Indicizzati file sotto /proc, ed ulteriore materiale su ''inotify''.
[gapil.git] / fileadv.tex
1 %% fileadv.tex
2 %%
3 %% Copyright (C) 2000-2007 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11 \chapter{La gestione avanzata dei file}
12 \label{cha:file_advanced}
13
14 In questo capitolo affronteremo le tematiche relative alla gestione avanzata
15 dei file. In particolare tratteremo delle funzioni di input/output avanzato,
16 che permettono una gestione più sofisticata dell'I/O su file, a partire da
17 quelle che permettono di gestire l'accesso contemporaneo a più file, per
18 concludere con la gestione dell'I/O mappato in memoria. Dedicheremo poi la
19 fine del capitolo alle problematiche del \textit{file locking}.
20
21
22 \section{L'\textit{I/O multiplexing}}
23 \label{sec:file_multiplexing}
24
25 Uno dei problemi che si presentano quando si deve operare contemporaneamente
26 su molti file usando le funzioni illustrate in
27 cap.~\ref{cha:file_unix_interface} e cap.~\ref{cha:files_std_interface} è che
28 si può essere bloccati nelle operazioni su un file mentre un altro potrebbe
29 essere disponibile. L'\textit{I/O multiplexing} nasce risposta a questo
30 problema. In questa sezione forniremo una introduzione a questa problematica
31 ed analizzeremo le varie funzioni usate per implementare questa modalità di
32 I/O.
33
34
35 \subsection{La problematica dell'\textit{I/O multiplexing}}
36 \label{sec:file_noblocking}
37
38 Abbiamo visto in sez.~\ref{sec:sig_gen_beha}, affrontando la suddivisione fra
39 \textit{fast} e \textit{slow} system call,\index{system~call~lente} che in
40 certi casi le funzioni di I/O possono bloccarsi indefinitamente.\footnote{si
41   ricordi però che questo può accadere solo per le pipe, i socket ed alcuni
42   file di dispositivo\index{file!di~dispositivo}; sui file normali le funzioni
43   di lettura e scrittura ritornano sempre subito.}  Ad esempio le operazioni
44 di lettura possono bloccarsi quando non ci sono dati disponibili sul
45 descrittore su cui si sta operando.
46
47 Questo comportamento causa uno dei problemi più comuni che ci si trova ad
48 affrontare nelle operazioni di I/O, che si verifica quando si deve operare con
49 più file descriptor eseguendo funzioni che possono bloccarsi senza che sia
50 possibile prevedere quando questo può avvenire (il caso più classico è quello
51 di un server in attesa di dati in ingresso da vari client). Quello che può
52 accadere è di restare bloccati nell'eseguire una operazione su un file
53 descriptor che non è ``\textsl{pronto}'', quando ce ne potrebbe essere un
54 altro disponibile. Questo comporta nel migliore dei casi una operazione
55 ritardata inutilmente nell'attesa del completamento di quella bloccata, mentre
56 nel peggiore dei casi (quando la conclusione della operazione bloccata dipende
57 da quanto si otterrebbe dal file descriptor ``\textsl{disponibile}'') si
58 potrebbe addirittura arrivare ad un \itindex{deadlock} \textit{deadlock}.
59
60 Abbiamo già accennato in sez.~\ref{sec:file_open} che è possibile prevenire
61 questo tipo di comportamento delle funzioni di I/O aprendo un file in
62 \textsl{modalità non-bloccante}, attraverso l'uso del flag \const{O\_NONBLOCK}
63 nella chiamata di \func{open}. In questo caso le funzioni di input/output
64 eseguite sul file che si sarebbero bloccate, ritornano immediatamente,
65 restituendo l'errore \errcode{EAGAIN}.  L'utilizzo di questa modalità di I/O
66 permette di risolvere il problema controllando a turno i vari file descriptor,
67 in un ciclo in cui si ripete l'accesso fintanto che esso non viene garantito.
68 Ovviamente questa tecnica, detta \itindex{polling} \textit{polling}, è
69 estremamente inefficiente: si tiene costantemente impiegata la CPU solo per
70 eseguire in continuazione delle system call che nella gran parte dei casi
71 falliranno.
72
73 Per superare questo problema è stato introdotto il concetto di \textit{I/O
74   multiplexing}, una nuova modalità di operazioni che consente di tenere sotto
75 controllo più file descriptor in contemporanea, permettendo di bloccare un
76 processo quando le operazioni volute non sono possibili, e di riprenderne
77 l'esecuzione una volta che almeno una di quelle richieste sia effettuabile, in
78 modo da poterla eseguire con la sicurezza di non restare bloccati.
79
80 Dato che, come abbiamo già accennato, per i normali file su disco non si ha
81 mai un accesso bloccante, l'uso più comune delle funzioni che esamineremo nei
82 prossimi paragrafi è per i server di rete, in cui esse vengono utilizzate per
83 tenere sotto controllo dei socket; pertanto ritorneremo su di esse con
84 ulteriori dettagli e qualche esempio di utilizzo concreto in
85 sez.~\ref{sec:TCP_sock_multiplexing}.
86
87
88 \subsection{Le funzioni \func{select} e \func{pselect}}
89 \label{sec:file_select}
90
91 Il primo kernel unix-like ad introdurre una interfaccia per l'\textit{I/O
92   multiplexing} è stato BSD,\footnote{la funzione \func{select} è apparsa in
93   BSD4.2 e standardizzata in BSD4.4, ma è stata portata su tutti i sistemi che
94   supportano i socket, compreso le varianti di System V.}  con la funzione
95 \funcd{select}, il cui prototipo è:
96 \begin{functions}
97   \headdecl{sys/time.h}
98   \headdecl{sys/types.h}
99   \headdecl{unistd.h}
100   \funcdecl{int select(int ndfs, fd\_set *readfds, fd\_set *writefds, fd\_set
101     *exceptfds, struct timeval *timeout)}
102   
103   Attende che uno dei file descriptor degli insiemi specificati diventi
104   attivo.
105   
106   \bodydesc{La funzione in caso di successo restituisce il numero di file
107     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
108     caso \var{errno} assumerà uno dei valori:
109   \begin{errlist}
110   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
111     degli insiemi.
112   \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
113   \item[\errcode{EINVAL}] Si è specificato per \param{ndfs} un valore negativo
114     o un valore non valido per \param{timeout}.
115   \end{errlist}
116   ed inoltre \errval{ENOMEM}.
117 }
118 \end{functions}
119
120 La funzione mette il processo in stato di \textit{sleep} (vedi
121 tab.~\ref{tab:proc_proc_states}) fintanto che almeno uno dei file descriptor
122 degli insiemi specificati (\param{readfds}, \param{writefds} e
123 \param{exceptfds}), non diventa attivo, per un tempo massimo specificato da
124 \param{timeout}.
125
126 \itindbeg{file~descriptor~set} 
127
128 Per specificare quali file descriptor si intende \textsl{selezionare}, la
129 funzione usa un particolare oggetto, il \textit{file descriptor set},
130 identificato dal tipo \type{fd\_set}, che serve ad identificare un insieme di
131 file descriptor, in maniera analoga a come un \itindex{signal~set}
132 \textit{signal set} (vedi sez.~\ref{sec:sig_sigset}) identifica un insieme di
133 segnali. Per la manipolazione di questi \textit{file descriptor set} si
134 possono usare delle opportune macro di preprocessore:
135 \begin{functions}
136   \headdecl{sys/time.h}
137   \headdecl{sys/types.h}
138   \headdecl{unistd.h}
139   \funcdecl{void \macro{FD\_ZERO}(fd\_set *set)}
140   Inizializza l'insieme (vuoto).
141
142   \funcdecl{void \macro{FD\_SET}(int fd, fd\_set *set)}
143   Inserisce il file descriptor \param{fd} nell'insieme.
144
145   \funcdecl{void \macro{FD\_CLR}(int fd, fd\_set *set)}
146   Rimuove il file descriptor \param{fd} dall'insieme.
147   
148   \funcdecl{int \macro{FD\_ISSET}(int fd, fd\_set *set)}
149   Controlla se il file descriptor \param{fd} è nell'insieme.
150 \end{functions}
151
152 In genere un \textit{file descriptor set} può contenere fino ad un massimo di
153 \const{FD\_SETSIZE} file descriptor.  Questo valore in origine corrispondeva
154 al limite per il numero massimo di file aperti\footnote{ad esempio in Linux,
155   fino alla serie 2.0.x, c'era un limite di 256 file per processo.}, ma da
156 quando, come nelle versioni più recenti del kernel, non c'è più un limite
157 massimo, esso indica le dimensioni massime dei numeri usati nei \textit{file
158   descriptor set}.\footnote{il suo valore, secondo lo standard POSIX
159   1003.1-2001, è definito in \file{sys/select.h}, ed è pari a 1024.} Si tenga
160 presente che i \textit{file descriptor set} devono sempre essere inizializzati
161 con \macro{FD\_ZERO}; passare a \func{select} un valore non inizializzato può
162 dar luogo a comportamenti non prevedibili; allo stesso modo usare
163 \macro{FD\_SET} o \macro{FD\_CLR} con un file descriptor il cui valore eccede
164 \const{FD\_SETSIZE} può dare luogo ad un comportamento indefinito.
165
166 La funzione richiede di specificare tre insiemi distinti di file descriptor;
167 il primo, \param{readfds}, verrà osservato per rilevare la disponibilità di
168 effettuare una lettura,\footnote{per essere precisi la funzione ritornerà in
169   tutti i casi in cui la successiva esecuzione di \func{read} risulti non
170   bloccante, quindi anche in caso di \textit{end-of-file}; inoltre con Linux
171   possono verificarsi casi particolari, ad esempio quando arrivano dati su un
172   socket dalla rete che poi risultano corrotti e vengono scartati, può
173   accadere che \func{select} riporti il relativo file descriptor come
174   leggibile, ma una successiva \func{read} si blocchi.} il secondo,
175 \param{writefds}, per verificare la possibilità effettuare una scrittura ed il
176 terzo, \param{exceptfds}, per verificare l'esistenza di eccezioni (come i dati
177 urgenti \itindex{out-of-band} su un socket, vedi
178 sez.~\ref{sec:TCP_urgent_data}).
179
180 Dato che in genere non si tengono mai sotto controllo fino a
181 \const{FD\_SETSIZE} file contemporaneamente la funzione richiede di
182 specificare qual è il valore più alto fra i file descriptor indicati nei tre
183 insiemi precedenti. Questo viene fatto per efficienza, per evitare di passare
184 e far controllare al kernel una quantità di memoria superiore a quella
185 necessaria. Questo limite viene indicato tramite l'argomento \param{ndfs}, che
186 deve corrispondere al valore massimo aumentato di uno.\footnote{si ricordi che
187   i file descriptor sono numerati progressivamente a partire da zero, ed il
188   valore indica il numero più alto fra quelli da tenere sotto controllo;
189   dimenticarsi di aumentare di uno il valore di \param{ndfs} è un errore
190   comune.}  Infine l'argomento \param{timeout} specifica un tempo massimo di
191 attesa prima che la funzione ritorni; se impostato a \val{NULL} la funzione
192 attende indefinitamente. Si può specificare anche un tempo nullo (cioè una
193 struttura \struct{timeval} con i campi impostati a zero), qualora si voglia
194 semplicemente controllare lo stato corrente dei file descriptor.
195
196 La funzione restituisce il numero di file descriptor pronti,\footnote{questo è
197   il comportamento previsto dallo standard, ma la standardizzazione della
198   funzione è recente, ed esistono ancora alcune versioni di Unix che non si
199   comportano in questo modo.}  e ciascun insieme viene sovrascritto per
200 indicare quali sono i file descriptor pronti per le operazioni ad esso
201 relative, in modo da poterli controllare con \macro{FD\_ISSET}.  Se invece si
202 ha un timeout viene restituito un valore nullo e gli insiemi non vengono
203 modificati.  In caso di errore la funzione restituisce -1, ed i valori dei tre
204 insiemi sono indefiniti e non si può fare nessun affidamento sul loro
205 contenuto.
206
207 \itindend{file~descriptor~set}
208
209 Una volta ritornata la funzione si potrà controllare quali sono i file
210 descriptor pronti ed operare su di essi, si tenga presente però che si tratta
211 solo di un suggerimento, esistono infatti condizioni\footnote{ad esempio
212   quando su un socket arrivano dei dati che poi vengono scartati perché
213   corrotti.} in cui \func{select} può riportare in maniera spuria che un file
214 descriptor è pronto in lettura, quando una successiva lettura si bloccherebbe.
215 Per questo quando si usa \textit{I/O multiplexing} è sempre raccomandato l'uso
216 delle funzioni di lettura e scrittura in modalità non bloccante.
217
218 In Linux \func{select} modifica anche il valore di \param{timeout},
219 impostandolo al tempo restante in caso di interruzione prematura; questo è
220 utile quando la funzione viene interrotta da un segnale, in tal caso infatti
221 si ha un errore di \errcode{EINTR}, ed occorre rilanciare la funzione; in
222 questo modo non è necessario ricalcolare tutte le volte il tempo
223 rimanente.\footnote{questo può causare problemi di portabilità sia quando si
224   trasporta codice scritto su Linux che legge questo valore, sia quando si
225   usano programmi scritti per altri sistemi che non dispongono di questa
226   caratteristica e ricalcolano \param{timeout} tutte le volte. In genere la
227   caratteristica è disponibile nei sistemi che derivano da System V e non
228   disponibile per quelli che derivano da BSD.}
229
230 Uno dei problemi che si presentano con l'uso di \func{select} è che il suo
231 comportamento dipende dal valore del file descriptor che si vuole tenere sotto
232 controllo.  Infatti il kernel riceve con \param{ndfs} un limite massimo per
233 tale valore, e per capire quali sono i file descriptor da tenere sotto
234 controllo dovrà effettuare una scansione su tutto l'intervallo, che può anche
235 essere molto ampio anche se i file descriptor sono solo poche unità; tutto ciò
236 ha ovviamente delle conseguenze ampiamente negative per le prestazioni.
237
238 Inoltre c'è anche il problema che il numero massimo dei file che si possono
239 tenere sotto controllo, la funzione è nata quando il kernel consentiva un
240 numero massimo di 1024 file descriptor per processo, adesso che il numero può
241 essere arbitrario si viene a creare una dipendenza del tutto artificiale dalle
242 dimensioni della struttura \type{fd\_set}, che può necessitare di essere
243 estesa, con ulteriori perdite di prestazioni. 
244
245 Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
246   multiplexing}, introdotto solo con le ultime revisioni dello standard (POSIX
247 1003.1g-2000 e POSIX 1003.1-2001). La scelta è stata quella di seguire
248 l'interfaccia creata da BSD, ma prevede che tutte le funzioni ad esso relative
249 vengano dichiarate nell'header \file{sys/select.h}, che sostituisce i
250 precedenti, ed inoltre aggiunge a \func{select} una nuova funzione
251 \funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
252   l'header \file{sys/select.h}, compaiono in Linux a partire dalle \acr{glibc}
253   2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header, le
254   \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
255   senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
256   \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
257   \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
258   maggiore di 600.} il cui prototipo è:
259 \begin{prototype}{sys/select.h}
260   {int pselect(int n, fd\_set *readfds, fd\_set *writefds, fd\_set *exceptfds,
261     struct timespec *timeout, sigset\_t *sigmask)}
262   
263   Attende che uno dei file descriptor degli insiemi specificati diventi
264   attivo.
265   
266   \bodydesc{La funzione in caso di successo restituisce il numero di file
267     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
268     caso \var{errno} assumerà uno dei valori:
269   \begin{errlist}
270   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
271     degli insiemi.
272   \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
273   \item[\errcode{EINVAL}] Si è specificato per \param{ndfs} un valore negativo
274     o un valore non valido per \param{timeout}.
275   \end{errlist}
276   ed inoltre \errval{ENOMEM}.}
277 \end{prototype}
278
279 La funzione è sostanzialmente identica a \func{select}, solo che usa una
280 struttura \struct{timespec} (vedi fig.~\ref{fig:sys_timeval_struct}) per
281 indicare con maggiore precisione il timeout e non ne aggiorna il valore in
282 caso di interruzione.\footnote{in realtà la system call di Linux aggiorna il
283   valore al tempo rimanente, ma la funzione fornita dalle \acr{glibc} modifica
284   questo comportamento passando alla system call una variabile locale, in modo
285   da mantenere l'aderenza allo standard POSIX che richiede che il valore di
286   \param{timeout} non sia modificato.} Inoltre prende un argomento aggiuntivo
287 \param{sigmask} che è il puntatore ad una maschera di segnali (si veda
288 sez.~\ref{sec:sig_sigmask}).  La maschera corrente viene sostituita da questa
289 immediatamente prima di eseguire l'attesa, e ripristinata al ritorno della
290 funzione.
291
292 L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
293 \textit{race condition} \itindex{race~condition} quando ci si deve porre in
294 attesa sia di un segnale che di dati. La tecnica classica è quella di
295 utilizzare il gestore per impostare una variabile globale e controllare questa
296 nel corpo principale del programma; abbiamo visto in
297 sez.~\ref{sec:sig_example} come questo lasci spazio a possibili race
298 condition, per cui diventa essenziale utilizzare \func{sigprocmask} per
299 disabilitare la ricezione del segnale prima di eseguire il controllo e
300 riabilitarlo dopo l'esecuzione delle relative operazioni, onde evitare
301 l'arrivo di un segnale immediatamente dopo il controllo, che andrebbe perso.
302
303 Nel nostro caso il problema si pone quando oltre al segnale si devono tenere
304 sotto controllo anche dei file descriptor con \func{select}, in questo caso si
305 può fare conto sul fatto che all'arrivo di un segnale essa verrebbe interrotta
306 e si potrebbero eseguire di conseguenza le operazioni relative al segnale e
307 alla gestione dati con un ciclo del tipo:
308 \includecodesnip{listati/select_race.c} 
309 qui però emerge una \itindex{race~condition} \textit{race condition}, perché
310 se il segnale arriva prima della chiamata a \func{select}, questa non verrà
311 interrotta, e la ricezione del segnale non sarà rilevata.
312
313 Per questo è stata introdotta \func{pselect} che attraverso l'argomento
314 \param{sigmask} permette di riabilitare la ricezione il segnale
315 contestualmente all'esecuzione della funzione,\footnote{in Linux però, fino al
316   kernel 2.6.16, non era presente la relativa system call, e la funzione era
317   implementata nelle \acr{glibc} attraverso \func{select} (vedi \texttt{man
318     select\_tut}) per cui la possibilità di \itindex{race~condition}
319   \textit{race condition} permaneva; in tale situazione si può ricorrere ad una
320   soluzione alternativa, chiamata \itindex{self-pipe trick} \textit{self-pipe
321     trick}, che consiste nell'aprire una pipe (vedi sez.~\ref{sec:ipc_pipes})
322   ed usare \func{select} sul capo in lettura della stessa; si può indicare
323   l'arrivo di un segnale scrivendo sul capo in scrittura all'interno del
324   gestore dello stesso; in questo modo anche se il segnale va perso prima
325   della chiamata di \func{select} questa lo riconoscerà comunque dalla
326   presenza di dati sulla pipe.} ribloccandolo non appena essa ritorna, così
327 che il precedente codice potrebbe essere riscritto nel seguente modo:
328 \includecodesnip{listati/pselect_norace.c} 
329 in questo caso utilizzando \var{oldmask} durante l'esecuzione di
330 \func{pselect} la ricezione del segnale sarà abilitata, ed in caso di
331 interruzione si potranno eseguire le relative operazioni.
332
333
334 \subsection{Le funzioni \func{poll} e \func{ppoll}}
335 \label{sec:file_poll}
336
337 Nello sviluppo di System V, invece di utilizzare l'interfaccia di
338 \func{select}, che è una estensione tipica di BSD, è stata introdotta un'altra
339 interfaccia, basata sulla funzione \funcd{poll},\footnote{la funzione è
340   prevista dallo standard XPG4, ed è stata introdotta in Linux come system
341   call a partire dal kernel 2.1.23 ed inserita nelle \acr{libc} 5.4.28.} il
342 cui prototipo è:
343 \begin{prototype}{sys/poll.h}
344   {int poll(struct pollfd *ufds, unsigned int nfds, int timeout)}
345   
346   La funzione attende un cambiamento di stato su un insieme di file
347   descriptor.
348   
349   \bodydesc{La funzione restituisce il numero di file descriptor con attività
350     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
351     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
352   \begin{errlist}
353   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
354     degli insiemi.
355   \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
356   \item[\errcode{EINVAL}] Il valore di \param{nfds} eccede il limite
357     \macro{RLIMIT\_NOFILE}.
358   \end{errlist}
359   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
360 \end{prototype}
361
362 La funzione permette di tenere sotto controllo contemporaneamente \param{ndfs}
363 file descriptor, specificati attraverso il puntatore \param{ufds} ad un
364 vettore di strutture \struct{pollfd}.  Come con \func{select} si può
365 interrompere l'attesa dopo un certo tempo, questo deve essere specificato con
366 l'argomento \param{timeout} in numero di millisecondi: un valore negativo
367 indica un'attesa indefinita, mentre un valore nullo comporta il ritorno
368 immediato (e può essere utilizzato per impiegare \func{poll} in modalità
369 \textsl{non-bloccante}).
370
371 Per ciascun file da controllare deve essere inizializzata una struttura
372 \struct{pollfd} nel vettore indicato dall'argomento \param{ufds}.  La
373 struttura, la cui definizione è riportata in fig.~\ref{fig:file_pollfd},
374 prevede tre campi: in \var{fd} deve essere indicato il numero del file
375 descriptor da controllare, in \var{events} deve essere specificata una
376 maschera binaria di flag che indichino il tipo di evento che si vuole
377 controllare, mentre in \var{revents} il kernel restituirà il relativo
378 risultato.  Usando un valore negativo per \param{fd} la corrispondente
379 struttura sarà ignorata da \func{poll}. Dato che i dati in ingresso sono del
380 tutto indipendenti da quelli in uscita (che vengono restituiti in
381 \var{revents}) non è necessario reinizializzare tutte le volte il valore delle
382 strutture \struct{pollfd} a meno di non voler cambiare qualche condizione.
383
384 \begin{figure}[!htb]
385   \footnotesize \centering
386   \begin{minipage}[c]{15cm}
387     \includestruct{listati/pollfd.h}
388   \end{minipage} 
389   \normalsize 
390   \caption{La struttura \structd{pollfd}, utilizzata per specificare le
391     modalità di controllo di un file descriptor alla funzione \func{poll}.}
392   \label{fig:file_pollfd}
393 \end{figure}
394
395 Le costanti che definiscono i valori relativi ai bit usati nelle maschere
396 binarie dei campi \var{events} e \var{revents} sono riportati in
397 tab.~\ref{tab:file_pollfd_flags}, insieme al loro significato. Le si sono
398 suddivise in tre gruppi, nel primo gruppo si sono indicati i bit utilizzati
399 per controllare l'attività in ingresso, nel secondo quelli per l'attività in
400 uscita, mentre il terzo gruppo contiene dei valori che vengono utilizzati solo
401 nel campo \var{revents} per notificare delle condizioni di errore. 
402
403 \begin{table}[htb]
404   \centering
405   \footnotesize
406   \begin{tabular}[c]{|l|l|}
407     \hline
408     \textbf{Flag}  & \textbf{Significato} \\
409     \hline
410     \hline
411     \const{POLLIN}    & È possibile la lettura.\\
412     \const{POLLRDNORM}& Sono disponibili in lettura dati normali.\\ 
413     \const{POLLRDBAND}& Sono disponibili in lettura dati prioritari.\\
414     \const{POLLPRI}   & È possibile la lettura di \itindex{out-of-band} dati
415                         urgenti.\\ 
416     \hline
417     \const{POLLOUT}   & È possibile la scrittura immediata.\\
418     \const{POLLWRNORM}& È possibile la scrittura di dati normali.\\ 
419     \const{POLLWRBAND}& È possibile la scrittura di dati prioritari.\\
420     \hline
421     \const{POLLERR}   & C'è una condizione di errore.\\
422     \const{POLLHUP}   & Si è verificato un hung-up.\\
423     \const{POLLNVAL}  & Il file descriptor non è aperto.\\
424     \hline
425     \const{POLLMSG}   & Definito per compatibilità con SysV.\\
426     \hline    
427   \end{tabular}
428   \caption{Costanti per l'identificazione dei vari bit dei campi
429     \var{events} e \var{revents} di \struct{pollfd}.}
430   \label{tab:file_pollfd_flags}
431 \end{table}
432
433 Il valore \const{POLLMSG} non viene utilizzato ed è definito solo per
434 compatibilità con l'implementazione di SysV che usa gli
435 \textit{stream};\footnote{essi sono una interfaccia specifica di SysV non
436   presente in Linux, e non hanno nulla a che fare con i file \textit{stream}
437   delle librerie standard del C.} è da questi che derivano i nomi di alcune
438 costanti, in quanto per essi sono definite tre classi di dati:
439 \textsl{normali}, \textit{prioritari} ed \textit{urgenti}.  In Linux la
440 distinzione ha senso solo per i dati urgenti \itindex{out-of-band} dei socket
441 (vedi sez.~\ref{sec:TCP_urgent_data}), ma su questo e su come \func{poll}
442 reagisce alle varie condizioni dei socket torneremo in
443 sez.~\ref{sec:TCP_serv_poll}, dove vedremo anche un esempio del suo utilizzo.
444 Si tenga conto comunque che le costanti relative ai diversi tipi di dati (come
445 \const{POLLRDNORM} e \const{POLLRDBAND}) sono utilizzabili soltanto qualora si
446 sia definita la macro \macro{\_XOPEN\_SOURCE}.\footnote{e ci si ricordi di
447   farlo sempre in testa al file, definirla soltanto prima di includere
448   \file{sys/poll.h} non è sufficiente.}
449
450 In caso di successo funzione ritorna restituendo il numero di file (un valore
451 positivo) per i quali si è verificata una delle condizioni di attesa richieste
452 o per i quali si è verificato un errore (nel qual caso vengono utilizzati i
453 valori di tab.~\ref{tab:file_pollfd_flags} esclusivi di \var{revents}). Un
454 valore nullo indica che si è raggiunto il timeout, mentre un valore negativo
455 indica un errore nella chiamata, il cui codice viene riportato al solito
456 tramite \var{errno}.
457
458 L'uso di \func{poll} consente di superare alcuni dei problemi illustrati in
459 precedenza per \func{select}; anzitutto, dato che in questo caso si usa un
460 vettore di strutture \struct{pollfd} di dimensione arbitraria, non esiste il
461 limite introdotto dalle dimensioni massime di un \itindex{file~descriptor~set}
462 \textit{file descriptor set} e la dimensione dei dati passati al kernel
463 dipende solo dal numero dei file descriptor che si vogliono controllare, non
464 dal loro valore.\footnote{anche se usando dei bit un \textit{file descriptor
465     set} può essere più efficiente di un vettore di strutture \struct{pollfd},
466   qualora si debba osservare un solo file descriptor con un valore molto alto
467   ci si troverà ad utilizzare inutilmente un maggiore quantitativo di
468   memoria.} 
469
470 Inoltre con \func{select} lo stesso \itindex{file~descriptor~set} \textit{file
471   descriptor set} è usato sia in ingresso che in uscita, e questo significa
472 che tutte le volte che si vuole ripetere l'operazione occorre reinizializzarlo
473 da capo. Questa operazione, che può essere molto onerosa se i file descriptor
474 da tenere sotto osservazione sono molti, non è invece necessaria con
475 \func{poll}.
476
477 Abbiamo visto in sez.~\ref{sec:file_select} come lo standard POSIX preveda una
478 variante di \func{select} che consente di gestire correttamente la ricezione
479 dei segnali nell'attesa su un file descriptor.  Con l'introduzione di una
480 implementazione reale di \func{pselect} nel kernel 2.6.16, è stata aggiunta
481 anche una analoga funzione che svolga lo stesso ruolo per \func{poll}.
482
483 In questo caso si tratta di una estensione che è specifica di Linux e non è
484 prevista da nessuno standard; essa può essere utilizzata esclusivamente se si
485 definisce la macro \macro{\_GNU\_SOURCE} ed ovviamente non deve essere usata
486 se si ha a cuore la portabilità. La funzione è \funcd{ppoll}, ed il suo
487 prototipo è:
488 \begin{prototype}{sys/poll.h}
489   {int ppoll(struct pollfd *fds, nfds\_t nfds, const struct timespec *timeout,
490     const sigset\_t *sigmask)}
491   
492   La funzione attende un cambiamento di stato su un insieme di file
493   descriptor.
494   
495   \bodydesc{La funzione restituisce il numero di file descriptor con attività
496     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
497     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
498   \begin{errlist}
499   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato in uno
500     degli insiemi.
501   \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
502   \item[\errcode{EINVAL}] Il valore di \param{nfds} eccede il limite
503     \macro{RLIMIT\_NOFILE}.
504   \end{errlist}
505   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
506 \end{prototype}
507
508 La funzione ha lo stesso comportamento di \func{poll}, solo che si può
509 specificare, con l'argomento \param{sigmask}, il puntatore ad una maschera di
510 segnali; questa sarà la maschera utilizzata per tutto il tempo che la funzione
511 resterà in attesa, all'uscita viene ripristinata la maschera originale.  L'uso
512 di questa funzione è cioè equivalente, come illustrato nella pagina di
513 manuale, all'esecuzione atomica del seguente codice:
514 \includecodesnip{listati/ppoll_means.c} 
515
516 Eccetto per \param{timeout}, che come per \func{pselect} deve essere un
517 puntatore ad una struttura \struct{timespec}, gli altri argomenti comuni con
518 \func{poll} hanno lo stesso significato, e la funzione restituisce gli stessi
519 risultati illustrati in precedenza.
520
521
522 \subsection{L'interfaccia di \textit{epoll}}
523 \label{sec:file_epoll}
524
525 \itindbeg{epoll}
526
527 Nonostante \func{poll} presenti alcuni vantaggi rispetto a \func{select},
528 anche questa funzione non è molto efficiente quando deve essere utilizzata con
529 un gran numero di file descriptor,\footnote{in casi del genere \func{select}
530   viene scartata a priori, perché può avvenire che il numero di file
531   descriptor ecceda le dimensioni massime di un \itindex{file~descriptor~set}
532   \textit{file descriptor set}.} in particolare nel caso in cui solo pochi di
533 questi diventano attivi. Il problema in questo caso è che il tempo impiegato
534 da \func{poll} a trasferire i dati da e verso il kernel è proporzionale al
535 numero di file descriptor osservati, non a quelli che presentano attività.
536
537 Quando ci sono decine di migliaia di file descriptor osservati e migliaia di
538 eventi al secondo,\footnote{il caso classico è quello di un server web di un
539   sito con molti accessi.} l'uso di \func{poll} comporta la necessità di
540 trasferire avanti ed indietro da user space a kernel space la lunga lista
541 delle strutture \struct{pollfd} migliaia di volte al secondo. A questo poi si
542 aggiunge il fatto che la maggior parte del tempo di esecuzione sarà impegnato
543 ad eseguire una scansione su tutti i file descriptor tenuti sotto controllo
544 per determinare quali di essi (in genere una piccola percentuale) sono
545 diventati attivi. In una situazione come questa l'uso delle funzioni classiche
546 dell'interfaccia dell'\textit{I/O multiplexing} viene a costituire un collo di
547 bottiglia che degrada irrimediabilmente le prestazioni.
548
549 Per risolvere questo tipo di situazioni sono state ideate delle interfacce
550 specialistiche\footnote{come \texttt{/dev/poll} in Solaris, o \texttt{kqueue}
551   in BSD.} il cui scopo fondamentale è quello di restituire solamente le
552 informazioni relative ai file descriptor osservati che presentano una
553 attività, evitando così le problematiche appena illustrate. In genere queste
554 prevedono che si registrino una sola volta i file descriptor da tenere sotto
555 osservazione, e forniscono un meccanismo che notifica quali di questi
556 presentano attività.
557
558 Le modalità con cui avviene la notifica sono due, la prima è quella classica
559 (quella usata da \func{poll} e \func{select}) che viene chiamata \textit{level
560   triggered}.\footnote{la nomenclatura è stata introdotta da Jonathan Lemon in
561   un articolo su \texttt{kqueue} al BSDCON 2000, e deriva da quella usata
562   nell'elettronica digitale.} In questa modalità vengono notificati i file
563 descriptor che sono \textsl{pronti} per l'operazione richiesta, e questo
564 avviene indipendentemente dalle operazioni che possono essere state fatte su
565 di essi a partire dalla precedente notifica.  Per chiarire meglio il concetto
566 ricorriamo ad un esempio: se su un file descriptor sono diventati disponibili
567 in lettura 2000 byte ma dopo la notifica ne sono letti solo 1000 (ed è quindi
568 possibile eseguire una ulteriore lettura dei restanti 1000), in modalità
569 \textit{level triggered} questo sarà nuovamente notificato come
570 \textsl{pronto}.
571
572 La seconda modalità, è detta \textit{edge triggered}, e prevede che invece
573 vengano notificati solo i file descriptor che hanno subito una transizione da
574 \textsl{non pronti} a \textsl{pronti}. Questo significa che in modalità
575 \textit{edge triggered} nel caso del precedente esempio il file descriptor
576 diventato pronto da cui si sono letti solo 1000 byte non verrà nuovamente
577 notificato come pronto, nonostante siano ancora disponibili in lettura 1000
578 byte. Solo una volta che si saranno esauriti tutti i byte disponibili, e che
579 il file descriptor sia tornato non essere pronto, si potrà ricevere una
580 ulteriore notifica qualora ritornasse pronto.
581
582 Nel caso di Linux al momento la sola interfaccia che fornisce questo tipo di
583 servizio è \textit{epoll},\footnote{l'interfaccia è stata creata da Davide
584   Libenzi, ed è stata introdotta per la prima volta nel kernel 2.5.44, ma la
585   sua forma definitiva è stata raggiunta nel kernel 2.5.66.} anche se sono in
586 discussione altre interfacce con le quali si potranno effettuare lo stesso
587 tipo di operazioni;\footnote{al momento della stesura di queste note (Giugno
588   2007) un'altra interfaccia proposta è quella di \textit{kevent}, che
589   fornisce un sistema di notifica di eventi generico in grado di fornire le
590   stesse funzionalità di \textit{epoll}, esiste però una forte discussione
591   intorno a tutto ciò e niente di definito.}  \textit{epoll} è in grado di
592 operare sia in modalità \textit{level triggered} che \textit{edge triggered}.
593
594 La prima versione \textit{epoll} prevedeva l'apertura di uno speciale file di
595 dispositivo, \texttt{/dev/epoll}, per ottenere un file descriptor da
596 utilizzare con le funzioni dell'interfaccia,\footnote{il backporting
597   dell'interfaccia per il kernel 2.4, non ufficiale, utilizza sempre questo
598   file.} ma poi si è passati all'uso una apposita \textit{system call}.  Il
599 primo passo per usare l'interfaccia di \textit{epoll} è pertanto quello di
600 chiamare la funzione \funcd{epoll\_create}, il cui prototipo è:
601 \begin{prototype}{sys/epoll.h}
602   {int epoll\_create(int size)}
603   
604   Apre un file descriptor per \textit{epoll}.
605   
606   \bodydesc{La funzione restituisce un file descriptor in caso di successo, o
607     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
608   \begin{errlist}
609   \item[\errcode{EINVAL}] si è specificato un valore di \param{size} non
610     positivo.
611   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
612     nel sistema.
613   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
614     l'istanza.
615   \end{errlist}
616 }
617 \end{prototype}
618
619 La funzione restituisce un file descriptor speciale,\footnote{esso non è
620   associato a nessun file su disco, inoltre a differenza dei normali file
621   descriptor non può essere inviato ad un altro processo attraverso un socket
622   locale (vedi sez.~\ref{sec:sock_fd_passing}).} detto anche \textit{epoll
623   descriptor}, che viene associato alla infrastruttura utilizzata dal kernel
624 per gestire la notifica degli eventi; l'argomento \param{size} serve a dare
625 l'indicazione del numero di file descriptor che si vorranno tenere sotto
626 controllo, ma costituisce solo un suggerimento per semplificare l'allocazione
627 di risorse sufficienti, non un valore massimo.
628
629 Una volta ottenuto un file descriptor per \textit{epoll} il passo successivo è
630 indicare quali file descriptor mettere sotto osservazione e quali operazioni
631 controllare, per questo si deve usare la seconda funzione dell'interfaccia,
632 \funcd{epoll\_ctl}, il cui prototipo è:
633 \begin{prototype}{sys/epoll.h}
634   {int epoll\_ctl(int epfd, int op, int fd, struct epoll\_event *event)}
635   
636   Esegue le operazioni di controllo di \textit{epoll}.
637   
638   \bodydesc{La funzione restituisce $0$ in caso di successo o $-1$ in caso di
639     errore, nel qual caso \var{errno} assumerà uno dei valori:
640   \begin{errlist}
641   \item[\errcode{EBADF}] il file descriptor \param{epfd} o \param{fd} non sono
642     validi.
643   \item[\errcode{EEXIST}] l'operazione richiesta è \const{EPOLL\_CTL\_ADD} ma
644     \param{fd} è già stato inserito in \param{epfd}.
645   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
646     con \func{epoll\_create}, o \param{fd} è lo stesso \param{epfd} o
647     l'operazione richiesta con \param{op} non è supportata.
648   \item[\errcode{ENOENT}] l'operazione richiesta è \const{EPOLL\_CTL\_MOD} o
649     \const{EPOLL\_CTL\_DEL} ma \param{fd} non è inserito in \param{epfd}.
650   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel gestire
651     l'operazione richiesta.
652   \item[\errcode{EPERM}] il file \param{fd} non supporta \textit{epoll}.
653   \end{errlist}
654 }
655 \end{prototype}
656
657 Il comportamento della funzione viene controllato dal valore dall'argomento
658 \param{op} che consente di specificare quale operazione deve essere eseguita.
659 Le costanti che definiscono i valori utilizzabili per \param{op}
660 sono riportate in tab.~\ref{tab:epoll_ctl_operation}, assieme al significato
661 delle operazioni cui fanno riferimento.
662
663 \begin{table}[htb]
664   \centering
665   \footnotesize
666   \begin{tabular}[c]{|l|p{8cm}|}
667     \hline
668     \textbf{Valore}  & \textbf{Significato} \\
669     \hline
670     \hline
671     \const{EPOLL\_CTL\_ADD}& Aggiunge un nuovo file descriptor da osservare
672                              \param{fd} alla lista dei file descriptor
673                              controllati tramite \param{epfd}, in
674                              \param{event} devono essere specificate le
675                              modalità di osservazione.\\
676     \const{EPOLL\_CTL\_MOD}& Modifica le modalità di osservazione del file
677                              descriptor \param{fd} secondo il contenuto di
678                              \param{event}.\\
679     \const{EPOLL\_CTL\_DEL}& Rimuove il file descriptor \param{fd} dalla lista
680                              dei file controllati tramite \param{epfd}.\\
681     \hline    
682   \end{tabular}
683   \caption{Valori dell'argomento \param{op} che consentono di scegliere quale
684     operazione di controllo effettuare con la funzione \func{epoll\_ctl}.} 
685   \label{tab:epoll_ctl_operation}
686 \end{table}
687
688 La funzione prende sempre come primo argomento un file descriptor di
689 \textit{epoll}, \param{epfd}, che deve essere stato ottenuto in precedenza con
690 una chiamata a \func{epoll\_create}. L'argomento \param{fd} indica invece il
691 file descriptor che si vuole tenere sotto controllo, quest'ultimo può essere
692 un qualunque file descriptor utilizzabile con \func{poll}, ed anche un altro
693 file descriptor di \textit{epoll}, ma non lo stesso \param{epfd}.
694
695 L'ultimo argomento, \param{event}, deve essere un puntatore ad una struttura
696 di tipo \struct{epoll\_event}, ed ha significato solo con le operazioni
697 \const{EPOLL\_CTL\_MOD} e \const{EPOLL\_CTL\_ADD}, per le quali serve ad
698 indicare quale tipo di evento relativo ad \param{fd} si vuole che sia tenuto
699 sotto controllo.  L'argomento viene ignorato con l'operazione
700 \const{EPOLL\_CTL\_DEL}.\footnote{fino al kernel 2.6.9 era comunque richiesto
701   che questo fosse un puntatore valido, anche se poi veniva ignorato, a
702   partire dal 2.6.9 si può specificare anche anche un valore \texttt{NULL}.}
703
704
705
706 \begin{figure}[!htb]
707   \footnotesize \centering
708   \begin{minipage}[c]{15cm}
709     \includestruct{listati/epoll_event.h}
710   \end{minipage} 
711   \normalsize 
712   \caption{La struttura \structd{epoll\_event}, che consente di specificare
713     gli eventi associati ad un file descriptor controllato con
714     \textit{epoll}.}
715   \label{fig:epoll_event}
716 \end{figure}
717
718 La struttura \struct{epoll\_event} è l'analoga di \struct{pollfd} e come
719 quest'ultima serve sia in ingresso (quando usata con \func{epoll\_ctl}) ad
720 impostare quali eventi osservare, che in uscita (nei risultati ottenuti con
721 \func{epoll\_wait}) per ricevere le notifiche degli eventi avvenuti.  La sua
722 definizione è riportata in fig.~\ref{fig:epoll_event}. 
723
724 Il primo campo, \var{events}, è una maschera binaria in cui ciascun bit
725 corrisponde o ad un tipo di evento, o una modalità di notifica; detto campo
726 deve essere specificato come OR aritmetico delle costanti riportate in
727 tab.~\ref{tab:epoll_events}. Il secondo campo, \var{data}, serve ad indicare a
728 quale file descriptor si intende fare riferimento, ed in astratto può
729 contenere un valore qualsiasi che permetta di identificarlo, di norma comunque
730 si usa come valore lo stesso \param{fd}.
731
732 \begin{table}[htb]
733   \centering
734   \footnotesize
735   \begin{tabular}[c]{|l|p{8cm}|}
736     \hline
737     \textbf{Valore}  & \textbf{Significato} \\
738     \hline
739     \hline
740     \const{EPOLLIN}     & Il file è pronto per le operazioni di lettura
741                           (analogo di \const{POLLIN}).\\
742     \const{EPOLLOUT}    & Il file è pronto per le operazioni di scrittura
743                           (analogo di \const{POLLOUT}).\\
744     \const{EPOLLRDHUP}  & l'altro capo di un socket di tipo
745                           \const{SOCK\_STREAM} (vedi sez.~\ref{sec:sock_type})
746                           ha chiuso la connessione o il capo in scrittura
747                           della stessa (vedi sez.~\ref{sec:TCP_shutdown}).\\
748     \const{EPOLLPRI}    & Ci sono \itindex{out-of-band} dati urgenti
749                           disponibili in lettura (analogo di
750                           \const{POLLPRI}); questa condizione viene comunque
751                           riportata in uscita, e non è necessaria impostarla
752                           in ingresso.\\ 
753     \const{EPOLLERR}    & Si è verificata una condizione di errore 
754                           (analogo di \const{POLLERR}); questa condizione
755                           viene comunque riportata in uscita, e non è
756                           necessaria impostarla in ingresso.\\
757     \const{EPOLLHUP}    & Si è verificata una condizione di hung-up.\\
758     \const{EPOLLET}     & Imposta la notifica in modalità \textit{edge
759                             triggered} per il file descriptor associato.\\ 
760     \const{EPOLLONESHOT}& Imposta la modalità \textit{one-shot} per il file
761                           descriptor associato.\footnotemark\\
762     \hline    
763   \end{tabular}
764   \caption{Costanti che identificano i bit del campo \param{events} di
765     \struct{epoll\_event}.}
766   \label{tab:epoll_events}
767 \end{table}
768
769 \footnotetext{questa modalità è disponibile solo a partire dal kernel 2.6.2.}
770
771 Le modalità di utilizzo di \textit{epoll} prevedano che si definisca qual'è
772 l'insieme dei file descriptor da tenere sotto controllo tramite un certo
773 \textit{epoll descriptor} \param{epfd} attraverso una serie di chiamate a
774 \const{EPOLL\_CTL\_ADD}.\footnote{un difetto dell'interfaccia è che queste
775   chiamate devono essere ripetute per ciascun file descriptor, incorrendo in
776   una perdita di prestazioni qualora il numero di file descriptor sia molto
777   grande; per questo è stato proposto di introdurre come estensione una
778   funzione \func{epoll\_ctlv} che consenta di effettuare con una sola chiamata
779   le impostazioni per un blocco di file descriptor.} L'uso di
780 \const{EPOLL\_CTL\_MOD} consente in seguito di modificare le modalità di
781 osservazione di un file descriptor che sia già stato aggiunto alla lista di
782 osservazione.
783
784 Le impostazioni di default prevedono che la notifica degli eventi richiesti
785 sia effettuata in modalità \textit{level triggered}, a meno che sul file
786 descriptor non si sia impostata la modalità \textit{edge triggered},
787 registrandolo con \const{EPOLLET} attivo nel campo \var{events}.  Si tenga
788 presente che è possibile tenere sotto osservazione uno stesso file descriptor
789 su due \textit{epoll descriptor} diversi, ed entrambi riceveranno le
790 notifiche, anche se questa pratica è sconsigliata.
791
792 Qualora non si abbia più interesse nell'osservazione di un file descriptor lo
793 si può rimuovere dalla lista associata a \param{epfd} con
794 \const{EPOLL\_CTL\_DEL}; si tenga conto inoltre che i file descriptor sotto
795 osservazione che vengono chiusi sono eliminati dalla lista automaticamente e
796 non è necessario usare \const{EPOLL\_CTL\_DEL}.
797
798 Infine una particolare modalità di notifica è quella impostata con
799 \const{EPOLLONESHOT}: a causa dell'implementazione di \textit{epoll} infatti
800 quando si è in modalità \textit{edge triggered} l'arrivo in rapida successione
801 di dati in blocchi separati\footnote{questo è tipico con i socket di rete, in
802   quanto i dati arrivano a pacchetti.} può causare una generazione di eventi
803 (ad esempio segnalazioni di dati in lettura disponibili) anche se la
804 condizione è già stata rilevata.\footnote{si avrebbe cioè una rottura della
805   logica \textit{edge triggered}.} 
806
807 Anche se la situazione è facile da gestire, la si può evitare utilizzando
808 \const{EPOLLONESHOT} per impostare la modalità \textit{one-shot}, in cui la
809 notifica di un evento viene effettuata una sola volta, dopo di che il file
810 descriptor osservato, pur restando nella lista di osservazione, viene
811 automaticamente disattivato,\footnote{la cosa avviene contestualmente al
812   ritorno di \func{epoll\_wait} a causa dell'evento in questione.} e per
813 essere riutilizzato dovrà essere riabilitato esplicitamente con una successiva
814 chiamata con \const{EPOLL\_CTL\_MOD}.
815
816 Una volta impostato l'insieme di file descriptor che si vogliono osservare con
817 i relativi eventi, la funzione che consente di attendere l'occorrenza di uno
818 di tali eventi è \funcd{epoll\_wait}, il cui prototipo è:
819 \begin{prototype}{sys/epoll.h}
820   {int epoll\_wait(int epfd, struct epoll\_event * events, int maxevents, int
821     timeout)}
822   
823   Attende che uno dei file descriptor osservati sia pronto.
824   
825   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
826     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
827     assumerà uno dei valori:
828   \begin{errlist}
829   \item[\errcode{EBADF}] il file descriptor \param{epfd} non è valido.
830   \item[\errcode{EFAULT}] il puntatore \param{events} non è valido.
831   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
832     della scadenza di \param{timeout}.
833   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
834     con \func{epoll\_create}, o \param{maxevents} non è maggiore di zero.
835   \end{errlist}
836 }
837 \end{prototype}
838
839 La funzione si blocca in attesa di un evento per i file descriptor registrati
840 nella lista di osservazione di \param{epfd} fino ad un tempo massimo
841 specificato in millisecondi tramite l'argomento \param{timeout}. Gli eventi
842 registrati vengono riportati in un vettore di strutture \struct{epoll\_event}
843 (che deve essere stato allocato in precedenza) all'indirizzo indicato
844 dall'argomento \param{events}, fino ad un numero massimo di eventi impostato
845 con l'argomento \param{maxevents}.
846
847 La funzione ritorna il numero di eventi rilevati, o un valore nullo qualora
848 sia scaduto il tempo massimo impostato con \param{timeout}. Per quest'ultimo,
849 oltre ad un numero di millisecondi, si può utilizzare il valore nullo, che
850 indica di non attendere e ritornare immediatamente,\footnote{anche in questo
851   caso il valore di ritorno sarà nullo.} o il valore $-1$, che indica
852 un'attesa indefinita. L'argomento \param{maxevents} dovrà invece essere sempre
853 un intero positivo.
854
855 Come accennato la funzione restituisce i suoi risultati nel vettore di
856 strutture \struct{epoll\_event} puntato da \param{events}; in tal caso nel
857 campo \param{events} di ciascuna di esse saranno attivi i flag relativi agli
858 eventi accaduti, mentre nel campo \var{data} sarà restituito il valore che era
859 stato impostato per il file descriptor per cui si è verificato l'evento quando
860 questo era stato registrato con le operazioni \const{EPOLL\_CTL\_MOD} o
861 \const{EPOLL\_CTL\_ADD}, in questo modo il campo \var{data} consente di
862 identificare il file descriptor.\footnote{ed è per questo che, come accennato,
863   è consuetudine usare per \var{data} il valore del file descriptor stesso.}
864
865 Si ricordi che le occasioni per cui \func{epoll\_wait} ritorna dipendono da
866 come si è impostata la modalità di osservazione (se \textit{level triggered} o
867 \textit{edge triggered}) del singolo file descriptor. L'interfaccia assicura
868 che se arrivano più eventi fra due chiamate successive ad \func{epoll\_wait}
869 questi vengano combinati. Inoltre qualora su un file descriptor fossero
870 presenti eventi non ancora notificati, e si effettuasse una modifica
871 dell'osservazione con \const{EPOLL\_CTL\_MOD} questi verrebbero riletti alla
872 luce delle modifiche.
873
874 Si tenga presente infine che con l'uso della modalità \textit{edge triggered}
875 il ritorno di \func{epoll\_wait} indica un file descriptor è pronto e resterà
876 tale fintanto che non si sono completamente esaurite le operazioni su di esso.
877 Questa condizione viene generalmente rilevata dall'occorrere di un errore di
878 \errcode{EAGAIN} al ritorno di una \func{read} o una \func{write},\footnote{è
879   opportuno ricordare ancora una volta che l'uso dell'I/O multiplexing
880   richiede di operare sui file in modalità non bloccante.} ma questa non è la
881 sola modalità possibile, ad esempio la condizione può essere riconosciuta
882 anche con il fatto che sono stati restituiti meno dati di quelli richiesti.
883
884 Come le precedenti \func{select} e \func{poll}, le funzioni dell'interfaccia
885 di \textit{epoll} vengono utilizzate prevalentemente con i server di rete,
886 quando si devono tenere sotto osservazione un gran numero di socket; per
887 questo motivo rimandiamo di nuovo la trattazione di un esempio concreto a
888 quando avremo esaminato in dettaglio le caratteristiche dei socket, in
889 particolare si potrà trovare un programma che utilizza questa interfaccia in
890 sez.~\ref{sec:TCP_sock_multiplexing}.
891
892
893 \itindend{epoll}
894
895
896
897 \section{L'accesso \textsl{asincrono} ai file}
898 \label{sec:file_asyncronous_access}
899
900 Benché l'\textit{I/O multiplexing} sia stata la prima, e sia tutt'ora una fra
901 le più diffuse modalità di gestire l'I/O in situazioni complesse in cui si
902 debba operare su più file contemporaneamente, esistono altre modalità di
903 gestione delle stesse problematiche. In particolare sono importanti in questo
904 contesto le modalità di accesso ai file eseguibili in maniera
905 \textsl{asincrona}, quelle cioè in cui un processo non deve bloccarsi in
906 attesa della disponibilità dell'accesso al file, ma può proseguire
907 nell'esecuzione utilizzando invece un meccanismo di notifica asincrono (di
908 norma un segnale, ma esistono anche altre interfacce, come \itindex{inotify}
909 \textit{inotify}), per essere avvisato della possibilità di eseguire le
910 operazioni di I/O volute.
911
912
913 \subsection{Il \textit{Signal driven I/O}}
914 \label{sec:file_asyncronous_operation}
915
916 Abbiamo accennato in sez.~\ref{sec:file_open} che è possibile, attraverso
917 l'uso del flag \const{O\_ASYNC},\footnote{l'uso del flag di \const{O\_ASYNC} e
918   dei comandi \const{F\_SETOWN} e \const{F\_GETOWN} per \func{fcntl} è
919   specifico di Linux e BSD.} aprire un file in modalità asincrona, così come è
920 possibile attivare in un secondo tempo questa modalità impostando questo flag
921 attraverso l'uso di \func{fcntl} con il comando \const{F\_SETFL} (vedi
922 sez.~\ref{sec:file_fcntl}).
923
924 In realtà parlare di apertura in modalità asincrona non significa che le
925 operazioni di lettura o scrittura del file vengono eseguite in modo asincrono
926 (tratteremo questo, che è ciò che più propriamente viene chiamato \textsl{I/O
927   asincrono}, in sez.~\ref{sec:file_asyncronous_io}), quanto dell'attivazione
928 un meccanismo di notifica asincrona delle variazione dello stato del file
929 descriptor aperto in questo modo.  Quello che succede in questo caso è che il
930 sistema genera un segnale (normalmente \const{SIGIO}, ma è possibile usarne
931 altri con il comando \const{F\_SETSIG} di \func{fcntl}) tutte le volte che
932 diventa possibile leggere o scrivere dal file descriptor che si è posto in
933 questa modalità.\footnote{questa modalità non è utilizzabile con i file
934   ordinari ma solo con socket, file di terminale o pseudo terminale, e, a
935   partire dal kernel 2.6, anche per fifo e pipe.}
936
937 Si può inoltre selezionare, con il comando \const{F\_SETOWN} di \func{fcntl},
938 quale processo (o gruppo di processi) riceverà il segnale. Se pertanto si
939 effettuano le operazioni di I/O in risposta alla ricezione del segnale non ci
940 sarà più la necessità di restare bloccati in attesa della disponibilità di
941 accesso ai file. 
942
943 Per questo motivo Stevens, ed anche le pagine di manuale di
944 Linux, chiamano questa modalità ``\textit{Signal driven I/O}''.  Questa è
945 ancora un'altra modalità di gestione dell'I/O, alternativa all'uso di
946 \itindex{epoll} \textit{epoll},\footnote{anche se le prestazioni ottenute con
947   questa tecnica sono inferiori, il vantaggio è che questa modalità è
948   utilizzabile anche con kernel che non supportano \textit{epoll}, come quelli
949   della serie 2.4, ottenendo comunque prestazioni superiori a quelle che si
950   hanno con \func{poll} e \func{select}.} che consente di evitare l'uso delle
951 funzioni \func{poll} o \func{select} che, come illustrato in
952 sez.~\ref{sec:file_epoll}, quando vengono usate con un numero molto grande di
953 file descriptor, non hanno buone prestazioni.
954
955 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
956 presenta notevoli problemi, dato che non è possibile determinare, quando i
957 file descriptor sono più di uno, qual è quello responsabile dell'emissione del
958 segnale. Inoltre dato che i segnali normali non si accodano (si ricordi quanto
959 illustrato in sez.~\ref{sec:sig_notification}), in presenza di più file
960 descriptor attivi contemporaneamente, più segnali emessi nello stesso momento
961 verrebbero notificati una volta sola.
962
963 Linux però supporta le estensioni POSIX.1b dei segnali real-time, che vengono
964 accodati e che permettono di riconoscere il file descriptor che li ha emessi.
965 In questo caso infatti si può fare ricorso alle informazioni aggiuntive
966 restituite attraverso la struttura \struct{siginfo\_t}, utilizzando la forma
967 estesa \var{sa\_sigaction} del gestore installata con il flag
968 \const{SA\_SIGINFO} (si riveda quanto illustrato in
969 sez.~\ref{sec:sig_sigaction}).
970
971 Per far questo però occorre utilizzare le funzionalità dei segnali real-time
972 (vedi sez.~\ref{sec:sig_real_time}) impostando esplicitamente con il comando
973 \const{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
974 I/O asincrono (il segnale predefinito è \const{SIGIO}). In questo caso il
975 gestore, tutte le volte che riceverà \const{SI\_SIGIO} come valore del
976 campo \var{si\_code}\footnote{il valore resta \const{SI\_SIGIO} qualunque sia
977   il segnale che si è associato all'I/O asincrono, ed indica appunto che il
978   segnale è stato generato a causa di attività nell'I/O asincrono.} di
979 \struct{siginfo\_t}, troverà nel campo \var{si\_fd} il valore del file
980 descriptor che ha generato il segnale.
981
982 Un secondo vantaggio dell'uso dei segnali real-time è che essendo questi
983 ultimi dotati di una coda di consegna ogni segnale sarà associato ad uno solo
984 file descriptor; inoltre sarà possibile stabilire delle priorità nella
985 risposta a seconda del segnale usato, dato che i segnali real-time supportano
986 anche questa funzionalità. In questo modo si può identificare immediatamente
987 un file su cui l'accesso è diventato possibile evitando completamente l'uso di
988 funzioni come \func{poll} e \func{select}, almeno fintanto che non si satura
989 la coda.  
990
991 Se infatti si eccedono le dimensioni di quest'ultima, il kernel, non potendo
992 più assicurare il comportamento corretto per un segnale real-time, invierà al
993 suo posto un solo \const{SIGIO}, su cui si saranno accumulati tutti i segnali
994 in eccesso, e si dovrà allora determinare con un ciclo quali sono i file
995 diventati attivi. L'unico modo per essere sicuri che questo non avvenga è di
996 impostare la lunghezza della coda dei segnali real-time ad una dimensione
997 identica al valore massimo del numero di file descriptor
998 utilizzabili.\footnote{vale a dire impostare il contenuto di
999   \procfile{/proc/sys/kernel/rtsig-max} allo stesso valore del contenuto di
1000   \procfile{/proc/sys/fs/file-max}.}
1001
1002 % TODO fare esempio che usa O_ASYNC
1003
1004
1005 \subsection{I meccanismi di notifica asincrona.}
1006 \label{sec:file_asyncronous_lease}
1007
1008 Una delle domande più frequenti nella programmazione in ambiente unix-like è
1009 quella di come fare a sapere quando un file viene modificato. La
1010 risposta\footnote{o meglio la non risposta, tanto che questa nelle Unix FAQ
1011   \cite{UnixFAQ} viene anche chiamata una \textit{Frequently Unanswered
1012     Question}.} è che nell'architettura classica di Unix questo non è
1013 possibile. Al contrario di altri sistemi operativi infatti un kernel unix-like
1014 classico non prevedeva alcun meccanismo per cui un processo possa essere
1015 \textsl{notificato} di eventuali modifiche avvenute su un file. Questo è il
1016 motivo per cui i demoni devono essere \textsl{avvisati} in qualche
1017 modo\footnote{in genere questo vien fatto inviandogli un segnale di
1018   \const{SIGHUP} che, per una convenzione adottata dalla gran parte di detti
1019   programmi, causa la rilettura della configurazione.} se il loro file di
1020 configurazione è stato modificato, perché possano rileggerlo e riconoscere le
1021 modifiche.
1022
1023 Questa scelta è stata fatta perché provvedere un simile meccanismo a livello
1024 generico per qualunque file comporterebbe un notevole aumento di complessità
1025 dell'architettura della gestione dei file, il tutto per fornire una
1026 funzionalità che serve soltanto in alcuni casi particolari. Dato che
1027 all'origine di Unix i soli programmi che potevano avere una tale esigenza
1028 erano i demoni, attenendosi a uno dei criteri base della progettazione, che
1029 era di far fare al kernel solo le operazioni strettamente necessarie e
1030 lasciare tutto il resto a processi in user space, non era stata prevista
1031 nessuna funzionalità di notifica.
1032
1033 Visto però il crescente interesse nei confronti di una funzionalità di questo
1034 tipo, che è molto richiesta specialmente nello sviluppo dei programmi ad
1035 interfaccia grafica, quando si deve presentare all'utente lo stato del
1036 filesystem, sono state successivamente introdotte delle estensioni che
1037 permettessero la creazione di meccanismi di notifica più efficienti dell'unica
1038 soluzione disponibile con l'interfaccia tradizionale, che è quella del
1039 \itindex{polling} \textit{polling}.
1040
1041 Queste nuove funzionalità sono delle estensioni specifiche, non
1042 standardizzate, che sono disponibili soltanto su Linux (anche se altri kernel
1043 supportano meccanismi simili). Alcune di esse sono realizzate, e solo a
1044 partire dalla versione 2.4 del kernel, attraverso l'uso di alcuni
1045 \textsl{comandi} aggiuntivi per la funzione \func{fcntl} (vedi
1046 sez.~\ref{sec:file_fcntl}), che divengono disponibili soltanto se si è
1047 definita la macro \macro{\_GNU\_SOURCE} prima di includere \file{fcntl.h}.
1048
1049 \index{file!lease|(} 
1050
1051 La prima di queste funzionalità è quella del cosiddetto \textit{file lease};
1052 questo è un meccanismo che consente ad un processo, detto \textit{lease
1053   holder}, di essere notificato quando un altro processo, chiamato a sua volta
1054 \textit{lease breaker}, cerca di eseguire una \func{open} o una
1055 \func{truncate} sul file del quale l'\textit{holder} detiene il
1056 \textit{lease}.
1057
1058 La notifica avviene in maniera analoga a come illustrato in precedenza per
1059 l'uso di \const{O\_ASYNC}: di default viene inviato al \textit{lease holder}
1060 il segnale \const{SIGIO}, ma questo segnale può essere modificato usando il
1061 comando \const{F\_SETSIG} di \func{fcntl}.\footnote{anche in questo caso si
1062   può rispecificare lo stesso \const{SIGIO}.} Se si è fatto questo\footnote{è
1063   in genere è opportuno farlo, come in precedenza, per utilizzare segnali
1064   real-time.} e si è installato il gestore del segnale con \const{SA\_SIGINFO}
1065 si riceverà nel campo \var{si\_fd} della struttura \struct{siginfo\_t} il
1066 valore del file descriptor del file sul quale è stato compiuto l'accesso; in
1067 questo modo un processo può mantenere anche più di un \textit{file lease}.
1068
1069 Esistono due tipi di \textit{file lease}: di lettura (\textit{read lease}) e
1070 di scrittura (\textit{write lease}). Nel primo caso la notifica avviene quando
1071 un altro processo esegue l'apertura del file in scrittura o usa
1072 \func{truncate} per troncarlo. Nel secondo caso la notifica avviene anche se
1073 il file viene aperto il lettura; in quest'ultimo caso però il \textit{lease}
1074 può essere ottenuto solo se nessun altro processo ha aperto lo stesso file.
1075
1076 Come accennato in sez.~\ref{sec:file_fcntl} il comando di \func{fcntl} che
1077 consente di acquisire un \textit{file lease} è \const{F\_SETLEASE}, che viene
1078 utilizzato anche per rilasciarlo. In tal caso il file descriptor \param{fd}
1079 passato a \func{fcntl} servirà come riferimento per il file su cui si vuole
1080 operare, mentre per indicare il tipo di operazione (acquisizione o rilascio)
1081 occorrerà specificare come valore dell'argomento \param{arg} di \func{fcntl}
1082 uno dei tre valori di tab.~\ref{tab:file_lease_fctnl}.
1083
1084 \begin{table}[htb]
1085   \centering
1086   \footnotesize
1087   \begin{tabular}[c]{|l|l|}
1088     \hline
1089     \textbf{Valore}  & \textbf{Significato} \\
1090     \hline
1091     \hline
1092     \const{F\_RDLCK} & Richiede un \textit{read lease}.\\
1093     \const{F\_WRLCK} & Richiede un \textit{write lease}.\\
1094     \const{F\_UNLCK} & Rilascia un \textit{file lease}.\\
1095     \hline    
1096   \end{tabular}
1097   \caption{Costanti per i tre possibili valori dell'argomento \param{arg} di
1098     \func{fcntl} quando usata con i comandi \const{F\_SETLEASE} e
1099     \const{F\_GETLEASE}.} 
1100   \label{tab:file_lease_fctnl}
1101 \end{table}
1102
1103 Se invece si vuole conoscere lo stato di eventuali \textit{file lease}
1104 occorrerà chiamare \func{fcntl} sul relativo file descriptor \param{fd} con il
1105 comando \const{F\_GETLEASE}, e si otterrà indietro nell'argomento \param{arg}
1106 uno dei valori di tab.~\ref{tab:file_lease_fctnl}, che indicheranno la
1107 presenza del rispettivo tipo di \textit{lease}, o, nel caso di
1108 \const{F\_UNLCK}, l'assenza di qualunque \textit{file lease}.
1109
1110 Si tenga presente che un processo può mantenere solo un tipo di \textit{lease}
1111 su un file, e che un \textit{lease} può essere ottenuto solo su file di dati
1112 (pipe e dispositivi sono quindi esclusi). Inoltre un processo non privilegiato
1113 può ottenere un \textit{lease} soltanto per un file appartenente ad un
1114 \acr{uid} corrispondente a quello del processo. Soltanto un processo con
1115 privilegi di amministratore (cioè con la \itindex{capabilities} capability
1116 \const{CAP\_LEASE}, vedi sez.~\ref{sec:proc_capabilities}) può acquisire
1117 \textit{lease} su qualunque file.
1118
1119 Se su un file è presente un \textit{lease} quando il \textit{lease breaker}
1120 esegue una \func{truncate} o una \func{open} che confligge con
1121 esso,\footnote{in realtà \func{truncate} confligge sempre, mentre \func{open},
1122   se eseguita in sola lettura, non confligge se si tratta di un \textit{read
1123     lease}.} la funzione si blocca\footnote{a meno di non avere aperto il file
1124   con \const{O\_NONBLOCK}, nel qual caso \func{open} fallirebbe con un errore
1125   di \errcode{EWOULDBLOCK}.} e viene eseguita la notifica al \textit{lease
1126   holder}, così che questo possa completare le sue operazioni sul file e
1127 rilasciare il \textit{lease}.  In sostanza con un \textit{read lease} si
1128 rilevano i tentativi di accedere al file per modificarne i dati da parte di un
1129 altro processo, mentre con un \textit{write lease} si rilevano anche i
1130 tentativi di accesso in lettura.  Si noti comunque che le operazioni di
1131 notifica avvengono solo in fase di apertura del file e non sulle singole
1132 operazioni di lettura e scrittura.
1133
1134 L'utilizzo dei \textit{file lease} consente al \textit{lease holder} di
1135 assicurare la consistenza di un file, a seconda dei due casi, prima che un
1136 altro processo inizi con le sue operazioni di scrittura o di lettura su di
1137 esso. In genere un \textit{lease holder} che riceve una notifica deve
1138 provvedere a completare le necessarie operazioni (ad esempio scaricare
1139 eventuali buffer), per poi rilasciare il \textit{lease} così che il
1140 \textit{lease breaker} possa eseguire le sue operazioni. Questo si fa con il
1141 comando \const{F\_SETLEASE}, o rimuovendo il \textit{lease} con
1142 \const{F\_UNLCK}, o, nel caso di \textit{write lease} che confligge con una
1143 operazione di lettura, declassando il \textit{lease} a lettura con
1144 \const{F\_RDLCK}.
1145
1146 Se il \textit{lease holder} non provvede a rilasciare il \textit{lease} entro
1147 il numero di secondi specificato dal parametro di sistema mantenuto in
1148 \procfile{/proc/sys/fs/lease-break-time} sarà il kernel stesso a rimuoverlo (o
1149 declassarlo) automaticamente.\footnote{questa è una misura di sicurezza per
1150   evitare che un processo blocchi indefinitamente l'accesso ad un file
1151   acquisendo un \textit{lease}.} Una volta che un \textit{lease} è stato
1152 rilasciato o declassato (che questo sia fatto dal \textit{lease holder} o dal
1153 kernel è lo stesso) le chiamate a \func{open} o \func{truncate} eseguite dal
1154 \textit{lease breaker} rimaste bloccate proseguono automaticamente.
1155
1156
1157 \index{file!dnotify|(}
1158
1159 Benché possa risultare utile per sincronizzare l'accesso ad uno stesso file da
1160 parte di più processi, l'uso dei \textit{file lease} non consente comunque di
1161 risolvere il problema di rilevare automaticamente quando un file o una
1162 directory vengono modificati, che è quanto necessario ad esempio ai programma
1163 di gestione dei file dei vari desktop grafici.
1164
1165 Per risolvere questo problema a partire dal kernel 2.4 è stata allora creata
1166 un'altra interfaccia,\footnote{si ricordi che anche questa è una interfaccia
1167   specifica di Linux che deve essere evitata se si vogliono scrivere programmi
1168   portabili, e che le funzionalità illustrate sono disponibili soltanto se è
1169   stata definita la macro \macro{\_GNU\_SOURCE}.} chiamata \textit{dnotify},
1170 che consente di richiedere una notifica quando una directory, o uno qualunque
1171 dei file in essa contenuti, viene modificato.  Come per i \textit{file lease}
1172 la notifica avviene di default attraverso il segnale \const{SIGIO}, ma se ne
1173 può utilizzare un altro.\footnote{e di nuovo, per le ragioni già esposte in
1174   precedenza, è opportuno che si utilizzino dei segnali real-time.} Inoltre,
1175 come in precedenza, si potrà ottenere nel gestore del segnale il file
1176 descriptor che è stato modificato tramite il contenuto della struttura
1177 \struct{siginfo\_t}.
1178
1179 \index{file!lease|)}
1180
1181 \begin{table}[htb]
1182   \centering
1183   \footnotesize
1184   \begin{tabular}[c]{|l|p{8cm}|}
1185     \hline
1186     \textbf{Valore}  & \textbf{Significato} \\
1187     \hline
1188     \hline
1189     \const{DN\_ACCESS} & Un file è stato acceduto, con l'esecuzione di una fra
1190                          \func{read}, \func{pread}, \func{readv}.\\ 
1191     \const{DN\_MODIFY} & Un file è stato modificato, con l'esecuzione di una
1192                          fra \func{write}, \func{pwrite}, \func{writev}, 
1193                          \func{truncate}, \func{ftruncate}.\\ 
1194     \const{DN\_CREATE} & È stato creato un file nella directory, con
1195                          l'esecuzione di una fra \func{open}, \func{creat},
1196                          \func{mknod}, \func{mkdir}, \func{link},
1197                          \func{symlink}, \func{rename} (da un'altra
1198                          directory).\\
1199     \const{DN\_DELETE} & È stato cancellato un file dalla directory con
1200                          l'esecuzione di una fra \func{unlink}, \func{rename}
1201                          (su un'altra directory), \func{rmdir}.\\
1202     \const{DN\_RENAME} & È stato rinominato un file all'interno della
1203                          directory (con \func{rename}).\\
1204     \const{DN\_ATTRIB} & È stato modificato un attributo di un file con
1205                          l'esecuzione di una fra \func{chown}, \func{chmod},
1206                          \func{utime}.\\ 
1207     \const{DN\_MULTISHOT}& Richiede una notifica permanente di tutti gli
1208                          eventi.\\ 
1209     \hline    
1210   \end{tabular}
1211   \caption{Le costanti che identificano le varie classi di eventi per i quali
1212     si richiede la notifica con il comando \const{F\_NOTIFY} di \func{fcntl}.} 
1213   \label{tab:file_notify}
1214 \end{table}
1215
1216 Ci si può registrare per le notifiche dei cambiamenti al contenuto di una
1217 certa directory eseguendo la funzione \func{fcntl} su un file descriptor
1218 associato alla stessa con il comando \const{F\_NOTIFY}. In questo caso
1219 l'argomento \param{arg} di \func{fcntl} serve ad indicare per quali classi
1220 eventi si vuole ricevere la notifica, e prende come valore una maschera
1221 binaria composta dall'OR aritmetico di una o più delle costanti riportate in
1222 tab.~\ref{tab:file_notify}.
1223
1224 A meno di non impostare in maniera esplicita una notifica permanente usando il
1225 valore \const{DN\_MULTISHOT}, la notifica è singola: viene cioè inviata una
1226 sola volta quando si verifica uno qualunque fra gli eventi per i quali la si è
1227 richiesta. Questo significa che un programma deve registrarsi un'altra volta
1228 se desidera essere notificato di ulteriori cambiamenti. Se si eseguono diverse
1229 chiamate con \const{F\_NOTIFY} e con valori diversi per \param{arg} questi
1230 ultimi si \textsl{accumulano}; cioè eventuali nuovi classi di eventi
1231 specificate in chiamate successive vengono aggiunte a quelle già impostate
1232 nelle precedenti.  Se si vuole rimuovere la notifica si deve invece
1233 specificare un valore nullo.
1234
1235 \index{file!inotify|(}
1236
1237 Il maggiore problema di \textit{dnotify} è quello della scalabilità: si deve
1238 usare un file descriptor per ciascuna directory che si vuole tenere sotto
1239 controllo, il che porta facilmente ad avere un eccesso di file aperti. Inoltre
1240 quando la directory che si controlla è all'interno di un dispositivo
1241 rimovibile, mantenere il relativo file descriptor aperto comporta
1242 l'impossibilità di smontare il dispositivo e di rimuoverlo, il che in genere
1243 complica notevolmente la gestione dell'uso di questi dispositivi.
1244
1245 Un altro problema è che l'interfaccia di \textit{dnotify} consente solo di
1246 tenere sotto controllo il contenuto di una directory; la modifica di un file
1247 viene segnalata, ma poi è necessario verificare di quale file si tratta
1248 (operazione che può essere molto onerosa quando una directory contiene un gran
1249 numero di file).  Infine l'uso dei segnali come interfaccia di notifica
1250 comporta tutti i problemi di gestione visti in sez.~\ref{sec:sig_management} e
1251 sez.~\ref{sec:sig_control}.  Per tutta questa serie di motivi in generale
1252 quella di \textit{dnotify} viene considerata una interfaccia di usabilità
1253 problematica.
1254
1255 \index{file!dnotify|)}
1256
1257 Per risolvere i problemi appena illustrati è stata introdotta una nuova
1258 interfaccia per l'osservazione delle modifiche a file o directory, chiamata
1259 \textit{inotify}.\footnote{l'interfaccia è disponibile a partire dal kernel
1260   2.6.13, le relative funzioni sono state introdotte nelle glibc 2.4.}  Anche
1261 questa è una interfaccia specifica di Linux (pertanto non deve essere usata se
1262 si devono scrivere programmi portabili), ed è basata sull'uso di una coda di
1263 notifica degli eventi associata ad un singolo file descriptor, il che permette
1264 di risolvere il principale problema di \itindex{dnotify} \textit{dnotify}.  La
1265 coda viene creata attraverso la funzione \funcd{inotify\_init}, il cui
1266 prototipo è:
1267 \begin{prototype}{sys/inotify.h}
1268   {int inotify\_init(void)}
1269   
1270   Inizializza una istanza di \textit{inotify}.
1271   
1272   \bodydesc{La funzione restituisce un file descriptor in caso di successo, o
1273     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
1274   \begin{errlist}
1275   \item[\errcode{EMFILE}] si è raggiunto il numero massimo di istanze di
1276     \textit{inotify} consentite all'utente.
1277   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
1278     nel sistema.
1279   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
1280     l'istanza.
1281   \end{errlist}
1282 }
1283 \end{prototype}
1284
1285 La funzione non prende alcun argomento; inizializza una istanza di
1286 \textit{inotify} e restituisce un file descriptor attraverso il quale verranno
1287 effettuate le operazioni di notifica;\footnote{per evitare abusi delle risorse
1288   di sistema è previsto che un utente possa utilizzare un numero limitato di
1289   istanze di \textit{inotify}; il valore di default del limite è di 128, ma
1290   questo valore può essere cambiato con \func{sysctl} o usando il file
1291   \procfile{/proc/sys/fs/inotify/max\_user\_instances}.} si tratta di un file
1292 descriptor speciale che non è associato a nessun file su disco, e che viene
1293 utilizzato solo per notificare gli eventi che sono stati posti in
1294 osservazione. Dato che questo file descriptor non è associato a nessun file o
1295 directory reale, l'inconveniente di non poter smontare un filesystem i cui
1296 file sono tenuti sotto osservazione viene completamente
1297 eliminato.\footnote{anzi, una delle capacità dell'interfaccia di
1298   \textit{inotify} è proprio quella di notificare il fatto che il filesystem
1299   su cui si trova il file o la directory osservata è stato smontato.}
1300
1301 Inoltre trattandosi di un file descriptor a tutti gli effetti, esso potrà
1302 essere utilizzato come argomento per le funzioni \func{select} e \func{poll} e
1303 con l'interfaccia di \textit{epoll}; siccome gli eventi vengono notificati
1304 come dati disponibili in lettura sul file descriptor, dette funzioni
1305 ritorneranno tutte le volte che si avrà un evento di notifica. Così, invece di
1306 dover utilizzare i segnali,\footnote{considerati una pessima scelta dal punto
1307   di vista dell'interfaccia utente.} si potrà gestire l'osservazione delle
1308 modifiche con una qualunque delle modalità di \textit{I/O multiplexing}
1309 illustrate in sez.~\ref{sec:file_multiplexing}.
1310
1311 Infine l'interfaccia di \textit{inotify} consente di mettere sotto
1312 osservazione, oltre che una directory anche singoli file.  Una volta creata la
1313 coda di notifica si devono definire gli eventi da tenere sotto osservazione;
1314 questo viene fatto attraverso una \textsl{lista di osservazione} (o
1315 \textit{watch list}) che è associata alla coda. Per gestire la lista di
1316 osservazione l'interfaccia fornisce due funzioni, la prima di queste è
1317 \funcd{inotify\_add\_watch}, il cui prototipo è:
1318 \begin{prototype}{sys/inotify.h}
1319   {int inotify\_add\_watch(int fd, const char *pathname, uint32\_t mask)}
1320
1321   Aggiunge un evento di osservazione alla lista di osservazione di \param{fd}.
1322
1323   \bodydesc{La funzione restituisce un valore positivo in caso di successo, o
1324     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
1325   \begin{errlist}
1326   \item[\errcode{EACCESS}] non si ha accesso in lettura al file indicato.
1327   \item[\errcode{EINVAL}] \param{mask} non contiene eventi legali o \param{fd}
1328     non è un filesystem di \textit{inotify}.
1329   \item[\errcode{ENOSPC}] si è raggiunto il numero massimo di voci di
1330     osservazione o il kernel non ha potuto allocare una risorsa necessaria.
1331   \end{errlist}
1332   ed inoltre \errval{EFAULT}, \errval{ENOMEM} e \errval{EBADF}.}
1333 \end{prototype}
1334
1335 La funzione consente di creare un ``\textsl{osservatore}'' (il cosiddetto
1336 ``\textit{watch}'') nella lista di osservazione di una coda di notifica, che
1337 deve essere indicata specificando il file descriptor ad essa associato
1338 nell'argomento \param{fd}.\footnote{questo ovviamente dovrà essere un file
1339   descriptor creato con \func{inotify\_init}.}  Il file o la directory da
1340 porre sotto osservazione vengono invece indicati per nome, da passare
1341 nell'argomento \param{pathname}.  Infine il terzo argomento, \param{mask},
1342 indica che tipo di eventi devono essere tenuti sotto osservazione e le
1343 modalità della stessa.  L'operazione può essere ripetuta per tutti i file e le
1344 directory che si vogliono tenere sotto osservazione,\footnote{anche in questo
1345   caso c'è un limite massimo che di default è pari a 8192, ed anche questo
1346   valore può essere cambiato con \func{sysctl} o usando il file
1347   \procfile{/proc/sys/fs/inotify/max\_user\_watches}.} e si utilizzerà sempre
1348 un solo file descriptor.
1349
1350 Il tipo di evento che si vuole osservare deve essere specificato
1351 nell'argomento \param{mask} come maschera binaria, combinando i valori delle
1352 costanti riportate in tab.~\ref{tab:inotify_event_watch} che identificano i
1353 singoli bit della maschera ed il relativo significato. In essa si sono marcati
1354 con un ``$\bullet$'' gli eventi che, quando specificati per una directory,
1355 vengono osservati anche su tutti i file che essa contiene.  Nella seconda
1356 parte della tabella si sono poi indicate alcune combinazioni predefinite dei
1357 flag della prima parte.
1358
1359 \begin{table}[htb]
1360   \centering
1361   \footnotesize
1362   \begin{tabular}[c]{|l|c|p{10cm}|}
1363     \hline
1364     \textbf{Flag}  & & \textbf{Significato} \\
1365     \hline
1366     \hline
1367     \const{IN\_ACCESS}        &$\bullet$& C'è stato accesso al file in
1368                                           lettura.\\  
1369     \const{IN\_ATTRIB}        &$\bullet$& Ci sono stati cambiamenti sui dati
1370                                           dell'inode (o sugli attributi
1371                                           estesi, vedi
1372                                           sez.~\ref{sec:file_xattr}).\\ 
1373     \const{IN\_CLOSE\_WRITE}  &$\bullet$& È stato chiuso un file aperto in
1374                                           scrittura.\\  
1375     \const{IN\_CLOSE\_NOWRITE}&$\bullet$& È stato chiuso un file aperto in
1376                                           sola lettura.\\
1377     \const{IN\_CREATE}        &$\bullet$& È stato creato un file o una
1378                                           directory in una directory sotto
1379                                           osservazione.\\  
1380     \const{IN\_DELETE}        &$\bullet$& È stato cancellato un file o una
1381                                           directory in una directory sotto
1382                                           osservazione.\\ 
1383     \const{IN\_DELETE\_SELF}  &       &   È stato cancellato il file (o la
1384                                           directory) sotto osservazione.\\ 
1385     \const{IN\_MODIFY}        &$\bullet$& È stato modificato il file.\\ 
1386     \const{IN\_MOVE\_SELF}    &         & è stato rinominato il file (o la
1387                                           directory) sotto osservazione.\\ 
1388     \const{IN\_MOVED\_FROM}   &$\bullet$& Un file è stato spostato fuori dalla
1389                                           directory sotto osservazione.\\ 
1390     \const{IN\_MOVED\_TO}     &$\bullet$& Un file è stato spostato nella
1391                                           directory sotto osservazione.\\ 
1392     \const{IN\_OPEN}          &$\bullet$& Un file è stato aperto.\\ 
1393     \hline    
1394     \const{IN\_CLOSE}         & --      & Combinazione di
1395                                           \const{IN\_CLOSE\_WRITE} e
1396                                           \const{IN\_CLOSE\_NOWRITE}.\\  
1397     \const{IN\_MOVE}          & --      & Combinazione di
1398                                           \const{IN\_MOVED\_FROM} e
1399                                           \const{IN\_MOVED\_TO}.\\
1400     \const{IN\_ALL\_EVENTS}   & --      & Combinazione di tutti i flag
1401                                           possibili.\\
1402     \hline    
1403   \end{tabular}
1404   \caption{Le costanti che identificano i valori per la maschera binaria
1405     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano il
1406     tipo di evento da tenere sotto osservazione.} 
1407   \label{tab:inotify_event_watch}
1408 \end{table}
1409
1410 Oltre ai flag di tab.~\ref{tab:inotify_event_watch}, che indicano il tipo di
1411 evento da osservare e che vengono utilizzati anche in uscita per indicare il
1412 tipo di evento avvenuto, \func{inotify\_add\_watch} supporta ulteriori
1413 flag,\footnote{i flag \const{IN\_DONT\_FOLLOW}, \const{IN\_MASK\_ADD} e
1414   \const{IN\_ONLYDIR} sono stati introdotti a partire dalle glibc 2.5, se si
1415   usa la versione 2.4 è necessario definirli a mano.}  riportati in
1416 tab.~\ref{tab:inotify_add_watch_flag}, che indicano le modalità di
1417 osservazione (da passare sempre nell'argomento \param{mask}) e che al
1418 contrario dei precedenti non vengono mai impostati nei risultati in uscita.
1419
1420 \begin{table}[htb]
1421   \centering
1422   \footnotesize
1423   \begin{tabular}[c]{|l|p{10cm}|}
1424     \hline
1425     \textbf{Flag}  & \textbf{Significato} \\
1426     \hline
1427     \hline
1428     \const{IN\_DONT\_FOLLOW}& Non dereferenzia \param{pathname} se questo è un
1429                               link simbolico.\\
1430     \const{IN\_MASK\_ADD}   & Aggiunge a quelli già impostati i flag indicati
1431                               nell'argomento \param{mask}, invece di
1432                               sovrascriverli.\\
1433     \const{IN\_ONESHOT}     & Esegue l'osservazione su \param{pathname} per una
1434                               sola volta, rimuovendolo poi dalla \textit{watch
1435                                 list}.\\ 
1436     \const{IN\_ONLYDIR}     & Se \param{pathname} è una directory riporta
1437                               soltanto gli eventi ad essa relativi e non
1438                               quelli per i file che contiene.\\ 
1439     \hline    
1440   \end{tabular}
1441   \caption{Le costanti che identificano i valori per la maschera binaria
1442     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano le
1443     modalità di osservazione.} 
1444   \label{tab:inotify_add_watch_flag}
1445 \end{table}
1446
1447 Se non esiste nessun \textit{watch} per il file o la directory specificata
1448 questo verrà creato per gli eventi specificati dall'argomento \param{mask},
1449 altrimenti la funzione sovrascriverà le impostazioni precedenti, a meno che
1450 non si sia usato il flag \const{IN\_MASK\_ADD}, nel qual caso gli eventi
1451 specificati saranno aggiunti a quelli già presenti.
1452
1453 Come accennato quando si tiene sotto osservazione una directory vengono
1454 restituite le informazioni sia riguardo alla directory stessa che ai file che
1455 essa contiene; questo comportamento può essere disabilitato utilizzando il
1456 flag \const{IN\_ONLYDIR}, che richiede di riportare soltanto gli eventi
1457 relativi alla directory stessa. Si tenga presente inoltre che quando si
1458 osserva una directory vengono riportati solo gli eventi sui file che essa
1459 contiene direttamente, non quelli relativi a file contenuti in eventuali
1460 sottodirectory; se si vogliono osservare anche questi sarà necessario creare
1461 ulteriori \textit{watch} per ciascuna sottodirectory.
1462
1463 Infine usando il flag \const{IN\_ONESHOT} è possibile richiedere una notifica
1464 singola;\footnote{questa funzionalità però è disponibile soltato a partire dal
1465   kernel 2.6.16.} una volta verificatosi uno qualunque fra gli eventi
1466 richiesti con \func{inotify\_add\_watch} l'\textsl{osservatore} verrà
1467 automaticamente rimosso dalla lista di osservazione e nessun ulteriore evento
1468 sarà più notificato.
1469
1470 In caso di successo \func{inotify\_add\_watch} ritorna un intero positivo,
1471 detto \textit{watch descriptor}; è tramite questo valore che si identifica
1472 univocamente un \textsl{osservatore} su una coda di notifica, sia per quanto
1473 riguarda i risultati restituiti da \textit{inotify}, che per quanto riguarda
1474 la eventuale rimozione dello stesso; la seconda funzione per la gestione delle
1475 liste di osservazione è infatti \funcd{inotify\_rm\_watch}, che permette di
1476 rimuovere un \textsl{osservatore}; il suo prototipo è:
1477 \begin{prototype}{sys/inotify.h}
1478   {int inotify\_rm\_watch(int fd, uint32\_t wd)}
1479
1480   Rimuove un \textsl{osservatore} da una coda di notifica.
1481   
1482   \bodydesc{La funzione restituisce 0 in caso di successo, o $-1$ in caso di
1483     errore, nel qual caso \var{errno} assumerà uno dei valori:
1484   \begin{errlist}
1485   \item[\errcode{EBADF}] non si è specificato in \param{fd} un file descriptor
1486     valido.
1487   \item[\errcode{EINVAL}] il valore di \param{wd} non è corretto, o \param{fd}
1488     non è associato ad una coda di notifica.
1489   \end{errlist}
1490 }
1491 \end{prototype}
1492
1493 La funzione rimuove dalla coda di notifica identificata dall'argomento
1494 \param{fd} l'osservatore identificato dal \textit{watch descriptor}
1495 \param{wd};\footnote{ovviamente deve essere usato per questo argomento un
1496   valore ritornato da \func{inotify\_add\_watch}, altrimenti si avrà un errore
1497   di \errval{EINVAL}.} inoltre, contemporaneamente alla rimozione
1498 dell'osservatore, sulla coda di notifica verrà generato un evento di tipo
1499 \const{IN\_IGNORED} (vedi tab.~\ref{tab:inotify_read_event_flag}).
1500
1501
1502 Oltre che per la rimozione, il \textit{watch descriptor} viene usato anche per
1503 identificare l'evento a cui si fa riferimento nella lista dei risultati
1504 restituiti da \textit{inotify}; questi ultimi infatti vengono notificati alle
1505 applicazioni che usano l'interfaccia di \textit{inotify} come dati presenti in
1506 lettura su file descriptor creato con \func{inotify\_init}. 
1507
1508
1509 \begin{figure}[!htb]
1510   \footnotesize \centering
1511   \begin{minipage}[c]{15cm}
1512     \includestruct{listati/inotify_event.h}
1513   \end{minipage} 
1514   \normalsize 
1515   \caption{La struttura \structd{inotify\_event}.}
1516   \label{fig:inotify_event}
1517 \end{figure}
1518
1519
1520 Inoltre l'interfaccia di \textit{inotify} permette di conoscere, come avviene
1521 per i file descriptor associati ai socket (si veda al proposito quanto
1522 trattato in sez.~\ref{sec:sock_ioctl_IP}) il numero di byte disponibili in
1523 lettura sul nostro file descriptor, utilizzando su di esso l'operazione
1524 \const{FIONREAD} con \func{ioctl}.\footnote{questa è una delle operazioni
1525   speciali (che abbiamo visto in sez.~\ref{sec:file_ioctl}) che nel caso è
1526   disponibile solo per i socket e per i file descriptor creati con
1527   \func{inotify\_init}.} Questo consente anche di ottenere rapidamente il
1528 numero di file che sono cambiati.
1529
1530
1531
1532
1533
1534 \begin{table}[htb]
1535   \centering
1536   \footnotesize
1537   \begin{tabular}[c]{|l|p{10cm}|}
1538     \hline
1539     \textbf{Flag}  & \textbf{Significato} \\
1540     \hline
1541     \hline
1542     \const{IN\_IGNORED}    & .\\
1543     \const{IN\_ISDIR}      & .\\
1544     \const{IN\_Q\_OVERFLOW}& .\\
1545     \const{IN\_UNMOUNT}    & .\\
1546     \hline    
1547   \end{tabular}
1548   \caption{Le costanti che identificano i flag aggiuntivi usati nella maschera
1549     binaria del campo \var{mask} di \structd{inotify\_event}.} 
1550   \label{tab:inotify_read_event_flag}
1551 \end{table}
1552
1553
1554
1555 % TODO inserire anche inotify, vedi http://www.linuxjournal.com/article/8478
1556 % TODO e man inotify
1557
1558 \index{file!inotify|)}
1559
1560
1561 % TODO inserire anche eventfd (vedi http://lwn.net/Articles/233462/)
1562 % e le restanti signalfd e timerfd introdotte con il 2.6.22
1563 % o trovargli un posto migliore
1564
1565
1566 \subsection{L'interfaccia POSIX per l'I/O asincrono}
1567 \label{sec:file_asyncronous_io}
1568
1569 Una modalità alternativa all'uso dell'\textit{I/O multiplexing} per gestione
1570 dell'I/O simultaneo su molti file è costituita dal cosiddetto \textsl{I/O
1571   asincrono}. Il concetto base dell'\textsl{I/O asincrono} è che le funzioni
1572 di I/O non attendono il completamento delle operazioni prima di ritornare,
1573 così che il processo non viene bloccato.  In questo modo diventa ad esempio
1574 possibile effettuare una richiesta preventiva di dati, in modo da poter
1575 effettuare in contemporanea le operazioni di calcolo e quelle di I/O.
1576
1577 Benché la modalità di apertura asincrona di un file possa risultare utile in
1578 varie occasioni (in particolar modo con i socket e gli altri file per i quali
1579 le funzioni di I/O sono \index{system~call~lente} system call lente), essa è
1580 comunque limitata alla notifica della disponibilità del file descriptor per le
1581 operazioni di I/O, e non ad uno svolgimento asincrono delle medesime.  Lo
1582 standard POSIX.1b definisce una interfaccia apposita per l'I/O asincrono vero
1583 e proprio, che prevede un insieme di funzioni dedicate per la lettura e la
1584 scrittura dei file, completamente separate rispetto a quelle usate
1585 normalmente.
1586
1587 In generale questa interfaccia è completamente astratta e può essere
1588 implementata sia direttamente nel kernel, che in user space attraverso l'uso
1589 di thread. Per le versioni del kernel meno recenti esiste una implementazione
1590 di questa interfaccia fornita delle \acr{glibc}, che è realizzata
1591 completamente in user space, ed è accessibile linkando i programmi con la
1592 libreria \file{librt}. Nelle versioni più recenti (a partire dalla 2.5.32) è
1593 stato introdotto direttamente nel kernel un nuovo layer per l'I/O asincrono.
1594
1595 Lo standard prevede che tutte le operazioni di I/O asincrono siano controllate
1596 attraverso l'uso di una apposita struttura \struct{aiocb} (il cui nome sta per
1597 \textit{asyncronous I/O control block}), che viene passata come argomento a
1598 tutte le funzioni dell'interfaccia. La sua definizione, come effettuata in
1599 \file{aio.h}, è riportata in fig.~\ref{fig:file_aiocb}. Nello steso file è
1600 definita la macro \macro{\_POSIX\_ASYNCHRONOUS\_IO}, che dichiara la
1601 disponibilità dell'interfaccia per l'I/O asincrono.
1602
1603 \begin{figure}[!htb]
1604   \footnotesize \centering
1605   \begin{minipage}[c]{15cm}
1606     \includestruct{listati/aiocb.h}
1607   \end{minipage} 
1608   \normalsize 
1609   \caption{La struttura \structd{aiocb}, usata per il controllo dell'I/O
1610     asincrono.}
1611   \label{fig:file_aiocb}
1612 \end{figure}
1613
1614 Le operazioni di I/O asincrono possono essere effettuate solo su un file già
1615 aperto; il file deve inoltre supportare la funzione \func{lseek}, pertanto
1616 terminali e pipe sono esclusi. Non c'è limite al numero di operazioni
1617 contemporanee effettuabili su un singolo file.  Ogni operazione deve
1618 inizializzare opportunamente un \textit{control block}.  Il file descriptor su
1619 cui operare deve essere specificato tramite il campo \var{aio\_fildes}; dato
1620 che più operazioni possono essere eseguita in maniera asincrona, il concetto
1621 di posizione corrente sul file viene a mancare; pertanto si deve sempre
1622 specificare nel campo \var{aio\_offset} la posizione sul file da cui i dati
1623 saranno letti o scritti.  Nel campo \var{aio\_buf} deve essere specificato
1624 l'indirizzo del buffer usato per l'I/O, ed in \var{aio\_nbytes} la lunghezza
1625 del blocco di dati da trasferire.
1626
1627 Il campo \var{aio\_reqprio} permette di impostare la priorità delle operazioni
1628 di I/O.\footnote{in generale perché ciò sia possibile occorre che la
1629   piattaforma supporti questa caratteristica, questo viene indicato definendo
1630   le macro \macro{\_POSIX\_PRIORITIZED\_IO}, e
1631   \macro{\_POSIX\_PRIORITY\_SCHEDULING}.} La priorità viene impostata a
1632 partire da quella del processo chiamante (vedi sez.~\ref{sec:proc_priority}),
1633 cui viene sottratto il valore di questo campo.  Il campo
1634 \var{aio\_lio\_opcode} è usato solo dalla funzione \func{lio\_listio}, che,
1635 come vedremo, permette di eseguire con una sola chiamata una serie di
1636 operazioni, usando un vettore di \textit{control block}. Tramite questo campo
1637 si specifica quale è la natura di ciascuna di esse.
1638
1639 \begin{figure}[!htb]
1640   \footnotesize \centering
1641   \begin{minipage}[c]{15cm}
1642     \includestruct{listati/sigevent.h}
1643   \end{minipage} 
1644   \normalsize 
1645   \caption{La struttura \structd{sigevent}, usata per specificare le modalità
1646     di notifica degli eventi relativi alle operazioni di I/O asincrono.}
1647   \label{fig:file_sigevent}
1648 \end{figure}
1649
1650 Infine il campo \var{aio\_sigevent} è una struttura di tipo \struct{sigevent}
1651 che serve a specificare il modo in cui si vuole che venga effettuata la
1652 notifica del completamento delle operazioni richieste. La struttura è
1653 riportata in fig.~\ref{fig:file_sigevent}; il campo \var{sigev\_notify} è
1654 quello che indica le modalità della notifica, esso può assumere i tre valori:
1655 \begin{basedescript}{\desclabelwidth{2.6cm}}
1656 \item[\const{SIGEV\_NONE}]  Non viene inviata nessuna notifica.
1657 \item[\const{SIGEV\_SIGNAL}] La notifica viene effettuata inviando al processo
1658   chiamante il segnale specificato da \var{sigev\_signo}; se il gestore di
1659   questo è stato installato con \const{SA\_SIGINFO} gli verrà restituito il
1660   valore di \var{sigev\_value} (la cui definizione è in
1661   fig.~\ref{fig:sig_sigval}) come valore del campo \var{si\_value} di
1662   \struct{siginfo\_t}.
1663 \item[\const{SIGEV\_THREAD}] La notifica viene effettuata creando un nuovo
1664   thread che esegue la funzione specificata da \var{sigev\_notify\_function}
1665   con argomento \var{sigev\_value}, e con gli attributi specificati da
1666   \var{sigev\_notify\_attribute}.
1667 \end{basedescript}
1668
1669 Le due funzioni base dell'interfaccia per l'I/O asincrono sono
1670 \funcd{aio\_read} ed \funcd{aio\_write}.  Esse permettono di richiedere una
1671 lettura od una scrittura asincrona di dati, usando la struttura \struct{aiocb}
1672 appena descritta; i rispettivi prototipi sono:
1673 \begin{functions}
1674   \headdecl{aio.h}
1675
1676   \funcdecl{int aio\_read(struct aiocb *aiocbp)}
1677   Richiede una lettura asincrona secondo quanto specificato con \param{aiocbp}.
1678
1679   \funcdecl{int aio\_write(struct aiocb *aiocbp)}
1680   Richiede una scrittura asincrona secondo quanto specificato con
1681   \param{aiocbp}.
1682   
1683   \bodydesc{Le funzioni restituiscono 0 in caso di successo, e -1 in caso di
1684     errore, nel qual caso \var{errno} assumerà uno dei valori:
1685   \begin{errlist}
1686   \item[\errcode{EBADF}] Si è specificato un file descriptor sbagliato.
1687   \item[\errcode{ENOSYS}] La funzione non è implementata.
1688   \item[\errcode{EINVAL}] Si è specificato un valore non valido per i campi
1689     \var{aio\_offset} o \var{aio\_reqprio} di \param{aiocbp}.
1690   \item[\errcode{EAGAIN}] La coda delle richieste è momentaneamente piena.
1691   \end{errlist}
1692 }
1693 \end{functions}
1694
1695 Entrambe le funzioni ritornano immediatamente dopo aver messo in coda la
1696 richiesta, o in caso di errore. Non è detto che gli errori \errcode{EBADF} ed
1697 \errcode{EINVAL} siano rilevati immediatamente al momento della chiamata,
1698 potrebbero anche emergere nelle fasi successive delle operazioni. Lettura e
1699 scrittura avvengono alla posizione indicata da \var{aio\_offset}, a meno che
1700 il file non sia stato aperto in \itindex{append~mode} \textit{append mode}
1701 (vedi sez.~\ref{sec:file_open}), nel qual caso le scritture vengono effettuate
1702 comunque alla fine de file, nell'ordine delle chiamate a \func{aio\_write}.
1703
1704 Si tenga inoltre presente che deallocare la memoria indirizzata da
1705 \param{aiocbp} o modificarne i valori prima della conclusione di una
1706 operazione può dar luogo a risultati impredicibili, perché l'accesso ai vari
1707 campi per eseguire l'operazione può avvenire in un momento qualsiasi dopo la
1708 richiesta.  Questo comporta che non si devono usare per \param{aiocbp}
1709 variabili automatiche e che non si deve riutilizzare la stessa struttura per
1710 un'altra operazione fintanto che la precedente non sia stata ultimata. In
1711 generale per ogni operazione si deve utilizzare una diversa struttura
1712 \struct{aiocb}.
1713
1714 Dato che si opera in modalità asincrona, il successo di \func{aio\_read} o
1715 \func{aio\_write} non implica che le operazioni siano state effettivamente
1716 eseguite in maniera corretta; per verificarne l'esito l'interfaccia prevede
1717 altre due funzioni, che permettono di controllare lo stato di esecuzione. La
1718 prima è \funcd{aio\_error}, che serve a determinare un eventuale stato di
1719 errore; il suo prototipo è:
1720 \begin{prototype}{aio.h}
1721   {int aio\_error(const struct aiocb *aiocbp)}  
1722
1723   Determina lo stato di errore delle operazioni di I/O associate a
1724   \param{aiocbp}.
1725   
1726   \bodydesc{La funzione restituisce 0 se le operazioni si sono concluse con
1727     successo, altrimenti restituisce il codice di errore relativo al loro
1728     fallimento.}
1729 \end{prototype}
1730
1731 Se l'operazione non si è ancora completata viene restituito l'errore di
1732 \errcode{EINPROGRESS}. La funzione ritorna zero quando l'operazione si è
1733 conclusa con successo, altrimenti restituisce il codice dell'errore
1734 verificatosi, ed esegue la corrispondente impostazione di \var{errno}. Il
1735 codice può essere sia \errcode{EINVAL} ed \errcode{EBADF}, dovuti ad un valore
1736 errato per \param{aiocbp}, che uno degli errori possibili durante l'esecuzione
1737 dell'operazione di I/O richiesta, nel qual caso saranno restituiti, a seconda
1738 del caso, i codici di errore delle system call \func{read}, \func{write} e
1739 \func{fsync}.
1740
1741 Una volta che si sia certi che le operazioni siano state concluse (cioè dopo
1742 che una chiamata ad \func{aio\_error} non ha restituito
1743 \errcode{EINPROGRESS}), si potrà usare la funzione \funcd{aio\_return}, che
1744 permette di verificare il completamento delle operazioni di I/O asincrono; il
1745 suo prototipo è:
1746 \begin{prototype}{aio.h}
1747 {ssize\_t aio\_return(const struct aiocb *aiocbp)} 
1748
1749 Recupera il valore dello stato di ritorno delle operazioni di I/O associate a
1750 \param{aiocbp}.
1751   
1752 \bodydesc{La funzione restituisce lo stato di uscita dell'operazione
1753   eseguita.}
1754 \end{prototype}
1755
1756 La funzione deve essere chiamata una sola volte per ciascuna operazione
1757 asincrona, essa infatti fa sì che il sistema rilasci le risorse ad essa
1758 associate. É per questo motivo che occorre chiamare la funzione solo dopo che
1759 l'operazione cui \param{aiocbp} fa riferimento si è completata. Una chiamata
1760 precedente il completamento delle operazioni darebbe risultati indeterminati.
1761
1762 La funzione restituisce il valore di ritorno relativo all'operazione eseguita,
1763 così come ricavato dalla sottostante system call (il numero di byte letti,
1764 scritti o il valore di ritorno di \func{fsync}).  É importante chiamare sempre
1765 questa funzione, altrimenti le risorse disponibili per le operazioni di I/O
1766 asincrono non verrebbero liberate, rischiando di arrivare ad un loro
1767 esaurimento.
1768
1769 Oltre alle operazioni di lettura e scrittura l'interfaccia POSIX.1b mette a
1770 disposizione un'altra operazione, quella di sincronizzazione dell'I/O,
1771 compiuta dalla funzione \funcd{aio\_fsync}, che ha lo stesso effetto della
1772 analoga \func{fsync}, ma viene eseguita in maniera asincrona; il suo prototipo
1773 è:
1774 \begin{prototype}{aio.h}
1775 {int aio\_fsync(int op, struct aiocb *aiocbp)} 
1776
1777 Richiede la sincronizzazione dei dati per il file indicato da \param{aiocbp}.
1778   
1779 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
1780   errore, che può essere, con le stesse modalità di \func{aio\_read},
1781   \errval{EAGAIN}, \errval{EBADF} o \errval{EINVAL}.}
1782 \end{prototype}
1783
1784 La funzione richiede la sincronizzazione delle operazioni di I/O, ritornando
1785 immediatamente. L'esecuzione effettiva della sincronizzazione dovrà essere
1786 verificata con \func{aio\_error} e \func{aio\_return} come per le operazioni
1787 di lettura e scrittura. L'argomento \param{op} permette di indicare la
1788 modalità di esecuzione, se si specifica il valore \const{O\_DSYNC} le
1789 operazioni saranno completate con una chiamata a \func{fdatasync}, se si
1790 specifica \const{O\_SYNC} con una chiamata a \func{fsync} (per i dettagli vedi
1791 sez.~\ref{sec:file_sync}).
1792
1793 Il successo della chiamata assicura la sincronizzazione delle operazioni fino
1794 allora richieste, niente è garantito riguardo la sincronizzazione dei dati
1795 relativi ad eventuali operazioni richieste successivamente. Se si è
1796 specificato un meccanismo di notifica questo sarà innescato una volta che le
1797 operazioni di sincronizzazione dei dati saranno completate.
1798
1799 In alcuni casi può essere necessario interrompere le operazioni (in genere
1800 quando viene richiesta un'uscita immediata dal programma), per questo lo
1801 standard POSIX.1b prevede una funzione apposita, \funcd{aio\_cancel}, che
1802 permette di cancellare una operazione richiesta in precedenza; il suo
1803 prototipo è:
1804 \begin{prototype}{aio.h}
1805 {int aio\_cancel(int fildes, struct aiocb *aiocbp)} 
1806
1807 Richiede la cancellazione delle operazioni sul file \param{fildes} specificate
1808 da \param{aiocbp}.
1809   
1810 \bodydesc{La funzione restituisce il risultato dell'operazione con un codice
1811   di positivo, e -1 in caso di errore, che avviene qualora si sia specificato
1812   un valore non valido di \param{fildes}, imposta \var{errno} al valore
1813   \errval{EBADF}.}
1814 \end{prototype}
1815
1816 La funzione permette di cancellare una operazione specifica sul file
1817 \param{fildes}, o tutte le operazioni pendenti, specificando \val{NULL} come
1818 valore di \param{aiocbp}.  Quando una operazione viene cancellata una
1819 successiva chiamata ad \func{aio\_error} riporterà \errcode{ECANCELED} come
1820 codice di errore, ed il suo codice di ritorno sarà -1, inoltre il meccanismo
1821 di notifica non verrà invocato. Se si specifica una operazione relativa ad un
1822 altro file descriptor il risultato è indeterminato.  In caso di successo, i
1823 possibili valori di ritorno per \func{aio\_cancel} (anch'essi definiti in
1824 \file{aio.h}) sono tre:
1825 \begin{basedescript}{\desclabelwidth{3.0cm}}
1826 \item[\const{AIO\_ALLDONE}] indica che le operazioni di cui si è richiesta la
1827   cancellazione sono state già completate,
1828   
1829 \item[\const{AIO\_CANCELED}] indica che tutte le operazioni richieste sono
1830   state cancellate,  
1831   
1832 \item[\const{AIO\_NOTCANCELED}] indica che alcune delle operazioni erano in
1833   corso e non sono state cancellate.
1834 \end{basedescript}
1835
1836 Nel caso si abbia \const{AIO\_NOTCANCELED} occorrerà chiamare
1837 \func{aio\_error} per determinare quali sono le operazioni effettivamente
1838 cancellate. Le operazioni che non sono state cancellate proseguiranno il loro
1839 corso normale, compreso quanto richiesto riguardo al meccanismo di notifica
1840 del loro avvenuto completamento.
1841
1842 Benché l'I/O asincrono preveda un meccanismo di notifica, l'interfaccia
1843 fornisce anche una apposita funzione, \funcd{aio\_suspend}, che permette di
1844 sospendere l'esecuzione del processo chiamante fino al completamento di una
1845 specifica operazione; il suo prototipo è:
1846 \begin{prototype}{aio.h}
1847 {int aio\_suspend(const struct aiocb * const list[], int nent, const struct
1848     timespec *timeout)}
1849   
1850   Attende, per un massimo di \param{timeout}, il completamento di una delle
1851   operazioni specificate da \param{list}.
1852   
1853   \bodydesc{La funzione restituisce 0 se una (o più) operazioni sono state
1854     completate, e -1 in caso di errore nel qual caso \var{errno} assumerà uno
1855     dei valori:
1856     \begin{errlist}
1857     \item[\errcode{EAGAIN}] Nessuna operazione è stata completata entro
1858       \param{timeout}.
1859     \item[\errcode{ENOSYS}] La funzione non è implementata.
1860     \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
1861     \end{errlist}
1862   }
1863 \end{prototype}
1864
1865 La funzione permette di bloccare il processo fintanto che almeno una delle
1866 \param{nent} operazioni specificate nella lista \param{list} è completata, per
1867 un tempo massimo specificato da \param{timout}, o fintanto che non arrivi un
1868 segnale.\footnote{si tenga conto che questo segnale può anche essere quello
1869   utilizzato come meccanismo di notifica.} La lista deve essere inizializzata
1870 con delle strutture \struct{aiocb} relative ad operazioni effettivamente
1871 richieste, ma può contenere puntatori nulli, che saranno ignorati. In caso si
1872 siano specificati valori non validi l'effetto è indefinito.  Un valore
1873 \val{NULL} per \param{timout} comporta l'assenza di timeout.
1874
1875 Lo standard POSIX.1b infine ha previsto pure una funzione, \funcd{lio\_listio},
1876 che permette di effettuare la richiesta di una intera lista di operazioni di
1877 lettura o scrittura; il suo prototipo è:
1878 \begin{prototype}{aio.h}
1879   {int lio\_listio(int mode, struct aiocb * const list[], int nent, struct
1880     sigevent *sig)}
1881   
1882   Richiede l'esecuzione delle operazioni di I/O elencata da \param{list},
1883   secondo la modalità \param{mode}.
1884   
1885   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
1886     errore, nel qual caso \var{errno} assumerà uno dei valori:
1887     \begin{errlist}
1888     \item[\errcode{EAGAIN}] Nessuna operazione è stata completata entro
1889       \param{timeout}.
1890     \item[\errcode{EINVAL}] Si è passato un valore di \param{mode} non valido
1891       o un numero di operazioni \param{nent} maggiore di
1892       \const{AIO\_LISTIO\_MAX}.
1893     \item[\errcode{ENOSYS}] La funzione non è implementata.
1894     \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale.
1895     \end{errlist}
1896   }
1897 \end{prototype}
1898
1899 La funzione esegue la richiesta delle \param{nent} operazioni indicate nella
1900 lista \param{list} che deve contenere gli indirizzi di altrettanti
1901 \textit{control block} opportunamente inizializzati; in particolare dovrà
1902 essere specificato il tipo di operazione con il campo \var{aio\_lio\_opcode},
1903 che può prendere i valori:
1904 \begin{basedescript}{\desclabelwidth{2.0cm}}
1905 \item[\const{LIO\_READ}]  si richiede una operazione di lettura.
1906 \item[\const{LIO\_WRITE}] si richiede una operazione di scrittura.
1907 \item[\const{LIO\_NOP}] non si effettua nessuna operazione.
1908 \end{basedescript}
1909 dove \const{LIO\_NOP} viene usato quando si ha a che fare con un vettore di
1910 dimensione fissa, per poter specificare solo alcune operazioni, o quando si
1911 sono dovute cancellare delle operazioni e si deve ripetere la richiesta per
1912 quelle non completate.
1913
1914 L'argomento \param{mode} controlla il comportamento della funzione, se viene
1915 usato il valore \const{LIO\_WAIT} la funzione si blocca fino al completamento
1916 di tutte le operazioni richieste; se si usa \const{LIO\_NOWAIT} la funzione
1917 ritorna immediatamente dopo aver messo in coda tutte le richieste. In tal caso
1918 il chiamante può richiedere la notifica del completamento di tutte le
1919 richieste, impostando l'argomento \param{sig} in maniera analoga a come si fa
1920 per il campo \var{aio\_sigevent} di \struct{aiocb}.
1921
1922
1923 \section{Altre modalità di I/O avanzato}
1924 \label{sec:file_advanced_io}
1925
1926 Oltre alle precedenti modalità di \textit{I/O multiplexing} e \textsl{I/O
1927   asincrono}, esistono altre funzioni che implementano delle modalità di
1928 accesso ai file più evolute rispetto alle normali funzioni di lettura e
1929 scrittura che abbiamo esaminato in sez.~\ref{sec:file_base_func}. In questa
1930 sezione allora prenderemo in esame le interfacce per l'\textsl{I/O
1931   vettorizzato} e per l'\textsl{I/O mappato in memoria} e la funzione
1932 \func{sendfile}.
1933
1934
1935 \subsection{I/O vettorizzato}
1936 \label{sec:file_multiple_io}
1937
1938 Un caso abbastanza comune è quello in cui ci si trova a dover eseguire una
1939 serie multipla di operazioni di I/O, come una serie di letture o scritture di
1940 vari buffer. Un esempio tipico è quando i dati sono strutturati nei campi di
1941 una struttura ed essi devono essere caricati o salvati su un file.  Benché
1942 l'operazione sia facilmente eseguibile attraverso una serie multipla di
1943 chiamate, ci sono casi in cui si vuole poter contare sulla atomicità delle
1944 operazioni.
1945
1946 Per questo motivo BSD 4.2\footnote{Le due funzioni sono riprese da BSD4.4 ed
1947   integrate anche dallo standard Unix 98. Fino alle libc5, Linux usava
1948   \type{size\_t} come tipo dell'argomento \param{count}, una scelta logica,
1949   che però è stata dismessa per restare aderenti allo standard.} ha introdotto
1950 due nuove system call, \funcd{readv} e \funcd{writev}, che permettono di
1951 effettuare con una sola chiamata una lettura o una scrittura su una serie di
1952 buffer (quello che viene chiamato \textsl{I/O vettorizzato}. I relativi
1953 prototipi sono:
1954 \begin{functions}
1955   \headdecl{sys/uio.h}
1956   
1957   \funcdecl{int readv(int fd, const struct iovec *vector, int count)} 
1958   \funcdecl{int writev(int fd, const struct iovec *vector, int count)} 
1959
1960   Eseguono rispettivamente una lettura o una scrittura vettorizzata.
1961   
1962   \bodydesc{Le funzioni restituiscono il numero di byte letti o scritti in
1963     caso di successo, e -1 in caso di errore, nel qual caso \var{errno}
1964     assumerà uno dei valori:
1965   \begin{errlist}
1966   \item[\errcode{EINVAL}] si è specificato un valore non valido per uno degli
1967     argomenti (ad esempio \param{count} è maggiore di \const{MAX\_IOVEC}).
1968   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima di
1969     di avere eseguito una qualunque lettura o scrittura.
1970   \item[\errcode{EAGAIN}] \param{fd} è stato aperto in modalità non bloccante e
1971   non ci sono dati in lettura.
1972   \item[\errcode{EOPNOTSUPP}] la coda delle richieste è momentaneamente piena.
1973   \end{errlist}
1974   ed anche \errval{EISDIR}, \errval{EBADF}, \errval{ENOMEM}, \errval{EFAULT}
1975   (se non sono stati allocati correttamente i buffer specificati nei campi
1976   \var{iov\_base}), più gli eventuali errori delle funzioni di lettura e
1977   scrittura eseguite su \param{fd}.}
1978 \end{functions}
1979
1980 Entrambe le funzioni usano una struttura \struct{iovec}, la cui definizione è
1981 riportata in fig.~\ref{fig:file_iovec}, che definisce dove i dati devono
1982 essere letti o scritti ed in che quantità. Il primo campo della struttura,
1983 \var{iov\_base}, contiene l'indirizzo del buffer ed il secondo,
1984 \var{iov\_len}, la dimensione dello stesso.
1985
1986 \begin{figure}[!htb]
1987   \footnotesize \centering
1988   \begin{minipage}[c]{15cm}
1989     \includestruct{listati/iovec.h}
1990   \end{minipage} 
1991   \normalsize 
1992   \caption{La struttura \structd{iovec}, usata dalle operazioni di I/O
1993     vettorizzato.} 
1994   \label{fig:file_iovec}
1995 \end{figure}
1996
1997 La lista dei buffer da utilizzare viene indicata attraverso l'argomento
1998 \param{vector} che è un vettore di strutture \struct{iovec}, la cui lunghezza
1999 è specificata dall'argomento \param{count}.  Ciascuna struttura dovrà essere
2000 inizializzata opportunamente per indicare i vari buffer da e verso i quali
2001 verrà eseguito il trasferimento dei dati. Essi verranno letti (o scritti)
2002 nell'ordine in cui li si sono specificati nel vettore \param{vector}.
2003
2004
2005 \subsection{File mappati in memoria}
2006 \label{sec:file_memory_map}
2007
2008 \itindbeg{memory~mapping}
2009 Una modalità alternativa di I/O, che usa una interfaccia completamente diversa
2010 rispetto a quella classica vista in cap.~\ref{cha:file_unix_interface}, è il
2011 cosiddetto \textit{memory-mapped I/O}, che, attraverso il meccanismo della
2012 \textsl{paginazione} \index{paginazione} usato dalla memoria virtuale (vedi
2013 sez.~\ref{sec:proc_mem_gen}), permette di \textsl{mappare} il contenuto di un
2014 file in una sezione dello spazio di indirizzi del processo. 
2015  che lo ha allocato
2016 \begin{figure}[htb]
2017   \centering
2018   \includegraphics[width=10cm]{img/mmap_layout}
2019   \caption{Disposizione della memoria di un processo quando si esegue la
2020   mappatura in memoria di un file.}
2021   \label{fig:file_mmap_layout}
2022 \end{figure}
2023
2024 Il meccanismo è illustrato in fig.~\ref{fig:file_mmap_layout}, una sezione del
2025 file viene \textsl{mappata} direttamente nello spazio degli indirizzi del
2026 programma.  Tutte le operazioni di lettura e scrittura su variabili contenute
2027 in questa zona di memoria verranno eseguite leggendo e scrivendo dal contenuto
2028 del file attraverso il sistema della memoria virtuale \index{memoria~virtuale}
2029 che in maniera analoga a quanto avviene per le pagine che vengono salvate e
2030 rilette nella swap, si incaricherà di sincronizzare il contenuto di quel
2031 segmento di memoria con quello del file mappato su di esso.  Per questo motivo
2032 si può parlare tanto di \textsl{file mappato in memoria}, quanto di
2033 \textsl{memoria mappata su file}.
2034
2035 L'uso del \textit{memory-mapping} comporta una notevole semplificazione delle
2036 operazioni di I/O, in quanto non sarà più necessario utilizzare dei buffer
2037 intermedi su cui appoggiare i dati da traferire, poiché questi potranno essere
2038 acceduti direttamente nella sezione di memoria mappata; inoltre questa
2039 interfaccia è più efficiente delle usuali funzioni di I/O, in quanto permette
2040 di caricare in memoria solo le parti del file che sono effettivamente usate ad
2041 un dato istante.
2042
2043 Infatti, dato che l'accesso è fatto direttamente attraverso la
2044 \index{memoria~virtuale} memoria virtuale, la sezione di memoria mappata su
2045 cui si opera sarà a sua volta letta o scritta sul file una pagina alla volta e
2046 solo per le parti effettivamente usate, il tutto in maniera completamente
2047 trasparente al processo; l'accesso alle pagine non ancora caricate avverrà
2048 allo stesso modo con cui vengono caricate in memoria le pagine che sono state
2049 salvate sullo swap.
2050
2051 Infine in situazioni in cui la memoria è scarsa, le pagine che mappano un file
2052 vengono salvate automaticamente, così come le pagine dei programmi vengono
2053 scritte sulla swap; questo consente di accedere ai file su dimensioni il cui
2054 solo limite è quello dello spazio di indirizzi disponibile, e non della
2055 memoria su cui possono esserne lette delle porzioni.
2056
2057 L'interfaccia POSIX implementata da Linux prevede varie funzioni per la
2058 gestione del \textit{memory mapped I/O}, la prima di queste, che serve ad
2059 eseguire la mappatura in memoria di un file, è \funcd{mmap}; il suo prototipo
2060 è:
2061 \begin{functions}
2062   
2063   \headdecl{unistd.h}
2064   \headdecl{sys/mman.h} 
2065
2066   \funcdecl{void * mmap(void * start, size\_t length, int prot, int flags, int
2067     fd, off\_t offset)}
2068   
2069   Esegue la mappatura in memoria della sezione specificata del file \param{fd}.
2070   
2071   \bodydesc{La funzione restituisce il puntatore alla zona di memoria mappata
2072     in caso di successo, e \const{MAP\_FAILED} (-1) in caso di errore, nel
2073     qual caso \var{errno} assumerà uno dei valori:
2074     \begin{errlist}
2075     \item[\errcode{EBADF}] Il file descriptor non è valido, e non si è usato
2076       \const{MAP\_ANONYMOUS}.
2077     \item[\errcode{EACCES}] o \param{fd} non si riferisce ad un file regolare,
2078       o si è usato \const{MAP\_PRIVATE} ma \param{fd} non è aperto in lettura,
2079       o si è usato \const{MAP\_SHARED} e impostato \const{PROT\_WRITE} ed
2080       \param{fd} non è aperto in lettura/scrittura, o si è impostato
2081       \const{PROT\_WRITE} ed \param{fd} è in \textit{append-only}.
2082     \item[\errcode{EINVAL}] I valori di \param{start}, \param{length} o
2083       \param{offset} non sono validi (o troppo grandi o non allineati sulla
2084       dimensione delle pagine).
2085     \item[\errcode{ETXTBSY}] Si è impostato \const{MAP\_DENYWRITE} ma
2086       \param{fd} è aperto in scrittura.
2087     \item[\errcode{EAGAIN}] Il file è bloccato, o si è bloccata troppa memoria
2088       rispetto a quanto consentito dai limiti di sistema (vedi
2089       sez.~\ref{sec:sys_resource_limit}).
2090     \item[\errcode{ENOMEM}] Non c'è memoria o si è superato il limite sul
2091       numero di mappature possibili.
2092     \item[\errcode{ENODEV}] Il filesystem di \param{fd} non supporta il memory
2093       mapping.
2094     \item[\errcode{EPERM}] L'argomento \param{prot} ha richiesto
2095       \const{PROT\_EXEC}, ma il filesystem di \param{fd} è montato con
2096       l'opzione \texttt{noexec}.
2097     \item[\errcode{ENFILE}] Si è superato il limite del sistema sul numero di
2098       file aperti (vedi sez.~\ref{sec:sys_resource_limit}).
2099     \end{errlist}
2100   }
2101 \end{functions}
2102
2103 La funzione richiede di mappare in memoria la sezione del file \param{fd} a
2104 partire da \param{offset} per \param{lenght} byte, preferibilmente
2105 all'indirizzo \param{start}. Il valore di \param{offset} deve essere un
2106 multiplo della dimensione di una pagina di memoria. 
2107
2108
2109 \begin{table}[htb]
2110   \centering
2111   \footnotesize
2112   \begin{tabular}[c]{|l|l|}
2113     \hline
2114     \textbf{Valore} & \textbf{Significato} \\
2115     \hline
2116     \hline
2117     \const{PROT\_EXEC}  & Le pagine possono essere eseguite.\\
2118     \const{PROT\_READ}  & Le pagine possono essere lette.\\
2119     \const{PROT\_WRITE} & Le pagine possono essere scritte.\\
2120     \const{PROT\_NONE}  & L'accesso alle pagine è vietato.\\
2121     \hline    
2122   \end{tabular}
2123   \caption{Valori dell'argomento \param{prot} di \func{mmap}, relativi alla
2124     protezione applicate alle pagine del file mappate in memoria.}
2125   \label{tab:file_mmap_prot}
2126 \end{table}
2127
2128
2129 Il valore dell'argomento \param{prot} indica la protezione\footnote{in Linux
2130   la memoria reale è divisa in pagine: ogni processo vede la sua memoria
2131   attraverso uno o più segmenti lineari di memoria virtuale.  Per ciascuno di
2132   questi segmenti il kernel mantiene nella \itindex{page~table} \textit{page
2133     table} la mappatura sulle pagine di memoria reale, ed le modalità di
2134   accesso (lettura, esecuzione, scrittura); una loro violazione causa quella
2135   che si chiama una \textit{segment violation}, e la relativa emissione del
2136   segnale \const{SIGSEGV}.} da applicare al segmento di memoria e deve essere
2137 specificato come maschera binaria ottenuta dall'OR di uno o più dei valori
2138 riportati in tab.~\ref{tab:file_mmap_flag}; il valore specificato deve essere
2139 compatibile con la modalità di accesso con cui si è aperto il file.
2140
2141 L'argomento \param{flags} specifica infine qual è il tipo di oggetto mappato,
2142 le opzioni relative alle modalità con cui è effettuata la mappatura e alle
2143 modalità con cui le modifiche alla memoria mappata vengono condivise o
2144 mantenute private al processo che le ha effettuate. Deve essere specificato
2145 come maschera binaria ottenuta dall'OR di uno o più dei valori riportati in
2146 tab.~\ref{tab:file_mmap_flag}.
2147
2148 \begin{table}[htb]
2149   \centering
2150   \footnotesize
2151   \begin{tabular}[c]{|l|p{11cm}|}
2152     \hline
2153     \textbf{Valore} & \textbf{Significato} \\
2154     \hline
2155     \hline
2156     \const{MAP\_FIXED}     & Non permette di restituire un indirizzo diverso
2157                              da \param{start}, se questo non può essere usato
2158                              \func{mmap} fallisce. Se si imposta questo flag il
2159                              valore di \param{start} deve essere allineato
2160                              alle dimensioni di una pagina.\\
2161     \const{MAP\_SHARED}    & I cambiamenti sulla memoria mappata vengono
2162                              riportati sul file e saranno immediatamente
2163                              visibili agli altri processi che mappano lo stesso
2164                              file.\footnotemark Il file su disco però non sarà
2165                              aggiornato fino alla chiamata di \func{msync} o
2166                              \func{munmap}), e solo allora le modifiche saranno
2167                              visibili per l'I/O convenzionale. Incompatibile
2168                              con \const{MAP\_PRIVATE}.\\ 
2169     \const{MAP\_PRIVATE}   & I cambiamenti sulla memoria mappata non vengono
2170                              riportati sul file. Ne viene fatta una copia
2171                              privata cui solo il processo chiamante ha
2172                              accesso.  Le modifiche sono mantenute attraverso
2173                              il meccanismo del \textit{copy on
2174                                write} \itindex{copy~on~write} e 
2175                              salvate su swap in caso di necessità. Non è
2176                              specificato se i cambiamenti sul file originale
2177                              vengano riportati sulla regione
2178                              mappata. Incompatibile con \const{MAP\_SHARED}.\\
2179     \const{MAP\_DENYWRITE} & In Linux viene ignorato per evitare
2180                              \textit{DoS} \itindex{Denial~of~Service~(DoS)}
2181                              (veniva usato per segnalare che tentativi di
2182                              scrittura sul file dovevano fallire con
2183                              \errcode{ETXTBSY}).\\ 
2184     \const{MAP\_EXECUTABLE}& Ignorato.\\
2185     \const{MAP\_NORESERVE} & Si usa con \const{MAP\_PRIVATE}. Non riserva
2186                              delle pagine di swap ad uso del meccanismo del
2187                              \textit{copy on write} \itindex{copy~on~write}
2188                              per mantenere le
2189                              modifiche fatte alla regione mappata, in
2190                              questo caso dopo una scrittura, se non c'è più
2191                              memoria disponibile, si ha l'emissione di
2192                              un \const{SIGSEGV}.\\
2193     \const{MAP\_LOCKED}    & Se impostato impedisce lo swapping delle pagine
2194                              mappate.\\
2195     \const{MAP\_GROWSDOWN} & Usato per gli \itindex{stack} stack. Indica 
2196                              che la mappatura deve essere effettuata con gli
2197                              indirizzi crescenti verso il basso.\\
2198     \const{MAP\_ANONYMOUS} & La mappatura non è associata a nessun file. Gli
2199                              argomenti \param{fd} e \param{offset} sono
2200                              ignorati.\footnotemark\\
2201     \const{MAP\_ANON}      & Sinonimo di \const{MAP\_ANONYMOUS}, deprecato.\\
2202     \const{MAP\_FILE}      & Valore di compatibilità, ignorato.\\
2203     \const{MAP\_32BIT}     & Esegue la mappatura sui primi 2GiB dello spazio
2204                              degli indirizzi, viene supportato solo sulle
2205                              piattaforme \texttt{x86-64} per compatibilità con
2206                              le applicazioni a 32 bit. Viene ignorato se si è
2207                              richiesto \const{MAP\_FIXED}.\\
2208     \const{MAP\_POPULATE}  & Esegue il \itindex{prefaulting}
2209                              \textit{prefaulting} delle pagine di memoria
2210                              necessarie alla mappatura.\\
2211     \const{MAP\_NONBLOCK}  & Esegue un \textit{prefaulting} più limitato che
2212                              non causa I/O.\footnotemark\\
2213 %     \const{MAP\_DONTEXPAND}& Non consente una successiva espansione dell'area
2214 %                              mappata con \func{mremap}, proposto ma pare non
2215 %                              implementato.\\
2216     \hline
2217   \end{tabular}
2218   \caption{Valori possibili dell'argomento \param{flag} di \func{mmap}.}
2219   \label{tab:file_mmap_flag}
2220 \end{table}
2221
2222
2223 Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
2224 piuttosto complessi, essi si possono comprendere solo tenendo presente che
2225 tutto quanto è comunque basato sul meccanismo della \index{memoria~virtuale}
2226 memoria virtuale. Questo comporta allora una serie di conseguenze. La più
2227 ovvia è che se si cerca di scrivere su una zona mappata in sola lettura si
2228 avrà l'emissione di un segnale di violazione di accesso (\const{SIGSEGV}),
2229 dato che i permessi sul segmento di memoria relativo non consentono questo
2230 tipo di accesso.
2231
2232 È invece assai diversa la questione relativa agli accessi al di fuori della
2233 regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
2234 ritenere che anch'essi debbano generare un segnale di violazione di accesso;
2235 questo però non tiene conto del fatto che, essendo basata sul meccanismo della
2236 paginazione \index{paginazione}, la mappatura in memoria non può che essere
2237 eseguita su un segmento di dimensioni rigorosamente multiple di quelle di una
2238 pagina, ed in generale queste potranno non corrispondere alle dimensioni
2239 effettive del file o della sezione che si vuole mappare.
2240
2241 \footnotetext[20]{Dato che tutti faranno riferimento alle stesse pagine di
2242   memoria.}  
2243
2244 \footnotetext[21]{L'uso di questo flag con \const{MAP\_SHARED} è stato
2245   implementato in Linux a partire dai kernel della serie 2.4.x; esso consente
2246   di creare segmenti di memoria condivisa e torneremo sul suo utilizzo in
2247   sez.~\ref{sec:ipc_mmap_anonymous}.}
2248
2249 \footnotetext{questo flag ed il precedente \const{MAP\_POPULATE} sono stati
2250   introdotti nel kernel 2.5.46 insieme alla mappatura non lineare di cui
2251   parleremo più avanti.}
2252
2253 \begin{figure}[!htb] 
2254   \centering
2255   \includegraphics[width=12cm]{img/mmap_boundary}
2256   \caption{Schema della mappatura in memoria di una sezione di file di
2257     dimensioni non corrispondenti al bordo di una pagina.}
2258   \label{fig:file_mmap_boundary}
2259 \end{figure}
2260
2261
2262 Il caso più comune è quello illustrato in fig.~\ref{fig:file_mmap_boundary},
2263 in cui la sezione di file non rientra nei confini di una pagina: in tal caso
2264 verrà il file sarà mappato su un segmento di memoria che si estende fino al
2265 bordo della pagina successiva.
2266
2267 In questo caso è possibile accedere a quella zona di memoria che eccede le
2268 dimensioni specificate da \param{lenght}, senza ottenere un \const{SIGSEGV}
2269 poiché essa è presente nello spazio di indirizzi del processo, anche se non è
2270 mappata sul file. Il comportamento del sistema è quello di restituire un
2271 valore nullo per quanto viene letto, e di non riportare su file quanto viene
2272 scritto.
2273
2274 Un caso più complesso è quello che si viene a creare quando le dimensioni del
2275 file mappato sono più corte delle dimensioni della mappatura, oppure quando il
2276 file è stato troncato, dopo che è stato mappato, ad una dimensione inferiore a
2277 quella della mappatura in memoria.
2278
2279 In questa situazione, per la sezione di pagina parzialmente coperta dal
2280 contenuto del file, vale esattamente quanto visto in precedenza; invece per la
2281 parte che eccede, fino alle dimensioni date da \param{length}, l'accesso non
2282 sarà più possibile, ma il segnale emesso non sarà \const{SIGSEGV}, ma
2283 \const{SIGBUS}, come illustrato in fig.~\ref{fig:file_mmap_exceed}.
2284
2285 Non tutti i file possono venire mappati in memoria, dato che, come illustrato
2286 in fig.~\ref{fig:file_mmap_layout}, la mappatura introduce una corrispondenza
2287 biunivoca fra una sezione di un file ed una sezione di memoria. Questo
2288 comporta che ad esempio non è possibile mappare in memoria file descriptor
2289 relativi a pipe, socket e fifo, per i quali non ha senso parlare di
2290 \textsl{sezione}. Lo stesso vale anche per alcuni file di dispositivo, che non
2291 dispongono della relativa operazione \func{mmap} (si ricordi quanto esposto in
2292 sez.~\ref{sec:file_vfs_work}). Si tenga presente però che esistono anche casi
2293 di dispositivi (un esempio è l'interfaccia al ponte PCI-VME del chip Universe)
2294 che sono utilizzabili solo con questa interfaccia.
2295
2296 \begin{figure}[htb]
2297   \centering
2298   \includegraphics[width=12cm]{img/mmap_exceed}
2299   \caption{Schema della mappatura in memoria di file di dimensioni inferiori
2300     alla lunghezza richiesta.}
2301   \label{fig:file_mmap_exceed}
2302 \end{figure}
2303
2304 Dato che passando attraverso una \func{fork} lo spazio di indirizzi viene
2305 copiato integralmente, i file mappati in memoria verranno ereditati in maniera
2306 trasparente dal processo figlio, mantenendo gli stessi attributi avuti nel
2307 padre; così se si è usato \const{MAP\_SHARED} padre e figlio accederanno allo
2308 stesso file in maniera condivisa, mentre se si è usato \const{MAP\_PRIVATE}
2309 ciascuno di essi manterrà una sua versione privata indipendente. Non c'è
2310 invece nessun passaggio attraverso una \func{exec}, dato che quest'ultima
2311 sostituisce tutto lo spazio degli indirizzi di un processo con quello di un
2312 nuovo programma.
2313
2314 Quando si effettua la mappatura di un file vengono pure modificati i tempi ad
2315 esso associati (di cui si è trattato in sez.~\ref{sec:file_file_times}). Il
2316 valore di \var{st\_atime} può venir cambiato in qualunque istante a partire
2317 dal momento in cui la mappatura è stata effettuata: il primo riferimento ad
2318 una pagina mappata su un file aggiorna questo tempo.  I valori di
2319 \var{st\_ctime} e \var{st\_mtime} possono venir cambiati solo quando si è
2320 consentita la scrittura sul file (cioè per un file mappato con
2321 \const{PROT\_WRITE} e \const{MAP\_SHARED}) e sono aggiornati dopo la scrittura
2322 o in corrispondenza di una eventuale \func{msync}.
2323
2324 Dato per i file mappati in memoria le operazioni di I/O sono gestite
2325 direttamente dalla \index{memoria~virtuale}memoria virtuale, occorre essere
2326 consapevoli delle interazioni che possono esserci con operazioni effettuate
2327 con l'interfaccia standard dei file di cap.~\ref{cha:file_unix_interface}. Il
2328 problema è che una volta che si è mappato un file, le operazioni di lettura e
2329 scrittura saranno eseguite sulla memoria, e riportate su disco in maniera
2330 autonoma dal sistema della memoria virtuale.
2331
2332 Pertanto se si modifica un file con l'interfaccia standard queste modifiche
2333 potranno essere visibili o meno a seconda del momento in cui la memoria
2334 virtuale trasporterà dal disco in memoria quella sezione del file, perciò è
2335 del tutto imprevedibile il risultato della modifica di un file nei confronti
2336 del contenuto della memoria su cui è mappato.
2337
2338 Per questo, è sempre sconsigliabile eseguire scritture su file attraverso
2339 l'interfaccia standard, quando lo si è mappato in memoria, è invece possibile
2340 usare l'interfaccia standard per leggere un file mappato in memoria, purché si
2341 abbia una certa cura; infatti l'interfaccia dell'I/O mappato in memoria mette
2342 a disposizione la funzione \funcd{msync} per sincronizzare il contenuto della
2343 memoria mappata con il file su disco; il suo prototipo è:
2344 \begin{functions}  
2345   \headdecl{unistd.h}
2346   \headdecl{sys/mman.h} 
2347
2348   \funcdecl{int msync(const void *start, size\_t length, int flags)}
2349   
2350   Sincronizza i contenuti di una sezione di un file mappato in memoria.
2351   
2352   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
2353     errore nel qual caso \var{errno} assumerà uno dei valori:
2354     \begin{errlist}
2355     \item[\errcode{EINVAL}] O \param{start} non è multiplo di
2356       \const{PAGE\_SIZE}, o si è specificato un valore non valido per
2357       \param{flags}.
2358     \item[\errcode{EFAULT}] L'intervallo specificato non ricade in una zona
2359       precedentemente mappata.
2360     \end{errlist}
2361   }
2362 \end{functions}
2363
2364 La funzione esegue la sincronizzazione di quanto scritto nella sezione di
2365 memoria indicata da \param{start} e \param{offset}, scrivendo le modifiche sul
2366 file (qualora questo non sia già stato fatto).  Provvede anche ad aggiornare i
2367 relativi tempi di modifica. In questo modo si è sicuri che dopo l'esecuzione
2368 di \func{msync} le funzioni dell'interfaccia standard troveranno un contenuto
2369 del file aggiornato.
2370
2371 \begin{table}[htb]
2372   \centering
2373   \footnotesize
2374   \begin{tabular}[c]{|l|l|}
2375     \hline
2376     \textbf{Valore} & \textbf{Significato} \\
2377     \hline
2378     \hline
2379     \const{MS\_ASYNC}     & Richiede la sincronizzazione.\\
2380     \const{MS\_SYNC}      & Attende che la sincronizzazione si eseguita.\\
2381     \const{MS\_INVALIDATE}& Richiede che le altre mappature dello stesso file
2382                             siano invalidate.\\
2383     \hline    
2384   \end{tabular}
2385   \caption{Valori dell'argomento \param{flag} di \func{msync}.}
2386   \label{tab:file_mmap_rsync}
2387 \end{table}
2388
2389 L'argomento \param{flag} è specificato come maschera binaria composta da un OR
2390 dei valori riportati in tab.~\ref{tab:file_mmap_rsync}, di questi però
2391 \const{MS\_ASYNC} e \const{MS\_SYNC} sono incompatibili; con il primo valore
2392 infatti la funzione si limita ad inoltrare la richiesta di sincronizzazione al
2393 meccanismo della memoria virtuale, ritornando subito, mentre con il secondo
2394 attende che la sincronizzazione sia stata effettivamente eseguita. Il terzo
2395 flag fa invalidare le pagine di cui si richiede la sincronizzazione per tutte
2396 le mappature dello stesso file, così che esse possano essere immediatamente
2397 aggiornate ai nuovi valori.
2398
2399 Una volta che si sono completate le operazioni di I/O si può eliminare la
2400 mappatura della memoria usando la funzione \funcd{munmap}, il suo prototipo è:
2401 \begin{functions}  
2402   \headdecl{unistd.h}
2403   \headdecl{sys/mman.h} 
2404
2405   \funcdecl{int munmap(void *start, size\_t length)}
2406   
2407   Rilascia la mappatura sulla sezione di memoria specificata.
2408
2409   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
2410     errore nel qual caso \var{errno} assumerà uno dei valori:
2411     \begin{errlist}
2412     \item[\errcode{EINVAL}] L'intervallo specificato non ricade in una zona
2413       precedentemente mappata.
2414     \end{errlist}
2415   }
2416 \end{functions}
2417
2418 La funzione cancella la mappatura per l'intervallo specificato con
2419 \param{start} e \param{length}; ogni successivo accesso a tale regione causerà
2420 un errore di accesso in memoria. L'argomento \param{start} deve essere
2421 allineato alle dimensioni di una pagina, e la mappatura di tutte le pagine
2422 contenute anche parzialmente nell'intervallo indicato, verrà rimossa.
2423 Indicare un intervallo che non contiene mappature non è un errore.  Si tenga
2424 presente inoltre che alla conclusione di un processo ogni pagina mappata verrà
2425 automaticamente rilasciata, mentre la chiusura del file descriptor usato per
2426 il \textit{memory mapping} non ha alcun effetto su di esso.
2427
2428 Lo standard POSIX prevede anche una funzione che permetta di cambiare le
2429 protezioni delle pagine di memoria; lo standard prevede che essa si applichi
2430 solo ai \textit{memory mapping} creati con \func{mmap}, ma nel caso di Linux
2431 la funzione può essere usata con qualunque pagina valida nella memoria
2432 virtuale. Questa funzione è \funcd{mprotect} ed il suo prototipo è:
2433 \begin{functions}  
2434 %  \headdecl{unistd.h}
2435   \headdecl{sys/mman.h} 
2436
2437   \funcdecl{int mprotect(const void *addr, size\_t len, int prot)}
2438   
2439   Modifica le protezioni delle pagine di memoria comprese nell'intervallo
2440   specificato.
2441
2442   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
2443     errore nel qual caso \var{errno} assumerà uno dei valori:
2444     \begin{errlist}
2445     \item[\errcode{EINVAL}] il valore di \param{addr} non è valido o non è un
2446       multiplo di \const{PAGE\_SIZE}.
2447     \item[\errcode{EACCESS}] l'operazione non è consentita, ad esempio si è
2448       cercato di marcare con \const{PROT\_WRITE} un segmento di memoria cui si
2449       ha solo accesso in lettura.
2450 %     \item[\errcode{ENOMEM}] non è stato possibile allocare le risorse
2451 %       necessarie all'interno del kernel.
2452 %     \item[\errcode{EFAULT}] si è specificato un indirizzo di memoria non
2453 %       accessibile.
2454     \end{errlist}
2455     ed inoltre \errval{ENOMEM} ed \errval{EFAULT}.
2456   } 
2457 \end{functions}
2458
2459
2460 La funzione prende come argomenti un indirizzo di partenza in \param{addr},
2461 allineato alle dimensioni delle pagine di memoria, ed una dimensione
2462 \param{size}. La nuova protezione deve essere specificata in \param{prot} con
2463 una combinazione dei valori di tab.~\ref{tab:file_mmap_prot}.  La nuova
2464 protezione verrà applicata a tutte le pagine contenute, anche parzialmente,
2465 dall'intervallo fra \param{addr} e \param{addr}+\param{size}-1.
2466
2467 Infine Linux supporta alcune operazioni specifiche non disponibili su altri
2468 kernel unix-like. La prima di queste è la possibilità di modificare un
2469 precedente \textit{memory mapping}, ad esempio per espanderlo o restringerlo.
2470 Questo è realizzato dalla funzione \funcd{mremap}, il cui prototipo è:
2471 \begin{functions}  
2472   \headdecl{unistd.h}
2473   \headdecl{sys/mman.h} 
2474
2475   \funcdecl{void * mremap(void *old\_address, size\_t old\_size , size\_t
2476     new\_size, unsigned long flags)}
2477   
2478   Restringe o allarga una mappatura in memoria di un file.
2479
2480   \bodydesc{La funzione restituisce l'indirizzo alla nuova area di memoria in
2481     caso di successo od il valore \const{MAP\_FAILED} (pari a \texttt{(void *)
2482       -1}) in caso di errore, nel qual caso \var{errno} assumerà uno dei
2483     valori:
2484     \begin{errlist}
2485     \item[\errcode{EINVAL}] il valore di \param{old\_address} non è un
2486       puntatore valido.
2487     \item[\errcode{EFAULT}] ci sono indirizzi non validi nell'intervallo
2488       specificato da \param{old\_address} e \param{old\_size}, o ci sono altre
2489       mappature di tipo non corrispondente a quella richiesta.
2490     \item[\errcode{ENOMEM}] non c'è memoria sufficiente oppure l'area di
2491       memoria non può essere espansa all'indirizzo virtuale corrente, e non si
2492       è specificato \const{MREMAP\_MAYMOVE} nei flag.
2493     \item[\errcode{EAGAIN}] il segmento di memoria scelto è bloccato e non può
2494       essere rimappato.
2495     \end{errlist}
2496   }
2497 \end{functions}
2498
2499 La funzione richiede come argomenti \param{old\_address} (che deve essere
2500 allineato alle dimensioni di una pagina di memoria) che specifica il
2501 precedente indirizzo del \textit{memory mapping} e \param{old\_size}, che ne
2502 indica la dimensione. Con \param{new\_size} si specifica invece la nuova
2503 dimensione che si vuole ottenere. Infine l'argomento \param{flags} è una
2504 maschera binaria per i flag che controllano il comportamento della funzione.
2505 Il solo valore utilizzato è \const{MREMAP\_MAYMOVE}\footnote{per poter
2506   utilizzare questa costante occorre aver definito \macro{\_GNU\_SOURCE} prima
2507   di includere \file{sys/mman.h}.}  che consente di eseguire l'espansione
2508 anche quando non è possibile utilizzare il precedente indirizzo. Per questo
2509 motivo, se si è usato questo flag, la funzione può restituire un indirizzo
2510 della nuova zona di memoria che non è detto coincida con \param{old\_address}.
2511
2512 La funzione si appoggia al sistema della \index{memoria~virtuale} memoria
2513 virtuale per modificare l'associazione fra gli indirizzi virtuali del processo
2514 e le pagine di memoria, modificando i dati direttamente nella
2515 \itindex{page~table} \textit{page table} del processo. Come per
2516 \func{mprotect} la funzione può essere usata in generale, anche per pagine di
2517 memoria non corrispondenti ad un \textit{memory mapping}, e consente così di
2518 implementare la funzione \func{realloc} in maniera molto efficiente.
2519
2520 Una caratteristica comune a tutti i sistemi unix-like è che la mappatura in
2521 memoria di un file viene eseguita in maniera lineare, cioè parti successive di
2522 un file vengono mappate linearmente su indirizzi successivi in memoria.
2523 Esistono però delle applicazioni\footnote{in particolare la tecnica è usata
2524   dai database o dai programmi che realizzano macchine virtuali.} in cui è
2525 utile poter mappare sezioni diverse di un file su diverse zone di memoria.
2526
2527 Questo è ovviamente sempre possibile eseguendo ripetutamente la funzione
2528 \func{mmap} per ciascuna delle diverse aree del file che si vogliono mappare
2529 in sequenza non lineare,\footnote{ed in effetti è quello che veniva fatto
2530   anche con Linux prima che fossero introdotte queste estensioni.} ma questo
2531 approccio ha delle conseguenze molto pesanti in termini di prestazioni.
2532 Infatti per ciascuna mappatura in memoria deve essere definita nella
2533 \itindex{page~table} \textit{page table} del processo una nuova area di
2534 memoria virtuale\footnote{quella che nel gergo del kernel viene chiamata VMA
2535   (\textit{virtual memory area}).} che corrisponda alla mappatura, in modo che
2536 questa diventi visibile nello spazio degli indirizzi come illustrato in
2537 fig.~\ref{fig:file_mmap_layout}.
2538
2539 Quando un processo esegue un gran numero di mappature diverse\footnote{si può
2540   arrivare anche a centinaia di migliaia.} per realizzare a mano una mappatura
2541 non-lineare si avrà un accrescimento eccessivo della sua \itindex{page~table}
2542 \textit{page table}, e lo stesso accadrà per tutti gli altri processi che
2543 utilizzano questa tecnica. In situazioni in cui le applicazioni hanno queste
2544 esigenze si avranno delle prestazioni ridotte, dato che il kernel dovrà
2545 impiegare molte risorse\footnote{sia in termini di memoria interna per i dati
2546   delle \itindex{page~table} \textit{page table}, che di CPU per il loro
2547   aggiornamento.} solo per mantenere i dati di una gran quantità di
2548 \textit{memory mapping}.
2549
2550 Per questo motivo con il kernel 2.5.46 è stato introdotto, ad opera di Ingo
2551 Molnar, un meccanismo che consente la mappatura non-lineare. Anche questa è
2552 una caratteristica specifica di Linux, non presente in altri sistemi
2553 unix-like.  Diventa così possibile utilizzare una sola mappatura
2554 iniziale\footnote{e quindi una sola \textit{virtual memory area} nella
2555   \itindex{page~table} \textit{page table} del processo.} e poi rimappare a
2556 piacere all'interno di questa i dati del file. Ciò è possibile grazie ad una
2557 nuova system call, \funcd{remap\_file\_pages}, il cui prototipo è:
2558 \begin{functions}  
2559   \headdecl{sys/mman.h} 
2560
2561   \funcdecl{int remap\_file\_pages(void *start, size\_t size, int prot,
2562     ssize\_t pgoff, int flags)}
2563   
2564   Permette di rimappare non linearmente un precedente \textit{memory mapping}.
2565
2566   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
2567     errore, nel qual caso \var{errno} assumerà uno dei valori:
2568     \begin{errlist}
2569     \item[\errcode{EINVAL}] Si è usato un valore non valido per uno degli
2570       argomenti o \param{start} non fa riferimento ad un \textit{memory
2571         mapping} valido creato con \const{MAP\_SHARED}.
2572     \end{errlist}
2573   }
2574 \end{functions}
2575
2576 Per poter utilizzare questa funzione occorre anzitutto effettuare
2577 preliminarmente una chiamata a \func{mmap} con \const{MAP\_SHARED} per
2578 definire l'area di memoria che poi sarà rimappata non linearmente. Poi di
2579 chiamerà questa funzione per modificare le corrispondenze fra pagine di
2580 memoria e pagine del file; si tenga presente che \func{remap\_file\_pages}
2581 permette anche di mappare la stessa pagina di un file in più pagine della
2582 regione mappata.
2583
2584 La funzione richiede che si identifichi la sezione del file che si vuole
2585 riposizionare all'interno del \textit{memory mapping} con gli argomenti
2586 \param{pgoff} e \param{size}; l'argomento \param{start} invece deve indicare
2587 un indirizzo all'interno dell'area definita dall'\func{mmap} iniziale, a
2588 partire dal quale la sezione di file indicata verrà rimappata. L'argomento
2589 \param{prot} deve essere sempre nullo, mentre \param{flags} prende gli stessi
2590 valori di \func{mmap} (quelli di tab.~\ref{tab:file_mmap_prot}) ma di tutti i
2591 flag solo \const{MAP\_NONBLOCK} non viene ignorato.
2592
2593 Insieme alla funzione \func{remap\_file\_pages} nel kernel 2.5.46 con sono
2594 stati introdotti anche due nuovi flag per \func{mmap}: \const{MAP\_POPULATE} e
2595 \const{MAP\_NONBLOCK}.  Il primo dei due consente di abilitare il meccanismo
2596 del \itindex{prefaulting} \textit{prefaulting}. Questo viene di nuovo in aiuto
2597 per migliorare le prestazioni in certe condizioni di utilizzo del
2598 \textit{memory mapping}. 
2599
2600 Il problema si pone tutte le volte che si vuole mappare in memoria un file di
2601 grosse dimensioni. Il comportamento normale del sistema della
2602 \index{memoria~virtuale} memoria virtuale è quello per cui la regione mappata
2603 viene aggiunta alla \itindex{page~table} \textit{page table} del processo, ma
2604 i dati verranno effettivamente utilizzati (si avrà cioè un
2605 \itindex{page~fault} \textit{page fault} che li trasferisce dal disco alla
2606 memoria) soltanto in corrispondenza dell'accesso a ciascuna delle pagine
2607 interessate dal \textit{memory mapping}. 
2608
2609 Questo vuol dire che il passaggio dei dati dal disco alla memoria avverrà una
2610 pagina alla volta con un gran numero di \itindex{page~fault} \textit{page
2611   fault}, chiaramente se si sa in anticipo che il file verrà utilizzato
2612 immediatamente, è molto più efficiente eseguire un \itindex{prefaulting}
2613 \textit{prefaulting} in cui tutte le pagine di memoria interessate alla
2614 mappatura vengono ``\textsl{popolate}'' in una sola volta, questo
2615 comportamento viene abilitato quando si usa con \func{mmap} il flag
2616 \const{MAP\_POPULATE}.
2617
2618 Dato che l'uso di \const{MAP\_POPULATE} comporta dell'I/O su disco che può
2619 rallentare l'esecuzione di \func{mmap} è stato introdotto anche un secondo
2620 flag, \const{MAP\_NONBLOCK}, che esegue un \itindex{prefaulting}
2621 \textit{prefaulting} più limitato in cui vengono popolate solo le pagine della
2622 mappatura che già si trovano nella cache del kernel.\footnote{questo può
2623   essere utile per il linker dinamico, in particolare quando viene effettuato
2624   il \textit{prelink} delle applicazioni.}
2625
2626 \itindend{memory~mapping}
2627
2628
2629 \subsection{L'I/O diretto fra file descriptor}
2630 \label{sec:file_sendfile_splice}
2631
2632
2633 Uno dei problemi che si presenta nella gestione dell'I/O è quello in cui si
2634 devono trasferire grandi quantità di dati da un file descriptor ed un altro;
2635 questo usualmente comporta la lettura dei dati dal primo file descriptor in un
2636 buffer in memoria, da cui essi vengono poi scritti sul secondo.
2637
2638 Benché il kernel ottimizzi la gestione di questo processo quando si ha a che
2639 fare con file normali, in generale quando i dati da trasferire sono molti si
2640 pone il problema di effettuare trasferimenti di grandi quantità di dati da
2641 kernel space a user space e all'indietro, quando in realtà sarebbe molto più
2642 efficiente tenere tutto in kernel space. Tratteremo in questa sezione alcune
2643 funzioni specialistiche che permettono di ottimizzare le prestazioni in questo
2644 tipo di situazioni.
2645
2646 La prima funzione che si pone l'obiettivo di ottimizzare il trasferimento dei
2647 dati fra due file descriptor è \funcd{sendfile}; la funzione è presente in
2648 diverse versioni di Unix,\footnote{la si ritrova ad esempio in FreeBSD, HPUX
2649   ed altri Unix.} ma non è presente né in POSIX.1-2001 né in altri standard,
2650 per cui vengono utilizzati diversi prototipi e semantiche
2651 differenti;\footnote{pertanto si eviti di utilizzarla se si devono scrivere
2652   programmi portabili.} nel caso di Linux il suo prototipo è:
2653 \begin{functions}  
2654   \headdecl{sys/sendfile.h} 
2655
2656   \funcdecl{ssize\_t sendfile(int out\_fd, int in\_fd, off\_t *offset, size\_t
2657     count)} 
2658   
2659   Copia dei dati da un file descriptor ad un altro.
2660
2661   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
2662     errore, nel qual caso \var{errno} assumerà uno dei valori:
2663     \begin{errlist}
2664     \item[\errcode{EAGAIN}] si è impostata la modalità non bloccante su
2665       \param{out\_fd} e la scrittura si bloccherebbe.
2666     \item[\errcode{EINVAL}] i file descriptor non sono validi, o sono bloccati
2667       o una operazione di \func{mmap} non è disponibile per \param{in\_fd}.
2668     \item[\errcode{EIO}] si è avuto un errore di lettura da \param{in\_fd}.
2669     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per la lettura da
2670       \param{in\_fd}.
2671     \end{errlist}
2672     ed inoltre \errcode{EBADF} e \errcode{EFAULT}.
2673   }
2674 \end{functions}
2675
2676
2677 %NdA è da finire, sul perché non è abilitata fra file vedi:
2678 %\href{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}
2679 %{\texttt{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}}
2680
2681
2682 % TODO documentare la funzione sendfile
2683 % TODO documentare le funzioni tee e splice
2684 % http://kerneltrap.org/node/6505 e http://lwn.net/Articles/178199/ e 
2685 % http://lwn.net/Articles/179492/
2686 % e http://en.wikipedia.org/wiki/Splice_(system_call)
2687 % e http://kerneltrap.org/node/6505
2688
2689
2690
2691
2692 \subsection{Gestione avanzata dell'accesso ai dati dei file}
2693 \label{sec:file_fadvise}
2694
2695 Nell'uso generico dell'interfaccia per l'accesso al contenuto dei file le
2696 operazioni di lettura e scrittura non necessitano di nessun intervento di
2697 supervisione da parte dei programmi, si eseguirà una \func{read} o una
2698 \func{write}, i dati verranno passati al kernel che provvederà ad effettuare
2699 tutte le operazioni (e a gestire il \textit{caching} dei dati) per portarle a
2700 termine in quello che ritiene essere il modo più efficiente.
2701
2702 Il problema è che il concetto di migliore efficienza impiegato dal kernel è
2703 relativo all'uso generico, mentre esistono molti casi in cui ci sono esigenze
2704 specifiche dei singoli programmi, che avendo una conoscenza diretta di come
2705 verranno usati i file, possono necessitare di effettuare delle ottimizzazioni
2706 specifiche, relative alle proprie modalità di I/O sugli stessi. Tratteremo in
2707 questa sezione una serie funzioni che consentono ai programmi di ottimizzare
2708 il loro accesso ai dati dei file.
2709
2710
2711 % TODO documentare \func{madvise}
2712 % TODO documentare \func{mincore}
2713 % TODO documentare \func{posix\_fadvise}
2714 % vedi http://insights.oetiker.ch/linux/fadvise.html
2715 % questo tread? http://www.ussg.iu.edu/hypermail/linux/kernel/0703.1/0032.html
2716 % TODO documentare \func{fallocate}
2717 % vedi http://lwn.net/Articles/226710/ e http://lwn.net/Articles/240571/
2718
2719
2720 %\subsection{L'utilizzo delle porte di I/O}
2721 %\label{sec:file_io_port}
2722 %
2723 % TODO l'I/O sulle porte di I/O 
2724 % consultare le manpage di ioperm, iopl e outb
2725
2726
2727
2728
2729 \section{Il file locking}
2730 \label{sec:file_locking}
2731
2732 \index{file!locking|(}
2733
2734 In sez.~\ref{sec:file_sharing} abbiamo preso in esame le modalità in cui un
2735 sistema unix-like gestisce la condivisione dei file da parte di processi
2736 diversi. In quell'occasione si è visto come, con l'eccezione dei file aperti
2737 in \itindex{append~mode} \textit{append mode}, quando più processi scrivono
2738 contemporaneamente sullo stesso file non è possibile determinare la sequenza
2739 in cui essi opereranno.
2740
2741 Questo causa la possibilità di una \itindex{race~condition} \textit{race
2742   condition}; in generale le situazioni più comuni sono due: l'interazione fra
2743 un processo che scrive e altri che leggono, in cui questi ultimi possono
2744 leggere informazioni scritte solo in maniera parziale o incompleta; o quella
2745 in cui diversi processi scrivono, mescolando in maniera imprevedibile il loro
2746 output sul file.
2747
2748 In tutti questi casi il \textit{file locking} è la tecnica che permette di
2749 evitare le \textit{race condition} \itindex{race~condition}, attraverso una
2750 serie di funzioni che permettono di bloccare l'accesso al file da parte di
2751 altri processi, così da evitare le sovrapposizioni, e garantire la atomicità
2752 delle operazioni di scrittura.
2753
2754
2755
2756 \subsection{L'\textit{advisory locking}}
2757 \label{sec:file_record_locking}
2758
2759 La prima modalità di \textit{file locking} che è stata implementata nei
2760 sistemi unix-like è quella che viene usualmente chiamata \textit{advisory
2761   locking},\footnote{Stevens in \cite{APUE} fa riferimento a questo argomento
2762   come al \textit{record locking}, dizione utilizzata anche dal manuale delle
2763   \acr{glibc}; nelle pagine di manuale si parla di \textit{discrectionary file
2764     lock} per \func{fcntl} e di \textit{advisory locking} per \func{flock},
2765   mentre questo nome viene usato da Stevens per riferirsi al \textit{file
2766     locking} POSIX. Dato che la dizione \textit{record locking} è quantomeno
2767   ambigua, in quanto in un sistema Unix non esiste niente che possa fare
2768   riferimento al concetto di \textit{record}, alla fine si è scelto di
2769   mantenere il nome \textit{advisory locking}.} in quanto sono i singoli
2770 processi, e non il sistema, che si incaricano di asserire e verificare se
2771 esistono delle condizioni di blocco per l'accesso ai file.  Questo significa
2772 che le funzioni \func{read} o \func{write} vengono eseguite comunque e non
2773 risentono affatto della presenza di un eventuale \textit{lock}; pertanto è
2774 sempre compito dei vari processi che intendono usare il file locking,
2775 controllare esplicitamente lo stato dei file condivisi prima di accedervi,
2776 utilizzando le relative funzioni.
2777
2778 In generale si distinguono due tipologie di \textit{file lock}:\footnote{di
2779   seguito ci riferiremo sempre ai blocchi di accesso ai file con la
2780   nomenclatura inglese di \textit{file lock}, o più brevemente con
2781   \textit{lock}, per evitare confusioni linguistiche con il blocco di un
2782   processo (cioè la condizione in cui il processo viene posto in stato di
2783   \textit{sleep}).} la prima è il cosiddetto \textit{shared lock}, detto anche
2784 \textit{read lock} in quanto serve a bloccare l'accesso in scrittura su un
2785 file affinché il suo contenuto non venga modificato mentre lo si legge. Si
2786 parla appunto di \textsl{blocco condiviso} in quanto più processi possono
2787 richiedere contemporaneamente uno \textit{shared lock} su un file per
2788 proteggere il loro accesso in lettura.
2789
2790 La seconda tipologia è il cosiddetto \textit{exclusive lock}, detto anche
2791 \textit{write lock} in quanto serve a bloccare l'accesso su un file (sia in
2792 lettura che in scrittura) da parte di altri processi mentre lo si sta
2793 scrivendo. Si parla di \textsl{blocco esclusivo} appunto perché un solo
2794 processo alla volta può richiedere un \textit{exclusive lock} su un file per
2795 proteggere il suo accesso in scrittura.
2796
2797 \begin{table}[htb]
2798   \centering
2799   \footnotesize
2800   \begin{tabular}[c]{|l|c|c|c|}
2801     \hline
2802     \textbf{Richiesta} & \multicolumn{3}{|c|}{\textbf{Stato del file}}\\
2803     \cline{2-4}
2804                        &Nessun lock&\textit{Read lock}&\textit{Write lock}\\
2805     \hline
2806     \hline
2807     \textit{Read lock} & SI & SI & NO \\
2808     \textit{Write lock}& SI & NO & NO \\
2809     \hline    
2810   \end{tabular}
2811   \caption{Tipologie di file locking.}
2812   \label{tab:file_file_lock}
2813 \end{table}
2814
2815 In Linux sono disponibili due interfacce per utilizzare l'\textit{advisory
2816   locking}, la prima è quella derivata da BSD, che è basata sulla funzione
2817 \func{flock}, la seconda è quella standardizzata da POSIX.1 (derivata da
2818 System V), che è basata sulla funzione \func{fcntl}.  I \textit{file lock}
2819 sono implementati in maniera completamente indipendente nelle due interfacce,
2820 che pertanto possono coesistere senza interferenze.
2821
2822 Entrambe le interfacce prevedono la stessa procedura di funzionamento: si
2823 inizia sempre con il richiedere l'opportuno \textit{file lock} (un
2824 \textit{exclusive lock} per una scrittura, uno \textit{shared lock} per una
2825 lettura) prima di eseguire l'accesso ad un file.  Se il lock viene acquisito
2826 il processo prosegue l'esecuzione, altrimenti (a meno di non aver richiesto un
2827 comportamento non bloccante) viene posto in stato di sleep. Una volta finite
2828 le operazioni sul file si deve provvedere a rimuovere il lock. La situazione
2829 delle varie possibilità è riassunta in tab.~\ref{tab:file_file_lock}, dove si
2830 sono riportati, per le varie tipologie di lock presenti su un file, il
2831 risultato che si ha in corrispondenza alle due tipologie di \textit{file lock}
2832 menzionate, nel successo della richiesta.
2833
2834 Si tenga presente infine che il controllo di accesso e la gestione dei
2835 permessi viene effettuata quando si apre un file, l'unico controllo residuo
2836 che si può avere riguardo il \textit{file locking} è che il tipo di lock che
2837 si vuole ottenere su un file deve essere compatibile con le modalità di
2838 apertura dello stesso (in lettura per un read lock e in scrittura per un write
2839 lock).
2840
2841 %%  Si ricordi che
2842 %% la condizione per acquisire uno \textit{shared lock} è che il file non abbia
2843 %% già un \textit{exclusive lock} attivo, mentre per acquisire un
2844 %% \textit{exclusive lock} non deve essere presente nessun tipo di blocco.
2845
2846
2847 \subsection{La funzione \func{flock}} 
2848 \label{sec:file_flock}
2849
2850 La prima interfaccia per il file locking, quella derivata da BSD, permette di
2851 eseguire un blocco solo su un intero file; la funzione usata per richiedere e
2852 rimuovere un \textit{file lock} è \funcd{flock}, ed il suo prototipo è:
2853 \begin{prototype}{sys/file.h}{int flock(int fd, int operation)}
2854   
2855   Applica o rimuove un \textit{file lock} sul file \param{fd}.
2856   
2857   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
2858     errore, nel qual caso \var{errno} assumerà uno dei valori:
2859     \begin{errlist}
2860     \item[\errcode{EWOULDBLOCK}] Il file ha già un blocco attivo, e si è
2861       specificato \const{LOCK\_NB}.
2862     \end{errlist}
2863   }
2864 \end{prototype}
2865
2866 La funzione può essere usata per acquisire o rilasciare un \textit{file lock}
2867 a seconda di quanto specificato tramite il valore dell'argomento
2868 \param{operation}, questo viene interpretato come maschera binaria, e deve
2869 essere passato utilizzando le costanti riportate in
2870 tab.~\ref{tab:file_flock_operation}.
2871
2872 \begin{table}[htb]
2873   \centering
2874   \footnotesize
2875   \begin{tabular}[c]{|l|l|}
2876     \hline
2877     \textbf{Valore} & \textbf{Significato} \\
2878     \hline
2879     \hline
2880     \const{LOCK\_SH} & Asserisce uno \textit{shared lock} sul file.\\ 
2881     \const{LOCK\_EX} & Asserisce un \textit{esclusive lock} sul file.\\
2882     \const{LOCK\_UN} & Rilascia il \textit{file lock}.\\
2883     \const{LOCK\_NB} & Impedisce che la funzione si blocchi nella
2884                        richiesta di un \textit{file lock}.\\
2885     \hline    
2886   \end{tabular}
2887   \caption{Valori dell'argomento \param{operation} di \func{flock}.}
2888   \label{tab:file_flock_operation}
2889 \end{table}
2890
2891 I primi due valori, \const{LOCK\_SH} e \const{LOCK\_EX} permettono di
2892 richiedere un \textit{file lock}, ed ovviamente devono essere usati in maniera
2893 alternativa. Se si specifica anche \const{LOCK\_NB} la funzione non si
2894 bloccherà qualora il lock non possa essere acquisito, ma ritornerà subito con
2895 un errore di \errcode{EWOULDBLOCK}. Per rilasciare un lock si dovrà invece
2896 usare \const{LOCK\_UN}.
2897
2898 La semantica del file locking di BSD è diversa da quella del file locking
2899 POSIX, in particolare per quanto riguarda il comportamento dei lock nei
2900 confronti delle due funzioni \func{dup} e \func{fork}.  Per capire queste
2901 differenze occorre descrivere con maggiore dettaglio come viene realizzato il
2902 file locking nel kernel in entrambe le interfacce.
2903
2904 In fig.~\ref{fig:file_flock_struct} si è riportato uno schema essenziale
2905 dell'implementazione del file locking in stile BSD in Linux; il punto
2906 fondamentale da capire è che un lock, qualunque sia l'interfaccia che si usa,
2907 anche se richiesto attraverso un file descriptor, agisce sempre su un file;
2908 perciò le informazioni relative agli eventuali \textit{file lock} sono
2909 mantenute a livello di inode\index{inode},\footnote{in particolare, come
2910   accennato in fig.~\ref{fig:file_flock_struct}, i \textit{file lock} sono
2911   mantenuti in una \itindex{linked~list} \textit{linked list} di strutture
2912   \struct{file\_lock}. La lista è referenziata dall'indirizzo di partenza
2913   mantenuto dal campo \var{i\_flock} della struttura \struct{inode} (per le
2914   definizioni esatte si faccia riferimento al file \file{fs.h} nei sorgenti
2915   del kernel).  Un bit del campo \var{fl\_flags} di specifica se si tratta di
2916   un lock in semantica BSD (\const{FL\_FLOCK}) o POSIX (\const{FL\_POSIX}).}
2917 dato che questo è l'unico riferimento in comune che possono avere due processi
2918 diversi che aprono lo stesso file.
2919
2920 \begin{figure}[htb]
2921   \centering
2922   \includegraphics[width=14cm]{img/file_flock}
2923   \caption{Schema dell'architettura del file locking, nel caso particolare  
2924     del suo utilizzo da parte dalla funzione \func{flock}.}
2925   \label{fig:file_flock_struct}
2926 \end{figure}
2927
2928 La richiesta di un file lock prevede una scansione della lista per determinare
2929 se l'acquisizione è possibile, ed in caso positivo l'aggiunta di un nuovo
2930 elemento.\footnote{cioè una nuova struttura \struct{file\_lock}.}  Nel caso
2931 dei lock creati con \func{flock} la semantica della funzione prevede che sia
2932 \func{dup} che \func{fork} non creino ulteriori istanze di un file lock quanto
2933 piuttosto degli ulteriori riferimenti allo stesso. Questo viene realizzato dal
2934 kernel secondo lo schema di fig.~\ref{fig:file_flock_struct}, associando ad
2935 ogni nuovo \textit{file lock} un puntatore\footnote{il puntatore è mantenuto
2936   nel campo \var{fl\_file} di \struct{file\_lock}, e viene utilizzato solo per
2937   i lock creati con la semantica BSD.} alla voce nella \itindex{file~table}
2938 \textit{file table} da cui si è richiesto il lock, che così ne identifica il
2939 titolare.
2940
2941 Questa struttura prevede che, quando si richiede la rimozione di un file lock,
2942 il kernel acconsenta solo se la richiesta proviene da un file descriptor che
2943 fa riferimento ad una voce nella \itindex{file~table} \textit{file table}
2944 corrispondente a quella registrata nel lock.  Allora se ricordiamo quanto
2945 visto in sez.~\ref{sec:file_dup} e sez.~\ref{sec:file_sharing}, e cioè che i
2946 file descriptor duplicati e quelli ereditati in un processo figlio puntano
2947 sempre alla stessa voce nella \itindex{file~table} \textit{file table}, si può
2948 capire immediatamente quali sono le conseguenze nei confronti delle funzioni
2949 \func{dup} e \func{fork}.
2950
2951 Sarà così possibile rimuovere un file lock attraverso uno qualunque dei file
2952 descriptor che fanno riferimento alla stessa voce nella \itindex{file~table}
2953 \textit{file table}, anche se questo è diverso da quello con cui lo si è
2954 creato,\footnote{attenzione, questo non vale se il file descriptor fa
2955   riferimento allo stesso file, ma attraverso una voce diversa della
2956   \itindex{file~table} \textit{file table}, come accade tutte le volte che si
2957   apre più volte lo stesso file.} o se si esegue la rimozione in un processo
2958 figlio; inoltre una volta tolto un file lock, la rimozione avrà effetto su
2959 tutti i file descriptor che condividono la stessa voce nella
2960 \itindex{file~table} \textit{file table}, e quindi, nel caso di file
2961 descriptor ereditati attraverso una \func{fork}, anche su processi diversi.
2962
2963 Infine, per evitare che la terminazione imprevista di un processo lasci attivi
2964 dei file lock, quando un file viene chiuso il kernel provveda anche a
2965 rimuovere tutti i lock ad esso associati. Anche in questo caso occorre tenere
2966 presente cosa succede quando si hanno file descriptor duplicati; in tal caso
2967 infatti il file non verrà effettivamente chiuso (ed il lock rimosso) fintanto
2968 che non viene rilasciata la relativa voce nella \itindex{file~table}
2969 \textit{file table}; e questo avverrà solo quando tutti i file descriptor che
2970 fanno riferimento alla stessa voce sono stati chiusi.  Quindi, nel caso ci
2971 siano duplicati o processi figli che mantengono ancora aperto un file
2972 descriptor, il lock non viene rilasciato.
2973
2974 Si tenga presente infine che \func{flock} non è in grado di funzionare per i
2975 file mantenuti su NFS, in questo caso, se si ha la necessità di eseguire il
2976 \textit{file locking}, occorre usare l'interfaccia basata su \func{fcntl} che
2977 può funzionare anche attraverso NFS, a condizione che sia il client che il
2978 server supportino questa funzionalità.
2979  
2980
2981 \subsection{Il file locking POSIX}
2982 \label{sec:file_posix_lock}
2983
2984 La seconda interfaccia per l'\textit{advisory locking} disponibile in Linux è
2985 quella standardizzata da POSIX, basata sulla funzione \func{fcntl}. Abbiamo
2986 già trattato questa funzione nelle sue molteplici possibilità di utilizzo in
2987 sez.~\ref{sec:file_fcntl}. Quando la si impiega per il \textit{file locking}
2988 essa viene usata solo secondo il prototipo:
2989 \begin{prototype}{fcntl.h}{int fcntl(int fd, int cmd, struct flock *lock)}
2990   
2991   Applica o rimuove un \textit{file lock} sul file \param{fd}.
2992   
2993   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
2994     errore, nel qual caso \var{errno} assumerà uno dei valori:
2995     \begin{errlist}
2996     \item[\errcode{EACCES}] L'operazione è proibita per la presenza di
2997       \textit{file lock} da parte di altri processi.
2998     \item[\errcode{ENOLCK}] Il sistema non ha le risorse per il locking: ci
2999       sono troppi segmenti di lock aperti, si è esaurita la tabella dei lock,
3000       o il protocollo per il locking remoto è fallito.
3001     \item[\errcode{EDEADLK}] Si è richiesto un lock su una regione bloccata da
3002       un altro processo che è a sua volta in attesa dello sblocco di un lock
3003       mantenuto dal processo corrente; si avrebbe pertanto un
3004       \itindex{deadlock} \textit{deadlock}. Non è garantito che il sistema
3005       riconosca sempre questa situazione.
3006     \item[\errcode{EINTR}] La funzione è stata interrotta da un segnale prima
3007       di poter acquisire un lock.
3008     \end{errlist}
3009     ed inoltre \errval{EBADF}, \errval{EFAULT}.
3010   }
3011 \end{prototype}
3012
3013 Al contrario di quanto avviene con l'interfaccia basata su \func{flock} con
3014 \func{fcntl} è possibile bloccare anche delle singole sezioni di un file, fino
3015 al singolo byte. Inoltre la funzione permette di ottenere alcune informazioni
3016 relative agli eventuali lock preesistenti.  Per poter fare tutto questo la
3017 funzione utilizza come terzo argomento una apposita struttura \struct{flock}
3018 (la cui definizione è riportata in fig.~\ref{fig:struct_flock}) nella quale
3019 inserire tutti i dati relativi ad un determinato lock. Si tenga presente poi
3020 che un lock fa sempre riferimento ad una regione, per cui si potrà avere un
3021 conflitto anche se c'è soltanto una sovrapposizione parziale con un'altra
3022 regione bloccata.
3023
3024 \begin{figure}[!bht]
3025   \footnotesize \centering
3026   \begin{minipage}[c]{15cm}
3027     \includestruct{listati/flock.h}
3028   \end{minipage} 
3029   \normalsize 
3030   \caption{La struttura \structd{flock}, usata da \func{fcntl} per il file
3031     locking.} 
3032   \label{fig:struct_flock}
3033 \end{figure}
3034
3035
3036 I primi tre campi della struttura, \var{l\_whence}, \var{l\_start} e
3037 \var{l\_len}, servono a specificare la sezione del file a cui fa riferimento
3038 il lock: \var{l\_start} specifica il byte di partenza, \var{l\_len} la
3039 lunghezza della sezione e infine \var{l\_whence} imposta il riferimento da cui
3040 contare \var{l\_start}. Il valore di \var{l\_whence} segue la stessa semantica
3041 dell'omonimo argomento di \func{lseek}, coi tre possibili valori
3042 \const{SEEK\_SET}, \const{SEEK\_CUR} e \const{SEEK\_END}, (si vedano le
3043 relative descrizioni in sez.~\ref{sec:file_lseek}). 
3044
3045 Si tenga presente che un lock può essere richiesto anche per una regione al di
3046 là della corrente fine del file, così che una eventuale estensione dello
3047 stesso resti coperta dal blocco. Inoltre se si specifica un valore nullo per
3048 \var{l\_len} il blocco si considera esteso fino alla dimensione massima del
3049 file; in questo modo è possibile bloccare una qualunque regione a partire da
3050 un certo punto fino alla fine del file, coprendo automaticamente quanto
3051 eventualmente aggiunto in coda allo stesso.
3052
3053 \begin{table}[htb]
3054   \centering
3055   \footnotesize
3056   \begin{tabular}[c]{|l|l|}
3057     \hline
3058     \textbf{Valore} & \textbf{Significato} \\
3059     \hline
3060     \hline
3061     \const{F\_RDLCK} & Richiede un blocco condiviso (\textit{read lock}).\\
3062     \const{F\_WRLCK} & Richiede un blocco esclusivo (\textit{write lock}).\\
3063     \const{F\_UNLCK} & Richiede l'eliminazione di un file lock.\\
3064     \hline    
3065   \end{tabular}
3066   \caption{Valori possibili per il campo \var{l\_type} di \struct{flock}.}
3067   \label{tab:file_flock_type}
3068 \end{table}
3069
3070 Il tipo di file lock richiesto viene specificato dal campo \var{l\_type}, esso
3071 può assumere i tre valori definiti dalle costanti riportate in
3072 tab.~\ref{tab:file_flock_type}, che permettono di richiedere rispettivamente
3073 uno \textit{shared lock}, un \textit{esclusive lock}, e la rimozione di un
3074 lock precedentemente acquisito. Infine il campo \var{l\_pid} viene usato solo
3075 in caso di lettura, quando si chiama \func{fcntl} con \const{F\_GETLK}, e
3076 riporta il \acr{pid} del processo che detiene il lock.
3077
3078 Oltre a quanto richiesto tramite i campi di \struct{flock}, l'operazione
3079 effettivamente svolta dalla funzione è stabilita dal valore dall'argomento
3080 \param{cmd} che, come già riportato in sez.~\ref{sec:file_fcntl}, specifica
3081 l'azione da compiere; i valori relativi al file locking sono tre:
3082 \begin{basedescript}{\desclabelwidth{2.0cm}}
3083 \item[\const{F\_GETLK}] verifica se il file lock specificato dalla struttura
3084   puntata da \param{lock} può essere acquisito: in caso negativo sovrascrive
3085   la struttura \param{flock} con i valori relativi al lock già esistente che
3086   ne blocca l'acquisizione, altrimenti si limita a impostarne il campo
3087   \var{l\_type} con il valore \const{F\_UNLCK}. 
3088 \item[\const{F\_SETLK}] se il campo \var{l\_type} della struttura puntata da
3089   \param{lock} è \const{F\_RDLCK} o \const{F\_WRLCK} richiede il
3090   corrispondente file lock, se è \const{F\_UNLCK} lo rilascia. Nel caso la
3091   richiesta non possa essere soddisfatta a causa di un lock preesistente la
3092   funzione ritorna immediatamente con un errore di \errcode{EACCES} o di
3093   \errcode{EAGAIN}.
3094 \item[\const{F\_SETLKW}] è identica a \const{F\_SETLK}, ma se la richiesta di
3095   non può essere soddisfatta per la presenza di un altro lock, mette il
3096   processo in stato di attesa fintanto che il lock precedente non viene
3097   rilasciato. Se l'attesa viene interrotta da un segnale la funzione ritorna
3098   con un errore di \errcode{EINTR}.
3099 \end{basedescript}
3100
3101 Si noti che per quanto detto il comando \const{F\_GETLK} non serve a rilevare
3102 una presenza generica di lock su un file, perché se ne esistono altri
3103 compatibili con quello richiesto, la funzione ritorna comunque impostando
3104 \var{l\_type} a \const{F\_UNLCK}.  Inoltre a seconda del valore di
3105 \var{l\_type} si potrà controllare o l'esistenza di un qualunque tipo di lock
3106 (se è \const{F\_WRLCK}) o di write lock (se è \const{F\_RDLCK}). Si consideri
3107 poi che può esserci più di un lock che impedisce l'acquisizione di quello
3108 richiesto (basta che le regioni si sovrappongano), ma la funzione ne riporterà
3109 sempre soltanto uno, impostando \var{l\_whence} a \const{SEEK\_SET} ed i
3110 valori \var{l\_start} e \var{l\_len} per indicare quale è la regione bloccata.
3111
3112 Infine si tenga presente che effettuare un controllo con il comando
3113 \const{F\_GETLK} e poi tentare l'acquisizione con \const{F\_SETLK} non è una
3114 operazione atomica (un altro processo potrebbe acquisire un lock fra le due
3115 chiamate) per cui si deve sempre verificare il codice di ritorno di
3116 \func{fcntl}\footnote{controllare il codice di ritorno delle funzioni invocate
3117   è comunque una buona norma di programmazione, che permette di evitare un
3118   sacco di errori difficili da tracciare proprio perché non vengono rilevati.}
3119 quando la si invoca con \const{F\_SETLK}, per controllare che il lock sia
3120 stato effettivamente acquisito.
3121
3122 \begin{figure}[htb]
3123   \centering \includegraphics[width=9cm]{img/file_lock_dead}
3124   \caption{Schema di una situazione di \itindex{deadlock} \textit{deadlock}.}
3125   \label{fig:file_flock_dead}
3126 \end{figure}
3127
3128 Non operando a livello di interi file, il file locking POSIX introduce
3129 un'ulteriore complicazione; consideriamo la situazione illustrata in
3130 fig.~\ref{fig:file_flock_dead}, in cui il processo A blocca la regione 1 e il
3131 processo B la regione 2. Supponiamo che successivamente il processo A richieda
3132 un lock sulla regione 2 che non può essere acquisito per il preesistente lock
3133 del processo 2; il processo 1 si bloccherà fintanto che il processo 2 non
3134 rilasci il blocco. Ma cosa accade se il processo 2 nel frattempo tenta a sua
3135 volta di ottenere un lock sulla regione A? Questa è una tipica situazione che
3136 porta ad un \itindex{deadlock} \textit{deadlock}, dato che a quel punto anche
3137 il processo 2 si bloccherebbe, e niente potrebbe sbloccare l'altro processo.
3138 Per questo motivo il kernel si incarica di rilevare situazioni di questo tipo,
3139 ed impedirle restituendo un errore di \errcode{EDEADLK} alla funzione che
3140 cerca di acquisire un lock che porterebbe ad un \itindex{deadlock}
3141 \textit{deadlock}.
3142
3143 \begin{figure}[!bht]
3144   \centering \includegraphics[width=13cm]{img/file_posix_lock}
3145   \caption{Schema dell'architettura del file locking, nel caso particolare  
3146     del suo utilizzo secondo l'interfaccia standard POSIX.}
3147   \label{fig:file_posix_lock}
3148 \end{figure}
3149
3150
3151 Per capire meglio il funzionamento del file locking in semantica POSIX (che
3152 differisce alquanto rispetto da quello di BSD, visto
3153 sez.~\ref{sec:file_flock}) esaminiamo più in dettaglio come viene gestito dal
3154 kernel. Lo schema delle strutture utilizzate è riportato in
3155 fig.~\ref{fig:file_posix_lock}; come si vede esso è molto simile all'analogo
3156 di fig.~\ref{fig:file_flock_struct}:\footnote{in questo caso nella figura si
3157   sono evidenziati solo i campi di \struct{file\_lock} significativi per la
3158   semantica POSIX, in particolare adesso ciascuna struttura contiene, oltre al
3159   \acr{pid} del processo in \var{fl\_pid}, la sezione di file che viene
3160   bloccata grazie ai campi \var{fl\_start} e \var{fl\_end}.  La struttura è
3161   comunque la stessa, solo che in questo caso nel campo \var{fl\_flags} è
3162   impostato il bit \const{FL\_POSIX} ed il campo \var{fl\_file} non viene
3163   usato.} il lock è sempre associato \index{inode} all'inode, solo che in
3164 questo caso la titolarità non viene identificata con il riferimento ad una
3165 voce nella \itindex{file~table} \textit{file table}, ma con il valore del
3166 \acr{pid} del processo.
3167
3168 Quando si richiede un lock il kernel effettua una scansione di tutti i lock
3169 presenti sul file\footnote{scandisce cioè la \itindex{linked~list}
3170   \textit{linked list} delle strutture \struct{file\_lock}, scartando
3171   automaticamente quelle per cui \var{fl\_flags} non è \const{FL\_POSIX}, così
3172   che le due interfacce restano ben separate.}  per verificare se la regione
3173 richiesta non si sovrappone ad una già bloccata, in caso affermativo decide in
3174 base al tipo di lock, in caso negativo il nuovo lock viene comunque acquisito
3175 ed aggiunto alla lista.
3176
3177 Nel caso di rimozione invece questa viene effettuata controllando che il
3178 \acr{pid} del processo richiedente corrisponda a quello contenuto nel lock.
3179 Questa diversa modalità ha delle conseguenze precise riguardo il comportamento
3180 dei lock POSIX. La prima conseguenza è che un lock POSIX non viene mai
3181 ereditato attraverso una \func{fork}, dato che il processo figlio avrà un
3182 \acr{pid} diverso, mentre passa indenne attraverso una \func{exec} in quanto
3183 il \acr{pid} resta lo stesso.  Questo comporta che, al contrario di quanto
3184 avveniva con la semantica BSD, quando processo termina tutti i file lock da
3185 esso detenuti vengono immediatamente rilasciati.
3186
3187 La seconda conseguenza è che qualunque file descriptor che faccia riferimento
3188 allo stesso file (che sia stato ottenuto con una \func{dup} o con una
3189 \func{open} in questo caso non fa differenza) può essere usato per rimuovere
3190 un lock, dato che quello che conta è solo il \acr{pid} del processo. Da questo
3191 deriva una ulteriore sottile differenza di comportamento: dato che alla
3192 chiusura di un file i lock ad esso associati vengono rimossi, nella semantica
3193 POSIX basterà chiudere un file descriptor qualunque per cancellare tutti i
3194 lock relativi al file cui esso faceva riferimento, anche se questi fossero
3195 stati creati usando altri file descriptor che restano aperti.
3196
3197 Dato che il controllo sull'accesso ai lock viene eseguito sulla base del
3198 \acr{pid} del processo, possiamo anche prendere in considerazione un altro
3199 degli aspetti meno chiari di questa interfaccia e cioè cosa succede quando si
3200 richiedono dei lock su regioni che si sovrappongono fra loro all'interno
3201 stesso processo. Siccome il controllo, come nel caso della rimozione, si basa
3202 solo sul \acr{pid} del processo che chiama la funzione, queste richieste
3203 avranno sempre successo.
3204
3205 Nel caso della semantica BSD, essendo i lock relativi a tutto un file e non
3206 accumulandosi,\footnote{questa ultima caratteristica è vera in generale, se
3207   cioè si richiede più volte lo stesso file lock, o più lock sulla stessa
3208   sezione di file, le richieste non si cumulano e basta una sola richiesta di
3209   rilascio per cancellare il lock.}  la cosa non ha alcun effetto; la funzione
3210 ritorna con successo, senza che il kernel debba modificare la lista dei lock.
3211 In questo caso invece si possono avere una serie di situazioni diverse: ad
3212 esempio è possibile rimuovere con una sola chiamata più lock distinti
3213 (indicando in una regione che si sovrapponga completamente a quelle di questi
3214 ultimi), o rimuovere solo una parte di un lock preesistente (indicando una
3215 regione contenuta in quella di un altro lock), creando un buco, o coprire con
3216 un nuovo lock altri lock già ottenuti, e così via, a secondo di come si
3217 sovrappongono le regioni richieste e del tipo di operazione richiesta.  Il
3218 comportamento seguito in questo caso che la funzione ha successo ed esegue
3219 l'operazione richiesta sulla regione indicata; è compito del kernel
3220 preoccuparsi di accorpare o dividere le voci nella lista dei lock per far si
3221 che le regioni bloccate da essa risultanti siano coerenti con quanto
3222 necessario a soddisfare l'operazione richiesta.
3223
3224 \begin{figure}[!htb]
3225   \footnotesize \centering
3226   \begin{minipage}[c]{15cm}
3227     \includecodesample{listati/Flock.c}
3228   \end{minipage} 
3229   \normalsize 
3230   \caption{Sezione principale del codice del programma \file{Flock.c}.}
3231   \label{fig:file_flock_code}
3232 \end{figure}
3233
3234 Per fare qualche esempio sul file locking si è scritto un programma che
3235 permette di bloccare una sezione di un file usando la semantica POSIX, o un
3236 intero file usando la semantica BSD; in fig.~\ref{fig:file_flock_code} è
3237 riportata il corpo principale del codice del programma, (il testo completo è
3238 allegato nella directory dei sorgenti).
3239
3240 La sezione relativa alla gestione delle opzioni al solito si è omessa, come la
3241 funzione che stampa le istruzioni per l'uso del programma, essa si cura di
3242 impostare le variabili \var{type}, \var{start} e \var{len}; queste ultime due
3243 vengono inizializzate al valore numerico fornito rispettivamente tramite gli
3244 switch \code{-s} e \cmd{-l}, mentre il valore della prima viene impostato con
3245 le opzioni \cmd{-w} e \cmd{-r} si richiede rispettivamente o un write lock o
3246 read lock (i due valori sono esclusivi, la variabile assumerà quello che si è
3247 specificato per ultimo). Oltre a queste tre vengono pure impostate la
3248 variabile \var{bsd}, che abilita la semantica omonima quando si invoca
3249 l'opzione \cmd{-f} (il valore preimpostato è nullo, ad indicare la semantica
3250 POSIX), e la variabile \var{cmd} che specifica la modalità di richiesta del
3251 lock (bloccante o meno), a seconda dell'opzione \cmd{-b}.
3252
3253 Il programma inizia col controllare (\texttt{\small 11--14}) che venga passato
3254 un argomento (il file da bloccare), che sia stato scelto (\texttt{\small
3255   15--18}) il tipo di lock, dopo di che apre (\texttt{\small 19}) il file,
3256 uscendo (\texttt{\small 20--23}) in caso di errore. A questo punto il
3257 comportamento dipende dalla semantica scelta; nel caso sia BSD occorre
3258 reimpostare il valore di \var{cmd} per l'uso con \func{flock}; infatti il
3259 valore preimpostato fa riferimento alla semantica POSIX e vale rispettivamente
3260 \const{F\_SETLKW} o \const{F\_SETLK} a seconda che si sia impostato o meno la
3261 modalità bloccante.
3262
3263 Nel caso si sia scelta la semantica BSD (\texttt{\small 25--34}) prima si
3264 controlla (\texttt{\small 27--31}) il valore di \var{cmd} per determinare se
3265 si vuole effettuare una chiamata bloccante o meno, reimpostandone il valore
3266 opportunamente, dopo di che a seconda del tipo di lock al valore viene
3267 aggiunta la relativa opzione (con un OR aritmetico, dato che \func{flock}
3268 vuole un argomento \param{operation} in forma di maschera binaria.  Nel caso
3269 invece che si sia scelta la semantica POSIX le operazioni sono molto più
3270 immediate, si prepara (\texttt{\small 36--40}) la struttura per il lock, e lo
3271 esegue (\texttt{\small 41}).
3272
3273 In entrambi i casi dopo aver richiesto il lock viene controllato il risultato
3274 uscendo (\texttt{\small 44--46}) in caso di errore, o stampando un messaggio
3275 (\texttt{\small 47--49}) in caso di successo. Infine il programma si pone in
3276 attesa (\texttt{\small 50}) finché un segnale (ad esempio un \cmd{C-c} dato da
3277 tastiera) non lo interrompa; in questo caso il programma termina, e tutti i
3278 lock vengono rilasciati.
3279
3280 Con il programma possiamo fare varie verifiche sul funzionamento del file
3281 locking; cominciamo con l'eseguire un read lock su un file, ad esempio usando
3282 all'interno di un terminale il seguente comando:
3283
3284 \vspace{1mm}
3285 \begin{minipage}[c]{12cm}
3286 \begin{verbatim}
3287 [piccardi@gont sources]$ ./flock -r Flock.c
3288 Lock acquired
3289 \end{verbatim}%$
3290 \end{minipage}\vspace{1mm}
3291 \par\noindent
3292 il programma segnalerà di aver acquisito un lock e si bloccherà; in questo
3293 caso si è usato il file locking POSIX e non avendo specificato niente riguardo
3294 alla sezione che si vuole bloccare sono stati usati i valori preimpostati che
3295 bloccano tutto il file. A questo punto se proviamo ad eseguire lo stesso
3296 comando in un altro terminale, e avremo lo stesso risultato. Se invece
3297 proviamo ad eseguire un write lock avremo:
3298
3299 \vspace{1mm}
3300 \begin{minipage}[c]{12cm}
3301 \begin{verbatim}
3302 [piccardi@gont sources]$ ./flock -w Flock.c
3303 Failed lock: Resource temporarily unavailable
3304 \end{verbatim}%$
3305 \end{minipage}\vspace{1mm}
3306 \par\noindent
3307 come ci aspettiamo il programma terminerà segnalando l'indisponibilità del
3308 lock, dato che il file è bloccato dal precedente read lock. Si noti che il
3309 risultato è lo stesso anche se si richiede il blocco su una sola parte del
3310 file con il comando:
3311
3312 \vspace{1mm}
3313 \begin{minipage}[c]{12cm}
3314 \begin{verbatim}
3315 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
3316 Failed lock: Resource temporarily unavailable
3317 \end{verbatim}%$
3318 \end{minipage}\vspace{1mm}
3319 \par\noindent
3320 se invece blocchiamo una regione con: 
3321
3322 \vspace{1mm}
3323 \begin{minipage}[c]{12cm}
3324 \begin{verbatim}
3325 [piccardi@gont sources]$ ./flock -r -s0 -l10 Flock.c
3326 Lock acquired
3327 \end{verbatim}%$
3328 \end{minipage}\vspace{1mm}
3329 \par\noindent
3330 una volta che riproviamo ad acquisire il write lock i risultati dipenderanno
3331 dalla regione richiesta; ad esempio nel caso in cui le due regioni si
3332 sovrappongono avremo che:
3333
3334 \vspace{1mm}
3335 \begin{minipage}[c]{12cm}
3336 \begin{verbatim}
3337 [piccardi@gont sources]$ ./flock -w -s5 -l15  Flock.c
3338 Failed lock: Resource temporarily unavailable
3339 \end{verbatim}%$
3340 \end{minipage}\vspace{1mm}
3341 \par\noindent
3342 ed il lock viene rifiutato, ma se invece si richiede una regione distinta
3343 avremo che:
3344
3345 \vspace{1mm}
3346 \begin{minipage}[c]{12cm}
3347 \begin{verbatim}
3348 [piccardi@gont sources]$ ./flock -w -s11 -l15  Flock.c
3349 Lock acquired
3350 \end{verbatim}%$
3351 \end{minipage}\vspace{1mm}
3352 \par\noindent
3353 ed il lock viene acquisito. Se a questo punto si prova ad eseguire un read
3354 lock che comprende la nuova regione bloccata in scrittura:
3355
3356 \vspace{1mm}
3357 \begin{minipage}[c]{12cm}
3358 \begin{verbatim}
3359 [piccardi@gont sources]$ ./flock -r -s10 -l20 Flock.c
3360 Failed lock: Resource temporarily unavailable
3361 \end{verbatim}%$
3362 \end{minipage}\vspace{1mm}
3363 \par\noindent
3364 come ci aspettiamo questo non sarà consentito.
3365
3366 Il programma di norma esegue il tentativo di acquisire il lock in modalità non
3367 bloccante, se però usiamo l'opzione \cmd{-b} possiamo impostare la modalità
3368 bloccante, riproviamo allora a ripetere le prove precedenti con questa
3369 opzione:
3370
3371 \vspace{1mm}
3372 \begin{minipage}[c]{12cm}
3373 \begin{verbatim}
3374 [piccardi@gont sources]$ ./flock -r -b -s0 -l10 Flock.c Lock acquired
3375 \end{verbatim}%$
3376 \end{minipage}\vspace{1mm}
3377 \par\noindent
3378 il primo comando acquisisce subito un read lock, e quindi non cambia nulla, ma
3379 se proviamo adesso a richiedere un write lock che non potrà essere acquisito
3380 otterremo:
3381
3382 \vspace{1mm}
3383 \begin{minipage}[c]{12cm}
3384 \begin{verbatim}
3385 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
3386 \end{verbatim}%$
3387 \end{minipage}\vspace{1mm}
3388 \par\noindent
3389 il programma cioè si bloccherà nella chiamata a \func{fcntl}; se a questo
3390 punto rilasciamo il precedente lock (terminando il primo comando un
3391 \texttt{C-c} sul terminale) potremo verificare che sull'altro terminale il
3392 lock viene acquisito, con la comparsa di una nuova riga:
3393
3394 \vspace{1mm}
3395 \begin{minipage}[c]{12cm}
3396 \begin{verbatim}
3397 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
3398 Lock acquired
3399 \end{verbatim}%$
3400 \end{minipage}\vspace{3mm}
3401 \par\noindent
3402
3403 Un'altra cosa che si può controllare con il nostro programma è l'interazione
3404 fra i due tipi di lock; se ripartiamo dal primo comando con cui si è ottenuto
3405 un lock in lettura sull'intero file, possiamo verificare cosa succede quando
3406 si cerca di ottenere un lock in scrittura con la semantica BSD:
3407
3408 \vspace{1mm}
3409 \begin{minipage}[c]{12cm}
3410 \begin{verbatim}
3411 [root@gont sources]# ./flock -f -w Flock.c
3412 Lock acquired
3413 \end{verbatim}
3414 \end{minipage}\vspace{1mm}
3415 \par\noindent
3416 che ci mostra come i due tipi di lock siano assolutamente indipendenti; per
3417 questo motivo occorre sempre tenere presente quale fra le due semantiche
3418 disponibili stanno usando i programmi con cui si interagisce, dato che i lock
3419 applicati con l'altra non avrebbero nessun effetto.
3420
3421
3422
3423 \subsection{La funzione \func{lockf}}
3424 \label{sec:file_lockf}
3425
3426 Abbiamo visto come l'interfaccia POSIX per il file locking sia molto più
3427 potente e flessibile di quella di BSD, questo comporta anche una maggiore
3428 complessità per via delle varie opzioni da passare a \func{fcntl}. Per questo
3429 motivo è disponibile anche una interfaccia semplificata (ripresa da System V)
3430 che utilizza la funzione \funcd{lockf}, il cui prototipo è:
3431 \begin{prototype}{sys/file.h}{int lockf(int fd, int cmd, off\_t len)}
3432   
3433   Applica, controlla o rimuove un \textit{file lock} sul file \param{fd}.
3434   
3435   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3436     errore, nel qual caso \var{errno} assumerà uno dei valori:
3437     \begin{errlist}
3438     \item[\errcode{EWOULDBLOCK}] Non è possibile acquisire il lock, e si è
3439       selezionato \const{LOCK\_NB}, oppure l'operazione è proibita perché il
3440       file è mappato in memoria.
3441     \item[\errcode{ENOLCK}] Il sistema non ha le risorse per il locking: ci
3442       sono troppi segmenti di lock aperti, si è esaurita la tabella dei lock.
3443     \end{errlist}
3444     ed inoltre \errval{EBADF}, \errval{EINVAL}.
3445   }
3446 \end{prototype}
3447
3448 Il comportamento della funzione dipende dal valore dell'argomento \param{cmd},
3449 che specifica quale azione eseguire; i valori possibili sono riportati in
3450 tab.~\ref{tab:file_lockf_type}.
3451
3452 \begin{table}[htb]
3453   \centering
3454   \footnotesize
3455   \begin{tabular}[c]{|l|p{7cm}|}
3456     \hline
3457     \textbf{Valore} & \textbf{Significato} \\
3458     \hline
3459     \hline
3460     \const{LOCK\_SH}& Richiede uno \textit{shared lock}. Più processi possono
3461                       mantenere un lock condiviso sullo stesso file.\\
3462     \const{LOCK\_EX}& Richiede un \textit{exclusive lock}. Un solo processo
3463                       alla volta può mantenere un lock esclusivo su un file.\\
3464     \const{LOCK\_UN}& Sblocca il file.\\
3465     \const{LOCK\_NB}& Non blocca la funzione quando il lock non è disponibile,
3466                       si specifica sempre insieme ad una delle altre operazioni
3467                       con un OR aritmetico dei valori.\\ 
3468     \hline    
3469   \end{tabular}
3470   \caption{Valori possibili per l'argomento \param{cmd} di \func{lockf}.}
3471   \label{tab:file_lockf_type}
3472 \end{table}
3473
3474 Qualora il lock non possa essere acquisito, a meno di non aver specificato
3475 \const{LOCK\_NB}, la funzione si blocca fino alla disponibilità dello stesso.
3476 Dato che la funzione è implementata utilizzando \func{fcntl} la semantica
3477 delle operazioni è la stessa di quest'ultima (pertanto la funzione non è
3478 affatto equivalente a \func{flock}).
3479
3480
3481
3482 \subsection{Il \textit{mandatory locking}}
3483 \label{sec:file_mand_locking}
3484
3485 \itindbeg{mandatory~locking|(}
3486
3487 Il \textit{mandatory locking} è una opzione introdotta inizialmente in SVr4,
3488 per introdurre un file locking che, come dice il nome, fosse effettivo
3489 indipendentemente dai controlli eseguiti da un processo. Con il
3490 \textit{mandatory locking} infatti è possibile far eseguire il blocco del file
3491 direttamente al sistema, così che, anche qualora non si predisponessero le
3492 opportune verifiche nei processi, questo verrebbe comunque rispettato.
3493
3494 Per poter utilizzare il \textit{mandatory locking} è stato introdotto un
3495 utilizzo particolare del bit \itindex{sgid~bit} \acr{sgid}. Se si ricorda
3496 quanto esposto in sez.~\ref{sec:file_special_perm}), esso viene di norma
3497 utilizzato per cambiare il group-ID effettivo con cui viene eseguito un
3498 programma, ed è pertanto sempre associato alla presenza del permesso di
3499 esecuzione per il gruppo. Impostando questo bit su un file senza permesso di
3500 esecuzione in un sistema che supporta il \textit{mandatory locking}, fa sì che
3501 quest'ultimo venga attivato per il file in questione. In questo modo una
3502 combinazione dei permessi originariamente non contemplata, in quanto senza
3503 significato, diventa l'indicazione della presenza o meno del \textit{mandatory
3504   locking}.\footnote{un lettore attento potrebbe ricordare quanto detto in
3505   sez.~\ref{sec:file_perm_management} e cioè che il bit \acr{sgid} viene
3506   cancellato (come misura di sicurezza) quando di scrive su un file, questo
3507   non vale quando esso viene utilizzato per attivare il \textit{mandatory
3508     locking}.}
3509
3510 L'uso del \textit{mandatory locking} presenta vari aspetti delicati, dato che
3511 neanche l'amministratore può passare sopra ad un lock; pertanto un processo
3512 che blocchi un file cruciale può renderlo completamente inaccessibile,
3513 rendendo completamente inutilizzabile il sistema\footnote{il problema si
3514   potrebbe risolvere rimuovendo il bit \itindex{sgid~bit} \acr{sgid}, ma non è
3515   detto che sia così facile fare questa operazione con un sistema bloccato.}
3516 inoltre con il \textit{mandatory locking} si può bloccare completamente un
3517 server NFS richiedendo una lettura su un file su cui è attivo un lock. Per
3518 questo motivo l'abilitazione del mandatory locking è di norma disabilitata, e
3519 deve essere attivata filesystem per filesystem in fase di montaggio
3520 (specificando l'apposita opzione di \func{mount} riportata in
3521 tab.~\ref{tab:sys_mount_flags}, o con l'opzione \code{-o mand} per il comando
3522 omonimo).
3523
3524 Si tenga presente inoltre che il \textit{mandatory locking} funziona solo
3525 sull'interfaccia POSIX di \func{fcntl}. Questo ha due conseguenze: che non si
3526 ha nessun effetto sui lock richiesti con l'interfaccia di \func{flock}, e che
3527 la granularità del lock è quella del singolo byte, come per \func{fcntl}.
3528
3529 La sintassi di acquisizione dei lock è esattamente la stessa vista in
3530 precedenza per \func{fcntl} e \func{lockf}, la differenza è che in caso di
3531 mandatory lock attivato non è più necessario controllare la disponibilità di
3532 accesso al file, ma si potranno usare direttamente le ordinarie funzioni di
3533 lettura e scrittura e sarà compito del kernel gestire direttamente il file
3534 locking.
3535
3536 Questo significa che in caso di read lock la lettura dal file potrà avvenire
3537 normalmente con \func{read}, mentre una \func{write} si bloccherà fino al
3538 rilascio del lock, a meno di non aver aperto il file con \const{O\_NONBLOCK},
3539 nel qual caso essa ritornerà immediatamente con un errore di \errcode{EAGAIN}.
3540
3541 Se invece si è acquisito un write lock tutti i tentativi di leggere o scrivere
3542 sulla regione del file bloccata fermeranno il processo fino al rilascio del
3543 lock, a meno che il file non sia stato aperto con \const{O\_NONBLOCK}, nel
3544 qual caso di nuovo si otterrà un ritorno immediato con l'errore di
3545 \errcode{EAGAIN}.
3546
3547 Infine occorre ricordare che le funzioni di lettura e scrittura non sono le
3548 sole ad operare sui contenuti di un file, e che sia \func{creat} che
3549 \func{open} (quando chiamata con \const{O\_TRUNC}) effettuano dei cambiamenti,
3550 così come \func{truncate}, riducendone le dimensioni (a zero nei primi due
3551 casi, a quanto specificato nel secondo). Queste operazioni sono assimilate a
3552 degli accessi in scrittura e pertanto non potranno essere eseguite (fallendo
3553 con un errore di \errcode{EAGAIN}) su un file su cui sia presente un qualunque
3554 lock (le prime due sempre, la terza solo nel caso che la riduzione delle
3555 dimensioni del file vada a sovrapporsi ad una regione bloccata).
3556
3557 L'ultimo aspetto della interazione del \textit{mandatory locking} con le
3558 funzioni di accesso ai file è quello relativo ai file mappati in memoria (che
3559 abbiamo trattato in sez.~\ref{sec:file_memory_map}); anche in tal caso infatti,
3560 quando si esegue la mappatura con l'opzione \const{MAP\_SHARED}, si ha un
3561 accesso al contenuto del file. Lo standard SVID prevede che sia impossibile
3562 eseguire il memory mapping di un file su cui sono presenti dei
3563 lock\footnote{alcuni sistemi, come HP-UX, sono ancora più restrittivi e lo
3564   impediscono anche in caso di \textit{advisory locking}, anche se questo
3565   comportamento non ha molto senso, dato che comunque qualunque accesso
3566   diretto al file è consentito.} in Linux è stata però fatta la scelta
3567 implementativa\footnote{per i dettagli si possono leggere le note relative
3568   all'implementazione, mantenute insieme ai sorgenti del kernel nel file
3569   \file{Documentation/mandatory.txt}.}  di seguire questo comportamento
3570 soltanto quando si chiama \func{mmap} con l'opzione \const{MAP\_SHARED} (nel
3571 qual caso la funzione fallisce con il solito \errcode{EAGAIN}) che comporta la
3572 possibilità di modificare il file.
3573
3574 \index{file!locking|)}
3575
3576 \itindend{mandatory~locking|(}
3577
3578
3579 % LocalWords:  dell'I locking multiplexing cap dell' sez system call socket BSD
3580 % LocalWords:  descriptor client deadlock NONBLOCK EAGAIN polling select kernel
3581 % LocalWords:  pselect like sys unistd int fd readfds writefds exceptfds struct
3582 % LocalWords:  timeval errno EBADF EINTR EINVAL ENOMEM sleep tab signal void of
3583 % LocalWords:  CLR ISSET SETSIZE POSIX read NULL nell'header l'header glibc fig
3584 % LocalWords:  libc header psignal sigmask SOURCE XOPEN timespec sigset race DN
3585 % LocalWords:  condition sigprocmask tut self trick oldmask poll XPG pollfd l'I
3586 % LocalWords:  ufds unsigned nfds RLIMIT NOFILE EFAULT ndfs events revents hung
3587 % LocalWords:  POLLIN POLLRDNORM POLLRDBAND POLLPRI POLLOUT POLLWRNORM POLLERR
3588 % LocalWords:  POLLWRBAND POLLHUP POLLNVAL POLLMSG SysV stream ASYNC SETOWN FAQ
3589 % LocalWords:  GETOWN fcntl SETFL SIGIO SETSIG Stevens driven siginfo sigaction
3590 % LocalWords:  all'I nell'I Frequently Unanswered Question SIGHUP lease holder
3591 % LocalWords:  breaker truncate write SETLEASE arg RDLCK WRLCK UNLCK GETLEASE
3592 % LocalWords:  uid capabilities capability EWOULDBLOCK notify dall'OR ACCESS st
3593 % LocalWords:  pread readv MODIFY pwrite writev ftruncate creat mknod mkdir buf
3594 % LocalWords:  symlink rename DELETE unlink rmdir ATTRIB chown chmod utime lio
3595 % LocalWords:  MULTISHOT thread linkando librt layer aiocb asyncronous control
3596 % LocalWords:  block ASYNCHRONOUS lseek fildes nbytes reqprio PRIORITIZED sigev
3597 % LocalWords:  PRIORITY SCHEDULING opcode listio sigevent signo value function
3598 % LocalWords:  aiocbp ENOSYS append error const EINPROGRESS fsync return ssize
3599 % LocalWords:  DSYNC fdatasync SYNC cancel ECANCELED ALLDONE CANCELED suspend
3600 % LocalWords:  NOTCANCELED list nent timout sig NOP WAIT NOWAIT size count iov
3601 % LocalWords:  iovec vector EOPNOTSUPP EISDIR len memory mapping mapped swap NB
3602 % LocalWords:  mmap length prot flags off MAP FAILED ANONYMOUS EACCES SHARED SH
3603 % LocalWords:  only ETXTBSY DENYWRITE ENODEV filesystem EPERM EXEC noexec table
3604 % LocalWords:  ENFILE lenght segment violation SIGSEGV FIXED msync munmap copy
3605 % LocalWords:  DoS Denial Service EXECUTABLE NORESERVE LOCKED swapping stack fs
3606 % LocalWords:  GROWSDOWN ANON GiB POPULATE prefaulting SIGBUS fifo VME fork old
3607 % LocalWords:  exec atime ctime mtime mprotect addr EACCESS mremap address new
3608 % LocalWords:  long MAYMOVE realloc VMA virtual Ingo Molnar remap pages pgoff
3609 % LocalWords:  dall' fault cache linker prelink advisory discrectionary lock fl
3610 % LocalWords:  flock shared exclusive operation dup inode linked NFS cmd ENOLCK
3611 % LocalWords:  EDEADLK whence SEEK CUR type pid GETLK SETLK SETLKW all'inode HP
3612 % LocalWords:  switch bsd lockf mandatory SVr sgid group root mount mand TRUNC
3613 % LocalWords:  SVID UX Documentation sendfile dnotify inotify NdA ppoll fds add
3614 % LocalWords:  init EMFILE FIONREAD ioctl watch char pathname uint mask ENOSPC
3615 % LocalWords:  dell'inode CLOSE NOWRITE MOVE MOVED FROM TO rm wd event page ctl
3616 % LocalWords:  attribute Universe epoll Solaris kqueue level triggered Jonathan
3617 % LocalWords:  Lemon BSDCON edge Libenzi kevent backporting epfd EEXIST ENOENT
3618 % LocalWords:  MOD wait EPOLLIN EPOLLOUT EPOLLRDHUP SOCK EPOLLPRI EPOLLERR one
3619 % LocalWords:  EPOLLHUP EPOLLET EPOLLONESHOT shot maxevents ctlv ALL DONT HPUX
3620
3621
3622 %%% Local Variables: 
3623 %%% mode: latex
3624 %%% TeX-master: "gapil"
3625 %%% End: 
3626 % LocalWords:  FOLLOW ONESHOT ONLYDIR FreeBSD EIO caching