Altre modifiche e correzioni sul testo.
[gapil.git] / fileadv.tex
1 %% fileadv.tex
2 %%
3 %% Copyright (C) 2000-2011 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11 \chapter{La gestione avanzata dei file}
12 \label{cha:file_advanced}
13
14 In questo capitolo affronteremo le tematiche relative alla gestione avanzata
15 dei file. Inizieremo con la trattazione delle problematiche del \textit{file
16   locking} e poi prenderemo in esame le varie funzionalità avanzate che
17 permettono una gestione più sofisticata dell'I/O su file, a partire da quelle
18 che consentono di gestire l'accesso contemporaneo a più file esaminando le
19 varie modalità alternative di gestire l'I/O per concludere con la gestione dei
20 file mappati in memoria e le altre funzioni avanzate che consentono un
21 controllo più dettagliato delle modalità di I/O.
22
23
24 \section{Il \textit{file locking}}
25 \label{sec:file_locking}
26
27 \index{file!locking|(}
28
29 In sez.~\ref{sec:file_sharing} abbiamo preso in esame le modalità in cui un
30 sistema unix-like gestisce la condivisione dei file da parte di processi
31 diversi. In quell'occasione si è visto come, con l'eccezione dei file aperti
32 in \itindex{append~mode} \textit{append mode}, quando più processi scrivono
33 contemporaneamente sullo stesso file non è possibile determinare la sequenza
34 in cui essi opereranno.
35
36 Questo causa la possibilità di una \itindex{race~condition} \textit{race
37   condition}; in generale le situazioni più comuni sono due: l'interazione fra
38 un processo che scrive e altri che leggono, in cui questi ultimi possono
39 leggere informazioni scritte solo in maniera parziale o incompleta; o quella
40 in cui diversi processi scrivono, mescolando in maniera imprevedibile il loro
41 output sul file.
42
43 In tutti questi casi il \textit{file locking} è la tecnica che permette di
44 evitare le \itindex{race~condition} \textit{race condition}, attraverso una
45 serie di funzioni che permettono di bloccare l'accesso al file da parte di
46 altri processi, così da evitare le sovrapposizioni, e garantire la atomicità
47 delle operazioni di lettura o scrittura.
48
49
50 \subsection{L'\textit{advisory locking}}
51 \label{sec:file_record_locking}
52
53 La prima modalità di \textit{file locking} che è stata implementata nei
54 sistemi unix-like è quella che viene usualmente chiamata \textit{advisory
55   locking},\footnote{Stevens in \cite{APUE} fa riferimento a questo argomento
56   come al \textit{record locking}, dizione utilizzata anche dal manuale delle
57   \acr{glibc}; nelle pagine di manuale si parla di \textit{discrectionary file
58     lock} per \func{fcntl} e di \textit{advisory locking} per \func{flock},
59   mentre questo nome viene usato da Stevens per riferirsi al \textit{file
60     locking} POSIX. Dato che la dizione \textit{record locking} è quantomeno
61   ambigua, in quanto in un sistema Unix non esiste niente che possa fare
62   riferimento al concetto di \textit{record}, alla fine si è scelto di
63   mantenere il nome \textit{advisory locking}.} in quanto sono i singoli
64 processi, e non il sistema, che si incaricano di asserire e verificare se
65 esistono delle condizioni di blocco per l'accesso ai file. 
66
67 Questo significa che le funzioni \func{read} o \func{write} vengono eseguite
68 comunque e non risentono affatto della presenza di un eventuale \textit{lock};
69 pertanto è sempre compito dei vari processi che intendono usare il
70 \textit{file locking}, controllare esplicitamente lo stato dei file condivisi
71 prima di accedervi, utilizzando le relative funzioni.
72
73 In generale si distinguono due tipologie di \textit{file lock};\footnote{di
74   seguito ci riferiremo sempre ai blocchi di accesso ai file con la
75   nomenclatura inglese di \textit{file lock}, o più brevemente con
76   \textit{lock}, per evitare confusioni linguistiche con il blocco di un
77   processo (cioè la condizione in cui il processo viene posto in stato di
78   \textit{sleep}).} la prima è il cosiddetto \textit{shared lock}, detto anche
79 \textit{read lock} in quanto serve a bloccare l'accesso in scrittura su un
80 file affinché il suo contenuto non venga modificato mentre lo si legge. Si
81 parla appunto di \textsl{blocco condiviso} in quanto più processi possono
82 richiedere contemporaneamente uno \textit{shared lock} su un file per
83 proteggere il loro accesso in lettura.
84
85 La seconda tipologia è il cosiddetto \textit{exclusive lock}, detto anche
86 \textit{write lock} in quanto serve a bloccare l'accesso su un file (sia in
87 lettura che in scrittura) da parte di altri processi mentre lo si sta
88 scrivendo. Si parla di \textsl{blocco esclusivo} appunto perché un solo
89 processo alla volta può richiedere un \textit{exclusive lock} su un file per
90 proteggere il suo accesso in scrittura.
91
92 In Linux sono disponibili due interfacce per utilizzare l'\textit{advisory
93   locking}, la prima è quella derivata da BSD, che è basata sulla funzione
94 \func{flock}, la seconda è quella recepita dallo standard POSIX.1 (che è
95 derivata dall'interfaccia usata in System V), che è basata sulla funzione
96 \func{fcntl}.  I \textit{file lock} sono implementati in maniera completamente
97 indipendente nelle due interfacce,\footnote{in realtà con Linux questo avviene
98   solo dalla serie 2.0 dei kernel.}  che pertanto possono coesistere senza
99 interferenze.
100
101 Entrambe le interfacce prevedono la stessa procedura di funzionamento: si
102 inizia sempre con il richiedere l'opportuno \textit{file lock} (un
103 \textit{exclusive lock} per una scrittura, uno \textit{shared lock} per una
104 lettura) prima di eseguire l'accesso ad un file.  Se il blocco viene acquisito
105 il processo prosegue l'esecuzione, altrimenti (a meno di non aver richiesto un
106 comportamento non bloccante) viene posto in stato di sleep. Una volta finite
107 le operazioni sul file si deve provvedere a rimuovere il blocco. 
108
109 La situazione delle varie possibilità che si possono verificare è riassunta in
110 tab.~\ref{tab:file_file_lock}, dove si sono riportati, a seconda delle varie
111 tipologie di blocco già presenti su un file, il risultato che si avrebbe in
112 corrispondenza di una ulteriore richiesta da parte di un processo di un blocco
113 nelle due tipologie di \textit{file lock} menzionate, con un successo o meno
114 della richiesta.
115
116 \begin{table}[htb]
117   \centering
118   \footnotesize
119    \begin{tabular}[c]{|l|c|c|c|}
120     \hline
121     \textbf{Richiesta} & \multicolumn{3}{|c|}{\textbf{Stato del file}}\\
122     \cline{2-4}
123                 &Nessun \textit{lock}&\textit{Read lock}&\textit{Write lock}\\
124     \hline
125     \hline
126     \textit{Read lock} & SI & SI & NO \\
127     \textit{Write lock}& SI & NO & NO \\
128     \hline    
129   \end{tabular}
130   \caption{Tipologie di \textit{file locking}.}
131   \label{tab:file_file_lock}
132 \end{table}
133
134 Si tenga presente infine che il controllo di accesso e la gestione dei
135 permessi viene effettuata quando si apre un file, l'unico controllo residuo
136 che si può avere riguardo il \textit{file locking} è che il tipo di blocco che
137 si vuole ottenere su un file deve essere compatibile con le modalità di
138 apertura dello stesso (in lettura per un \textit{read lock} e in scrittura per
139 un \textit{write lock}).
140
141 %%  Si ricordi che
142 %% la condizione per acquisire uno \textit{shared lock} è che il file non abbia
143 %% già un \textit{exclusive lock} attivo, mentre per acquisire un
144 %% \textit{exclusive lock} non deve essere presente nessun tipo di blocco.
145
146
147 \subsection{La funzione \func{flock}} 
148 \label{sec:file_flock}
149
150 La prima interfaccia per il \textit{file locking}, quella derivata da BSD,
151 permette di eseguire un blocco solo su un intero file; la funzione usata per
152 richiedere e rimuovere un \textit{file lock} è \funcd{flock}, ed il suo
153 prototipo è:
154 \begin{prototype}{sys/file.h}{int flock(int fd, int operation)}
155   
156   Applica o rimuove un \textit{file lock} sul file \param{fd}.
157   
158   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
159     errore, nel qual caso \var{errno} assumerà uno dei valori:
160     \begin{errlist}
161     \item[\errcode{EWOULDBLOCK}] il file ha già un blocco attivo, e si è
162       specificato \const{LOCK\_NB}.
163     \end{errlist}
164   }
165 \end{prototype}
166
167 La funzione può essere usata per acquisire o rilasciare un \textit{file lock}
168 a seconda di quanto specificato tramite il valore dell'argomento
169 \param{operation}; questo viene interpretato come maschera binaria, e deve
170 essere passato costruendo il valore con un OR aritmetico delle costanti
171 riportate in tab.~\ref{tab:file_flock_operation}.
172
173 \begin{table}[htb]
174   \centering
175   \footnotesize
176   \begin{tabular}[c]{|l|p{6cm}|}
177     \hline
178     \textbf{Valore} & \textbf{Significato} \\
179     \hline
180     \hline
181     \const{LOCK\_SH} & Richiede uno \textit{shared lock} sul file.\\ 
182     \const{LOCK\_EX} & Richiede un \textit{esclusive lock} sul file.\\
183     \const{LOCK\_UN} & Rilascia il \textit{file lock}.\\
184     \const{LOCK\_NB} & Impedisce che la funzione si blocchi nella
185                        richiesta di un \textit{file lock}.\\
186     \hline    
187   \end{tabular}
188   \caption{Valori dell'argomento \param{operation} di \func{flock}.}
189   \label{tab:file_flock_operation}
190 \end{table}
191
192 I primi due valori, \const{LOCK\_SH} e \const{LOCK\_EX} permettono di
193 richiedere un \textit{file lock}, ed ovviamente devono essere usati in maniera
194 alternativa. Se si specifica anche \const{LOCK\_NB} la funzione non si
195 bloccherà qualora il \textit{file lock} non possa essere acquisito, ma
196 ritornerà subito con un errore di \errcode{EWOULDBLOCK}. Per rilasciare un
197 \textit{file lock} si dovrà invece usare \const{LOCK\_UN}.
198
199 Si tenga presente che non esiste una modalità per eseguire atomicamente un
200 cambiamento del tipo di blocco (da \textit{shared lock} a \textit{esclusive
201   lock}), il blocco deve essere prima rilasciato e poi richiesto, ed è sempre
202 possibile che nel frattempo abbia successo un'altra richiesta pendente,
203 facendo fallire la riacquisizione.
204
205 Si tenga presente infine che \func{flock} non è supportata per i file
206 mantenuti su NFS, in questo caso, se si ha la necessità di utilizzare il
207 \textit{file locking}, occorre usare l'interfaccia del \textit{file locking}
208 POSIX basata su \func{fcntl} che è in grado di funzionare anche attraverso
209 NFS, a condizione ovviamente che sia il client che il server supportino questa
210 funzionalità.
211
212 La semantica del \textit{file locking} di BSD inoltre è diversa da quella del
213 \textit{file locking} POSIX, in particolare per quanto riguarda il
214 comportamento dei \textit{file lock} nei confronti delle due funzioni
215 \func{dup} e \func{fork}.  Per capire queste differenze occorre descrivere con
216 maggiore dettaglio come viene realizzato dal kernel il \textit{file locking}
217 per entrambe le interfacce.
218
219 In fig.~\ref{fig:file_flock_struct} si è riportato uno schema essenziale
220 dell'implementazione del \textit{file locking} in stile BSD su Linux. Il punto
221 fondamentale da capire è che un \textit{file lock}, qualunque sia
222 l'interfaccia che si usa, anche se richiesto attraverso un file descriptor,
223 agisce sempre su di un file; perciò le informazioni relative agli eventuali
224 \textit{file lock} sono mantenute dal kernel a livello di
225 inode\index{inode},\footnote{in particolare, come accennato in
226   fig.~\ref{fig:file_flock_struct}, i \textit{file lock} sono mantenuti in una
227   \itindex{linked~list} \textit{linked list} di strutture
228   \struct{file\_lock}. La lista è referenziata dall'indirizzo di partenza
229   mantenuto dal campo \var{i\_flock} della struttura \struct{inode} (per le
230   definizioni esatte si faccia riferimento al file \file{fs.h} nei sorgenti
231   del kernel).  Un bit del campo \var{fl\_flags} di specifica se si tratta di
232   un lock in semantica BSD (\const{FL\_FLOCK}) o POSIX (\const{FL\_POSIX}).}
233 dato che questo è l'unico riferimento in comune che possono avere due processi
234 diversi che aprono lo stesso file.
235
236 \begin{figure}[htb]
237   \centering
238   \includegraphics[width=15.5cm]{img/file_flock}
239   \caption{Schema dell'architettura del \textit{file locking}, nel caso
240     particolare del suo utilizzo da parte dalla funzione \func{flock}.}
241   \label{fig:file_flock_struct}
242 \end{figure}
243
244 La richiesta di un \textit{file lock} prevede una scansione della lista per
245 determinare se l'acquisizione è possibile, ed in caso positivo l'aggiunta di
246 un nuovo elemento.\footnote{cioè una nuova struttura \struct{file\_lock}.}
247 Nel caso dei blocchi creati con \func{flock} la semantica della funzione
248 prevede che sia \func{dup} che \func{fork} non creino ulteriori istanze di un
249 \textit{file lock} quanto piuttosto degli ulteriori riferimenti allo
250 stesso. Questo viene realizzato dal kernel secondo lo schema di
251 fig.~\ref{fig:file_flock_struct}, associando ad ogni nuovo \textit{file lock}
252 un puntatore\footnote{il puntatore è mantenuto nel campo \var{fl\_file} di
253   \struct{file\_lock}, e viene utilizzato solo per i \textit{file lock} creati
254   con la semantica BSD.} alla voce nella \itindex{file~table} \textit{file
255   table} da cui si è richiesto il blocco, che così ne identifica il titolare.
256
257 Questa struttura prevede che, quando si richiede la rimozione di un
258 \textit{file lock}, il kernel acconsenta solo se la richiesta proviene da un
259 file descriptor che fa riferimento ad una voce nella \itindex{file~table}
260 \textit{file table} corrispondente a quella registrata nel blocco.  Allora se
261 ricordiamo quanto visto in sez.~\ref{sec:file_dup} e
262 sez.~\ref{sec:file_sharing}, e cioè che i file descriptor duplicati e quelli
263 ereditati in un processo figlio puntano sempre alla stessa voce nella
264 \itindex{file~table} \textit{file table}, si può capire immediatamente quali
265 sono le conseguenze nei confronti delle funzioni \func{dup} e \func{fork}.
266
267 Sarà così possibile rimuovere un \textit{file lock} attraverso uno qualunque
268 dei file descriptor che fanno riferimento alla stessa voce nella
269 \itindex{file~table} \textit{file table}, anche se questo è diverso da quello
270 con cui lo si è creato,\footnote{attenzione, questo non vale se il file
271   descriptor fa riferimento allo stesso file, ma attraverso una voce diversa
272   della \itindex{file~table} \textit{file table}, come accade tutte le volte
273   che si apre più volte lo stesso file.} o se si esegue la rimozione in un
274 processo figlio. Inoltre una volta tolto un \textit{file lock} su un file, la
275 rimozione avrà effetto su tutti i file descriptor che condividono la stessa
276 voce nella \itindex{file~table} \textit{file table}, e quindi, nel caso di
277 file descriptor ereditati attraverso una \func{fork}, anche per processi
278 diversi.
279
280 Infine, per evitare che la terminazione imprevista di un processo lasci attivi
281 dei \textit{file lock}, quando un file viene chiuso il kernel provvede anche a
282 rimuovere tutti i blocchi ad esso associati. Anche in questo caso occorre
283 tenere presente cosa succede quando si hanno file descriptor duplicati; in tal
284 caso infatti il file non verrà effettivamente chiuso (ed il blocco rimosso)
285 fintanto che non viene rilasciata la relativa voce nella \itindex{file~table}
286 \textit{file table}; e questo avverrà solo quando tutti i file descriptor che
287 fanno riferimento alla stessa voce sono stati chiusi.  Quindi, nel caso ci
288 siano duplicati o processi figli che mantengono ancora aperto un file
289 descriptor, il \textit{file lock} non viene rilasciato.
290  
291
292 \subsection{Il \textit{file locking} POSIX}
293 \label{sec:file_posix_lock}
294
295 La seconda interfaccia per l'\textit{advisory locking} disponibile in Linux è
296 quella standardizzata da POSIX, basata sulla funzione \func{fcntl}. Abbiamo
297 già trattato questa funzione nelle sue molteplici possibilità di utilizzo in
298 sez.~\ref{sec:file_fcntl}. Quando la si impiega per il \textit{file locking}
299 essa viene usata solo secondo il seguente prototipo:
300 \begin{prototype}{fcntl.h}{int fcntl(int fd, int cmd, struct flock *lock)}
301   
302   Applica o rimuove un \textit{file lock} sul file \param{fd}.
303   
304   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
305     errore, nel qual caso \var{errno} assumerà uno dei valori:
306     \begin{errlist}
307     \item[\errcode{EACCES}] l'operazione è proibita per la presenza di
308       \textit{file lock} da parte di altri processi.
309     \item[\errcode{ENOLCK}] il sistema non ha le risorse per il blocco: ci
310       sono troppi segmenti di \textit{lock} aperti, si è esaurita la tabella
311       dei \textit{file lock}, o il protocollo per il blocco remoto è fallito.
312     \item[\errcode{EDEADLK}] si è richiesto un \textit{lock} su una regione
313       bloccata da un altro processo che è a sua volta in attesa dello sblocco
314       di un \textit{lock} mantenuto dal processo corrente; si avrebbe pertanto
315       un \itindex{deadlock} \textit{deadlock}. Non è garantito che il sistema
316       riconosca sempre questa situazione.
317     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
318       di poter acquisire un \textit{file lock}.
319     \end{errlist}
320     ed inoltre \errval{EBADF}, \errval{EFAULT}.
321   }
322 \end{prototype}
323
324 Al contrario di quanto avviene con l'interfaccia basata su \func{flock} con
325 \func{fcntl} è possibile bloccare anche delle singole sezioni di un file, fino
326 al singolo byte. Inoltre la funzione permette di ottenere alcune informazioni
327 relative agli eventuali blocchi preesistenti.  Per poter fare tutto questo la
328 funzione utilizza come terzo argomento una apposita struttura \struct{flock}
329 (la cui definizione è riportata in fig.~\ref{fig:struct_flock}) nella quale
330 inserire tutti i dati relativi ad un determinato blocco. Si tenga presente poi
331 che un \textit{file lock} fa sempre riferimento ad una regione, per cui si
332 potrà avere un conflitto anche se c'è soltanto una sovrapposizione parziale
333 con un'altra regione bloccata.
334
335 \begin{figure}[!bht]
336   \footnotesize \centering
337   \begin{minipage}[c]{15cm}
338     \includestruct{listati/flock.h}
339   \end{minipage} 
340   \normalsize 
341   \caption{La struttura \structd{flock}, usata da \func{fcntl} per il
342     \textit{file locking}.}
343   \label{fig:struct_flock}
344 \end{figure}
345
346
347 I primi tre campi della struttura, \var{l\_whence}, \var{l\_start} e
348 \var{l\_len}, servono a specificare la sezione del file a cui fa riferimento
349 il blocco: \var{l\_start} specifica il byte di partenza, \var{l\_len} la
350 lunghezza della sezione e infine \var{l\_whence} imposta il riferimento da cui
351 contare \var{l\_start}. Il valore di \var{l\_whence} segue la stessa semantica
352 dell'omonimo argomento di \func{lseek}, coi tre possibili valori
353 \const{SEEK\_SET}, \const{SEEK\_CUR} e \const{SEEK\_END}, (si vedano le
354 relative descrizioni in sez.~\ref{sec:file_lseek}).
355
356 Si tenga presente che un \textit{file lock} può essere richiesto anche per una
357 regione al di là della corrente fine del file, così che una eventuale
358 estensione dello stesso resti coperta dal blocco. Inoltre se si specifica un
359 valore nullo per \var{l\_len} il blocco si considera esteso fino alla
360 dimensione massima del file; in questo modo è possibile bloccare una qualunque
361 regione a partire da un certo punto fino alla fine del file, coprendo
362 automaticamente quanto eventualmente aggiunto in coda allo stesso.
363
364 \begin{table}[htb]
365   \centering
366   \footnotesize
367   \begin{tabular}[c]{|l|l|}
368     \hline
369     \textbf{Valore} & \textbf{Significato} \\
370     \hline
371     \hline
372     \const{F\_RDLCK} & Richiede un blocco condiviso (\textit{read lock}).\\
373     \const{F\_WRLCK} & Richiede un blocco esclusivo (\textit{write lock}).\\
374     \const{F\_UNLCK} & Richiede l'eliminazione di un \textit{file lock}.\\
375     \hline    
376   \end{tabular}
377   \caption{Valori possibili per il campo \var{l\_type} di \struct{flock}.}
378   \label{tab:file_flock_type}
379 \end{table}
380
381 Il tipo di \textit{file lock} richiesto viene specificato dal campo
382 \var{l\_type}, esso può assumere i tre valori definiti dalle costanti
383 riportate in tab.~\ref{tab:file_flock_type}, che permettono di richiedere
384 rispettivamente uno \textit{shared lock}, un \textit{esclusive lock}, e la
385 rimozione di un blocco precedentemente acquisito. Infine il campo \var{l\_pid}
386 viene usato solo in caso di lettura, quando si chiama \func{fcntl} con
387 \const{F\_GETLK}, e riporta il \acr{pid} del processo che detiene il
388 \textit{file lock}.
389
390 Oltre a quanto richiesto tramite i campi di \struct{flock}, l'operazione
391 effettivamente svolta dalla funzione è stabilita dal valore dall'argomento
392 \param{cmd} che, come già riportato in sez.~\ref{sec:file_fcntl}, specifica
393 l'azione da compiere; i valori relativi al \textit{file locking} sono tre:
394 \begin{basedescript}{\desclabelwidth{2.0cm}}
395 \item[\const{F\_GETLK}] verifica se il \textit{file lock} specificato dalla
396   struttura puntata da \param{lock} può essere acquisito: in caso negativo
397   sovrascrive la struttura \param{flock} con i valori relativi al blocco già
398   esistente che ne blocca l'acquisizione, altrimenti si limita a impostarne il
399   campo \var{l\_type} con il valore \const{F\_UNLCK}.
400 \item[\const{F\_SETLK}] se il campo \var{l\_type} della struttura puntata da
401   \param{lock} è \const{F\_RDLCK} o \const{F\_WRLCK} richiede il
402   corrispondente \textit{file lock}, se è \const{F\_UNLCK} lo rilascia. Nel
403   caso la richiesta non possa essere soddisfatta a causa di un blocco
404   preesistente la funzione ritorna immediatamente con un errore di
405   \errcode{EACCES} o di \errcode{EAGAIN}.
406 \item[\const{F\_SETLKW}] è identica a \const{F\_SETLK}, ma se la richiesta di
407   non può essere soddisfatta per la presenza di un altro blocco, mette il
408   processo in stato di attesa fintanto che il blocco precedente non viene
409   rilasciato. Se l'attesa viene interrotta da un segnale la funzione ritorna
410   con un errore di \errcode{EINTR}.
411 \end{basedescript}
412
413 Si noti che per quanto detto il comando \const{F\_GETLK} non serve a rilevare
414 una presenza generica di blocco su un file, perché se ne esistono altri
415 compatibili con quello richiesto, la funzione ritorna comunque impostando
416 \var{l\_type} a \const{F\_UNLCK}.  Inoltre a seconda del valore di
417 \var{l\_type} si potrà controllare o l'esistenza di un qualunque tipo di
418 blocco (se è \const{F\_WRLCK}) o di \textit{write lock} (se è
419 \const{F\_RDLCK}). Si consideri poi che può esserci più di un blocco che
420 impedisce l'acquisizione di quello richiesto (basta che le regioni si
421 sovrappongano), ma la funzione ne riporterà sempre soltanto uno, impostando
422 \var{l\_whence} a \const{SEEK\_SET} ed i valori \var{l\_start} e \var{l\_len}
423 per indicare quale è la regione bloccata.
424
425 Infine si tenga presente che effettuare un controllo con il comando
426 \const{F\_GETLK} e poi tentare l'acquisizione con \const{F\_SETLK} non è una
427 operazione atomica (un altro processo potrebbe acquisire un blocco fra le due
428 chiamate) per cui si deve sempre verificare il codice di ritorno di
429 \func{fcntl}\footnote{controllare il codice di ritorno delle funzioni invocate
430   è comunque una buona norma di programmazione, che permette di evitare un
431   sacco di errori difficili da tracciare proprio perché non vengono rilevati.}
432 quando la si invoca con \const{F\_SETLK}, per controllare che il blocco sia
433 stato effettivamente acquisito.
434
435 \begin{figure}[htb]
436   \centering \includegraphics[width=9cm]{img/file_lock_dead}
437   \caption{Schema di una situazione di \itindex{deadlock} \textit{deadlock}.}
438   \label{fig:file_flock_dead}
439 \end{figure}
440
441 Non operando a livello di interi file, il \textit{file locking} POSIX
442 introduce un'ulteriore complicazione; consideriamo la situazione illustrata in
443 fig.~\ref{fig:file_flock_dead}, in cui il processo A blocca la regione 1 e il
444 processo B la regione 2. Supponiamo che successivamente il processo A richieda
445 un lock sulla regione 2 che non può essere acquisito per il preesistente lock
446 del processo 2; il processo 1 si bloccherà fintanto che il processo 2 non
447 rilasci il blocco. Ma cosa accade se il processo 2 nel frattempo tenta a sua
448 volta di ottenere un lock sulla regione A? Questa è una tipica situazione che
449 porta ad un \itindex{deadlock} \textit{deadlock}, dato che a quel punto anche
450 il processo 2 si bloccherebbe, e niente potrebbe sbloccare l'altro processo.
451 Per questo motivo il kernel si incarica di rilevare situazioni di questo tipo,
452 ed impedirle restituendo un errore di \errcode{EDEADLK} alla funzione che
453 cerca di acquisire un blocco che porterebbe ad un \itindex{deadlock}
454 \textit{deadlock}.
455
456 Per capire meglio il funzionamento del \textit{file locking} in semantica
457 POSIX (che differisce alquanto rispetto da quello di BSD, visto
458 sez.~\ref{sec:file_flock}) esaminiamo più in dettaglio come viene gestito dal
459 kernel. Lo schema delle strutture utilizzate è riportato in
460 fig.~\ref{fig:file_posix_lock}; come si vede esso è molto simile all'analogo
461 di fig.~\ref{fig:file_flock_struct}:\footnote{in questo caso nella figura si
462   sono evidenziati solo i campi di \struct{file\_lock} significativi per la
463   semantica POSIX, in particolare adesso ciascuna struttura contiene, oltre al
464   \acr{pid} del processo in \var{fl\_pid}, la sezione di file che viene
465   bloccata grazie ai campi \var{fl\_start} e \var{fl\_end}.  La struttura è
466   comunque la stessa, solo che in questo caso nel campo \var{fl\_flags} è
467   impostato il bit \const{FL\_POSIX} ed il campo \var{fl\_file} non viene
468   usato.} il blocco è sempre associato \index{inode} all'inode, solo che in
469 questo caso la titolarità non viene identificata con il riferimento ad una
470 voce nella \itindex{file~table} \textit{file table}, ma con il valore del
471 \acr{pid} del processo.
472
473 \begin{figure}[!bht]
474   \centering \includegraphics[width=13cm]{img/file_posix_lock}
475   \caption{Schema dell'architettura del \textit{file locking}, nel caso
476     particolare del suo utilizzo secondo l'interfaccia standard POSIX.}
477   \label{fig:file_posix_lock}
478 \end{figure}
479
480 Quando si richiede un \textit{file lock} il kernel effettua una scansione di
481 tutti i blocchi presenti sul file\footnote{scandisce cioè la
482   \itindex{linked~list} \textit{linked list} delle strutture
483   \struct{file\_lock}, scartando automaticamente quelle per cui
484   \var{fl\_flags} non è \const{FL\_POSIX}, così che le due interfacce restano
485   ben separate.}  per verificare se la regione richiesta non si sovrappone ad
486 una già bloccata, in caso affermativo decide in base al tipo di blocco, in
487 caso negativo il nuovo blocco viene comunque acquisito ed aggiunto alla lista.
488
489 Nel caso di rimozione invece questa viene effettuata controllando che il
490 \acr{pid} del processo richiedente corrisponda a quello contenuto nel blocco.
491 Questa diversa modalità ha delle conseguenze precise riguardo il comportamento
492 dei \textit{file lock} POSIX. La prima conseguenza è che un \textit{file lock}
493 POSIX non viene mai ereditato attraverso una \func{fork}, dato che il processo
494 figlio avrà un \acr{pid} diverso, mentre passa indenne attraverso una
495 \func{exec} in quanto il \acr{pid} resta lo stesso.  Questo comporta che, al
496 contrario di quanto avveniva con la semantica BSD, quando un processo termina
497 tutti i \textit{file lock} da esso detenuti vengono immediatamente rilasciati.
498
499 La seconda conseguenza è che qualunque file descriptor che faccia riferimento
500 allo stesso file (che sia stato ottenuto con una \func{dup} o con una
501 \func{open} in questo caso non fa differenza) può essere usato per rimuovere
502 un blocco, dato che quello che conta è solo il \acr{pid} del processo. Da
503 questo deriva una ulteriore sottile differenza di comportamento: dato che alla
504 chiusura di un file i blocchi ad esso associati vengono rimossi, nella
505 semantica POSIX basterà chiudere un file descriptor qualunque per cancellare
506 tutti i blocchi relativi al file cui esso faceva riferimento, anche se questi
507 fossero stati creati usando altri file descriptor che restano aperti.
508
509 Dato che il controllo sull'accesso ai blocchi viene eseguito sulla base del
510 \acr{pid} del processo, possiamo anche prendere in considerazione un altro
511 degli aspetti meno chiari di questa interfaccia e cioè cosa succede quando si
512 richiedono dei blocchi su regioni che si sovrappongono fra loro all'interno
513 stesso processo. Siccome il controllo, come nel caso della rimozione, si basa
514 solo sul \acr{pid} del processo che chiama la funzione, queste richieste
515 avranno sempre successo.
516
517 Nel caso della semantica BSD, essendo i lock relativi a tutto un file e non
518 accumulandosi,\footnote{questa ultima caratteristica è vera in generale, se
519   cioè si richiede più volte lo stesso \textit{file lock}, o più blocchi sulla
520   stessa sezione di file, le richieste non si cumulano e basta una sola
521   richiesta di rilascio per cancellare il blocco.}  la cosa non ha alcun
522 effetto; la funzione ritorna con successo, senza che il kernel debba
523 modificare la lista dei \textit{file lock}.  In questo caso invece si possono
524 avere una serie di situazioni diverse: ad esempio è possibile rimuovere con
525 una sola chiamata più \textit{file lock} distinti (indicando in una regione
526 che si sovrapponga completamente a quelle di questi ultimi), o rimuovere solo
527 una parte di un blocco preesistente (indicando una regione contenuta in quella
528 di un altro blocco), creando un buco, o coprire con un nuovo blocco altri
529 \textit{file lock} già ottenuti, e così via, a secondo di come si
530 sovrappongono le regioni richieste e del tipo di operazione richiesta.  Il
531 comportamento seguito in questo caso che la funzione ha successo ed esegue
532 l'operazione richiesta sulla regione indicata; è compito del kernel
533 preoccuparsi di accorpare o dividere le voci nella lista dei \textit{file
534   lock} per far si che le regioni bloccate da essa risultanti siano coerenti
535 con quanto necessario a soddisfare l'operazione richiesta.
536
537 \begin{figure}[!htb]
538   \footnotesize \centering
539   \begin{minipage}[c]{15cm}
540     \includecodesample{listati/Flock.c}
541   \end{minipage} 
542   \normalsize 
543   \caption{Sezione principale del codice del programma \file{Flock.c}.}
544   \label{fig:file_flock_code}
545 \end{figure}
546
547 Per fare qualche esempio sul \textit{file locking} si è scritto un programma che
548 permette di bloccare una sezione di un file usando la semantica POSIX, o un
549 intero file usando la semantica BSD; in fig.~\ref{fig:file_flock_code} è
550 riportata il corpo principale del codice del programma, (il testo completo è
551 allegato nella directory dei sorgenti).
552
553 La sezione relativa alla gestione delle opzioni al solito si è omessa, come la
554 funzione che stampa le istruzioni per l'uso del programma, essa si cura di
555 impostare le variabili \var{type}, \var{start} e \var{len}; queste ultime due
556 vengono inizializzate al valore numerico fornito rispettivamente tramite gli
557 switch \code{-s} e \cmd{-l}, mentre il valore della prima viene impostato con
558 le opzioni \cmd{-w} e \cmd{-r} si richiede rispettivamente o un \textit{write
559   lock} o \textit{read lock} (i due valori sono esclusivi, la variabile
560 assumerà quello che si è specificato per ultimo). Oltre a queste tre vengono
561 pure impostate la variabile \var{bsd}, che abilita la semantica omonima quando
562 si invoca l'opzione \cmd{-f} (il valore preimpostato è nullo, ad indicare la
563 semantica POSIX), e la variabile \var{cmd} che specifica la modalità di
564 richiesta del \textit{file lock} (bloccante o meno), a seconda dell'opzione
565 \cmd{-b}.
566
567 Il programma inizia col controllare (\texttt{\small 11--14}) che venga passato
568 un argomento (il file da bloccare), che sia stato scelto (\texttt{\small
569   15--18}) il tipo di blocco, dopo di che apre (\texttt{\small 19}) il file,
570 uscendo (\texttt{\small 20--23}) in caso di errore. A questo punto il
571 comportamento dipende dalla semantica scelta; nel caso sia BSD occorre
572 reimpostare il valore di \var{cmd} per l'uso con \func{flock}; infatti il
573 valore preimpostato fa riferimento alla semantica POSIX e vale rispettivamente
574 \const{F\_SETLKW} o \const{F\_SETLK} a seconda che si sia impostato o meno la
575 modalità bloccante.
576
577 Nel caso si sia scelta la semantica BSD (\texttt{\small 25--34}) prima si
578 controlla (\texttt{\small 27--31}) il valore di \var{cmd} per determinare se
579 si vuole effettuare una chiamata bloccante o meno, reimpostandone il valore
580 opportunamente, dopo di che a seconda del tipo di blocco al valore viene
581 aggiunta la relativa opzione (con un OR aritmetico, dato che \func{flock}
582 vuole un argomento \param{operation} in forma di maschera binaria.  Nel caso
583 invece che si sia scelta la semantica POSIX le operazioni sono molto più
584 immediate, si prepara (\texttt{\small 36--40}) la struttura per il lock, e lo
585 esegue (\texttt{\small 41}).
586
587 In entrambi i casi dopo aver richiesto il blocco viene controllato il
588 risultato uscendo (\texttt{\small 44--46}) in caso di errore, o stampando un
589 messaggio (\texttt{\small 47--49}) in caso di successo. Infine il programma si
590 pone in attesa (\texttt{\small 50}) finché un segnale (ad esempio un \cmd{C-c}
591 dato da tastiera) non lo interrompa; in questo caso il programma termina, e
592 tutti i blocchi vengono rilasciati.
593
594 Con il programma possiamo fare varie verifiche sul funzionamento del
595 \textit{file locking}; cominciamo con l'eseguire un \textit{read lock} su un
596 file, ad esempio usando all'interno di un terminale il seguente comando:
597
598 \vspace{1mm}
599 \begin{minipage}[c]{12cm}
600 \begin{verbatim}
601 [piccardi@gont sources]$ ./flock -r Flock.c
602 Lock acquired
603 \end{verbatim}%$
604 \end{minipage}\vspace{1mm}
605 \par\noindent
606 il programma segnalerà di aver acquisito un blocco e si bloccherà; in questo
607 caso si è usato il \textit{file locking} POSIX e non avendo specificato niente
608 riguardo alla sezione che si vuole bloccare sono stati usati i valori
609 preimpostati che bloccano tutto il file. A questo punto se proviamo ad
610 eseguire lo stesso comando in un altro terminale, e avremo lo stesso
611 risultato. Se invece proviamo ad eseguire un \textit{write lock} avremo:
612
613 \vspace{1mm}
614 \begin{minipage}[c]{12cm}
615 \begin{verbatim}
616 [piccardi@gont sources]$ ./flock -w Flock.c
617 Failed lock: Resource temporarily unavailable
618 \end{verbatim}%$
619 \end{minipage}\vspace{1mm}
620 \par\noindent
621 come ci aspettiamo il programma terminerà segnalando l'indisponibilità del
622 blocco, dato che il file è bloccato dal precedente \textit{read lock}. Si noti
623 che il risultato è lo stesso anche se si richiede il blocco su una sola parte
624 del file con il comando:
625
626 \vspace{1mm}
627 \begin{minipage}[c]{12cm}
628 \begin{verbatim}
629 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
630 Failed lock: Resource temporarily unavailable
631 \end{verbatim}%$
632 \end{minipage}\vspace{1mm}
633 \par\noindent
634 se invece blocchiamo una regione con: 
635
636 \vspace{1mm}
637 \begin{minipage}[c]{12cm}
638 \begin{verbatim}
639 [piccardi@gont sources]$ ./flock -r -s0 -l10 Flock.c
640 Lock acquired
641 \end{verbatim}%$
642 \end{minipage}\vspace{1mm}
643 \par\noindent
644 una volta che riproviamo ad acquisire il \textit{write lock} i risultati
645 dipenderanno dalla regione richiesta; ad esempio nel caso in cui le due
646 regioni si sovrappongono avremo che:
647
648 \vspace{1mm}
649 \begin{minipage}[c]{12cm}
650 \begin{verbatim}
651 [piccardi@gont sources]$ ./flock -w -s5 -l15  Flock.c
652 Failed lock: Resource temporarily unavailable
653 \end{verbatim}%$
654 \end{minipage}\vspace{1mm}
655 \par\noindent
656 ed il blocco viene rifiutato, ma se invece si richiede una regione distinta
657 avremo che:
658
659 \vspace{1mm}
660 \begin{minipage}[c]{12cm}
661 \begin{verbatim}
662 [piccardi@gont sources]$ ./flock -w -s11 -l15  Flock.c
663 Lock acquired
664 \end{verbatim}%$
665 \end{minipage}\vspace{1mm}
666 \par\noindent
667 ed il blocco viene acquisito. Se a questo punto si prova ad eseguire un
668 \textit{read lock} che comprende la nuova regione bloccata in scrittura:
669
670 \vspace{1mm}
671 \begin{minipage}[c]{12cm}
672 \begin{verbatim}
673 [piccardi@gont sources]$ ./flock -r -s10 -l20 Flock.c
674 Failed lock: Resource temporarily unavailable
675 \end{verbatim}%$
676 \end{minipage}\vspace{1mm}
677 \par\noindent
678 come ci aspettiamo questo non sarà consentito.
679
680 Il programma di norma esegue il tentativo di acquisire il lock in modalità non
681 bloccante, se però usiamo l'opzione \cmd{-b} possiamo impostare la modalità
682 bloccante, riproviamo allora a ripetere le prove precedenti con questa
683 opzione:
684
685 \vspace{1mm}
686 \begin{minipage}[c]{12cm}
687 \begin{verbatim}
688 [piccardi@gont sources]$ ./flock -r -b -s0 -l10 Flock.c Lock acquired
689 \end{verbatim}%$
690 \end{minipage}\vspace{1mm}
691 \par\noindent
692 il primo comando acquisisce subito un \textit{read lock}, e quindi non cambia
693 nulla, ma se proviamo adesso a richiedere un \textit{write lock} che non potrà
694 essere acquisito otterremo:
695
696 \vspace{1mm}
697 \begin{minipage}[c]{12cm}
698 \begin{verbatim}
699 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
700 \end{verbatim}%$
701 \end{minipage}\vspace{1mm}
702 \par\noindent
703 il programma cioè si bloccherà nella chiamata a \func{fcntl}; se a questo
704 punto rilasciamo il precedente blocco (terminando il primo comando un
705 \texttt{C-c} sul terminale) potremo verificare che sull'altro terminale il
706 blocco viene acquisito, con la comparsa di una nuova riga:
707
708 \vspace{1mm}
709 \begin{minipage}[c]{12cm}
710 \begin{verbatim}
711 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
712 Lock acquired
713 \end{verbatim}%$
714 \end{minipage}\vspace{3mm}
715 \par\noindent
716
717 Un'altra cosa che si può controllare con il nostro programma è l'interazione
718 fra i due tipi di blocco; se ripartiamo dal primo comando con cui si è
719 ottenuto un blocco in lettura sull'intero file, possiamo verificare cosa
720 succede quando si cerca di ottenere un blocco in scrittura con la semantica
721 BSD:
722
723 \vspace{1mm}
724 \begin{minipage}[c]{12cm}
725 \begin{verbatim}
726 [root@gont sources]# ./flock -f -w Flock.c
727 Lock acquired
728 \end{verbatim}
729 \end{minipage}\vspace{1mm}
730 \par\noindent
731 che ci mostra come i due tipi di blocco siano assolutamente indipendenti; per
732 questo motivo occorre sempre tenere presente quale fra le due semantiche
733 disponibili stanno usando i programmi con cui si interagisce, dato che i
734 blocchi applicati con l'altra non avrebbero nessun effetto.
735
736
737
738 \subsection{La funzione \func{lockf}}
739 \label{sec:file_lockf}
740
741 Abbiamo visto come l'interfaccia POSIX per il \textit{file locking} sia molto
742 più potente e flessibile di quella di BSD, questo comporta anche una maggiore
743 complessità per via delle varie opzioni da passare a \func{fcntl}. Per questo
744 motivo è disponibile anche una interfaccia semplificata (ripresa da System V)
745 che utilizza la funzione \funcd{lockf}, il cui prototipo è:
746 \begin{prototype}{sys/file.h}{int lockf(int fd, int cmd, off\_t len)}
747   
748   Applica, controlla o rimuove un \textit{file lock} sul file \param{fd}.
749   
750   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
751     errore, nel qual caso \var{errno} assumerà uno dei valori:
752     \begin{errlist}
753     \item[\errcode{EWOULDBLOCK}] non è possibile acquisire il lock, e si è
754       selezionato \const{LOCK\_NB}, oppure l'operazione è proibita perché il
755       file è mappato in memoria.
756     \item[\errcode{ENOLCK}] il sistema non ha le risorse per il blocco: ci
757       sono troppi segmenti di \textit{lock} aperti, si è esaurita la tabella
758       dei \textit{file lock}.
759     \end{errlist}
760     ed inoltre \errval{EBADF}, \errval{EINVAL}.
761   }
762 \end{prototype}
763
764 Il comportamento della funzione dipende dal valore dell'argomento \param{cmd},
765 che specifica quale azione eseguire; i valori possibili sono riportati in
766 tab.~\ref{tab:file_lockf_type}.
767
768 \begin{table}[htb]
769   \centering
770   \footnotesize
771   \begin{tabular}[c]{|l|p{7cm}|}
772     \hline
773     \textbf{Valore} & \textbf{Significato} \\
774     \hline
775     \hline
776     \const{LOCK\_SH}& Richiede uno \textit{shared lock}. Più processi possono
777                       mantenere un blocco condiviso sullo stesso file.\\
778     \const{LOCK\_EX}& Richiede un \textit{exclusive lock}. Un solo processo
779                       alla volta può mantenere un blocco esclusivo su un file.\\
780     \const{LOCK\_UN}& Sblocca il file.\\
781     \const{LOCK\_NB}& Non blocca la funzione quando il blocco non è disponibile,
782                       si specifica sempre insieme ad una delle altre operazioni
783                       con un OR aritmetico dei valori.\\ 
784     \hline    
785   \end{tabular}
786   \caption{Valori possibili per l'argomento \param{cmd} di \func{lockf}.}
787   \label{tab:file_lockf_type}
788 \end{table}
789
790 Qualora il blocco non possa essere acquisito, a meno di non aver specificato
791 \const{LOCK\_NB}, la funzione si blocca fino alla disponibilità dello stesso.
792 Dato che la funzione è implementata utilizzando \func{fcntl} la semantica
793 delle operazioni è la stessa di quest'ultima (pertanto la funzione non è
794 affatto equivalente a \func{flock}).
795
796
797
798 \subsection{Il \textit{mandatory locking}}
799 \label{sec:file_mand_locking}
800
801 \itindbeg{mandatory~locking|(}
802
803 Il \textit{mandatory locking} è una opzione introdotta inizialmente in SVr4,
804 per introdurre un \textit{file locking} che, come dice il nome, fosse
805 effettivo indipendentemente dai controlli eseguiti da un processo. Con il
806 \textit{mandatory locking} infatti è possibile far eseguire il blocco del file
807 direttamente al sistema, così che, anche qualora non si predisponessero le
808 opportune verifiche nei processi, questo verrebbe comunque rispettato.
809
810 Per poter utilizzare il \textit{mandatory locking} è stato introdotto un
811 utilizzo particolare del bit \itindex{sgid~bit} \acr{sgid}. Se si ricorda
812 quanto esposto in sez.~\ref{sec:file_special_perm}), esso viene di norma
813 utilizzato per cambiare il group-ID effettivo con cui viene eseguito un
814 programma, ed è pertanto sempre associato alla presenza del permesso di
815 esecuzione per il gruppo. Impostando questo bit su un file senza permesso di
816 esecuzione in un sistema che supporta il \textit{mandatory locking}, fa sì che
817 quest'ultimo venga attivato per il file in questione. In questo modo una
818 combinazione dei permessi originariamente non contemplata, in quanto senza
819 significato, diventa l'indicazione della presenza o meno del \textit{mandatory
820   locking}.\footnote{un lettore attento potrebbe ricordare quanto detto in
821   sez.~\ref{sec:file_perm_management} e cioè che il bit \acr{sgid} viene
822   cancellato (come misura di sicurezza) quando di scrive su un file, questo
823   non vale quando esso viene utilizzato per attivare il \textit{mandatory
824     locking}.}
825
826 L'uso del \textit{mandatory locking} presenta vari aspetti delicati, dato che
827 neanche l'amministratore può passare sopra ad un \textit{file lock}; pertanto
828 un processo che blocchi un file cruciale può renderlo completamente
829 inaccessibile, rendendo completamente inutilizzabile il sistema\footnote{il
830   problema si potrebbe risolvere rimuovendo il bit \itindex{sgid~bit}
831   \acr{sgid}, ma non è detto che sia così facile fare questa operazione con un
832   sistema bloccato.}  inoltre con il \textit{mandatory locking} si può
833 bloccare completamente un server NFS richiedendo una lettura su un file su cui
834 è attivo un blocco. Per questo motivo l'abilitazione del \textit{mandatory
835   locking} è di norma disabilitata, e deve essere attivata filesystem per
836 filesystem in fase di montaggio (specificando l'apposita opzione di
837 \func{mount} riportata in tab.~\ref{tab:sys_mount_flags}, o con l'opzione
838 \code{-o mand} per il comando omonimo).
839
840 Si tenga presente inoltre che il \textit{mandatory locking} funziona solo
841 sull'interfaccia POSIX di \func{fcntl}. Questo ha due conseguenze: che non si
842 ha nessun effetto sui \textit{file lock} richiesti con l'interfaccia di
843 \func{flock}, e che la granularità del blocco è quella del singolo byte, come
844 per \func{fcntl}.
845
846 La sintassi di acquisizione dei blocchi è esattamente la stessa vista in
847 precedenza per \func{fcntl} e \func{lockf}, la differenza è che in caso di
848 \textit{mandatory lock} attivato non è più necessario controllare la
849 disponibilità di accesso al file, ma si potranno usare direttamente le
850 ordinarie funzioni di lettura e scrittura e sarà compito del kernel gestire
851 direttamente il \textit{file locking}.
852
853 Questo significa che in caso di \textit{read lock} la lettura dal file potrà
854 avvenire normalmente con \func{read}, mentre una \func{write} si bloccherà
855 fino al rilascio del blocco, a meno di non aver aperto il file con
856 \const{O\_NONBLOCK}, nel qual caso essa ritornerà immediatamente con un errore
857 di \errcode{EAGAIN}.
858
859 Se invece si è acquisito un \textit{write lock} tutti i tentativi di leggere o
860 scrivere sulla regione del file bloccata fermeranno il processo fino al
861 rilascio del blocco, a meno che il file non sia stato aperto con
862 \const{O\_NONBLOCK}, nel qual caso di nuovo si otterrà un ritorno immediato
863 con l'errore di \errcode{EAGAIN}.
864
865 Infine occorre ricordare che le funzioni di lettura e scrittura non sono le
866 sole ad operare sui contenuti di un file, e che sia \func{creat} che
867 \func{open} (quando chiamata con \const{O\_TRUNC}) effettuano dei cambiamenti,
868 così come \func{truncate}, riducendone le dimensioni (a zero nei primi due
869 casi, a quanto specificato nel secondo). Queste operazioni sono assimilate a
870 degli accessi in scrittura e pertanto non potranno essere eseguite (fallendo
871 con un errore di \errcode{EAGAIN}) su un file su cui sia presente un qualunque
872 blocco (le prime due sempre, la terza solo nel caso che la riduzione delle
873 dimensioni del file vada a sovrapporsi ad una regione bloccata).
874
875 L'ultimo aspetto della interazione del \textit{mandatory locking} con le
876 funzioni di accesso ai file è quello relativo ai file mappati in memoria (che
877 abbiamo trattato in sez.~\ref{sec:file_memory_map}); anche in tal caso
878 infatti, quando si esegue la mappatura con l'opzione \const{MAP\_SHARED}, si
879 ha un accesso al contenuto del file. Lo standard SVID prevede che sia
880 impossibile eseguire il memory mapping di un file su cui sono presenti dei
881 blocchi\footnote{alcuni sistemi, come HP-UX, sono ancora più restrittivi e lo
882   impediscono anche in caso di \textit{advisory locking}, anche se questo
883   comportamento non ha molto senso, dato che comunque qualunque accesso
884   diretto al file è consentito.} in Linux è stata però fatta la scelta
885 implementativa\footnote{per i dettagli si possono leggere le note relative
886   all'implementazione, mantenute insieme ai sorgenti del kernel nel file
887   \file{Documentation/mandatory.txt}.}  di seguire questo comportamento
888 soltanto quando si chiama \func{mmap} con l'opzione \const{MAP\_SHARED} (nel
889 qual caso la funzione fallisce con il solito \errcode{EAGAIN}) che comporta la
890 possibilità di modificare il file.
891
892 \index{file!locking|)}
893
894 \itindend{mandatory~locking|(}
895
896
897 \section{L'\textit{I/O multiplexing}}
898 \label{sec:file_multiplexing}
899
900
901 Uno dei problemi che si presentano quando si deve operare contemporaneamente
902 su molti file usando le funzioni illustrate in
903 cap.~\ref{cha:file_unix_interface} e cap.~\ref{cha:files_std_interface} è che
904 si può essere bloccati nelle operazioni su un file mentre un altro potrebbe
905 essere disponibile. L'\textit{I/O multiplexing} nasce risposta a questo
906 problema. In questa sezione forniremo una introduzione a questa problematica
907 ed analizzeremo le varie funzioni usate per implementare questa modalità di
908 I/O.
909
910
911 \subsection{La problematica dell'\textit{I/O multiplexing}}
912 \label{sec:file_noblocking}
913
914 Abbiamo visto in sez.~\ref{sec:sig_gen_beha}, affrontando la suddivisione fra
915 \textit{fast} e \textit{slow} system call,\index{system~call~lente} che in
916 certi casi le funzioni di I/O possono bloccarsi indefinitamente.\footnote{si
917   ricordi però che questo può accadere solo per le pipe, i socket ed alcuni
918   file di dispositivo\index{file!di~dispositivo}; sui file normali le funzioni
919   di lettura e scrittura ritornano sempre subito.}  Ad esempio le operazioni
920 di lettura possono bloccarsi quando non ci sono dati disponibili sul
921 descrittore su cui si sta operando.
922
923 Questo comportamento causa uno dei problemi più comuni che ci si trova ad
924 affrontare nelle operazioni di I/O, che si verifica quando si deve operare con
925 più file descriptor eseguendo funzioni che possono bloccarsi senza che sia
926 possibile prevedere quando questo può avvenire (il caso più classico è quello
927 di un server in attesa di dati in ingresso da vari client). Quello che può
928 accadere è di restare bloccati nell'eseguire una operazione su un file
929 descriptor che non è ``\textsl{pronto}'', quando ce ne potrebbe essere un
930 altro disponibile. Questo comporta nel migliore dei casi una operazione
931 ritardata inutilmente nell'attesa del completamento di quella bloccata, mentre
932 nel peggiore dei casi (quando la conclusione della operazione bloccata dipende
933 da quanto si otterrebbe dal file descriptor ``\textsl{disponibile}'') si
934 potrebbe addirittura arrivare ad un \itindex{deadlock} \textit{deadlock}.
935
936 Abbiamo già accennato in sez.~\ref{sec:file_open} che è possibile prevenire
937 questo tipo di comportamento delle funzioni di I/O aprendo un file in
938 \textsl{modalità non-bloccante}, attraverso l'uso del flag \const{O\_NONBLOCK}
939 nella chiamata di \func{open}. In questo caso le funzioni di input/output
940 eseguite sul file che si sarebbero bloccate, ritornano immediatamente,
941 restituendo l'errore \errcode{EAGAIN}.  L'utilizzo di questa modalità di I/O
942 permette di risolvere il problema controllando a turno i vari file descriptor,
943 in un ciclo in cui si ripete l'accesso fintanto che esso non viene garantito.
944 Ovviamente questa tecnica, detta \itindex{polling} \textit{polling}, è
945 estremamente inefficiente: si tiene costantemente impiegata la CPU solo per
946 eseguire in continuazione delle system call che nella gran parte dei casi
947 falliranno.
948
949 Per superare questo problema è stato introdotto il concetto di \textit{I/O
950   multiplexing}, una nuova modalità di operazioni che consente di tenere sotto
951 controllo più file descriptor in contemporanea, permettendo di bloccare un
952 processo quando le operazioni volute non sono possibili, e di riprenderne
953 l'esecuzione una volta che almeno una di quelle richieste sia effettuabile, in
954 modo da poterla eseguire con la sicurezza di non restare bloccati.
955
956 Dato che, come abbiamo già accennato, per i normali file su disco non si ha
957 mai un accesso bloccante, l'uso più comune delle funzioni che esamineremo nei
958 prossimi paragrafi è per i server di rete, in cui esse vengono utilizzate per
959 tenere sotto controllo dei socket; pertanto ritorneremo su di esse con
960 ulteriori dettagli e qualche esempio di utilizzo concreto in
961 sez.~\ref{sec:TCP_sock_multiplexing}.
962
963
964 \subsection{Le funzioni \func{select} e \func{pselect}}
965 \label{sec:file_select}
966
967 Il primo kernel unix-like ad introdurre una interfaccia per l'\textit{I/O
968   multiplexing} è stato BSD,\footnote{la funzione \func{select} è apparsa in
969   BSD4.2 e standardizzata in BSD4.4, ma è stata portata su tutti i sistemi che
970   supportano i socket, compreso le varianti di System V.}  con la funzione
971 \funcd{select}, il cui prototipo è:
972 \begin{functions}
973   \headdecl{sys/time.h}
974   \headdecl{sys/types.h}
975   \headdecl{unistd.h}
976   \funcdecl{int select(int ndfs, fd\_set *readfds, fd\_set *writefds, fd\_set
977     *exceptfds, struct timeval *timeout)}
978   
979   Attende che uno dei file descriptor degli insiemi specificati diventi
980   attivo.
981   
982   \bodydesc{La funzione in caso di successo restituisce il numero di file
983     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
984     caso \var{errno} assumerà uno dei valori:
985   \begin{errlist}
986   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
987     degli insiemi.
988   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
989   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
990     o un valore non valido per \param{timeout}.
991   \end{errlist}
992   ed inoltre \errval{ENOMEM}.
993 }
994 \end{functions}
995
996 La funzione mette il processo in stato di \textit{sleep} (vedi
997 tab.~\ref{tab:proc_proc_states}) fintanto che almeno uno dei file descriptor
998 degli insiemi specificati (\param{readfds}, \param{writefds} e
999 \param{exceptfds}), non diventa attivo, per un tempo massimo specificato da
1000 \param{timeout}.
1001
1002 \itindbeg{file~descriptor~set} 
1003
1004 Per specificare quali file descriptor si intende selezionare la funzione usa
1005 un particolare oggetto, il \textit{file descriptor set}, identificato dal tipo
1006 \type{fd\_set}, che serve ad identificare un insieme di file descriptor, in
1007 maniera analoga a come un \itindex{signal~set} \textit{signal set} (vedi
1008 sez.~\ref{sec:sig_sigset}) identifica un insieme di segnali. Per la
1009 manipolazione di questi \textit{file descriptor set} si possono usare delle
1010 opportune macro di preprocessore:
1011 \begin{functions}
1012   \headdecl{sys/time.h}
1013   \headdecl{sys/types.h}
1014   \headdecl{unistd.h}
1015   \funcdecl{void \macro{FD\_ZERO}(fd\_set *set)}
1016   Inizializza l'insieme (vuoto).
1017
1018   \funcdecl{void \macro{FD\_SET}(int fd, fd\_set *set)}
1019   Inserisce il file descriptor \param{fd} nell'insieme.
1020
1021   \funcdecl{void \macro{FD\_CLR}(int fd, fd\_set *set)}
1022   Rimuove il file descriptor \param{fd} dall'insieme.
1023   
1024   \funcdecl{int \macro{FD\_ISSET}(int fd, fd\_set *set)}
1025   Controlla se il file descriptor \param{fd} è nell'insieme.
1026 \end{functions}
1027
1028 In genere un \textit{file descriptor set} può contenere fino ad un massimo di
1029 \const{FD\_SETSIZE} file descriptor.  Questo valore in origine corrispondeva
1030 al limite per il numero massimo di file aperti\footnote{ad esempio in Linux,
1031   fino alla serie 2.0.x, c'era un limite di 256 file per processo.}, ma da
1032 quando, come nelle versioni più recenti del kernel, questo limite è stato
1033 rimosso, esso indica le dimensioni massime dei numeri usati nei \textit{file
1034   descriptor set}.\footnote{il suo valore, secondo lo standard POSIX
1035   1003.1-2001, è definito in \file{sys/select.h}, ed è pari a 1024.} 
1036
1037 Si tenga presente che i \textit{file descriptor set} devono sempre essere
1038 inizializzati con \macro{FD\_ZERO}; passare a \func{select} un valore non
1039 inizializzato può dar luogo a comportamenti non prevedibili; allo stesso modo
1040 usare \macro{FD\_SET} o \macro{FD\_CLR} con un file descriptor il cui valore
1041 eccede \const{FD\_SETSIZE} può dare luogo ad un comportamento indefinito.
1042
1043 La funzione richiede di specificare tre insiemi distinti di file descriptor;
1044 il primo, \param{readfds}, verrà osservato per rilevare la disponibilità di
1045 effettuare una lettura,\footnote{per essere precisi la funzione ritornerà in
1046   tutti i casi in cui la successiva esecuzione di \func{read} risulti non
1047   bloccante, quindi anche in caso di \textit{end-of-file}; inoltre con Linux
1048   possono verificarsi casi particolari, ad esempio quando arrivano dati su un
1049   socket dalla rete che poi risultano corrotti e vengono scartati, può
1050   accadere che \func{select} riporti il relativo file descriptor come
1051   leggibile, ma una successiva \func{read} si blocchi.} il secondo,
1052 \param{writefds}, per verificare la possibilità di effettuare una scrittura ed
1053 il terzo, \param{exceptfds}, per verificare l'esistenza di eccezioni (come i
1054 dati urgenti \itindex{out-of-band} su un socket, vedi
1055 sez.~\ref{sec:TCP_urgent_data}).
1056
1057 Dato che in genere non si tengono mai sotto controllo fino a
1058 \const{FD\_SETSIZE} file contemporaneamente la funzione richiede di
1059 specificare qual è il valore più alto fra i file descriptor indicati nei tre
1060 insiemi precedenti. Questo viene fatto per efficienza, per evitare di passare
1061 e far controllare al kernel una quantità di memoria superiore a quella
1062 necessaria. Questo limite viene indicato tramite l'argomento \param{ndfs}, che
1063 deve corrispondere al valore massimo aumentato di uno.\footnote{si ricordi che
1064   i file descriptor sono numerati progressivamente a partire da zero, ed il
1065   valore indica il numero più alto fra quelli da tenere sotto controllo;
1066   dimenticarsi di aumentare di uno il valore di \param{ndfs} è un errore
1067   comune.}  
1068
1069 Infine l'argomento \param{timeout}, espresso con una struttura di tipo
1070 \struct{timeval} (vedi fig.~\ref{fig:sys_timeval_struct}) specifica un tempo
1071 massimo di attesa prima che la funzione ritorni; se impostato a \val{NULL} la
1072 funzione attende indefinitamente. Si può specificare anche un tempo nullo
1073 (cioè una struttura \struct{timeval} con i campi impostati a zero), qualora si
1074 voglia semplicemente controllare lo stato corrente dei file descriptor.
1075
1076 La funzione restituisce il numero di file descriptor pronti,\footnote{questo è
1077   il comportamento previsto dallo standard, ma la standardizzazione della
1078   funzione è recente, ed esistono ancora alcune versioni di Unix che non si
1079   comportano in questo modo.}  e ciascun insieme viene sovrascritto per
1080 indicare quali sono i file descriptor pronti per le operazioni ad esso
1081 relative, in modo da poterli controllare con \macro{FD\_ISSET}.  Se invece si
1082 ha un timeout viene restituito un valore nullo e gli insiemi non vengono
1083 modificati.  In caso di errore la funzione restituisce -1, ed i valori dei tre
1084 insiemi sono indefiniti e non si può fare nessun affidamento sul loro
1085 contenuto.
1086
1087 \itindend{file~descriptor~set}
1088
1089 Una volta ritornata la funzione si potrà controllare quali sono i file
1090 descriptor pronti ed operare su di essi, si tenga presente però che si tratta
1091 solo di un suggerimento, esistono infatti condizioni\footnote{ad esempio
1092   quando su un socket arrivano dei dati che poi vengono scartati perché
1093   corrotti.} in cui \func{select} può riportare in maniera spuria che un file
1094 descriptor è pronto in lettura, quando una successiva lettura si bloccherebbe.
1095 Per questo quando si usa \textit{I/O multiplexing} è sempre raccomandato l'uso
1096 delle funzioni di lettura e scrittura in modalità non bloccante.
1097
1098 In Linux \func{select} modifica anche il valore di \param{timeout},
1099 impostandolo al tempo restante, quando la funzione viene interrotta da un
1100 segnale. In tal caso infatti si ha un errore di \errcode{EINTR}, ed occorre
1101 rilanciare la funzione; in questo modo non è necessario ricalcolare tutte le
1102 volte il tempo rimanente. Questo può causare problemi di portabilità sia
1103 quando si usa codice scritto su Linux che legge questo valore, sia quando si
1104 usano programmi scritti per altri sistemi che non dispongono di questa
1105 caratteristica e ricalcolano \param{timeout} tutte le volte.\footnote{in
1106   genere questa caratteristica è disponibile nei sistemi che derivano da
1107   System V e non è disponibile per quelli che derivano da BSD; lo standard
1108   POSIX.1-2001 non permette questo comportamento.}
1109
1110 Uno dei problemi che si presentano con l'uso di \func{select} è che il suo
1111 comportamento dipende dal valore del file descriptor che si vuole tenere sotto
1112 controllo.  Infatti il kernel riceve con \param{ndfs} un limite massimo per
1113 tale valore, e per capire quali sono i file descriptor da tenere sotto
1114 controllo dovrà effettuare una scansione su tutto l'intervallo, che può anche
1115 essere molto ampio anche se i file descriptor sono solo poche unità; tutto ciò
1116 ha ovviamente delle conseguenze ampiamente negative per le prestazioni.
1117
1118 Inoltre c'è anche il problema che il numero massimo dei file che si possono
1119 tenere sotto controllo, la funzione è nata quando il kernel consentiva un
1120 numero massimo di 1024 file descriptor per processo, adesso che il numero può
1121 essere arbitrario si viene a creare una dipendenza del tutto artificiale dalle
1122 dimensioni della struttura \type{fd\_set}, che può necessitare di essere
1123 estesa, con ulteriori perdite di prestazioni. 
1124
1125 Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
1126   multiplexing}, introdotto solo con le ultime revisioni dello standard (POSIX
1127 1003.1g-2000 e POSIX 1003.1-2001). La scelta è stata quella di seguire
1128 l'interfaccia creata da BSD, ma prevede che tutte le funzioni ad esso relative
1129 vengano dichiarate nell'header \file{sys/select.h}, che sostituisce i
1130 precedenti, ed inoltre aggiunge a \func{select} una nuova funzione
1131 \funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
1132   l'header \file{sys/select.h}, compaiono in Linux a partire dalle \acr{glibc}
1133   2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header, le
1134   \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
1135   senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
1136   \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
1137   \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
1138   maggiore di 600.} il cui prototipo è:
1139 \begin{prototype}{sys/select.h}
1140   {int pselect(int n, fd\_set *readfds, fd\_set *writefds, fd\_set *exceptfds,
1141     struct timespec *timeout, sigset\_t *sigmask)}
1142   
1143   Attende che uno dei file descriptor degli insiemi specificati diventi
1144   attivo.
1145   
1146   \bodydesc{La funzione in caso di successo restituisce il numero di file
1147     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
1148     caso \var{errno} assumerà uno dei valori:
1149   \begin{errlist}
1150   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1151     degli insiemi.
1152   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1153   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
1154     o un valore non valido per \param{timeout}.
1155   \end{errlist}
1156   ed inoltre \errval{ENOMEM}.}
1157 \end{prototype}
1158
1159 La funzione è sostanzialmente identica a \func{select}, solo che usa una
1160 struttura \struct{timespec} (vedi fig.~\ref{fig:sys_timespec_struct}) per
1161 indicare con maggiore precisione il timeout e non ne aggiorna il valore in
1162 caso di interruzione.\footnote{in realtà la system call di Linux aggiorna il
1163   valore al tempo rimanente, ma la funzione fornita dalle \acr{glibc} modifica
1164   questo comportamento passando alla system call una variabile locale, in modo
1165   da mantenere l'aderenza allo standard POSIX che richiede che il valore di
1166   \param{timeout} non sia modificato.} Inoltre prende un argomento aggiuntivo
1167 \param{sigmask} che è il puntatore ad una maschera di segnali (si veda
1168 sez.~\ref{sec:sig_sigmask}).  La maschera corrente viene sostituita da questa
1169 immediatamente prima di eseguire l'attesa, e ripristinata al ritorno della
1170 funzione.
1171
1172 L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
1173 \textit{race condition} \itindex{race~condition} quando ci si deve porre in
1174 attesa sia di un segnale che di dati. La tecnica classica è quella di
1175 utilizzare il gestore per impostare una variabile globale e controllare questa
1176 nel corpo principale del programma; abbiamo visto in
1177 sez.~\ref{sec:sig_example} come questo lasci spazio a possibili race
1178 condition, per cui diventa essenziale utilizzare \func{sigprocmask} per
1179 disabilitare la ricezione del segnale prima di eseguire il controllo e
1180 riabilitarlo dopo l'esecuzione delle relative operazioni, onde evitare
1181 l'arrivo di un segnale immediatamente dopo il controllo, che andrebbe perso.
1182
1183 Nel nostro caso il problema si pone quando oltre al segnale si devono tenere
1184 sotto controllo anche dei file descriptor con \func{select}, in questo caso si
1185 può fare conto sul fatto che all'arrivo di un segnale essa verrebbe interrotta
1186 e si potrebbero eseguire di conseguenza le operazioni relative al segnale e
1187 alla gestione dati con un ciclo del tipo:
1188 \includecodesnip{listati/select_race.c} 
1189 qui però emerge una \itindex{race~condition} \textit{race condition}, perché
1190 se il segnale arriva prima della chiamata a \func{select}, questa non verrà
1191 interrotta, e la ricezione del segnale non sarà rilevata.
1192
1193 Per questo è stata introdotta \func{pselect} che attraverso l'argomento
1194 \param{sigmask} permette di riabilitare la ricezione il segnale
1195 contestualmente all'esecuzione della funzione,\footnote{in Linux però, fino al
1196   kernel 2.6.16, non era presente la relativa system call, e la funzione era
1197   implementata nelle \acr{glibc} attraverso \func{select} (vedi \texttt{man
1198     select\_tut}) per cui la possibilità di \itindex{race~condition}
1199   \textit{race condition} permaneva; in tale situazione si può ricorrere ad una
1200   soluzione alternativa, chiamata \itindex{self-pipe trick} \textit{self-pipe
1201     trick}, che consiste nell'aprire una pipe (vedi sez.~\ref{sec:ipc_pipes})
1202   ed usare \func{select} sul capo in lettura della stessa; si può indicare
1203   l'arrivo di un segnale scrivendo sul capo in scrittura all'interno del
1204   gestore dello stesso; in questo modo anche se il segnale va perso prima
1205   della chiamata di \func{select} questa lo riconoscerà comunque dalla
1206   presenza di dati sulla pipe.} ribloccandolo non appena essa ritorna, così
1207 che il precedente codice potrebbe essere riscritto nel seguente modo:
1208 \includecodesnip{listati/pselect_norace.c} 
1209 in questo caso utilizzando \var{oldmask} durante l'esecuzione di
1210 \func{pselect} la ricezione del segnale sarà abilitata, ed in caso di
1211 interruzione si potranno eseguire le relative operazioni.
1212
1213
1214 \subsection{Le funzioni \func{poll} e \func{ppoll}}
1215 \label{sec:file_poll}
1216
1217 Nello sviluppo di System V, invece di utilizzare l'interfaccia di
1218 \func{select}, che è una estensione tipica di BSD, è stata introdotta un'altra
1219 interfaccia, basata sulla funzione \funcd{poll},\footnote{la funzione è
1220   prevista dallo standard XPG4, ed è stata introdotta in Linux come system
1221   call a partire dal kernel 2.1.23 ed inserita nelle \acr{libc} 5.4.28.} il
1222 cui prototipo è:
1223 \begin{prototype}{sys/poll.h}
1224   {int poll(struct pollfd *ufds, unsigned int nfds, int timeout)}
1225   
1226   La funzione attende un cambiamento di stato su un insieme di file
1227   descriptor.
1228   
1229   \bodydesc{La funzione restituisce il numero di file descriptor con attività
1230     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
1231     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
1232   \begin{errlist}
1233   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1234     degli insiemi.
1235   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1236   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1237     \macro{RLIMIT\_NOFILE}.
1238   \end{errlist}
1239   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
1240 \end{prototype}
1241
1242 La funzione permette di tenere sotto controllo contemporaneamente \param{ndfs}
1243 file descriptor, specificati attraverso il puntatore \param{ufds} ad un
1244 vettore di strutture \struct{pollfd}.  Come con \func{select} si può
1245 interrompere l'attesa dopo un certo tempo, questo deve essere specificato con
1246 l'argomento \param{timeout} in numero di millisecondi: un valore negativo
1247 indica un'attesa indefinita, mentre un valore nullo comporta il ritorno
1248 immediato (e può essere utilizzato per impiegare \func{poll} in modalità
1249 \textsl{non-bloccante}).
1250
1251 Per ciascun file da controllare deve essere inizializzata una struttura
1252 \struct{pollfd} nel vettore indicato dall'argomento \param{ufds}.  La
1253 struttura, la cui definizione è riportata in fig.~\ref{fig:file_pollfd},
1254 prevede tre campi: in \var{fd} deve essere indicato il numero del file
1255 descriptor da controllare, in \var{events} deve essere specificata una
1256 maschera binaria di flag che indichino il tipo di evento che si vuole
1257 controllare, mentre in \var{revents} il kernel restituirà il relativo
1258 risultato.  Usando un valore negativo per \param{fd} la corrispondente
1259 struttura sarà ignorata da \func{poll}. Dato che i dati in ingresso sono del
1260 tutto indipendenti da quelli in uscita (che vengono restituiti in
1261 \var{revents}) non è necessario reinizializzare tutte le volte il valore delle
1262 strutture \struct{pollfd} a meno di non voler cambiare qualche condizione.
1263
1264 \begin{figure}[!htb]
1265   \footnotesize \centering
1266   \begin{minipage}[c]{15cm}
1267     \includestruct{listati/pollfd.h}
1268   \end{minipage} 
1269   \normalsize 
1270   \caption{La struttura \structd{pollfd}, utilizzata per specificare le
1271     modalità di controllo di un file descriptor alla funzione \func{poll}.}
1272   \label{fig:file_pollfd}
1273 \end{figure}
1274
1275 Le costanti che definiscono i valori relativi ai bit usati nelle maschere
1276 binarie dei campi \var{events} e \var{revents} sono riportati in
1277 tab.~\ref{tab:file_pollfd_flags}, insieme al loro significato. Le si sono
1278 suddivise in tre gruppi, nel primo gruppo si sono indicati i bit utilizzati
1279 per controllare l'attività in ingresso, nel secondo quelli per l'attività in
1280 uscita, mentre il terzo gruppo contiene dei valori che vengono utilizzati solo
1281 nel campo \var{revents} per notificare delle condizioni di errore. 
1282
1283 \begin{table}[htb]
1284   \centering
1285   \footnotesize
1286   \begin{tabular}[c]{|l|l|}
1287     \hline
1288     \textbf{Flag}  & \textbf{Significato} \\
1289     \hline
1290     \hline
1291     \const{POLLIN}    & È possibile la lettura.\\
1292     \const{POLLRDNORM}& Sono disponibili in lettura dati normali.\\ 
1293     \const{POLLRDBAND}& Sono disponibili in lettura dati prioritari.\\
1294     \const{POLLPRI}   & È possibile la lettura di \itindex{out-of-band} dati
1295                         urgenti.\\ 
1296     \hline
1297     \const{POLLOUT}   & È possibile la scrittura immediata.\\
1298     \const{POLLWRNORM}& È possibile la scrittura di dati normali.\\ 
1299     \const{POLLWRBAND}& È possibile la scrittura di dati prioritari.\\
1300     \hline
1301     \const{POLLERR}   & C'è una condizione di errore.\\
1302     \const{POLLHUP}   & Si è verificato un hung-up.\\
1303     \const{POLLRDHUP} & Si è avuta una \textsl{half-close} su un
1304                         socket.\footnotemark\\ 
1305     \const{POLLNVAL}  & Il file descriptor non è aperto.\\
1306     \hline
1307     \const{POLLMSG}   & Definito per compatibilità con SysV.\\
1308     \hline    
1309   \end{tabular}
1310   \caption{Costanti per l'identificazione dei vari bit dei campi
1311     \var{events} e \var{revents} di \struct{pollfd}.}
1312   \label{tab:file_pollfd_flags}
1313 \end{table}
1314
1315 \footnotetext{si tratta di una estensione specifica di Linux, disponibile a
1316   partire dal kernel 2.6.17 definendo la marco \macro{\_GNU\_SOURCE}, che
1317   consente di riconoscere la chiusura in scrittura dell'altro capo di un
1318   socket, situazione che si viene chiamata appunto \itindex{half-close}
1319   \textit{half-close} (\textsl{mezza chiusura}) su cui torneremo con maggiori
1320   dettagli in sez.~\ref{sec:TCP_shutdown}.}
1321
1322 Il valore \const{POLLMSG} non viene utilizzato ed è definito solo per
1323 compatibilità con l'implementazione di SysV che usa gli
1324 \textit{stream};\footnote{essi sono una interfaccia specifica di SysV non
1325   presente in Linux, e non hanno nulla a che fare con i file \textit{stream}
1326   delle librerie standard del C.} è da questi che derivano i nomi di alcune
1327 costanti, in quanto per essi sono definite tre classi di dati:
1328 \textsl{normali}, \textit{prioritari} ed \textit{urgenti}.  In Linux la
1329 distinzione ha senso solo per i dati urgenti \itindex{out-of-band} dei socket
1330 (vedi sez.~\ref{sec:TCP_urgent_data}), ma su questo e su come \func{poll}
1331 reagisce alle varie condizioni dei socket torneremo in
1332 sez.~\ref{sec:TCP_serv_poll}, dove vedremo anche un esempio del suo utilizzo.
1333
1334 Si tenga conto comunque che le costanti relative ai diversi tipi di dati
1335 normali e prioritari, vale a dire \const{POLLRDNORM}, \const{POLLWRNORM},
1336 \const{POLLRDBAND} e \const{POLLWRBAND} fanno riferimento alle implementazioni
1337 in stile SysV (in particolare le ultime due non vengono usate su Linux), e
1338 sono utilizzabili soltanto qualora si sia definita la macro
1339 \macro{\_XOPEN\_SOURCE}.\footnote{e ci si ricordi di farlo sempre in testa al
1340   file, definirla soltanto prima di includere \file{sys/poll.h} non è
1341   sufficiente.}
1342
1343 In caso di successo funzione ritorna restituendo il numero di file (un valore
1344 positivo) per i quali si è verificata una delle condizioni di attesa richieste
1345 o per i quali si è verificato un errore, nel qual caso vengono utilizzati i
1346 valori di tab.~\ref{tab:file_pollfd_flags} esclusivi di \var{revents}. Un
1347 valore nullo indica che si è raggiunto il timeout, mentre un valore negativo
1348 indica un errore nella chiamata, il cui codice viene riportato al solito
1349 tramite \var{errno}.
1350
1351 L'uso di \func{poll} consente di superare alcuni dei problemi illustrati in
1352 precedenza per \func{select}; anzitutto, dato che in questo caso si usa un
1353 vettore di strutture \struct{pollfd} di dimensione arbitraria, non esiste il
1354 limite introdotto dalle dimensioni massime di un \itindex{file~descriptor~set}
1355 \textit{file descriptor set} e la dimensione dei dati passati al kernel
1356 dipende solo dal numero dei file descriptor che si vogliono controllare, non
1357 dal loro valore.\footnote{anche se usando dei bit un \textit{file descriptor
1358     set} può essere più efficiente di un vettore di strutture \struct{pollfd},
1359   qualora si debba osservare un solo file descriptor con un valore molto alto
1360   ci si troverà ad utilizzare inutilmente un maggiore quantitativo di
1361   memoria.}
1362
1363 Inoltre con \func{select} lo stesso \itindex{file~descriptor~set} \textit{file
1364   descriptor set} è usato sia in ingresso che in uscita, e questo significa
1365 che tutte le volte che si vuole ripetere l'operazione occorre reinizializzarlo
1366 da capo. Questa operazione, che può essere molto onerosa se i file descriptor
1367 da tenere sotto osservazione sono molti, non è invece necessaria con
1368 \func{poll}.
1369
1370 Abbiamo visto in sez.~\ref{sec:file_select} come lo standard POSIX preveda una
1371 variante di \func{select} che consente di gestire correttamente la ricezione
1372 dei segnali nell'attesa su un file descriptor.  Con l'introduzione di una
1373 implementazione reale di \func{pselect} nel kernel 2.6.16, è stata aggiunta
1374 anche una analoga funzione che svolga lo stesso ruolo per \func{poll}.
1375
1376 In questo caso si tratta di una estensione che è specifica di Linux e non è
1377 prevista da nessuno standard; essa può essere utilizzata esclusivamente se si
1378 definisce la macro \macro{\_GNU\_SOURCE} ed ovviamente non deve essere usata
1379 se si ha a cuore la portabilità. La funzione è \funcd{ppoll}, ed il suo
1380 prototipo è:
1381 \begin{prototype}{sys/poll.h}
1382   {int ppoll(struct pollfd *fds, nfds\_t nfds, const struct timespec *timeout,
1383     const sigset\_t *sigmask)}
1384   
1385   La funzione attende un cambiamento di stato su un insieme di file
1386   descriptor.
1387   
1388   \bodydesc{La funzione restituisce il numero di file descriptor con attività
1389     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
1390     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
1391   \begin{errlist}
1392   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1393     degli insiemi.
1394   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1395   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1396     \macro{RLIMIT\_NOFILE}.
1397   \end{errlist}
1398   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
1399 \end{prototype}
1400
1401 La funzione ha lo stesso comportamento di \func{poll}, solo che si può
1402 specificare, con l'argomento \param{sigmask}, il puntatore ad una maschera di
1403 segnali; questa sarà la maschera utilizzata per tutto il tempo che la funzione
1404 resterà in attesa, all'uscita viene ripristinata la maschera originale.  L'uso
1405 di questa funzione è cioè equivalente, come illustrato nella pagina di
1406 manuale, all'esecuzione atomica del seguente codice:
1407 \includecodesnip{listati/ppoll_means.c} 
1408
1409 Eccetto per \param{timeout}, che come per \func{pselect} deve essere un
1410 puntatore ad una struttura \struct{timespec}, gli altri argomenti comuni con
1411 \func{poll} hanno lo stesso significato, e la funzione restituisce gli stessi
1412 risultati illustrati in precedenza. Come nel caso di \func{pselect} la system
1413 call che implementa \func{ppoll} restituisce, se la funzione viene interrotta
1414 da un segnale, il tempo mancante in \param{timeout}, e come per \func{pselect}
1415 la funzione di libreria fornita dalle \acr{glibc} maschera questo
1416 comportamento non modificando mai il valore di \param{timeout}.\footnote{anche
1417   se in questo caso non esiste nessuno standard che richiede questo
1418   comportamento.}
1419
1420
1421 \subsection{L'interfaccia di \textit{epoll}}
1422 \label{sec:file_epoll}
1423
1424 \itindbeg{epoll}
1425
1426 Nonostante \func{poll} presenti alcuni vantaggi rispetto a \func{select},
1427 anche questa funzione non è molto efficiente quando deve essere utilizzata con
1428 un gran numero di file descriptor,\footnote{in casi del genere \func{select}
1429   viene scartata a priori, perché può avvenire che il numero di file
1430   descriptor ecceda le dimensioni massime di un \itindex{file~descriptor~set}
1431   \textit{file descriptor set}.} in particolare nel caso in cui solo pochi di
1432 questi diventano attivi. Il problema in questo caso è che il tempo impiegato
1433 da \func{poll} a trasferire i dati da e verso il kernel è proporzionale al
1434 numero di file descriptor osservati, non a quelli che presentano attività.
1435
1436 Quando ci sono decine di migliaia di file descriptor osservati e migliaia di
1437 eventi al secondo,\footnote{il caso classico è quello di un server web di un
1438   sito con molti accessi.} l'uso di \func{poll} comporta la necessità di
1439 trasferire avanti ed indietro da user space a kernel space la lunga lista
1440 delle strutture \struct{pollfd} migliaia di volte al secondo. A questo poi si
1441 aggiunge il fatto che la maggior parte del tempo di esecuzione sarà impegnato
1442 ad eseguire una scansione su tutti i file descriptor tenuti sotto controllo
1443 per determinare quali di essi (in genere una piccola percentuale) sono
1444 diventati attivi. In una situazione come questa l'uso delle funzioni classiche
1445 dell'interfaccia dell'\textit{I/O multiplexing} viene a costituire un collo di
1446 bottiglia che degrada irrimediabilmente le prestazioni.
1447
1448 Per risolvere questo tipo di situazioni sono state ideate delle interfacce
1449 specialistiche\footnote{come \texttt{/dev/poll} in Solaris, o \texttt{kqueue}
1450   in BSD.} il cui scopo fondamentale è quello di restituire solamente le
1451 informazioni relative ai file descriptor osservati che presentano una
1452 attività, evitando così le problematiche appena illustrate. In genere queste
1453 prevedono che si registrino una sola volta i file descriptor da tenere sotto
1454 osservazione, e forniscono un meccanismo che notifica quali di questi
1455 presentano attività.
1456
1457 Le modalità con cui avviene la notifica sono due, la prima è quella classica
1458 (quella usata da \func{poll} e \func{select}) che viene chiamata \textit{level
1459   triggered}.\footnote{la nomenclatura è stata introdotta da Jonathan Lemon in
1460   un articolo su \texttt{kqueue} al BSDCON 2000, e deriva da quella usata
1461   nell'elettronica digitale.} In questa modalità vengono notificati i file
1462 descriptor che sono \textsl{pronti} per l'operazione richiesta, e questo
1463 avviene indipendentemente dalle operazioni che possono essere state fatte su
1464 di essi a partire dalla precedente notifica.  Per chiarire meglio il concetto
1465 ricorriamo ad un esempio: se su un file descriptor sono diventati disponibili
1466 in lettura 2000 byte ma dopo la notifica ne sono letti solo 1000 (ed è quindi
1467 possibile eseguire una ulteriore lettura dei restanti 1000), in modalità
1468 \textit{level triggered} questo sarà nuovamente notificato come
1469 \textsl{pronto}.
1470
1471 La seconda modalità, è detta \textit{edge triggered}, e prevede che invece
1472 vengano notificati solo i file descriptor che hanno subito una transizione da
1473 \textsl{non pronti} a \textsl{pronti}. Questo significa che in modalità
1474 \textit{edge triggered} nel caso del precedente esempio il file descriptor
1475 diventato pronto da cui si sono letti solo 1000 byte non verrà nuovamente
1476 notificato come pronto, nonostante siano ancora disponibili in lettura 1000
1477 byte. Solo una volta che si saranno esauriti tutti i dati disponibili, e che
1478 il file descriptor sia tornato non essere pronto, si potrà ricevere una
1479 ulteriore notifica qualora ritornasse pronto.
1480
1481 Nel caso di Linux al momento la sola interfaccia che fornisce questo tipo di
1482 servizio è \textit{epoll},\footnote{l'interfaccia è stata creata da Davide
1483   Libenzi, ed è stata introdotta per la prima volta nel kernel 2.5.44, ma la
1484   sua forma definitiva è stata raggiunta nel kernel 2.5.66.} anche se sono in
1485 discussione altre interfacce con le quali si potranno effettuare lo stesso
1486 tipo di operazioni;\footnote{al momento della stesura di queste note (Giugno
1487   2007) un'altra interfaccia proposta è quella di \textit{kevent}, che
1488   fornisce un sistema di notifica di eventi generico in grado di fornire le
1489   stesse funzionalità di \textit{epoll}, esiste però una forte discussione
1490   intorno a tutto ciò e niente di definito.}  \textit{epoll} è in grado di
1491 operare sia in modalità \textit{level triggered} che \textit{edge triggered}.
1492
1493 La prima versione \textit{epoll} prevedeva l'apertura di uno speciale file di
1494 dispositivo, \texttt{/dev/epoll}, per ottenere un file descriptor da
1495 utilizzare con le funzioni dell'interfaccia,\footnote{il backporting
1496   dell'interfaccia per il kernel 2.4, non ufficiale, utilizza sempre questo
1497   file.} ma poi si è passati all'uso di apposite \textit{system call}.  Il
1498 primo passo per usare l'interfaccia di \textit{epoll} è pertanto quello
1499 ottenere detto file descriptor chiamando una delle funzioni
1500 \funcd{epoll\_create} e \funcd{epoll\_create1},\footnote{l'interfaccia di
1501   \textit{epoll} è stata inserita nel kernel a partire dalla versione 2.5.44,
1502   ed il supporto è stato aggiunto alle \acr{glibc} 2.3.2.} i cui prototipi
1503 sono:
1504 \begin{functions}
1505   \headdecl{sys/epoll.h}
1506
1507   \funcdecl{int epoll\_create(int size)}
1508   \funcdecl{int epoll\_create1(int flags)}
1509   
1510   Apre un file descriptor per \textit{epoll}.
1511   
1512   \bodydesc{Le funzioni restituiscono un file descriptor per \textit{epoll} in
1513     caso di successo, o $-1$ in caso di errore, nel qual caso \var{errno}
1514     assumerà uno dei valori:
1515   \begin{errlist}
1516   \item[\errcode{EINVAL}] si è specificato un valore di \param{size} non
1517     positivo o non valido per \param{flags}.
1518   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
1519     nel sistema.
1520   \item[\errcode{EMFILE}] si è raggiunto il limite sul numero massimo di
1521     istanze di \textit{epoll} per utente stabilito da
1522     \procfile{/proc/sys/fs/epoll/max\_user\_instances}.
1523   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
1524     l'istanza.
1525   \end{errlist}
1526 }
1527 \end{functions}
1528
1529 Entrambe le funzioni restituiscono un file descriptor speciale,\footnote{esso
1530   non è associato a nessun file su disco, inoltre a differenza dei normali
1531   file descriptor non può essere inviato ad un altro processo attraverso un
1532   socket locale (vedi sez.~\ref{sec:sock_fd_passing}).} detto anche
1533 \textit{epoll descriptor}, che viene associato alla infrastruttura utilizzata
1534 dal kernel per gestire la notifica degli eventi. Nel caso di
1535 \func{epoll\_create} l'argomento \param{size} serviva a dare l'indicazione del
1536 numero di file descriptor che si vorranno tenere sotto controllo, e costituiva
1537 solo un suggerimento per semplificare l'allocazione di risorse sufficienti,
1538 non un valore massimo.\footnote{ma a partire dal kernel 2.6.8 esso viene
1539   totalmente ignorato e l'allocazione è sempre dinamica.}
1540
1541 La seconda versione della funzione, \func{epoll\_create1} è stata
1542 introdotta\footnote{è disponibile solo a partire dal kernel 2.6.27.} come
1543 estensione della precedente, per poter passare dei flag di controllo come
1544 maschera binaria in fase di creazione del file descriptor. Al momento l'unico
1545 valore legale per \param{flags} (a parte lo zero) è \const{EPOLL\_CLOEXEC},
1546 che consente di impostare in maniera atomica sul file descriptor il flag di
1547 \itindex{close-on-exec} \textit{close-on-exec} (si veda il significato di
1548 \const{O\_CLOEXEC} in tab.~\ref{tab:file_open_flags}), senza che sia
1549 necessaria una successiva chiamata a \func{fcntl}.
1550
1551 Una volta ottenuto un file descriptor per \textit{epoll} il passo successivo è
1552 indicare quali file descriptor mettere sotto osservazione e quali operazioni
1553 controllare, per questo si deve usare la seconda funzione dell'interfaccia,
1554 \funcd{epoll\_ctl}, il cui prototipo è:
1555 \begin{prototype}{sys/epoll.h}
1556   {int epoll\_ctl(int epfd, int op, int fd, struct epoll\_event *event)}
1557   
1558   Esegue le operazioni di controllo di \textit{epoll}.
1559   
1560   \bodydesc{La funzione restituisce $0$ in caso di successo o $-1$ in caso di
1561     errore, nel qual caso \var{errno} assumerà uno dei valori:
1562   \begin{errlist}
1563   \item[\errcode{EBADF}] il file descriptor \param{epfd} o \param{fd} non sono
1564     validi.
1565   \item[\errcode{EEXIST}] l'operazione richiesta è \const{EPOLL\_CTL\_ADD} ma
1566     \param{fd} è già stato inserito in \param{epfd}.
1567   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1568     con \func{epoll\_create}, o \param{fd} è lo stesso \param{epfd} o
1569     l'operazione richiesta con \param{op} non è supportata.
1570   \item[\errcode{ENOENT}] l'operazione richiesta è \const{EPOLL\_CTL\_MOD} o
1571     \const{EPOLL\_CTL\_DEL} ma \param{fd} non è inserito in \param{epfd}.
1572   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel gestire
1573     l'operazione richiesta.
1574   \item[\errcode{EPERM}] il file \param{fd} non supporta \textit{epoll}.
1575   \item[\errcode{ENOSPC}] si è raggiunto il limite massimo di registrazioni
1576     per utente di file descriptor da osservere imposto da
1577     \procfile{/proc/sys/fs/epoll/max\_user\_watches}.
1578   \end{errlist}
1579 }
1580 \end{prototype}
1581
1582 Il comportamento della funzione viene controllato dal valore dall'argomento
1583 \param{op} che consente di specificare quale operazione deve essere eseguita.
1584 Le costanti che definiscono i valori utilizzabili per \param{op}
1585 sono riportate in tab.~\ref{tab:epoll_ctl_operation}, assieme al significato
1586 delle operazioni cui fanno riferimento.
1587
1588 \begin{table}[htb]
1589   \centering
1590   \footnotesize
1591   \begin{tabular}[c]{|l|p{8cm}|}
1592     \hline
1593     \textbf{Valore}  & \textbf{Significato} \\
1594     \hline
1595     \hline
1596     \const{EPOLL\_CTL\_ADD}& Aggiunge un nuovo file descriptor da osservare
1597                              \param{fd} alla lista dei file descriptor
1598                              controllati tramite \param{epfd}, in
1599                              \param{event} devono essere specificate le
1600                              modalità di osservazione.\\
1601     \const{EPOLL\_CTL\_MOD}& Modifica le modalità di osservazione del file
1602                              descriptor \param{fd} secondo il contenuto di
1603                              \param{event}.\\
1604     \const{EPOLL\_CTL\_DEL}& Rimuove il file descriptor \param{fd} dalla lista
1605                              dei file controllati tramite \param{epfd}.\\
1606     \hline    
1607   \end{tabular}
1608   \caption{Valori dell'argomento \param{op} che consentono di scegliere quale
1609     operazione di controllo effettuare con la funzione \func{epoll\_ctl}.} 
1610   \label{tab:epoll_ctl_operation}
1611 \end{table}
1612
1613 La funzione prende sempre come primo argomento un file descriptor di
1614 \textit{epoll}, \param{epfd}, che deve essere stato ottenuto in precedenza con
1615 una chiamata a \func{epoll\_create}. L'argomento \param{fd} indica invece il
1616 file descriptor che si vuole tenere sotto controllo, quest'ultimo può essere
1617 un qualunque file descriptor utilizzabile con \func{poll}, ed anche un altro
1618 file descriptor di \textit{epoll}, ma non lo stesso \param{epfd}.
1619
1620 L'ultimo argomento, \param{event}, deve essere un puntatore ad una struttura
1621 di tipo \struct{epoll\_event}, ed ha significato solo con le operazioni
1622 \const{EPOLL\_CTL\_MOD} e \const{EPOLL\_CTL\_ADD}, per le quali serve ad
1623 indicare quale tipo di evento relativo ad \param{fd} si vuole che sia tenuto
1624 sotto controllo.  L'argomento viene ignorato con l'operazione
1625 \const{EPOLL\_CTL\_DEL}.\footnote{fino al kernel 2.6.9 era comunque richiesto
1626   che questo fosse un puntatore valido, anche se poi veniva ignorato; a
1627   partire dal 2.6.9 si può specificare anche un valore \texttt{NULL} ma se si
1628   vuole mantenere la compatibilità con le versioni precedenti occorre usare un
1629   puntatore valido.}
1630
1631 \begin{figure}[!htb]
1632   \footnotesize \centering
1633   \begin{minipage}[c]{15cm}
1634     \includestruct{listati/epoll_event.h}
1635   \end{minipage} 
1636   \normalsize 
1637   \caption{La struttura \structd{epoll\_event}, che consente di specificare
1638     gli eventi associati ad un file descriptor controllato con
1639     \textit{epoll}.}
1640   \label{fig:epoll_event}
1641 \end{figure}
1642
1643 La struttura \struct{epoll\_event} è l'analoga di \struct{pollfd} e come
1644 quest'ultima serve sia in ingresso (quando usata con \func{epoll\_ctl}) ad
1645 impostare quali eventi osservare, che in uscita (nei risultati ottenuti con
1646 \func{epoll\_wait}) per ricevere le notifiche degli eventi avvenuti.  La sua
1647 definizione è riportata in fig.~\ref{fig:epoll_event}. 
1648
1649 Il primo campo, \var{events}, è una maschera binaria in cui ciascun bit
1650 corrisponde o ad un tipo di evento, o una modalità di notifica; detto campo
1651 deve essere specificato come OR aritmetico delle costanti riportate in
1652 tab.~\ref{tab:epoll_events}. Il secondo campo, \var{data}, è una \ctyp{union}
1653 che serve a identificare il file descriptor a cui si intende fare riferimento,
1654 ed in astratto può contenere un valore qualsiasi (specificabile in diverse
1655 forme) che ne permetta una indicazione univoca. Il modo più comune di usarlo
1656 però è quello in cui si specifica il terzo argomento di \func{epoll\_ctl}
1657 nella forma \var{event.data.fd}, assegnando come valore di questo campo lo
1658 stesso valore dell'argomento \param{fd}, cosa che permette una immediata
1659 identificazione del file descriptor.
1660
1661 \begin{table}[htb]
1662   \centering
1663   \footnotesize
1664   \begin{tabular}[c]{|l|p{8cm}|}
1665     \hline
1666     \textbf{Valore}  & \textbf{Significato} \\
1667     \hline
1668     \hline
1669     \const{EPOLLIN}     & Il file è pronto per le operazioni di lettura
1670                           (analogo di \const{POLLIN}).\\
1671     \const{EPOLLOUT}    & Il file è pronto per le operazioni di scrittura
1672                           (analogo di \const{POLLOUT}).\\
1673     \const{EPOLLRDHUP}  & L'altro capo di un socket di tipo
1674                           \const{SOCK\_STREAM} (vedi sez.~\ref{sec:sock_type})
1675                           ha chiuso la connessione o il capo in scrittura
1676                           della stessa (vedi
1677                           sez.~\ref{sec:TCP_shutdown}).\footnotemark\\
1678     \const{EPOLLPRI}    & Ci sono \itindex{out-of-band} dati urgenti
1679                           disponibili in lettura (analogo di
1680                           \const{POLLPRI}); questa condizione viene comunque
1681                           riportata in uscita, e non è necessaria impostarla
1682                           in ingresso.\\ 
1683     \const{EPOLLERR}    & Si è verificata una condizione di errore 
1684                           (analogo di \const{POLLERR}); questa condizione
1685                           viene comunque riportata in uscita, e non è
1686                           necessaria impostarla in ingresso.\\
1687     \const{EPOLLHUP}    & Si è verificata una condizione di hung-up; questa
1688                           condizione viene comunque riportata in uscita, e non
1689                           è necessaria impostarla in ingresso.\\
1690     \const{EPOLLET}     & Imposta la notifica in modalità \textit{edge
1691                             triggered} per il file descriptor associato.\\ 
1692     \const{EPOLLONESHOT}& Imposta la modalità \textit{one-shot} per il file
1693                           descriptor associato.\footnotemark\\
1694     \hline    
1695   \end{tabular}
1696   \caption{Costanti che identificano i bit del campo \param{events} di
1697     \struct{epoll\_event}.}
1698   \label{tab:epoll_events}
1699 \end{table}
1700
1701 \footnotetext{questa modalità è disponibile solo a partire dal kernel 2.6.17,
1702   ed è utile per riconoscere la chiusura di una connessione dall'altro capo
1703   quando si lavora in modalità \textit{edge triggered}.}
1704
1705 \footnotetext[48]{questa modalità è disponibile solo a partire dal kernel
1706   2.6.2.}
1707
1708 Le modalità di utilizzo di \textit{epoll} prevedono che si definisca qual'è
1709 l'insieme dei file descriptor da tenere sotto controllo tramite un certo
1710 \textit{epoll descriptor} \param{epfd} attraverso una serie di chiamate a
1711 \const{EPOLL\_CTL\_ADD}.\footnote{un difetto dell'interfaccia è che queste
1712   chiamate devono essere ripetute per ciascun file descriptor, incorrendo in
1713   una perdita di prestazioni qualora il numero di file descriptor sia molto
1714   grande; per questo è stato proposto di introdurre come estensione una
1715   funzione \func{epoll\_ctlv} che consenta di effettuare con una sola chiamata
1716   le impostazioni per un blocco di file descriptor.} L'uso di
1717 \const{EPOLL\_CTL\_MOD} consente in seguito di modificare le modalità di
1718 osservazione di un file descriptor che sia già stato aggiunto alla lista di
1719 osservazione.
1720
1721 Le impostazioni di default prevedono che la notifica degli eventi richiesti
1722 sia effettuata in modalità \textit{level triggered}, a meno che sul file
1723 descriptor non si sia impostata la modalità \textit{edge triggered},
1724 registrandolo con \const{EPOLLET} attivo nel campo \var{events}.  Si tenga
1725 presente che è possibile tenere sotto osservazione uno stesso file descriptor
1726 su due \textit{epoll descriptor} diversi, ed entrambi riceveranno le
1727 notifiche, anche se questa pratica è sconsigliata.
1728
1729 Qualora non si abbia più interesse nell'osservazione di un file descriptor lo
1730 si può rimuovere dalla lista associata a \param{epfd} con
1731 \const{EPOLL\_CTL\_DEL}; si tenga conto inoltre che i file descriptor sotto
1732 osservazione che vengono chiusi sono eliminati dalla lista automaticamente e
1733 non è necessario usare \const{EPOLL\_CTL\_DEL}.
1734
1735 Infine una particolare modalità di notifica è quella impostata con
1736 \const{EPOLLONESHOT}: a causa dell'implementazione di \textit{epoll} infatti
1737 quando si è in modalità \textit{edge triggered} l'arrivo in rapida successione
1738 di dati in blocchi separati\footnote{questo è tipico con i socket di rete, in
1739   quanto i dati arrivano a pacchetti.} può causare una generazione di eventi
1740 (ad esempio segnalazioni di dati in lettura disponibili) anche se la
1741 condizione è già stata rilevata.\footnote{si avrebbe cioè una rottura della
1742   logica \textit{edge triggered}.} 
1743
1744 Anche se la situazione è facile da gestire, la si può evitare utilizzando
1745 \const{EPOLLONESHOT} per impostare la modalità \textit{one-shot}, in cui la
1746 notifica di un evento viene effettuata una sola volta, dopo di che il file
1747 descriptor osservato, pur restando nella lista di osservazione, viene
1748 automaticamente disattivato,\footnote{la cosa avviene contestualmente al
1749   ritorno di \func{epoll\_wait} a causa dell'evento in questione.} e per
1750 essere riutilizzato dovrà essere riabilitato esplicitamente con una successiva
1751 chiamata con \const{EPOLL\_CTL\_MOD}.
1752
1753 Una volta impostato l'insieme di file descriptor che si vogliono osservare con
1754 i relativi eventi, la funzione che consente di attendere l'occorrenza di uno
1755 di tali eventi è \funcd{epoll\_wait}, il cui prototipo è:
1756 \begin{prototype}{sys/epoll.h}
1757   {int epoll\_wait(int epfd, struct epoll\_event * events, int maxevents, int
1758     timeout)}
1759   
1760   Attende che uno dei file descriptor osservati sia pronto.
1761   
1762   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1763     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1764     assumerà uno dei valori:
1765   \begin{errlist}
1766   \item[\errcode{EBADF}] il file descriptor \param{epfd} non è valido.
1767   \item[\errcode{EFAULT}] il puntatore \param{events} non è valido.
1768   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
1769     della scadenza di \param{timeout}.
1770   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1771     con \func{epoll\_create}, o \param{maxevents} non è maggiore di zero.
1772   \end{errlist}
1773 }
1774 \end{prototype}
1775
1776 La funzione si blocca in attesa di un evento per i file descriptor registrati
1777 nella lista di osservazione di \param{epfd} fino ad un tempo massimo
1778 specificato in millisecondi tramite l'argomento \param{timeout}. Gli eventi
1779 registrati vengono riportati in un vettore di strutture \struct{epoll\_event}
1780 (che deve essere stato allocato in precedenza) all'indirizzo indicato
1781 dall'argomento \param{events}, fino ad un numero massimo di eventi impostato
1782 con l'argomento \param{maxevents}.
1783
1784 La funzione ritorna il numero di eventi rilevati, o un valore nullo qualora
1785 sia scaduto il tempo massimo impostato con \param{timeout}. Per quest'ultimo,
1786 oltre ad un numero di millisecondi, si può utilizzare il valore nullo, che
1787 indica di non attendere e ritornare immediatamente,\footnote{anche in questo
1788   caso il valore di ritorno sarà nullo.} o il valore $-1$, che indica
1789 un'attesa indefinita. L'argomento \param{maxevents} dovrà invece essere sempre
1790 un intero positivo.
1791
1792 Come accennato la funzione restituisce i suoi risultati nel vettore di
1793 strutture \struct{epoll\_event} puntato da \param{events}; in tal caso nel
1794 campo \param{events} di ciascuna di esse saranno attivi i flag relativi agli
1795 eventi accaduti, mentre nel campo \var{data} sarà restituito il valore che era
1796 stato impostato per il file descriptor per cui si è verificato l'evento quando
1797 questo era stato registrato con le operazioni \const{EPOLL\_CTL\_MOD} o
1798 \const{EPOLL\_CTL\_ADD}, in questo modo il campo \var{data} consente di
1799 identificare il file descriptor.\footnote{ed è per questo che, come accennato,
1800   è consuetudine usare per \var{data} il valore del file descriptor stesso.}
1801
1802 Si ricordi che le occasioni per cui \func{epoll\_wait} ritorna dipendono da
1803 come si è impostata la modalità di osservazione (se \textit{level triggered} o
1804 \textit{edge triggered}) del singolo file descriptor. L'interfaccia assicura
1805 che se arrivano più eventi fra due chiamate successive ad \func{epoll\_wait}
1806 questi vengano combinati. Inoltre qualora su un file descriptor fossero
1807 presenti eventi non ancora notificati, e si effettuasse una modifica
1808 dell'osservazione con \const{EPOLL\_CTL\_MOD}, questi verrebbero riletti alla
1809 luce delle modifiche.
1810
1811 Si tenga presente infine che con l'uso della modalità \textit{edge triggered}
1812 il ritorno di \func{epoll\_wait} indica che un file descriptor è pronto e
1813 resterà tale fintanto che non si sono completamente esaurite le operazioni su
1814 di esso.  Questa condizione viene generalmente rilevata dall'occorrere di un
1815 errore di \errcode{EAGAIN} al ritorno di una \func{read} o una
1816 \func{write},\footnote{è opportuno ricordare ancora una volta che l'uso
1817   dell'\textit{I/O multiplexing} richiede di operare sui file in modalità non
1818   bloccante.} ma questa non è la sola modalità possibile, ad esempio la
1819 condizione può essere riconosciuta anche per il fatto che sono stati
1820 restituiti meno dati di quelli richiesti.
1821
1822 Come già per \func{select} e \func{poll} anche per l'interfaccia di
1823 \textit{epoll} si pone il problema di gestire l'attesa di segnali e di dati
1824 contemporaneamente per le osservazioni fatte in sez.~\ref{sec:file_select},
1825 per fare questo di nuovo è necessaria una variante della funzione di attesa
1826 che consenta di reimpostare all'uscita una maschera di segnali, analoga alle
1827 estensioni \func{pselect} e \func{ppoll} che abbiamo visto in precedenza per
1828 \func{select} e \func{poll}; in questo caso la funzione si chiama
1829 \funcd{epoll\_pwait}\footnote{la funziona è stata introdotta a partire dal
1830   kernel 2.6.19, ed è come tutta l'interfaccia di \textit{epoll}, specifica di
1831   Linux.} ed il suo prototipo è:
1832 \begin{prototype}{sys/epoll.h} 
1833   {int epoll\_pwait(int epfd, struct epoll\_event * events, int maxevents, 
1834     int timeout, const sigset\_t *sigmask)}
1835
1836   Attende che uno dei file descriptor osservati sia pronto, mascherando i
1837   segnali. 
1838
1839   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1840     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1841     assumerà uno dei valori già visti con \funcd{epoll\_wait}.
1842 }
1843 \end{prototype}
1844
1845 La funzione è del tutto analoga \funcd{epoll\_wait}, soltanto che alla sua
1846 uscita viene ripristinata la maschera di segnali originale, sostituita durante
1847 l'esecuzione da quella impostata con l'argomento \param{sigmask}; in sostanza
1848 la chiamata a questa funzione è equivalente al seguente codice, eseguito però
1849 in maniera atomica:
1850 \includecodesnip{listati/epoll_pwait_means.c} 
1851
1852 Si tenga presente che come le precedenti funzioni di \textit{I/O multiplexing}
1853 anche le funzioni dell'interfaccia di \textit{epoll} vengono utilizzate
1854 prevalentemente con i server di rete, quando si devono tenere sotto
1855 osservazione un gran numero di socket; per questo motivo rimandiamo anche in
1856 questo caso la trattazione di un esempio concreto a quando avremo esaminato in
1857 dettaglio le caratteristiche dei socket; in particolare si potrà trovare un
1858 programma che utilizza questa interfaccia in sez.~\ref{sec:TCP_serv_epoll}.
1859
1860 \itindend{epoll}
1861
1862
1863 \subsection{La notifica di eventi tramite file descriptor}
1864 \label{sec:sig_signalfd_eventfd}
1865
1866 Abbiamo visto in sez.~\ref{sec:file_select} come il meccanismo classico delle
1867 notifiche di eventi tramite i segnali, presente da sempre nei sistemi
1868 unix-like, porti a notevoli problemi nell'interazione con le funzioni per
1869 l'I/O multiplexing, tanto che per evitare possibili \itindex{race~condition}
1870 \textit{race condition} sono state introdotte estensioni dello standard POSIX e
1871 funzioni apposite come \func{pselect}, \func{ppoll} e \funcd{epoll\_pwait}.
1872
1873 Benché i segnali siano il meccanismo più usato per effettuare notifiche ai
1874 processi, la loro interfaccia di programmazione, che comporta l'esecuzione di
1875 una funzione di gestione in maniera asincrona e totalmente scorrelata
1876 dall'ordinario flusso di esecuzione del processo, si è però dimostrata quasi
1877 subito assai problematica. Oltre ai limiti relativi ai limiti al cosa si può
1878 fare all'interno della funzione del gestore di segnali (quelli illustrati in
1879 sez.~\ref{sec:sig_signal_handler}), c'è il problema più generale consistente
1880 nel fatto che questa modalità di funzionamento cozza con altre interfacce di
1881 programmazione previste dal sistema in cui si opera in maniera
1882 \textsl{sincrona}, come quelle dell'I/O multiplexing appena illustrate.
1883
1884 In questo tipo di interfacce infatti ci si aspetta che il processo gestisca
1885 gli eventi a cui vuole rispondere in maniera sincrona generando le opportune
1886 risposte, mentre con l'arrivo di un segnale si possono avere interruzioni
1887 asincrone in qualunque momento.  Questo comporta la necessità di dover
1888 gestire, quando si deve tener conto di entrambi i tipi di eventi, le
1889 interruzioni delle funzioni di attesa sincrone, ed evitare possibili
1890 \itindex{race~condition} \textit{race conditions}.\footnote{in sostanza se non
1891   fossero per i segnali non ci sarebbe da doversi preoccupare, fintanto che si
1892   effettuano operazioni all'interno di un processo, della non atomicità delle
1893   \index{system~call~lente} system call lente che vengono interrotte e devono
1894   essere riavviate.}
1895
1896 Abbiamo visto però in sez.~\ref{sec:sig_real_time} che insieme ai segnali
1897 \textit{real-time} sono state introdotte anche delle interfacce di gestione
1898 sincrona dei segnali con la funzione \func{sigwait} e le sue affini. Queste
1899 funzioni consentono di gestire i segnali bloccando un processo fino alla
1900 avvenuta ricezione e disabilitando l'esecuzione asincrona rispetto al resto
1901 del programma del gestore del segnale. Questo consente di risolvere i
1902 problemi di atomicità nella gestione degli eventi associati ai segnali, avendo
1903 tutto il controllo nel flusso principale del programma, ottenendo così una
1904 gestione simile a quella dell'I/O multiplexing, ma non risolve i problemi
1905 delle interazioni con quest'ultimo, perché o si aspetta la ricezione di un
1906 segnale o si aspetta che un file descriptor sia accessibile e nessuna delle
1907 rispettive funzioni consente di fare contemporaneamente entrambe le cose.
1908
1909 Per risolvere questo problema nello sviluppo del kernel si è pensato di
1910 introdurre un meccanismo alternativo alla notifica dei segnali (esteso anche
1911 ad altri eventi generici) che, ispirandosi di nuovo alla filosofia di Unix per
1912 cui tutto è un file, consentisse di eseguire la notifica con l'uso di
1913 opportuni file descriptor.\footnote{ovviamente si tratta di una funzionalità
1914   specifica di Linux, non presente in altri sistemi unix-like, e non prevista
1915   da nessuno standard, per cui va evitata se si ha a cuore la portabilità.}
1916
1917 In sostanza, come per \func{sigwait}, si può disabilitare l'esecuzione di un
1918 gestore in occasione dell'arrivo di un segnale, e rilevarne l'avvenuta
1919 ricezione leggendone la notifica tramite l'uso di uno speciale file
1920 descriptor. Trattandosi di un file descriptor questo potrà essere tenuto sotto
1921 osservazione con le ordinarie funzioni dell'I/O multiplexing (vale a dire con
1922 le solite \func{select}, \func{poll} e \funcd{epoll\_wait}) allo stesso modo
1923 di quelli associati a file o socket, per cui alla fine si potrà attendere in
1924 contemporanea sia l'arrivo del segnale che la disponibilità di accesso ai dati
1925 relativi a questi ultimi.
1926
1927 La funzione che permette di abilitare la ricezione dei segnali tramite file
1928 descriptor è \funcd{signalfd},\footnote{in realtà quella riportata è la
1929   interfacia alla funzione fornita dalle \acr{glibc}, esistono in realtà due
1930   versioni diverse della \textit{system call}, la prima versione,
1931   \func{signalfd}, introdotta nel kernel 2.6.22 e disponibile con le
1932   \acr{glibc} 2.8 che non supporta l'argomento, ed una seconda versione,
1933   \func{signalfd4}, che prende argomenti aggiuntivi, introdotta con il kernel
1934   2.6.27 che è quella che viene sempre usata a partire dalle \acr{glibc} 2.9.}
1935 il cui prototipo è:
1936 \begin{prototype}{sys/signalfd.h} 
1937   {int signalfd(int fd, const sigset\_t *mask, int flags)}
1938
1939   Crea o modifica un file descriptor pet la ricezione dei segnali. 
1940
1941   \bodydesc{La funzione restituisce un numero di file descriptor in caso di
1942     successo o $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
1943     dei valori:
1944   \begin{errlist}
1945   \item[\errcode{EBADF}] il valore \param{fd} non indica un file descriptor.
1946   \item[\errcode{EINVAL}] il file descriptor \param{fd} non è stato ottenuto
1947     con \func{signalfd} o il valore di \param{flags} non è valido.
1948   \item[\errcode{ENOMEN}] non c'è memoria sufficiente per creare un nuovo file
1949     descriptor di \func{signalfd}.
1950   \item[\errcode{ENODEV}] il kernel non può montare internamente il
1951     dispositivo per la gestione anonima degli inode associati al file
1952     descriptor.
1953   \end{errlist}
1954   ed inoltre \errval{EMFILE} e \errval{ENFILE}.  
1955 }
1956 \end{prototype}
1957
1958 La funzione consente di creare o modificare le caratteristiche di un file
1959 descriptor speciale su cui ricevere le notifiche della ricezione di
1960 segnali. Per creare ex-novo uno di questi file descriptor è necessario passare
1961 $-1$ come valore per l'argomento \param{fd}, ogni altro valore positivo verrà
1962 invece interpretato come il numero del file descriptor (che deve esser stato
1963 precedentemente creato sempre con \func{signalfd}) di cui si vogliono
1964 modificare le caratteristiche. Nel primo caso la funzione ritornerà il valore
1965 del nuovo file descriptor e nel secondo caso il valore indicato
1966 con \param{fd}, in caso di errore invece verrà restituito $-1$.
1967
1968 L'elenco dei segnali che si vogliono gestire con \func{signalfd} deve essere
1969 specificato tramite l'argomento \param{mask}. Questo deve essere passato come
1970 puntatore ad una maschera di segnali creata con l'uso delle apposite macro già
1971 illustrate in sez.~\ref{sec:sig_sigset}; la maschera deve indicare su quali
1972 segnali si intende operare con \func{signalfd}; l'elenco può essere modificato
1973 con una successiva chiamata a \func{signalfd}. Dato che \const{SIGKILL} e
1974 \const{SIGSTOP} non possono essere intercettati (e non prevedono neanche la
1975 possibilità di un gestore) un loro inserimento nella maschera verrà ignorato,
1976 senza generare errori.
1977
1978 L'argomento \param{flags} consente di impostare direttamente in fase di
1979 creazione due flag per il file descriptor analoghi a quelli che si possono
1980 impostare con una creazione ordinaria con \func{open}, evitando una
1981 impostazione successiva con \func{fcntl}.\footnote{questo è un argomento
1982   aggiuntivo, introdotto con la versione fornita a partire dal kernel 2.6.27,
1983   per kernel precedenti il valore deve essere nullo.}
1984
1985 \begin{table}[htb]
1986   \centering
1987   \footnotesize
1988   \begin{tabular}[c]{|l|p{8cm}|}
1989     \hline
1990     \textbf{Valore}  & \textbf{Significato} \\
1991     \hline
1992     \hline
1993     \const{SFD\_NONBLOCK}& imposta sul file descriptor il flag di
1994                            \const{O\_NONBLOCK} per renderlo non bloccante.\\ 
1995     \const{SFD\_CLOEXEC}&  imposta il flag di \const{O\_CLOEXEC} per la
1996                            chiusura automatica del file descriptor nella
1997                            esecuzione di \func{exec}.\\
1998     \hline    
1999   \end{tabular}
2000   \caption{Valori dell'argomento \param{flags} per la funzione \func{signalfd}
2001     che consentono di impostare i flag del file descriptor.} 
2002   \label{tab:signalfd_flags}
2003 \end{table}
2004
2005 L'interfaccia fornita da \func{signalfd} prevede che la ricezione dei segnali
2006 sia eseguita leggendo i dati relativi ai segnali pendenti dal file descriptor
2007 restituito dalla funzione con una normalissima \func{read}. Questi dati
2008 vengono scritti sul buffer indicato come secondo argomento di \func{read} in
2009 forma di una sequenza di una o più strutture \struct{signalfd\_siginfo} (la
2010 cui definizione si è riportata in fig.~\ref{fig:signalfd_siginfo}) a seconda
2011 sia della dimensione del buffer che del numero di segnali pendenti. Per questo
2012 motivo il buffer deve essere almeno di dimensione pari a quella di
2013 \struct{signalfd\_siginfo}, qualora sia di dimensione maggiore potranno essere
2014 letti in unica soluzione i dati relativi ad eventuali più segnali pendenti,
2015 fino al numero massimo di strutture \struct{signalfd\_siginfo} che possono
2016 rientrare nel buffer.
2017
2018 \begin{figure}[!htb]
2019   \footnotesize \centering
2020   \begin{minipage}[c]{15cm}
2021     \includestruct{listati/signalfd_siginfo.h}
2022   \end{minipage} 
2023   \normalsize 
2024   \caption{La struttura \structd{signalfd\_siginfo}, restituita in lettura da
2025     un file descriptor creato con \func{signalfd}.}
2026   \label{fig:signalfd_siginfo}
2027 \end{figure}
2028
2029 Si tenga presente che lettura di una struttura \struct{signalfd\_siginfo}
2030 relativa ad un segnale pendente è equivalente alla esecuzione di un gestore,
2031 vale a dire che una volta letta il segnale non sarà più pendente e non potrà
2032 essere ricevuto, qualora si ripristino le normali condizioni di gestione, né
2033 da un gestore né dalla funzione \func{sigwaitinfo}. 
2034
2035 % TODO trattare qui eventfd, timerfd introdotte con il 2.6.22 
2036 % timerfd è stata tolta nel 2.6.23 e rifatta per bene nel 2.6.25
2037 % vedi: http://lwn.net/Articles/233462/
2038 %       http://lwn.net/Articles/245533/
2039 %       http://lwn.net/Articles/267331/
2040
2041
2042 \begin{figure}[!htb]
2043   \footnotesize \centering
2044   \begin{minipage}[c]{15cm}
2045     \includecodesample{listati/FifoReporter-init.c}
2046   \end{minipage} 
2047   \normalsize 
2048   \caption{Sezione di inizializzazione del codice del programma
2049     \file{FifoReporter.c}.}
2050   \label{fig:fiforeporter_code}
2051 \end{figure}
2052
2053
2054
2055 \begin{figure}[!htb]
2056   \footnotesize \centering
2057   \begin{minipage}[c]{15cm}
2058     \includecodesample{listati/FifoReporter-main.c}
2059   \end{minipage} 
2060   \normalsize 
2061   \caption{Ciclo principale del codice del programma \file{FifoReporter.c}.}
2062   \label{fig:fiforeporter_code}
2063 \end{figure}
2064
2065
2066
2067 \section{L'accesso \textsl{asincrono} ai file}
2068 \label{sec:file_asyncronous_access}
2069
2070 Benché l'\textit{I/O multiplexing} sia stata la prima, e sia tutt'ora una fra
2071 le più diffuse modalità di gestire l'I/O in situazioni complesse in cui si
2072 debba operare su più file contemporaneamente, esistono altre modalità di
2073 gestione delle stesse problematiche. In particolare sono importanti in questo
2074 contesto le modalità di accesso ai file eseguibili in maniera
2075 \textsl{asincrona}, quelle cioè in cui un processo non deve bloccarsi in
2076 attesa della disponibilità dell'accesso al file, ma può proseguire
2077 nell'esecuzione utilizzando invece un meccanismo di notifica asincrono (di
2078 norma un segnale, ma esistono anche altre interfacce, come \itindex{inotify}
2079 \textit{inotify}), per essere avvisato della possibilità di eseguire le
2080 operazioni di I/O volute.
2081
2082
2083 \subsection{Il \textit{Signal driven I/O}}
2084 \label{sec:file_asyncronous_operation}
2085
2086 \itindbeg{signal~driven~I/O}
2087
2088 Abbiamo accennato in sez.~\ref{sec:file_open} che è possibile, attraverso
2089 l'uso del flag \const{O\_ASYNC},\footnote{l'uso del flag di \const{O\_ASYNC} e
2090   dei comandi \const{F\_SETOWN} e \const{F\_GETOWN} per \func{fcntl} è
2091   specifico di Linux e BSD.} aprire un file in modalità asincrona, così come è
2092 possibile attivare in un secondo tempo questa modalità impostando questo flag
2093 attraverso l'uso di \func{fcntl} con il comando \const{F\_SETFL} (vedi
2094 sez.~\ref{sec:file_fcntl}). In realtà parlare di apertura in modalità
2095 asincrona non significa che le operazioni di lettura o scrittura del file
2096 vengono eseguite in modo asincrono (tratteremo questo, che è ciò che più
2097 propriamente viene chiamato \textsl{I/O asincrono}, in
2098 sez.~\ref{sec:file_asyncronous_io}), quanto dell'attivazione un meccanismo di
2099 notifica asincrona delle variazione dello stato del file descriptor aperto in
2100 questo modo.  
2101
2102 Quello che succede è che per tutti i file posti in questa modalità\footnote{si
2103   tenga presente però che essa non è utilizzabile con i file ordinari ma solo
2104   con socket, file di terminale o pseudo terminale, ed anche, a partire dal
2105   kernel 2.6, anche per fifo e pipe.} il sistema genera un apposito segnale,
2106 \const{SIGIO}, tutte le volte che diventa possibile leggere o scrivere dal
2107 file descriptor che si è posto in questa modalità. Inoltre è possibile, come
2108 illustrato in sez.~\ref{sec:file_fcntl}, selezionare con il comando
2109 \const{F\_SETOWN} di \func{fcntl} quale processo o quale gruppo di processi
2110 dovrà ricevere il segnale. In questo modo diventa possibile effettuare le
2111 operazioni di I/O in risposta alla ricezione del segnale, e non ci sarà più la
2112 necessità di restare bloccati in attesa della disponibilità di accesso ai
2113 file.
2114
2115 % TODO: per i thread l'uso di F_SETOWN ha un significato diverso
2116
2117 Per questo motivo Stevens, ed anche le pagine di manuale di Linux, chiamano
2118 questa modalità ``\textit{Signal driven I/O}''.  Si tratta di un'altra
2119 modalità di gestione dell'I/O, alternativa all'uso di \itindex{epoll}
2120 \textit{epoll},\footnote{anche se le prestazioni ottenute con questa tecnica
2121   sono inferiori, il vantaggio è che questa modalità è utilizzabile anche con
2122   kernel che non supportano \textit{epoll}, come quelli della serie 2.4,
2123   ottenendo comunque prestazioni superiori a quelle che si hanno con
2124   \func{poll} e \func{select}.} che consente di evitare l'uso delle funzioni
2125 \func{poll} o \func{select} che, come illustrato in sez.~\ref{sec:file_epoll},
2126 quando vengono usate con un numero molto grande di file descriptor, non hanno
2127 buone prestazioni.
2128
2129 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
2130 presenta notevoli problemi, dato che non è possibile determinare, quando i
2131 file descriptor sono più di uno, qual è quello responsabile dell'emissione del
2132 segnale. Inoltre dato che i segnali normali non si accodano (si ricordi quanto
2133 illustrato in sez.~\ref{sec:sig_notification}), in presenza di più file
2134 descriptor attivi contemporaneamente, più segnali emessi nello stesso momento
2135 verrebbero notificati una volta sola.
2136
2137 Linux però supporta le estensioni POSIX.1b dei segnali real-time, che vengono
2138 accodati e che permettono di riconoscere il file descriptor che li ha emessi.
2139 In questo caso infatti si può fare ricorso alle informazioni aggiuntive
2140 restituite attraverso la struttura \struct{siginfo\_t}, utilizzando la forma
2141 estesa \var{sa\_sigaction} del gestore installata con il flag
2142 \const{SA\_SIGINFO} (si riveda quanto illustrato in
2143 sez.~\ref{sec:sig_sigaction}).
2144
2145 Per far questo però occorre utilizzare le funzionalità dei segnali real-time
2146 (vedi sez.~\ref{sec:sig_real_time}) impostando esplicitamente con il comando
2147 \const{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
2148 I/O asincrono (il segnale predefinito è \const{SIGIO}). In questo caso il
2149 gestore, tutte le volte che riceverà \const{SI\_SIGIO} come valore del campo
2150 \var{si\_code}\footnote{il valore resta \const{SI\_SIGIO} qualunque sia il
2151   segnale che si è associato all'I/O, ed indica appunto che il segnale è stato
2152   generato a causa di attività di I/O.} di \struct{siginfo\_t}, troverà nel
2153 campo \var{si\_fd} il valore del file descriptor che ha generato il segnale.
2154
2155 Un secondo vantaggio dell'uso dei segnali real-time è che essendo questi
2156 ultimi dotati di una coda di consegna ogni segnale sarà associato ad uno solo
2157 file descriptor; inoltre sarà possibile stabilire delle priorità nella
2158 risposta a seconda del segnale usato, dato che i segnali real-time supportano
2159 anche questa funzionalità. In questo modo si può identificare immediatamente
2160 un file su cui l'accesso è diventato possibile evitando completamente l'uso di
2161 funzioni come \func{poll} e \func{select}, almeno fintanto che non si satura
2162 la coda.
2163
2164 Se infatti si eccedono le dimensioni di quest'ultima, il kernel, non potendo
2165 più assicurare il comportamento corretto per un segnale real-time, invierà al
2166 suo posto un solo \const{SIGIO}, su cui si saranno accumulati tutti i segnali
2167 in eccesso, e si dovrà allora determinare con un ciclo quali sono i file
2168 diventati attivi. L'unico modo per essere sicuri che questo non avvenga è di
2169 impostare la lunghezza della coda dei segnali real-time ad una dimensione
2170 identica al valore massimo del numero di file descriptor
2171 utilizzabili.\footnote{vale a dire impostare il contenuto di
2172   \procfile{/proc/sys/kernel/rtsig-max} allo stesso valore del contenuto di
2173   \procfile{/proc/sys/fs/file-max}.}
2174
2175 % TODO fare esempio che usa O_ASYNC
2176
2177 \itindend{signal~driven~I/O}
2178
2179
2180
2181 \subsection{I meccanismi di notifica asincrona.}
2182 \label{sec:file_asyncronous_lease}
2183
2184 Una delle domande più frequenti nella programmazione in ambiente unix-like è
2185 quella di come fare a sapere quando un file viene modificato. La
2186 risposta\footnote{o meglio la non risposta, tanto che questa nelle Unix FAQ
2187   \cite{UnixFAQ} viene anche chiamata una \textit{Frequently Unanswered
2188     Question}.} è che nell'architettura classica di Unix questo non è
2189 possibile. Al contrario di altri sistemi operativi infatti un kernel unix-like
2190 classico non prevedeva alcun meccanismo per cui un processo possa essere
2191 \textsl{notificato} di eventuali modifiche avvenute su un file. Questo è il
2192 motivo per cui i demoni devono essere \textsl{avvisati} in qualche
2193 modo\footnote{in genere questo vien fatto inviandogli un segnale di
2194   \const{SIGHUP} che, per una convenzione adottata dalla gran parte di detti
2195   programmi, causa la rilettura della configurazione.} se il loro file di
2196 configurazione è stato modificato, perché possano rileggerlo e riconoscere le
2197 modifiche.
2198
2199 Questa scelta è stata fatta perché provvedere un simile meccanismo a livello
2200 generico per qualunque file comporterebbe un notevole aumento di complessità
2201 dell'architettura della gestione dei file, il tutto per fornire una
2202 funzionalità che serve soltanto in alcuni casi particolari. Dato che
2203 all'origine di Unix i soli programmi che potevano avere una tale esigenza
2204 erano i demoni, attenendosi a uno dei criteri base della progettazione, che
2205 era di far fare al kernel solo le operazioni strettamente necessarie e
2206 lasciare tutto il resto a processi in user space, non era stata prevista
2207 nessuna funzionalità di notifica.
2208
2209 Visto però il crescente interesse nei confronti di una funzionalità di questo
2210 tipo, che è molto richiesta specialmente nello sviluppo dei programmi ad
2211 interfaccia grafica, quando si deve presentare all'utente lo stato del
2212 filesystem, sono state successivamente introdotte delle estensioni che
2213 permettessero la creazione di meccanismi di notifica più efficienti dell'unica
2214 soluzione disponibile con l'interfaccia tradizionale, che è quella del
2215 \itindex{polling} \textit{polling}.
2216
2217 Queste nuove funzionalità sono delle estensioni specifiche, non
2218 standardizzate, che sono disponibili soltanto su Linux (anche se altri kernel
2219 supportano meccanismi simili). Alcune di esse sono realizzate, e solo a
2220 partire dalla versione 2.4 del kernel, attraverso l'uso di alcuni
2221 \textsl{comandi} aggiuntivi per la funzione \func{fcntl} (vedi
2222 sez.~\ref{sec:file_fcntl}), che divengono disponibili soltanto se si è
2223 definita la macro \macro{\_GNU\_SOURCE} prima di includere \file{fcntl.h}.
2224
2225 \index{file!lease|(} 
2226
2227 La prima di queste funzionalità è quella del cosiddetto \textit{file lease};
2228 questo è un meccanismo che consente ad un processo, detto \textit{lease
2229   holder}, di essere notificato quando un altro processo, chiamato a sua volta
2230 \textit{lease breaker}, cerca di eseguire una \func{open} o una
2231 \func{truncate} sul file del quale l'\textit{holder} detiene il
2232 \textit{lease}.
2233 La notifica avviene in maniera analoga a come illustrato in precedenza per
2234 l'uso di \const{O\_ASYNC}: di default viene inviato al \textit{lease holder}
2235 il segnale \const{SIGIO}, ma questo segnale può essere modificato usando il
2236 comando \const{F\_SETSIG} di \func{fcntl}.\footnote{anche in questo caso si
2237   può rispecificare lo stesso \const{SIGIO}.} Se si è fatto questo\footnote{è
2238   in genere è opportuno farlo, come in precedenza, per utilizzare segnali
2239   real-time.} e si è installato il gestore del segnale con \const{SA\_SIGINFO}
2240 si riceverà nel campo \var{si\_fd} della struttura \struct{siginfo\_t} il
2241 valore del file descriptor del file sul quale è stato compiuto l'accesso; in
2242 questo modo un processo può mantenere anche più di un \textit{file lease}.
2243
2244 Esistono due tipi di \textit{file lease}: di lettura (\textit{read lease}) e
2245 di scrittura (\textit{write lease}). Nel primo caso la notifica avviene quando
2246 un altro processo esegue l'apertura del file in scrittura o usa
2247 \func{truncate} per troncarlo. Nel secondo caso la notifica avviene anche se
2248 il file viene aperto in lettura; in quest'ultimo caso però il \textit{lease}
2249 può essere ottenuto solo se nessun altro processo ha aperto lo stesso file.
2250
2251 Come accennato in sez.~\ref{sec:file_fcntl} il comando di \func{fcntl} che
2252 consente di acquisire un \textit{file lease} è \const{F\_SETLEASE}, che viene
2253 utilizzato anche per rilasciarlo. In tal caso il file descriptor \param{fd}
2254 passato a \func{fcntl} servirà come riferimento per il file su cui si vuole
2255 operare, mentre per indicare il tipo di operazione (acquisizione o rilascio)
2256 occorrerà specificare come valore dell'argomento \param{arg} di \func{fcntl}
2257 uno dei tre valori di tab.~\ref{tab:file_lease_fctnl}.
2258
2259 \begin{table}[htb]
2260   \centering
2261   \footnotesize
2262   \begin{tabular}[c]{|l|l|}
2263     \hline
2264     \textbf{Valore}  & \textbf{Significato} \\
2265     \hline
2266     \hline
2267     \const{F\_RDLCK} & Richiede un \textit{read lease}.\\
2268     \const{F\_WRLCK} & Richiede un \textit{write lease}.\\
2269     \const{F\_UNLCK} & Rilascia un \textit{file lease}.\\
2270     \hline    
2271   \end{tabular}
2272   \caption{Costanti per i tre possibili valori dell'argomento \param{arg} di
2273     \func{fcntl} quando usata con i comandi \const{F\_SETLEASE} e
2274     \const{F\_GETLEASE}.} 
2275   \label{tab:file_lease_fctnl}
2276 \end{table}
2277
2278 Se invece si vuole conoscere lo stato di eventuali \textit{file lease}
2279 occorrerà chiamare \func{fcntl} sul relativo file descriptor \param{fd} con il
2280 comando \const{F\_GETLEASE}, e si otterrà indietro nell'argomento \param{arg}
2281 uno dei valori di tab.~\ref{tab:file_lease_fctnl}, che indicheranno la
2282 presenza del rispettivo tipo di \textit{lease}, o, nel caso di
2283 \const{F\_UNLCK}, l'assenza di qualunque \textit{file lease}.
2284
2285 Si tenga presente che un processo può mantenere solo un tipo di \textit{lease}
2286 su un file, e che un \textit{lease} può essere ottenuto solo su file di dati
2287 (pipe e dispositivi sono quindi esclusi). Inoltre un processo non privilegiato
2288 può ottenere un \textit{lease} soltanto per un file appartenente ad un
2289 \acr{uid} corrispondente a quello del processo. Soltanto un processo con
2290 privilegi di amministratore (cioè con la \itindex{capabilities} capability
2291 \const{CAP\_LEASE}, vedi sez.~\ref{sec:proc_capabilities}) può acquisire
2292 \textit{lease} su qualunque file.
2293
2294 Se su un file è presente un \textit{lease} quando il \textit{lease breaker}
2295 esegue una \func{truncate} o una \func{open} che confligge con
2296 esso,\footnote{in realtà \func{truncate} confligge sempre, mentre \func{open},
2297   se eseguita in sola lettura, non confligge se si tratta di un \textit{read
2298     lease}.} la funzione si blocca\footnote{a meno di non avere aperto il file
2299   con \const{O\_NONBLOCK}, nel qual caso \func{open} fallirebbe con un errore
2300   di \errcode{EWOULDBLOCK}.} e viene eseguita la notifica al \textit{lease
2301   holder}, così che questo possa completare le sue operazioni sul file e
2302 rilasciare il \textit{lease}.  In sostanza con un \textit{read lease} si
2303 rilevano i tentativi di accedere al file per modificarne i dati da parte di un
2304 altro processo, mentre con un \textit{write lease} si rilevano anche i
2305 tentativi di accesso in lettura.  Si noti comunque che le operazioni di
2306 notifica avvengono solo in fase di apertura del file e non sulle singole
2307 operazioni di lettura e scrittura.
2308
2309 L'utilizzo dei \textit{file lease} consente al \textit{lease holder} di
2310 assicurare la consistenza di un file, a seconda dei due casi, prima che un
2311 altro processo inizi con le sue operazioni di scrittura o di lettura su di
2312 esso. In genere un \textit{lease holder} che riceve una notifica deve
2313 provvedere a completare le necessarie operazioni (ad esempio scaricare
2314 eventuali buffer), per poi rilasciare il \textit{lease} così che il
2315 \textit{lease breaker} possa eseguire le sue operazioni. Questo si fa con il
2316 comando \const{F\_SETLEASE}, o rimuovendo il \textit{lease} con
2317 \const{F\_UNLCK}, o, nel caso di \textit{write lease} che confligge con una
2318 operazione di lettura, declassando il \textit{lease} a lettura con
2319 \const{F\_RDLCK}.
2320
2321 Se il \textit{lease holder} non provvede a rilasciare il \textit{lease} entro
2322 il numero di secondi specificato dal parametro di sistema mantenuto in
2323 \procfile{/proc/sys/fs/lease-break-time} sarà il kernel stesso a rimuoverlo (o
2324 declassarlo) automaticamente.\footnote{questa è una misura di sicurezza per
2325   evitare che un processo blocchi indefinitamente l'accesso ad un file
2326   acquisendo un \textit{lease}.} Una volta che un \textit{lease} è stato
2327 rilasciato o declassato (che questo sia fatto dal \textit{lease holder} o dal
2328 kernel è lo stesso) le chiamate a \func{open} o \func{truncate} eseguite dal
2329 \textit{lease breaker} rimaste bloccate proseguono automaticamente.
2330
2331 Benché possa risultare utile per sincronizzare l'accesso ad uno stesso file da
2332 parte di più processi, l'uso dei \textit{file lease} non consente comunque di
2333 risolvere il problema di rilevare automaticamente quando un file o una
2334 directory vengono modificati,\footnote{questa funzionalità venne aggiunta
2335   principalmente ad uso di Samba per poter facilitare l'emulazione del
2336   comportamento di Windows sui file, ma ad oggi viene considerata una
2337   interfaccia mal progettata ed il suo uso è fortemente sconsigliato a favore
2338   di \textit{inotify}.} che è quanto necessario ad esempio ai programma di
2339 gestione dei file dei vari desktop grafici.
2340
2341 \itindbeg{dnotify}
2342
2343 Per risolvere questo problema a partire dal kernel 2.4 è stata allora creata
2344 un'altra interfaccia,\footnote{si ricordi che anche questa è una interfaccia
2345   specifica di Linux che deve essere evitata se si vogliono scrivere programmi
2346   portabili, e che le funzionalità illustrate sono disponibili soltanto se è
2347   stata definita la macro \macro{\_GNU\_SOURCE}.} chiamata \textit{dnotify},
2348 che consente di richiedere una notifica quando una directory, o uno qualunque
2349 dei file in essa contenuti, viene modificato.  Come per i \textit{file lease}
2350 la notifica avviene di default attraverso il segnale \const{SIGIO}, ma se ne
2351 può utilizzare un altro.\footnote{e di nuovo, per le ragioni già esposte in
2352   precedenza, è opportuno che si utilizzino dei segnali real-time.} Inoltre,
2353 come in precedenza, si potrà ottenere nel gestore del segnale il file
2354 descriptor che è stato modificato tramite il contenuto della struttura
2355 \struct{siginfo\_t}.
2356
2357 \index{file!lease|)}
2358
2359 \begin{table}[htb]
2360   \centering
2361   \footnotesize
2362   \begin{tabular}[c]{|l|p{8cm}|}
2363     \hline
2364     \textbf{Valore}  & \textbf{Significato} \\
2365     \hline
2366     \hline
2367     \const{DN\_ACCESS} & Un file è stato acceduto, con l'esecuzione di una fra
2368                          \func{read}, \func{pread}, \func{readv}.\\ 
2369     \const{DN\_MODIFY} & Un file è stato modificato, con l'esecuzione di una
2370                          fra \func{write}, \func{pwrite}, \func{writev}, 
2371                          \func{truncate}, \func{ftruncate}.\\ 
2372     \const{DN\_CREATE} & È stato creato un file nella directory, con
2373                          l'esecuzione di una fra \func{open}, \func{creat},
2374                          \func{mknod}, \func{mkdir}, \func{link},
2375                          \func{symlink}, \func{rename} (da un'altra
2376                          directory).\\
2377     \const{DN\_DELETE} & È stato cancellato un file dalla directory con
2378                          l'esecuzione di una fra \func{unlink}, \func{rename}
2379                          (su un'altra directory), \func{rmdir}.\\
2380     \const{DN\_RENAME} & È stato rinominato un file all'interno della
2381                          directory (con \func{rename}).\\
2382     \const{DN\_ATTRIB} & È stato modificato un attributo di un file con
2383                          l'esecuzione di una fra \func{chown}, \func{chmod},
2384                          \func{utime}.\\ 
2385     \const{DN\_MULTISHOT}& Richiede una notifica permanente di tutti gli
2386                          eventi.\\ 
2387     \hline    
2388   \end{tabular}
2389   \caption{Le costanti che identificano le varie classi di eventi per i quali
2390     si richiede la notifica con il comando \const{F\_NOTIFY} di \func{fcntl}.} 
2391   \label{tab:file_notify}
2392 \end{table}
2393
2394 Ci si può registrare per le notifiche dei cambiamenti al contenuto di una
2395 certa directory eseguendo la funzione \func{fcntl} su un file descriptor
2396 associato alla stessa con il comando \const{F\_NOTIFY}. In questo caso
2397 l'argomento \param{arg} di \func{fcntl} serve ad indicare per quali classi
2398 eventi si vuole ricevere la notifica, e prende come valore una maschera
2399 binaria composta dall'OR aritmetico di una o più delle costanti riportate in
2400 tab.~\ref{tab:file_notify}.
2401
2402 A meno di non impostare in maniera esplicita una notifica permanente usando il
2403 valore \const{DN\_MULTISHOT}, la notifica è singola: viene cioè inviata una
2404 sola volta quando si verifica uno qualunque fra gli eventi per i quali la si è
2405 richiesta. Questo significa che un programma deve registrarsi un'altra volta
2406 se desidera essere notificato di ulteriori cambiamenti. Se si eseguono diverse
2407 chiamate con \const{F\_NOTIFY} e con valori diversi per \param{arg} questi
2408 ultimi si \textsl{accumulano}; cioè eventuali nuovi classi di eventi
2409 specificate in chiamate successive vengono aggiunte a quelle già impostate
2410 nelle precedenti.  Se si vuole rimuovere la notifica si deve invece
2411 specificare un valore nullo.
2412
2413 \itindbeg{inotify}
2414
2415 Il maggiore problema di \textit{dnotify} è quello della scalabilità: si deve
2416 usare un file descriptor per ciascuna directory che si vuole tenere sotto
2417 controllo, il che porta facilmente ad avere un eccesso di file aperti. Inoltre
2418 quando la directory che si controlla è all'interno di un dispositivo
2419 rimovibile, mantenere il relativo file descriptor aperto comporta
2420 l'impossibilità di smontare il dispositivo e di rimuoverlo, il che in genere
2421 complica notevolmente la gestione dell'uso di questi dispositivi.
2422
2423 Un altro problema è che l'interfaccia di \textit{dnotify} consente solo di
2424 tenere sotto controllo il contenuto di una directory; la modifica di un file
2425 viene segnalata, ma poi è necessario verificare di quale file si tratta
2426 (operazione che può essere molto onerosa quando una directory contiene un gran
2427 numero di file).  Infine l'uso dei segnali come interfaccia di notifica
2428 comporta tutti i problemi di gestione visti in sez.~\ref{sec:sig_management} e
2429 sez.~\ref{sec:sig_adv_control}.  Per tutta questa serie di motivi in generale
2430 quella di \textit{dnotify} viene considerata una interfaccia di usabilità
2431 problematica ed il suo uso oggi è fortemente sconsigliato.
2432
2433 \itindend{dnotify}
2434
2435 Per risolvere i problemi appena illustrati è stata introdotta una nuova
2436 interfaccia per l'osservazione delle modifiche a file o directory, chiamata
2437 \textit{inotify}.\footnote{l'interfaccia è disponibile a partire dal kernel
2438   2.6.13, le relative funzioni sono state introdotte nelle glibc 2.4.}  Anche
2439 questa è una interfaccia specifica di Linux (pertanto non deve essere usata se
2440 si devono scrivere programmi portabili), ed è basata sull'uso di una coda di
2441 notifica degli eventi associata ad un singolo file descriptor, il che permette
2442 di risolvere il principale problema di \itindex{dnotify} \textit{dnotify}.  La
2443 coda viene creata attraverso la funzione \funcd{inotify\_init}, il cui
2444 prototipo è:
2445 \begin{prototype}{sys/inotify.h}
2446   {int inotify\_init(void)}
2447   
2448   Inizializza una istanza di \textit{inotify}.
2449   
2450   \bodydesc{La funzione restituisce un file descriptor in caso di successo, o
2451     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
2452   \begin{errlist}
2453   \item[\errcode{EMFILE}] si è raggiunto il numero massimo di istanze di
2454     \textit{inotify} consentite all'utente.
2455   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
2456     nel sistema.
2457   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
2458     l'istanza.
2459   \end{errlist}
2460 }
2461 \end{prototype}
2462
2463 La funzione non prende alcun argomento; inizializza una istanza di
2464 \textit{inotify} e restituisce un file descriptor attraverso il quale verranno
2465 effettuate le operazioni di notifica;\footnote{per evitare abusi delle risorse
2466   di sistema è previsto che un utente possa utilizzare un numero limitato di
2467   istanze di \textit{inotify}; il valore di default del limite è di 128, ma
2468   questo valore può essere cambiato con \func{sysctl} o usando il file
2469   \procfile{/proc/sys/fs/inotify/max\_user\_instances}.} si tratta di un file
2470 descriptor speciale che non è associato a nessun file su disco, e che viene
2471 utilizzato solo per notificare gli eventi che sono stati posti in
2472 osservazione. Dato che questo file descriptor non è associato a nessun file o
2473 directory reale, l'inconveniente di non poter smontare un filesystem i cui
2474 file sono tenuti sotto osservazione viene completamente
2475 eliminato.\footnote{anzi, una delle capacità dell'interfaccia di
2476   \textit{inotify} è proprio quella di notificare il fatto che il filesystem
2477   su cui si trova il file o la directory osservata è stato smontato.}
2478
2479 Inoltre trattandosi di un file descriptor a tutti gli effetti, esso potrà
2480 essere utilizzato come argomento per le funzioni \func{select} e \func{poll} e
2481 con l'interfaccia di \textit{epoll};\footnote{ed a partire dal kernel 2.6.25 è
2482   stato introdotto anche il supporto per il \itindex{signal~driven~I/O}
2483   \texttt{signal-driven I/O} trattato in
2484   sez.~\ref{sec:file_asyncronous_operation}.} siccome gli eventi vengono
2485 notificati come dati disponibili in lettura, dette funzioni ritorneranno tutte
2486 le volte che si avrà un evento di notifica. Così, invece di dover utilizzare i
2487 segnali,\footnote{considerati una pessima scelta dal punto di vista
2488   dell'interfaccia utente.} si potrà gestire l'osservazione degli eventi con
2489 una qualunque delle modalità di \textit{I/O multiplexing} illustrate in
2490 sez.~\ref{sec:file_multiplexing}. Qualora si voglia cessare l'osservazione,
2491 sarà sufficiente chiudere il file descriptor e tutte le risorse allocate
2492 saranno automaticamente rilasciate.
2493
2494 Infine l'interfaccia di \textit{inotify} consente di mettere sotto
2495 osservazione, oltre che una directory, anche singoli file.  Una volta creata
2496 la coda di notifica si devono definire gli eventi da tenere sotto
2497 osservazione; questo viene fatto attraverso una \textsl{lista di osservazione}
2498 (o \textit{watch list}) che è associata alla coda. Per gestire la lista di
2499 osservazione l'interfaccia fornisce due funzioni, la prima di queste è
2500 \funcd{inotify\_add\_watch}, il cui prototipo è:
2501 \begin{prototype}{sys/inotify.h}
2502   {int inotify\_add\_watch(int fd, const char *pathname, uint32\_t mask)}
2503
2504   Aggiunge un evento di osservazione alla lista di osservazione di \param{fd}.
2505
2506   \bodydesc{La funzione restituisce un valore positivo in caso di successo, o
2507     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
2508   \begin{errlist}
2509   \item[\errcode{EACCESS}] non si ha accesso in lettura al file indicato.
2510   \item[\errcode{EINVAL}] \param{mask} non contiene eventi legali o \param{fd}
2511     non è un file descriptor di \textit{inotify}.
2512   \item[\errcode{ENOSPC}] si è raggiunto il numero massimo di voci di
2513     osservazione o il kernel non ha potuto allocare una risorsa necessaria.
2514   \end{errlist}
2515   ed inoltre \errval{EFAULT}, \errval{ENOMEM} e \errval{EBADF}.}
2516 \end{prototype}
2517
2518 La funzione consente di creare un ``\textsl{osservatore}'' (il cosiddetto
2519 ``\textit{watch}'') nella lista di osservazione di una coda di notifica, che
2520 deve essere indicata specificando il file descriptor ad essa associato
2521 nell'argomento \param{fd}.\footnote{questo ovviamente dovrà essere un file
2522   descriptor creato con \func{inotify\_init}.}  Il file o la directory da
2523 porre sotto osservazione vengono invece indicati per nome, da passare
2524 nell'argomento \param{pathname}.  Infine il terzo argomento, \param{mask},
2525 indica che tipo di eventi devono essere tenuti sotto osservazione e le
2526 modalità della stessa.  L'operazione può essere ripetuta per tutti i file e le
2527 directory che si vogliono tenere sotto osservazione,\footnote{anche in questo
2528   caso c'è un limite massimo che di default è pari a 8192, ed anche questo
2529   valore può essere cambiato con \func{sysctl} o usando il file
2530   \procfile{/proc/sys/fs/inotify/max\_user\_watches}.} e si utilizzerà sempre
2531 un solo file descriptor.
2532
2533 Il tipo di evento che si vuole osservare deve essere specificato
2534 nell'argomento \param{mask} come maschera binaria, combinando i valori delle
2535 costanti riportate in tab.~\ref{tab:inotify_event_watch} che identificano i
2536 singoli bit della maschera ed il relativo significato. In essa si sono marcati
2537 con un ``$\bullet$'' gli eventi che, quando specificati per una directory,
2538 vengono osservati anche su tutti i file che essa contiene.  Nella seconda
2539 parte della tabella si sono poi indicate alcune combinazioni predefinite dei
2540 flag della prima parte.
2541
2542 \begin{table}[htb]
2543   \centering
2544   \footnotesize
2545   \begin{tabular}[c]{|l|c|p{10cm}|}
2546     \hline
2547     \textbf{Valore}  & & \textbf{Significato} \\
2548     \hline
2549     \hline
2550     \const{IN\_ACCESS}        &$\bullet$& C'è stato accesso al file in
2551                                           lettura.\\  
2552     \const{IN\_ATTRIB}        &$\bullet$& Ci sono stati cambiamenti sui dati
2553                                           dell'inode (o sugli attributi
2554                                           estesi, vedi
2555                                           sez.~\ref{sec:file_xattr}).\\ 
2556     \const{IN\_CLOSE\_WRITE}  &$\bullet$& È stato chiuso un file aperto in
2557                                           scrittura.\\  
2558     \const{IN\_CLOSE\_NOWRITE}&$\bullet$& È stato chiuso un file aperto in
2559                                           sola lettura.\\
2560     \const{IN\_CREATE}        &$\bullet$& È stato creato un file o una
2561                                           directory in una directory sotto
2562                                           osservazione.\\  
2563     \const{IN\_DELETE}        &$\bullet$& È stato cancellato un file o una
2564                                           directory in una directory sotto
2565                                           osservazione.\\ 
2566     \const{IN\_DELETE\_SELF}  & --      & È stato cancellato il file (o la
2567                                           directory) sotto osservazione.\\ 
2568     \const{IN\_MODIFY}        &$\bullet$& È stato modificato il file.\\ 
2569     \const{IN\_MOVE\_SELF}    &         & È stato rinominato il file (o la
2570                                           directory) sotto osservazione.\\ 
2571     \const{IN\_MOVED\_FROM}   &$\bullet$& Un file è stato spostato fuori dalla
2572                                           directory sotto osservazione.\\ 
2573     \const{IN\_MOVED\_TO}     &$\bullet$& Un file è stato spostato nella
2574                                           directory sotto osservazione.\\ 
2575     \const{IN\_OPEN}          &$\bullet$& Un file è stato aperto.\\ 
2576     \hline    
2577     \const{IN\_CLOSE}         &         & Combinazione di
2578                                           \const{IN\_CLOSE\_WRITE} e
2579                                           \const{IN\_CLOSE\_NOWRITE}.\\  
2580     \const{IN\_MOVE}          &         & Combinazione di
2581                                           \const{IN\_MOVED\_FROM} e
2582                                           \const{IN\_MOVED\_TO}.\\
2583     \const{IN\_ALL\_EVENTS}   &         & Combinazione di tutti i flag
2584                                           possibili.\\
2585     \hline    
2586   \end{tabular}
2587   \caption{Le costanti che identificano i bit della maschera binaria
2588     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano il
2589     tipo di evento da tenere sotto osservazione.} 
2590   \label{tab:inotify_event_watch}
2591 \end{table}
2592
2593 Oltre ai flag di tab.~\ref{tab:inotify_event_watch}, che indicano il tipo di
2594 evento da osservare e che vengono utilizzati anche in uscita per indicare il
2595 tipo di evento avvenuto, \func{inotify\_add\_watch} supporta ulteriori
2596 flag,\footnote{i flag \const{IN\_DONT\_FOLLOW}, \const{IN\_MASK\_ADD} e
2597   \const{IN\_ONLYDIR} sono stati introdotti a partire dalle glibc 2.5, se si
2598   usa la versione 2.4 è necessario definirli a mano.}  riportati in
2599 tab.~\ref{tab:inotify_add_watch_flag}, che indicano le modalità di
2600 osservazione (da passare sempre nell'argomento \param{mask}) e che al
2601 contrario dei precedenti non vengono mai impostati nei risultati in uscita.
2602
2603 \begin{table}[htb]
2604   \centering
2605   \footnotesize
2606   \begin{tabular}[c]{|l|p{10cm}|}
2607     \hline
2608     \textbf{Valore}  & \textbf{Significato} \\
2609     \hline
2610     \hline
2611     \const{IN\_DONT\_FOLLOW}& Non dereferenzia \param{pathname} se questo è un
2612                               link simbolico.\\
2613     \const{IN\_MASK\_ADD}   & Aggiunge a quelli già impostati i flag indicati
2614                               nell'argomento \param{mask}, invece di
2615                               sovrascriverli.\\
2616     \const{IN\_ONESHOT}     & Esegue l'osservazione su \param{pathname} per una
2617                               sola volta, rimuovendolo poi dalla \textit{watch
2618                                 list}.\\ 
2619     \const{IN\_ONLYDIR}     & Se \param{pathname} è una directory riporta
2620                               soltanto gli eventi ad essa relativi e non
2621                               quelli per i file che contiene.\\ 
2622     \hline    
2623   \end{tabular}
2624   \caption{Le costanti che identificano i bit della maschera binaria
2625     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano le
2626     modalità di osservazione.} 
2627   \label{tab:inotify_add_watch_flag}
2628 \end{table}
2629
2630 Se non esiste nessun \textit{watch} per il file o la directory specificata
2631 questo verrà creato per gli eventi specificati dall'argomento \param{mask},
2632 altrimenti la funzione sovrascriverà le impostazioni precedenti, a meno che
2633 non si sia usato il flag \const{IN\_MASK\_ADD}, nel qual caso gli eventi
2634 specificati saranno aggiunti a quelli già presenti.
2635
2636 Come accennato quando si tiene sotto osservazione una directory vengono
2637 restituite le informazioni sia riguardo alla directory stessa che ai file che
2638 essa contiene; questo comportamento può essere disabilitato utilizzando il
2639 flag \const{IN\_ONLYDIR}, che richiede di riportare soltanto gli eventi
2640 relativi alla directory stessa. Si tenga presente inoltre che quando si
2641 osserva una directory vengono riportati solo gli eventi sui file che essa
2642 contiene direttamente, non quelli relativi a file contenuti in eventuali
2643 sottodirectory; se si vogliono osservare anche questi sarà necessario creare
2644 ulteriori \textit{watch} per ciascuna sottodirectory.
2645
2646 Infine usando il flag \const{IN\_ONESHOT} è possibile richiedere una notifica
2647 singola;\footnote{questa funzionalità però è disponibile soltanto a partire dal
2648   kernel 2.6.16.} una volta verificatosi uno qualunque fra gli eventi
2649 richiesti con \func{inotify\_add\_watch} l'\textsl{osservatore} verrà
2650 automaticamente rimosso dalla lista di osservazione e nessun ulteriore evento
2651 sarà più notificato.
2652
2653 In caso di successo \func{inotify\_add\_watch} ritorna un intero positivo,
2654 detto \textit{watch descriptor}, che identifica univocamente un
2655 \textsl{osservatore} su una coda di notifica; esso viene usato per farvi
2656 riferimento sia riguardo i risultati restituiti da \textit{inotify}, che per
2657 la eventuale rimozione dello stesso. 
2658
2659 La seconda funzione per la gestione delle code di notifica, che permette di
2660 rimuovere un \textsl{osservatore}, è \funcd{inotify\_rm\_watch}, ed il suo
2661 prototipo è:
2662 \begin{prototype}{sys/inotify.h}
2663   {int inotify\_rm\_watch(int fd, uint32\_t wd)}
2664
2665   Rimuove un \textsl{osservatore} da una coda di notifica.
2666   
2667   \bodydesc{La funzione restituisce 0 in caso di successo, o $-1$ in caso di
2668     errore, nel qual caso \var{errno} assumerà uno dei valori:
2669   \begin{errlist}
2670   \item[\errcode{EBADF}] non si è specificato in \param{fd} un file descriptor
2671     valido.
2672   \item[\errcode{EINVAL}] il valore di \param{wd} non è corretto, o \param{fd}
2673     non è associato ad una coda di notifica.
2674   \end{errlist}
2675 }
2676 \end{prototype}
2677
2678 La funzione rimuove dalla coda di notifica identificata dall'argomento
2679 \param{fd} l'osservatore identificato dal \textit{watch descriptor}
2680 \param{wd};\footnote{ovviamente deve essere usato per questo argomento un
2681   valore ritornato da \func{inotify\_add\_watch}, altrimenti si avrà un errore
2682   di \errval{EINVAL}.} in caso di successo della rimozione, contemporaneamente
2683 alla cancellazione dell'osservatore, sulla coda di notifica verrà generato un
2684 evento di tipo \const{IN\_IGNORED} (vedi
2685 tab.~\ref{tab:inotify_read_event_flag}). Si tenga presente che se un file
2686 viene cancellato o un filesystem viene smontato i relativi osservatori vengono
2687 rimossi automaticamente e non è necessario utilizzare
2688 \func{inotify\_rm\_watch}.
2689
2690 Come accennato l'interfaccia di \textit{inotify} prevede che gli eventi siano
2691 notificati come dati presenti in lettura sul file descriptor associato alla
2692 coda di notifica. Una applicazione pertanto dovrà leggere i dati da detto file
2693 con una \func{read}, che ritornerà sul buffer i dati presenti nella forma di
2694 una o più strutture di tipo \struct{inotify\_event} (la cui definizione è
2695 riportata in fig.~\ref{fig:inotify_event}). Qualora non siano presenti dati la
2696 \func{read} si bloccherà (a meno di non aver impostato il file descriptor in
2697 modalità non bloccante) fino all'arrivo di almeno un evento.
2698
2699 \begin{figure}[!htb]
2700   \footnotesize \centering
2701   \begin{minipage}[c]{15cm}
2702     \includestruct{listati/inotify_event.h}
2703   \end{minipage} 
2704   \normalsize 
2705   \caption{La struttura \structd{inotify\_event} usata dall'interfaccia di
2706     \textit{inotify} per riportare gli eventi.}
2707   \label{fig:inotify_event}
2708 \end{figure}
2709
2710 Una ulteriore caratteristica dell'interfaccia di \textit{inotify} è che essa
2711 permette di ottenere con \func{ioctl}, come per i file descriptor associati ai
2712 socket (si veda sez.~\ref{sec:sock_ioctl_IP}) il numero di byte disponibili in
2713 lettura sul file descriptor, utilizzando su di esso l'operazione
2714 \const{FIONREAD}.\footnote{questa è una delle operazioni speciali per i file
2715   (vedi sez.~\ref{sec:file_ioctl}), che è disponibile solo per i socket e per
2716   i file descriptor creati con \func{inotify\_init}.} Si può così utilizzare
2717 questa operazione, oltre che per predisporre una operazione di lettura con un
2718 buffer di dimensioni adeguate, anche per ottenere rapidamente il numero di
2719 file che sono cambiati.
2720
2721 Una volta effettuata la lettura con \func{read} a ciascun evento sarà
2722 associata una struttura \struct{inotify\_event} contenente i rispettivi dati.
2723 Per identificare a quale file o directory l'evento corrisponde viene
2724 restituito nel campo \var{wd} il \textit{watch descriptor} con cui il relativo
2725 osservatore è stato registrato. Il campo \var{mask} contiene invece una
2726 maschera di bit che identifica il tipo di evento verificatosi; in essa
2727 compariranno sia i bit elencati nella prima parte di
2728 tab.~\ref{tab:inotify_event_watch}, che gli eventuali valori
2729 aggiuntivi\footnote{questi compaiono solo nel campo \var{mask} di
2730   \struct{inotify\_event}, e  non utilizzabili in fase di registrazione
2731   dell'osservatore.} di tab.~\ref{tab:inotify_read_event_flag}.
2732
2733 \begin{table}[htb]
2734   \centering
2735   \footnotesize
2736   \begin{tabular}[c]{|l|p{10cm}|}
2737     \hline
2738     \textbf{Valore}  & \textbf{Significato} \\
2739     \hline
2740     \hline
2741     \const{IN\_IGNORED}    & L'osservatore è stato rimosso, sia in maniera 
2742                              esplicita con l'uso di \func{inotify\_rm\_watch}, 
2743                              che in maniera implicita per la rimozione 
2744                              dell'oggetto osservato o per lo smontaggio del
2745                              filesystem su cui questo si trova.\\
2746     \const{IN\_ISDIR}      & L'evento avvenuto fa riferimento ad una directory
2747                              (consente così di distinguere, quando si pone
2748                              sotto osservazione una directory, fra gli eventi
2749                              relativi ad essa e quelli relativi ai file che
2750                              essa contiene).\\
2751     \const{IN\_Q\_OVERFLOW}& Si sono eccedute le dimensioni della coda degli
2752                              eventi (\textit{overflow} della coda); in questo
2753                              caso il valore di \var{wd} è $-1$.\footnotemark\\
2754     \const{IN\_UNMOUNT}    & Il filesystem contenente l'oggetto posto sotto
2755                              osservazione è stato smontato.\\
2756     \hline    
2757   \end{tabular}
2758   \caption{Le costanti che identificano i bit aggiuntivi usati nella maschera
2759     binaria del campo \var{mask} di \struct{inotify\_event}.} 
2760   \label{tab:inotify_read_event_flag}
2761 \end{table}
2762
2763 \footnotetext{la coda di notifica ha una dimensione massima specificata dal
2764   parametro di sistema \procfile{/proc/sys/fs/inotify/max\_queued\_events} che
2765   indica il numero massimo di eventi che possono essere mantenuti sulla
2766   stessa; quando detto valore viene ecceduto gli ulteriori eventi vengono
2767   scartati, ma viene comunque generato un evento di tipo
2768   \const{IN\_Q\_OVERFLOW}.}
2769
2770 Il campo \var{cookie} contiene invece un intero univoco che permette di
2771 identificare eventi correlati (per i quali avrà lo stesso valore), al momento
2772 viene utilizzato soltanto per rilevare lo spostamento di un file, consentendo
2773 così all'applicazione di collegare la corrispondente coppia di eventi
2774 \const{IN\_MOVED\_TO} e \const{IN\_MOVED\_FROM}.
2775
2776 Infine due campi \var{name} e \var{len} sono utilizzati soltanto quando
2777 l'evento è relativo ad un file presente in una directory posta sotto
2778 osservazione, in tal caso essi contengono rispettivamente il nome del file
2779 (come pathname relativo alla directory osservata) e la relativa dimensione in
2780 byte. Il campo \var{name} viene sempre restituito come stringa terminata da
2781 NUL, con uno o più zeri di terminazione, a seconda di eventuali necessità di
2782 allineamento del risultato, ed il valore di \var{len} corrisponde al totale
2783 della dimensione di \var{name}, zeri aggiuntivi compresi. La stringa con il
2784 nome del file viene restituita nella lettura subito dopo la struttura
2785 \struct{inotify\_event}; questo significa che le dimensioni di ciascun evento
2786 di \textit{inotify} saranno pari a \code{sizeof(\struct{inotify\_event}) +
2787   len}.
2788
2789 Vediamo allora un esempio dell'uso dell'interfaccia di \textit{inotify} con un
2790 semplice programma che permette di mettere sotto osservazione uno o più file e
2791 directory. Il programma si chiama \texttt{inotify\_monitor.c} ed il codice
2792 completo è disponibile coi sorgenti allegati alla guida, il corpo principale
2793 del programma, che non contiene la sezione di gestione delle opzioni e le
2794 funzioni di ausilio è riportato in fig.~\ref{fig:inotify_monitor_example}.
2795
2796 \begin{figure}[!htbp]
2797   \footnotesize \centering
2798   \begin{minipage}[c]{15cm}
2799     \includecodesample{listati/inotify_monitor.c}
2800   \end{minipage}
2801   \normalsize
2802   \caption{Esempio di codice che usa l'interfaccia di \textit{inotify}.}
2803   \label{fig:inotify_monitor_example}
2804 \end{figure}
2805
2806 Una volta completata la scansione delle opzioni il corpo principale del
2807 programma inizia controllando (\texttt{\small 11--15}) che sia rimasto almeno
2808 un argomento che indichi quale file o directory mettere sotto osservazione (e
2809 qualora questo non avvenga esce stampando la pagina di aiuto); dopo di che
2810 passa (\texttt{\small 16--20}) all'inizializzazione di \textit{inotify}
2811 ottenendo con \func{inotify\_init} il relativo file descriptor (oppure usce in
2812 caso di errore).
2813
2814 Il passo successivo è aggiungere (\texttt{\small 21--30}) alla coda di
2815 notifica gli opportuni osservatori per ciascuno dei file o directory indicati
2816 all'invocazione del comando; questo viene fatto eseguendo un ciclo
2817 (\texttt{\small 22--29}) fintanto che la variabile \var{i}, inizializzata a
2818 zero (\texttt{\small 21}) all'inizio del ciclo, è minore del numero totale di
2819 argomenti rimasti. All'interno del ciclo si invoca (\texttt{\small 23})
2820 \func{inotify\_add\_watch} per ciascuno degli argomenti, usando la maschera
2821 degli eventi data dalla variabile \var{mask} (il cui valore viene impostato
2822 nella scansione delle opzioni), in caso di errore si esce dal programma
2823 altrimenti si incrementa l'indice (\texttt{\small 29}).
2824
2825 Completa l'inizializzazione di \textit{inotify} inizia il ciclo principale
2826 (\texttt{\small 32--56}) del programma, nel quale si resta in attesa degli
2827 eventi che si intendono osservare. Questo viene fatto eseguendo all'inizio del
2828 ciclo (\texttt{\small 33}) una \func{read} che si bloccherà fintanto che non
2829 si saranno verificati eventi. 
2830
2831 Dato che l'interfaccia di \textit{inotify} può riportare anche più eventi in
2832 una sola lettura, si è avuto cura di passare alla \func{read} un buffer di
2833 dimensioni adeguate, inizializzato in (\texttt{\small 7}) ad un valore di
2834 approssimativamente 512 eventi.\footnote{si ricordi che la quantità di dati
2835   restituita da \textit{inotify} è variabile a causa della diversa lunghezza
2836   del nome del file restituito insieme a \struct{inotify\_event}.} In caso di
2837 errore di lettura (\texttt{\small 35--40}) il programma esce con un messaggio
2838 di errore (\texttt{\small 37--39}), a meno che non si tratti di una
2839 interruzione della system call, nel qual caso (\texttt{\small 36}) si ripete la
2840 lettura.
2841
2842 Se la lettura è andata a buon fine invece si esegue un ciclo (\texttt{\small
2843   43--52}) per leggere tutti gli eventi restituiti, al solito si inizializza
2844 l'indice \var{i} a zero (\texttt{\small 42}) e si ripetono le operazioni
2845 (\texttt{\small 43}) fintanto che esso non supera il numero di byte restituiti
2846 in lettura. Per ciascun evento all'interno del ciclo si assegna\footnote{si
2847   noti come si sia eseguito un opportuno \textit{casting} del puntatore.} alla
2848 variabile \var{event} l'indirizzo nel buffer della corrispondente struttura
2849 \struct{inotify\_event} (\texttt{\small 44}), e poi si stampano il numero di
2850 \textit{watch descriptor} (\texttt{\small 45}) ed il file a cui questo fa
2851 riferimento (\texttt{\small 46}), ricavato dagli argomenti passati a riga di
2852 comando sfruttando il fatto che i \textit{watch descriptor} vengono assegnati
2853 in ordine progressivo crescente a partire da 1.
2854
2855 Qualora sia presente il riferimento ad un nome di file associato all'evento lo
2856 si stampa (\texttt{\small 47--49}); si noti come in questo caso si sia
2857 utilizzato il valore del campo \var{event->len} e non al fatto che
2858 \var{event->name} riporti o meno un puntatore nullo.\footnote{l'interfaccia
2859   infatti, qualora il nome non sia presente, non avvalora il campo
2860   \var{event->name}, che si troverà a contenere quello che era precedentemente
2861   presente nella rispettiva locazione di memoria, nel caso più comune il
2862   puntatore al nome di un file osservato in precedenza.} Si utilizza poi
2863 (\texttt{\small 50}) la funzione \code{printevent}, che interpreta il valore
2864 del campo \var{event->mask} per stampare il tipo di eventi
2865 accaduti.\footnote{per il relativo codice, che non riportiamo in quanto non
2866   essenziale alla comprensione dell'esempio, si possono utilizzare direttamente
2867   i sorgenti allegati alla guida.} Infine (\texttt{\small 51}) si provvede ad
2868 aggiornare l'indice \var{i} per farlo puntare all'evento successivo.
2869
2870 Se adesso usiamo il programma per mettere sotto osservazione una directory, e
2871 da un altro terminale eseguiamo il comando \texttt{ls} otterremo qualcosa del
2872 tipo di:
2873 \begin{verbatim}
2874 piccardi@gethen:~/gapil/sources$ ./inotify_monitor -a /home/piccardi/gapil/
2875 Watch descriptor 1
2876 Observed event on /home/piccardi/gapil/
2877 IN_OPEN, 
2878 Watch descriptor 1
2879 Observed event on /home/piccardi/gapil/
2880 IN_CLOSE_NOWRITE, 
2881 \end{verbatim}
2882
2883 I lettori più accorti si saranno resi conto che nel ciclo di lettura degli
2884 eventi appena illustrato non viene trattato il caso particolare in cui la
2885 funzione \func{read} restituisce in \var{nread} un valore nullo. Lo si è fatto
2886 perché con \textit{inotify} il ritorno di una \func{read} con un valore nullo
2887 avviene soltanto, come forma di avviso, quando si sia eseguita la funzione
2888 specificando un buffer di dimensione insufficiente a contenere anche un solo
2889 evento. Nel nostro caso le dimensioni erano senz'altro sufficienti, per cui
2890 tale evenienza non si verificherà mai.
2891
2892 Ci si potrà però chiedere cosa succede se il buffer è sufficiente per un
2893 evento, ma non per tutti gli eventi verificatisi. Come si potrà notare nel
2894 codice illustrato in precedenza non si è presa nessuna precauzione per
2895 verificare che non ci fossero stati troncamenti dei dati. Anche in questo caso
2896 il comportamento scelto è corretto, perché l'interfaccia di \textit{inotify}
2897 garantisce automaticamente, anche quando ne sono presenti in numero maggiore,
2898 di restituire soltanto il numero di eventi che possono rientrare completamente
2899 nelle dimensioni del buffer specificato.\footnote{si avrà cioè, facendo
2900   riferimento sempre al codice di fig.~\ref{fig:inotify_monitor_example}, che
2901   \var{read} sarà in genere minore delle dimensioni di \var{buffer} ed uguale
2902   soltanto qualora gli eventi corrispondano esattamente alle dimensioni di
2903   quest'ultimo.} Se gli eventi sono di più saranno restituiti solo quelli che
2904 entrano interamente nel buffer e gli altri saranno restituiti alla successiva
2905 chiamata di \func{read}.
2906
2907 Infine un'ultima caratteristica dell'interfaccia di \textit{inotify} è che gli
2908 eventi restituiti nella lettura formano una sequenza ordinata, è cioè
2909 garantito che se si esegue uno spostamento di un file gli eventi vengano
2910 generati nella sequenza corretta. L'interfaccia garantisce anche che se si
2911 verificano più eventi consecutivi identici (vale a dire con gli stessi valori
2912 dei campi \var{wd}, \var{mask}, \var{cookie}, e \var{name}) questi vengono
2913 raggruppati in un solo evento.
2914
2915 \itindend{inotify}
2916
2917 % TODO trattare fanotify, vedi http://lwn.net/Articles/339399/ e 
2918 % http://lwn.net/Articles/343346/ (incluso nel 2.6.36)
2919
2920
2921 \subsection{L'interfaccia POSIX per l'I/O asincrono}
2922 \label{sec:file_asyncronous_io}
2923
2924 Una modalità alternativa all'uso dell'\textit{I/O multiplexing} per gestione
2925 dell'I/O simultaneo su molti file è costituita dal cosiddetto \textsl{I/O
2926   asincrono}. Il concetto base dell'\textsl{I/O asincrono} è che le funzioni
2927 di I/O non attendono il completamento delle operazioni prima di ritornare,
2928 così che il processo non viene bloccato.  In questo modo diventa ad esempio
2929 possibile effettuare una richiesta preventiva di dati, in modo da poter
2930 effettuare in contemporanea le operazioni di calcolo e quelle di I/O.
2931
2932 Benché la modalità di apertura asincrona di un file possa risultare utile in
2933 varie occasioni (in particolar modo con i socket e gli altri file per i quali
2934 le funzioni di I/O sono \index{system~call~lente} system call lente), essa è
2935 comunque limitata alla notifica della disponibilità del file descriptor per le
2936 operazioni di I/O, e non ad uno svolgimento asincrono delle medesime.  Lo
2937 standard POSIX.1b definisce una interfaccia apposita per l'I/O asincrono vero
2938 e proprio, che prevede un insieme di funzioni dedicate per la lettura e la
2939 scrittura dei file, completamente separate rispetto a quelle usate
2940 normalmente.
2941
2942 In generale questa interfaccia è completamente astratta e può essere
2943 implementata sia direttamente nel kernel, che in user space attraverso l'uso
2944 di \itindex{thread} \textit{thread}. Per le versioni del kernel meno recenti
2945 esiste una implementazione di questa interfaccia fornita delle \acr{glibc},
2946 che è realizzata completamente in user space, ed è accessibile linkando i
2947 programmi con la libreria \file{librt}. Nelle versioni più recenti (a partire
2948 dalla 2.5.32) è stato introdotto direttamente nel kernel un nuovo layer per
2949 l'I/O asincrono.
2950
2951 Lo standard prevede che tutte le operazioni di I/O asincrono siano controllate
2952 attraverso l'uso di una apposita struttura \struct{aiocb} (il cui nome sta per
2953 \textit{asyncronous I/O control block}), che viene passata come argomento a
2954 tutte le funzioni dell'interfaccia. La sua definizione, come effettuata in
2955 \file{aio.h}, è riportata in fig.~\ref{fig:file_aiocb}. Nello steso file è
2956 definita la macro \macro{\_POSIX\_ASYNCHRONOUS\_IO}, che dichiara la
2957 disponibilità dell'interfaccia per l'I/O asincrono.
2958
2959 \begin{figure}[!htb]
2960   \footnotesize \centering
2961   \begin{minipage}[c]{15cm}
2962     \includestruct{listati/aiocb.h}
2963   \end{minipage} 
2964   \normalsize 
2965   \caption{La struttura \structd{aiocb}, usata per il controllo dell'I/O
2966     asincrono.}
2967   \label{fig:file_aiocb}
2968 \end{figure}
2969
2970 Le operazioni di I/O asincrono possono essere effettuate solo su un file già
2971 aperto; il file deve inoltre supportare la funzione \func{lseek}, pertanto
2972 terminali e pipe sono esclusi. Non c'è limite al numero di operazioni
2973 contemporanee effettuabili su un singolo file.  Ogni operazione deve
2974 inizializzare opportunamente un \textit{control block}.  Il file descriptor su
2975 cui operare deve essere specificato tramite il campo \var{aio\_fildes}; dato
2976 che più operazioni possono essere eseguita in maniera asincrona, il concetto
2977 di posizione corrente sul file viene a mancare; pertanto si deve sempre
2978 specificare nel campo \var{aio\_offset} la posizione sul file da cui i dati
2979 saranno letti o scritti.  Nel campo \var{aio\_buf} deve essere specificato
2980 l'indirizzo del buffer usato per l'I/O, ed in \var{aio\_nbytes} la lunghezza
2981 del blocco di dati da trasferire.
2982
2983 Il campo \var{aio\_reqprio} permette di impostare la priorità delle operazioni
2984 di I/O.\footnote{in generale perché ciò sia possibile occorre che la
2985   piattaforma supporti questa caratteristica, questo viene indicato definendo
2986   le macro \macro{\_POSIX\_PRIORITIZED\_IO}, e
2987   \macro{\_POSIX\_PRIORITY\_SCHEDULING}.} La priorità viene impostata a
2988 partire da quella del processo chiamante (vedi sez.~\ref{sec:proc_priority}),
2989 cui viene sottratto il valore di questo campo.  Il campo
2990 \var{aio\_lio\_opcode} è usato solo dalla funzione \func{lio\_listio}, che,
2991 come vedremo, permette di eseguire con una sola chiamata una serie di
2992 operazioni, usando un vettore di \textit{control block}. Tramite questo campo
2993 si specifica quale è la natura di ciascuna di esse.
2994
2995 Infine il campo \var{aio\_sigevent} è una struttura di tipo \struct{sigevent}
2996 (illustrata in in fig.~\ref{fig:struct_sigevent}) che serve a specificare il
2997 modo in cui si vuole che venga effettuata la notifica del completamento delle
2998 operazioni richieste; per la trattazione delle modalità di utilizzo della
2999 stessa si veda quanto già visto in proposito in sez.~\ref{sec:sig_timer_adv}.
3000
3001 Le due funzioni base dell'interfaccia per l'I/O asincrono sono
3002 \funcd{aio\_read} ed \funcd{aio\_write}.  Esse permettono di richiedere una
3003 lettura od una scrittura asincrona di dati, usando la struttura \struct{aiocb}
3004 appena descritta; i rispettivi prototipi sono:
3005 \begin{functions}
3006   \headdecl{aio.h}
3007
3008   \funcdecl{int aio\_read(struct aiocb *aiocbp)}
3009   Richiede una lettura asincrona secondo quanto specificato con \param{aiocbp}.
3010
3011   \funcdecl{int aio\_write(struct aiocb *aiocbp)}
3012   Richiede una scrittura asincrona secondo quanto specificato con
3013   \param{aiocbp}.
3014   
3015   \bodydesc{Le funzioni restituiscono 0 in caso di successo, e -1 in caso di
3016     errore, nel qual caso \var{errno} assumerà uno dei valori:
3017   \begin{errlist}
3018   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato.
3019   \item[\errcode{ENOSYS}] la funzione non è implementata.
3020   \item[\errcode{EINVAL}] si è specificato un valore non valido per i campi
3021     \var{aio\_offset} o \var{aio\_reqprio} di \param{aiocbp}.
3022   \item[\errcode{EAGAIN}] la coda delle richieste è momentaneamente piena.
3023   \end{errlist}
3024 }
3025 \end{functions}
3026
3027 Entrambe le funzioni ritornano immediatamente dopo aver messo in coda la
3028 richiesta, o in caso di errore. Non è detto che gli errori \errcode{EBADF} ed
3029 \errcode{EINVAL} siano rilevati immediatamente al momento della chiamata,
3030 potrebbero anche emergere nelle fasi successive delle operazioni. Lettura e
3031 scrittura avvengono alla posizione indicata da \var{aio\_offset}, a meno che
3032 il file non sia stato aperto in \itindex{append~mode} \textit{append mode}
3033 (vedi sez.~\ref{sec:file_open}), nel qual caso le scritture vengono effettuate
3034 comunque alla fine de file, nell'ordine delle chiamate a \func{aio\_write}.
3035
3036 Si tenga inoltre presente che deallocare la memoria indirizzata da
3037 \param{aiocbp} o modificarne i valori prima della conclusione di una
3038 operazione può dar luogo a risultati impredicibili, perché l'accesso ai vari
3039 campi per eseguire l'operazione può avvenire in un momento qualsiasi dopo la
3040 richiesta.  Questo comporta che non si devono usare per \param{aiocbp}
3041 variabili automatiche e che non si deve riutilizzare la stessa struttura per
3042 un'altra operazione fintanto che la precedente non sia stata ultimata. In
3043 generale per ogni operazione si deve utilizzare una diversa struttura
3044 \struct{aiocb}.
3045
3046 Dato che si opera in modalità asincrona, il successo di \func{aio\_read} o
3047 \func{aio\_write} non implica che le operazioni siano state effettivamente
3048 eseguite in maniera corretta; per verificarne l'esito l'interfaccia prevede
3049 altre due funzioni, che permettono di controllare lo stato di esecuzione. La
3050 prima è \funcd{aio\_error}, che serve a determinare un eventuale stato di
3051 errore; il suo prototipo è:
3052 \begin{prototype}{aio.h}
3053   {int aio\_error(const struct aiocb *aiocbp)}  
3054
3055   Determina lo stato di errore delle operazioni di I/O associate a
3056   \param{aiocbp}.
3057   
3058   \bodydesc{La funzione restituisce 0 se le operazioni si sono concluse con
3059     successo, altrimenti restituisce il codice di errore relativo al loro
3060     fallimento.}
3061 \end{prototype}
3062
3063 Se l'operazione non si è ancora completata viene restituito l'errore di
3064 \errcode{EINPROGRESS}. La funzione ritorna zero quando l'operazione si è
3065 conclusa con successo, altrimenti restituisce il codice dell'errore
3066 verificatosi, ed esegue la corrispondente impostazione di \var{errno}. Il
3067 codice può essere sia \errcode{EINVAL} ed \errcode{EBADF}, dovuti ad un valore
3068 errato per \param{aiocbp}, che uno degli errori possibili durante l'esecuzione
3069 dell'operazione di I/O richiesta, nel qual caso saranno restituiti, a seconda
3070 del caso, i codici di errore delle system call \func{read}, \func{write} e
3071 \func{fsync}.
3072
3073 Una volta che si sia certi che le operazioni siano state concluse (cioè dopo
3074 che una chiamata ad \func{aio\_error} non ha restituito
3075 \errcode{EINPROGRESS}), si potrà usare la funzione \funcd{aio\_return}, che
3076 permette di verificare il completamento delle operazioni di I/O asincrono; il
3077 suo prototipo è:
3078 \begin{prototype}{aio.h}
3079 {ssize\_t aio\_return(const struct aiocb *aiocbp)} 
3080
3081 Recupera il valore dello stato di ritorno delle operazioni di I/O associate a
3082 \param{aiocbp}.
3083   
3084 \bodydesc{La funzione restituisce lo stato di uscita dell'operazione
3085   eseguita.}
3086 \end{prototype}
3087
3088 La funzione deve essere chiamata una sola volte per ciascuna operazione
3089 asincrona, essa infatti fa sì che il sistema rilasci le risorse ad essa
3090 associate. É per questo motivo che occorre chiamare la funzione solo dopo che
3091 l'operazione cui \param{aiocbp} fa riferimento si è completata. Una chiamata
3092 precedente il completamento delle operazioni darebbe risultati indeterminati.
3093
3094 La funzione restituisce il valore di ritorno relativo all'operazione eseguita,
3095 così come ricavato dalla sottostante system call (il numero di byte letti,
3096 scritti o il valore di ritorno di \func{fsync}).  É importante chiamare sempre
3097 questa funzione, altrimenti le risorse disponibili per le operazioni di I/O
3098 asincrono non verrebbero liberate, rischiando di arrivare ad un loro
3099 esaurimento.
3100
3101 Oltre alle operazioni di lettura e scrittura l'interfaccia POSIX.1b mette a
3102 disposizione un'altra operazione, quella di sincronizzazione dell'I/O,
3103 compiuta dalla funzione \funcd{aio\_fsync}, che ha lo stesso effetto della
3104 analoga \func{fsync}, ma viene eseguita in maniera asincrona; il suo prototipo
3105 è:
3106 \begin{prototype}{aio.h}
3107 {int aio\_fsync(int op, struct aiocb *aiocbp)} 
3108
3109 Richiede la sincronizzazione dei dati per il file indicato da \param{aiocbp}.
3110   
3111 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
3112   errore, che può essere, con le stesse modalità di \func{aio\_read},
3113   \errval{EAGAIN}, \errval{EBADF} o \errval{EINVAL}.}
3114 \end{prototype}
3115
3116 La funzione richiede la sincronizzazione delle operazioni di I/O, ritornando
3117 immediatamente. L'esecuzione effettiva della sincronizzazione dovrà essere
3118 verificata con \func{aio\_error} e \func{aio\_return} come per le operazioni
3119 di lettura e scrittura. L'argomento \param{op} permette di indicare la
3120 modalità di esecuzione, se si specifica il valore \const{O\_DSYNC} le
3121 operazioni saranno completate con una chiamata a \func{fdatasync}, se si
3122 specifica \const{O\_SYNC} con una chiamata a \func{fsync} (per i dettagli vedi
3123 sez.~\ref{sec:file_sync}).
3124
3125 Il successo della chiamata assicura la sincronizzazione delle operazioni fino
3126 allora richieste, niente è garantito riguardo la sincronizzazione dei dati
3127 relativi ad eventuali operazioni richieste successivamente. Se si è
3128 specificato un meccanismo di notifica questo sarà innescato una volta che le
3129 operazioni di sincronizzazione dei dati saranno completate.
3130
3131 In alcuni casi può essere necessario interrompere le operazioni (in genere
3132 quando viene richiesta un'uscita immediata dal programma), per questo lo
3133 standard POSIX.1b prevede una funzione apposita, \funcd{aio\_cancel}, che
3134 permette di cancellare una operazione richiesta in precedenza; il suo
3135 prototipo è:
3136 \begin{prototype}{aio.h}
3137 {int aio\_cancel(int fildes, struct aiocb *aiocbp)} 
3138
3139 Richiede la cancellazione delle operazioni sul file \param{fildes} specificate
3140 da \param{aiocbp}.
3141   
3142 \bodydesc{La funzione restituisce il risultato dell'operazione con un codice
3143   di positivo, e -1 in caso di errore, che avviene qualora si sia specificato
3144   un valore non valido di \param{fildes}, imposta \var{errno} al valore
3145   \errval{EBADF}.}
3146 \end{prototype}
3147
3148 La funzione permette di cancellare una operazione specifica sul file
3149 \param{fildes}, o tutte le operazioni pendenti, specificando \val{NULL} come
3150 valore di \param{aiocbp}.  Quando una operazione viene cancellata una
3151 successiva chiamata ad \func{aio\_error} riporterà \errcode{ECANCELED} come
3152 codice di errore, ed il suo codice di ritorno sarà -1, inoltre il meccanismo
3153 di notifica non verrà invocato. Se si specifica una operazione relativa ad un
3154 altro file descriptor il risultato è indeterminato.  In caso di successo, i
3155 possibili valori di ritorno per \func{aio\_cancel} (anch'essi definiti in
3156 \file{aio.h}) sono tre:
3157 \begin{basedescript}{\desclabelwidth{3.0cm}}
3158 \item[\const{AIO\_ALLDONE}] indica che le operazioni di cui si è richiesta la
3159   cancellazione sono state già completate,
3160   
3161 \item[\const{AIO\_CANCELED}] indica che tutte le operazioni richieste sono
3162   state cancellate,  
3163   
3164 \item[\const{AIO\_NOTCANCELED}] indica che alcune delle operazioni erano in
3165   corso e non sono state cancellate.
3166 \end{basedescript}
3167
3168 Nel caso si abbia \const{AIO\_NOTCANCELED} occorrerà chiamare
3169 \func{aio\_error} per determinare quali sono le operazioni effettivamente
3170 cancellate. Le operazioni che non sono state cancellate proseguiranno il loro
3171 corso normale, compreso quanto richiesto riguardo al meccanismo di notifica
3172 del loro avvenuto completamento.
3173
3174 Benché l'I/O asincrono preveda un meccanismo di notifica, l'interfaccia
3175 fornisce anche una apposita funzione, \funcd{aio\_suspend}, che permette di
3176 sospendere l'esecuzione del processo chiamante fino al completamento di una
3177 specifica operazione; il suo prototipo è:
3178 \begin{prototype}{aio.h}
3179 {int aio\_suspend(const struct aiocb * const list[], int nent, const struct
3180     timespec *timeout)}
3181   
3182   Attende, per un massimo di \param{timeout}, il completamento di una delle
3183   operazioni specificate da \param{list}.
3184   
3185   \bodydesc{La funzione restituisce 0 se una (o più) operazioni sono state
3186     completate, e -1 in caso di errore nel qual caso \var{errno} assumerà uno
3187     dei valori:
3188     \begin{errlist}
3189     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
3190       \param{timeout}.
3191     \item[\errcode{ENOSYS}] la funzione non è implementata.
3192     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
3193     \end{errlist}
3194   }
3195 \end{prototype}
3196
3197 La funzione permette di bloccare il processo fintanto che almeno una delle
3198 \param{nent} operazioni specificate nella lista \param{list} è completata, per
3199 un tempo massimo specificato da \param{timout}, o fintanto che non arrivi un
3200 segnale.\footnote{si tenga conto che questo segnale può anche essere quello
3201   utilizzato come meccanismo di notifica.} La lista deve essere inizializzata
3202 con delle strutture \struct{aiocb} relative ad operazioni effettivamente
3203 richieste, ma può contenere puntatori nulli, che saranno ignorati. In caso si
3204 siano specificati valori non validi l'effetto è indefinito.  Un valore
3205 \val{NULL} per \param{timout} comporta l'assenza di timeout.
3206
3207 Lo standard POSIX.1b infine ha previsto pure una funzione, \funcd{lio\_listio},
3208 che permette di effettuare la richiesta di una intera lista di operazioni di
3209 lettura o scrittura; il suo prototipo è:
3210 \begin{prototype}{aio.h}
3211   {int lio\_listio(int mode, struct aiocb * const list[], int nent, struct
3212     sigevent *sig)}
3213   
3214   Richiede l'esecuzione delle operazioni di I/O elencata da \param{list},
3215   secondo la modalità \param{mode}.
3216   
3217   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3218     errore, nel qual caso \var{errno} assumerà uno dei valori:
3219     \begin{errlist}
3220     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
3221       \param{timeout}.
3222     \item[\errcode{EINVAL}] si è passato un valore di \param{mode} non valido
3223       o un numero di operazioni \param{nent} maggiore di
3224       \const{AIO\_LISTIO\_MAX}.
3225     \item[\errcode{ENOSYS}] la funzione non è implementata.
3226     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
3227     \end{errlist}
3228   }
3229 \end{prototype}
3230
3231 La funzione esegue la richiesta delle \param{nent} operazioni indicate nella
3232 lista \param{list} che deve contenere gli indirizzi di altrettanti
3233 \textit{control block} opportunamente inizializzati; in particolare dovrà
3234 essere specificato il tipo di operazione con il campo \var{aio\_lio\_opcode},
3235 che può prendere i valori:
3236 \begin{basedescript}{\desclabelwidth{2.0cm}}
3237 \item[\const{LIO\_READ}]  si richiede una operazione di lettura.
3238 \item[\const{LIO\_WRITE}] si richiede una operazione di scrittura.
3239 \item[\const{LIO\_NOP}] non si effettua nessuna operazione.
3240 \end{basedescript}
3241 dove \const{LIO\_NOP} viene usato quando si ha a che fare con un vettore di
3242 dimensione fissa, per poter specificare solo alcune operazioni, o quando si
3243 sono dovute cancellare delle operazioni e si deve ripetere la richiesta per
3244 quelle non completate.
3245
3246 L'argomento \param{mode} controlla il comportamento della funzione, se viene
3247 usato il valore \const{LIO\_WAIT} la funzione si blocca fino al completamento
3248 di tutte le operazioni richieste; se si usa \const{LIO\_NOWAIT} la funzione
3249 ritorna immediatamente dopo aver messo in coda tutte le richieste. In tal caso
3250 il chiamante può richiedere la notifica del completamento di tutte le
3251 richieste, impostando l'argomento \param{sig} in maniera analoga a come si fa
3252 per il campo \var{aio\_sigevent} di \struct{aiocb}.
3253
3254
3255 \section{Altre modalità di I/O avanzato}
3256 \label{sec:file_advanced_io}
3257
3258 Oltre alle precedenti modalità di \textit{I/O multiplexing} e \textsl{I/O
3259   asincrono}, esistono altre funzioni che implementano delle modalità di
3260 accesso ai file più evolute rispetto alle normali funzioni di lettura e
3261 scrittura che abbiamo esaminato in sez.~\ref{sec:file_base_func}. In questa
3262 sezione allora prenderemo in esame le interfacce per l'\textsl{I/O mappato in
3263   memoria}, per l'\textsl{I/O vettorizzato} e altre funzioni di I/O avanzato.
3264
3265
3266 \subsection{File mappati in memoria}
3267 \label{sec:file_memory_map}
3268
3269 \itindbeg{memory~mapping}
3270 Una modalità alternativa di I/O, che usa una interfaccia completamente diversa
3271 rispetto a quella classica vista in cap.~\ref{cha:file_unix_interface}, è il
3272 cosiddetto \textit{memory-mapped I/O}, che, attraverso il meccanismo della
3273 \textsl{paginazione} \index{paginazione} usato dalla memoria virtuale (vedi
3274 sez.~\ref{sec:proc_mem_gen}), permette di \textsl{mappare} il contenuto di un
3275 file in una sezione dello spazio di indirizzi del processo che lo ha allocato.
3276
3277 \begin{figure}[htb]
3278   \centering
3279   \includegraphics[width=12cm]{img/mmap_layout}
3280   \caption{Disposizione della memoria di un processo quando si esegue la
3281   mappatura in memoria di un file.}
3282   \label{fig:file_mmap_layout}
3283 \end{figure}
3284
3285 Il meccanismo è illustrato in fig.~\ref{fig:file_mmap_layout}, una sezione del
3286 file viene \textsl{mappata} direttamente nello spazio degli indirizzi del
3287 programma.  Tutte le operazioni di lettura e scrittura su variabili contenute
3288 in questa zona di memoria verranno eseguite leggendo e scrivendo dal contenuto
3289 del file attraverso il sistema della memoria virtuale \index{memoria~virtuale}
3290 che in maniera analoga a quanto avviene per le pagine che vengono salvate e
3291 rilette nella swap, si incaricherà di sincronizzare il contenuto di quel
3292 segmento di memoria con quello del file mappato su di esso.  Per questo motivo
3293 si può parlare tanto di \textsl{file mappato in memoria}, quanto di
3294 \textsl{memoria mappata su file}.
3295
3296 L'uso del \textit{memory-mapping} comporta una notevole semplificazione delle
3297 operazioni di I/O, in quanto non sarà più necessario utilizzare dei buffer
3298 intermedi su cui appoggiare i dati da traferire, poiché questi potranno essere
3299 acceduti direttamente nella sezione di memoria mappata; inoltre questa
3300 interfaccia è più efficiente delle usuali funzioni di I/O, in quanto permette
3301 di caricare in memoria solo le parti del file che sono effettivamente usate ad
3302 un dato istante.
3303
3304 Infatti, dato che l'accesso è fatto direttamente attraverso la
3305 \index{memoria~virtuale} memoria virtuale, la sezione di memoria mappata su
3306 cui si opera sarà a sua volta letta o scritta sul file una pagina alla volta e
3307 solo per le parti effettivamente usate, il tutto in maniera completamente
3308 trasparente al processo; l'accesso alle pagine non ancora caricate avverrà
3309 allo stesso modo con cui vengono caricate in memoria le pagine che sono state
3310 salvate sullo swap.
3311
3312 Infine in situazioni in cui la memoria è scarsa, le pagine che mappano un file
3313 vengono salvate automaticamente, così come le pagine dei programmi vengono
3314 scritte sulla swap; questo consente di accedere ai file su dimensioni il cui
3315 solo limite è quello dello spazio di indirizzi disponibile, e non della
3316 memoria su cui possono esserne lette delle porzioni.
3317
3318 L'interfaccia POSIX implementata da Linux prevede varie funzioni per la
3319 gestione del \textit{memory mapped I/O}, la prima di queste, che serve ad
3320 eseguire la mappatura in memoria di un file, è \funcd{mmap}; il suo prototipo
3321 è:
3322 \begin{functions}
3323   
3324   \headdecl{unistd.h}
3325   \headdecl{sys/mman.h} 
3326
3327   \funcdecl{void * mmap(void * start, size\_t length, int prot, int flags, int
3328     fd, off\_t offset)}
3329   
3330   Esegue la mappatura in memoria della sezione specificata del file \param{fd}.
3331   
3332   \bodydesc{La funzione restituisce il puntatore alla zona di memoria mappata
3333     in caso di successo, e \const{MAP\_FAILED} (-1) in caso di errore, nel
3334     qual caso \var{errno} assumerà uno dei valori:
3335     \begin{errlist}
3336     \item[\errcode{EBADF}] il file descriptor non è valido, e non si è usato
3337       \const{MAP\_ANONYMOUS}.
3338     \item[\errcode{EACCES}] o \param{fd} non si riferisce ad un file regolare,
3339       o si è usato \const{MAP\_PRIVATE} ma \param{fd} non è aperto in lettura,
3340       o si è usato \const{MAP\_SHARED} e impostato \const{PROT\_WRITE} ed
3341       \param{fd} non è aperto in lettura/scrittura, o si è impostato
3342       \const{PROT\_WRITE} ed \param{fd} è in \textit{append-only}.
3343     \item[\errcode{EINVAL}] i valori di \param{start}, \param{length} o
3344       \param{offset} non sono validi (o troppo grandi o non allineati sulla
3345       dimensione delle pagine).
3346     \item[\errcode{ETXTBSY}] si è impostato \const{MAP\_DENYWRITE} ma
3347       \param{fd} è aperto in scrittura.
3348     \item[\errcode{EAGAIN}] il file è bloccato, o si è bloccata troppa memoria
3349       rispetto a quanto consentito dai limiti di sistema (vedi
3350       sez.~\ref{sec:sys_resource_limit}).
3351     \item[\errcode{ENOMEM}] non c'è memoria o si è superato il limite sul
3352       numero di mappature possibili.
3353     \item[\errcode{ENODEV}] il filesystem di \param{fd} non supporta il memory
3354       mapping.
3355     \item[\errcode{EPERM}] l'argomento \param{prot} ha richiesto
3356       \const{PROT\_EXEC}, ma il filesystem di \param{fd} è montato con
3357       l'opzione \texttt{noexec}.
3358     \item[\errcode{ENFILE}] si è superato il limite del sistema sul numero di
3359       file aperti (vedi sez.~\ref{sec:sys_resource_limit}).
3360     \end{errlist}
3361   }
3362 \end{functions}
3363
3364 La funzione richiede di mappare in memoria la sezione del file \param{fd} a
3365 partire da \param{offset} per \param{lenght} byte, preferibilmente
3366 all'indirizzo \param{start}. Il valore di \param{offset} deve essere un
3367 multiplo della dimensione di una pagina di memoria. 
3368
3369 \begin{table}[htb]
3370   \centering
3371   \footnotesize
3372   \begin{tabular}[c]{|l|l|}
3373     \hline
3374     \textbf{Valore} & \textbf{Significato} \\
3375     \hline
3376     \hline
3377     \const{PROT\_EXEC}  & Le pagine possono essere eseguite.\\
3378     \const{PROT\_READ}  & Le pagine possono essere lette.\\
3379     \const{PROT\_WRITE} & Le pagine possono essere scritte.\\
3380     \const{PROT\_NONE}  & L'accesso alle pagine è vietato.\\
3381     \hline    
3382   \end{tabular}
3383   \caption{Valori dell'argomento \param{prot} di \func{mmap}, relativi alla
3384     protezione applicate alle pagine del file mappate in memoria.}
3385   \label{tab:file_mmap_prot}
3386 \end{table}
3387
3388 Il valore dell'argomento \param{prot} indica la protezione\footnote{come
3389   accennato in sez.~\ref{sec:proc_memory} in Linux la memoria reale è divisa
3390   in pagine: ogni processo vede la sua memoria attraverso uno o più segmenti
3391   lineari di memoria virtuale.  Per ciascuno di questi segmenti il kernel
3392   mantiene nella \itindex{page~table} \textit{page table} la mappatura sulle
3393   pagine di memoria reale, ed le modalità di accesso (lettura, esecuzione,
3394   scrittura); una loro violazione causa quella una \itindex{segment~violation}
3395   \textit{segment violation}, e la relativa emissione del segnale
3396   \const{SIGSEGV}.} da applicare al segmento di memoria e deve essere
3397 specificato come maschera binaria ottenuta dall'OR di uno o più dei valori
3398 riportati in tab.~\ref{tab:file_mmap_prot}; il valore specificato deve essere
3399 compatibile con la modalità di accesso con cui si è aperto il file.
3400
3401 L'argomento \param{flags} specifica infine qual è il tipo di oggetto mappato,
3402 le opzioni relative alle modalità con cui è effettuata la mappatura e alle
3403 modalità con cui le modifiche alla memoria mappata vengono condivise o
3404 mantenute private al processo che le ha effettuate. Deve essere specificato
3405 come maschera binaria ottenuta dall'OR di uno o più dei valori riportati in
3406 tab.~\ref{tab:file_mmap_flag}.
3407
3408 \begin{table}[htb]
3409   \centering
3410   \footnotesize
3411   \begin{tabular}[c]{|l|p{11cm}|}
3412     \hline
3413     \textbf{Valore} & \textbf{Significato} \\
3414     \hline
3415     \hline
3416     \const{MAP\_FIXED}     & Non permette di restituire un indirizzo diverso
3417                              da \param{start}, se questo non può essere usato
3418                              \func{mmap} fallisce. Se si imposta questo flag il
3419                              valore di \param{start} deve essere allineato
3420                              alle dimensioni di una pagina.\\
3421     \const{MAP\_SHARED}    & I cambiamenti sulla memoria mappata vengono
3422                              riportati sul file e saranno immediatamente
3423                              visibili agli altri processi che mappano lo stesso
3424                              file.\footnotemark Il file su disco però non sarà
3425                              aggiornato fino alla chiamata di \func{msync} o
3426                              \func{munmap}), e solo allora le modifiche saranno
3427                              visibili per l'I/O convenzionale. Incompatibile
3428                              con \const{MAP\_PRIVATE}.\\ 
3429     \const{MAP\_PRIVATE}   & I cambiamenti sulla memoria mappata non vengono
3430                              riportati sul file. Ne viene fatta una copia
3431                              privata cui solo il processo chiamante ha
3432                              accesso.  Le modifiche sono mantenute attraverso
3433                              il meccanismo del \textit{copy on
3434                                write} \itindex{copy~on~write} e 
3435                              salvate su swap in caso di necessità. Non è
3436                              specificato se i cambiamenti sul file originale
3437                              vengano riportati sulla regione
3438                              mappata. Incompatibile con \const{MAP\_SHARED}.\\
3439     \const{MAP\_DENYWRITE} & In Linux viene ignorato per evitare
3440                              \textit{DoS} \itindex{Denial~of~Service~(DoS)}
3441                              (veniva usato per segnalare che tentativi di
3442                              scrittura sul file dovevano fallire con
3443                              \errcode{ETXTBSY}).\\ 
3444     \const{MAP\_EXECUTABLE}& Ignorato.\\
3445     \const{MAP\_NORESERVE} & Si usa con \const{MAP\_PRIVATE}. Non riserva
3446                              delle pagine di swap ad uso del meccanismo del
3447                              \textit{copy on write} \itindex{copy~on~write}
3448                              per mantenere le
3449                              modifiche fatte alla regione mappata, in
3450                              questo caso dopo una scrittura, se non c'è più
3451                              memoria disponibile, si ha l'emissione di
3452                              un \const{SIGSEGV}.\\
3453     \const{MAP\_LOCKED}    & Se impostato impedisce lo swapping delle pagine
3454                              mappate.\\
3455     \const{MAP\_GROWSDOWN} & Usato per gli \itindex{stack} \textit{stack}. 
3456                              Indica che la mappatura deve essere effettuata 
3457                              con gli indirizzi crescenti verso il basso.\\
3458     \const{MAP\_ANONYMOUS} & La mappatura non è associata a nessun file. Gli
3459                              argomenti \param{fd} e \param{offset} sono
3460                              ignorati.\footnotemark\\
3461     \const{MAP\_ANON}      & Sinonimo di \const{MAP\_ANONYMOUS}, deprecato.\\
3462     \const{MAP\_FILE}      & Valore di compatibilità, ignorato.\\
3463     \const{MAP\_32BIT}     & Esegue la mappatura sui primi 2Gb dello spazio
3464                              degli indirizzi, viene supportato solo sulle
3465                              piattaforme \texttt{x86-64} per compatibilità con
3466                              le applicazioni a 32 bit. Viene ignorato se si è
3467                              richiesto \const{MAP\_FIXED}.\\
3468     \const{MAP\_POPULATE}  & Esegue il \itindex{prefaulting}
3469                              \textit{prefaulting} delle pagine di memoria
3470                              necessarie alla mappatura.\\
3471     \const{MAP\_NONBLOCK}  & Esegue un \textit{prefaulting} più limitato che
3472                              non causa I/O.\footnotemark\\
3473 %     \const{MAP\_DONTEXPAND}& Non consente una successiva espansione dell'area
3474 %                              mappata con \func{mremap}, proposto ma pare non
3475 %                              implementato.\\
3476     \hline
3477   \end{tabular}
3478   \caption{Valori possibili dell'argomento \param{flag} di \func{mmap}.}
3479   \label{tab:file_mmap_flag}
3480 \end{table}
3481
3482 \footnotetext[68]{dato che tutti faranno riferimento alle stesse pagine di
3483   memoria.}  
3484
3485 \footnotetext[69]{l'uso di questo flag con \const{MAP\_SHARED} è stato
3486   implementato in Linux a partire dai kernel della serie 2.4.x; esso consente
3487   di creare segmenti di memoria condivisa e torneremo sul suo utilizzo in
3488   sez.~\ref{sec:ipc_mmap_anonymous}.}
3489
3490 \footnotetext{questo flag ed il precedente \const{MAP\_POPULATE} sono stati
3491   introdotti nel kernel 2.5.46 insieme alla mappatura non lineare di cui
3492   parleremo più avanti.}
3493
3494 Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
3495 piuttosto complessi, essi si possono comprendere solo tenendo presente che
3496 tutto quanto è comunque basato sul meccanismo della \index{memoria~virtuale}
3497 memoria virtuale. Questo comporta allora una serie di conseguenze. La più
3498 ovvia è che se si cerca di scrivere su una zona mappata in sola lettura si
3499 avrà l'emissione di un segnale di violazione di accesso (\const{SIGSEGV}),
3500 dato che i permessi sul segmento di memoria relativo non consentono questo
3501 tipo di accesso.
3502
3503 È invece assai diversa la questione relativa agli accessi al di fuori della
3504 regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
3505 ritenere che anch'essi debbano generare un segnale di violazione di accesso;
3506 questo però non tiene conto del fatto che, essendo basata sul meccanismo della
3507 \index{paginazione} paginazione, la mappatura in memoria non può che essere
3508 eseguita su un segmento di dimensioni rigorosamente multiple di quelle di una
3509 pagina, ed in generale queste potranno non corrispondere alle dimensioni
3510 effettive del file o della sezione che si vuole mappare.
3511
3512 \begin{figure}[!htb] 
3513   \centering
3514   \includegraphics[height=6cm]{img/mmap_boundary}
3515   \caption{Schema della mappatura in memoria di una sezione di file di
3516     dimensioni non corrispondenti al bordo di una pagina.}
3517   \label{fig:file_mmap_boundary}
3518 \end{figure}
3519
3520 Il caso più comune è quello illustrato in fig.~\ref{fig:file_mmap_boundary},
3521 in cui la sezione di file non rientra nei confini di una pagina: in tal caso
3522 verrà il file sarà mappato su un segmento di memoria che si estende fino al
3523 bordo della pagina successiva.
3524
3525 In questo caso è possibile accedere a quella zona di memoria che eccede le
3526 dimensioni specificate da \param{lenght}, senza ottenere un \const{SIGSEGV}
3527 poiché essa è presente nello spazio di indirizzi del processo, anche se non è
3528 mappata sul file. Il comportamento del sistema è quello di restituire un
3529 valore nullo per quanto viene letto, e di non riportare su file quanto viene
3530 scritto.
3531
3532 Un caso più complesso è quello che si viene a creare quando le dimensioni del
3533 file mappato sono più corte delle dimensioni della mappatura, oppure quando il
3534 file è stato troncato, dopo che è stato mappato, ad una dimensione inferiore a
3535 quella della mappatura in memoria.
3536
3537 In questa situazione, per la sezione di pagina parzialmente coperta dal
3538 contenuto del file, vale esattamente quanto visto in precedenza; invece per la
3539 parte che eccede, fino alle dimensioni date da \param{length}, l'accesso non
3540 sarà più possibile, ma il segnale emesso non sarà \const{SIGSEGV}, ma
3541 \const{SIGBUS}, come illustrato in fig.~\ref{fig:file_mmap_exceed}.
3542
3543 Non tutti i file possono venire mappati in memoria, dato che, come illustrato
3544 in fig.~\ref{fig:file_mmap_layout}, la mappatura introduce una corrispondenza
3545 biunivoca fra una sezione di un file ed una sezione di memoria. Questo
3546 comporta che ad esempio non è possibile mappare in memoria file descriptor
3547 relativi a pipe, socket e fifo, per i quali non ha senso parlare di
3548 \textsl{sezione}. Lo stesso vale anche per alcuni file di dispositivo, che non
3549 dispongono della relativa operazione \func{mmap} (si ricordi quanto esposto in
3550 sez.~\ref{sec:file_vfs_work}). Si tenga presente però che esistono anche casi
3551 di dispositivi (un esempio è l'interfaccia al ponte PCI-VME del chip Universe)
3552 che sono utilizzabili solo con questa interfaccia.
3553
3554 \begin{figure}[htb]
3555   \centering
3556   \includegraphics[height=6cm]{img/mmap_exceed}
3557   \caption{Schema della mappatura in memoria di file di dimensioni inferiori
3558     alla lunghezza richiesta.}
3559   \label{fig:file_mmap_exceed}
3560 \end{figure}
3561
3562 Dato che passando attraverso una \func{fork} lo spazio di indirizzi viene
3563 copiato integralmente, i file mappati in memoria verranno ereditati in maniera
3564 trasparente dal processo figlio, mantenendo gli stessi attributi avuti nel
3565 padre; così se si è usato \const{MAP\_SHARED} padre e figlio accederanno allo
3566 stesso file in maniera condivisa, mentre se si è usato \const{MAP\_PRIVATE}
3567 ciascuno di essi manterrà una sua versione privata indipendente. Non c'è
3568 invece nessun passaggio attraverso una \func{exec}, dato che quest'ultima
3569 sostituisce tutto lo spazio degli indirizzi di un processo con quello di un
3570 nuovo programma.
3571
3572 Quando si effettua la mappatura di un file vengono pure modificati i tempi ad
3573 esso associati (di cui si è trattato in sez.~\ref{sec:file_file_times}). Il
3574 valore di \var{st\_atime} può venir cambiato in qualunque istante a partire
3575 dal momento in cui la mappatura è stata effettuata: il primo riferimento ad
3576 una pagina mappata su un file aggiorna questo tempo.  I valori di
3577 \var{st\_ctime} e \var{st\_mtime} possono venir cambiati solo quando si è
3578 consentita la scrittura sul file (cioè per un file mappato con
3579 \const{PROT\_WRITE} e \const{MAP\_SHARED}) e sono aggiornati dopo la scrittura
3580 o in corrispondenza di una eventuale \func{msync}.
3581
3582 Dato per i file mappati in memoria le operazioni di I/O sono gestite
3583 direttamente dalla \index{memoria~virtuale}memoria virtuale, occorre essere
3584 consapevoli delle interazioni che possono esserci con operazioni effettuate
3585 con l'interfaccia standard dei file di cap.~\ref{cha:file_unix_interface}. Il
3586 problema è che una volta che si è mappato un file, le operazioni di lettura e
3587 scrittura saranno eseguite sulla memoria, e riportate su disco in maniera
3588 autonoma dal sistema della memoria virtuale.
3589
3590 Pertanto se si modifica un file con l'interfaccia standard queste modifiche
3591 potranno essere visibili o meno a seconda del momento in cui la memoria
3592 virtuale trasporterà dal disco in memoria quella sezione del file, perciò è
3593 del tutto imprevedibile il risultato della modifica di un file nei confronti
3594 del contenuto della memoria su cui è mappato.
3595
3596 Per questo, è sempre sconsigliabile eseguire scritture su file attraverso
3597 l'interfaccia standard quando lo si è mappato in memoria, è invece possibile
3598 usare l'interfaccia standard per leggere un file mappato in memoria, purché si
3599 abbia una certa cura; infatti l'interfaccia dell'I/O mappato in memoria mette
3600 a disposizione la funzione \funcd{msync} per sincronizzare il contenuto della
3601 memoria mappata con il file su disco; il suo prototipo è:
3602 \begin{functions}  
3603   \headdecl{unistd.h}
3604   \headdecl{sys/mman.h} 
3605
3606   \funcdecl{int msync(const void *start, size\_t length, int flags)}
3607   
3608   Sincronizza i contenuti di una sezione di un file mappato in memoria.
3609   
3610   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3611     errore nel qual caso \var{errno} assumerà uno dei valori:
3612     \begin{errlist}
3613     \item[\errcode{EINVAL}] o \param{start} non è multiplo di
3614       \const{PAGE\_SIZE}, o si è specificato un valore non valido per
3615       \param{flags}.
3616     \item[\errcode{EFAULT}] l'intervallo specificato non ricade in una zona
3617       precedentemente mappata.
3618     \end{errlist}
3619   }
3620 \end{functions}
3621
3622 La funzione esegue la sincronizzazione di quanto scritto nella sezione di
3623 memoria indicata da \param{start} e \param{offset}, scrivendo le modifiche sul
3624 file (qualora questo non sia già stato fatto).  Provvede anche ad aggiornare i
3625 relativi tempi di modifica. In questo modo si è sicuri che dopo l'esecuzione
3626 di \func{msync} le funzioni dell'interfaccia standard troveranno un contenuto
3627 del file aggiornato.
3628
3629
3630 \begin{table}[htb]
3631   \centering
3632   \footnotesize
3633   \begin{tabular}[c]{|l|p{11cm}|}
3634     \hline
3635     \textbf{Valore} & \textbf{Significato} \\
3636     \hline
3637     \hline
3638     \const{MS\_SYNC}       & richiede una sincronizzazione e ritorna soltanto
3639                              quando questa è stata completata.\\
3640     \const{MS\_ASYNC}      & richiede una sincronizzazione, ma ritorna subito 
3641                              non attendendo che questa sia finita.\\
3642     \const{MS\_INVALIDATE} & invalida le pagine per tutte le mappature
3643                              in memoria così da rendere necessaria una
3644                              rilettura immediata delle stesse.\\
3645     \hline
3646   \end{tabular}
3647   \caption{Valori possibili dell'argomento \param{flag} di \func{msync}.}
3648   \label{tab:file_mmap_msync}
3649 \end{table}
3650
3651 L'argomento \param{flag} è specificato come maschera binaria composta da un OR
3652 dei valori riportati in tab.~\ref{tab:file_mmap_msync}, di questi però
3653 \const{MS\_ASYNC} e \const{MS\_SYNC} sono incompatibili; con il primo valore
3654 infatti la funzione si limita ad inoltrare la richiesta di sincronizzazione al
3655 meccanismo della memoria virtuale, ritornando subito, mentre con il secondo
3656 attende che la sincronizzazione sia stata effettivamente eseguita. Il terzo
3657 flag fa sì che vengano invalidate, per tutte le mappature dello stesso file,
3658 le pagine di cui si è richiesta la sincronizzazione, così che esse possano
3659 essere immediatamente aggiornate con i nuovi valori.
3660
3661 Una volta che si sono completate le operazioni di I/O si può eliminare la
3662 mappatura della memoria usando la funzione \funcd{munmap}, il suo prototipo è:
3663 \begin{functions}  
3664   \headdecl{unistd.h}
3665   \headdecl{sys/mman.h} 
3666
3667   \funcdecl{int munmap(void *start, size\_t length)}
3668   
3669   Rilascia la mappatura sulla sezione di memoria specificata.
3670
3671   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3672     errore nel qual caso \var{errno} assumerà uno dei valori:
3673     \begin{errlist}
3674     \item[\errcode{EINVAL}] l'intervallo specificato non ricade in una zona
3675       precedentemente mappata.
3676     \end{errlist}
3677   }
3678 \end{functions}
3679
3680 La funzione cancella la mappatura per l'intervallo specificato con
3681 \param{start} e \param{length}; ogni successivo accesso a tale regione causerà
3682 un errore di accesso in memoria. L'argomento \param{start} deve essere
3683 allineato alle dimensioni di una pagina, e la mappatura di tutte le pagine
3684 contenute anche parzialmente nell'intervallo indicato, verrà rimossa.
3685 Indicare un intervallo che non contiene mappature non è un errore.  Si tenga
3686 presente inoltre che alla conclusione di un processo ogni pagina mappata verrà
3687 automaticamente rilasciata, mentre la chiusura del file descriptor usato per
3688 il \textit{memory mapping} non ha alcun effetto su di esso.
3689
3690 Lo standard POSIX prevede anche una funzione che permetta di cambiare le
3691 protezioni delle pagine di memoria; lo standard prevede che essa si applichi
3692 solo ai \textit{memory mapping} creati con \func{mmap}, ma nel caso di Linux
3693 la funzione può essere usata con qualunque pagina valida nella memoria
3694 virtuale. Questa funzione è \funcd{mprotect} ed il suo prototipo è:
3695 \begin{functions}  
3696 %  \headdecl{unistd.h}
3697   \headdecl{sys/mman.h} 
3698
3699   \funcdecl{int mprotect(const void *addr, size\_t len, int prot)}
3700   
3701   Modifica le protezioni delle pagine di memoria comprese nell'intervallo
3702   specificato.
3703
3704   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3705     errore nel qual caso \var{errno} assumerà uno dei valori:
3706     \begin{errlist}
3707     \item[\errcode{EINVAL}] il valore di \param{addr} non è valido o non è un
3708       multiplo di \const{PAGE\_SIZE}.
3709     \item[\errcode{EACCESS}] l'operazione non è consentita, ad esempio si è
3710       cercato di marcare con \const{PROT\_WRITE} un segmento di memoria cui si
3711       ha solo accesso in lettura.
3712 %     \item[\errcode{ENOMEM}] non è stato possibile allocare le risorse
3713 %       necessarie all'interno del kernel.
3714 %     \item[\errcode{EFAULT}] si è specificato un indirizzo di memoria non
3715 %       accessibile.
3716     \end{errlist}
3717     ed inoltre \errval{ENOMEM} ed \errval{EFAULT}.
3718   } 
3719 \end{functions}
3720
3721
3722 La funzione prende come argomenti un indirizzo di partenza in \param{addr},
3723 allineato alle dimensioni delle pagine di memoria, ed una dimensione
3724 \param{size}. La nuova protezione deve essere specificata in \param{prot} con
3725 una combinazione dei valori di tab.~\ref{tab:file_mmap_prot}.  La nuova
3726 protezione verrà applicata a tutte le pagine contenute, anche parzialmente,
3727 dall'intervallo fra \param{addr} e \param{addr}+\param{size}-1.
3728
3729 Infine Linux supporta alcune operazioni specifiche non disponibili su altri
3730 kernel unix-like. La prima di queste è la possibilità di modificare un
3731 precedente \textit{memory mapping}, ad esempio per espanderlo o restringerlo.
3732 Questo è realizzato dalla funzione \funcd{mremap}, il cui prototipo è:
3733 \begin{functions}  
3734   \headdecl{unistd.h}
3735   \headdecl{sys/mman.h} 
3736
3737   \funcdecl{void * mremap(void *old\_address, size\_t old\_size , size\_t
3738     new\_size, unsigned long flags)}
3739   
3740   Restringe o allarga una mappatura in memoria di un file.
3741
3742   \bodydesc{La funzione restituisce l'indirizzo alla nuova area di memoria in
3743     caso di successo od il valore \const{MAP\_FAILED} (pari a \texttt{(void *)
3744       -1}) in caso di errore, nel qual caso \var{errno} assumerà uno dei
3745     valori:
3746     \begin{errlist}
3747     \item[\errcode{EINVAL}] il valore di \param{old\_address} non è un
3748       puntatore valido.
3749     \item[\errcode{EFAULT}] ci sono indirizzi non validi nell'intervallo
3750       specificato da \param{old\_address} e \param{old\_size}, o ci sono altre
3751       mappature di tipo non corrispondente a quella richiesta.
3752     \item[\errcode{ENOMEM}] non c'è memoria sufficiente oppure l'area di
3753       memoria non può essere espansa all'indirizzo virtuale corrente, e non si
3754       è specificato \const{MREMAP\_MAYMOVE} nei flag.
3755     \item[\errcode{EAGAIN}] il segmento di memoria scelto è bloccato e non può
3756       essere rimappato.
3757     \end{errlist}
3758   }
3759 \end{functions}
3760
3761 La funzione richiede come argomenti \param{old\_address} (che deve essere
3762 allineato alle dimensioni di una pagina di memoria) che specifica il
3763 precedente indirizzo del \textit{memory mapping} e \param{old\_size}, che ne
3764 indica la dimensione. Con \param{new\_size} si specifica invece la nuova
3765 dimensione che si vuole ottenere. Infine l'argomento \param{flags} è una
3766 maschera binaria per i flag che controllano il comportamento della funzione.
3767 Il solo valore utilizzato è \const{MREMAP\_MAYMOVE}\footnote{per poter
3768   utilizzare questa costante occorre aver definito \macro{\_GNU\_SOURCE} prima
3769   di includere \file{sys/mman.h}.}  che consente di eseguire l'espansione
3770 anche quando non è possibile utilizzare il precedente indirizzo. Per questo
3771 motivo, se si è usato questo flag, la funzione può restituire un indirizzo
3772 della nuova zona di memoria che non è detto coincida con \param{old\_address}.
3773
3774 La funzione si appoggia al sistema della \index{memoria~virtuale} memoria
3775 virtuale per modificare l'associazione fra gli indirizzi virtuali del processo
3776 e le pagine di memoria, modificando i dati direttamente nella
3777 \itindex{page~table} \textit{page table} del processo. Come per
3778 \func{mprotect} la funzione può essere usata in generale, anche per pagine di
3779 memoria non corrispondenti ad un \textit{memory mapping}, e consente così di
3780 implementare la funzione \func{realloc} in maniera molto efficiente.
3781
3782 Una caratteristica comune a tutti i sistemi unix-like è che la mappatura in
3783 memoria di un file viene eseguita in maniera lineare, cioè parti successive di
3784 un file vengono mappate linearmente su indirizzi successivi in memoria.
3785 Esistono però delle applicazioni\footnote{in particolare la tecnica è usata
3786   dai database o dai programmi che realizzano macchine virtuali.} in cui è
3787 utile poter mappare sezioni diverse di un file su diverse zone di memoria.
3788
3789 Questo è ovviamente sempre possibile eseguendo ripetutamente la funzione
3790 \func{mmap} per ciascuna delle diverse aree del file che si vogliono mappare
3791 in sequenza non lineare,\footnote{ed in effetti è quello che veniva fatto
3792   anche con Linux prima che fossero introdotte queste estensioni.} ma questo
3793 approccio ha delle conseguenze molto pesanti in termini di prestazioni.
3794 Infatti per ciascuna mappatura in memoria deve essere definita nella
3795 \itindex{page~table} \textit{page table} del processo una nuova area di
3796 memoria virtuale\footnote{quella che nel gergo del kernel viene chiamata VMA
3797   (\textit{virtual memory area}).} che corrisponda alla mappatura, in modo che
3798 questa diventi visibile nello spazio degli indirizzi come illustrato in
3799 fig.~\ref{fig:file_mmap_layout}.
3800
3801 Quando un processo esegue un gran numero di mappature diverse\footnote{si può
3802   arrivare anche a centinaia di migliaia.} per realizzare a mano una mappatura
3803 non-lineare si avrà un accrescimento eccessivo della sua \itindex{page~table}
3804 \textit{page table}, e lo stesso accadrà per tutti gli altri processi che
3805 utilizzano questa tecnica. In situazioni in cui le applicazioni hanno queste
3806 esigenze si avranno delle prestazioni ridotte, dato che il kernel dovrà
3807 impiegare molte risorse\footnote{sia in termini di memoria interna per i dati
3808   delle \itindex{page~table} \textit{page table}, che di CPU per il loro
3809   aggiornamento.} solo per mantenere i dati di una gran quantità di
3810 \textit{memory mapping}.
3811
3812 Per questo motivo con il kernel 2.5.46 è stato introdotto, ad opera di Ingo
3813 Molnar, un meccanismo che consente la mappatura non-lineare. Anche questa è
3814 una caratteristica specifica di Linux, non presente in altri sistemi
3815 unix-like.  Diventa così possibile utilizzare una sola mappatura
3816 iniziale\footnote{e quindi una sola \textit{virtual memory area} nella
3817   \itindex{page~table} \textit{page table} del processo.} e poi rimappare a
3818 piacere all'interno di questa i dati del file. Ciò è possibile grazie ad una
3819 nuova system call, \funcd{remap\_file\_pages}, il cui prototipo è:
3820 \begin{functions}  
3821   \headdecl{sys/mman.h} 
3822
3823   \funcdecl{int remap\_file\_pages(void *start, size\_t size, int prot,
3824     ssize\_t pgoff, int flags)}
3825   
3826   Permette di rimappare non linearmente un precedente \textit{memory mapping}.
3827
3828   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3829     errore, nel qual caso \var{errno} assumerà uno dei valori:
3830     \begin{errlist}
3831     \item[\errcode{EINVAL}] si è usato un valore non valido per uno degli
3832       argomenti o \param{start} non fa riferimento ad un \textit{memory
3833         mapping} valido creato con \const{MAP\_SHARED}.
3834     \end{errlist}
3835   }
3836 \end{functions}
3837
3838 Per poter utilizzare questa funzione occorre anzitutto effettuare
3839 preliminarmente una chiamata a \func{mmap} con \const{MAP\_SHARED} per
3840 definire l'area di memoria che poi sarà rimappata non linearmente. Poi di
3841 chiamerà questa funzione per modificare le corrispondenze fra pagine di
3842 memoria e pagine del file; si tenga presente che \func{remap\_file\_pages}
3843 permette anche di mappare la stessa pagina di un file in più pagine della
3844 regione mappata.
3845
3846 La funzione richiede che si identifichi la sezione del file che si vuole
3847 riposizionare all'interno del \textit{memory mapping} con gli argomenti
3848 \param{pgoff} e \param{size}; l'argomento \param{start} invece deve indicare
3849 un indirizzo all'interno dell'area definita dall'\func{mmap} iniziale, a
3850 partire dal quale la sezione di file indicata verrà rimappata. L'argomento
3851 \param{prot} deve essere sempre nullo, mentre \param{flags} prende gli stessi
3852 valori di \func{mmap} (quelli di tab.~\ref{tab:file_mmap_prot}) ma di tutti i
3853 flag solo \const{MAP\_NONBLOCK} non viene ignorato.
3854
3855 Insieme alla funzione \func{remap\_file\_pages} nel kernel 2.5.46 con sono
3856 stati introdotti anche due nuovi flag per \func{mmap}: \const{MAP\_POPULATE} e
3857 \const{MAP\_NONBLOCK}.  Il primo dei due consente di abilitare il meccanismo
3858 del \itindex{prefaulting} \textit{prefaulting}. Questo viene di nuovo in aiuto
3859 per migliorare le prestazioni in certe condizioni di utilizzo del
3860 \textit{memory mapping}. 
3861
3862 Il problema si pone tutte le volte che si vuole mappare in memoria un file di
3863 grosse dimensioni. Il comportamento normale del sistema della
3864 \index{memoria~virtuale} memoria virtuale è quello per cui la regione mappata
3865 viene aggiunta alla \itindex{page~table} \textit{page table} del processo, ma
3866 i dati verranno effettivamente utilizzati (si avrà cioè un
3867 \itindex{page~fault} \textit{page fault} che li trasferisce dal disco alla
3868 memoria) soltanto in corrispondenza dell'accesso a ciascuna delle pagine
3869 interessate dal \textit{memory mapping}. 
3870
3871 Questo vuol dire che il passaggio dei dati dal disco alla memoria avverrà una
3872 pagina alla volta con un gran numero di \itindex{page~fault} \textit{page
3873   fault}, chiaramente se si sa in anticipo che il file verrà utilizzato
3874 immediatamente, è molto più efficiente eseguire un \itindex{prefaulting}
3875 \textit{prefaulting} in cui tutte le pagine di memoria interessate alla
3876 mappatura vengono ``\textsl{popolate}'' in una sola volta, questo
3877 comportamento viene abilitato quando si usa con \func{mmap} il flag
3878 \const{MAP\_POPULATE}.
3879
3880 Dato che l'uso di \const{MAP\_POPULATE} comporta dell'I/O su disco che può
3881 rallentare l'esecuzione di \func{mmap} è stato introdotto anche un secondo
3882 flag, \const{MAP\_NONBLOCK}, che esegue un \itindex{prefaulting}
3883 \textit{prefaulting} più limitato in cui vengono popolate solo le pagine della
3884 mappatura che già si trovano nella cache del kernel.\footnote{questo può
3885   essere utile per il linker dinamico, in particolare quando viene effettuato
3886   il \textit{prelink} delle applicazioni.}
3887
3888 Per i vantaggi illustrati all'inizio del paragrafo l'interfaccia del
3889 \textit{memory mapped I/O} viene usata da una grande varietà di programmi,
3890 spesso con esigenze molto diverse fra di loro riguardo le modalità con cui
3891 verranno eseguiti gli accessi ad un file; è ad esempio molto comune per i
3892 database effettuare accessi ai dati in maniera pressoché casuale, mentre un
3893 riproduttore audio o video eseguirà per lo più letture sequenziali.
3894
3895 Per migliorare le prestazioni a seconda di queste modalità di accesso è
3896 disponibile una apposita funzione, \funcd{madvise},\footnote{tratteremo in
3897   sez.~\ref{sec:file_fadvise} le funzioni che consentono di ottimizzare
3898   l'accesso ai file con l'interfaccia classica.} che consente di fornire al
3899 kernel delle indicazioni su dette modalità, così che possano essere adottate
3900 le opportune strategie di ottimizzazione. Il suo prototipo è:
3901 \begin{functions}  
3902   \headdecl{sys/mman.h} 
3903
3904   \funcdecl{int madvise(void *start, size\_t length, int advice)}
3905   
3906   Fornisce indicazioni sull'uso previsto di un \textit{memory mapping}.
3907
3908   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3909     errore, nel qual caso \var{errno} assumerà uno dei valori:
3910     \begin{errlist}
3911     \item[\errcode{EBADF}] la mappatura esiste ma non corrisponde ad un file.
3912     \item[\errcode{EINVAL}] \param{start} non è allineato alla dimensione di
3913       una pagina, \param{length} ha un valore negativo, o \param{advice} non è
3914       un valore valido, o si è richiesto il rilascio (con
3915       \const{MADV\_DONTNEED}) di pagine bloccate o condivise.
3916     \item[\errcode{EIO}] la paginazione richiesta eccederebbe i limiti (vedi
3917       sez.~\ref{sec:sys_resource_limit}) sulle pagine residenti in memoria del
3918       processo (solo in caso di \const{MADV\_WILLNEED}).
3919     \item[\errcode{ENOMEM}] gli indirizzi specificati non sono mappati, o, in
3920       caso \const{MADV\_WILLNEED}, non c'è sufficiente memoria per soddisfare
3921       la richiesta.
3922     \end{errlist}
3923     ed inoltre \errval{EAGAIN} e \errval{ENOSYS}.
3924   }
3925 \end{functions}
3926
3927 La sezione di memoria sulla quale si intendono fornire le indicazioni deve
3928 essere indicata con l'indirizzo iniziale \param{start} e l'estensione
3929 \param{lenght}, il valore di \param{start} deve essere allineato,
3930 mentre \param{length} deve essere un numero positivo.\footnote{la versione di
3931   Linux consente anche un valore nullo per \param{lenght}, inoltre se una
3932   parte dell'intervallo non è mappato in memoria l'indicazione viene comunque
3933   applicata alle restanti parti, anche se la funzione ritorna un errore di
3934   \errval{ENOMEM}.} L'indicazione viene espressa dall'argomento \param{advice}
3935 che deve essere specificato con uno dei valori\footnote{si tenga presente che
3936   gli ultimi tre valori sono specifici di Linux (introdotti a partire dal
3937   kernel 2.6.16) e non previsti dallo standard POSIX.1b.} riportati in
3938 tab.~\ref{tab:madvise_advice_values}.
3939
3940 \begin{table}[htb]
3941   \centering
3942   \footnotesize
3943   \begin{tabular}[c]{|l|p{10 cm}|}
3944     \hline
3945     \textbf{Valore} & \textbf{Significato} \\
3946     \hline
3947     \hline
3948     \const{MADV\_NORMAL}  & nessuna indicazione specifica, questo è il valore
3949                             di default usato quando non si è chiamato
3950                             \func{madvise}.\\
3951     \const{MADV\_RANDOM}  & ci si aspetta un accesso casuale all'area
3952                             indicata, pertanto l'applicazione di una lettura
3953                             anticipata con il meccanismo del
3954                             \itindex{read-ahead} \textit{read-ahead} (vedi
3955                             sez.~\ref{sec:file_fadvise}) è di
3956                             scarsa utilità e verrà disabilitata.\\
3957     \const{MADV\_SEQUENTIAL}& ci si aspetta un accesso sequenziale al file,
3958                             quindi da una parte sarà opportuno eseguire una
3959                             lettura anticipata, e dall'altra si potranno
3960                             scartare immediatamente le pagine una volta che
3961                             queste siano state lette.\\
3962     \const{MADV\_WILLNEED}& ci si aspetta un accesso nell'immediato futuro,
3963                             pertanto l'applicazione del \textit{read-ahead}
3964                             deve essere incentivata.\\
3965     \const{MADV\_DONTNEED}& non ci si aspetta nessun accesso nell'immediato
3966                             futuro, pertanto le pagine possono essere
3967                             liberate dal kernel non appena necessario; l'area
3968                             di memoria resterà accessibile, ma un accesso
3969                             richiederà che i dati vengano ricaricati dal file
3970                             a cui la mappatura fa riferimento.\\
3971     \hline
3972     \const{MADV\_REMOVE}  & libera un intervallo di pagine di memoria ed il
3973                             relativo supporto sottostante; è supportato
3974                             soltanto sui filesystem in RAM \textit{tmpfs} e
3975                             \textit{shmfs}.\footnotemark\\ 
3976     \const{MADV\_DONTFORK}& impedisce che l'intervallo specificato venga
3977                             ereditato dal processo figlio dopo una
3978                             \func{fork}; questo consente di evitare che il
3979                             meccanismo del \itindex{copy~on~write}
3980                             \textit{copy on write} effettui la rilocazione
3981                             delle pagine quando il padre scrive sull'area
3982                             di memoria dopo la \func{fork}, cosa che può
3983                             causare problemi per l'hardware che esegue
3984                             operazioni in DMA su quelle pagine.\\
3985     \const{MADV\_DOFORK}  & rimuove l'effetto della precedente
3986                             \const{MADV\_DONTFORK}.\\ 
3987     \const{MADV\_MERGEABLE}& marca la pagina come accorpabile (indicazione
3988                             principalmente ad uso dei sistemi di
3989                             virtualizzazione).\footnotemark\\
3990     \hline
3991   \end{tabular}
3992   \caption{Valori dell'argomento \param{advice} di \func{madvise}.}
3993   \label{tab:madvise_advice_values}
3994 \end{table}
3995
3996 \footnotetext{se usato su altri tipi di filesystem causa un errore di
3997   \errcode{ENOSYS}.}
3998
3999 \footnotetext{a partire dal kernel 2.6.32 è stato introdotto un meccanismo che
4000   identifica pagine di memoria identiche e le accorpa in una unica pagina
4001   (soggetta al \textit{copy-on-write} per successive modifiche); per evitare
4002   di controllare tutte le pagine solo quelle marcate con questo flag vengono
4003   prese in considerazione per l'accorpamento; in questo modo si possono
4004   migliorare le prestazioni nella gestione delle macchine virtuali diminuendo
4005   la loro occupazione di memoria, ma il meccanismo può essere usato anche in
4006   altre applicazioni in cui sian presenti numerosi processi che usano gli
4007   stessi dati; per maggiori dettagli si veda
4008   \href{http://kernelnewbies.org/Linux_2_6_32\#head-d3f32e41df508090810388a57efce73f52660ccb}{\texttt{http://kernelnewbies.org/Linux\_2\_6\_32}}.}
4009
4010 La funzione non ha, tranne il caso di \const{MADV\_DONTFORK}, nessun effetto
4011 sul comportamento di un programma, ma può influenzarne le prestazioni fornendo
4012 al kernel indicazioni sulle esigenze dello stesso, così che sia possibile
4013 scegliere le opportune strategie per la gestione del \itindex{read-ahead}
4014 \textit{read-ahead} e del caching dei dati. A differenza da quanto specificato
4015 nello standard POSIX.1b, per il quale l'uso di \func{madvise} è a scopo
4016 puramente indicativo, Linux considera queste richieste come imperative, per
4017 cui ritorna un errore qualora non possa soddisfarle.\footnote{questo
4018   comportamento differisce da quanto specificato nello standard.}
4019
4020 \itindend{memory~mapping}
4021
4022
4023 \subsection{I/O vettorizzato: \func{readv} e \func{writev}}
4024 \label{sec:file_multiple_io}
4025
4026 Un caso abbastanza comune è quello in cui ci si trova a dover eseguire una
4027 serie multipla di operazioni di I/O, come una serie di letture o scritture di
4028 vari buffer. Un esempio tipico è quando i dati sono strutturati nei campi di
4029 una struttura ed essi devono essere caricati o salvati su un file.  Benché
4030 l'operazione sia facilmente eseguibile attraverso una serie multipla di
4031 chiamate a \func{read} e \func{write}, ci sono casi in cui si vuole poter
4032 contare sulla atomicità delle operazioni.
4033
4034 Per questo motivo fino da BSD 4.2 vennero introdotte delle nuove system call
4035 che permettessero di effettuare con una sola chiamata una serie di letture o
4036 scritture su una serie di buffer, con quello che viene normalmente chiamato
4037 \textsl{I/O vettorizzato}. Queste funzioni sono \funcd{readv} e
4038 \funcd{writev},\footnote{in Linux le due funzioni sono riprese da BSD4.4, esse
4039   sono previste anche dallo standard POSIX.1-2001.} ed i relativi prototipi
4040 sono:
4041 \begin{functions}
4042   \headdecl{sys/uio.h}
4043   
4044   \funcdecl{int readv(int fd, const struct iovec *vector, int count)} 
4045   \funcdecl{int writev(int fd, const struct iovec *vector, int count)} 
4046
4047   Eseguono rispettivamente una lettura o una scrittura vettorizzata.
4048   
4049   \bodydesc{Le funzioni restituiscono il numero di byte letti o scritti in
4050     caso di successo, e -1 in caso di errore, nel qual caso \var{errno}
4051     assumerà uno dei valori:
4052   \begin{errlist}
4053   \item[\errcode{EINVAL}] si è specificato un valore non valido per uno degli
4054     argomenti (ad esempio \param{count} è maggiore di \const{IOV\_MAX}).
4055   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima di
4056     di avere eseguito una qualunque lettura o scrittura.
4057   \item[\errcode{EAGAIN}] \param{fd} è stato aperto in modalità non bloccante e
4058     non ci sono dati in lettura.
4059   \item[\errcode{EOPNOTSUPP}] la coda delle richieste è momentaneamente piena.
4060   \end{errlist}
4061   ed anche \errval{EISDIR}, \errval{EBADF}, \errval{ENOMEM}, \errval{EFAULT}
4062   (se non sono stati allocati correttamente i buffer specificati nei campi
4063   \var{iov\_base}), più gli eventuali errori delle funzioni di lettura e
4064   scrittura eseguite su \param{fd}.}
4065 \end{functions}
4066
4067 Entrambe le funzioni usano una struttura \struct{iovec}, la cui definizione è
4068 riportata in fig.~\ref{fig:file_iovec}, che definisce dove i dati devono
4069 essere letti o scritti ed in che quantità. Il primo campo della struttura,
4070 \var{iov\_base}, contiene l'indirizzo del buffer ed il secondo,
4071 \var{iov\_len}, la dimensione dello stesso.
4072
4073 \begin{figure}[!htb]
4074   \footnotesize \centering
4075   \begin{minipage}[c]{15cm}
4076     \includestruct{listati/iovec.h}
4077   \end{minipage} 
4078   \normalsize 
4079   \caption{La struttura \structd{iovec}, usata dalle operazioni di I/O
4080     vettorizzato.} 
4081   \label{fig:file_iovec}
4082 \end{figure}
4083
4084 La lista dei buffer da utilizzare viene indicata attraverso l'argomento
4085 \param{vector} che è un vettore di strutture \struct{iovec}, la cui lunghezza
4086 è specificata dall'argomento \param{count}.\footnote{fino alle libc5, Linux
4087   usava \type{size\_t} come tipo dell'argomento \param{count}, una scelta
4088   logica, che però è stata dismessa per restare aderenti allo standard
4089   POSIX.1-2001.}  Ciascuna struttura dovrà essere inizializzata opportunamente
4090 per indicare i vari buffer da e verso i quali verrà eseguito il trasferimento
4091 dei dati. Essi verranno letti (o scritti) nell'ordine in cui li si sono
4092 specificati nel vettore \param{vector}.
4093
4094 La standardizzazione delle due funzioni all'interno della revisione
4095 POSIX.1-2001 prevede anche che sia possibile avere un limite al numero di
4096 elementi del vettore \param{vector}. Qualora questo sussista, esso deve essere
4097 indicato dal valore dalla costante \const{IOV\_MAX}, definita come le altre
4098 costanti analoghe (vedi sez.~\ref{sec:sys_limits}) in \file{limits.h}; lo
4099 stesso valore deve essere ottenibile in esecuzione tramite la funzione
4100 \func{sysconf} richiedendo l'argomento \const{\_SC\_IOV\_MAX} (vedi
4101 sez.~\ref{sec:sys_sysconf}).
4102
4103 Nel caso di Linux il limite di sistema è di 1024, però se si usano le
4104 \acr{glibc} queste forniscono un \textit{wrapper} per le system call che si
4105 accorge se una operazione supererà il precedente limite, in tal caso i dati
4106 verranno letti o scritti con le usuali \func{read} e \func{write} usando un
4107 buffer di dimensioni sufficienti appositamente allocato e sufficiente a
4108 contenere tutti i dati indicati da \param{vector}. L'operazione avrà successo
4109 ma si perderà l'atomicità del trasferimento da e verso la destinazione finale.
4110
4111 Si tenga presente infine che queste funzioni operano sui file con
4112 l'interfaccia dei file descriptor, e non è consigliabile mescolarle con
4113 l'interfaccia classica dei \textit{file stream} di
4114 cap.~\ref{cha:files_std_interface}; a causa delle bufferizzazioni interne di
4115 quest'ultima infatti si potrebbero avere risultati indefiniti e non
4116 corrispondenti a quanto aspettato.
4117
4118 Come per le normali operazioni di lettura e scrittura, anche per l'\textsl{I/O
4119   vettorizzato} si pone il problema di poter effettuare le operazioni in
4120 maniera atomica a partire da un certa posizione sul file. Per questo motivo a
4121 partire dal kernel 2.6.30 sono state introdotte anche per l'\textsl{I/O
4122   vettorizzato} le analoghe delle funzioni \func{pread} e \func{pwrite} (vedi
4123 sez.~\ref{sec:file_read} e \ref{sec:file_write}); le due funzioni sono
4124 \funcd{preadv} e \func{pwritev} ed i rispettivi prototipi sono:\footnote{le
4125   due funzioni sono analoghe alle omonime presenti in BSD; le \textit{system
4126     call} usate da Linux (introdotte a partire dalla versione 2.6.30)
4127   utilizzano degli argomenti diversi per problemi collegati al formato a 64
4128   bit dell'argomento \param{offset}, che varia a seconda delle architetture,
4129   ma queste differenze vengono gestite dalle funzioni di librerie di libreria
4130   che mantengono l'interfaccia delle analoghe tratte da BSD.}
4131 \begin{functions}
4132   \headdecl{sys/uio.h}
4133   
4134   \funcdecl{int preadv(int fd, const struct iovec *vector, int count, off\_t
4135     offset)}
4136   \funcdecl{int pwritev(int fd, const struct iovec *vector, int count, off\_t
4137     offset)}
4138
4139   Eseguono una lettura o una scrittura vettorizzata a partire da una data
4140   posizione sul file.
4141   
4142   \bodydesc{Le funzioni hanno gli stessi valori di ritorno delle
4143     corrispondenti \func{readv} e \func{writev}; anche gli eventuali errori
4144     sono gli stessi già visti in precedenza, ma ad essi si possono aggiungere
4145     per \var{errno} anche i valori:
4146   \begin{errlist}
4147   \item[\errcode{EOVERFLOW}] \param{offset} ha un valore che non può essere
4148     usato come \ctyp{off\_t}.
4149   \item[\errcode{ESPIPE}] \param{fd} è associato ad un socket o una pipe.
4150   \end{errlist}
4151 }
4152 \end{functions}
4153
4154 Le due funzioni eseguono rispettivamente una lettura o una scrittura
4155 vettorizzata a partire dalla posizione \param{offset} sul file indicato
4156 da \param{fd}, la posizione corrente sul file, come vista da eventuali altri
4157 processi che vi facciano riferimento, non viene alterata. A parte la presenza
4158 dell'ulteriore argomento il comportamento delle funzioni è identico alle
4159 precedenti \func{readv} e \func{writev}. 
4160
4161 Con l'uso di queste funzioni si possono evitare eventuali
4162 \itindex{race~condition} \textit{race condition} quando si deve eseguire la
4163 una operazione di lettura e scrittura vettorizzata a partire da una certa
4164 posizione su un file, mentre al contempo si possono avere in concorrenza
4165 processi che utilizzano lo stesso file descriptor (si ricordi quanto visto in
4166 sez.~\ref{sec:file_adv_func}) con delle chiamate a \func{lseek}.
4167
4168
4169
4170 \subsection{L'I/O diretto fra file descriptor: \func{sendfile} e
4171   \func{splice}} 
4172 \label{sec:file_sendfile_splice}
4173
4174 Uno dei problemi che si presentano nella gestione dell'I/O è quello in cui si
4175 devono trasferire grandi quantità di dati da un file descriptor ed un altro;
4176 questo usualmente comporta la lettura dei dati dal primo file descriptor in un
4177 buffer in memoria, da cui essi vengono poi scritti sul secondo.
4178
4179 Benché il kernel ottimizzi la gestione di questo processo quando si ha a che
4180 fare con file normali, in generale quando i dati da trasferire sono molti si
4181 pone il problema di effettuare trasferimenti di grandi quantità di dati da
4182 kernel space a user space e all'indietro, quando in realtà potrebbe essere più
4183 efficiente mantenere tutto in kernel space. Tratteremo in questa sezione
4184 alcune funzioni specialistiche che permettono di ottimizzare le prestazioni in
4185 questo tipo di situazioni.
4186
4187 La prima funzione che è stata ideata per ottimizzare il trasferimento dei dati
4188 fra due file descriptor è \func{sendfile};\footnote{la funzione è stata
4189   introdotta con i kernel della serie 2.2, e disponibile dalle \acr{glibc}
4190   2.1.} la funzione è presente in diverse versioni di Unix,\footnote{la si
4191   ritrova ad esempio in FreeBSD, HPUX ed altri Unix.} ma non è presente né in
4192 POSIX.1-2001 né in altri standard,\footnote{pertanto si eviti di utilizzarla
4193   se si devono scrivere programmi portabili.} per cui per essa vengono
4194 utilizzati prototipi e semantiche differenti; nel caso di Linux il prototipo
4195 di \funcd{sendfile} è:
4196 \begin{functions}  
4197   \headdecl{sys/sendfile.h} 
4198
4199   \funcdecl{ssize\_t sendfile(int out\_fd, int in\_fd, off\_t *offset, size\_t
4200     count)} 
4201   
4202   Copia dei dati da un file descriptor ad un altro.
4203
4204   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4205     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4206     dei valori:
4207     \begin{errlist}
4208     \item[\errcode{EAGAIN}] si è impostata la modalità non bloccante su
4209       \param{out\_fd} e la scrittura si bloccherebbe.
4210     \item[\errcode{EINVAL}] i file descriptor non sono validi, o sono bloccati
4211       (vedi sez.~\ref{sec:file_locking}), o \func{mmap} non è disponibile per
4212       \param{in\_fd}.
4213     \item[\errcode{EIO}] si è avuto un errore di lettura da \param{in\_fd}.
4214     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per la lettura da
4215       \param{in\_fd}.
4216     \end{errlist}
4217     ed inoltre \errcode{EBADF} e \errcode{EFAULT}.
4218   }
4219 \end{functions}
4220
4221 La funzione copia direttamente \param{count} byte dal file descriptor
4222 \param{in\_fd} al file descriptor \param{out\_fd}; in caso di successo
4223 funzione ritorna il numero di byte effettivamente copiati da \param{in\_fd} a
4224 \param{out\_fd} o $-1$ in caso di errore; come le ordinarie \func{read} e
4225 \func{write} questo valore può essere inferiore a quanto richiesto con
4226 \param{count}.
4227
4228 Se il puntatore \param{offset} è nullo la funzione legge i dati a partire
4229 dalla posizione corrente su \param{in\_fd}, altrimenti verrà usata la
4230 posizione indicata dal valore puntato da \param{offset}; in questo caso detto
4231 valore sarà aggiornato, come \textit{value result argument}, per indicare la
4232 posizione del byte successivo all'ultimo che è stato letto, mentre la
4233 posizione corrente sul file non sarà modificata. Se invece \param{offset} è
4234 nullo la posizione corrente sul file sarà aggiornata tenendo conto dei byte
4235 letti da \param{in\_fd}.
4236
4237 Fino ai kernel della serie 2.4 la funzione è utilizzabile su un qualunque file
4238 descriptor, e permette di sostituire la invocazione successiva di una
4239 \func{read} e una \func{write} (e l'allocazione del relativo buffer) con una
4240 sola chiamata a \funcd{sendfile}. In questo modo si può diminuire il numero di
4241 chiamate al sistema e risparmiare in trasferimenti di dati da kernel space a
4242 user space e viceversa.  La massima utilità della funzione si ha comunque per
4243 il trasferimento di dati da un file su disco ad un socket di
4244 rete,\footnote{questo è il caso classico del lavoro eseguito da un server web,
4245   ed infatti Apache ha una opzione per il supporto esplicito di questa
4246   funzione.} dato che in questo caso diventa possibile effettuare il
4247 trasferimento diretto via DMA dal controller del disco alla scheda di rete,
4248 senza neanche allocare un buffer nel kernel,\footnote{il meccanismo è detto
4249   \textit{zerocopy} in quanto i dati non vengono mai copiati dal kernel, che
4250   si limita a programmare solo le operazioni di lettura e scrittura via DMA.}
4251 ottenendo la massima efficienza possibile senza pesare neanche sul processore.
4252
4253 In seguito però ci si è accorti che, fatta eccezione per il trasferimento
4254 diretto da file a socket, non sempre \func{sendfile} comportava miglioramenti
4255 significativi delle prestazioni rispetto all'uso in sequenza di \func{read} e
4256 \func{write},\footnote{nel caso generico infatti il kernel deve comunque
4257   allocare un buffer ed effettuare la copia dei dati, e in tal caso spesso il
4258   guadagno ottenibile nel ridurre il numero di chiamate al sistema non
4259   compensa le ottimizzazioni che possono essere fatte da una applicazione in
4260   user space che ha una conoscenza diretta su come questi sono strutturati.} e
4261 che anzi in certi casi si potevano avere anche dei peggioramenti.  Questo ha
4262 portato, per i kernel della serie 2.6,\footnote{per alcune motivazioni di
4263   questa scelta si può fare riferimento a quanto illustrato da Linus Torvalds
4264   in \href{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}
4265   {\textsf{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}}.}
4266 alla decisione di consentire l'uso della funzione soltanto quando il file da
4267 cui si legge supporta le operazioni di \textit{memory mapping} (vale a dire
4268 non è un socket) e quello su cui si scrive è un socket; in tutti gli altri
4269 casi l'uso di \func{sendfile} darà luogo ad un errore di \errcode{EINVAL}.
4270
4271 Nonostante ci possano essere casi in cui \func{sendfile} non migliora le
4272 prestazioni, resta il dubbio se la scelta di disabilitarla sempre per il
4273 trasferimento fra file di dati sia davvero corretta. Se ci sono peggioramenti
4274 di prestazioni infatti si può sempre fare ricorso al metodo ordinario, ma
4275 lasciare a disposizione la funzione consentirebbe se non altro di semplificare
4276 la gestione della copia dei dati fra file, evitando di dover gestire
4277 l'allocazione di un buffer temporaneo per il loro trasferimento.
4278
4279 Questo dubbio si può comunque ritenere superato con l'introduzione, avvenuta a
4280 partire dal kernel 2.6.17, della nuova \textit{system call} \func{splice}. Lo
4281 scopo di questa funzione è quello di fornire un meccanismo generico per il
4282 trasferimento di dati da o verso un file utilizzando un buffer gestito
4283 internamente dal kernel. Descritta in questi termini \func{splice} sembra
4284 semplicemente un ``\textsl{dimezzamento}'' di \func{sendfile}.\footnote{nel
4285   senso che un trasferimento di dati fra due file con \func{sendfile} non
4286   sarebbe altro che la lettura degli stessi su un buffer seguita dalla
4287   relativa scrittura, cosa che in questo caso si dovrebbe eseguire con due
4288   chiamate a \func{splice}.} In realtà le due system call sono profondamente
4289 diverse nel loro meccanismo di funzionamento;\footnote{questo fino al kernel
4290   2.6.23, dove \func{sendfile} è stata reimplementata in termini di
4291   \func{splice}, pur mantenendo disponibile la stessa interfaccia verso l'user
4292   space.} \func{sendfile} infatti, come accennato, non necessita di avere a
4293 disposizione un buffer interno, perché esegue un trasferimento diretto di
4294 dati; questo la rende in generale più efficiente, ma anche limitata nelle sue
4295 applicazioni, dato che questo tipo di trasferimento è possibile solo in casi
4296 specifici.\footnote{e nel caso di Linux questi sono anche solo quelli in cui
4297   essa può essere effettivamente utilizzata.}
4298
4299 Il concetto che sta dietro a \func{splice} invece è diverso,\footnote{in
4300   realtà la proposta originale di Larry Mc Voy non differisce poi tanto negli
4301   scopi da \func{sendfile}, quello che rende \func{splice} davvero diversa è
4302   stata la reinterpretazione che ne è stata fatta nell'implementazione su
4303   Linux realizzata da Jens Anxboe, concetti che sono esposti sinteticamente
4304   dallo stesso Linus Torvalds in \href{http://kerneltrap.org/node/6505}
4305   {\textsf{http://kerneltrap.org/node/6505}}.} si tratta semplicemente di una
4306 funzione che consente di fare in maniera del tutto generica delle operazioni
4307 di trasferimento di dati fra un file e un buffer gestito interamente in kernel
4308 space. In questo caso il cuore della funzione (e delle affini \func{vmsplice}
4309 e \func{tee}, che tratteremo più avanti) è appunto l'uso di un buffer in
4310 kernel space, e questo è anche quello che ne ha semplificato l'adozione,
4311 perché l'infrastruttura per la gestione di un tale buffer è presente fin dagli
4312 albori di Unix per la realizzazione delle \textit{pipe} (vedi
4313 sez.~\ref{sec:ipc_unix}). Dal punto di vista concettuale allora \func{splice}
4314 non è altro che una diversa interfaccia (rispetto alle \textit{pipe}) con cui
4315 utilizzare in user space l'oggetto ``\textsl{buffer in kernel space}''.
4316
4317 Così se per una \textit{pipe} o una \textit{fifo} il buffer viene utilizzato
4318 come area di memoria (vedi fig.~\ref{fig:ipc_pipe_singular}) dove appoggiare i
4319 dati che vengono trasferiti da un capo all'altro della stessa per creare un
4320 meccanismo di comunicazione fra processi, nel caso di \func{splice} il buffer
4321 viene usato o come fonte dei dati che saranno scritti su un file, o come
4322 destinazione dei dati che vengono letti da un file. La funzione \funcd{splice}
4323 fornisce quindi una interfaccia generica che consente di trasferire dati da un
4324 buffer ad un file o viceversa; il suo prototipo, accessibile solo dopo aver
4325 definito la macro \macro{\_GNU\_SOURCE},\footnote{si ricordi che questa
4326   funzione non è contemplata da nessuno standard, è presente solo su Linux, e
4327   pertanto deve essere evitata se si vogliono scrivere programmi portabili.}
4328 è il seguente:
4329 \begin{functions}  
4330   \headdecl{fcntl.h} 
4331
4332   \funcdecl{long splice(int fd\_in, off\_t *off\_in, int fd\_out, off\_t
4333     *off\_out, size\_t len, unsigned int flags)}
4334   
4335   Trasferisce dati da un file verso una pipe o viceversa.
4336
4337   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4338     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4339     dei valori:
4340     \begin{errlist}
4341     \item[\errcode{EBADF}] uno o entrambi fra \param{fd\_in} e \param{fd\_out}
4342       non sono file descriptor validi o, rispettivamente, non sono stati
4343       aperti in lettura o scrittura.
4344     \item[\errcode{EINVAL}] il filesystem su cui si opera non supporta
4345       \func{splice}, oppure nessuno dei file descriptor è una pipe, oppure si
4346       è dato un valore a \param{off\_in} o \param{off\_out} ma il
4347       corrispondente file è un dispositivo che non supporta la funzione
4348       \func{seek}.
4349     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4350       richiesta.
4351     \item[\errcode{ESPIPE}] o \param{off\_in} o \param{off\_out} non sono
4352       \const{NULL} ma il corrispondente file descriptor è una \textit{pipe}.
4353     \end{errlist}
4354   }
4355 \end{functions}
4356
4357 La funzione esegue un trasferimento di \param{len} byte dal file descriptor
4358 \param{fd\_in} al file descriptor \param{fd\_out}, uno dei quali deve essere
4359 una \textit{pipe}; l'altro file descriptor può essere
4360 qualunque.\footnote{questo significa che può essere, oltre che un file di
4361   dati, anche un altra \textit{pipe}, o un socket.}  Come accennato una
4362 \textit{pipe} non è altro che un buffer in kernel space, per cui a seconda che
4363 essa sia usata per \param{fd\_in} o \param{fd\_out} si avrà rispettivamente la
4364 copia dei dati dal buffer al file o viceversa. 
4365
4366 In caso di successo la funzione ritorna il numero di byte trasferiti, che può
4367 essere, come per le normali funzioni di lettura e scrittura su file, inferiore
4368 a quelli richiesti; un valore negativo indicherà un errore mentre un valore
4369 nullo indicherà che non ci sono dati da trasferire (ad esempio si è giunti
4370 alla fine del file in lettura). Si tenga presente che, a seconda del verso del
4371 trasferimento dei dati, la funzione si comporta nei confronti del file
4372 descriptor che fa riferimento al file ordinario, come \func{read} o
4373 \func{write}, e pertanto potrà anche bloccarsi (a meno che non si sia aperto
4374 il suddetto file in modalità non bloccante).
4375
4376 I due argomenti \param{off\_in} e \param{off\_out} consentono di specificare,
4377 come per l'analogo \param{offset} di \func{sendfile}, la posizione all'interno
4378 del file da cui partire per il trasferimento dei dati. Come per
4379 \func{sendfile} un valore nullo indica di usare la posizione corrente sul
4380 file, ed essa sarà aggiornata automaticamente secondo il numero di byte
4381 trasferiti. Un valore non nullo invece deve essere un puntatore ad una
4382 variabile intera che indica la posizione da usare; questa verrà aggiornata, al
4383 ritorno della funzione, al byte successivo all'ultimo byte trasferito.
4384 Ovviamente soltanto uno di questi due argomenti, e più precisamente quello che
4385 fa riferimento al file descriptor non associato alla \textit{pipe}, può essere
4386 specificato come valore non nullo.
4387
4388 Infine l'argomento \param{flags} consente di controllare alcune
4389 caratteristiche del funzionamento della funzione; il contenuto è una maschera
4390 binaria e deve essere specificato come OR aritmetico dei valori riportati in
4391 tab.~\ref{tab:splice_flag}. Alcuni di questi valori vengono utilizzati anche
4392 dalle funzioni \func{vmsplice} e \func{tee} per cui la tabella riporta le
4393 descrizioni complete di tutti i valori possibili anche quando, come per
4394 \const{SPLICE\_F\_GIFT}, questi non hanno effetto su \func{splice}.
4395
4396 \begin{table}[htb]
4397   \centering
4398   \footnotesize
4399   \begin{tabular}[c]{|l|p{10cm}|}
4400     \hline
4401     \textbf{Valore} & \textbf{Significato} \\
4402     \hline
4403     \hline
4404     \const{SPLICE\_F\_MOVE}    & Suggerisce al kernel di spostare le pagine
4405                                  di memoria contenenti i dati invece di
4406                                  copiarle;\footnotemark viene usato soltanto
4407                                  da \func{splice}.\\ 
4408     \const{SPLICE\_F\_NONBLOCK}& Richiede di operare in modalità non
4409                                  bloccante; questo flag influisce solo sulle
4410                                  operazioni che riguardano l'I/O da e verso la
4411                                  \textit{pipe}. Nel caso di \func{splice}
4412                                  questo significa che la funzione potrà
4413                                  comunque bloccarsi nell'accesso agli altri
4414                                  file descriptor (a meno che anch'essi non
4415                                  siano stati aperti in modalità non
4416                                  bloccante).\\
4417     \const{SPLICE\_F\_MORE}    & Indica al kernel che ci sarà l'invio di
4418                                  ulteriori dati in una \func{splice}
4419                                  successiva, questo è un suggerimento utile
4420                                  che viene usato quando \param{fd\_out} è un
4421                                  socket.\footnotemark Attualmente viene usato
4422                                  solo da \func{splice}, potrà essere
4423                                  implementato in futuro anche per
4424                                  \func{vmsplice} e \func{tee}.\\
4425     \const{SPLICE\_F\_GIFT}    & Le pagine di memoria utente sono
4426                                  ``\textsl{donate}'' al kernel;\footnotemark
4427                                  se impostato una seguente \func{splice} che
4428                                  usa \const{SPLICE\_F\_MOVE} potrà spostare le 
4429                                  pagine con successo, altrimenti esse dovranno
4430                                  essere copiate; per usare questa opzione i
4431                                  dati dovranno essere opportunamente allineati
4432                                  in posizione ed in dimensione alle pagine di
4433                                  memoria. Viene usato soltanto da
4434                                  \func{vmsplice}.\\
4435     \hline
4436   \end{tabular}
4437   \caption{Le costanti che identificano i bit della maschera binaria
4438     dell'argomento \param{flags} di \func{splice}, \func{vmsplice} e
4439     \func{tee}.} 
4440   \label{tab:splice_flag}
4441 \end{table}
4442
4443 \footnotetext[120]{per una maggiore efficienza \func{splice} usa quando
4444   possibile i meccanismi della memoria virtuale per eseguire i trasferimenti
4445   di dati (in maniera analoga a \func{mmap}), qualora le pagine non possano
4446   essere spostate dalla pipe o il buffer non corrisponda a pagine intere esse
4447   saranno comunque copiate.}
4448
4449 \footnotetext[121]{questa opzione consente di utilizzare delle opzioni di
4450   gestione dei socket che permettono di ottimizzare le trasmissioni via rete,
4451   si veda la descrizione di \const{TCP\_CORK} in
4452   sez.~\ref{sec:sock_tcp_udp_options} e quella di \const{MSG\_MORE} in
4453   sez.~\ref{sec:net_sendmsg}.}
4454
4455 \footnotetext{questo significa che la cache delle pagine e i dati su disco
4456   potranno differire, e che l'applicazione non potrà modificare quest'area di
4457   memoria.}
4458
4459 Per capire meglio il funzionamento di \func{splice} vediamo un esempio con un
4460 semplice programma che usa questa funzione per effettuare la copia di un file
4461 su un altro senza utilizzare buffer in user space. Il programma si chiama
4462 \texttt{splicecp.c} ed il codice completo è disponibile coi sorgenti allegati
4463 alla guida, il corpo principale del programma, che non contiene la sezione di
4464 gestione delle opzioni e le funzioni di ausilio è riportato in
4465 fig.~\ref{fig:splice_example}.
4466
4467 Lo scopo del programma è quello di eseguire la copia dei con \func{splice},
4468 questo significa che si dovrà usare la funzione due volte, prima per leggere i
4469 dati e poi per scriverli, appoggiandosi ad un buffer in kernel space (vale a
4470 dire ad una \textit{pipe}); lo schema del flusso dei dati è illustrato in
4471 fig.~\ref{fig:splicecp_data_flux}. 
4472
4473 \begin{figure}[htb]
4474   \centering
4475   \includegraphics[height=6cm]{img/splice_copy}
4476   \caption{Struttura del flusso di dati usato dal programma \texttt{splicecp}.}
4477   \label{fig:splicecp_data_flux}
4478 \end{figure}
4479
4480 Una volta trattate le opzioni il programma verifica che restino
4481 (\texttt{\small 13--16}) i due argomenti che indicano il file sorgente ed il
4482 file destinazione. Il passo successivo è aprire il file sorgente
4483 (\texttt{\small 18--22}), quello di destinazione (\texttt{\small 23--27}) ed
4484 infine (\texttt{\small 28--31}) la \textit{pipe} che verrà usata come buffer.
4485
4486 \begin{figure}[!phtb]
4487   \footnotesize \centering
4488   \begin{minipage}[c]{15cm}
4489     \includecodesample{listati/splicecp.c}
4490   \end{minipage}
4491   \normalsize
4492   \caption{Esempio di codice che usa \func{splice} per effettuare la copia di
4493     un file.}
4494   \label{fig:splice_example}
4495 \end{figure}
4496
4497 Il ciclo principale (\texttt{\small 33--58}) inizia con la lettura dal file
4498 sorgente tramite la prima \func{splice} (\texttt{\small 34--35}), in questo
4499 caso si è usato come primo argomento il file descriptor del file sorgente e
4500 come terzo quello del capo in scrittura della \textit{pipe} (il funzionamento
4501 delle \textit{pipe} e l'uso della coppia di file descriptor ad esse associati
4502 è trattato in dettaglio in sez.~\ref{sec:ipc_unix}; non ne parleremo qui dato
4503 che nell'ottica dell'uso di \func{splice} questa operazione corrisponde
4504 semplicemente al trasferimento dei dati dal file al buffer).
4505
4506 La lettura viene eseguita in blocchi pari alla dimensione specificata
4507 dall'opzione \texttt{-s} (il default è 4096); essendo in questo caso
4508 \func{splice} equivalente ad una \func{read} sul file, se ne controlla il
4509 valore di uscita in \var{nread} che indica quanti byte sono stati letti, se
4510 detto valore è nullo (\texttt{\small 36}) questo significa che si è giunti
4511 alla fine del file sorgente e pertanto l'operazione di copia è conclusa e si
4512 può uscire dal ciclo arrivando alla conclusione del programma (\texttt{\small
4513   59}). In caso di valore negativo (\texttt{\small 37--44}) c'è stato un
4514 errore ed allora si ripete la lettura (\texttt{\small 36}) se questo è dovuto
4515 ad una interruzione, o altrimenti si esce con un messaggio di errore
4516 (\texttt{\small 41--43}).
4517
4518 Una volta completata con successo la lettura si avvia il ciclo di scrittura
4519 (\texttt{\small 45--57}); questo inizia (\texttt{\small 46--47}) con la
4520 seconda \func{splice} che cerca di scrivere gli \var{nread} byte letti, si
4521 noti come in questo caso il primo argomento faccia di nuovo riferimento alla
4522 \textit{pipe} (in questo caso si usa il capo in lettura, per i dettagli si
4523 veda al solito sez.~\ref{sec:ipc_unix}) mentre il terzo sia il file descriptor
4524 del file di destinazione.
4525
4526 Di nuovo si controlla il numero di byte effettivamente scritti restituito in
4527 \var{nwrite} e in caso di errore al solito si ripete la scrittura se questo è
4528 dovuto a una interruzione o si esce con un messaggio negli altri casi
4529 (\texttt{\small 48--55}). Infine si chiude il ciclo di scrittura sottraendo
4530 (\texttt{\small 57}) il numero di byte scritti a quelli di cui è richiesta la
4531 scrittura,\footnote{in questa parte del ciclo \var{nread}, il cui valore
4532   iniziale è dato dai byte letti dalla precedente chiamata a \func{splice},
4533   viene ad assumere il significato di byte da scrivere.} così che il ciclo di
4534 scrittura venga ripetuto fintanto che il valore risultante sia maggiore di
4535 zero, indice che la chiamata a \func{splice} non ha esaurito tutti i dati
4536 presenti sul buffer.
4537
4538 Si noti come il programma sia concettualmente identico a quello che si sarebbe
4539 scritto usando \func{read} al posto della prima \func{splice} e \func{write}
4540 al posto della seconda, utilizzando un buffer in user space per eseguire la
4541 copia dei dati, solo che in questo caso non è stato necessario allocare nessun
4542 buffer e non si è trasferito nessun dato in user space.
4543
4544 Si noti anche come si sia usata la combinazione \texttt{SPLICE\_F\_MOVE |
4545   SPLICE\_F\_MORE } per l'argomento \param{flags} di \func{splice}, infatti
4546 anche se un valore nullo avrebbe dato gli stessi risultati, l'uso di questi
4547 flag, che si ricordi servono solo a dare suggerimenti al kernel, permette in
4548 genere di migliorare le prestazioni.
4549
4550 Come accennato con l'introduzione di \func{splice} sono state realizzate anche
4551 altre due \textit{system call}, \func{vmsplice} e \func{tee}, che utilizzano
4552 la stessa infrastruttura e si basano sullo stesso concetto di manipolazione e
4553 trasferimento di dati attraverso un buffer in kernel space; benché queste non
4554 attengono strettamente ad operazioni di trasferimento dati fra file
4555 descriptor, le tratteremo qui, essendo strettamente correlate fra loro.
4556
4557 La prima funzione, \funcd{vmsplice}, è la più simile a \func{splice} e come
4558 indica il suo nome consente di trasferire i dati dalla memoria virtuale di un
4559 processo (ad esempio per un file mappato in memoria) verso una \textit{pipe};
4560 il suo prototipo è:
4561 \begin{functions}  
4562   \headdecl{fcntl.h} 
4563   \headdecl{sys/uio.h}
4564
4565   \funcdecl{long vmsplice(int fd, const struct iovec *iov, unsigned long
4566     nr\_segs, unsigned int flags)}
4567   
4568   Trasferisce dati dalla memoria di un processo verso una \textit{pipe}.
4569
4570   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4571     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4572     dei valori:
4573     \begin{errlist}
4574     \item[\errcode{EBADF}] o \param{fd} non è un file descriptor valido o non
4575       fa riferimento ad una \textit{pipe}.
4576     \item[\errcode{EINVAL}] si è usato un valore nullo per \param{nr\_segs}
4577       oppure si è usato \const{SPLICE\_F\_GIFT} ma la memoria non è allineata.
4578     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4579       richiesta.
4580     \end{errlist}
4581   }
4582 \end{functions}
4583
4584 La \textit{pipe} indicata da \param{fd} dovrà essere specificata tramite il
4585 file descriptor corrispondente al suo capo aperto in scrittura (di nuovo si
4586 faccia riferimento a sez.~\ref{sec:ipc_unix}), mentre per indicare quali
4587 segmenti della memoria del processo devono essere trasferiti verso di essa si
4588 dovrà utilizzare un vettore di strutture \struct{iovec} (vedi
4589 fig.~\ref{fig:file_iovec}), esattamente con gli stessi criteri con cui le si
4590 usano per l'I/O vettorizzato, indicando gli indirizzi e le dimensioni di
4591 ciascun segmento di memoria su cui si vuole operare; le dimensioni del
4592 suddetto vettore devono essere passate nell'argomento \param{nr\_segs} che
4593 indica il numero di segmenti di memoria da trasferire.  Sia per il vettore che
4594 per il valore massimo di \param{nr\_segs} valgono le stesse limitazioni
4595 illustrate in sez.~\ref{sec:file_multiple_io}.
4596
4597 In caso di successo la funzione ritorna il numero di byte trasferiti sulla
4598 \textit{pipe}. In generale, se i dati una volta creati non devono essere
4599 riutilizzati (se cioè l'applicazione che chiama \func{vmsplice} non
4600 modificherà più la memoria trasferita), è opportuno utilizzare
4601 per \param{flag} il valore \const{SPLICE\_F\_GIFT}; questo fa sì che il kernel
4602 possa rimuovere le relative pagine dalla cache della memoria virtuale, così
4603 che queste possono essere utilizzate immediatamente senza necessità di
4604 eseguire una copia dei dati che contengono.
4605
4606 La seconda funzione aggiunta insieme a \func{splice} è \func{tee}, che deve il
4607 suo nome all'omonimo comando in user space, perché in analogia con questo
4608 permette di duplicare i dati in ingresso su una \textit{pipe} su un'altra
4609 \textit{pipe}. In sostanza, sempre nell'ottica della manipolazione dei dati su
4610 dei buffer in kernel space, la funzione consente di eseguire una copia del
4611 contenuto del buffer stesso. Il prototipo di \funcd{tee} è il seguente:
4612 \begin{functions}  
4613   \headdecl{fcntl.h} 
4614
4615   \funcdecl{long tee(int fd\_in, int fd\_out, size\_t len, unsigned int
4616     flags)}
4617   
4618   Duplica \param{len} byte da una \textit{pipe} ad un'altra.
4619
4620   \bodydesc{La funzione restituisce il numero di byte copiati in caso di
4621     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4622     dei valori:
4623     \begin{errlist}
4624     \item[\errcode{EINVAL}] o uno fra \param{fd\_in} e \param{fd\_out} non fa
4625       riferimento ad una \textit{pipe} o entrambi fanno riferimento alla
4626       stessa \textit{pipe}.
4627     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4628       richiesta.
4629     \end{errlist}
4630   }
4631 \end{functions}
4632
4633 La funzione copia \param{len} byte del contenuto di una \textit{pipe} su di
4634 un'altra; \param{fd\_in} deve essere il capo in lettura della \textit{pipe}
4635 sorgente e \param{fd\_out} il capo in scrittura della \textit{pipe}
4636 destinazione; a differenza di quanto avviene con \func{read} i dati letti con
4637 \func{tee} da \func{fd\_in} non vengono \textsl{consumati} e restano
4638 disponibili sulla \textit{pipe} per una successiva lettura (di nuovo per il
4639 comportamento delle \textit{pipe} si veda sez.~\ref{sec:ipc_unix}). Al
4640 momento\footnote{quello della stesura di questo paragrafo, avvenuta il Gennaio
4641   2010, in futuro potrebbe essere implementato anche \const{SPLICE\_F\_MORE}.}
4642 il solo valore utilizzabile per \param{flag}, fra quelli elencati in
4643 tab.~\ref{tab:splice_flag}, è \const{SPLICE\_F\_NONBLOCK} che rende la
4644 funzione non bloccante.
4645
4646 La funzione restituisce il numero di byte copiati da una \textit{pipe}
4647 all'altra (o $-1$ in caso di errore), un valore nullo indica che non ci sono
4648 byte disponibili da copiare e che il capo in scrittura della pipe è stato
4649 chiuso.\footnote{si tenga presente però che questo non avviene se si è
4650   impostato il flag \const{SPLICE\_F\_NONBLOCK}, in tal caso infatti si
4651   avrebbe un errore di \errcode{EAGAIN}.} Un esempio di realizzazione del
4652 comando \texttt{tee} usando questa funzione, ripreso da quello fornito nella
4653 pagina di manuale e dall'esempio allegato al patch originale, è riportato in
4654 fig.~\ref{fig:tee_example}. Il programma consente di copiare il contenuto
4655 dello standard input sullo standard output e su un file specificato come
4656 argomento, il codice completo si trova nel file \texttt{tee.c} dei sorgenti
4657 allegati alla guida.
4658
4659 \begin{figure}[!htbp]
4660   \footnotesize \centering
4661   \begin{minipage}[c]{15cm}
4662     \includecodesample{listati/tee.c}
4663   \end{minipage}
4664   \normalsize
4665   \caption{Esempio di codice che usa \func{tee} per copiare i dati dello
4666     standard input sullo standard output e su un file.}
4667   \label{fig:tee_example}
4668 \end{figure}
4669
4670 La prima parte del programma (\texttt{\small 10--35}) si cura semplicemente di
4671 controllare (\texttt{\small 11--14}) che sia stato fornito almeno un argomento
4672 (il nome del file su cui scrivere), di aprirlo ({\small 15--19}) e che sia lo
4673 standard input (\texttt{\small 20--27}) che lo standard output (\texttt{\small
4674   28--35}) corrispondano ad una \textit{pipe}.
4675
4676 Il ciclo principale (\texttt{\small 37--58}) inizia con la chiamata a
4677 \func{tee} che duplica il contenuto dello standard input sullo standard output
4678 (\texttt{\small 39}), questa parte è del tutto analoga ad una lettura ed
4679 infatti come nell'esempio di fig.~\ref{fig:splice_example} si controlla il
4680 valore di ritorno della funzione in \var{len}; se questo è nullo significa che
4681 non ci sono più dati da leggere e si chiude il ciclo (\texttt{\small 40}), se
4682 è negativo c'è stato un errore, ed allora si ripete la chiamata se questo è
4683 dovuto ad una interruzione (\texttt{\small 42--44}) o si stampa un messaggio
4684 di errore e si esce negli altri casi (\texttt{\small 44--47}).
4685
4686 Una volta completata la copia dei dati sullo standard output si possono
4687 estrarre dalla standard input e scrivere sul file, di nuovo su usa un ciclo di
4688 scrittura (\texttt{\small 50--58}) in cui si ripete una chiamata a
4689 \func{splice} (\texttt{\small 51}) fintanto che non si sono scritti tutti i
4690 \var{len} byte copiati in precedenza con \func{tee} (il funzionamento è
4691 identico all'analogo ciclo di scrittura del precedente esempio di
4692 fig.~\ref{fig:splice_example}).
4693
4694 Infine una nota finale riguardo \func{splice}, \func{vmsplice} e \func{tee}:
4695 occorre sottolineare che benché finora si sia parlato di trasferimenti o copie
4696 di dati in realtà nella implementazione di queste system call non è affatto
4697 detto che i dati vengono effettivamente spostati o copiati, il kernel infatti
4698 realizza le \textit{pipe} come un insieme di puntatori\footnote{per essere
4699   precisi si tratta di un semplice buffer circolare, un buon articolo sul tema
4700   si trova su \href{http://lwn.net/Articles/118750/}
4701   {\textsf{http://lwn.net/Articles/118750/}}.}  alle pagine di memoria interna
4702 che contengono i dati, per questo una volta che i dati sono presenti nella
4703 memoria del kernel tutto quello che viene fatto è creare i suddetti puntatori
4704 ed aumentare il numero di referenze; questo significa che anche con \func{tee}
4705 non viene mai copiato nessun byte, vengono semplicemente copiati i puntatori.
4706
4707 % TODO?? dal 2.6.25 splice ha ottenuto il supporto per la ricezione su rete
4708
4709
4710 \subsection{Gestione avanzata dell'accesso ai dati dei file}
4711 \label{sec:file_fadvise}
4712
4713 Nell'uso generico dell'interfaccia per l'accesso al contenuto dei file le
4714 operazioni di lettura e scrittura non necessitano di nessun intervento di
4715 supervisione da parte dei programmi, si eseguirà una \func{read} o una
4716 \func{write}, i dati verranno passati al kernel che provvederà ad effettuare
4717 tutte le operazioni (e a gestire il \textit{caching} dei dati) per portarle a
4718 termine in quello che ritiene essere il modo più efficiente.
4719
4720 Il problema è che il concetto di migliore efficienza impiegato dal kernel è
4721 relativo all'uso generico, mentre esistono molti casi in cui ci sono esigenze
4722 specifiche dei singoli programmi, che avendo una conoscenza diretta di come
4723 verranno usati i file, possono necessitare di effettuare delle ottimizzazioni
4724 specifiche, relative alle proprie modalità di I/O sugli stessi. Tratteremo in
4725 questa sezione una serie funzioni che consentono ai programmi di ottimizzare
4726 il loro accesso ai dati dei file e controllare la gestione del relativo
4727 \textit{caching}.
4728
4729 \itindbeg{read-ahead}
4730
4731 Una prima funzione che può essere utilizzata per modificare la gestione
4732 ordinaria dell'I/O su un file è \funcd{readahead},\footnote{questa è una
4733   funzione specifica di Linux, introdotta con il kernel 2.4.13, e non deve
4734   essere usata se si vogliono scrivere programmi portabili.} che consente di
4735 richiedere una lettura anticipata del contenuto dello stesso in cache, così
4736 che le seguenti operazioni di lettura non debbano subire il ritardo dovuto
4737 all'accesso al disco; il suo prototipo è:
4738 \begin{functions}
4739   \headdecl{fcntl.h}
4740
4741   \funcdecl{ssize\_t readahead(int fd, off64\_t *offset, size\_t count)}
4742   
4743   Esegue una lettura preventiva del contenuto di un file in cache.
4744
4745   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4746     errore, nel qual caso \var{errno} assumerà uno dei valori:
4747     \begin{errlist}
4748     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
4749       valido o non è aperto in lettura.
4750     \item[\errcode{EINVAL}] l'argomento \param{fd} si riferisce ad un tipo di
4751       file che non supporta l'operazione (come una pipe o un socket).
4752     \end{errlist}
4753   }
4754 \end{functions}
4755
4756 La funzione richiede che venga letto in anticipo il contenuto del file
4757 \param{fd} a partire dalla posizione \param{offset} e per un ammontare di
4758 \param{count} byte, in modo da portarlo in cache.  La funzione usa la
4759 \index{memoria~virtuale} memoria virtuale ed il meccanismo della
4760 \index{paginazione} paginazione per cui la lettura viene eseguita in blocchi
4761 corrispondenti alle dimensioni delle pagine di memoria, ed i valori di
4762 \param{offset} e \param{count} vengono arrotondati di conseguenza.
4763
4764 La funzione estende quello che è un comportamento normale del kernel che
4765 quando si legge un file, aspettandosi che l'accesso prosegua, esegue sempre
4766 una lettura preventiva di una certa quantità di dati; questo meccanismo di
4767 lettura anticipata viene chiamato \textit{read-ahead}, da cui deriva il nome
4768 della funzione. La funzione \func{readahead}, per ottimizzare gli accessi a
4769 disco, effettua la lettura in cache della sezione richiesta e si blocca
4770 fintanto che questa non viene completata.  La posizione corrente sul file non
4771 viene modificata ed indipendentemente da quanto indicato con \param{count} la
4772 lettura dei dati si interrompe una volta raggiunta la fine del file.
4773
4774 Si può utilizzare questa funzione per velocizzare le operazioni di lettura
4775 all'interno di un programma tutte le volte che si conosce in anticipo quanti
4776 dati saranno necessari nelle elaborazioni successive. Si potrà così
4777 concentrare in un unico momento (ad esempio in fase di inizializzazione) la
4778 lettura dei dati da disco, così da ottenere una migliore velocità di risposta
4779 nelle operazioni successive.
4780
4781 \itindend{read-ahead}
4782
4783 Il concetto di \func{readahead} viene generalizzato nello standard
4784 POSIX.1-2001 dalla funzione \func{posix\_fadvise},\footnote{anche se
4785   l'argomento \param{len} è stato modificato da \ctyp{size\_t} a \ctyp{off\_t}
4786   nella revisione POSIX.1-2003 TC5.} che consente di ``\textsl{avvisare}'' il
4787 kernel sulle modalità con cui si intende accedere nel futuro ad una certa
4788 porzione di un file,\footnote{la funzione però è stata introdotta su Linux
4789   solo a partire dal kernel 2.5.60.} così che esso possa provvedere le
4790 opportune ottimizzazioni; il prototipo di \funcd{posix\_fadvise}, che è
4791 disponibile soltanto se è stata definita la macro \macro{\_XOPEN\_SOURCE} ad
4792 valore di almeno 600, è:
4793 \begin{functions}  
4794   \headdecl{fcntl.h} 
4795
4796   \funcdecl{int posix\_fadvise(int fd, off\_t offset, off\_t len, int advice)}
4797   
4798   Dichiara al kernel le future modalità di accesso ad un file.
4799
4800   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4801     errore, nel qual caso \var{errno} assumerà uno dei valori:
4802     \begin{errlist}
4803     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
4804       valido.
4805     \item[\errcode{EINVAL}] il valore di \param{advice} non è valido o
4806       \param{fd} si riferisce ad un tipo di file che non supporta l'operazione
4807       (come una pipe o un socket).
4808     \item[\errcode{ESPIPE}] previsto dallo standard se \param{fd} è una pipe o
4809       un socket (ma su Linux viene restituito \errcode{EINVAL}).
4810     \end{errlist}
4811   }
4812 \end{functions}
4813
4814 La funzione dichiara al kernel le modalità con cui intende accedere alla
4815 regione del file indicato da \param{fd} che inizia alla posizione
4816 \param{offset} e si estende per \param{len} byte. Se per \param{len} si usa un
4817 valore nullo la regione coperta sarà da \param{offset} alla fine del
4818 file.\footnote{questo è vero solo per le versioni più recenti, fino al kernel
4819   2.6.6 il valore nullo veniva interpretato letteralmente.} Le modalità sono
4820 indicate dall'argomento \param{advice} che è una maschera binaria dei valori
4821 illustrati in tab.~\ref{tab:posix_fadvise_flag}, che riprendono il significato
4822 degli analoghi già visti in sez.~\ref{sec:file_memory_map} per
4823 \func{madvise}.\footnote{dato che si tratta dello stesso tipo di funzionalità,
4824   in questo caso applicata direttamente al sistema ai contenuti di un file
4825   invece che alla sua mappatura in memoria.} Si tenga presente comunque che la
4826 funzione dà soltanto un avvertimento, non esiste nessun vincolo per il kernel,
4827 che utilizza semplicemente l'informazione.
4828
4829 \begin{table}[htb]
4830   \centering
4831   \footnotesize
4832   \begin{tabular}[c]{|l|p{10cm}|}
4833     \hline
4834     \textbf{Valore} & \textbf{Significato} \\
4835     \hline
4836     \hline
4837     \const{POSIX\_FADV\_NORMAL}  & Non ci sono avvisi specifici da fare
4838                                    riguardo le modalità di accesso, il
4839                                    comportamento sarà identico a quello che si
4840                                    avrebbe senza nessun avviso.\\ 
4841     \const{POSIX\_FADV\_SEQUENTIAL}& L'applicazione si aspetta di accedere di
4842                                    accedere ai dati specificati in maniera
4843                                    sequenziale, a partire dalle posizioni più
4844                                    basse.\\ 
4845     \const{POSIX\_FADV\_RANDOM}  & I dati saranno letti in maniera
4846                                    completamente causale.\\
4847     \const{POSIX\_FADV\_NOREUSE} & I dati saranno acceduti una sola volta.\\ 
4848     \const{POSIX\_FADV\_WILLNEED}& I dati saranno acceduti a breve.\\ 
4849     \const{POSIX\_FADV\_DONTNEED}& I dati non saranno acceduti a breve.\\ 
4850     \hline
4851   \end{tabular}
4852   \caption{Valori delle costanti usabili per l'argomento \param{advice} di
4853     \func{posix\_fadvise}, che indicano la modalità con cui si intende accedere
4854     ad un file.}
4855   \label{tab:posix_fadvise_flag}
4856 \end{table}
4857
4858 Come \func{madvise} anche \func{posix\_fadvise} si appoggia al sistema della
4859 memoria virtuale ed al meccanismo standard del \textit{read-ahead} utilizzato
4860 dal kernel; in particolare utilizzando il valore
4861 \const{POSIX\_FADV\_SEQUENTIAL} si raddoppia la dimensione dell'ammontare di
4862 dati letti preventivamente rispetto al default, aspettandosi appunto una
4863 lettura sequenziale che li utilizzerà, mentre con \const{POSIX\_FADV\_RANDOM}
4864 si disabilita del tutto il suddetto meccanismo, dato che con un accesso del
4865 tutto casuale è inutile mettersi a leggere i dati immediatamente successivi
4866 gli attuali; infine l'uso di \const{POSIX\_FADV\_NORMAL} consente di
4867 riportarsi al comportamento di default.
4868
4869 Le due modalità \const{POSIX\_FADV\_NOREUSE} e \const{POSIX\_FADV\_WILLNEED}
4870 fino al kernel 2.6.18 erano equivalenti, a partire da questo kernel la prima
4871 viene non ha più alcun effetto, mentre la seconda dà inizio ad una lettura in
4872 cache della regione del file indicata.  La quantità di dati che verranno letti
4873 è ovviamente limitata in base al carico che si viene a creare sul sistema
4874 della memoria virtuale, ma in genere una lettura di qualche megabyte viene
4875 sempre soddisfatta (ed un valore superiore è solo raramente di qualche
4876 utilità). In particolare l'uso di \const{POSIX\_FADV\_WILLNEED} si può
4877 considerare l'equivalente POSIX di \func{readahead}.
4878
4879 Infine con \const{POSIX\_FADV\_DONTNEED} si dice al kernel di liberare le
4880 pagine di cache occupate dai dati presenti nella regione di file indicata.
4881 Questa è una indicazione utile che permette di alleggerire il carico sulla
4882 cache, ed un programma può utilizzare periodicamente questa funzione per
4883 liberare pagine di memoria da dati che non sono più utilizzati per far posto a
4884 nuovi dati utili.\footnote{la pagina di manuale riporta l'esempio dello
4885   streaming di file di grosse dimensioni, dove le pagine occupate dai dati già
4886   inviati possono essere tranquillamente scartate.}
4887
4888 Sia \func{posix\_fadvise} che \func{readahead} attengono alla ottimizzazione
4889 dell'accesso in lettura; lo standard POSIX.1-2001 prevede anche una funzione
4890 specifica per le operazioni di scrittura,
4891 \funcd{posix\_fallocate},\footnote{la funzione è stata introdotta a partire
4892   dalle glibc 2.1.94.} che consente di preallocare dello spazio disco per
4893 assicurarsi che una seguente scrittura non fallisca, il suo prototipo,
4894 anch'esso disponibile solo se si definisce la macro \macro{\_XOPEN\_SOURCE} ad
4895 almeno 600, è:
4896 \begin{functions}  
4897   \headdecl{fcntl.h} 
4898
4899   \funcdecl{int posix\_fallocate(int fd, off\_t offset, off\_t len)}
4900   
4901   Richiede la allocazione di spazio disco per un file.
4902
4903   \bodydesc{La funzione restituisce 0 in caso di successo e direttamente un
4904     codice di errore, in caso di fallimento, in questo caso \var{errno} non
4905     viene impostata, ma sarà restituito direttamente uno dei valori:
4906     \begin{errlist}
4907     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
4908       valido o non è aperto in scrittura.
4909     \item[\errcode{EINVAL}] o \param{offset} o \param{len} sono minori di
4910       zero.
4911     \item[\errcode{EFBIG}] il valore di (\param{offset} + \param{len}) eccede
4912       la dimensione massima consentita per un file.
4913     \item[\errcode{ENODEV}] l'argomento \param{fd} non fa riferimento ad un
4914       file regolare.
4915     \item[\errcode{ENOSPC}] non c'è sufficiente spazio disco per eseguire
4916       l'operazione. 
4917     \item[\errcode{ESPIPE}] l'argomento \param{fd} è una pipe.
4918   \end{errlist}
4919   }
4920 \end{functions}
4921
4922 La funzione assicura che venga allocato sufficiente spazio disco perché sia
4923 possibile scrivere sul file indicato dall'argomento \param{fd} nella regione
4924 che inizia dalla posizione \param{offset} e si estende per \param{len} byte;
4925 se questa regione si estende oltre la fine del file le dimensioni di
4926 quest'ultimo saranno incrementate di conseguenza. Dopo aver eseguito con
4927 successo la funzione è garantito che una successiva scrittura nella regione
4928 indicata non fallirà per mancanza di spazio disco. La funzione non ha nessun
4929 effetto né sul contenuto, né sulla posizione corrente del file.
4930
4931 Ci si può chiedere a cosa possa servire una funzione come
4932 \func{posix\_fallocate} dato che è sempre possibile ottenere l'effetto voluto
4933 eseguendo esplicitamente sul file la scrittura\footnote{usando \funcd{pwrite}
4934   per evitare spostamenti della posizione corrente sul file.} di una serie di
4935 zeri per l'estensione di spazio necessaria qualora il \itindex{sparse~file}
4936 file debba essere esteso o abbia dei \index{file!\textit{hole}}
4937 buchi.\footnote{si ricordi che occorre scrivere per avere l'allocazione e che
4938   l'uso di \func{truncate} per estendere un file creerebbe soltanto uno
4939   \itindex{sparse~file} \textit{sparse file} (vedi sez.~\ref{sec:file_lseek})
4940   senza una effettiva allocazione dello spazio disco.}  In realtà questa è la
4941 modalità con cui la funzione veniva realizzata nella prima versione fornita
4942 dalle \acr{glibc}, per cui la funzione costituiva in sostanza soltanto una
4943 standardizzazione delle modalità di esecuzione di questo tipo di allocazioni.
4944
4945 Questo metodo, anche se funzionante, comporta però l'effettiva esecuzione una
4946 scrittura su tutto lo spazio disco necessario, da fare al momento della
4947 richiesta di allocazione, pagandone il conseguente prezzo in termini di
4948 prestazioni; il tutto quando in realtà servirebbe solo poter riservare lo
4949 spazio per poi andarci a scrivere, una sola volta, quando il contenuto finale
4950 diventa effettivamente disponibile.
4951
4952 Per poter fare tutto questo è però necessario il supporto da parte del kernel,
4953 e questo è divenuto disponibile solo a partire dal kernel 2.6.23 in cui è
4954 stata introdotta la nuova \textit{system call} \func{fallocate},\footnote{non
4955   è detto che la funzione sia disponibile per tutti i filesystem, ad esempio
4956   per XFS il supporto è stato introdotto solo a partire dal kernel 2.6.25.}
4957 che consente di realizzare direttamente all'interno del kernel l'allocazione
4958 dello spazio disco così da poter realizzare una versione di
4959 \func{posix\_fallocate} con prestazioni molto più elevate.\footnote{nelle
4960   \acr{glibc} la nuova \textit{system call} viene sfruttata per la
4961   realizzazione di \func{posix\_fallocate} a partire dalla versione 2.10.}
4962
4963 Trattandosi di una funzione di servizio, ed ovviamente disponibile
4964 esclusivamente su Linux, inizialmente \funcd{fallocate} non era stata definita
4965 come funzione di libreria,\footnote{pertanto poteva essere invocata soltanto
4966   in maniera indiretta con l'ausilio di \func{syscall}, vedi
4967   sez.~\ref{sec:intro_syscall}, come \code{long fallocate(int fd, int mode,
4968       loff\_t offset, loff\_t len)}.} ma a partire dalle \acr{glibc} 2.10 è
4969   stato fornito un supporto esplicito; il suo prototipo è:
4970 \begin{functions}
4971   \headdecl{linux/fcntl.h} 
4972
4973   \funcdecl{int fallocate(int fd, int mode, off\_t offset, off\_t len)}
4974
4975   Prealloca dello spazio disco per un file.
4976   
4977   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di errore,
4978     nel qual caso \var{errno} può assumere i valori:
4979     \begin{errlist}
4980     \item[\errcode{EBADF}] \param{fd} non fa riferimento ad un file descriptor
4981       valido aperto in scrittura.
4982     \item[\errcode{EFBIG}] la somma di \param{offset} e \param{len} eccede le
4983       dimensioni massime di un file. 
4984     \item[\errcode{EINVAL}] \param{offset} è minore di zero o \param{len} è
4985       minore o uguale a zero. 
4986     \item[\errcode{ENODEV}] \param{fd} non fa riferimento ad un file ordinario
4987       o a una directory. 
4988     \item[\errcode{ENOSPC}] non c'è spazio disco sufficiente per l'operazione. 
4989     \item[\errcode{ENOSYS}] il filesystem contenente il file associato
4990       a \param{fd} non supporta \func{fallocate}.
4991     \item[\errcode{EOPNOTSUPP}] il filesystem contenente il file associato
4992       a \param{fd} non supporta l'operazione \param{mode}.
4993   \end{errlist} 
4994   ed inoltre \errval{EINTR}, \errval{EIO}.
4995 }
4996 \end{functions}
4997
4998 La funzione prende gli stessi argomenti di \func{posix\_fallocate} con lo
4999 stesso significato, a cui si aggiunge l'argomento \param{mode} che indica le
5000 modalità di allocazione; al momento quest'ultimo può soltanto essere nullo o
5001 assumere il valore \const{FALLOC\_FL\_KEEP\_SIZE} che richiede che la
5002 dimensione del file\footnote{quella ottenuta nel campo \var{st\_size} di una
5003   struttura \struct{stat} dopo una chiamata a \texttt{fstat}.} non venga
5004 modificata anche quando la somma di \param{offset} e \param{len} eccede la
5005 dimensione corrente. 
5006
5007 Se \param{mode} è nullo invece la dimensione totale del file in caso di
5008 estensione dello stesso viene aggiornata, come richiesto per
5009 \func{posix\_fallocate}, ed invocata in questo modo si può considerare
5010 \func{fallocate} come l'implementazione ottimale di \func{posix\_fallocate} a
5011 livello di kernel.
5012
5013 % vedi http://lwn.net/Articles/226710/ e http://lwn.net/Articles/240571/
5014 % http://kernelnewbies.org/Linux_2_6_23
5015
5016
5017
5018
5019 %\subsection{L'utilizzo delle porte di I/O}
5020 %\label{sec:file_io_port}
5021 %
5022 % TODO l'I/O sulle porte di I/O 
5023 % consultare le manpage di ioperm, iopl e outb
5024
5025
5026
5027
5028
5029 % LocalWords:  dell'I locking multiplexing cap dell' sez system call socket BSD
5030 % LocalWords:  descriptor client deadlock NONBLOCK EAGAIN polling select kernel
5031 % LocalWords:  pselect like sys unistd int fd readfds writefds exceptfds struct
5032 % LocalWords:  timeval errno EBADF EINTR EINVAL ENOMEM sleep tab signal void of
5033 % LocalWords:  CLR ISSET SETSIZE POSIX read NULL nell'header l'header glibc fig
5034 % LocalWords:  libc header psignal sigmask SOURCE XOPEN timespec sigset race DN
5035 % LocalWords:  condition sigprocmask tut self trick oldmask poll XPG pollfd l'I
5036 % LocalWords:  ufds unsigned nfds RLIMIT NOFILE EFAULT ndfs events revents hung
5037 % LocalWords:  POLLIN POLLRDNORM POLLRDBAND POLLPRI POLLOUT POLLWRNORM POLLERR
5038 % LocalWords:  POLLWRBAND POLLHUP POLLNVAL POLLMSG SysV stream ASYNC SETOWN FAQ
5039 % LocalWords:  GETOWN fcntl SETFL SIGIO SETSIG Stevens driven siginfo sigaction
5040 % LocalWords:  all'I nell'I Frequently Unanswered Question SIGHUP lease holder
5041 % LocalWords:  breaker truncate write SETLEASE arg RDLCK WRLCK UNLCK GETLEASE
5042 % LocalWords:  uid capabilities capability EWOULDBLOCK notify dall'OR ACCESS st
5043 % LocalWords:  pread readv MODIFY pwrite writev ftruncate creat mknod mkdir buf
5044 % LocalWords:  symlink rename DELETE unlink rmdir ATTRIB chown chmod utime lio
5045 % LocalWords:  MULTISHOT thread linkando librt layer aiocb asyncronous control
5046 % LocalWords:  block ASYNCHRONOUS lseek fildes nbytes reqprio PRIORITIZED sigev
5047 % LocalWords:  PRIORITY SCHEDULING opcode listio sigevent signo value function
5048 % LocalWords:  aiocbp ENOSYS append error const EINPROGRESS fsync return ssize
5049 % LocalWords:  DSYNC fdatasync SYNC cancel ECANCELED ALLDONE CANCELED suspend
5050 % LocalWords:  NOTCANCELED list nent timout sig NOP WAIT NOWAIT size count iov
5051 % LocalWords:  iovec vector EOPNOTSUPP EISDIR len memory mapping mapped swap NB
5052 % LocalWords:  mmap length prot flags off MAP FAILED ANONYMOUS EACCES SHARED SH
5053 % LocalWords:  only ETXTBSY DENYWRITE ENODEV filesystem EPERM EXEC noexec table
5054 % LocalWords:  ENFILE lenght segment violation SIGSEGV FIXED msync munmap copy
5055 % LocalWords:  DoS Denial Service EXECUTABLE NORESERVE LOCKED swapping stack fs
5056 % LocalWords:  GROWSDOWN ANON POPULATE prefaulting SIGBUS fifo VME fork old
5057 % LocalWords:  exec atime ctime mtime mprotect addr EACCESS mremap address new
5058 % LocalWords:  long MAYMOVE realloc VMA virtual Ingo Molnar remap pages pgoff
5059 % LocalWords:  dall' fault cache linker prelink advisory discrectionary lock fl
5060 % LocalWords:  flock shared exclusive operation dup inode linked NFS cmd ENOLCK
5061 % LocalWords:  EDEADLK whence SEEK CUR type pid GETLK SETLK SETLKW all'inode HP
5062 % LocalWords:  switch bsd lockf mandatory SVr sgid group root mount mand TRUNC
5063 % LocalWords:  SVID UX Documentation sendfile dnotify inotify NdA ppoll fds add
5064 % LocalWords:  init EMFILE FIONREAD ioctl watch char pathname uint mask ENOSPC
5065 % LocalWords:  dell'inode CLOSE NOWRITE MOVE MOVED FROM TO rm wd event page ctl
5066 % LocalWords:  attribute Universe epoll Solaris kqueue level triggered Jonathan
5067 % LocalWords:  Lemon BSDCON edge Libenzi kevent backporting epfd EEXIST ENOENT
5068 % LocalWords:  MOD wait EPOLLIN EPOLLOUT EPOLLRDHUP SOCK EPOLLPRI EPOLLERR one
5069 % LocalWords:  EPOLLHUP EPOLLET EPOLLONESHOT shot maxevents ctlv ALL DONT HPUX
5070 % LocalWords:  FOLLOW ONESHOT ONLYDIR FreeBSD EIO caching sysctl instances name
5071 % LocalWords:  watches IGNORED ISDIR OVERFLOW overflow UNMOUNT queued cookie ls
5072 % LocalWords:  NUL sizeof casting printevent nread limits sysconf SC wrapper Di
5073 % LocalWords:  splice result argument DMA controller zerocopy Linus Larry Voy
5074 % LocalWords:  Jens Anxboe vmsplice seek ESPIPE GIFT TCP CORK MSG splicecp nr
5075 % LocalWords:  nwrite segs patch readahead posix fadvise TC advice FADV NORMAL
5076 % LocalWords:  SEQUENTIAL NOREUSE WILLNEED DONTNEED streaming fallocate EFBIG
5077 % LocalWords:  POLLRDHUP half close pwait Gb madvise MADV ahead REMOVE tmpfs
5078 % LocalWords:  DONTFORK DOFORK shmfs preadv pwritev syscall linux loff head XFS
5079 % LocalWords:  MERGEABLE EOVERFLOW prealloca hole FALLOC KEEP stat fstat
5080 % LocalWords:  conditions sigwait
5081
5082
5083 %%% Local Variables: 
5084 %%% mode: latex
5085 %%% TeX-master: "gapil"
5086 %%% End: