1097   eccetto che si usa con un file aperto, specificato tramite il suo file
1098   descriptor \var{fd}.
1099   
1100   \bodydesc{Le funzioni restituiscono zero in caso di successo e -1 per
1101     un errore, nel qual caso \var{errno} viene settato opportunamente;
1102     per \func{ftruncate} si hanno i valori:
1103   \begin{errlist}
1104   \item[\macro{EBADF}] \var{fd}  non è un file descriptor.
1105   \item[\macro{EINVAL}] \var{fd} è un riferimento ad un socket, non a un file
1106     o non è aperto in scrittura.
1107   \end{errlist}
1108   per \func{truncate} si hanno:
1109   \begin{errlist}
1110   \item[\macro{EACCES}] il file non ha permesso di scrittura o non si ha il
1111     permesso di esecuzione una delle directory del pathname. 
1112   \item[\macro{ETXTBSY}] Il file è un programma in esecuzione.
1113   \end{errlist}
1114   ed anche \macro{ENOTDIR}, \macro{ENAMETOOLONG}, \macro{ENOENT},
1115   \macro{EROFS}, \macro{EIO}, \macro{EFAULT}, \macro{ELOOP}.}
1116 \end{functions}
1117
1118 Se il file è più lungo della lunghezza specificata i dati in eccesso saranno
1119 perduti; il comportamento in caso di lunghezza inferiore non è specificato e
1120 dipende dall'implementazione: il file può essere lasciato invariato o esteso
1121 fino alla lunghezza scelta; in quest'ultimo caso lo spazio viene riempito con
1122 zeri (e in genere si ha la creazione di un \textit{hole} nel file).
1123
1124
1125 \subsection{I tempi dei file}
1126 \label{sec:file_file_times}
1127
1128 Il sistema mantiene per ciascun file tre tempi. Questi sono registrati
1129 nell'inode insieme agli altri attributi del file e possono essere letti
1130 tramite la funzione \func{stat}, che li restituisce attraverso tre campi della
1131 struttura \var{stat} di \figref{fig:file_stat_struct}. Il significato di detti
1132 tempi e dei relativi campi è riportato nello schema in \ntab, dove si è anche
1133 riportato un esempio delle funzioni che effettuano cambiamenti su di essi.
1134
1135 \begin{table}[htb]
1136   \centering
1137   \footnotesize
1138   \begin{tabular}[c]{|c|l|l|c|}
1139     \hline
1140     \textbf{Membro} & \textbf{Significato} & \textbf{Funzione} 
1141     & \textbf{Opzione di \cmd{ls}} \\
1142     \hline
1143     \hline
1144     \var{st\_atime}& ultimo accesso ai dati del file &\func{read}, 
1145     \func{utime} & \cmd{-u}\\ 
1146     \var{st\_mtime}& ultima modifica ai dati del file &\func{write}, 
1147     \func{utime} & default\\ 
1148     \var{st\_ctime}& ultima modifica ai dati dell'inode&\func{chmod}, 
1149     \func{utime} & \cmd{-c} \\ 
1150     \hline
1151   \end{tabular}
1152   \caption{I tre tempi associati a ciascun file}
1153   \label{tab:file_file_times}
1154 \end{table}
1155
1156 Il primo punto da tenere presente è la differenza fra il cosiddetto tempo di
1157 modifica (il \textit{modification time} \var{st\_mtime}) e il tempo di
1158 cambiamento di stato (il \textit{change time} \var{st\_ctime}). Il primo
1159 infatti fa riferimento ad una modifica del contenuto di un file, mentre il
1160 secondo ad una modifica dell'inode; siccome esistono molte operazioni (come la
1161 funzione \func{link} e molte altre che vedremo in seguito) che modificano solo
1162 le informazioni contenute nell'inode senza toccare il file, diventa necessario
1163 l'utilizzo di un altro tempo.
1164
1165 Il sistema non tiene conto dell'ultimo accesso all'inode, pertanto funzioni
1166 come \func{access} o \func{stat} non hanno alcuna influenza sui tre tempi. Il
1167 tempo di ultimo accesso (ai dati) viene di solito usato per cancellare i file
1168 che non servono più dopo un certo lasso di tempo (ad esempio \cmd{leafnode}
1169 cancella i vecchi articoli sulla base di questo tempo).
1170
1171 Il tempo di ultima modifica invece viene usato da \cmd{make} per decidere
1172 quali file necessitano di essere ricompilati o (talvolta insieme anche al
1173 tempo di cambiamento di stato) per decidere quali file devono essere
1174 archiviati per il backup. Il comando \cmd{ls} (quando usato con le opzioni
1175 \cmd{-l} o \cmd{-t}) mostra i tempi dei file secondo lo schema riportato
1176 nell'ultima colonna di \curtab.
1177
1178 L'effetto delle varie funzioni di manipolazione dei file sui tempi è
1179 illustrato in \ntab. Si sono riportati gli effetti sia per il file a cui si fa
1180 riferimento, sia per la directory che lo contiene; questi ultimi possono
1181 essere capiti se si tiene conto di quanto già detto, e cioè che anche le
1182 directory sono file (che contengono una lista di nomi) che il sistema tratta
1183 in maniera del tutto analoga a tutti gli altri.
1184
1185 Per questo motivo tutte le volte che compiremo una operazione su un file che
1186 comporta una modifica del nome contenuto nella directory, andremo anche a
1187 scrivere sulla directory che lo contiene cambiandone il tempo di modifica. Un
1188 esempio di questo può essere la cancellazione di un file, invece leggere o
1189 scrivere o cambiare i permessi di un file ha effetti solo sui tempi di
1190 quest'ultimo.
1191
1192 \begin{table}[htb]
1193   \centering
1194   \footnotesize
1195   \begin{tabular}[c]{|l|c|c|c|c|c|c|l|}
1196     \hline
1197     \multicolumn{1}{|p{3cm}|}{\centering{\vspace{6pt}\textbf{Funzione}}} &
1198     \multicolumn{3}{|p{3.6cm}|}{\centering{
1199         \textbf{File o directory del riferimento}}}&
1200     \multicolumn{3}{|p{3.6cm}|}{\centering{
1201         \textbf{Directory contenente il riferimento}}} 
1202     &\multicolumn{1}{|p{3.6cm}|}{\centering{\vspace{6pt}\textbf{Note}}} \\
1203     \cline{2-7}
1204     \cline{2-7}
1205     \multicolumn{1}{|p{3cm}|}{} 
1206     &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(a)}}}
1207     &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(m)}}}
1208     &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(c)}}}
1209     &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(a)}}}
1210     &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(m)}}}
1211     &\multicolumn{1}{|p{.9cm}|}{\centering{\textsl{(c)}}}
1212     &\multicolumn{1}{|p{3cm}|}{} \\
1213     \hline
1214     \hline
1215     \func{chmod}, \func{fchmod} 
1216     &         &         &$\bullet$&         &         &         & \\
1217     \func{chown}, \func{fchown} 
1218     &         &         &$\bullet$&         &         &         & \\
1219     \func{creat}  
1220     &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$&  con 
1221     \macro{O\_CREATE} \\    \func{creat}  
1222     &         &$\bullet$&$\bullet$&         &$\bullet$&$\bullet$&   
1223     con \macro{O\_TRUNC} \\    \func{exec}  
1224     &$\bullet$&         &         &         &         &         & \\
1225     \func{lchown}  
1226     &         &         &$\bullet$&         &         &         & \\
1227     \func{link}
1228     &         &         &$\bullet$&         &$\bullet$&$\bullet$& \\
1229     \func{mkdir}
1230     &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$& \\
1231     \func{mkfifo}
1232     &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$& \\
1233     \func{open}
1234     &$\bullet$&$\bullet$&$\bullet$&         &$\bullet$&$\bullet$& con 
1235     \macro{O\_CREATE} \\    \func{open}
1236     &         &$\bullet$&$\bullet$&         &         &         & con 
1237     \macro{O\_TRUNC}  \\    \func{pipe}
1238     &$\bullet$&$\bullet$&$\bullet$&         &         &         & \\
1239     \func{read}
1240     &$\bullet$&         &         &         &         &         & \\
1241     \func{remove}
1242     &         &         &$\bullet$&         &$\bullet$&$\bullet$& se esegue 
1243     \func{unlink}\\    \func{remove}
1244     &         &         &         &         &$\bullet$&$\bullet$& se esegue 
1245     \func{rmdir}\\ \func{rename}
1246     &         &         &$\bullet$&         &$\bullet$&$\bullet$& per entrambi
1247     gli argomenti\\ \func{rmdir}
1248     &         &         &         &         &$\bullet$&$\bullet$& \\ 
1249     \func{truncate}, \func{ftruncate}
1250     &         &$\bullet$&$\bullet$&         &         &         & \\ 
1251     \func{unlink}
1252     &         &         &$\bullet$&         &$\bullet$&$\bullet$& \\ 
1253     \func{utime}
1254     &$\bullet$&$\bullet$&$\bullet$&         &         &         & \\ 
1255     \func{write}
1256     &         &$\bullet$&$\bullet$&         &         &         & \\ 
1257     \hline
1258   \end{tabular}
1259   \caption{Prospetto dei cambiamenti effettuati sui tempi di ultimo 
1260     accesso \textsl{(a)}, ultima modifica \textsl{(m)} e ultimo cambiamento
1261     \textsl{(c)} dalle varie funzioni operanti su file e directory.}
1262   \label{tab:file_times_effects}  
1263 \end{table}
1264
1265 Si noti infine come \var{st\_ctime} non abbia nulla a che fare con il tempo di
1266 creazione del file, usato in molti altri sistemi operativi, ma che in Unix non
1267 esiste. Per questo motivo quando si copia un file, a meno di preservare
1268 esplicitamente i tempi (ad esempio con l'opzione \cmd{-p} di \cmd{cp}) esso
1269 avrà sempre il tempo corrente come data di ultima modifica.
1270
1271
1272 \subsection{La funzione \func{utime}}
1273 \label{sec:file_utime}
1274
1275 I tempi di ultimo accesso e modifica possono essere cambiati usando la
1276 funzione \func{utime}, il cui prototipo è:
1277 \begin{prototype}{utime.h}
1278 {int utime(const char *filename, struct utimbuf *times)} 
1279
1280 Cambia i tempi di ultimo accesso e modifica dell'inode specificato da
1281 \param{filename} secondo i campi \var{actime} e \var{modtime} di
1282 \param{times}. Se questa è \macro{NULL} allora viene usato il tempo corrente.
1283
1284 \bodydesc{La funzione restituisce zero in caso di successo e -1 in caso
1285   di errore, nel qual caso \var{errno} è settata opportunamente.
1286 \begin{errlist}
1287 \item[\macro{EACCESS}] non si ha il permesso di scrittura sul file.
1288 \item[\macro{ENOENT}] \param{filename} non esiste.
1289 \end{errlist}}
1290 \end{prototype}
1291  
1292 La struttura \var{utimebuf} usata da \func{utime} è definita come:
1293 \begin{lstlisting}[labelstep=0,frame=,indent=1cm]{}
1294 struct utimbuf {
1295         time_t actime;  /* access time */
1296         time_t modtime; /* modification time */
1297 };
1298 \end{lstlisting}
1299
1300 L'effetto della funzione e i privilegi necessari per eseguirla dipendono da
1301 cosa è l'argomento \param{times}; se è \macro{NULL} la funzione setta il tempo
1302 corrente ed è sufficiente avere accesso in scrittura al file; se invece si è
1303 specificato un valore la funzione avrà successo solo se si è proprietari del
1304 file (o si hanno i privilegi di amministratore).
1305
1306 Si tenga presente che non è comunque possibile specificare il tempo di
1307 cambiamento di stato del file, che viene comunque cambiato dal kernel tutte le
1308 volte che si modifica l'inode (quindi anche alla chiamata di \func{utime}).
1309 Questo serve anche come misura di sicurezza per evitare che si possa
1310 modificare un file nascondendo completamente le proprie tracce.  In realtà la
1311 cosa resta possibile, se si è in grado di accedere al device, scrivendo
1312 direttamente sul disco senza passare attraverso il filesystem, ma ovviamente
1313 in questo modo la cosa è molto più complicata da realizzare.
1314
1315
1316
1317 \section{Il controllo di accesso ai file}
1318 \label{sec:file_access_control}
1319
1320 Una delle caratteristiche fondamentali di tutti i sistemi unix-like è quella
1321 del controllo di accesso ai file, che viene implementato per qualunque
1322 filesystem standard. In questa sezione ne esamineremo i concetti essenziali e
1323 le funzioni usate per gestirne i vari aspetti.
1324
1325
1326 \subsection{I permessi per l'accesso ai file}
1327 \label{sec:file_perm_overview}
1328
1329 Ad ogni file Linux associa sempre l'utente che ne è proprietario (il
1330 cosiddetto \textit{owner}) ed un gruppo di appartenenza, secondo il meccanismo
1331 degli identificatori di utenti e gruppi (\acr{uid} e \acr{gid}). Questi valori
1332 sono accessibili da programma tramite la funzione \func{stat}, e sono
1333 mantenuti nei campi \var{st\_uid} e \var{st\_gid} della struttura \var{stat}
1334 (si veda \secref{sec:file_stat}).\footnote{Questo è vero solo per filesystem
1335   di tipo Unix, ad esempio non è vero per il filesystem vfat di Windows, che
1336   non fornisce nessun supporto per l'accesso multiutente, e per il quale i
1337   permessi vengono assegnati in maniera fissa con un opzione in fase di
1338   montaggio.}
1339
1340 Il controllo di accesso ai file segue un modello abbastanza semplice che
1341 prevede tre permessi fondamentali strutturati su tre livelli di accesso.
1342 Esistono varie estensioni a questo modello,\footnote{come le \textit{Access
1343     Control List} che possono essere aggiunte al filesystem standard con
1344   opportune patch, e sono presenti in filesystem non ancora inclusi nel kernel
1345   ufficiale come \textsl{xfs}, o meccanismi di controllo ancora più
1346   sofisticati come il \textit{mandatory access control} di SE-Linux} ma nella
1347 maggior parte dei casi il meccanismo standard è più che sufficiente a
1348 soffisfare tutte le necessità più comuni.  I tre permessi di base associati ad
1349 ogni file sono:
1350 \begin{itemize*}
1351 \item il permesso di lettura (indicato con la lettera \texttt{r}, dall'inglese
1352   \textit{read}).
1353 \item il permesso di scrittura (indicato con la lettera \texttt{w},
1354   dall'inglese \textit{write}).
1355 \item il permesso di esecuzione (indicato con la lettera \texttt{x},
1356   dall'inglese \textit{execute}).
1357 \end{itemize*}
1358 mentre i tre livelli su cui sono divisi i privilegi sono:
1359 \begin{itemize*}
1360 \item i privilegi per l'utente proprietario del file.
1361 \item i privilegi per un qualunque utente faccia parte del gruppo cui
1362   appartiene il file.
1363 \item i privilegi per tutti gli altri utenti.
1364 \end{itemize*}
1365
1366 L'insieme dei permessi viene espresso con un numero a 12 bit; di questi i nove
1367 meno significativi sono usati a gruppi di tre per indicare i permessi base di
1368 lettura, scrittura ed esecuzione e sono applicati rispettivamente
1369 rispettivamente al proprietario, al gruppo, a tutti gli altri.
1370
1371 I restanti tre bit (noti come \acr{suid}, \acr{sgid}, e \textsl{sticky}) sono
1372 usati per indicare alcune caratteristiche più complesse del meccanismo del
1373 controllo di accesso su cui torneremo in seguito (in
1374 \secref{sec:file_suid_sgid} e \secref{sec:file_sticky}).
1375
1376 Anche i permessi, come tutte le altre informazioni pertinenti al file, sono
1377 memorizzati nell'inode; in particolare essi sono contenuti in alcuni bit del
1378 campo \var{st\_mode} della struttura \func{stat} (si veda di nuovo
1379 \figref{fig:file_stat_struct}).
1380
1381 In genere ci si riferisce ai tre livelli dei privilegi usando le lettere
1382 \cmd{u} (per \textit{user}), \cmd{g} (per \textit{group}) e \cmd{o} (per
1383 \textit{other}), inoltre se si vuole indicare tutti i raggruppamenti insieme
1384 si usa la lettera \cmd{a} (per \textit{all}). Si tenga ben presente questa
1385 distinzione dato che in certi casi, mutuando la terminologia in uso nel VMS,
1386 si parla dei permessi base come di permessi per \textit{owner}, \textit{group}
1387 ed \textit{all}, le cui iniziali possono dar luogo a confusione.  Le costanti
1388 che permettono di accedere al valore numerico di questi bit nel campo
1389 \var{st\_mode} sono riportate in \ntab.
1390
1391 \begin{table}[htb]
1392   \centering
1393     \footnotesize
1394   \begin{tabular}[c]{|c|l|}
1395     \hline
1396     \textbf{\var{st\_mode}} bit & \textbf{Significato} \\
1397     \hline 
1398     \hline 
1399     \macro{S\_IRUSR}  &  \textit{user-read}, l'utente può leggere     \\
1400     \macro{S\_IWUSR}  &  \textit{user-write}, l'utente può scrivere   \\
1401     \macro{S\_IXUSR}  &  \textit{user-execute}, l'utente può eseguire \\ 
1402     \hline              
1403     \macro{S\_IRGRP}  &  \textit{group-read}, il gruppo può leggere    \\
1404     \macro{S\_IWGRP}  &  \textit{group-write}, il gruppo può scrivere  \\
1405     \macro{S\_IXGRP}  &  \textit{group-execute}, il gruppo può eseguire\\
1406     \hline              
1407     \macro{S\_IROTH}  &  \textit{other-read}, tutti possono leggere    \\
1408     \macro{S\_IWOTH}  &  \textit{other-write}, tutti possono scrivere  \\
1409     \macro{S\_IXOTH}  &  \textit{other-execute}, tutti possono eseguire\\
1410     \hline              
1411   \end{tabular}
1412   \caption{I bit dei permessi di accesso ai file, come definiti in 
1413     \texttt{<sys/stat.h>}}
1414   \label{tab:file_bit_perm}
1415 \end{table}
1416
1417 I permessi vengono usati in maniera diversa dalle varie funzioni, e a seconda
1418 che si riferiscano a dei file, dei link simbolici o delle directory, qui ci
1419 limiteremo ad un riassunto delle regole generali, entrando nei dettagli più
1420 avanti.
1421
1422 La prima regola è che per poter accedere ad un file attraverso il suo pathname
1423 occorre il permesso di esecuzione in ciascuna delle directory che compongono
1424 il pathname; lo stesso vale per aprire un file nella directory corrente (per
1425 la quale appunto serve il diritto di esecuzione).
1426
1427 Per una directory infatti il permesso di esecuzione significa che essa può
1428 essere attraversata nella risoluzione del pathname, ed è distinto dal permesso
1429 di lettura che invece implica che si può leggere il contenuto della directory.
1430 Questo significa che se si ha il permesso di esecuzione senza permesso di
1431 lettura si potrà lo stesso aprire un file in una directory (se si hanno i
1432 permessi opportuni per il medesimo) ma non si potrà vederlo con \cmd{ls}
1433 (mentre per crearlo occorrerà anche il permesso di scrittura per la
1434 directory).
1435
1436 Avere il permesso di lettura per un file consente di aprirlo con le opzioni
1437 (si veda quanto riportato in \tabref{tab:file_open_flags}) di sola lettura o
1438 di lettura/scrittura e leggerne il contenuto. Avere il permesso di scrittura
1439 consente di aprire un file in sola scrittura o lettura/scrittura e modificarne
1440 il contenuto, lo stesso permesso è necessario per poter troncare il file.
1441
1442 Non si può creare un file fintanto che non si disponga del permesso di
1443 esecuzione e di quello di scrittura per la directory di destinazione; gli
1444 stessi permessi occorrono per cancellare un file da una directory (si ricordi
1445 che questo non implica necessariamente la rimozione del contenuto del file dal
1446 disco), non è necessario nessun tipo di permesso per il file stesso (infatti
1447 esso non viene toccato, viene solo modificato il contenuto della directory,
1448 rimuovendo la voce che ad esso fa riferimento).
1449
1450 Per poter eseguire un file (che sia un programma compilato od uno script di
1451 shell, od un altro tipo di file eseguibile riconosciuto dal kernel), occorre
1452 avere il permesso di esecuzione, inoltre solo i file regolari possono essere
1453 eseguiti.
1454
1455 I permessi per un link simbolico sono ignorati, contano quelli del file a cui
1456 fa riferimento; per questo in genere il comando \cmd{ls} riporta per un link
1457 simbolico tutti i permessi come concessi; utente e gruppo a cui esso
1458 appartiene vengono pure ignorati quando il link viene risolto, vengono
1459 controllati solo quando viene richiesta la rimozione del link e quest'ultimo è
1460 in una directory con lo \textsl{sticky bit} settato (si veda
1461 \secref{sec:file_sticky}).
1462
1463 La procedura con cui il kernel stabilisce se un processo possiede un certo
1464 permesso (di lettura, scrittura o esecuzione) si basa sul confronto fra
1465 l'utente e il gruppo a cui il file appartiene (i valori di \var{st\_uid} e
1466 \var{st\_gid} accennati in precedenza) e l'\textit{effective user id},
1467 l'\textit{effective group id} e gli eventuali \textit{supplementary group id}
1468 del processo.\footnote{in realtà Linux per quanto riguarda l'accesso ai file
1469   utilizza al posto degli \textit{effective id} i \textit{filesystem id} (si
1470   veda \secref{sec:proc_perms}), ma essendo questi del tutto equivalenti ai
1471   primi, eccetto il caso in cui si voglia scrivere un server NFS, ignoreremo
1472   questa differenza.}
1473
1474 Per una spiegazione dettagliata degli identificatori associati ai processi si
1475 veda \secref{sec:proc_perms}; normalmente, a parte quanto vedremo in
1476 \secref{sec:file_suid_sgid}, l'\textit{effective user id} e
1477 l'\textit{effective group id} corrispondono a \acr{uid} e \acr{gid}
1478 dell'utente che ha lanciato il processo, mentre i \textit{supplementary group
1479   id} sono quelli dei gruppi cui l'utente appartiene.
1480
1481 I passi attraverso i quali viene stabilito se il processo possiede il diritto
1482 di accesso sono i seguenti:
1483 \begin{enumerate}
1484 \item Se l'\textit{effective user id} del processo è zero (corrispondente
1485   all'amministratore) l'accesso è sempre garantito senza nessun ulteriore
1486   controllo. Per questo motivo \textsl{root} ha piena libertà di accesso a
1487   tutti i file.
1488 \item Se l'\textit{effective user id} del processo è uguale all'\acr{uid} del
1489   proprietario del file (nel qual caso si dice che il processo è proprietario
1490   del file) allora:
1491   \begin{itemize*}
1492   \item se il relativo\footnote{per relativo si intende il bit di user-read se
1493       il processo vuole accedere in scrittura, quello di user-write per
1494       l'accesso in scrittura, etc.} bit dei permessi d'accesso dell'utente è
1495     settato, l'accesso è consentito
1496   \item altrimenti l'accesso è negato
1497   \end{itemize*}
1498 \item Se l'\textit{effective group id} del processo o uno dei
1499   \textit{supplementary group id} dei processi corrispondono al \acr{gid} del
1500   file allora:
1501   \begin{itemize*}
1502   \item se il bit dei permessi d'accesso del gruppo è settato, l'accesso è
1503     consentito, 
1504   \item altrimenti l'accesso è negato
1505   \end{itemize*}
1506 \item se il bit dei permessi d'accesso per tutti gli altri è settato,
1507   l'accesso è consentito, altrimenti l'accesso è negato.
1508 \end{enumerate}
1509
1510 Si tenga presente che questi passi vengono eseguiti esattamente in
1511 quest'ordine. Questo vuol dire che se un processo è il proprietario di un file
1512 l'accesso è consentito o negato solo sulla base dei permessi per l'utente; i
1513 permessi per il gruppo non vengono neanche controllati. Lo stesso vale se il
1514 processo appartiene ad un gruppo appropriato, in questo caso i permessi per
1515 tutti gli altri non vengono controllati.
1516
1517
1518 \subsection{I bit \acr{suid} e \acr{sgid}}
1519 \label{sec:file_suid_sgid}
1520
1521 Come si è accennato (in \secref{sec:file_perm_overview}) nei dodici bit del
1522 campo \var{st\_mode} di \var{stat} che vengono usati per il controllo di
1523 accesso oltre ai bit dei permessi veri e propri, ci sono altri tre bit che
1524 vengono usati per indicare alcune proprietà speciali dei file.  Due di questi
1525 sono i bit detti \acr{suid} (da \textit{set-user-ID bit}) e \acr{sgid} (da
1526 \textit{set-group-ID bit}) che sono identificati dalle costanti
1527 \macro{S\_ISUID} e \macro{S\_ISGID}.
1528
1529 Come spiegato in dettaglio in \secref{sec:proc_exec}, quando si lancia un
1530 programma il comportamento normale del kernel è quello di settare
1531 l'\textit{effective user id} e l'\textit{effective group id} del nuovo
1532 processo all'\acr{uid} e al \acr{gid} del processo corrente, che normalmente
1533 corrispondono dell'utente con cui si è entrati nel sistema.
1534
1535 Se però il file del programma\footnote{per motivi di sicurezza il kernel
1536   ignora i bit \acr{suid} e \acr{sgid} per gli script eseguibili.} (che
1537 ovviamente deve essere eseguibile) ha il bit \acr{suid} settato, il kernel
1538 assegnerà come \textit{effective user id} al nuovo processo l'\acr{uid} del
1539 proprietario del file al posto dell'\acr{uid} del processo originario.  Avere
1540 il bit \acr{sgid} settato ha lo stesso effetto sull'\textit{effective group
1541   id} del processo.
1542
1543 I bit \acr{suid} e \acr{sgid} vengono usati per permettere agli utenti normali
1544 di usare programmi che abbisognano di privilegi speciali; l'esempio classico è
1545 il comando \cmd{passwd} che ha la necessità di modificare il file delle
1546 password, quest'ultimo ovviamente può essere scritto solo dall'amministratore,
1547 ma non è necessario chiamare l'amministratore per cambiare la propria
1548 password. Infatti il comando \cmd{passwd} appartiene a root ma ha il bit
1549 \acr{suid} settato per cui quando viene lanciato da un utente normale parte
1550 con i privilegi di root.
1551
1552 Chiaramente avere un processo che ha privilegi superiori a quelli che avrebbe
1553 normalmente l'utente che lo ha lanciato comporta vari rischi, e questo tipo di
1554 programmi devono essere scritti accuratamente per evitare che possano essere
1555 usati per guadagnare privilegi non consentiti (l'argomento è affrontato in
1556 dettaglio in \secref{sec:proc_perms}).
1557
1558 La presenza dei bit \acr{suid} e \acr{sgid} su un file può essere rilevata con
1559 il comando \cmd{ls -l}, che una lettera \cmd{s} al posto della \cmd{x} in
1560 corrispondenza dei permessi di utente o gruppo. La stessa lettera \cmd{s} può
1561 essere usata nel comando \cmd{chmod} per settare questi bit. Infine questi bit
1562 possono essere controllati all'interno di \var{st\_mode} con l'uso delle due
1563 costanti \macro{S\_ISUID} e \macro{S\_IGID}, i cui valori sono riportati in
1564 \tabref{tab:file_mode_flags}.
1565
1566 Gli stessi bit vengono ad assumere in significato completamente diverso per le
1567 directory, normalmente infatti Linux usa la convenzione di SVR4 per indicare
1568 con questi bit l'uso della semantica BSD nella creazione di nuovi file (si
1569 veda \secref{sec:file_ownership} per una spiegazione dettagliata al
1570 proposito).
1571
1572 Infine Linux utilizza il bit \acr{sgid} per una ulteriore estensione mutuata
1573 da SVR4. Il caso in cui un file ha il bit \acr{sgid} settato senza che lo sia
1574 anche il corrispondente bit di esecuzione viene utilizzato per attivare per
1575 quel file il \textit{mandatory locking} (argomento che affronteremo in
1576 dettagliopiù avanti in \secref{sec:file_mand_locking}).
1577
1578
1579 \subsection{Il bit \textsl{sticky}}
1580 \label{sec:file_sticky}
1581
1582 L'ultimo dei bit rimanenti, identificato dalla costante \macro{S\_ISVTX}, è in
1583 parte un rimasuglio delle origini dei sistemi Unix. A quell'epoca infatti la
1584 memoria virtuale e l'accesso ai files erano molto meno sofisticati e per
1585 ottenere la massima velocità possibile per i programmi usati più comunemente
1586 si poteva settare questo bit.
1587
1588 L'effetto di questo bit era che il segmento di testo del programma (si veda
1589 \secref{sec:proc_mem_layout} per i dettagli) veniva scritto nella swap la
1590 prima volta che questo veniva lanciato, e vi permaneva fino al riavvio della
1591 macchina (da questo il nome di \textsl{sticky bit}); essendo la swap un file
1592 continuo indicizzato direttamente in questo modo si poteva risparmiare in
1593 tempo di caricamento rispetto alla ricerca del file su disco. Lo
1594 \textsl{sticky bit} è indicato usando la lettera \cmd{t} al posto della
1595 \cmd{x} nei permessi per gli altri.
1596
1597 Ovviamente per evitare che gli utenti potessero intasare la swap solo
1598 l'amministratore era in grado di settare questo bit, che venne chiamato anche
1599 con il nome di \textit{saved text bit}, da cui deriva quello della costante.
1600 Le attuali implementazioni di memoria virtuale e filesystem rendono
1601 sostanzialmente inutile questo procedimento.
1602
1603 Benché ormai non venga più utilizzato per i file, lo \textsl{sticky bit} ha
1604 invece assunto un uso importante per le directory\footnote{lo \textsl{sticky
1605     bit} per le directory è una estensione non definita nello standard POSIX,
1606   Linux però la supporta, così come BSD e SVR4.}; in questo caso se il bit è
1607 settato un file potrà essere rimosso dalla directory soltanto se l'utente ha
1608 il permesso di scrittura su di essa ed inoltre è vera una delle seguenti
1609 condizioni:
1610 \begin{itemize*}
1611 \item l'utente è proprietario del file
1612 \item l'utente è proprietario della directory
1613 \item l'utente è l'amministratore 
1614 \end{itemize*}
1615 un classico esempio di directory che ha questo bit settato è \file{/tmp}, i
1616 permessi infatti di solito sono settati come:
1617 \begin{verbatim}
1618 $ ls -ld /tmp
1619 drwxrwxrwt    6 root     root         1024 Aug 10 01:03 /tmp
1620 \end{verbatim}%$
1621 in questo modo chiunque può creare file in questa directory (che infatti è
1622 normalmente utilizzata per la creazione di file temporanei), ma solo l'utente
1623 che ha creato un certo file potrà cancellarlo o rinominarlo. In questo modo si
1624 evita che un utente possa, più o meno consapevolmente, cancellare i file degli
1625 altri.
1626
1627
1628 \subsection{La titolarità di nuovi file e directory}
1629 \label{sec:file_ownership}
1630
1631 Vedremo in \secref{sec:file_base_func} con quali funzioni si possono creare
1632 nuovi file, in tale occasione vedremo che è possibile specificare in sede di
1633 creazione quali permessi applicare ad un file, però non si può indicare a
1634 quale utente e gruppo esso deve appartenere.  Lo stesso problema di presenta
1635 per la creazione di nuove directory (procedimento descritto in
1636 \secref{sec:file_dir_creat_rem}).
1637
1638 Lo standard POSIX prescrive che l'\acr{uid} del nuovo file corrisponda
1639 all'\textit{effective user id} del processo che lo crea; per il \acr{gid}
1640 invece prevede due diverse possibilità:
1641 \begin{itemize*}
1642 \item il \acr{gid} del file corrisponde all'\textit{effective group id} del
1643   processo.
1644 \item il \acr{gid} del file corrisponde al \acr{gid} della directory in cui
1645   esso è creato.
1646 \end{itemize*}
1647 in genere BSD usa sempre la seconda possibilità, che viene per questo chiamata
1648 semantica BSD. Linux invece segue quella che viene chiamata semantica SVr4; di
1649 norma cioè il nuovo file viene creato, seguendo la prima opzione, con il
1650 \acr{gid} del processo, se però la directory in cui viene creato il file ha il
1651 bit \acr{sgid} settato allora viene usata la seconda opzione.
1652
1653 Usare la semantica BSD ha il vantaggio che il \acr{gid} viene sempre
1654 automaticamente propagato, restando coerente a quello della directory di
1655 partenza, in tutte le sottodirectory. La semantica SVr4 offre la possibilità
1656 di scegliere, ma per ottenere lo stesso risultato di coerenza che si ha con
1657 BSD necessita che per le nuove directory venga anche propagato anche il bit
1658 \acr{sgid}. Questo è il comportamento di default di \func{mkdir}, ed é in
1659 questo modo ad esempio che Debian assicura che le sottodirectory create nelle
1660 home di un utente restino sempre con il \acr{gid} del gruppo primario dello
1661 stesso.
1662
1663
1664 \subsection{La funzione \func{access}}
1665 \label{sec:file_access}
1666
1667 Come visto in \secref{sec:file_access_control} il controllo di accesso ad un
1668 file viene fatto usando \textit{effective user id} e \textit{effective group
1669   id} del processo; ma ci sono casi in cui è necessario effettuare il
1670 controllo usando il \textit{real user id} ed il \textit{real group id} (cioè
1671 \acr{uid} e \acr{gid} dell'utente che ha lanciato il programma, e che, come
1672 accennato in \secref{sec:file_suid_sgid} e spiegato in
1673 \secref{sec:proc_perms}, non è detto siano uguali agli \textit{effective id}).
1674 Per far questo si può usare la funzione \func{access}, il cui prototipo è:
1675 \begin{prototype}{unistd.h}
1676 {int access(const char *pathname, int mode)}
1677
1678 Verifica i permessi di accesso, indicati da \var{mode}, per il file indicato
1679 da \var{pathname}.
1680   
1681 \bodydesc{La funzione ritorna 0 se l'accesso è consentito, -1 altrimenti; in
1682   quest'ultimo caso la variabile \var{errno} viene settata secondo i codici di
1683   errore: \macro{EACCES}, \macro{EROFS}, \macro{EFAULT}, \macro{EINVAL},
1684   \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOTDIR}, \macro{ELOOP},
1685   \macro{EIO}.}
1686 \end{prototype}
1687
1688 I valori possibili per l'argomento \param{mode} sono esprimibili come
1689 combinazione delle costanti numeriche riportate in \ntab\ (attraverso un OR
1690 binario). I primi tre valori implicano anche la verifica dell'esistenza del
1691 file, se si vuole verificare solo quest'ultima si può usare \macro{F\_OK}, o
1692 anche direttamente \func{stat}. In caso \var{pathname} si riferisca ad un link
1693 simbolico il controllo è fatto sul file a cui esso fa riferimento.
1694
1695 La funzione controlla solo i bit dei permessi di accesso, si ricordi che il
1696 fatto che una directory abbia permesso di scrittura non significa che ci si
1697 possa scrivere come in un file, e il fatto che un file abbia permesso di
1698 esecuzione non comporta che contenga un programma eseguibile. La funzione
1699 ritorna zero solo se tutte i permessi controllati sono disponibili, in caso
1700 contrario (o di errore) ritorna -1.
1701 \begin{table}[htb]
1702   \centering
1703   \footnotesize
1704   \begin{tabular}{|c|l|}
1705     \hline
1706     \textbf{\var{mode}} & \textbf{Significato} \\
1707     \hline
1708     \hline
1709     \macro{R\_OK} & verifica il permesso di lettura \\
1710     \macro{W\_OK} & verifica il permesso di scritture \\
1711     \macro{X\_OK} & verifica il permesso di esecuzione \\
1712     \macro{F\_OK} & verifica l'esistenza del file \\
1713     \hline
1714   \end{tabular}
1715   \caption{Valori possibile per il parametro \var{mode} della funzione 
1716     \func{access}}
1717   \label{tab:file_access_mode_val}
1718 \end{table}
1719
1720 Un esempio tipico per l'uso di questa funzione è quello di un processo che sta
1721 eseguendo un programma coi privilegi di un altro utente (ad esmepio attraverso
1722 l'uso del \acr{suid} bit) che vuole controllare se l'utente originale ha i
1723 permessi per accedere ad un certo file.
1724
1725
1726 \subsection{Le funzioni \func{chmod} e \func{fchmod}}
1727 \label{sec:file_chmod}
1728
1729 Per cambiare i permessi di un file il sistema mette ad disposizione due
1730 funzioni \func{chmod} e \func{fchmod}, che operano rispettivamente su un
1731 filename e su un file descriptor, i loro prototipi sono:
1732 \begin{functions}
1733   \headdecl{sys/types.h} 
1734   \headdecl{sys/stat.h} 
1735   
1736   \funcdecl{int chmod(const char *path, mode\_t mode)} Cambia i permessi del
1737   file indicato da \var{path} al valore indicato da \var{mode}.
1738   
1739   \funcdecl{int fchmod(int fd, mode\_t mode)} Analoga alla precedente, ma usa
1740   il file descriptor \var{fd} per indicare il file.
1741   
1742   \bodydesc{Le funzioni restituiscono zero in caso di successo e -1 per
1743     un errore, in caso di errore \var{errno} può assumere i valori:
1744   \begin{errlist}
1745   \item[\macro{EPERM}] L'\textit{effective user id} non corrisponde a quello
1746     del proprietario del file o non è zero.
1747   \end{errlist}
1748   ed inoltre \macro{EROFS} e \macro{EIO}; \func{chmod} restituisce anche
1749   \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOMEM},
1750   \macro{ENOTDIR}, \macro{EACCES}, \macro{ELOOP}; \func{fchmod} anche
1751   \macro{EBADF}.}
1752 \end{functions}
1753
1754 I valori possibili per \var{mode} sono indicati in \ntab. I valori possono
1755 esser combinati con l'OR binario delle relative costanti simboliche, o
1756 specificati direttamente, come per l'analogo comando di shell, con il valore
1757 numerico (la shell lo vuole in ottale, dato che i bit dei permessi sono
1758 divisibili in gruppi di tre). Ad esempio i permessi standard assegnati ai
1759 nuovi file (lettura e scrittura per il proprietario, sola lettura per il
1760 gruppo e gli altri) sono corrispondenti al valore ottale $0644$, un programma
1761 invece avrebbe anche il bit di esecuzione attivo, con un valore di $0755$, se
1762 si volesse attivare il bit \acr{suid} il valore da fornire sarebbe $4755$.
1763
1764 \begin{table}[!htb]
1765   \centering
1766   \footnotesize
1767   \begin{tabular}[c]{|c|c|l|}
1768     \hline
1769     \textbf{\var{mode}} & \textbf{Valore} & \textbf{Significato} \\
1770     \hline
1771     \hline
1772     \macro{S\_ISUID} & 04000 & set user ID \\
1773     \macro{S\_ISGID} & 02000 & set group ID \\
1774     \macro{S\_ISVTX} & 01000 & sticky bit \\
1775     \hline
1776     \macro{S\_IRWXU} & 00700 & l'utente ha tutti i permessi \\
1777     \macro{S\_IRUSR} & 00400 & l'utente ha il permesso di lettura  \\
1778     \macro{S\_IWUSR} & 00200 & l'utente ha il permesso di scrittura \\
1779     \macro{S\_IXUSR} & 00100 & l'utente ha il permesso di esecuzione \\
1780     \hline
1781     \macro{S\_IRWXG} & 00070 & il gruppo ha tutti i permessi  \\
1782     \macro{S\_IRGRP} & 00040 & il gruppo ha il permesso di lettura  \\
1783     \macro{S\_IWGRP} & 00020 & il gruppo ha il permesso di scrittura \\
1784     \macro{S\_IXGRP} & 00010 & il gruppo ha il permesso di esecuzione \\
1785     \hline
1786     \macro{S\_IRWXO} & 00007 & gli altri hanno tutti i permessi \\
1787     \macro{S\_IROTH} & 00004 & gli altri hanno il permesso di lettura  \\
1788     \macro{S\_IWOTH} & 00002 & gli altri hanno il permesso di scrittura \\
1789     \macro{S\_IXOTH} & 00001 & gli altri hanno il permesso di esecuzione \\
1790     \hline
1791   \end{tabular}
1792   \caption{I valori delle costanti usate per indicare i permessi dei file.}
1793   \label{tab:file_permission_const}
1794 \end{table}
1795
1796 Il cambiamento dei permessi di un file attraverso queste funzioni ha comunque
1797 alcune limitazioni, provviste per motivi di sicurezza. Questo significa che
1798 anche se si è proprietari del file non tutte le operazioni sono permesse, in
1799 particolare:
1800 \begin{enumerate}
1801 \item siccome solo l'amministratore può settare lo \textit{sticky bit}, se
1802   l'\textit{effective user id} del processo non è zero esso viene
1803   automaticamente cancellato (senza notifica di errore) qualora sia stato
1804   indicato in \var{mode}.
1805 \item per via della semantica SVr4 nella creazione dei nuovi file, si può
1806   avere il caso in cui il file creato da un processo è assegnato a un gruppo
1807   per il quale il processo non ha privilegi. Per evitare che si possa
1808   assegnare il bit \acr{sgid} ad un file appartenente a un gruppo per cui
1809   non si hanno diritti, questo viene automaticamente cancellato (senza
1810   notifica di errore) da \var{mode} qualora il gruppo del file non corrisponda
1811   a quelli associati al processo (la cosa non avviene quando
1812   l'\textit{effective user id} del processo è zero).
1813 \end{enumerate}
1814
1815 Per alcuni filesystem\footnote{il filesystem \acr{ext2} supporta questa
1816   caratteristica, che è mutuata da BSD.} è inoltre prevista una ulteriore
1817 misura di sicurezza, volta ad scongiurare l'abuso dei bit \acr{suid} e
1818 \acr{sgid}; essa consiste nel cancellare automaticamente questi bit qualora un
1819 processo che non appartenga all'amministratore scriva su un file. In questo
1820 modo anche se un utente malizioso scopre un file \acr{suid} su cui può
1821 scrivere, una eventuale modifica comporterà la perdita di ogni ulteriore
1822 privilegio.
1823
1824 \subsection{La funzione \func{umask}}
1825 \label{sec:file_umask}
1826
1827 Oltre che dai valori indicati in sede di creazione, i permessi assegnati ai
1828 nuovi file sono controllati anche da una maschera di bit settata con la
1829 funzione \func{umask}, il cui prototipo è:
1830 \begin{prototype}{stat.h}
1831 {mode\_t umask(mode\_t mask)}
1832
1833   Setta la maschera dei permessi dei bit al valore specificato da \var{mask}
1834   (di cui vengono presi solo i 9 bit meno significativi).
1835   
1836   \bodydesc{La funzione ritorna il precedente valore della maschera. È una
1837     delle poche funzioni che non restituisce codici di errore.}
1838 \end{prototype}
1839
1840 Questa maschera è una caratteristica di ogni processo\footnote{è infatti
1841   contenuta nel campo \var{umask} di \var{fs\_struct}, vedi
1842   \figref{fig:proc_task_struct}} e viene utilizzata per impedire che alcuni
1843 permessi possano essere assegnati ai nuovi file in sede di creazione. I bit
1844 indicati nella maschera vengono infatti esclusi quando un nuovo file viene
1845 creato.
1846
1847 In genere questa maschera serve per impostare un default che escluda alcuni
1848 permessi (usualmente quello di scrittura per il gruppo e gli altri,
1849 corrispondente ad un valore di $022$). Essa è utile perché le routine
1850 dell'interfaccia ANSI C degli stream non prevedono l'esistenza dei permessi, e
1851 pertanto tutti i nuovi file vengono sempre creati con un default di $666$
1852 (cioè permessi di lettura e scrittura per tutti, si veda
1853 \tabref{tab:file_permission_const} per un confronto); in questo modo è
1854 possibile cancellare automaticamente i permessi non voluti, senza doverlo fare
1855 esplicitamente.
1856
1857 In genere il valore di \func{umask} viene stabilito una volta per tutte al
1858 login a $022$, e di norma gli utenti non hanno motivi per modificarlo. Se però
1859 si vuole che un processo possa creare un file che chiunque possa leggere
1860 allora occorrerà cambiare il valore di \func{umask}.
1861
1862
1863 \subsection{Le funzioni \func{chown}, \func{fchown} e \func{lchown}}
1864 \label{sec:file_chown}
1865
1866 Come per i permessi, il sistema fornisce anche delle funzioni che permettano
1867 di cambiare utente e gruppo cui il file appartiene; le funzioni in questione
1868 sono tre e i loro prototipi sono i seguenti:
1869 \begin{functions}
1870   \headdecl{sys/types.h} 
1871   \headdecl{sys/stat.h} 
1872   
1873   \funcdecl{int chown(const char *path, uid\_t owner, gid\_t group)}
1874   \funcdecl{int fchown(int fd, uid\_t owner, gid\_t group)}
1875   \funcdecl{int lchown(const char *path, uid\_t owner, gid\_t group)}
1876
1877   Le funzioni cambiano utente e gruppo di appartenenza di un file ai valori
1878   specificati dalle variabili \var{owner} e \var{group}. 
1879   
1880   \bodydesc{Le funzioni restituiscono zero in caso di successo e -1 per
1881     un errore, in caso di errore \var{errno} viene settato ai valori:
1882   \begin{errlist}
1883   \item[\macro{EPERM}] L'\textit{effective user id} non corrisponde a quello
1884     del proprietario del file o non è zero, o utente e gruppo non sono validi
1885   \end{errlist}
1886   Oltre a questi entrambe restituiscono gli errori \macro{EROFS} e
1887   \macro{EIO}; \func{chown} restituisce anche \macro{EFAULT},
1888   \macro{ENAMETOOLONG}, \macro{ENOENT}, \macro{ENOMEM}, \macro{ENOTDIR},
1889   \macro{EACCES}, \macro{ELOOP}; \func{fchown} anche \macro{EBADF}.}
1890 \end{functions}
1891
1892 In Linux soltanto l'amministratore può cambiare il proprietario di un file,
1893 seguendo la semantica di BSD che non consente agli utenti di assegnare i loro
1894 file ad altri (per evitare eventuali aggiramenti delle quote).
1895 L'amministratore può cambiare il gruppo di un file, il proprietario può
1896 cambiare il gruppo dei file che gli appartengono solo se il nuovo gruppo è il
1897 suo gruppo primario o uno dei gruppi a cui appartiene.
1898
1899 La funzione \func{chown} segue i link simbolici, per operare direttamente su
1900 in link simbolico si deve usare la funzione \func{lchown}.\footnote{fino alla
1901   versione 2.1.81 in Linux \func{chown} non seguiva i link simbolici, da
1902   allora questo comportamento è stato assegnato alla funzione \func{lchown},
1903   introdotta per l'occasione, ed è stata creata una nuova system call per
1904   \func{chown} che seguisse i link simbolici} La funzione \func{fchown} opera
1905 su un file aperto, essa è mutuata da BSD, ma non è nello standard POSIX.
1906 Un'altra estensione rispetto allo standard POSIX è che specificando -1 come
1907 valore per \var{owner} e \var{group} i valori restano immutati. 
1908
1909 Quando queste funzioni sono chiamate con successo da un processo senza i
1910 privilegi di root entrambi i bit \acr{suid} e \acr{sgid} vengono
1911 cancellati. Questo non avviene per il bit \acr{sgid} nel caso in cui esso
1912 sia usato (in assenza del corrispondente permesso di esecuzione) per indicare
1913 che per il file è attivo il \textit{mandatory locking}.
1914
1915 %La struttura fondamentale che contiene i dati essenziali relativi ai file è il
1916 %cosiddetto \textit{inode}; questo conterrà informazioni come il
1917 %tipo di file (file di dispositivo, directory, file di dati, per un elenco
1918 %completo vedi \ntab), i permessi (vedi \secref{sec:file_perms}), le date (vedi
1919 %\secref{sec:file_times}).
1920
1921 \subsection{La funzione \func{chroot}}
1922 \label{sec:file_chroot}
1923
1924 Benché non abbia niente a che fare con permessi, utenti e gruppi, questa
1925 funzione viene usata spesso per restringere le capacità di acccesso di un
1926 programma ad una sezione limitata del filesystem, per cui ne parleremo in
1927 questa sezione.
1928
1929 Come accennato in \secref{sec:proc_fork} ogni processo oltre ad una directory
1930 di lavoro corrente, ha anche una directory radice,\footnote{entrambe sono
1931   contenute in due campi di \var{fs\_struct}, vedi
1932   \figref{fig:proc_task_struct}.} che è la directory che per il processo
1933 costituisce la radice dell'albero dei file e rispetto alla quale vengono
1934 risolti i pathname assoluti (si ricordi quanto detto in
1935 \secref{sec:file_organization}). La radice viene eredidata dal padre per ogni
1936 processo figlio, e quindi di norma coincide con la \file{/} del sistema.
1937
1938 In certe situazioni però per motivi di sicurezza non si vuole che un processo
1939 possa accedere a tutto il filesystem; per questo si può cambiare la directory
1940 radice con la funzione \func{chroot}, il cui prototipo è:
1941 \begin{prototype}{unistd.h}{int chroot(const char *path)}
1942   Cambia la directory radice del processo a quella specificata da
1943   \param{path}.
1944   
1945 \bodydesc{La funzione restituisce zero in caso di successo e -1 per
1946     un errore, in caso di errore \var{errno} viene settato ai valori:
1947   \begin{errlist}
1948   \item[\macro{EPERM}] L'\textit{effective user id} non è zero.
1949   \end{errlist}
1950   ed inoltre \macro{EFAULT}, \macro{ENAMETOOLONG}, \macro{ENOENT},
1951   \macro{ENOMEM}, \macro{ENOTDIR}, \macro{EACCES}, \macro{ELOOP};
1952   \macro{EROFS} e \macro{EIO}.}
1953 \end{prototype}
1954 \noindent in questo modo la directory radice del processo diventerà
1955 \param{path} (che ovviamente deve esistere) ed ogni pathname assoluto sarà
1956 risolto a partire da essa, rendendo impossibile accedere alla parte di albero
1957 sovrastante; si ha cioè quella che viene chiamata una \textit{chroot jail}.
1958
1959 Solo l'amministratore può usare questa funzione, e la nuova radice, per quanto
1960 detto in \secref{sec:proc_fork}, sarà ereditata da tutti i processi figli. Si
1961 tenga presente che la funzione non cambia la directory di lavoro corrente, che
1962 potrebbe restare fuori dalla \textit{chroot jail}.
1963
1964 Questo è il motivo per cui la funzione è efficace solo se dopo averla eseguita
1965 si cedono i privilegi di root. Infatti se in qualche modo il processo ha una
1966 directory di lavoro corrente fuori dalla \textit{chroot jail}, potrà comunque
1967 accedere a tutto il filesystem usando pathname relativi.
1968
1969 Ma quando ad un processo restano i privilegi di root esso potrà sempre portare
1970 la directory di lavoro corrente fuori dalla \textit{chroot jail} creando una
1971 sottodirectory ed eseguendo una \func{chroot} su di essa. Per questo motivo
1972 l'uso di questa funzione non ha molto senso quando un processo necessita dei
1973 privilegi di root per le sue normali operazioni.
1974
1975 Un caso tipico di uso di \func{chroot} è quello di un server ftp anonimo, in
1976 questo caso infatti si vuole che il server veda solo i file che deve
1977 trasferire, per cui in genere si esegue una \func{chroot} sulla directory che
1978 contiene i file.  Si tenga presente però che in questo caso occorrerà
1979 replicare all'interno della \textit{chroot jail} tutti i file (in genere
1980 programmi e librerie) di cui il server potrebbe avere bisogno.
1981
1982 %%% Local Variables: 
1983 %%% mode: latex
1984 %%% TeX-master: "gapil"
1985 %%% End: