Revisione ed inizio materiale su notifica dei segnali tramite file
[gapil.git] / fileadv.tex
1 %% fileadv.tex
2 %%
3 %% Copyright (C) 2000-2010 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11 \chapter{La gestione avanzata dei file}
12 \label{cha:file_advanced}
13
14 In questo capitolo affronteremo le tematiche relative alla gestione avanzata
15 dei file. Inizieremo con la trattazione delle problematiche del \textit{file
16   locking} e poi prenderemo in esame le varie funzionalità avanzate che
17 permettono una gestione più sofisticata dell'I/O su file, a partire da quelle
18 che consentono di gestire l'accesso contemporaneo a più file esaminando le
19 varie modalità alternative di gestire l'I/O per concludere con la gestione dei
20 file mappati in memoria e le altre funzioni avanzate che consentono un
21 controllo più dettagliato delle modalità di I/O.
22
23
24 \section{Il \textit{file locking}}
25 \label{sec:file_locking}
26
27 \index{file!locking|(}
28
29 In sez.~\ref{sec:file_sharing} abbiamo preso in esame le modalità in cui un
30 sistema unix-like gestisce la condivisione dei file da parte di processi
31 diversi. In quell'occasione si è visto come, con l'eccezione dei file aperti
32 in \itindex{append~mode} \textit{append mode}, quando più processi scrivono
33 contemporaneamente sullo stesso file non è possibile determinare la sequenza
34 in cui essi opereranno.
35
36 Questo causa la possibilità di una \itindex{race~condition} \textit{race
37   condition}; in generale le situazioni più comuni sono due: l'interazione fra
38 un processo che scrive e altri che leggono, in cui questi ultimi possono
39 leggere informazioni scritte solo in maniera parziale o incompleta; o quella
40 in cui diversi processi scrivono, mescolando in maniera imprevedibile il loro
41 output sul file.
42
43 In tutti questi casi il \textit{file locking} è la tecnica che permette di
44 evitare le \itindex{race~condition} \textit{race condition}, attraverso una
45 serie di funzioni che permettono di bloccare l'accesso al file da parte di
46 altri processi, così da evitare le sovrapposizioni, e garantire la atomicità
47 delle operazioni di lettura o scrittura.
48
49
50 \subsection{L'\textit{advisory locking}}
51 \label{sec:file_record_locking}
52
53 La prima modalità di \textit{file locking} che è stata implementata nei
54 sistemi unix-like è quella che viene usualmente chiamata \textit{advisory
55   locking},\footnote{Stevens in \cite{APUE} fa riferimento a questo argomento
56   come al \textit{record locking}, dizione utilizzata anche dal manuale delle
57   \acr{glibc}; nelle pagine di manuale si parla di \textit{discrectionary file
58     lock} per \func{fcntl} e di \textit{advisory locking} per \func{flock},
59   mentre questo nome viene usato da Stevens per riferirsi al \textit{file
60     locking} POSIX. Dato che la dizione \textit{record locking} è quantomeno
61   ambigua, in quanto in un sistema Unix non esiste niente che possa fare
62   riferimento al concetto di \textit{record}, alla fine si è scelto di
63   mantenere il nome \textit{advisory locking}.} in quanto sono i singoli
64 processi, e non il sistema, che si incaricano di asserire e verificare se
65 esistono delle condizioni di blocco per l'accesso ai file. 
66
67 Questo significa che le funzioni \func{read} o \func{write} vengono eseguite
68 comunque e non risentono affatto della presenza di un eventuale \textit{lock};
69 pertanto è sempre compito dei vari processi che intendono usare il
70 \textit{file locking}, controllare esplicitamente lo stato dei file condivisi
71 prima di accedervi, utilizzando le relative funzioni.
72
73 In generale si distinguono due tipologie di \textit{file lock};\footnote{di
74   seguito ci riferiremo sempre ai blocchi di accesso ai file con la
75   nomenclatura inglese di \textit{file lock}, o più brevemente con
76   \textit{lock}, per evitare confusioni linguistiche con il blocco di un
77   processo (cioè la condizione in cui il processo viene posto in stato di
78   \textit{sleep}).} la prima è il cosiddetto \textit{shared lock}, detto anche
79 \textit{read lock} in quanto serve a bloccare l'accesso in scrittura su un
80 file affinché il suo contenuto non venga modificato mentre lo si legge. Si
81 parla appunto di \textsl{blocco condiviso} in quanto più processi possono
82 richiedere contemporaneamente uno \textit{shared lock} su un file per
83 proteggere il loro accesso in lettura.
84
85 La seconda tipologia è il cosiddetto \textit{exclusive lock}, detto anche
86 \textit{write lock} in quanto serve a bloccare l'accesso su un file (sia in
87 lettura che in scrittura) da parte di altri processi mentre lo si sta
88 scrivendo. Si parla di \textsl{blocco esclusivo} appunto perché un solo
89 processo alla volta può richiedere un \textit{exclusive lock} su un file per
90 proteggere il suo accesso in scrittura.
91
92 In Linux sono disponibili due interfacce per utilizzare l'\textit{advisory
93   locking}, la prima è quella derivata da BSD, che è basata sulla funzione
94 \func{flock}, la seconda è quella standardizzata da POSIX.1 (derivata da
95 System V), che è basata sulla funzione \func{fcntl}.  I \textit{file lock}
96 sono implementati in maniera completamente indipendente nelle due
97 interfacce,\footnote{in realtà con Linux questo avviene solo dalla serie 2.0
98   dei kernel.}   che pertanto possono coesistere senza interferenze.
99
100 Entrambe le interfacce prevedono la stessa procedura di funzionamento: si
101 inizia sempre con il richiedere l'opportuno \textit{file lock} (un
102 \textit{exclusive lock} per una scrittura, uno \textit{shared lock} per una
103 lettura) prima di eseguire l'accesso ad un file.  Se il blocco viene acquisito
104 il processo prosegue l'esecuzione, altrimenti (a meno di non aver richiesto un
105 comportamento non bloccante) viene posto in stato di sleep. Una volta finite
106 le operazioni sul file si deve provvedere a rimuovere il blocco. La situazione
107 delle varie possibilità è riassunta in tab.~\ref{tab:file_file_lock}, dove si
108 sono riportati, per le varie tipologie di blocco presenti su un file, il
109 risultato che si ha in corrispondenza alle due tipologie di \textit{file lock}
110 menzionate, nel successo della richiesta.
111
112 \begin{table}[htb]
113   \centering
114   \footnotesize
115    \begin{tabular}[c]{|l|c|c|c|}
116     \hline
117     \textbf{Richiesta} & \multicolumn{3}{|c|}{\textbf{Stato del file}}\\
118     \cline{2-4}
119                   &Nessun \textit{lock}&\textit{Read lock}&\textit{Write lock}\\
120     \hline
121     \hline
122     \textit{Read lock} & SI & SI & NO \\
123     \textit{Write lock}& SI & NO & NO \\
124     \hline    
125   \end{tabular}
126   \caption{Tipologie di \textit{file locking}.}
127   \label{tab:file_file_lock}
128 \end{table}
129
130 Si tenga presente infine che il controllo di accesso e la gestione dei
131 permessi viene effettuata quando si apre un file, l'unico controllo residuo
132 che si può avere riguardo il \textit{file locking} è che il tipo di blocco che
133 si vuole ottenere su un file deve essere compatibile con le modalità di
134 apertura dello stesso (in lettura per un \textit{read lock} e in scrittura per
135 un \textit{write lock}).
136
137 %%  Si ricordi che
138 %% la condizione per acquisire uno \textit{shared lock} è che il file non abbia
139 %% già un \textit{exclusive lock} attivo, mentre per acquisire un
140 %% \textit{exclusive lock} non deve essere presente nessun tipo di blocco.
141
142
143 \subsection{La funzione \func{flock}} 
144 \label{sec:file_flock}
145
146 La prima interfaccia per il \textit{file locking}, quella derivata da BSD,
147 permette di eseguire un blocco solo su un intero file; la funzione usata per
148 richiedere e rimuovere un \textit{file lock} è \funcd{flock}, ed il suo
149 prototipo è:
150 \begin{prototype}{sys/file.h}{int flock(int fd, int operation)}
151   
152   Applica o rimuove un \textit{file lock} sul file \param{fd}.
153   
154   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
155     errore, nel qual caso \var{errno} assumerà uno dei valori:
156     \begin{errlist}
157     \item[\errcode{EWOULDBLOCK}] il file ha già un blocco attivo, e si è
158       specificato \const{LOCK\_NB}.
159     \end{errlist}
160   }
161 \end{prototype}
162
163 La funzione può essere usata per acquisire o rilasciare un \textit{file lock}
164 a seconda di quanto specificato tramite il valore dell'argomento
165 \param{operation}; questo viene interpretato come maschera binaria, e deve
166 essere passato costruendo il valore con un OR aritmetico delle costanti
167 riportate in tab.~\ref{tab:file_flock_operation}.
168
169 \begin{table}[htb]
170   \centering
171   \footnotesize
172   \begin{tabular}[c]{|l|p{6cm}|}
173     \hline
174     \textbf{Valore} & \textbf{Significato} \\
175     \hline
176     \hline
177     \const{LOCK\_SH} & Richiede uno \textit{shared lock} sul file.\\ 
178     \const{LOCK\_EX} & Richiede un \textit{esclusive lock} sul file.\\
179     \const{LOCK\_UN} & Rilascia il \textit{file lock}.\\
180     \const{LOCK\_NB} & Impedisce che la funzione si blocchi nella
181                        richiesta di un \textit{file lock}.\\
182     \hline    
183   \end{tabular}
184   \caption{Valori dell'argomento \param{operation} di \func{flock}.}
185   \label{tab:file_flock_operation}
186 \end{table}
187
188 I primi due valori, \const{LOCK\_SH} e \const{LOCK\_EX} permettono di
189 richiedere un \textit{file lock}, ed ovviamente devono essere usati in maniera
190 alternativa. Se si specifica anche \const{LOCK\_NB} la funzione non si
191 bloccherà qualora il \textit{file lock} non possa essere acquisito, ma
192 ritornerà subito con un errore di \errcode{EWOULDBLOCK}. Per rilasciare un
193 \textit{file lock} si dovrà invece usare \const{LOCK\_UN}.
194
195 Si tenga presente che non esiste una modalità per eseguire atomicamente un
196 cambiamento del tipo di blocco (da \textit{shared lock} a \textit{esclusive
197   lock}), il blocco deve essere prima rilasciato e poi richiesto, ed è sempre
198 possibile che nel frattempo abbia successo un'altra richiesta pendente,
199 facendo fallire la riacquisizione.
200
201 Si tenga presente infine che \func{flock} non è supportata per i file
202 mantenuti su NFS, in questo caso, se si ha la necessità di utilizzare il
203 \textit{file locking}, occorre usare l'interfaccia del \textit{file locking}
204 POSIX basata su \func{fcntl} che è in grado di funzionare anche attraverso
205 NFS, a condizione ovviamente che sia il client che il server supportino questa
206 funzionalità.
207
208 La semantica del \textit{file locking} di BSD inoltre è diversa da quella del
209 \textit{file locking} POSIX, in particolare per quanto riguarda il
210 comportamento dei \textit{file lock} nei confronti delle due funzioni
211 \func{dup} e \func{fork}.  Per capire queste differenze occorre descrivere con
212 maggiore dettaglio come viene realizzato dal kernel il \textit{file locking}
213 per entrambe le interfacce.
214
215 In fig.~\ref{fig:file_flock_struct} si è riportato uno schema essenziale
216 dell'implementazione del \textit{file locking} in stile BSD su Linux. Il punto
217 fondamentale da capire è che un \textit{file lock}, qualunque sia
218 l'interfaccia che si usa, anche se richiesto attraverso un file descriptor,
219 agisce sempre su un file; perciò le informazioni relative agli eventuali
220 \textit{file lock} sono mantenute a livello di inode\index{inode},\footnote{in
221   particolare, come accennato in fig.~\ref{fig:file_flock_struct}, i
222   \textit{file lock} sono mantenuti in una \itindex{linked~list}
223   \textit{linked list} di strutture \struct{file\_lock}. La lista è
224   referenziata dall'indirizzo di partenza mantenuto dal campo \var{i\_flock}
225   della struttura \struct{inode} (per le definizioni esatte si faccia
226   riferimento al file \file{fs.h} nei sorgenti del kernel).  Un bit del campo
227   \var{fl\_flags} di specifica se si tratta di un lock in semantica BSD
228   (\const{FL\_FLOCK}) o POSIX (\const{FL\_POSIX}).}  dato che questo è l'unico
229 riferimento in comune che possono avere due processi diversi che aprono lo
230 stesso file.
231
232 \begin{figure}[htb]
233   \centering
234   \includegraphics[width=15cm]{img/file_flock}
235   \caption{Schema dell'architettura del \textit{file locking}, nel caso
236     particolare del suo utilizzo da parte dalla funzione \func{flock}.}
237   \label{fig:file_flock_struct}
238 \end{figure}
239
240 La richiesta di un \textit{file lock} prevede una scansione della lista per
241 determinare se l'acquisizione è possibile, ed in caso positivo l'aggiunta di
242 un nuovo elemento.\footnote{cioè una nuova struttura \struct{file\_lock}.}
243 Nel caso dei blocchi creati con \func{flock} la semantica della funzione
244 prevede che sia \func{dup} che \func{fork} non creino ulteriori istanze di un
245 \textit{file lock} quanto piuttosto degli ulteriori riferimenti allo
246 stesso. Questo viene realizzato dal kernel secondo lo schema di
247 fig.~\ref{fig:file_flock_struct}, associando ad ogni nuovo \textit{file lock}
248 un puntatore\footnote{il puntatore è mantenuto nel campo \var{fl\_file} di
249   \struct{file\_lock}, e viene utilizzato solo per i \textit{file lock} creati
250   con la semantica BSD.} alla voce nella \itindex{file~table} \textit{file
251   table} da cui si è richiesto il blocco, che così ne identifica il titolare.
252
253 Questa struttura prevede che, quando si richiede la rimozione di un
254 \textit{file lock}, il kernel acconsenta solo se la richiesta proviene da un
255 file descriptor che fa riferimento ad una voce nella \itindex{file~table}
256 \textit{file table} corrispondente a quella registrata nel blocco.  Allora se
257 ricordiamo quanto visto in sez.~\ref{sec:file_dup} e
258 sez.~\ref{sec:file_sharing}, e cioè che i file descriptor duplicati e quelli
259 ereditati in un processo figlio puntano sempre alla stessa voce nella
260 \itindex{file~table} \textit{file table}, si può capire immediatamente quali
261 sono le conseguenze nei confronti delle funzioni \func{dup} e \func{fork}.
262
263 Sarà così possibile rimuovere un \textit{file lock} attraverso uno qualunque
264 dei file descriptor che fanno riferimento alla stessa voce nella
265 \itindex{file~table} \textit{file table}, anche se questo è diverso da quello
266 con cui lo si è creato,\footnote{attenzione, questo non vale se il file
267   descriptor fa riferimento allo stesso file, ma attraverso una voce diversa
268   della \itindex{file~table} \textit{file table}, come accade tutte le volte
269   che si apre più volte lo stesso file.} o se si esegue la rimozione in un
270 processo figlio; inoltre una volta tolto un \textit{file lock}, la rimozione
271 avrà effetto su tutti i file descriptor che condividono la stessa voce nella
272 \itindex{file~table} \textit{file table}, e quindi, nel caso di file
273 descriptor ereditati attraverso una \func{fork}, anche su processi diversi.
274
275 Infine, per evitare che la terminazione imprevista di un processo lasci attivi
276 dei \textit{file lock}, quando un file viene chiuso il kernel provvede anche a
277 rimuovere tutti i blocchi ad esso associati. Anche in questo caso occorre
278 tenere presente cosa succede quando si hanno file descriptor duplicati; in tal
279 caso infatti il file non verrà effettivamente chiuso (ed il blocco rimosso)
280 fintanto che non viene rilasciata la relativa voce nella \itindex{file~table}
281 \textit{file table}; e questo avverrà solo quando tutti i file descriptor che
282 fanno riferimento alla stessa voce sono stati chiusi.  Quindi, nel caso ci
283 siano duplicati o processi figli che mantengono ancora aperto un file
284 descriptor, il \textit{file lock} non viene rilasciato.
285  
286
287 \subsection{Il \textit{file locking} POSIX}
288 \label{sec:file_posix_lock}
289
290 La seconda interfaccia per l'\textit{advisory locking} disponibile in Linux è
291 quella standardizzata da POSIX, basata sulla funzione \func{fcntl}. Abbiamo
292 già trattato questa funzione nelle sue molteplici possibilità di utilizzo in
293 sez.~\ref{sec:file_fcntl}. Quando la si impiega per il \textit{file locking}
294 essa viene usata solo secondo il seguente prototipo:
295 \begin{prototype}{fcntl.h}{int fcntl(int fd, int cmd, struct flock *lock)}
296   
297   Applica o rimuove un \textit{file lock} sul file \param{fd}.
298   
299   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
300     errore, nel qual caso \var{errno} assumerà uno dei valori:
301     \begin{errlist}
302     \item[\errcode{EACCES}] l'operazione è proibita per la presenza di
303       \textit{file lock} da parte di altri processi.
304     \item[\errcode{ENOLCK}] il sistema non ha le risorse per il blocco: ci
305       sono troppi segmenti di \textit{lock} aperti, si è esaurita la tabella
306       dei \textit{file lock}, o il protocollo per il blocco remoto è fallito.
307     \item[\errcode{EDEADLK}] si è richiesto un \textit{lock} su una regione
308       bloccata da un altro processo che è a sua volta in attesa dello sblocco
309       di un \textit{lock} mantenuto dal processo corrente; si avrebbe pertanto
310       un \itindex{deadlock} \textit{deadlock}. Non è garantito che il sistema
311       riconosca sempre questa situazione.
312     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
313       di poter acquisire un \textit{file lock}.
314     \end{errlist}
315     ed inoltre \errval{EBADF}, \errval{EFAULT}.
316   }
317 \end{prototype}
318
319 Al contrario di quanto avviene con l'interfaccia basata su \func{flock} con
320 \func{fcntl} è possibile bloccare anche delle singole sezioni di un file, fino
321 al singolo byte. Inoltre la funzione permette di ottenere alcune informazioni
322 relative agli eventuali blocchi preesistenti.  Per poter fare tutto questo la
323 funzione utilizza come terzo argomento una apposita struttura \struct{flock}
324 (la cui definizione è riportata in fig.~\ref{fig:struct_flock}) nella quale
325 inserire tutti i dati relativi ad un determinato blocco. Si tenga presente poi
326 che un \textit{file lock} fa sempre riferimento ad una regione, per cui si
327 potrà avere un conflitto anche se c'è soltanto una sovrapposizione parziale
328 con un'altra regione bloccata.
329
330 \begin{figure}[!bht]
331   \footnotesize \centering
332   \begin{minipage}[c]{15cm}
333     \includestruct{listati/flock.h}
334   \end{minipage} 
335   \normalsize 
336   \caption{La struttura \structd{flock}, usata da \func{fcntl} per il
337     \textit{file locking}.}
338   \label{fig:struct_flock}
339 \end{figure}
340
341
342 I primi tre campi della struttura, \var{l\_whence}, \var{l\_start} e
343 \var{l\_len}, servono a specificare la sezione del file a cui fa riferimento
344 il blocco: \var{l\_start} specifica il byte di partenza, \var{l\_len} la
345 lunghezza della sezione e infine \var{l\_whence} imposta il riferimento da cui
346 contare \var{l\_start}. Il valore di \var{l\_whence} segue la stessa semantica
347 dell'omonimo argomento di \func{lseek}, coi tre possibili valori
348 \const{SEEK\_SET}, \const{SEEK\_CUR} e \const{SEEK\_END}, (si vedano le
349 relative descrizioni in sez.~\ref{sec:file_lseek}).
350
351 Si tenga presente che un \textit{file lock} può essere richiesto anche per una
352 regione al di là della corrente fine del file, così che una eventuale
353 estensione dello stesso resti coperta dal blocco. Inoltre se si specifica un
354 valore nullo per \var{l\_len} il blocco si considera esteso fino alla
355 dimensione massima del file; in questo modo è possibile bloccare una qualunque
356 regione a partire da un certo punto fino alla fine del file, coprendo
357 automaticamente quanto eventualmente aggiunto in coda allo stesso.
358
359 \begin{table}[htb]
360   \centering
361   \footnotesize
362   \begin{tabular}[c]{|l|l|}
363     \hline
364     \textbf{Valore} & \textbf{Significato} \\
365     \hline
366     \hline
367     \const{F\_RDLCK} & Richiede un blocco condiviso (\textit{read lock}).\\
368     \const{F\_WRLCK} & Richiede un blocco esclusivo (\textit{write lock}).\\
369     \const{F\_UNLCK} & Richiede l'eliminazione di un \textit{file lock}.\\
370     \hline    
371   \end{tabular}
372   \caption{Valori possibili per il campo \var{l\_type} di \struct{flock}.}
373   \label{tab:file_flock_type}
374 \end{table}
375
376 Il tipo di \textit{file lock} richiesto viene specificato dal campo
377 \var{l\_type}, esso può assumere i tre valori definiti dalle costanti
378 riportate in tab.~\ref{tab:file_flock_type}, che permettono di richiedere
379 rispettivamente uno \textit{shared lock}, un \textit{esclusive lock}, e la
380 rimozione di un blocco precedentemente acquisito. Infine il campo \var{l\_pid}
381 viene usato solo in caso di lettura, quando si chiama \func{fcntl} con
382 \const{F\_GETLK}, e riporta il \acr{pid} del processo che detiene il
383 \textit{file lock}.
384
385 Oltre a quanto richiesto tramite i campi di \struct{flock}, l'operazione
386 effettivamente svolta dalla funzione è stabilita dal valore dall'argomento
387 \param{cmd} che, come già riportato in sez.~\ref{sec:file_fcntl}, specifica
388 l'azione da compiere; i valori relativi al \textit{file locking} sono tre:
389 \begin{basedescript}{\desclabelwidth{2.0cm}}
390 \item[\const{F\_GETLK}] verifica se il \textit{file lock} specificato dalla
391   struttura puntata da \param{lock} può essere acquisito: in caso negativo
392   sovrascrive la struttura \param{flock} con i valori relativi al blocco già
393   esistente che ne blocca l'acquisizione, altrimenti si limita a impostarne il
394   campo \var{l\_type} con il valore \const{F\_UNLCK}.
395 \item[\const{F\_SETLK}] se il campo \var{l\_type} della struttura puntata da
396   \param{lock} è \const{F\_RDLCK} o \const{F\_WRLCK} richiede il
397   corrispondente \textit{file lock}, se è \const{F\_UNLCK} lo rilascia. Nel
398   caso la richiesta non possa essere soddisfatta a causa di un blocco
399   preesistente la funzione ritorna immediatamente con un errore di
400   \errcode{EACCES} o di \errcode{EAGAIN}.
401 \item[\const{F\_SETLKW}] è identica a \const{F\_SETLK}, ma se la richiesta di
402   non può essere soddisfatta per la presenza di un altro blocco, mette il
403   processo in stato di attesa fintanto che il blocco precedente non viene
404   rilasciato. Se l'attesa viene interrotta da un segnale la funzione ritorna
405   con un errore di \errcode{EINTR}.
406 \end{basedescript}
407
408 Si noti che per quanto detto il comando \const{F\_GETLK} non serve a rilevare
409 una presenza generica di blocco su un file, perché se ne esistono altri
410 compatibili con quello richiesto, la funzione ritorna comunque impostando
411 \var{l\_type} a \const{F\_UNLCK}.  Inoltre a seconda del valore di
412 \var{l\_type} si potrà controllare o l'esistenza di un qualunque tipo di
413 blocco (se è \const{F\_WRLCK}) o di \textit{write lock} (se è
414 \const{F\_RDLCK}). Si consideri poi che può esserci più di un blocco che
415 impedisce l'acquisizione di quello richiesto (basta che le regioni si
416 sovrappongano), ma la funzione ne riporterà sempre soltanto uno, impostando
417 \var{l\_whence} a \const{SEEK\_SET} ed i valori \var{l\_start} e \var{l\_len}
418 per indicare quale è la regione bloccata.
419
420 Infine si tenga presente che effettuare un controllo con il comando
421 \const{F\_GETLK} e poi tentare l'acquisizione con \const{F\_SETLK} non è una
422 operazione atomica (un altro processo potrebbe acquisire un blocco fra le due
423 chiamate) per cui si deve sempre verificare il codice di ritorno di
424 \func{fcntl}\footnote{controllare il codice di ritorno delle funzioni invocate
425   è comunque una buona norma di programmazione, che permette di evitare un
426   sacco di errori difficili da tracciare proprio perché non vengono rilevati.}
427 quando la si invoca con \const{F\_SETLK}, per controllare che il blocco sia
428 stato effettivamente acquisito.
429
430 \begin{figure}[htb]
431   \centering \includegraphics[width=9cm]{img/file_lock_dead}
432   \caption{Schema di una situazione di \itindex{deadlock} \textit{deadlock}.}
433   \label{fig:file_flock_dead}
434 \end{figure}
435
436 Non operando a livello di interi file, il \textit{file locking} POSIX
437 introduce un'ulteriore complicazione; consideriamo la situazione illustrata in
438 fig.~\ref{fig:file_flock_dead}, in cui il processo A blocca la regione 1 e il
439 processo B la regione 2. Supponiamo che successivamente il processo A richieda
440 un lock sulla regione 2 che non può essere acquisito per il preesistente lock
441 del processo 2; il processo 1 si bloccherà fintanto che il processo 2 non
442 rilasci il blocco. Ma cosa accade se il processo 2 nel frattempo tenta a sua
443 volta di ottenere un lock sulla regione A? Questa è una tipica situazione che
444 porta ad un \itindex{deadlock} \textit{deadlock}, dato che a quel punto anche
445 il processo 2 si bloccherebbe, e niente potrebbe sbloccare l'altro processo.
446 Per questo motivo il kernel si incarica di rilevare situazioni di questo tipo,
447 ed impedirle restituendo un errore di \errcode{EDEADLK} alla funzione che
448 cerca di acquisire un blocco che porterebbe ad un \itindex{deadlock}
449 \textit{deadlock}.
450
451 Per capire meglio il funzionamento del \textit{file locking} in semantica
452 POSIX (che differisce alquanto rispetto da quello di BSD, visto
453 sez.~\ref{sec:file_flock}) esaminiamo più in dettaglio come viene gestito dal
454 kernel. Lo schema delle strutture utilizzate è riportato in
455 fig.~\ref{fig:file_posix_lock}; come si vede esso è molto simile all'analogo
456 di fig.~\ref{fig:file_flock_struct}:\footnote{in questo caso nella figura si
457   sono evidenziati solo i campi di \struct{file\_lock} significativi per la
458   semantica POSIX, in particolare adesso ciascuna struttura contiene, oltre al
459   \acr{pid} del processo in \var{fl\_pid}, la sezione di file che viene
460   bloccata grazie ai campi \var{fl\_start} e \var{fl\_end}.  La struttura è
461   comunque la stessa, solo che in questo caso nel campo \var{fl\_flags} è
462   impostato il bit \const{FL\_POSIX} ed il campo \var{fl\_file} non viene
463   usato.} il blocco è sempre associato \index{inode} all'inode, solo che in
464 questo caso la titolarità non viene identificata con il riferimento ad una
465 voce nella \itindex{file~table} \textit{file table}, ma con il valore del
466 \acr{pid} del processo.
467
468 \begin{figure}[!bht]
469   \centering \includegraphics[width=13cm]{img/file_posix_lock}
470   \caption{Schema dell'architettura del \textit{file locking}, nel caso
471     particolare del suo utilizzo secondo l'interfaccia standard POSIX.}
472   \label{fig:file_posix_lock}
473 \end{figure}
474
475 Quando si richiede un \textit{file lock} il kernel effettua una scansione di
476 tutti i blocchi presenti sul file\footnote{scandisce cioè la
477   \itindex{linked~list} \textit{linked list} delle strutture
478   \struct{file\_lock}, scartando automaticamente quelle per cui
479   \var{fl\_flags} non è \const{FL\_POSIX}, così che le due interfacce restano
480   ben separate.}  per verificare se la regione richiesta non si sovrappone ad
481 una già bloccata, in caso affermativo decide in base al tipo di blocco, in
482 caso negativo il nuovo blocco viene comunque acquisito ed aggiunto alla lista.
483
484 Nel caso di rimozione invece questa viene effettuata controllando che il
485 \acr{pid} del processo richiedente corrisponda a quello contenuto nel blocco.
486 Questa diversa modalità ha delle conseguenze precise riguardo il comportamento
487 dei \textit{file lock} POSIX. La prima conseguenza è che un \textit{file lock}
488 POSIX non viene mai ereditato attraverso una \func{fork}, dato che il processo
489 figlio avrà un \acr{pid} diverso, mentre passa indenne attraverso una
490 \func{exec} in quanto il \acr{pid} resta lo stesso.  Questo comporta che, al
491 contrario di quanto avveniva con la semantica BSD, quando un processo termina
492 tutti i \textit{file lock} da esso detenuti vengono immediatamente rilasciati.
493
494 La seconda conseguenza è che qualunque file descriptor che faccia riferimento
495 allo stesso file (che sia stato ottenuto con una \func{dup} o con una
496 \func{open} in questo caso non fa differenza) può essere usato per rimuovere
497 un blocco, dato che quello che conta è solo il \acr{pid} del processo. Da
498 questo deriva una ulteriore sottile differenza di comportamento: dato che alla
499 chiusura di un file i blocchi ad esso associati vengono rimossi, nella
500 semantica POSIX basterà chiudere un file descriptor qualunque per cancellare
501 tutti i blocchi relativi al file cui esso faceva riferimento, anche se questi
502 fossero stati creati usando altri file descriptor che restano aperti.
503
504 Dato che il controllo sull'accesso ai blocchi viene eseguito sulla base del
505 \acr{pid} del processo, possiamo anche prendere in considerazione un altro
506 degli aspetti meno chiari di questa interfaccia e cioè cosa succede quando si
507 richiedono dei blocchi su regioni che si sovrappongono fra loro all'interno
508 stesso processo. Siccome il controllo, come nel caso della rimozione, si basa
509 solo sul \acr{pid} del processo che chiama la funzione, queste richieste
510 avranno sempre successo.
511
512 Nel caso della semantica BSD, essendo i lock relativi a tutto un file e non
513 accumulandosi,\footnote{questa ultima caratteristica è vera in generale, se
514   cioè si richiede più volte lo stesso \textit{file lock}, o più blocchi sulla
515   stessa sezione di file, le richieste non si cumulano e basta una sola
516   richiesta di rilascio per cancellare il blocco.}  la cosa non ha alcun
517 effetto; la funzione ritorna con successo, senza che il kernel debba
518 modificare la lista dei \textit{file lock}.  In questo caso invece si possono
519 avere una serie di situazioni diverse: ad esempio è possibile rimuovere con
520 una sola chiamata più \textit{file lock} distinti (indicando in una regione
521 che si sovrapponga completamente a quelle di questi ultimi), o rimuovere solo
522 una parte di un blocco preesistente (indicando una regione contenuta in quella
523 di un altro blocco), creando un buco, o coprire con un nuovo blocco altri
524 \textit{file lock} già ottenuti, e così via, a secondo di come si
525 sovrappongono le regioni richieste e del tipo di operazione richiesta.  Il
526 comportamento seguito in questo caso che la funzione ha successo ed esegue
527 l'operazione richiesta sulla regione indicata; è compito del kernel
528 preoccuparsi di accorpare o dividere le voci nella lista dei \textit{file
529   lock} per far si che le regioni bloccate da essa risultanti siano coerenti
530 con quanto necessario a soddisfare l'operazione richiesta.
531
532 \begin{figure}[!htb]
533   \footnotesize \centering
534   \begin{minipage}[c]{15cm}
535     \includecodesample{listati/Flock.c}
536   \end{minipage} 
537   \normalsize 
538   \caption{Sezione principale del codice del programma \file{Flock.c}.}
539   \label{fig:file_flock_code}
540 \end{figure}
541
542 Per fare qualche esempio sul \textit{file locking} si è scritto un programma che
543 permette di bloccare una sezione di un file usando la semantica POSIX, o un
544 intero file usando la semantica BSD; in fig.~\ref{fig:file_flock_code} è
545 riportata il corpo principale del codice del programma, (il testo completo è
546 allegato nella directory dei sorgenti).
547
548 La sezione relativa alla gestione delle opzioni al solito si è omessa, come la
549 funzione che stampa le istruzioni per l'uso del programma, essa si cura di
550 impostare le variabili \var{type}, \var{start} e \var{len}; queste ultime due
551 vengono inizializzate al valore numerico fornito rispettivamente tramite gli
552 switch \code{-s} e \cmd{-l}, mentre il valore della prima viene impostato con
553 le opzioni \cmd{-w} e \cmd{-r} si richiede rispettivamente o un \textit{write
554   lock} o \textit{read lock} (i due valori sono esclusivi, la variabile
555 assumerà quello che si è specificato per ultimo). Oltre a queste tre vengono
556 pure impostate la variabile \var{bsd}, che abilita la semantica omonima quando
557 si invoca l'opzione \cmd{-f} (il valore preimpostato è nullo, ad indicare la
558 semantica POSIX), e la variabile \var{cmd} che specifica la modalità di
559 richiesta del \textit{file lock} (bloccante o meno), a seconda dell'opzione
560 \cmd{-b}.
561
562 Il programma inizia col controllare (\texttt{\small 11--14}) che venga passato
563 un argomento (il file da bloccare), che sia stato scelto (\texttt{\small
564   15--18}) il tipo di blocco, dopo di che apre (\texttt{\small 19}) il file,
565 uscendo (\texttt{\small 20--23}) in caso di errore. A questo punto il
566 comportamento dipende dalla semantica scelta; nel caso sia BSD occorre
567 reimpostare il valore di \var{cmd} per l'uso con \func{flock}; infatti il
568 valore preimpostato fa riferimento alla semantica POSIX e vale rispettivamente
569 \const{F\_SETLKW} o \const{F\_SETLK} a seconda che si sia impostato o meno la
570 modalità bloccante.
571
572 Nel caso si sia scelta la semantica BSD (\texttt{\small 25--34}) prima si
573 controlla (\texttt{\small 27--31}) il valore di \var{cmd} per determinare se
574 si vuole effettuare una chiamata bloccante o meno, reimpostandone il valore
575 opportunamente, dopo di che a seconda del tipo di blocco al valore viene
576 aggiunta la relativa opzione (con un OR aritmetico, dato che \func{flock}
577 vuole un argomento \param{operation} in forma di maschera binaria.  Nel caso
578 invece che si sia scelta la semantica POSIX le operazioni sono molto più
579 immediate, si prepara (\texttt{\small 36--40}) la struttura per il lock, e lo
580 esegue (\texttt{\small 41}).
581
582 In entrambi i casi dopo aver richiesto il blocco viene controllato il
583 risultato uscendo (\texttt{\small 44--46}) in caso di errore, o stampando un
584 messaggio (\texttt{\small 47--49}) in caso di successo. Infine il programma si
585 pone in attesa (\texttt{\small 50}) finché un segnale (ad esempio un \cmd{C-c}
586 dato da tastiera) non lo interrompa; in questo caso il programma termina, e
587 tutti i blocchi vengono rilasciati.
588
589 Con il programma possiamo fare varie verifiche sul funzionamento del
590 \textit{file locking}; cominciamo con l'eseguire un \textit{read lock} su un
591 file, ad esempio usando all'interno di un terminale il seguente comando:
592
593 \vspace{1mm}
594 \begin{minipage}[c]{12cm}
595 \begin{verbatim}
596 [piccardi@gont sources]$ ./flock -r Flock.c
597 Lock acquired
598 \end{verbatim}%$
599 \end{minipage}\vspace{1mm}
600 \par\noindent
601 il programma segnalerà di aver acquisito un blocco e si bloccherà; in questo
602 caso si è usato il \textit{file locking} POSIX e non avendo specificato niente
603 riguardo alla sezione che si vuole bloccare sono stati usati i valori
604 preimpostati che bloccano tutto il file. A questo punto se proviamo ad
605 eseguire lo stesso comando in un altro terminale, e avremo lo stesso
606 risultato. Se invece proviamo ad eseguire un \textit{write lock} avremo:
607
608 \vspace{1mm}
609 \begin{minipage}[c]{12cm}
610 \begin{verbatim}
611 [piccardi@gont sources]$ ./flock -w Flock.c
612 Failed lock: Resource temporarily unavailable
613 \end{verbatim}%$
614 \end{minipage}\vspace{1mm}
615 \par\noindent
616 come ci aspettiamo il programma terminerà segnalando l'indisponibilità del
617 blocco, dato che il file è bloccato dal precedente \textit{read lock}. Si noti
618 che il risultato è lo stesso anche se si richiede il blocco su una sola parte
619 del file con il comando:
620
621 \vspace{1mm}
622 \begin{minipage}[c]{12cm}
623 \begin{verbatim}
624 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
625 Failed lock: Resource temporarily unavailable
626 \end{verbatim}%$
627 \end{minipage}\vspace{1mm}
628 \par\noindent
629 se invece blocchiamo una regione con: 
630
631 \vspace{1mm}
632 \begin{minipage}[c]{12cm}
633 \begin{verbatim}
634 [piccardi@gont sources]$ ./flock -r -s0 -l10 Flock.c
635 Lock acquired
636 \end{verbatim}%$
637 \end{minipage}\vspace{1mm}
638 \par\noindent
639 una volta che riproviamo ad acquisire il \textit{write lock} i risultati
640 dipenderanno dalla regione richiesta; ad esempio nel caso in cui le due
641 regioni si sovrappongono avremo che:
642
643 \vspace{1mm}
644 \begin{minipage}[c]{12cm}
645 \begin{verbatim}
646 [piccardi@gont sources]$ ./flock -w -s5 -l15  Flock.c
647 Failed lock: Resource temporarily unavailable
648 \end{verbatim}%$
649 \end{minipage}\vspace{1mm}
650 \par\noindent
651 ed il blocco viene rifiutato, ma se invece si richiede una regione distinta
652 avremo che:
653
654 \vspace{1mm}
655 \begin{minipage}[c]{12cm}
656 \begin{verbatim}
657 [piccardi@gont sources]$ ./flock -w -s11 -l15  Flock.c
658 Lock acquired
659 \end{verbatim}%$
660 \end{minipage}\vspace{1mm}
661 \par\noindent
662 ed il blocco viene acquisito. Se a questo punto si prova ad eseguire un
663 \textit{read lock} che comprende la nuova regione bloccata in scrittura:
664
665 \vspace{1mm}
666 \begin{minipage}[c]{12cm}
667 \begin{verbatim}
668 [piccardi@gont sources]$ ./flock -r -s10 -l20 Flock.c
669 Failed lock: Resource temporarily unavailable
670 \end{verbatim}%$
671 \end{minipage}\vspace{1mm}
672 \par\noindent
673 come ci aspettiamo questo non sarà consentito.
674
675 Il programma di norma esegue il tentativo di acquisire il lock in modalità non
676 bloccante, se però usiamo l'opzione \cmd{-b} possiamo impostare la modalità
677 bloccante, riproviamo allora a ripetere le prove precedenti con questa
678 opzione:
679
680 \vspace{1mm}
681 \begin{minipage}[c]{12cm}
682 \begin{verbatim}
683 [piccardi@gont sources]$ ./flock -r -b -s0 -l10 Flock.c Lock acquired
684 \end{verbatim}%$
685 \end{minipage}\vspace{1mm}
686 \par\noindent
687 il primo comando acquisisce subito un \textit{read lock}, e quindi non cambia
688 nulla, ma se proviamo adesso a richiedere un \textit{write lock} che non potrà
689 essere acquisito otterremo:
690
691 \vspace{1mm}
692 \begin{minipage}[c]{12cm}
693 \begin{verbatim}
694 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
695 \end{verbatim}%$
696 \end{minipage}\vspace{1mm}
697 \par\noindent
698 il programma cioè si bloccherà nella chiamata a \func{fcntl}; se a questo
699 punto rilasciamo il precedente blocco (terminando il primo comando un
700 \texttt{C-c} sul terminale) potremo verificare che sull'altro terminale il
701 blocco viene acquisito, con la comparsa di una nuova riga:
702
703 \vspace{1mm}
704 \begin{minipage}[c]{12cm}
705 \begin{verbatim}
706 [piccardi@gont sources]$ ./flock -w -s0 -l10 Flock.c
707 Lock acquired
708 \end{verbatim}%$
709 \end{minipage}\vspace{3mm}
710 \par\noindent
711
712 Un'altra cosa che si può controllare con il nostro programma è l'interazione
713 fra i due tipi di blocco; se ripartiamo dal primo comando con cui si è
714 ottenuto un blocco in lettura sull'intero file, possiamo verificare cosa
715 succede quando si cerca di ottenere un blocco in scrittura con la semantica
716 BSD:
717
718 \vspace{1mm}
719 \begin{minipage}[c]{12cm}
720 \begin{verbatim}
721 [root@gont sources]# ./flock -f -w Flock.c
722 Lock acquired
723 \end{verbatim}
724 \end{minipage}\vspace{1mm}
725 \par\noindent
726 che ci mostra come i due tipi di blocco siano assolutamente indipendenti; per
727 questo motivo occorre sempre tenere presente quale fra le due semantiche
728 disponibili stanno usando i programmi con cui si interagisce, dato che i
729 blocchi applicati con l'altra non avrebbero nessun effetto.
730
731
732
733 \subsection{La funzione \func{lockf}}
734 \label{sec:file_lockf}
735
736 Abbiamo visto come l'interfaccia POSIX per il \textit{file locking} sia molto
737 più potente e flessibile di quella di BSD, questo comporta anche una maggiore
738 complessità per via delle varie opzioni da passare a \func{fcntl}. Per questo
739 motivo è disponibile anche una interfaccia semplificata (ripresa da System V)
740 che utilizza la funzione \funcd{lockf}, il cui prototipo è:
741 \begin{prototype}{sys/file.h}{int lockf(int fd, int cmd, off\_t len)}
742   
743   Applica, controlla o rimuove un \textit{file lock} sul file \param{fd}.
744   
745   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
746     errore, nel qual caso \var{errno} assumerà uno dei valori:
747     \begin{errlist}
748     \item[\errcode{EWOULDBLOCK}] non è possibile acquisire il lock, e si è
749       selezionato \const{LOCK\_NB}, oppure l'operazione è proibita perché il
750       file è mappato in memoria.
751     \item[\errcode{ENOLCK}] il sistema non ha le risorse per il blocco: ci
752       sono troppi segmenti di \textit{lock} aperti, si è esaurita la tabella
753       dei \textit{file lock}.
754     \end{errlist}
755     ed inoltre \errval{EBADF}, \errval{EINVAL}.
756   }
757 \end{prototype}
758
759 Il comportamento della funzione dipende dal valore dell'argomento \param{cmd},
760 che specifica quale azione eseguire; i valori possibili sono riportati in
761 tab.~\ref{tab:file_lockf_type}.
762
763 \begin{table}[htb]
764   \centering
765   \footnotesize
766   \begin{tabular}[c]{|l|p{7cm}|}
767     \hline
768     \textbf{Valore} & \textbf{Significato} \\
769     \hline
770     \hline
771     \const{LOCK\_SH}& Richiede uno \textit{shared lock}. Più processi possono
772                       mantenere un blocco condiviso sullo stesso file.\\
773     \const{LOCK\_EX}& Richiede un \textit{exclusive lock}. Un solo processo
774                       alla volta può mantenere un blocco esclusivo su un file.\\
775     \const{LOCK\_UN}& Sblocca il file.\\
776     \const{LOCK\_NB}& Non blocca la funzione quando il blocco non è disponibile,
777                       si specifica sempre insieme ad una delle altre operazioni
778                       con un OR aritmetico dei valori.\\ 
779     \hline    
780   \end{tabular}
781   \caption{Valori possibili per l'argomento \param{cmd} di \func{lockf}.}
782   \label{tab:file_lockf_type}
783 \end{table}
784
785 Qualora il blocco non possa essere acquisito, a meno di non aver specificato
786 \const{LOCK\_NB}, la funzione si blocca fino alla disponibilità dello stesso.
787 Dato che la funzione è implementata utilizzando \func{fcntl} la semantica
788 delle operazioni è la stessa di quest'ultima (pertanto la funzione non è
789 affatto equivalente a \func{flock}).
790
791
792
793 \subsection{Il \textit{mandatory locking}}
794 \label{sec:file_mand_locking}
795
796 \itindbeg{mandatory~locking|(}
797
798 Il \textit{mandatory locking} è una opzione introdotta inizialmente in SVr4,
799 per introdurre un \textit{file locking} che, come dice il nome, fosse
800 effettivo indipendentemente dai controlli eseguiti da un processo. Con il
801 \textit{mandatory locking} infatti è possibile far eseguire il blocco del file
802 direttamente al sistema, così che, anche qualora non si predisponessero le
803 opportune verifiche nei processi, questo verrebbe comunque rispettato.
804
805 Per poter utilizzare il \textit{mandatory locking} è stato introdotto un
806 utilizzo particolare del bit \itindex{sgid~bit} \acr{sgid}. Se si ricorda
807 quanto esposto in sez.~\ref{sec:file_special_perm}), esso viene di norma
808 utilizzato per cambiare il group-ID effettivo con cui viene eseguito un
809 programma, ed è pertanto sempre associato alla presenza del permesso di
810 esecuzione per il gruppo. Impostando questo bit su un file senza permesso di
811 esecuzione in un sistema che supporta il \textit{mandatory locking}, fa sì che
812 quest'ultimo venga attivato per il file in questione. In questo modo una
813 combinazione dei permessi originariamente non contemplata, in quanto senza
814 significato, diventa l'indicazione della presenza o meno del \textit{mandatory
815   locking}.\footnote{un lettore attento potrebbe ricordare quanto detto in
816   sez.~\ref{sec:file_perm_management} e cioè che il bit \acr{sgid} viene
817   cancellato (come misura di sicurezza) quando di scrive su un file, questo
818   non vale quando esso viene utilizzato per attivare il \textit{mandatory
819     locking}.}
820
821 L'uso del \textit{mandatory locking} presenta vari aspetti delicati, dato che
822 neanche l'amministratore può passare sopra ad un \textit{file lock}; pertanto
823 un processo che blocchi un file cruciale può renderlo completamente
824 inaccessibile, rendendo completamente inutilizzabile il sistema\footnote{il
825   problema si potrebbe risolvere rimuovendo il bit \itindex{sgid~bit}
826   \acr{sgid}, ma non è detto che sia così facile fare questa operazione con un
827   sistema bloccato.}  inoltre con il \textit{mandatory locking} si può
828 bloccare completamente un server NFS richiedendo una lettura su un file su cui
829 è attivo un blocco. Per questo motivo l'abilitazione del \textit{mandatory
830   locking} è di norma disabilitata, e deve essere attivata filesystem per
831 filesystem in fase di montaggio (specificando l'apposita opzione di
832 \func{mount} riportata in tab.~\ref{tab:sys_mount_flags}, o con l'opzione
833 \code{-o mand} per il comando omonimo).
834
835 Si tenga presente inoltre che il \textit{mandatory locking} funziona solo
836 sull'interfaccia POSIX di \func{fcntl}. Questo ha due conseguenze: che non si
837 ha nessun effetto sui \textit{file lock} richiesti con l'interfaccia di
838 \func{flock}, e che la granularità del blocco è quella del singolo byte, come
839 per \func{fcntl}.
840
841 La sintassi di acquisizione dei blocchi è esattamente la stessa vista in
842 precedenza per \func{fcntl} e \func{lockf}, la differenza è che in caso di
843 \textit{mandatory lock} attivato non è più necessario controllare la
844 disponibilità di accesso al file, ma si potranno usare direttamente le
845 ordinarie funzioni di lettura e scrittura e sarà compito del kernel gestire
846 direttamente il \textit{file locking}.
847
848 Questo significa che in caso di \textit{read lock} la lettura dal file potrà
849 avvenire normalmente con \func{read}, mentre una \func{write} si bloccherà
850 fino al rilascio del blocco, a meno di non aver aperto il file con
851 \const{O\_NONBLOCK}, nel qual caso essa ritornerà immediatamente con un errore
852 di \errcode{EAGAIN}.
853
854 Se invece si è acquisito un \textit{write lock} tutti i tentativi di leggere o
855 scrivere sulla regione del file bloccata fermeranno il processo fino al
856 rilascio del blocco, a meno che il file non sia stato aperto con
857 \const{O\_NONBLOCK}, nel qual caso di nuovo si otterrà un ritorno immediato
858 con l'errore di \errcode{EAGAIN}.
859
860 Infine occorre ricordare che le funzioni di lettura e scrittura non sono le
861 sole ad operare sui contenuti di un file, e che sia \func{creat} che
862 \func{open} (quando chiamata con \const{O\_TRUNC}) effettuano dei cambiamenti,
863 così come \func{truncate}, riducendone le dimensioni (a zero nei primi due
864 casi, a quanto specificato nel secondo). Queste operazioni sono assimilate a
865 degli accessi in scrittura e pertanto non potranno essere eseguite (fallendo
866 con un errore di \errcode{EAGAIN}) su un file su cui sia presente un qualunque
867 blocco (le prime due sempre, la terza solo nel caso che la riduzione delle
868 dimensioni del file vada a sovrapporsi ad una regione bloccata).
869
870 L'ultimo aspetto della interazione del \textit{mandatory locking} con le
871 funzioni di accesso ai file è quello relativo ai file mappati in memoria (che
872 abbiamo trattato in sez.~\ref{sec:file_memory_map}); anche in tal caso
873 infatti, quando si esegue la mappatura con l'opzione \const{MAP\_SHARED}, si
874 ha un accesso al contenuto del file. Lo standard SVID prevede che sia
875 impossibile eseguire il memory mapping di un file su cui sono presenti dei
876 blocchi\footnote{alcuni sistemi, come HP-UX, sono ancora più restrittivi e lo
877   impediscono anche in caso di \textit{advisory locking}, anche se questo
878   comportamento non ha molto senso, dato che comunque qualunque accesso
879   diretto al file è consentito.} in Linux è stata però fatta la scelta
880 implementativa\footnote{per i dettagli si possono leggere le note relative
881   all'implementazione, mantenute insieme ai sorgenti del kernel nel file
882   \file{Documentation/mandatory.txt}.}  di seguire questo comportamento
883 soltanto quando si chiama \func{mmap} con l'opzione \const{MAP\_SHARED} (nel
884 qual caso la funzione fallisce con il solito \errcode{EAGAIN}) che comporta la
885 possibilità di modificare il file.
886
887 \index{file!locking|)}
888
889 \itindend{mandatory~locking|(}
890
891
892 \section{L'\textit{I/O multiplexing}}
893 \label{sec:file_multiplexing}
894
895
896 Uno dei problemi che si presentano quando si deve operare contemporaneamente
897 su molti file usando le funzioni illustrate in
898 cap.~\ref{cha:file_unix_interface} e cap.~\ref{cha:files_std_interface} è che
899 si può essere bloccati nelle operazioni su un file mentre un altro potrebbe
900 essere disponibile. L'\textit{I/O multiplexing} nasce risposta a questo
901 problema. In questa sezione forniremo una introduzione a questa problematica
902 ed analizzeremo le varie funzioni usate per implementare questa modalità di
903 I/O.
904
905
906 \subsection{La problematica dell'\textit{I/O multiplexing}}
907 \label{sec:file_noblocking}
908
909 Abbiamo visto in sez.~\ref{sec:sig_gen_beha}, affrontando la suddivisione fra
910 \textit{fast} e \textit{slow} system call,\index{system~call~lente} che in
911 certi casi le funzioni di I/O possono bloccarsi indefinitamente.\footnote{si
912   ricordi però che questo può accadere solo per le pipe, i socket ed alcuni
913   file di dispositivo\index{file!di~dispositivo}; sui file normali le funzioni
914   di lettura e scrittura ritornano sempre subito.}  Ad esempio le operazioni
915 di lettura possono bloccarsi quando non ci sono dati disponibili sul
916 descrittore su cui si sta operando.
917
918 Questo comportamento causa uno dei problemi più comuni che ci si trova ad
919 affrontare nelle operazioni di I/O, che si verifica quando si deve operare con
920 più file descriptor eseguendo funzioni che possono bloccarsi senza che sia
921 possibile prevedere quando questo può avvenire (il caso più classico è quello
922 di un server in attesa di dati in ingresso da vari client). Quello che può
923 accadere è di restare bloccati nell'eseguire una operazione su un file
924 descriptor che non è ``\textsl{pronto}'', quando ce ne potrebbe essere un
925 altro disponibile. Questo comporta nel migliore dei casi una operazione
926 ritardata inutilmente nell'attesa del completamento di quella bloccata, mentre
927 nel peggiore dei casi (quando la conclusione della operazione bloccata dipende
928 da quanto si otterrebbe dal file descriptor ``\textsl{disponibile}'') si
929 potrebbe addirittura arrivare ad un \itindex{deadlock} \textit{deadlock}.
930
931 Abbiamo già accennato in sez.~\ref{sec:file_open} che è possibile prevenire
932 questo tipo di comportamento delle funzioni di I/O aprendo un file in
933 \textsl{modalità non-bloccante}, attraverso l'uso del flag \const{O\_NONBLOCK}
934 nella chiamata di \func{open}. In questo caso le funzioni di input/output
935 eseguite sul file che si sarebbero bloccate, ritornano immediatamente,
936 restituendo l'errore \errcode{EAGAIN}.  L'utilizzo di questa modalità di I/O
937 permette di risolvere il problema controllando a turno i vari file descriptor,
938 in un ciclo in cui si ripete l'accesso fintanto che esso non viene garantito.
939 Ovviamente questa tecnica, detta \itindex{polling} \textit{polling}, è
940 estremamente inefficiente: si tiene costantemente impiegata la CPU solo per
941 eseguire in continuazione delle system call che nella gran parte dei casi
942 falliranno.
943
944 Per superare questo problema è stato introdotto il concetto di \textit{I/O
945   multiplexing}, una nuova modalità di operazioni che consente di tenere sotto
946 controllo più file descriptor in contemporanea, permettendo di bloccare un
947 processo quando le operazioni volute non sono possibili, e di riprenderne
948 l'esecuzione una volta che almeno una di quelle richieste sia effettuabile, in
949 modo da poterla eseguire con la sicurezza di non restare bloccati.
950
951 Dato che, come abbiamo già accennato, per i normali file su disco non si ha
952 mai un accesso bloccante, l'uso più comune delle funzioni che esamineremo nei
953 prossimi paragrafi è per i server di rete, in cui esse vengono utilizzate per
954 tenere sotto controllo dei socket; pertanto ritorneremo su di esse con
955 ulteriori dettagli e qualche esempio di utilizzo concreto in
956 sez.~\ref{sec:TCP_sock_multiplexing}.
957
958
959 \subsection{Le funzioni \func{select} e \func{pselect}}
960 \label{sec:file_select}
961
962 Il primo kernel unix-like ad introdurre una interfaccia per l'\textit{I/O
963   multiplexing} è stato BSD,\footnote{la funzione \func{select} è apparsa in
964   BSD4.2 e standardizzata in BSD4.4, ma è stata portata su tutti i sistemi che
965   supportano i socket, compreso le varianti di System V.}  con la funzione
966 \funcd{select}, il cui prototipo è:
967 \begin{functions}
968   \headdecl{sys/time.h}
969   \headdecl{sys/types.h}
970   \headdecl{unistd.h}
971   \funcdecl{int select(int ndfs, fd\_set *readfds, fd\_set *writefds, fd\_set
972     *exceptfds, struct timeval *timeout)}
973   
974   Attende che uno dei file descriptor degli insiemi specificati diventi
975   attivo.
976   
977   \bodydesc{La funzione in caso di successo restituisce il numero di file
978     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
979     caso \var{errno} assumerà uno dei valori:
980   \begin{errlist}
981   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
982     degli insiemi.
983   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
984   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
985     o un valore non valido per \param{timeout}.
986   \end{errlist}
987   ed inoltre \errval{ENOMEM}.
988 }
989 \end{functions}
990
991 La funzione mette il processo in stato di \textit{sleep} (vedi
992 tab.~\ref{tab:proc_proc_states}) fintanto che almeno uno dei file descriptor
993 degli insiemi specificati (\param{readfds}, \param{writefds} e
994 \param{exceptfds}), non diventa attivo, per un tempo massimo specificato da
995 \param{timeout}.
996
997 \itindbeg{file~descriptor~set} 
998
999 Per specificare quali file descriptor si intende selezionare la funzione usa
1000 un particolare oggetto, il \textit{file descriptor set}, identificato dal tipo
1001 \type{fd\_set}, che serve ad identificare un insieme di file descriptor, in
1002 maniera analoga a come un \itindex{signal~set} \textit{signal set} (vedi
1003 sez.~\ref{sec:sig_sigset}) identifica un insieme di segnali. Per la
1004 manipolazione di questi \textit{file descriptor set} si possono usare delle
1005 opportune macro di preprocessore:
1006 \begin{functions}
1007   \headdecl{sys/time.h}
1008   \headdecl{sys/types.h}
1009   \headdecl{unistd.h}
1010   \funcdecl{void \macro{FD\_ZERO}(fd\_set *set)}
1011   Inizializza l'insieme (vuoto).
1012
1013   \funcdecl{void \macro{FD\_SET}(int fd, fd\_set *set)}
1014   Inserisce il file descriptor \param{fd} nell'insieme.
1015
1016   \funcdecl{void \macro{FD\_CLR}(int fd, fd\_set *set)}
1017   Rimuove il file descriptor \param{fd} dall'insieme.
1018   
1019   \funcdecl{int \macro{FD\_ISSET}(int fd, fd\_set *set)}
1020   Controlla se il file descriptor \param{fd} è nell'insieme.
1021 \end{functions}
1022
1023 In genere un \textit{file descriptor set} può contenere fino ad un massimo di
1024 \const{FD\_SETSIZE} file descriptor.  Questo valore in origine corrispondeva
1025 al limite per il numero massimo di file aperti\footnote{ad esempio in Linux,
1026   fino alla serie 2.0.x, c'era un limite di 256 file per processo.}, ma da
1027 quando, come nelle versioni più recenti del kernel, questo limite è stato
1028 rimosso, esso indica le dimensioni massime dei numeri usati nei \textit{file
1029   descriptor set}.\footnote{il suo valore, secondo lo standard POSIX
1030   1003.1-2001, è definito in \file{sys/select.h}, ed è pari a 1024.} 
1031
1032 Si tenga presente che i \textit{file descriptor set} devono sempre essere
1033 inizializzati con \macro{FD\_ZERO}; passare a \func{select} un valore non
1034 inizializzato può dar luogo a comportamenti non prevedibili; allo stesso modo
1035 usare \macro{FD\_SET} o \macro{FD\_CLR} con un file descriptor il cui valore
1036 eccede \const{FD\_SETSIZE} può dare luogo ad un comportamento indefinito.
1037
1038 La funzione richiede di specificare tre insiemi distinti di file descriptor;
1039 il primo, \param{readfds}, verrà osservato per rilevare la disponibilità di
1040 effettuare una lettura,\footnote{per essere precisi la funzione ritornerà in
1041   tutti i casi in cui la successiva esecuzione di \func{read} risulti non
1042   bloccante, quindi anche in caso di \textit{end-of-file}; inoltre con Linux
1043   possono verificarsi casi particolari, ad esempio quando arrivano dati su un
1044   socket dalla rete che poi risultano corrotti e vengono scartati, può
1045   accadere che \func{select} riporti il relativo file descriptor come
1046   leggibile, ma una successiva \func{read} si blocchi.} il secondo,
1047 \param{writefds}, per verificare la possibilità di effettuare una scrittura ed
1048 il terzo, \param{exceptfds}, per verificare l'esistenza di eccezioni (come i
1049 dati urgenti \itindex{out-of-band} su un socket, vedi
1050 sez.~\ref{sec:TCP_urgent_data}).
1051
1052 Dato che in genere non si tengono mai sotto controllo fino a
1053 \const{FD\_SETSIZE} file contemporaneamente la funzione richiede di
1054 specificare qual è il valore più alto fra i file descriptor indicati nei tre
1055 insiemi precedenti. Questo viene fatto per efficienza, per evitare di passare
1056 e far controllare al kernel una quantità di memoria superiore a quella
1057 necessaria. Questo limite viene indicato tramite l'argomento \param{ndfs}, che
1058 deve corrispondere al valore massimo aumentato di uno.\footnote{si ricordi che
1059   i file descriptor sono numerati progressivamente a partire da zero, ed il
1060   valore indica il numero più alto fra quelli da tenere sotto controllo;
1061   dimenticarsi di aumentare di uno il valore di \param{ndfs} è un errore
1062   comune.}  
1063
1064 Infine l'argomento \param{timeout}, espresso con una struttura di tipo
1065 \struct{timeval} (vedi fig.~\ref{fig:sys_timeval_struct}) specifica un tempo
1066 massimo di attesa prima che la funzione ritorni; se impostato a \val{NULL} la
1067 funzione attende indefinitamente. Si può specificare anche un tempo nullo
1068 (cioè una struttura \struct{timeval} con i campi impostati a zero), qualora si
1069 voglia semplicemente controllare lo stato corrente dei file descriptor.
1070
1071 La funzione restituisce il numero di file descriptor pronti,\footnote{questo è
1072   il comportamento previsto dallo standard, ma la standardizzazione della
1073   funzione è recente, ed esistono ancora alcune versioni di Unix che non si
1074   comportano in questo modo.}  e ciascun insieme viene sovrascritto per
1075 indicare quali sono i file descriptor pronti per le operazioni ad esso
1076 relative, in modo da poterli controllare con \macro{FD\_ISSET}.  Se invece si
1077 ha un timeout viene restituito un valore nullo e gli insiemi non vengono
1078 modificati.  In caso di errore la funzione restituisce -1, ed i valori dei tre
1079 insiemi sono indefiniti e non si può fare nessun affidamento sul loro
1080 contenuto.
1081
1082 \itindend{file~descriptor~set}
1083
1084 Una volta ritornata la funzione si potrà controllare quali sono i file
1085 descriptor pronti ed operare su di essi, si tenga presente però che si tratta
1086 solo di un suggerimento, esistono infatti condizioni\footnote{ad esempio
1087   quando su un socket arrivano dei dati che poi vengono scartati perché
1088   corrotti.} in cui \func{select} può riportare in maniera spuria che un file
1089 descriptor è pronto in lettura, quando una successiva lettura si bloccherebbe.
1090 Per questo quando si usa \textit{I/O multiplexing} è sempre raccomandato l'uso
1091 delle funzioni di lettura e scrittura in modalità non bloccante.
1092
1093 In Linux \func{select} modifica anche il valore di \param{timeout},
1094 impostandolo al tempo restante, quando la funzione viene interrotta da un
1095 segnale. In tal caso infatti si ha un errore di \errcode{EINTR}, ed occorre
1096 rilanciare la funzione; in questo modo non è necessario ricalcolare tutte le
1097 volte il tempo rimanente. Questo può causare problemi di portabilità sia
1098 quando si usa codice scritto su Linux che legge questo valore, sia quando si
1099 usano programmi scritti per altri sistemi che non dispongono di questa
1100 caratteristica e ricalcolano \param{timeout} tutte le volte.\footnote{in
1101   genere questa caratteristica è disponibile nei sistemi che derivano da
1102   System V e non è disponibile per quelli che derivano da BSD; lo standard
1103   POSIX.1-2001 non permette questo comportamento.}
1104
1105 Uno dei problemi che si presentano con l'uso di \func{select} è che il suo
1106 comportamento dipende dal valore del file descriptor che si vuole tenere sotto
1107 controllo.  Infatti il kernel riceve con \param{ndfs} un limite massimo per
1108 tale valore, e per capire quali sono i file descriptor da tenere sotto
1109 controllo dovrà effettuare una scansione su tutto l'intervallo, che può anche
1110 essere molto ampio anche se i file descriptor sono solo poche unità; tutto ciò
1111 ha ovviamente delle conseguenze ampiamente negative per le prestazioni.
1112
1113 Inoltre c'è anche il problema che il numero massimo dei file che si possono
1114 tenere sotto controllo, la funzione è nata quando il kernel consentiva un
1115 numero massimo di 1024 file descriptor per processo, adesso che il numero può
1116 essere arbitrario si viene a creare una dipendenza del tutto artificiale dalle
1117 dimensioni della struttura \type{fd\_set}, che può necessitare di essere
1118 estesa, con ulteriori perdite di prestazioni. 
1119
1120 Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
1121   multiplexing}, introdotto solo con le ultime revisioni dello standard (POSIX
1122 1003.1g-2000 e POSIX 1003.1-2001). La scelta è stata quella di seguire
1123 l'interfaccia creata da BSD, ma prevede che tutte le funzioni ad esso relative
1124 vengano dichiarate nell'header \file{sys/select.h}, che sostituisce i
1125 precedenti, ed inoltre aggiunge a \func{select} una nuova funzione
1126 \funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
1127   l'header \file{sys/select.h}, compaiono in Linux a partire dalle \acr{glibc}
1128   2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header, le
1129   \acr{glibc} 2.0 contengono una definizione sbagliata di \func{psignal},
1130   senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
1131   \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
1132   \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
1133   maggiore di 600.} il cui prototipo è:
1134 \begin{prototype}{sys/select.h}
1135   {int pselect(int n, fd\_set *readfds, fd\_set *writefds, fd\_set *exceptfds,
1136     struct timespec *timeout, sigset\_t *sigmask)}
1137   
1138   Attende che uno dei file descriptor degli insiemi specificati diventi
1139   attivo.
1140   
1141   \bodydesc{La funzione in caso di successo restituisce il numero di file
1142     descriptor (anche nullo) che sono attivi, e -1 in caso di errore, nel qual
1143     caso \var{errno} assumerà uno dei valori:
1144   \begin{errlist}
1145   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1146     degli insiemi.
1147   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1148   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
1149     o un valore non valido per \param{timeout}.
1150   \end{errlist}
1151   ed inoltre \errval{ENOMEM}.}
1152 \end{prototype}
1153
1154 La funzione è sostanzialmente identica a \func{select}, solo che usa una
1155 struttura \struct{timespec} (vedi fig.~\ref{fig:sys_timespec_struct}) per
1156 indicare con maggiore precisione il timeout e non ne aggiorna il valore in
1157 caso di interruzione.\footnote{in realtà la system call di Linux aggiorna il
1158   valore al tempo rimanente, ma la funzione fornita dalle \acr{glibc} modifica
1159   questo comportamento passando alla system call una variabile locale, in modo
1160   da mantenere l'aderenza allo standard POSIX che richiede che il valore di
1161   \param{timeout} non sia modificato.} Inoltre prende un argomento aggiuntivo
1162 \param{sigmask} che è il puntatore ad una maschera di segnali (si veda
1163 sez.~\ref{sec:sig_sigmask}).  La maschera corrente viene sostituita da questa
1164 immediatamente prima di eseguire l'attesa, e ripristinata al ritorno della
1165 funzione.
1166
1167 L'uso di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
1168 \textit{race condition} \itindex{race~condition} quando ci si deve porre in
1169 attesa sia di un segnale che di dati. La tecnica classica è quella di
1170 utilizzare il gestore per impostare una variabile globale e controllare questa
1171 nel corpo principale del programma; abbiamo visto in
1172 sez.~\ref{sec:sig_example} come questo lasci spazio a possibili race
1173 condition, per cui diventa essenziale utilizzare \func{sigprocmask} per
1174 disabilitare la ricezione del segnale prima di eseguire il controllo e
1175 riabilitarlo dopo l'esecuzione delle relative operazioni, onde evitare
1176 l'arrivo di un segnale immediatamente dopo il controllo, che andrebbe perso.
1177
1178 Nel nostro caso il problema si pone quando oltre al segnale si devono tenere
1179 sotto controllo anche dei file descriptor con \func{select}, in questo caso si
1180 può fare conto sul fatto che all'arrivo di un segnale essa verrebbe interrotta
1181 e si potrebbero eseguire di conseguenza le operazioni relative al segnale e
1182 alla gestione dati con un ciclo del tipo:
1183 \includecodesnip{listati/select_race.c} 
1184 qui però emerge una \itindex{race~condition} \textit{race condition}, perché
1185 se il segnale arriva prima della chiamata a \func{select}, questa non verrà
1186 interrotta, e la ricezione del segnale non sarà rilevata.
1187
1188 Per questo è stata introdotta \func{pselect} che attraverso l'argomento
1189 \param{sigmask} permette di riabilitare la ricezione il segnale
1190 contestualmente all'esecuzione della funzione,\footnote{in Linux però, fino al
1191   kernel 2.6.16, non era presente la relativa system call, e la funzione era
1192   implementata nelle \acr{glibc} attraverso \func{select} (vedi \texttt{man
1193     select\_tut}) per cui la possibilità di \itindex{race~condition}
1194   \textit{race condition} permaneva; in tale situazione si può ricorrere ad una
1195   soluzione alternativa, chiamata \itindex{self-pipe trick} \textit{self-pipe
1196     trick}, che consiste nell'aprire una pipe (vedi sez.~\ref{sec:ipc_pipes})
1197   ed usare \func{select} sul capo in lettura della stessa; si può indicare
1198   l'arrivo di un segnale scrivendo sul capo in scrittura all'interno del
1199   gestore dello stesso; in questo modo anche se il segnale va perso prima
1200   della chiamata di \func{select} questa lo riconoscerà comunque dalla
1201   presenza di dati sulla pipe.} ribloccandolo non appena essa ritorna, così
1202 che il precedente codice potrebbe essere riscritto nel seguente modo:
1203 \includecodesnip{listati/pselect_norace.c} 
1204 in questo caso utilizzando \var{oldmask} durante l'esecuzione di
1205 \func{pselect} la ricezione del segnale sarà abilitata, ed in caso di
1206 interruzione si potranno eseguire le relative operazioni.
1207
1208
1209 \subsection{Le funzioni \func{poll} e \func{ppoll}}
1210 \label{sec:file_poll}
1211
1212 Nello sviluppo di System V, invece di utilizzare l'interfaccia di
1213 \func{select}, che è una estensione tipica di BSD, è stata introdotta un'altra
1214 interfaccia, basata sulla funzione \funcd{poll},\footnote{la funzione è
1215   prevista dallo standard XPG4, ed è stata introdotta in Linux come system
1216   call a partire dal kernel 2.1.23 ed inserita nelle \acr{libc} 5.4.28.} il
1217 cui prototipo è:
1218 \begin{prototype}{sys/poll.h}
1219   {int poll(struct pollfd *ufds, unsigned int nfds, int timeout)}
1220   
1221   La funzione attende un cambiamento di stato su un insieme di file
1222   descriptor.
1223   
1224   \bodydesc{La funzione restituisce il numero di file descriptor con attività
1225     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
1226     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
1227   \begin{errlist}
1228   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1229     degli insiemi.
1230   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1231   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1232     \macro{RLIMIT\_NOFILE}.
1233   \end{errlist}
1234   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
1235 \end{prototype}
1236
1237 La funzione permette di tenere sotto controllo contemporaneamente \param{ndfs}
1238 file descriptor, specificati attraverso il puntatore \param{ufds} ad un
1239 vettore di strutture \struct{pollfd}.  Come con \func{select} si può
1240 interrompere l'attesa dopo un certo tempo, questo deve essere specificato con
1241 l'argomento \param{timeout} in numero di millisecondi: un valore negativo
1242 indica un'attesa indefinita, mentre un valore nullo comporta il ritorno
1243 immediato (e può essere utilizzato per impiegare \func{poll} in modalità
1244 \textsl{non-bloccante}).
1245
1246 Per ciascun file da controllare deve essere inizializzata una struttura
1247 \struct{pollfd} nel vettore indicato dall'argomento \param{ufds}.  La
1248 struttura, la cui definizione è riportata in fig.~\ref{fig:file_pollfd},
1249 prevede tre campi: in \var{fd} deve essere indicato il numero del file
1250 descriptor da controllare, in \var{events} deve essere specificata una
1251 maschera binaria di flag che indichino il tipo di evento che si vuole
1252 controllare, mentre in \var{revents} il kernel restituirà il relativo
1253 risultato.  Usando un valore negativo per \param{fd} la corrispondente
1254 struttura sarà ignorata da \func{poll}. Dato che i dati in ingresso sono del
1255 tutto indipendenti da quelli in uscita (che vengono restituiti in
1256 \var{revents}) non è necessario reinizializzare tutte le volte il valore delle
1257 strutture \struct{pollfd} a meno di non voler cambiare qualche condizione.
1258
1259 \begin{figure}[!htb]
1260   \footnotesize \centering
1261   \begin{minipage}[c]{15cm}
1262     \includestruct{listati/pollfd.h}
1263   \end{minipage} 
1264   \normalsize 
1265   \caption{La struttura \structd{pollfd}, utilizzata per specificare le
1266     modalità di controllo di un file descriptor alla funzione \func{poll}.}
1267   \label{fig:file_pollfd}
1268 \end{figure}
1269
1270 Le costanti che definiscono i valori relativi ai bit usati nelle maschere
1271 binarie dei campi \var{events} e \var{revents} sono riportati in
1272 tab.~\ref{tab:file_pollfd_flags}, insieme al loro significato. Le si sono
1273 suddivise in tre gruppi, nel primo gruppo si sono indicati i bit utilizzati
1274 per controllare l'attività in ingresso, nel secondo quelli per l'attività in
1275 uscita, mentre il terzo gruppo contiene dei valori che vengono utilizzati solo
1276 nel campo \var{revents} per notificare delle condizioni di errore. 
1277
1278 \begin{table}[htb]
1279   \centering
1280   \footnotesize
1281   \begin{tabular}[c]{|l|l|}
1282     \hline
1283     \textbf{Flag}  & \textbf{Significato} \\
1284     \hline
1285     \hline
1286     \const{POLLIN}    & È possibile la lettura.\\
1287     \const{POLLRDNORM}& Sono disponibili in lettura dati normali.\\ 
1288     \const{POLLRDBAND}& Sono disponibili in lettura dati prioritari.\\
1289     \const{POLLPRI}   & È possibile la lettura di \itindex{out-of-band} dati
1290                         urgenti.\\ 
1291     \hline
1292     \const{POLLOUT}   & È possibile la scrittura immediata.\\
1293     \const{POLLWRNORM}& È possibile la scrittura di dati normali.\\ 
1294     \const{POLLWRBAND}& È possibile la scrittura di dati prioritari.\\
1295     \hline
1296     \const{POLLERR}   & C'è una condizione di errore.\\
1297     \const{POLLHUP}   & Si è verificato un hung-up.\\
1298     \const{POLLRDHUP} & Si è avuta una \textsl{half-close} su un
1299                         socket.\footnotemark\\ 
1300     \const{POLLNVAL}  & Il file descriptor non è aperto.\\
1301     \hline
1302     \const{POLLMSG}   & Definito per compatibilità con SysV.\\
1303     \hline    
1304   \end{tabular}
1305   \caption{Costanti per l'identificazione dei vari bit dei campi
1306     \var{events} e \var{revents} di \struct{pollfd}.}
1307   \label{tab:file_pollfd_flags}
1308 \end{table}
1309
1310 \footnotetext{si tratta di una estensione specifica di Linux, disponibile a
1311   partire dal kernel 2.6.17 definendo la marco \macro{\_GNU\_SOURCE}, che
1312   consente di riconoscere la chiusura in scrittura dell'altro capo di un
1313   socket, situazione che si viene chiamata appunto \itindex{half-close}
1314   \textit{half-close} (\textsl{mezza chiusura}) su cui torneremo con maggiori
1315   dettagli in sez.~\ref{sec:TCP_shutdown}.}
1316
1317 Il valore \const{POLLMSG} non viene utilizzato ed è definito solo per
1318 compatibilità con l'implementazione di SysV che usa gli
1319 \textit{stream};\footnote{essi sono una interfaccia specifica di SysV non
1320   presente in Linux, e non hanno nulla a che fare con i file \textit{stream}
1321   delle librerie standard del C.} è da questi che derivano i nomi di alcune
1322 costanti, in quanto per essi sono definite tre classi di dati:
1323 \textsl{normali}, \textit{prioritari} ed \textit{urgenti}.  In Linux la
1324 distinzione ha senso solo per i dati urgenti \itindex{out-of-band} dei socket
1325 (vedi sez.~\ref{sec:TCP_urgent_data}), ma su questo e su come \func{poll}
1326 reagisce alle varie condizioni dei socket torneremo in
1327 sez.~\ref{sec:TCP_serv_poll}, dove vedremo anche un esempio del suo utilizzo.
1328
1329 Si tenga conto comunque che le costanti relative ai diversi tipi di dati
1330 normali e prioritari, vale a dire \const{POLLRDNORM}, \const{POLLWRNORM},
1331 \const{POLLRDBAND} e \const{POLLWRBAND} fanno riferimento alle implementazioni
1332 in stile SysV (in particolare le ultime due non vengono usate su Linux), e
1333 sono utilizzabili soltanto qualora si sia definita la macro
1334 \macro{\_XOPEN\_SOURCE}.\footnote{e ci si ricordi di farlo sempre in testa al
1335   file, definirla soltanto prima di includere \file{sys/poll.h} non è
1336   sufficiente.}
1337
1338 In caso di successo funzione ritorna restituendo il numero di file (un valore
1339 positivo) per i quali si è verificata una delle condizioni di attesa richieste
1340 o per i quali si è verificato un errore, nel qual caso vengono utilizzati i
1341 valori di tab.~\ref{tab:file_pollfd_flags} esclusivi di \var{revents}. Un
1342 valore nullo indica che si è raggiunto il timeout, mentre un valore negativo
1343 indica un errore nella chiamata, il cui codice viene riportato al solito
1344 tramite \var{errno}.
1345
1346 L'uso di \func{poll} consente di superare alcuni dei problemi illustrati in
1347 precedenza per \func{select}; anzitutto, dato che in questo caso si usa un
1348 vettore di strutture \struct{pollfd} di dimensione arbitraria, non esiste il
1349 limite introdotto dalle dimensioni massime di un \itindex{file~descriptor~set}
1350 \textit{file descriptor set} e la dimensione dei dati passati al kernel
1351 dipende solo dal numero dei file descriptor che si vogliono controllare, non
1352 dal loro valore.\footnote{anche se usando dei bit un \textit{file descriptor
1353     set} può essere più efficiente di un vettore di strutture \struct{pollfd},
1354   qualora si debba osservare un solo file descriptor con un valore molto alto
1355   ci si troverà ad utilizzare inutilmente un maggiore quantitativo di
1356   memoria.}
1357
1358 Inoltre con \func{select} lo stesso \itindex{file~descriptor~set} \textit{file
1359   descriptor set} è usato sia in ingresso che in uscita, e questo significa
1360 che tutte le volte che si vuole ripetere l'operazione occorre reinizializzarlo
1361 da capo. Questa operazione, che può essere molto onerosa se i file descriptor
1362 da tenere sotto osservazione sono molti, non è invece necessaria con
1363 \func{poll}.
1364
1365 Abbiamo visto in sez.~\ref{sec:file_select} come lo standard POSIX preveda una
1366 variante di \func{select} che consente di gestire correttamente la ricezione
1367 dei segnali nell'attesa su un file descriptor.  Con l'introduzione di una
1368 implementazione reale di \func{pselect} nel kernel 2.6.16, è stata aggiunta
1369 anche una analoga funzione che svolga lo stesso ruolo per \func{poll}.
1370
1371 In questo caso si tratta di una estensione che è specifica di Linux e non è
1372 prevista da nessuno standard; essa può essere utilizzata esclusivamente se si
1373 definisce la macro \macro{\_GNU\_SOURCE} ed ovviamente non deve essere usata
1374 se si ha a cuore la portabilità. La funzione è \funcd{ppoll}, ed il suo
1375 prototipo è:
1376 \begin{prototype}{sys/poll.h}
1377   {int ppoll(struct pollfd *fds, nfds\_t nfds, const struct timespec *timeout,
1378     const sigset\_t *sigmask)}
1379   
1380   La funzione attende un cambiamento di stato su un insieme di file
1381   descriptor.
1382   
1383   \bodydesc{La funzione restituisce il numero di file descriptor con attività
1384     in caso di successo, o 0 se c'è stato un timeout e -1 in caso di errore,
1385     ed in quest'ultimo caso \var{errno} assumerà uno dei valori:
1386   \begin{errlist}
1387   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1388     degli insiemi.
1389   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1390   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1391     \macro{RLIMIT\_NOFILE}.
1392   \end{errlist}
1393   ed inoltre \errval{EFAULT} e \errval{ENOMEM}.}
1394 \end{prototype}
1395
1396 La funzione ha lo stesso comportamento di \func{poll}, solo che si può
1397 specificare, con l'argomento \param{sigmask}, il puntatore ad una maschera di
1398 segnali; questa sarà la maschera utilizzata per tutto il tempo che la funzione
1399 resterà in attesa, all'uscita viene ripristinata la maschera originale.  L'uso
1400 di questa funzione è cioè equivalente, come illustrato nella pagina di
1401 manuale, all'esecuzione atomica del seguente codice:
1402 \includecodesnip{listati/ppoll_means.c} 
1403
1404 Eccetto per \param{timeout}, che come per \func{pselect} deve essere un
1405 puntatore ad una struttura \struct{timespec}, gli altri argomenti comuni con
1406 \func{poll} hanno lo stesso significato, e la funzione restituisce gli stessi
1407 risultati illustrati in precedenza. Come nel caso di \func{pselect} la system
1408 call che implementa \func{ppoll} restituisce, se la funzione viene interrotta
1409 da un segnale, il tempo mancante in \param{timeout}, e come per \func{pselect}
1410 la funzione di libreria fornita dalle \acr{glibc} maschera questo
1411 comportamento non modificando mai il valore di \param{timeout}.\footnote{anche
1412   se in questo caso non esiste nessuno standard che richiede questo
1413   comportamento.}
1414
1415
1416 \subsection{L'interfaccia di \textit{epoll}}
1417 \label{sec:file_epoll}
1418
1419 \itindbeg{epoll}
1420
1421 Nonostante \func{poll} presenti alcuni vantaggi rispetto a \func{select},
1422 anche questa funzione non è molto efficiente quando deve essere utilizzata con
1423 un gran numero di file descriptor,\footnote{in casi del genere \func{select}
1424   viene scartata a priori, perché può avvenire che il numero di file
1425   descriptor ecceda le dimensioni massime di un \itindex{file~descriptor~set}
1426   \textit{file descriptor set}.} in particolare nel caso in cui solo pochi di
1427 questi diventano attivi. Il problema in questo caso è che il tempo impiegato
1428 da \func{poll} a trasferire i dati da e verso il kernel è proporzionale al
1429 numero di file descriptor osservati, non a quelli che presentano attività.
1430
1431 Quando ci sono decine di migliaia di file descriptor osservati e migliaia di
1432 eventi al secondo,\footnote{il caso classico è quello di un server web di un
1433   sito con molti accessi.} l'uso di \func{poll} comporta la necessità di
1434 trasferire avanti ed indietro da user space a kernel space la lunga lista
1435 delle strutture \struct{pollfd} migliaia di volte al secondo. A questo poi si
1436 aggiunge il fatto che la maggior parte del tempo di esecuzione sarà impegnato
1437 ad eseguire una scansione su tutti i file descriptor tenuti sotto controllo
1438 per determinare quali di essi (in genere una piccola percentuale) sono
1439 diventati attivi. In una situazione come questa l'uso delle funzioni classiche
1440 dell'interfaccia dell'\textit{I/O multiplexing} viene a costituire un collo di
1441 bottiglia che degrada irrimediabilmente le prestazioni.
1442
1443 Per risolvere questo tipo di situazioni sono state ideate delle interfacce
1444 specialistiche\footnote{come \texttt{/dev/poll} in Solaris, o \texttt{kqueue}
1445   in BSD.} il cui scopo fondamentale è quello di restituire solamente le
1446 informazioni relative ai file descriptor osservati che presentano una
1447 attività, evitando così le problematiche appena illustrate. In genere queste
1448 prevedono che si registrino una sola volta i file descriptor da tenere sotto
1449 osservazione, e forniscono un meccanismo che notifica quali di questi
1450 presentano attività.
1451
1452 Le modalità con cui avviene la notifica sono due, la prima è quella classica
1453 (quella usata da \func{poll} e \func{select}) che viene chiamata \textit{level
1454   triggered}.\footnote{la nomenclatura è stata introdotta da Jonathan Lemon in
1455   un articolo su \texttt{kqueue} al BSDCON 2000, e deriva da quella usata
1456   nell'elettronica digitale.} In questa modalità vengono notificati i file
1457 descriptor che sono \textsl{pronti} per l'operazione richiesta, e questo
1458 avviene indipendentemente dalle operazioni che possono essere state fatte su
1459 di essi a partire dalla precedente notifica.  Per chiarire meglio il concetto
1460 ricorriamo ad un esempio: se su un file descriptor sono diventati disponibili
1461 in lettura 2000 byte ma dopo la notifica ne sono letti solo 1000 (ed è quindi
1462 possibile eseguire una ulteriore lettura dei restanti 1000), in modalità
1463 \textit{level triggered} questo sarà nuovamente notificato come
1464 \textsl{pronto}.
1465
1466 La seconda modalità, è detta \textit{edge triggered}, e prevede che invece
1467 vengano notificati solo i file descriptor che hanno subito una transizione da
1468 \textsl{non pronti} a \textsl{pronti}. Questo significa che in modalità
1469 \textit{edge triggered} nel caso del precedente esempio il file descriptor
1470 diventato pronto da cui si sono letti solo 1000 byte non verrà nuovamente
1471 notificato come pronto, nonostante siano ancora disponibili in lettura 1000
1472 byte. Solo una volta che si saranno esauriti tutti i byte disponibili, e che
1473 il file descriptor sia tornato non essere pronto, si potrà ricevere una
1474 ulteriore notifica qualora ritornasse pronto.
1475
1476 Nel caso di Linux al momento la sola interfaccia che fornisce questo tipo di
1477 servizio è \textit{epoll},\footnote{l'interfaccia è stata creata da Davide
1478   Libenzi, ed è stata introdotta per la prima volta nel kernel 2.5.44, ma la
1479   sua forma definitiva è stata raggiunta nel kernel 2.5.66.} anche se sono in
1480 discussione altre interfacce con le quali si potranno effettuare lo stesso
1481 tipo di operazioni;\footnote{al momento della stesura di queste note (Giugno
1482   2007) un'altra interfaccia proposta è quella di \textit{kevent}, che
1483   fornisce un sistema di notifica di eventi generico in grado di fornire le
1484   stesse funzionalità di \textit{epoll}, esiste però una forte discussione
1485   intorno a tutto ciò e niente di definito.}  \textit{epoll} è in grado di
1486 operare sia in modalità \textit{level triggered} che \textit{edge triggered}.
1487
1488 La prima versione \textit{epoll} prevedeva l'apertura di uno speciale file di
1489 dispositivo, \texttt{/dev/epoll}, per ottenere un file descriptor da
1490 utilizzare con le funzioni dell'interfaccia,\footnote{il backporting
1491   dell'interfaccia per il kernel 2.4, non ufficiale, utilizza sempre questo
1492   file.} ma poi si è passati all'uso una apposita \textit{system call}.  Il
1493 primo passo per usare l'interfaccia di \textit{epoll} è pertanto quello di
1494 chiamare la funzione \funcd{epoll\_create}, il cui prototipo è:
1495 \begin{prototype}{sys/epoll.h}
1496   {int epoll\_create(int size)}
1497   
1498   Apre un file descriptor per \textit{epoll}.
1499   
1500   \bodydesc{La funzione restituisce un file descriptor in caso di successo, o
1501     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
1502   \begin{errlist}
1503   \item[\errcode{EINVAL}] si è specificato un valore di \param{size} non
1504     positivo.
1505   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
1506     nel sistema.
1507   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
1508     l'istanza.
1509   \end{errlist}
1510 }
1511 \end{prototype}
1512
1513 La funzione restituisce un file descriptor speciale,\footnote{esso non è
1514   associato a nessun file su disco, inoltre a differenza dei normali file
1515   descriptor non può essere inviato ad un altro processo attraverso un socket
1516   locale (vedi sez.~\ref{sec:sock_fd_passing}).} detto anche \textit{epoll
1517   descriptor}, che viene associato alla infrastruttura utilizzata dal kernel
1518 per gestire la notifica degli eventi; l'argomento \param{size} serve a dare
1519 l'indicazione del numero di file descriptor che si vorranno tenere sotto
1520 controllo, ma costituisce solo un suggerimento per semplificare l'allocazione
1521 di risorse sufficienti, non un valore massimo.
1522
1523 Una volta ottenuto un file descriptor per \textit{epoll} il passo successivo è
1524 indicare quali file descriptor mettere sotto osservazione e quali operazioni
1525 controllare, per questo si deve usare la seconda funzione dell'interfaccia,
1526 \funcd{epoll\_ctl}, il cui prototipo è:
1527 \begin{prototype}{sys/epoll.h}
1528   {int epoll\_ctl(int epfd, int op, int fd, struct epoll\_event *event)}
1529   
1530   Esegue le operazioni di controllo di \textit{epoll}.
1531   
1532   \bodydesc{La funzione restituisce $0$ in caso di successo o $-1$ in caso di
1533     errore, nel qual caso \var{errno} assumerà uno dei valori:
1534   \begin{errlist}
1535   \item[\errcode{EBADF}] il file descriptor \param{epfd} o \param{fd} non sono
1536     validi.
1537   \item[\errcode{EEXIST}] l'operazione richiesta è \const{EPOLL\_CTL\_ADD} ma
1538     \param{fd} è già stato inserito in \param{epfd}.
1539   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1540     con \func{epoll\_create}, o \param{fd} è lo stesso \param{epfd} o
1541     l'operazione richiesta con \param{op} non è supportata.
1542   \item[\errcode{ENOENT}] l'operazione richiesta è \const{EPOLL\_CTL\_MOD} o
1543     \const{EPOLL\_CTL\_DEL} ma \param{fd} non è inserito in \param{epfd}.
1544   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel gestire
1545     l'operazione richiesta.
1546   \item[\errcode{EPERM}] il file \param{fd} non supporta \textit{epoll}.
1547   \end{errlist}
1548 }
1549 \end{prototype}
1550
1551 Il comportamento della funzione viene controllato dal valore dall'argomento
1552 \param{op} che consente di specificare quale operazione deve essere eseguita.
1553 Le costanti che definiscono i valori utilizzabili per \param{op}
1554 sono riportate in tab.~\ref{tab:epoll_ctl_operation}, assieme al significato
1555 delle operazioni cui fanno riferimento.
1556
1557 \begin{table}[htb]
1558   \centering
1559   \footnotesize
1560   \begin{tabular}[c]{|l|p{8cm}|}
1561     \hline
1562     \textbf{Valore}  & \textbf{Significato} \\
1563     \hline
1564     \hline
1565     \const{EPOLL\_CTL\_ADD}& Aggiunge un nuovo file descriptor da osservare
1566                              \param{fd} alla lista dei file descriptor
1567                              controllati tramite \param{epfd}, in
1568                              \param{event} devono essere specificate le
1569                              modalità di osservazione.\\
1570     \const{EPOLL\_CTL\_MOD}& Modifica le modalità di osservazione del file
1571                              descriptor \param{fd} secondo il contenuto di
1572                              \param{event}.\\
1573     \const{EPOLL\_CTL\_DEL}& Rimuove il file descriptor \param{fd} dalla lista
1574                              dei file controllati tramite \param{epfd}.\\
1575     \hline    
1576   \end{tabular}
1577   \caption{Valori dell'argomento \param{op} che consentono di scegliere quale
1578     operazione di controllo effettuare con la funzione \func{epoll\_ctl}.} 
1579   \label{tab:epoll_ctl_operation}
1580 \end{table}
1581
1582 La funzione prende sempre come primo argomento un file descriptor di
1583 \textit{epoll}, \param{epfd}, che deve essere stato ottenuto in precedenza con
1584 una chiamata a \func{epoll\_create}. L'argomento \param{fd} indica invece il
1585 file descriptor che si vuole tenere sotto controllo, quest'ultimo può essere
1586 un qualunque file descriptor utilizzabile con \func{poll}, ed anche un altro
1587 file descriptor di \textit{epoll}, ma non lo stesso \param{epfd}.
1588
1589 L'ultimo argomento, \param{event}, deve essere un puntatore ad una struttura
1590 di tipo \struct{epoll\_event}, ed ha significato solo con le operazioni
1591 \const{EPOLL\_CTL\_MOD} e \const{EPOLL\_CTL\_ADD}, per le quali serve ad
1592 indicare quale tipo di evento relativo ad \param{fd} si vuole che sia tenuto
1593 sotto controllo.  L'argomento viene ignorato con l'operazione
1594 \const{EPOLL\_CTL\_DEL}.\footnote{fino al kernel 2.6.9 era comunque richiesto
1595   che questo fosse un puntatore valido, anche se poi veniva ignorato, a
1596   partire dal 2.6.9 si può specificare anche un valore \texttt{NULL}.}
1597
1598 \begin{figure}[!htb]
1599   \footnotesize \centering
1600   \begin{minipage}[c]{15cm}
1601     \includestruct{listati/epoll_event.h}
1602   \end{minipage} 
1603   \normalsize 
1604   \caption{La struttura \structd{epoll\_event}, che consente di specificare
1605     gli eventi associati ad un file descriptor controllato con
1606     \textit{epoll}.}
1607   \label{fig:epoll_event}
1608 \end{figure}
1609
1610 La struttura \struct{epoll\_event} è l'analoga di \struct{pollfd} e come
1611 quest'ultima serve sia in ingresso (quando usata con \func{epoll\_ctl}) ad
1612 impostare quali eventi osservare, che in uscita (nei risultati ottenuti con
1613 \func{epoll\_wait}) per ricevere le notifiche degli eventi avvenuti.  La sua
1614 definizione è riportata in fig.~\ref{fig:epoll_event}. 
1615
1616 Il primo campo, \var{events}, è una maschera binaria in cui ciascun bit
1617 corrisponde o ad un tipo di evento, o una modalità di notifica; detto campo
1618 deve essere specificato come OR aritmetico delle costanti riportate in
1619 tab.~\ref{tab:epoll_events}. Il secondo campo, \var{data}, serve ad indicare a
1620 quale file descriptor si intende fare riferimento, ed in astratto può
1621 contenere un valore qualsiasi che permetta di identificarlo, di norma comunque
1622 si usa come valore lo stesso \param{fd}.
1623
1624 \begin{table}[htb]
1625   \centering
1626   \footnotesize
1627   \begin{tabular}[c]{|l|p{8cm}|}
1628     \hline
1629     \textbf{Valore}  & \textbf{Significato} \\
1630     \hline
1631     \hline
1632     \const{EPOLLIN}     & Il file è pronto per le operazioni di lettura
1633                           (analogo di \const{POLLIN}).\\
1634     \const{EPOLLOUT}    & Il file è pronto per le operazioni di scrittura
1635                           (analogo di \const{POLLOUT}).\\
1636     \const{EPOLLRDHUP}  & L'altro capo di un socket di tipo
1637                           \const{SOCK\_STREAM} (vedi sez.~\ref{sec:sock_type})
1638                           ha chiuso la connessione o il capo in scrittura
1639                           della stessa (vedi sez.~\ref{sec:TCP_shutdown}).\\
1640     \const{EPOLLPRI}    & Ci sono \itindex{out-of-band} dati urgenti
1641                           disponibili in lettura (analogo di
1642                           \const{POLLPRI}); questa condizione viene comunque
1643                           riportata in uscita, e non è necessaria impostarla
1644                           in ingresso.\\ 
1645     \const{EPOLLERR}    & Si è verificata una condizione di errore 
1646                           (analogo di \const{POLLERR}); questa condizione
1647                           viene comunque riportata in uscita, e non è
1648                           necessaria impostarla in ingresso.\\
1649     \const{EPOLLHUP}    & Si è verificata una condizione di hung-up.\\
1650     \const{EPOLLET}     & Imposta la notifica in modalità \textit{edge
1651                             triggered} per il file descriptor associato.\\ 
1652     \const{EPOLLONESHOT}& Imposta la modalità \textit{one-shot} per il file
1653                           descriptor associato.\footnotemark\\
1654     \hline    
1655   \end{tabular}
1656   \caption{Costanti che identificano i bit del campo \param{events} di
1657     \struct{epoll\_event}.}
1658   \label{tab:epoll_events}
1659 \end{table}
1660
1661 \footnotetext{questa modalità è disponibile solo a partire dal kernel 2.6.2.}
1662
1663 Le modalità di utilizzo di \textit{epoll} prevedono che si definisca qual'è
1664 l'insieme dei file descriptor da tenere sotto controllo tramite un certo
1665 \textit{epoll descriptor} \param{epfd} attraverso una serie di chiamate a
1666 \const{EPOLL\_CTL\_ADD}.\footnote{un difetto dell'interfaccia è che queste
1667   chiamate devono essere ripetute per ciascun file descriptor, incorrendo in
1668   una perdita di prestazioni qualora il numero di file descriptor sia molto
1669   grande; per questo è stato proposto di introdurre come estensione una
1670   funzione \func{epoll\_ctlv} che consenta di effettuare con una sola chiamata
1671   le impostazioni per un blocco di file descriptor.} L'uso di
1672 \const{EPOLL\_CTL\_MOD} consente in seguito di modificare le modalità di
1673 osservazione di un file descriptor che sia già stato aggiunto alla lista di
1674 osservazione.
1675
1676 Le impostazioni di default prevedono che la notifica degli eventi richiesti
1677 sia effettuata in modalità \textit{level triggered}, a meno che sul file
1678 descriptor non si sia impostata la modalità \textit{edge triggered},
1679 registrandolo con \const{EPOLLET} attivo nel campo \var{events}.  Si tenga
1680 presente che è possibile tenere sotto osservazione uno stesso file descriptor
1681 su due \textit{epoll descriptor} diversi, ed entrambi riceveranno le
1682 notifiche, anche se questa pratica è sconsigliata.
1683
1684 Qualora non si abbia più interesse nell'osservazione di un file descriptor lo
1685 si può rimuovere dalla lista associata a \param{epfd} con
1686 \const{EPOLL\_CTL\_DEL}; si tenga conto inoltre che i file descriptor sotto
1687 osservazione che vengono chiusi sono eliminati dalla lista automaticamente e
1688 non è necessario usare \const{EPOLL\_CTL\_DEL}.
1689
1690 Infine una particolare modalità di notifica è quella impostata con
1691 \const{EPOLLONESHOT}: a causa dell'implementazione di \textit{epoll} infatti
1692 quando si è in modalità \textit{edge triggered} l'arrivo in rapida successione
1693 di dati in blocchi separati\footnote{questo è tipico con i socket di rete, in
1694   quanto i dati arrivano a pacchetti.} può causare una generazione di eventi
1695 (ad esempio segnalazioni di dati in lettura disponibili) anche se la
1696 condizione è già stata rilevata.\footnote{si avrebbe cioè una rottura della
1697   logica \textit{edge triggered}.} 
1698
1699 Anche se la situazione è facile da gestire, la si può evitare utilizzando
1700 \const{EPOLLONESHOT} per impostare la modalità \textit{one-shot}, in cui la
1701 notifica di un evento viene effettuata una sola volta, dopo di che il file
1702 descriptor osservato, pur restando nella lista di osservazione, viene
1703 automaticamente disattivato,\footnote{la cosa avviene contestualmente al
1704   ritorno di \func{epoll\_wait} a causa dell'evento in questione.} e per
1705 essere riutilizzato dovrà essere riabilitato esplicitamente con una successiva
1706 chiamata con \const{EPOLL\_CTL\_MOD}.
1707
1708 Una volta impostato l'insieme di file descriptor che si vogliono osservare con
1709 i relativi eventi, la funzione che consente di attendere l'occorrenza di uno
1710 di tali eventi è \funcd{epoll\_wait}, il cui prototipo è:
1711 \begin{prototype}{sys/epoll.h}
1712   {int epoll\_wait(int epfd, struct epoll\_event * events, int maxevents, int
1713     timeout)}
1714   
1715   Attende che uno dei file descriptor osservati sia pronto.
1716   
1717   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1718     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1719     assumerà uno dei valori:
1720   \begin{errlist}
1721   \item[\errcode{EBADF}] il file descriptor \param{epfd} non è valido.
1722   \item[\errcode{EFAULT}] il puntatore \param{events} non è valido.
1723   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
1724     della scadenza di \param{timeout}.
1725   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1726     con \func{epoll\_create}, o \param{maxevents} non è maggiore di zero.
1727   \end{errlist}
1728 }
1729 \end{prototype}
1730
1731 La funzione si blocca in attesa di un evento per i file descriptor registrati
1732 nella lista di osservazione di \param{epfd} fino ad un tempo massimo
1733 specificato in millisecondi tramite l'argomento \param{timeout}. Gli eventi
1734 registrati vengono riportati in un vettore di strutture \struct{epoll\_event}
1735 (che deve essere stato allocato in precedenza) all'indirizzo indicato
1736 dall'argomento \param{events}, fino ad un numero massimo di eventi impostato
1737 con l'argomento \param{maxevents}.
1738
1739 La funzione ritorna il numero di eventi rilevati, o un valore nullo qualora
1740 sia scaduto il tempo massimo impostato con \param{timeout}. Per quest'ultimo,
1741 oltre ad un numero di millisecondi, si può utilizzare il valore nullo, che
1742 indica di non attendere e ritornare immediatamente,\footnote{anche in questo
1743   caso il valore di ritorno sarà nullo.} o il valore $-1$, che indica
1744 un'attesa indefinita. L'argomento \param{maxevents} dovrà invece essere sempre
1745 un intero positivo.
1746
1747 Come accennato la funzione restituisce i suoi risultati nel vettore di
1748 strutture \struct{epoll\_event} puntato da \param{events}; in tal caso nel
1749 campo \param{events} di ciascuna di esse saranno attivi i flag relativi agli
1750 eventi accaduti, mentre nel campo \var{data} sarà restituito il valore che era
1751 stato impostato per il file descriptor per cui si è verificato l'evento quando
1752 questo era stato registrato con le operazioni \const{EPOLL\_CTL\_MOD} o
1753 \const{EPOLL\_CTL\_ADD}, in questo modo il campo \var{data} consente di
1754 identificare il file descriptor.\footnote{ed è per questo che, come accennato,
1755   è consuetudine usare per \var{data} il valore del file descriptor stesso.}
1756
1757 Si ricordi che le occasioni per cui \func{epoll\_wait} ritorna dipendono da
1758 come si è impostata la modalità di osservazione (se \textit{level triggered} o
1759 \textit{edge triggered}) del singolo file descriptor. L'interfaccia assicura
1760 che se arrivano più eventi fra due chiamate successive ad \func{epoll\_wait}
1761 questi vengano combinati. Inoltre qualora su un file descriptor fossero
1762 presenti eventi non ancora notificati, e si effettuasse una modifica
1763 dell'osservazione con \const{EPOLL\_CTL\_MOD} questi verrebbero riletti alla
1764 luce delle modifiche.
1765
1766 Si tenga presente infine che con l'uso della modalità \textit{edge triggered}
1767 il ritorno di \func{epoll\_wait} indica un file descriptor è pronto e resterà
1768 tale fintanto che non si sono completamente esaurite le operazioni su di esso.
1769 Questa condizione viene generalmente rilevata dall'occorrere di un errore di
1770 \errcode{EAGAIN} al ritorno di una \func{read} o una \func{write},\footnote{è
1771   opportuno ricordare ancora una volta che l'uso dell'\textit{I/O multiplexing}
1772   richiede di operare sui file in modalità non bloccante.} ma questa non è la
1773 sola modalità possibile, ad esempio la condizione può essere riconosciuta
1774 anche con il fatto che sono stati restituiti meno dati di quelli richiesti.
1775
1776 Come già per \func{select} e \func{poll} anche per l'interfaccia di
1777 \textit{epoll} si pone il problema di gestire l'attesa di segnali e di dati
1778 contemporaneamente, per far questo di nuovo è necessaria una variante della
1779 funzione di attesa che consenta di reimpostare all'uscita una maschera di
1780 segnali, analoga alle precedenti estensioni \func{pselect} e \func{ppoll}; in
1781 questo caso la funzione si chiama \funcd{epoll\_pwait}\footnote{introdotta a
1782   partire dal kernel 2.6.19.} ed il suo prototipo è:
1783 \begin{prototype}{sys/epoll.h} 
1784   {int epoll\_pwait(int epfd, struct epoll\_event * events, int maxevents, 
1785     int timeout, const sigset\_t *sigmask)}
1786
1787   Attende che uno dei file descriptor osservati sia pronto, mascherando i
1788   segnali. 
1789
1790   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1791     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1792     assumerà uno dei valori già visti con \funcd{epoll\_wait}.
1793 }
1794 \end{prototype}
1795
1796 La funzione è del tutto analoga \funcd{epoll\_wait}, soltanto che alla sua
1797 uscita viene ripristinata la maschera di segnali originale, sostituita durante
1798 l'esecuzione da quella impostata con l'argomento \param{sigmask}; in sostanza
1799 la chiamata a questa funzione è equivalente al seguente codice, eseguito però
1800 in maniera atomica:
1801 \includecodesnip{listati/epoll_pwait_means.c} 
1802
1803 Si tenga presente che come le precedenti funzioni di \textit{I/O multiplexing}
1804 anche le funzioni dell'interfaccia di \textit{epoll} vengono utilizzate
1805 prevalentemente con i server di rete, quando si devono tenere sotto
1806 osservazione un gran numero di socket; per questo motivo rimandiamo di nuovo
1807 la trattazione di un esempio concreto a quando avremo esaminato in dettaglio
1808 le caratteristiche dei socket, in particolare si potrà trovare un programma
1809 che utilizza questa interfaccia in sez.~\ref{sec:TCP_sock_multiplexing}.
1810
1811 \itindend{epoll}
1812
1813
1814 \subsection{La notifica di eventi tramite file descriptor}
1815 \label{sec:sig_signalfd_eventfd}
1816
1817 Abbiamo visto in sez.~\ref{sec:file_select} come il meccanismo classico delle
1818 notifiche di eventi tramite i segnali, presente da sempre nei sistemi
1819 unix-like, porti a notevoli problemi nell'interazione con le funzioni per
1820 l'I/O multiplexing, tanto che per evitare possibili \itindex{race~condition}
1821 \textit{race condition} sono state introdotte estensioni dello standard POSIX e
1822 funzioni apposite come \func{pselect}, \func{ppoll} e \funcd{epoll\_pwait}.
1823
1824 Benché i segnali siano il meccanismo più usato per effettuare notifiche ai
1825 processi, la loro interfaccia di programmazione, che comporta l'esecuzione di
1826 una funzione di gestione in maniera asincrona e totalmente scorrelata
1827 dall'ordinario flusso di esecuzione del processo, si è però dimostrata quasi
1828 subito assai problematica. Oltre ai limiti relativi ai limiti al cosa si può
1829 fare all'interno della funzione del gestore di segnali (quelli illustrati in
1830 sez.~\ref{sec:sig_signal_handler}), c'è il problema più generale consistente
1831 nel fatto che questa modalità di funzionamento cozza con altre interfacce di
1832 programmazione previste dal sistema in cui si opera in maniera
1833 \textsl{sincrona}, come quelle dell'I/O multiplexing appena illustrate.
1834
1835 In questo tipo di interfacce infatti ci si aspetta che il processo gestisca
1836 gli eventi a cui vuole rispondere in maniera sincrona generando le opportune
1837 risposte, mentre con l'arrivo di un segnale si possono avere interruzioni
1838 asincrone in qualunque momento.  Questo comporta la necessità di dover
1839 gestire, quando si deve tener conto di entrambi i tipi di eventi, le
1840 interruzioni delle funzioni di attesa sincrone, ed evitare possibili
1841 \itindex{race~condition} \textit{race conditions}.\footnote{in sostanza se non
1842   fossero per i segnali non ci sarebbe da doversi preoccupare, fintanto che si
1843   effettuano operazioni all'interno di un processo, della non atomicità delle
1844   \index{system~call~lente} system call lente che vengono interrotte e devono
1845   essere riavviate.}
1846
1847 Abbiamo visto però in sez.~\ref{sec:sig_real_time} che insieme ai segnali
1848 \textit{real-time} sono state introdotte anche delle interfacce di gestione
1849 sincrona dei segnali con la funzione \func{sigwait} e le sue affini. Queste
1850 funzioni consentono di gestire i segnali bloccando un processo fino alla
1851 avvenuta ricezione e disabilitando l'esecuzione asincrona rispetto al resto
1852 del programma del gestore del segnale. Questo consente di risolvere i
1853 problemi di atomicità nella gestione degli eventi associati ai segnali, avendo
1854 tutto il controllo nel flusso principale del programma, ottenendo così una
1855 gestione simile a quella dell'I/O multiplexing, ma non risolve i problemi
1856 delle interazioni con quest'ultimo, perché o si aspetta la ricezione di un
1857 segnale o si aspetta che un file descriptor sia accessibile e nessuna delle
1858 rispettive funzioni consente di fare contemporaneamente entrambe le cose.
1859
1860 Per risolvere questo problema nello sviluppo del kernel si è pensato di
1861 introdurre un meccanismo alternativo alla notifica dei segnali (esteso anche
1862 ad altri eventi generici) che, ispirandosi di nuovo alla filosofia di Unix per
1863 cui tutto è un file, consentisse di eseguire la notifica con l'uso di
1864 opportuni file descriptor.\footnote{ovviamente si tratta di una funzionalità
1865   specifica di Linux, non presente in altri sistemi unix-like, e non prevista
1866   da nessuno standard.}
1867
1868 In sostanza, come per \func{sigwait}, si può disabilitare l'esecuzione di un
1869 gestore in occasione dell'arrivo di un segnale, e rilevarne l'avvenuta
1870 ricezione leggendone la notifica tramite l'uso di uno speciale file
1871 descriptor. Trattandosi di un file descriptor questo potrà essere tenuto sotto
1872 osservazione con le ordinarie funzioni dell'I/O multiplexing (vale a dire con
1873 le solite \func{select}, \func{poll} e \funcd{epoll\_wait}) allo stesso modo
1874 di quelli associati a file o socket, per cui alla fine si potrà attendere in
1875 contemporanea sia l'arrivo del segnale che la disponibilità di accesso ai dati
1876 relativi a questi ultimi.
1877
1878 La funzione che permette di abilitare la ricezione dei segnali tramite file
1879 descriptor è \funcd{signalfd}, il cui prototipo è:
1880 \begin{prototype}{sys/signalfd.h} 
1881   {int signalfd(int fd, const sigset\_t *mask, int flags)}
1882
1883   Attende che uno dei file descriptor osservati sia pronto, mascherando i
1884   segnali. 
1885
1886   \bodydesc{La funzione restituisce il numero di file descriptor pronti in
1887     caso di successo o $-1$ in caso di errore, nel qual caso \var{errno}
1888     assumerà uno dei valori già visti con \funcd{epoll\_wait}.
1889 }
1890 \end{prototype}
1891
1892 % TODO trattare qui eventfd signalfd e timerfd introdotte con il 2.6.22 
1893 % timerfd è stata tolta nel 2.6.23 e rifatta per bene nel 2.6.25
1894 % vedi: http://lwn.net/Articles/233462/
1895 %       http://lwn.net/Articles/245533/
1896 %       http://lwn.net/Articles/267331/
1897
1898
1899
1900 \section{L'accesso \textsl{asincrono} ai file}
1901 \label{sec:file_asyncronous_access}
1902
1903 Benché l'\textit{I/O multiplexing} sia stata la prima, e sia tutt'ora una fra
1904 le più diffuse modalità di gestire l'I/O in situazioni complesse in cui si
1905 debba operare su più file contemporaneamente, esistono altre modalità di
1906 gestione delle stesse problematiche. In particolare sono importanti in questo
1907 contesto le modalità di accesso ai file eseguibili in maniera
1908 \textsl{asincrona}, quelle cioè in cui un processo non deve bloccarsi in
1909 attesa della disponibilità dell'accesso al file, ma può proseguire
1910 nell'esecuzione utilizzando invece un meccanismo di notifica asincrono (di
1911 norma un segnale, ma esistono anche altre interfacce, come \itindex{inotify}
1912 \textit{inotify}), per essere avvisato della possibilità di eseguire le
1913 operazioni di I/O volute.
1914
1915
1916 \subsection{Il \textit{Signal driven I/O}}
1917 \label{sec:file_asyncronous_operation}
1918
1919 \itindbeg{signal~driven~I/O}
1920
1921 Abbiamo accennato in sez.~\ref{sec:file_open} che è possibile, attraverso
1922 l'uso del flag \const{O\_ASYNC},\footnote{l'uso del flag di \const{O\_ASYNC} e
1923   dei comandi \const{F\_SETOWN} e \const{F\_GETOWN} per \func{fcntl} è
1924   specifico di Linux e BSD.} aprire un file in modalità asincrona, così come è
1925 possibile attivare in un secondo tempo questa modalità impostando questo flag
1926 attraverso l'uso di \func{fcntl} con il comando \const{F\_SETFL} (vedi
1927 sez.~\ref{sec:file_fcntl}). In realtà parlare di apertura in modalità
1928 asincrona non significa che le operazioni di lettura o scrittura del file
1929 vengono eseguite in modo asincrono (tratteremo questo, che è ciò che più
1930 propriamente viene chiamato \textsl{I/O asincrono}, in
1931 sez.~\ref{sec:file_asyncronous_io}), quanto dell'attivazione un meccanismo di
1932 notifica asincrona delle variazione dello stato del file descriptor aperto in
1933 questo modo.  
1934
1935 Quello che succede è che per tutti i file posti in questa modalità\footnote{si
1936   tenga presente però che essa non è utilizzabile con i file ordinari ma solo
1937   con socket, file di terminale o pseudo terminale, ed anche, a partire dal
1938   kernel 2.6, anche per fifo e pipe.} il sistema genera un apposito segnale,
1939 \const{SIGIO}, tutte le volte che diventa possibile leggere o scrivere dal
1940 file descriptor che si è posto in questa modalità. Inoltre è possibile, come
1941 illustrato in sez.~\ref{sec:file_fcntl}, selezionare con il comando
1942 \const{F\_SETOWN} di \func{fcntl} quale processo o quale gruppo di processi
1943 dovrà ricevere il segnale. In questo modo diventa possibile effettuare le
1944 operazioni di I/O in risposta alla ricezione del segnale, e non ci sarà più la
1945 necessità di restare bloccati in attesa della disponibilità di accesso ai
1946 file.
1947
1948 % TODO: per i thread l'uso di F_SETOWN ha un significato diverso
1949
1950 Per questo motivo Stevens, ed anche le pagine di manuale di Linux, chiamano
1951 questa modalità ``\textit{Signal driven I/O}''.  Si tratta di un'altra
1952 modalità di gestione dell'I/O, alternativa all'uso di \itindex{epoll}
1953 \textit{epoll},\footnote{anche se le prestazioni ottenute con questa tecnica
1954   sono inferiori, il vantaggio è che questa modalità è utilizzabile anche con
1955   kernel che non supportano \textit{epoll}, come quelli della serie 2.4,
1956   ottenendo comunque prestazioni superiori a quelle che si hanno con
1957   \func{poll} e \func{select}.} che consente di evitare l'uso delle funzioni
1958 \func{poll} o \func{select} che, come illustrato in sez.~\ref{sec:file_epoll},
1959 quando vengono usate con un numero molto grande di file descriptor, non hanno
1960 buone prestazioni.
1961
1962 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
1963 presenta notevoli problemi, dato che non è possibile determinare, quando i
1964 file descriptor sono più di uno, qual è quello responsabile dell'emissione del
1965 segnale. Inoltre dato che i segnali normali non si accodano (si ricordi quanto
1966 illustrato in sez.~\ref{sec:sig_notification}), in presenza di più file
1967 descriptor attivi contemporaneamente, più segnali emessi nello stesso momento
1968 verrebbero notificati una volta sola.
1969
1970 Linux però supporta le estensioni POSIX.1b dei segnali real-time, che vengono
1971 accodati e che permettono di riconoscere il file descriptor che li ha emessi.
1972 In questo caso infatti si può fare ricorso alle informazioni aggiuntive
1973 restituite attraverso la struttura \struct{siginfo\_t}, utilizzando la forma
1974 estesa \var{sa\_sigaction} del gestore installata con il flag
1975 \const{SA\_SIGINFO} (si riveda quanto illustrato in
1976 sez.~\ref{sec:sig_sigaction}).
1977
1978 Per far questo però occorre utilizzare le funzionalità dei segnali real-time
1979 (vedi sez.~\ref{sec:sig_real_time}) impostando esplicitamente con il comando
1980 \const{F\_SETSIG} di \func{fcntl} un segnale real-time da inviare in caso di
1981 I/O asincrono (il segnale predefinito è \const{SIGIO}). In questo caso il
1982 gestore, tutte le volte che riceverà \const{SI\_SIGIO} come valore del campo
1983 \var{si\_code}\footnote{il valore resta \const{SI\_SIGIO} qualunque sia il
1984   segnale che si è associato all'I/O, ed indica appunto che il segnale è stato
1985   generato a causa di attività di I/O.} di \struct{siginfo\_t}, troverà nel
1986 campo \var{si\_fd} il valore del file descriptor che ha generato il segnale.
1987
1988 Un secondo vantaggio dell'uso dei segnali real-time è che essendo questi
1989 ultimi dotati di una coda di consegna ogni segnale sarà associato ad uno solo
1990 file descriptor; inoltre sarà possibile stabilire delle priorità nella
1991 risposta a seconda del segnale usato, dato che i segnali real-time supportano
1992 anche questa funzionalità. In questo modo si può identificare immediatamente
1993 un file su cui l'accesso è diventato possibile evitando completamente l'uso di
1994 funzioni come \func{poll} e \func{select}, almeno fintanto che non si satura
1995 la coda.
1996
1997 Se infatti si eccedono le dimensioni di quest'ultima, il kernel, non potendo
1998 più assicurare il comportamento corretto per un segnale real-time, invierà al
1999 suo posto un solo \const{SIGIO}, su cui si saranno accumulati tutti i segnali
2000 in eccesso, e si dovrà allora determinare con un ciclo quali sono i file
2001 diventati attivi. L'unico modo per essere sicuri che questo non avvenga è di
2002 impostare la lunghezza della coda dei segnali real-time ad una dimensione
2003 identica al valore massimo del numero di file descriptor
2004 utilizzabili.\footnote{vale a dire impostare il contenuto di
2005   \procfile{/proc/sys/kernel/rtsig-max} allo stesso valore del contenuto di
2006   \procfile{/proc/sys/fs/file-max}.}
2007
2008 % TODO fare esempio che usa O_ASYNC
2009
2010 \itindend{signal~driven~I/O}
2011
2012
2013
2014 \subsection{I meccanismi di notifica asincrona.}
2015 \label{sec:file_asyncronous_lease}
2016
2017 Una delle domande più frequenti nella programmazione in ambiente unix-like è
2018 quella di come fare a sapere quando un file viene modificato. La
2019 risposta\footnote{o meglio la non risposta, tanto che questa nelle Unix FAQ
2020   \cite{UnixFAQ} viene anche chiamata una \textit{Frequently Unanswered
2021     Question}.} è che nell'architettura classica di Unix questo non è
2022 possibile. Al contrario di altri sistemi operativi infatti un kernel unix-like
2023 classico non prevedeva alcun meccanismo per cui un processo possa essere
2024 \textsl{notificato} di eventuali modifiche avvenute su un file. Questo è il
2025 motivo per cui i demoni devono essere \textsl{avvisati} in qualche
2026 modo\footnote{in genere questo vien fatto inviandogli un segnale di
2027   \const{SIGHUP} che, per una convenzione adottata dalla gran parte di detti
2028   programmi, causa la rilettura della configurazione.} se il loro file di
2029 configurazione è stato modificato, perché possano rileggerlo e riconoscere le
2030 modifiche.
2031
2032 Questa scelta è stata fatta perché provvedere un simile meccanismo a livello
2033 generico per qualunque file comporterebbe un notevole aumento di complessità
2034 dell'architettura della gestione dei file, il tutto per fornire una
2035 funzionalità che serve soltanto in alcuni casi particolari. Dato che
2036 all'origine di Unix i soli programmi che potevano avere una tale esigenza
2037 erano i demoni, attenendosi a uno dei criteri base della progettazione, che
2038 era di far fare al kernel solo le operazioni strettamente necessarie e
2039 lasciare tutto il resto a processi in user space, non era stata prevista
2040 nessuna funzionalità di notifica.
2041
2042 Visto però il crescente interesse nei confronti di una funzionalità di questo
2043 tipo, che è molto richiesta specialmente nello sviluppo dei programmi ad
2044 interfaccia grafica, quando si deve presentare all'utente lo stato del
2045 filesystem, sono state successivamente introdotte delle estensioni che
2046 permettessero la creazione di meccanismi di notifica più efficienti dell'unica
2047 soluzione disponibile con l'interfaccia tradizionale, che è quella del
2048 \itindex{polling} \textit{polling}.
2049
2050 Queste nuove funzionalità sono delle estensioni specifiche, non
2051 standardizzate, che sono disponibili soltanto su Linux (anche se altri kernel
2052 supportano meccanismi simili). Alcune di esse sono realizzate, e solo a
2053 partire dalla versione 2.4 del kernel, attraverso l'uso di alcuni
2054 \textsl{comandi} aggiuntivi per la funzione \func{fcntl} (vedi
2055 sez.~\ref{sec:file_fcntl}), che divengono disponibili soltanto se si è
2056 definita la macro \macro{\_GNU\_SOURCE} prima di includere \file{fcntl.h}.
2057
2058 \index{file!lease|(} 
2059
2060 La prima di queste funzionalità è quella del cosiddetto \textit{file lease};
2061 questo è un meccanismo che consente ad un processo, detto \textit{lease
2062   holder}, di essere notificato quando un altro processo, chiamato a sua volta
2063 \textit{lease breaker}, cerca di eseguire una \func{open} o una
2064 \func{truncate} sul file del quale l'\textit{holder} detiene il
2065 \textit{lease}.
2066 La notifica avviene in maniera analoga a come illustrato in precedenza per
2067 l'uso di \const{O\_ASYNC}: di default viene inviato al \textit{lease holder}
2068 il segnale \const{SIGIO}, ma questo segnale può essere modificato usando il
2069 comando \const{F\_SETSIG} di \func{fcntl}.\footnote{anche in questo caso si
2070   può rispecificare lo stesso \const{SIGIO}.} Se si è fatto questo\footnote{è
2071   in genere è opportuno farlo, come in precedenza, per utilizzare segnali
2072   real-time.} e si è installato il gestore del segnale con \const{SA\_SIGINFO}
2073 si riceverà nel campo \var{si\_fd} della struttura \struct{siginfo\_t} il
2074 valore del file descriptor del file sul quale è stato compiuto l'accesso; in
2075 questo modo un processo può mantenere anche più di un \textit{file lease}.
2076
2077 Esistono due tipi di \textit{file lease}: di lettura (\textit{read lease}) e
2078 di scrittura (\textit{write lease}). Nel primo caso la notifica avviene quando
2079 un altro processo esegue l'apertura del file in scrittura o usa
2080 \func{truncate} per troncarlo. Nel secondo caso la notifica avviene anche se
2081 il file viene aperto in lettura; in quest'ultimo caso però il \textit{lease}
2082 può essere ottenuto solo se nessun altro processo ha aperto lo stesso file.
2083
2084 Come accennato in sez.~\ref{sec:file_fcntl} il comando di \func{fcntl} che
2085 consente di acquisire un \textit{file lease} è \const{F\_SETLEASE}, che viene
2086 utilizzato anche per rilasciarlo. In tal caso il file descriptor \param{fd}
2087 passato a \func{fcntl} servirà come riferimento per il file su cui si vuole
2088 operare, mentre per indicare il tipo di operazione (acquisizione o rilascio)
2089 occorrerà specificare come valore dell'argomento \param{arg} di \func{fcntl}
2090 uno dei tre valori di tab.~\ref{tab:file_lease_fctnl}.
2091
2092 \begin{table}[htb]
2093   \centering
2094   \footnotesize
2095   \begin{tabular}[c]{|l|l|}
2096     \hline
2097     \textbf{Valore}  & \textbf{Significato} \\
2098     \hline
2099     \hline
2100     \const{F\_RDLCK} & Richiede un \textit{read lease}.\\
2101     \const{F\_WRLCK} & Richiede un \textit{write lease}.\\
2102     \const{F\_UNLCK} & Rilascia un \textit{file lease}.\\
2103     \hline    
2104   \end{tabular}
2105   \caption{Costanti per i tre possibili valori dell'argomento \param{arg} di
2106     \func{fcntl} quando usata con i comandi \const{F\_SETLEASE} e
2107     \const{F\_GETLEASE}.} 
2108   \label{tab:file_lease_fctnl}
2109 \end{table}
2110
2111 Se invece si vuole conoscere lo stato di eventuali \textit{file lease}
2112 occorrerà chiamare \func{fcntl} sul relativo file descriptor \param{fd} con il
2113 comando \const{F\_GETLEASE}, e si otterrà indietro nell'argomento \param{arg}
2114 uno dei valori di tab.~\ref{tab:file_lease_fctnl}, che indicheranno la
2115 presenza del rispettivo tipo di \textit{lease}, o, nel caso di
2116 \const{F\_UNLCK}, l'assenza di qualunque \textit{file lease}.
2117
2118 Si tenga presente che un processo può mantenere solo un tipo di \textit{lease}
2119 su un file, e che un \textit{lease} può essere ottenuto solo su file di dati
2120 (pipe e dispositivi sono quindi esclusi). Inoltre un processo non privilegiato
2121 può ottenere un \textit{lease} soltanto per un file appartenente ad un
2122 \acr{uid} corrispondente a quello del processo. Soltanto un processo con
2123 privilegi di amministratore (cioè con la \itindex{capabilities} capability
2124 \const{CAP\_LEASE}, vedi sez.~\ref{sec:proc_capabilities}) può acquisire
2125 \textit{lease} su qualunque file.
2126
2127 Se su un file è presente un \textit{lease} quando il \textit{lease breaker}
2128 esegue una \func{truncate} o una \func{open} che confligge con
2129 esso,\footnote{in realtà \func{truncate} confligge sempre, mentre \func{open},
2130   se eseguita in sola lettura, non confligge se si tratta di un \textit{read
2131     lease}.} la funzione si blocca\footnote{a meno di non avere aperto il file
2132   con \const{O\_NONBLOCK}, nel qual caso \func{open} fallirebbe con un errore
2133   di \errcode{EWOULDBLOCK}.} e viene eseguita la notifica al \textit{lease
2134   holder}, così che questo possa completare le sue operazioni sul file e
2135 rilasciare il \textit{lease}.  In sostanza con un \textit{read lease} si
2136 rilevano i tentativi di accedere al file per modificarne i dati da parte di un
2137 altro processo, mentre con un \textit{write lease} si rilevano anche i
2138 tentativi di accesso in lettura.  Si noti comunque che le operazioni di
2139 notifica avvengono solo in fase di apertura del file e non sulle singole
2140 operazioni di lettura e scrittura.
2141
2142 L'utilizzo dei \textit{file lease} consente al \textit{lease holder} di
2143 assicurare la consistenza di un file, a seconda dei due casi, prima che un
2144 altro processo inizi con le sue operazioni di scrittura o di lettura su di
2145 esso. In genere un \textit{lease holder} che riceve una notifica deve
2146 provvedere a completare le necessarie operazioni (ad esempio scaricare
2147 eventuali buffer), per poi rilasciare il \textit{lease} così che il
2148 \textit{lease breaker} possa eseguire le sue operazioni. Questo si fa con il
2149 comando \const{F\_SETLEASE}, o rimuovendo il \textit{lease} con
2150 \const{F\_UNLCK}, o, nel caso di \textit{write lease} che confligge con una
2151 operazione di lettura, declassando il \textit{lease} a lettura con
2152 \const{F\_RDLCK}.
2153
2154 Se il \textit{lease holder} non provvede a rilasciare il \textit{lease} entro
2155 il numero di secondi specificato dal parametro di sistema mantenuto in
2156 \procfile{/proc/sys/fs/lease-break-time} sarà il kernel stesso a rimuoverlo (o
2157 declassarlo) automaticamente.\footnote{questa è una misura di sicurezza per
2158   evitare che un processo blocchi indefinitamente l'accesso ad un file
2159   acquisendo un \textit{lease}.} Una volta che un \textit{lease} è stato
2160 rilasciato o declassato (che questo sia fatto dal \textit{lease holder} o dal
2161 kernel è lo stesso) le chiamate a \func{open} o \func{truncate} eseguite dal
2162 \textit{lease breaker} rimaste bloccate proseguono automaticamente.
2163
2164
2165 \itindbeg{dnotify}
2166
2167 Benché possa risultare utile per sincronizzare l'accesso ad uno stesso file da
2168 parte di più processi, l'uso dei \textit{file lease} non consente comunque di
2169 risolvere il problema di rilevare automaticamente quando un file o una
2170 directory vengono modificati, che è quanto necessario ad esempio ai programma
2171 di gestione dei file dei vari desktop grafici.
2172
2173 Per risolvere questo problema a partire dal kernel 2.4 è stata allora creata
2174 un'altra interfaccia,\footnote{si ricordi che anche questa è una interfaccia
2175   specifica di Linux che deve essere evitata se si vogliono scrivere programmi
2176   portabili, e che le funzionalità illustrate sono disponibili soltanto se è
2177   stata definita la macro \macro{\_GNU\_SOURCE}.} chiamata \textit{dnotify},
2178 che consente di richiedere una notifica quando una directory, o uno qualunque
2179 dei file in essa contenuti, viene modificato.  Come per i \textit{file lease}
2180 la notifica avviene di default attraverso il segnale \const{SIGIO}, ma se ne
2181 può utilizzare un altro.\footnote{e di nuovo, per le ragioni già esposte in
2182   precedenza, è opportuno che si utilizzino dei segnali real-time.} Inoltre,
2183 come in precedenza, si potrà ottenere nel gestore del segnale il file
2184 descriptor che è stato modificato tramite il contenuto della struttura
2185 \struct{siginfo\_t}.
2186
2187 \index{file!lease|)}
2188
2189 \begin{table}[htb]
2190   \centering
2191   \footnotesize
2192   \begin{tabular}[c]{|l|p{8cm}|}
2193     \hline
2194     \textbf{Valore}  & \textbf{Significato} \\
2195     \hline
2196     \hline
2197     \const{DN\_ACCESS} & Un file è stato acceduto, con l'esecuzione di una fra
2198                          \func{read}, \func{pread}, \func{readv}.\\ 
2199     \const{DN\_MODIFY} & Un file è stato modificato, con l'esecuzione di una
2200                          fra \func{write}, \func{pwrite}, \func{writev}, 
2201                          \func{truncate}, \func{ftruncate}.\\ 
2202     \const{DN\_CREATE} & È stato creato un file nella directory, con
2203                          l'esecuzione di una fra \func{open}, \func{creat},
2204                          \func{mknod}, \func{mkdir}, \func{link},
2205                          \func{symlink}, \func{rename} (da un'altra
2206                          directory).\\
2207     \const{DN\_DELETE} & È stato cancellato un file dalla directory con
2208                          l'esecuzione di una fra \func{unlink}, \func{rename}
2209                          (su un'altra directory), \func{rmdir}.\\
2210     \const{DN\_RENAME} & È stato rinominato un file all'interno della
2211                          directory (con \func{rename}).\\
2212     \const{DN\_ATTRIB} & È stato modificato un attributo di un file con
2213                          l'esecuzione di una fra \func{chown}, \func{chmod},
2214                          \func{utime}.\\ 
2215     \const{DN\_MULTISHOT}& Richiede una notifica permanente di tutti gli
2216                          eventi.\\ 
2217     \hline    
2218   \end{tabular}
2219   \caption{Le costanti che identificano le varie classi di eventi per i quali
2220     si richiede la notifica con il comando \const{F\_NOTIFY} di \func{fcntl}.} 
2221   \label{tab:file_notify}
2222 \end{table}
2223
2224 Ci si può registrare per le notifiche dei cambiamenti al contenuto di una
2225 certa directory eseguendo la funzione \func{fcntl} su un file descriptor
2226 associato alla stessa con il comando \const{F\_NOTIFY}. In questo caso
2227 l'argomento \param{arg} di \func{fcntl} serve ad indicare per quali classi
2228 eventi si vuole ricevere la notifica, e prende come valore una maschera
2229 binaria composta dall'OR aritmetico di una o più delle costanti riportate in
2230 tab.~\ref{tab:file_notify}.
2231
2232 A meno di non impostare in maniera esplicita una notifica permanente usando il
2233 valore \const{DN\_MULTISHOT}, la notifica è singola: viene cioè inviata una
2234 sola volta quando si verifica uno qualunque fra gli eventi per i quali la si è
2235 richiesta. Questo significa che un programma deve registrarsi un'altra volta
2236 se desidera essere notificato di ulteriori cambiamenti. Se si eseguono diverse
2237 chiamate con \const{F\_NOTIFY} e con valori diversi per \param{arg} questi
2238 ultimi si \textsl{accumulano}; cioè eventuali nuovi classi di eventi
2239 specificate in chiamate successive vengono aggiunte a quelle già impostate
2240 nelle precedenti.  Se si vuole rimuovere la notifica si deve invece
2241 specificare un valore nullo.
2242
2243 \itindbeg{inotify}
2244
2245 Il maggiore problema di \textit{dnotify} è quello della scalabilità: si deve
2246 usare un file descriptor per ciascuna directory che si vuole tenere sotto
2247 controllo, il che porta facilmente ad avere un eccesso di file aperti. Inoltre
2248 quando la directory che si controlla è all'interno di un dispositivo
2249 rimovibile, mantenere il relativo file descriptor aperto comporta
2250 l'impossibilità di smontare il dispositivo e di rimuoverlo, il che in genere
2251 complica notevolmente la gestione dell'uso di questi dispositivi.
2252
2253 Un altro problema è che l'interfaccia di \textit{dnotify} consente solo di
2254 tenere sotto controllo il contenuto di una directory; la modifica di un file
2255 viene segnalata, ma poi è necessario verificare di quale file si tratta
2256 (operazione che può essere molto onerosa quando una directory contiene un gran
2257 numero di file).  Infine l'uso dei segnali come interfaccia di notifica
2258 comporta tutti i problemi di gestione visti in sez.~\ref{sec:sig_management} e
2259 sez.~\ref{sec:sig_adv_control}.  Per tutta questa serie di motivi in generale
2260 quella di \textit{dnotify} viene considerata una interfaccia di usabilità
2261 problematica.
2262
2263 \itindend{dnotify}
2264
2265 Per risolvere i problemi appena illustrati è stata introdotta una nuova
2266 interfaccia per l'osservazione delle modifiche a file o directory, chiamata
2267 \textit{inotify}.\footnote{l'interfaccia è disponibile a partire dal kernel
2268   2.6.13, le relative funzioni sono state introdotte nelle glibc 2.4.}  Anche
2269 questa è una interfaccia specifica di Linux (pertanto non deve essere usata se
2270 si devono scrivere programmi portabili), ed è basata sull'uso di una coda di
2271 notifica degli eventi associata ad un singolo file descriptor, il che permette
2272 di risolvere il principale problema di \itindex{dnotify} \textit{dnotify}.  La
2273 coda viene creata attraverso la funzione \funcd{inotify\_init}, il cui
2274 prototipo è:
2275 \begin{prototype}{sys/inotify.h}
2276   {int inotify\_init(void)}
2277   
2278   Inizializza una istanza di \textit{inotify}.
2279   
2280   \bodydesc{La funzione restituisce un file descriptor in caso di successo, o
2281     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
2282   \begin{errlist}
2283   \item[\errcode{EMFILE}] si è raggiunto il numero massimo di istanze di
2284     \textit{inotify} consentite all'utente.
2285   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
2286     nel sistema.
2287   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
2288     l'istanza.
2289   \end{errlist}
2290 }
2291 \end{prototype}
2292
2293 La funzione non prende alcun argomento; inizializza una istanza di
2294 \textit{inotify} e restituisce un file descriptor attraverso il quale verranno
2295 effettuate le operazioni di notifica;\footnote{per evitare abusi delle risorse
2296   di sistema è previsto che un utente possa utilizzare un numero limitato di
2297   istanze di \textit{inotify}; il valore di default del limite è di 128, ma
2298   questo valore può essere cambiato con \func{sysctl} o usando il file
2299   \procfile{/proc/sys/fs/inotify/max\_user\_instances}.} si tratta di un file
2300 descriptor speciale che non è associato a nessun file su disco, e che viene
2301 utilizzato solo per notificare gli eventi che sono stati posti in
2302 osservazione. Dato che questo file descriptor non è associato a nessun file o
2303 directory reale, l'inconveniente di non poter smontare un filesystem i cui
2304 file sono tenuti sotto osservazione viene completamente
2305 eliminato.\footnote{anzi, una delle capacità dell'interfaccia di
2306   \textit{inotify} è proprio quella di notificare il fatto che il filesystem
2307   su cui si trova il file o la directory osservata è stato smontato.}
2308
2309 Inoltre trattandosi di un file descriptor a tutti gli effetti, esso potrà
2310 essere utilizzato come argomento per le funzioni \func{select} e \func{poll} e
2311 con l'interfaccia di \textit{epoll};\footnote{ed a partire dal kernel 2.6.25 è
2312   stato introdotto anche il supporto per il \itindex{signal~driven~I/O}
2313   \texttt{signal-driven I/O} trattato in
2314   sez.~\ref{sec:file_asyncronous_operation}.} siccome gli eventi vengono
2315 notificati come dati disponibili in lettura, dette funzioni ritorneranno tutte
2316 le volte che si avrà un evento di notifica. Così, invece di dover utilizzare i
2317 segnali,\footnote{considerati una pessima scelta dal punto di vista
2318   dell'interfaccia utente.} si potrà gestire l'osservazione degli eventi con
2319 una qualunque delle modalità di \textit{I/O multiplexing} illustrate in
2320 sez.~\ref{sec:file_multiplexing}. Qualora si voglia cessare l'osservazione,
2321 sarà sufficiente chiudere il file descriptor e tutte le risorse allocate
2322 saranno automaticamente rilasciate.
2323
2324 Infine l'interfaccia di \textit{inotify} consente di mettere sotto
2325 osservazione, oltre che una directory, anche singoli file.  Una volta creata
2326 la coda di notifica si devono definire gli eventi da tenere sotto
2327 osservazione; questo viene fatto attraverso una \textsl{lista di osservazione}
2328 (o \textit{watch list}) che è associata alla coda. Per gestire la lista di
2329 osservazione l'interfaccia fornisce due funzioni, la prima di queste è
2330 \funcd{inotify\_add\_watch}, il cui prototipo è:
2331 \begin{prototype}{sys/inotify.h}
2332   {int inotify\_add\_watch(int fd, const char *pathname, uint32\_t mask)}
2333
2334   Aggiunge un evento di osservazione alla lista di osservazione di \param{fd}.
2335
2336   \bodydesc{La funzione restituisce un valore positivo in caso di successo, o
2337     $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno dei valori:
2338   \begin{errlist}
2339   \item[\errcode{EACCESS}] non si ha accesso in lettura al file indicato.
2340   \item[\errcode{EINVAL}] \param{mask} non contiene eventi legali o \param{fd}
2341     non è un file descriptor di \textit{inotify}.
2342   \item[\errcode{ENOSPC}] si è raggiunto il numero massimo di voci di
2343     osservazione o il kernel non ha potuto allocare una risorsa necessaria.
2344   \end{errlist}
2345   ed inoltre \errval{EFAULT}, \errval{ENOMEM} e \errval{EBADF}.}
2346 \end{prototype}
2347
2348 La funzione consente di creare un ``\textsl{osservatore}'' (il cosiddetto
2349 ``\textit{watch}'') nella lista di osservazione di una coda di notifica, che
2350 deve essere indicata specificando il file descriptor ad essa associato
2351 nell'argomento \param{fd}.\footnote{questo ovviamente dovrà essere un file
2352   descriptor creato con \func{inotify\_init}.}  Il file o la directory da
2353 porre sotto osservazione vengono invece indicati per nome, da passare
2354 nell'argomento \param{pathname}.  Infine il terzo argomento, \param{mask},
2355 indica che tipo di eventi devono essere tenuti sotto osservazione e le
2356 modalità della stessa.  L'operazione può essere ripetuta per tutti i file e le
2357 directory che si vogliono tenere sotto osservazione,\footnote{anche in questo
2358   caso c'è un limite massimo che di default è pari a 8192, ed anche questo
2359   valore può essere cambiato con \func{sysctl} o usando il file
2360   \procfile{/proc/sys/fs/inotify/max\_user\_watches}.} e si utilizzerà sempre
2361 un solo file descriptor.
2362
2363 Il tipo di evento che si vuole osservare deve essere specificato
2364 nell'argomento \param{mask} come maschera binaria, combinando i valori delle
2365 costanti riportate in tab.~\ref{tab:inotify_event_watch} che identificano i
2366 singoli bit della maschera ed il relativo significato. In essa si sono marcati
2367 con un ``$\bullet$'' gli eventi che, quando specificati per una directory,
2368 vengono osservati anche su tutti i file che essa contiene.  Nella seconda
2369 parte della tabella si sono poi indicate alcune combinazioni predefinite dei
2370 flag della prima parte.
2371
2372 \begin{table}[htb]
2373   \centering
2374   \footnotesize
2375   \begin{tabular}[c]{|l|c|p{10cm}|}
2376     \hline
2377     \textbf{Valore}  & & \textbf{Significato} \\
2378     \hline
2379     \hline
2380     \const{IN\_ACCESS}        &$\bullet$& C'è stato accesso al file in
2381                                           lettura.\\  
2382     \const{IN\_ATTRIB}        &$\bullet$& Ci sono stati cambiamenti sui dati
2383                                           dell'inode (o sugli attributi
2384                                           estesi, vedi
2385                                           sez.~\ref{sec:file_xattr}).\\ 
2386     \const{IN\_CLOSE\_WRITE}  &$\bullet$& È stato chiuso un file aperto in
2387                                           scrittura.\\  
2388     \const{IN\_CLOSE\_NOWRITE}&$\bullet$& È stato chiuso un file aperto in
2389                                           sola lettura.\\
2390     \const{IN\_CREATE}        &$\bullet$& È stato creato un file o una
2391                                           directory in una directory sotto
2392                                           osservazione.\\  
2393     \const{IN\_DELETE}        &$\bullet$& È stato cancellato un file o una
2394                                           directory in una directory sotto
2395                                           osservazione.\\ 
2396     \const{IN\_DELETE\_SELF}  & --      & È stato cancellato il file (o la
2397                                           directory) sotto osservazione.\\ 
2398     \const{IN\_MODIFY}        &$\bullet$& È stato modificato il file.\\ 
2399     \const{IN\_MOVE\_SELF}    &         & È stato rinominato il file (o la
2400                                           directory) sotto osservazione.\\ 
2401     \const{IN\_MOVED\_FROM}   &$\bullet$& Un file è stato spostato fuori dalla
2402                                           directory sotto osservazione.\\ 
2403     \const{IN\_MOVED\_TO}     &$\bullet$& Un file è stato spostato nella
2404                                           directory sotto osservazione.\\ 
2405     \const{IN\_OPEN}          &$\bullet$& Un file è stato aperto.\\ 
2406     \hline    
2407     \const{IN\_CLOSE}         &         & Combinazione di
2408                                           \const{IN\_CLOSE\_WRITE} e
2409                                           \const{IN\_CLOSE\_NOWRITE}.\\  
2410     \const{IN\_MOVE}          &         & Combinazione di
2411                                           \const{IN\_MOVED\_FROM} e
2412                                           \const{IN\_MOVED\_TO}.\\
2413     \const{IN\_ALL\_EVENTS}   &         & Combinazione di tutti i flag
2414                                           possibili.\\
2415     \hline    
2416   \end{tabular}
2417   \caption{Le costanti che identificano i bit della maschera binaria
2418     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano il
2419     tipo di evento da tenere sotto osservazione.} 
2420   \label{tab:inotify_event_watch}
2421 \end{table}
2422
2423 Oltre ai flag di tab.~\ref{tab:inotify_event_watch}, che indicano il tipo di
2424 evento da osservare e che vengono utilizzati anche in uscita per indicare il
2425 tipo di evento avvenuto, \func{inotify\_add\_watch} supporta ulteriori
2426 flag,\footnote{i flag \const{IN\_DONT\_FOLLOW}, \const{IN\_MASK\_ADD} e
2427   \const{IN\_ONLYDIR} sono stati introdotti a partire dalle glibc 2.5, se si
2428   usa la versione 2.4 è necessario definirli a mano.}  riportati in
2429 tab.~\ref{tab:inotify_add_watch_flag}, che indicano le modalità di
2430 osservazione (da passare sempre nell'argomento \param{mask}) e che al
2431 contrario dei precedenti non vengono mai impostati nei risultati in uscita.
2432
2433 \begin{table}[htb]
2434   \centering
2435   \footnotesize
2436   \begin{tabular}[c]{|l|p{10cm}|}
2437     \hline
2438     \textbf{Valore}  & \textbf{Significato} \\
2439     \hline
2440     \hline
2441     \const{IN\_DONT\_FOLLOW}& Non dereferenzia \param{pathname} se questo è un
2442                               link simbolico.\\
2443     \const{IN\_MASK\_ADD}   & Aggiunge a quelli già impostati i flag indicati
2444                               nell'argomento \param{mask}, invece di
2445                               sovrascriverli.\\
2446     \const{IN\_ONESHOT}     & Esegue l'osservazione su \param{pathname} per una
2447                               sola volta, rimuovendolo poi dalla \textit{watch
2448                                 list}.\\ 
2449     \const{IN\_ONLYDIR}     & Se \param{pathname} è una directory riporta
2450                               soltanto gli eventi ad essa relativi e non
2451                               quelli per i file che contiene.\\ 
2452     \hline    
2453   \end{tabular}
2454   \caption{Le costanti che identificano i bit della maschera binaria
2455     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano le
2456     modalità di osservazione.} 
2457   \label{tab:inotify_add_watch_flag}
2458 \end{table}
2459
2460 Se non esiste nessun \textit{watch} per il file o la directory specificata
2461 questo verrà creato per gli eventi specificati dall'argomento \param{mask},
2462 altrimenti la funzione sovrascriverà le impostazioni precedenti, a meno che
2463 non si sia usato il flag \const{IN\_MASK\_ADD}, nel qual caso gli eventi
2464 specificati saranno aggiunti a quelli già presenti.
2465
2466 Come accennato quando si tiene sotto osservazione una directory vengono
2467 restituite le informazioni sia riguardo alla directory stessa che ai file che
2468 essa contiene; questo comportamento può essere disabilitato utilizzando il
2469 flag \const{IN\_ONLYDIR}, che richiede di riportare soltanto gli eventi
2470 relativi alla directory stessa. Si tenga presente inoltre che quando si
2471 osserva una directory vengono riportati solo gli eventi sui file che essa
2472 contiene direttamente, non quelli relativi a file contenuti in eventuali
2473 sottodirectory; se si vogliono osservare anche questi sarà necessario creare
2474 ulteriori \textit{watch} per ciascuna sottodirectory.
2475
2476 Infine usando il flag \const{IN\_ONESHOT} è possibile richiedere una notifica
2477 singola;\footnote{questa funzionalità però è disponibile soltanto a partire dal
2478   kernel 2.6.16.} una volta verificatosi uno qualunque fra gli eventi
2479 richiesti con \func{inotify\_add\_watch} l'\textsl{osservatore} verrà
2480 automaticamente rimosso dalla lista di osservazione e nessun ulteriore evento
2481 sarà più notificato.
2482
2483 In caso di successo \func{inotify\_add\_watch} ritorna un intero positivo,
2484 detto \textit{watch descriptor}, che identifica univocamente un
2485 \textsl{osservatore} su una coda di notifica; esso viene usato per farvi
2486 riferimento sia riguardo i risultati restituiti da \textit{inotify}, che per
2487 la eventuale rimozione dello stesso. 
2488
2489 La seconda funzione per la gestione delle code di notifica, che permette di
2490 rimuovere un \textsl{osservatore}, è \funcd{inotify\_rm\_watch}, ed il suo
2491 prototipo è:
2492 \begin{prototype}{sys/inotify.h}
2493   {int inotify\_rm\_watch(int fd, uint32\_t wd)}
2494
2495   Rimuove un \textsl{osservatore} da una coda di notifica.
2496   
2497   \bodydesc{La funzione restituisce 0 in caso di successo, o $-1$ in caso di
2498     errore, nel qual caso \var{errno} assumerà uno dei valori:
2499   \begin{errlist}
2500   \item[\errcode{EBADF}] non si è specificato in \param{fd} un file descriptor
2501     valido.
2502   \item[\errcode{EINVAL}] il valore di \param{wd} non è corretto, o \param{fd}
2503     non è associato ad una coda di notifica.
2504   \end{errlist}
2505 }
2506 \end{prototype}
2507
2508 La funzione rimuove dalla coda di notifica identificata dall'argomento
2509 \param{fd} l'osservatore identificato dal \textit{watch descriptor}
2510 \param{wd};\footnote{ovviamente deve essere usato per questo argomento un
2511   valore ritornato da \func{inotify\_add\_watch}, altrimenti si avrà un errore
2512   di \errval{EINVAL}.} in caso di successo della rimozione, contemporaneamente
2513 alla cancellazione dell'osservatore, sulla coda di notifica verrà generato un
2514 evento di tipo \const{IN\_IGNORED} (vedi
2515 tab.~\ref{tab:inotify_read_event_flag}). Si tenga presente che se un file
2516 viene cancellato o un filesystem viene smontato i relativi osservatori vengono
2517 rimossi automaticamente e non è necessario utilizzare
2518 \func{inotify\_rm\_watch}.
2519
2520 Come accennato l'interfaccia di \textit{inotify} prevede che gli eventi siano
2521 notificati come dati presenti in lettura sul file descriptor associato alla
2522 coda di notifica. Una applicazione pertanto dovrà leggere i dati da detto file
2523 con una \func{read}, che ritornerà sul buffer i dati presenti nella forma di
2524 una o più strutture di tipo \struct{inotify\_event} (la cui definizione è
2525 riportata in fig.~\ref{fig:inotify_event}). Qualora non siano presenti dati la
2526 \func{read} si bloccherà (a meno di non aver impostato il file descriptor in
2527 modalità non bloccante) fino all'arrivo di almeno un evento.
2528
2529 \begin{figure}[!htb]
2530   \footnotesize \centering
2531   \begin{minipage}[c]{15cm}
2532     \includestruct{listati/inotify_event.h}
2533   \end{minipage} 
2534   \normalsize 
2535   \caption{La struttura \structd{inotify\_event} usata dall'interfaccia di
2536     \textit{inotify} per riportare gli eventi.}
2537   \label{fig:inotify_event}
2538 \end{figure}
2539
2540 Una ulteriore caratteristica dell'interfaccia di \textit{inotify} è che essa
2541 permette di ottenere con \func{ioctl}, come per i file descriptor associati ai
2542 socket (si veda sez.~\ref{sec:sock_ioctl_IP}) il numero di byte disponibili in
2543 lettura sul file descriptor, utilizzando su di esso l'operazione
2544 \const{FIONREAD}.\footnote{questa è una delle operazioni speciali per i file
2545   (vedi sez.~\ref{sec:file_ioctl}), che è disponibile solo per i socket e per
2546   i file descriptor creati con \func{inotify\_init}.} Si può così utilizzare
2547 questa operazione, oltre che per predisporre una operazione di lettura con un
2548 buffer di dimensioni adeguate, anche per ottenere rapidamente il numero di
2549 file che sono cambiati.
2550
2551 Una volta effettuata la lettura con \func{read} a ciascun evento sarà
2552 associata una struttura \struct{inotify\_event} contenente i rispettivi dati.
2553 Per identificare a quale file o directory l'evento corrisponde viene
2554 restituito nel campo \var{wd} il \textit{watch descriptor} con cui il relativo
2555 osservatore è stato registrato. Il campo \var{mask} contiene invece una
2556 maschera di bit che identifica il tipo di evento verificatosi; in essa
2557 compariranno sia i bit elencati nella prima parte di
2558 tab.~\ref{tab:inotify_event_watch}, che gli eventuali valori
2559 aggiuntivi\footnote{questi compaiono solo nel campo \var{mask} di
2560   \struct{inotify\_event}, e  non utilizzabili in fase di registrazione
2561   dell'osservatore.} di tab.~\ref{tab:inotify_read_event_flag}.
2562
2563 \begin{table}[htb]
2564   \centering
2565   \footnotesize
2566   \begin{tabular}[c]{|l|p{10cm}|}
2567     \hline
2568     \textbf{Valore}  & \textbf{Significato} \\
2569     \hline
2570     \hline
2571     \const{IN\_IGNORED}    & L'osservatore è stato rimosso, sia in maniera 
2572                              esplicita con l'uso di \func{inotify\_rm\_watch}, 
2573                              che in maniera implicita per la rimozione 
2574                              dell'oggetto osservato o per lo smontaggio del
2575                              filesystem su cui questo si trova.\\
2576     \const{IN\_ISDIR}      & L'evento avvenuto fa riferimento ad una directory
2577                              (consente così di distinguere, quando si pone
2578                              sotto osservazione una directory, fra gli eventi
2579                              relativi ad essa e quelli relativi ai file che
2580                              essa contiene).\\
2581     \const{IN\_Q\_OVERFLOW}& Si sono eccedute le dimensioni della coda degli
2582                              eventi (\textit{overflow} della coda); in questo
2583                              caso il valore di \var{wd} è $-1$.\footnotemark\\
2584     \const{IN\_UNMOUNT}    & Il filesystem contenente l'oggetto posto sotto
2585                              osservazione è stato smontato.\\
2586     \hline    
2587   \end{tabular}
2588   \caption{Le costanti che identificano i bit aggiuntivi usati nella maschera
2589     binaria del campo \var{mask} di \struct{inotify\_event}.} 
2590   \label{tab:inotify_read_event_flag}
2591 \end{table}
2592
2593 \footnotetext{la coda di notifica ha una dimensione massima specificata dal
2594   parametro di sistema \procfile{/proc/sys/fs/inotify/max\_queued\_events} che
2595   indica il numero massimo di eventi che possono essere mantenuti sulla
2596   stessa; quando detto valore viene ecceduto gli ulteriori eventi vengono
2597   scartati, ma viene comunque generato un evento di tipo
2598   \const{IN\_Q\_OVERFLOW}.}
2599
2600 Il campo \var{cookie} contiene invece un intero univoco che permette di
2601 identificare eventi correlati (per i quali avrà lo stesso valore), al momento
2602 viene utilizzato soltanto per rilevare lo spostamento di un file, consentendo
2603 così all'applicazione di collegare la corrispondente coppia di eventi
2604 \const{IN\_MOVED\_TO} e \const{IN\_MOVED\_FROM}.
2605
2606 Infine due campi \var{name} e \var{len} sono utilizzati soltanto quando
2607 l'evento è relativo ad un file presente in una directory posta sotto
2608 osservazione, in tal caso essi contengono rispettivamente il nome del file
2609 (come pathname relativo alla directory osservata) e la relativa dimensione in
2610 byte. Il campo \var{name} viene sempre restituito come stringa terminata da
2611 NUL, con uno o più zeri di terminazione, a seconda di eventuali necessità di
2612 allineamento del risultato, ed il valore di \var{len} corrisponde al totale
2613 della dimensione di \var{name}, zeri aggiuntivi compresi. La stringa con il
2614 nome del file viene restituita nella lettura subito dopo la struttura
2615 \struct{inotify\_event}; questo significa che le dimensioni di ciascun evento
2616 di \textit{inotify} saranno pari a \code{sizeof(\struct{inotify\_event}) +
2617   len}.
2618
2619 Vediamo allora un esempio dell'uso dell'interfaccia di \textit{inotify} con un
2620 semplice programma che permette di mettere sotto osservazione uno o più file e
2621 directory. Il programma si chiama \texttt{inotify\_monitor.c} ed il codice
2622 completo è disponibile coi sorgenti allegati alla guida, il corpo principale
2623 del programma, che non contiene la sezione di gestione delle opzioni e le
2624 funzioni di ausilio è riportato in fig.~\ref{fig:inotify_monitor_example}.
2625
2626 \begin{figure}[!htbp]
2627   \footnotesize \centering
2628   \begin{minipage}[c]{15cm}
2629     \includecodesample{listati/inotify_monitor.c}
2630   \end{minipage}
2631   \normalsize
2632   \caption{Esempio di codice che usa l'interfaccia di \textit{inotify}.}
2633   \label{fig:inotify_monitor_example}
2634 \end{figure}
2635
2636 Una volta completata la scansione delle opzioni il corpo principale del
2637 programma inizia controllando (\texttt{\small 11--15}) che sia rimasto almeno
2638 un argomento che indichi quale file o directory mettere sotto osservazione (e
2639 qualora questo non avvenga esce stampando la pagina di aiuto); dopo di che
2640 passa (\texttt{\small 16--20}) all'inizializzazione di \textit{inotify}
2641 ottenendo con \func{inotify\_init} il relativo file descriptor (oppure usce in
2642 caso di errore).
2643
2644 Il passo successivo è aggiungere (\texttt{\small 21--30}) alla coda di
2645 notifica gli opportuni osservatori per ciascuno dei file o directory indicati
2646 all'invocazione del comando; questo viene fatto eseguendo un ciclo
2647 (\texttt{\small 22--29}) fintanto che la variabile \var{i}, inizializzata a
2648 zero (\texttt{\small 21}) all'inizio del ciclo, è minore del numero totale di
2649 argomenti rimasti. All'interno del ciclo si invoca (\texttt{\small 23})
2650 \func{inotify\_add\_watch} per ciascuno degli argomenti, usando la maschera
2651 degli eventi data dalla variabile \var{mask} (il cui valore viene impostato
2652 nella scansione delle opzioni), in caso di errore si esce dal programma
2653 altrimenti si incrementa l'indice (\texttt{\small 29}).
2654
2655 Completa l'inizializzazione di \textit{inotify} inizia il ciclo principale
2656 (\texttt{\small 32--56}) del programma, nel quale si resta in attesa degli
2657 eventi che si intendono osservare. Questo viene fatto eseguendo all'inizio del
2658 ciclo (\texttt{\small 33}) una \func{read} che si bloccherà fintanto che non
2659 si saranno verificati eventi. 
2660
2661 Dato che l'interfaccia di \textit{inotify} può riportare anche più eventi in
2662 una sola lettura, si è avuto cura di passare alla \func{read} un buffer di
2663 dimensioni adeguate, inizializzato in (\texttt{\small 7}) ad un valore di
2664 approssimativamente 512 eventi.\footnote{si ricordi che la quantità di dati
2665   restituita da \textit{inotify} è variabile a causa della diversa lunghezza
2666   del nome del file restituito insieme a \struct{inotify\_event}.} In caso di
2667 errore di lettura (\texttt{\small 35--40}) il programma esce con un messaggio
2668 di errore (\texttt{\small 37--39}), a meno che non si tratti di una
2669 interruzione della system call, nel qual caso (\texttt{\small 36}) si ripete la
2670 lettura.
2671
2672 Se la lettura è andata a buon fine invece si esegue un ciclo (\texttt{\small
2673   43--52}) per leggere tutti gli eventi restituiti, al solito si inizializza
2674 l'indice \var{i} a zero (\texttt{\small 42}) e si ripetono le operazioni
2675 (\texttt{\small 43}) fintanto che esso non supera il numero di byte restituiti
2676 in lettura. Per ciascun evento all'interno del ciclo si assegna\footnote{si
2677   noti come si sia eseguito un opportuno \textit{casting} del puntatore.} alla
2678 variabile \var{event} l'indirizzo nel buffer della corrispondente struttura
2679 \struct{inotify\_event} (\texttt{\small 44}), e poi si stampano il numero di
2680 \textit{watch descriptor} (\texttt{\small 45}) ed il file a cui questo fa
2681 riferimento (\texttt{\small 46}), ricavato dagli argomenti passati a riga di
2682 comando sfruttando il fatto che i \textit{watch descriptor} vengono assegnati
2683 in ordine progressivo crescente a partire da 1.
2684
2685 Qualora sia presente il riferimento ad un nome di file associato all'evento lo
2686 si stampa (\texttt{\small 47--49}); si noti come in questo caso si sia
2687 utilizzato il valore del campo \var{event->len} e non al fatto che
2688 \var{event->name} riporti o meno un puntatore nullo.\footnote{l'interfaccia
2689   infatti, qualora il nome non sia presente, non avvalora il campo
2690   \var{event->name}, che si troverà a contenere quello che era precedentemente
2691   presente nella rispettiva locazione di memoria, nel caso più comune il
2692   puntatore al nome di un file osservato in precedenza.} Si utilizza poi
2693 (\texttt{\small 50}) la funzione \code{printevent}, che interpreta il valore
2694 del campo \var{event->mask} per stampare il tipo di eventi
2695 accaduti.\footnote{per il relativo codice, che non riportiamo in quanto non
2696   essenziale alla comprensione dell'esempio, si possono utilizzare direttamente
2697   i sorgenti allegati alla guida.} Infine (\texttt{\small 51}) si provvede ad
2698 aggiornare l'indice \var{i} per farlo puntare all'evento successivo.
2699
2700 Se adesso usiamo il programma per mettere sotto osservazione una directory, e
2701 da un altro terminale eseguiamo il comando \texttt{ls} otterremo qualcosa del
2702 tipo di:
2703 \begin{verbatim}
2704 piccardi@gethen:~/gapil/sources$ ./inotify_monitor -a /home/piccardi/gapil/
2705 Watch descriptor 1
2706 Observed event on /home/piccardi/gapil/
2707 IN_OPEN, 
2708 Watch descriptor 1
2709 Observed event on /home/piccardi/gapil/
2710 IN_CLOSE_NOWRITE, 
2711 \end{verbatim}
2712
2713 I lettori più accorti si saranno resi conto che nel ciclo di lettura degli
2714 eventi appena illustrato non viene trattato il caso particolare in cui la
2715 funzione \func{read} restituisce in \var{nread} un valore nullo. Lo si è fatto
2716 perché con \textit{inotify} il ritorno di una \func{read} con un valore nullo
2717 avviene soltanto, come forma di avviso, quando si sia eseguita la funzione
2718 specificando un buffer di dimensione insufficiente a contenere anche un solo
2719 evento. Nel nostro caso le dimensioni erano senz'altro sufficienti, per cui
2720 tale evenienza non si verificherà mai.
2721
2722 Ci si potrà però chiedere cosa succede se il buffer è sufficiente per un
2723 evento, ma non per tutti gli eventi verificatisi. Come si potrà notare nel
2724 codice illustrato in precedenza non si è presa nessuna precauzione per
2725 verificare che non ci fossero stati troncamenti dei dati. Anche in questo caso
2726 il comportamento scelto è corretto, perché l'interfaccia di \textit{inotify}
2727 garantisce automaticamente, anche quando ne sono presenti in numero maggiore,
2728 di restituire soltanto il numero di eventi che possono rientrare completamente
2729 nelle dimensioni del buffer specificato.\footnote{si avrà cioè, facendo
2730   riferimento sempre al codice di fig.~\ref{fig:inotify_monitor_example}, che
2731   \var{read} sarà in genere minore delle dimensioni di \var{buffer} ed uguale
2732   soltanto qualora gli eventi corrispondano esattamente alle dimensioni di
2733   quest'ultimo.} Se gli eventi sono di più saranno restituiti solo quelli che
2734 entrano interamente nel buffer e gli altri saranno restituiti alla successiva
2735 chiamata di \func{read}.
2736
2737 Infine un'ultima caratteristica dell'interfaccia di \textit{inotify} è che gli
2738 eventi restituiti nella lettura formano una sequenza ordinata, è cioè
2739 garantito che se si esegue uno spostamento di un file gli eventi vengano
2740 generati nella sequenza corretta. L'interfaccia garantisce anche che se si
2741 verificano più eventi consecutivi identici (vale a dire con gli stessi valori
2742 dei campi \var{wd}, \var{mask}, \var{cookie}, e \var{name}) questi vengono
2743 raggruppati in un solo evento.
2744
2745 \itindend{inotify}
2746
2747 % TODO trattare fanotify, vedi http://lwn.net/Articles/339399/ e 
2748 % http://lwn.net/Articles/343346/ (incluso nel 2.6.36)
2749
2750
2751 \subsection{L'interfaccia POSIX per l'I/O asincrono}
2752 \label{sec:file_asyncronous_io}
2753
2754 Una modalità alternativa all'uso dell'\textit{I/O multiplexing} per gestione
2755 dell'I/O simultaneo su molti file è costituita dal cosiddetto \textsl{I/O
2756   asincrono}. Il concetto base dell'\textsl{I/O asincrono} è che le funzioni
2757 di I/O non attendono il completamento delle operazioni prima di ritornare,
2758 così che il processo non viene bloccato.  In questo modo diventa ad esempio
2759 possibile effettuare una richiesta preventiva di dati, in modo da poter
2760 effettuare in contemporanea le operazioni di calcolo e quelle di I/O.
2761
2762 Benché la modalità di apertura asincrona di un file possa risultare utile in
2763 varie occasioni (in particolar modo con i socket e gli altri file per i quali
2764 le funzioni di I/O sono \index{system~call~lente} system call lente), essa è
2765 comunque limitata alla notifica della disponibilità del file descriptor per le
2766 operazioni di I/O, e non ad uno svolgimento asincrono delle medesime.  Lo
2767 standard POSIX.1b definisce una interfaccia apposita per l'I/O asincrono vero
2768 e proprio, che prevede un insieme di funzioni dedicate per la lettura e la
2769 scrittura dei file, completamente separate rispetto a quelle usate
2770 normalmente.
2771
2772 In generale questa interfaccia è completamente astratta e può essere
2773 implementata sia direttamente nel kernel, che in user space attraverso l'uso
2774 di \itindex{thread} \textit{thread}. Per le versioni del kernel meno recenti
2775 esiste una implementazione di questa interfaccia fornita delle \acr{glibc},
2776 che è realizzata completamente in user space, ed è accessibile linkando i
2777 programmi con la libreria \file{librt}. Nelle versioni più recenti (a partire
2778 dalla 2.5.32) è stato introdotto direttamente nel kernel un nuovo layer per
2779 l'I/O asincrono.
2780
2781 Lo standard prevede che tutte le operazioni di I/O asincrono siano controllate
2782 attraverso l'uso di una apposita struttura \struct{aiocb} (il cui nome sta per
2783 \textit{asyncronous I/O control block}), che viene passata come argomento a
2784 tutte le funzioni dell'interfaccia. La sua definizione, come effettuata in
2785 \file{aio.h}, è riportata in fig.~\ref{fig:file_aiocb}. Nello steso file è
2786 definita la macro \macro{\_POSIX\_ASYNCHRONOUS\_IO}, che dichiara la
2787 disponibilità dell'interfaccia per l'I/O asincrono.
2788
2789 \begin{figure}[!htb]
2790   \footnotesize \centering
2791   \begin{minipage}[c]{15cm}
2792     \includestruct{listati/aiocb.h}
2793   \end{minipage} 
2794   \normalsize 
2795   \caption{La struttura \structd{aiocb}, usata per il controllo dell'I/O
2796     asincrono.}
2797   \label{fig:file_aiocb}
2798 \end{figure}
2799
2800 Le operazioni di I/O asincrono possono essere effettuate solo su un file già
2801 aperto; il file deve inoltre supportare la funzione \func{lseek}, pertanto
2802 terminali e pipe sono esclusi. Non c'è limite al numero di operazioni
2803 contemporanee effettuabili su un singolo file.  Ogni operazione deve
2804 inizializzare opportunamente un \textit{control block}.  Il file descriptor su
2805 cui operare deve essere specificato tramite il campo \var{aio\_fildes}; dato
2806 che più operazioni possono essere eseguita in maniera asincrona, il concetto
2807 di posizione corrente sul file viene a mancare; pertanto si deve sempre
2808 specificare nel campo \var{aio\_offset} la posizione sul file da cui i dati
2809 saranno letti o scritti.  Nel campo \var{aio\_buf} deve essere specificato
2810 l'indirizzo del buffer usato per l'I/O, ed in \var{aio\_nbytes} la lunghezza
2811 del blocco di dati da trasferire.
2812
2813 Il campo \var{aio\_reqprio} permette di impostare la priorità delle operazioni
2814 di I/O.\footnote{in generale perché ciò sia possibile occorre che la
2815   piattaforma supporti questa caratteristica, questo viene indicato definendo
2816   le macro \macro{\_POSIX\_PRIORITIZED\_IO}, e
2817   \macro{\_POSIX\_PRIORITY\_SCHEDULING}.} La priorità viene impostata a
2818 partire da quella del processo chiamante (vedi sez.~\ref{sec:proc_priority}),
2819 cui viene sottratto il valore di questo campo.  Il campo
2820 \var{aio\_lio\_opcode} è usato solo dalla funzione \func{lio\_listio}, che,
2821 come vedremo, permette di eseguire con una sola chiamata una serie di
2822 operazioni, usando un vettore di \textit{control block}. Tramite questo campo
2823 si specifica quale è la natura di ciascuna di esse.
2824
2825 Infine il campo \var{aio\_sigevent} è una struttura di tipo \struct{sigevent}
2826 (illustrata in in fig.~\ref{fig:struct_sigevent}) che serve a specificare il
2827 modo in cui si vuole che venga effettuata la notifica del completamento delle
2828 operazioni richieste; per la trattazione delle modalità di utilizzo della
2829 stessa si veda quanto già visto in proposito in sez.~\ref{sec:sig_timer_adv}.
2830
2831 Le due funzioni base dell'interfaccia per l'I/O asincrono sono
2832 \funcd{aio\_read} ed \funcd{aio\_write}.  Esse permettono di richiedere una
2833 lettura od una scrittura asincrona di dati, usando la struttura \struct{aiocb}
2834 appena descritta; i rispettivi prototipi sono:
2835 \begin{functions}
2836   \headdecl{aio.h}
2837
2838   \funcdecl{int aio\_read(struct aiocb *aiocbp)}
2839   Richiede una lettura asincrona secondo quanto specificato con \param{aiocbp}.
2840
2841   \funcdecl{int aio\_write(struct aiocb *aiocbp)}
2842   Richiede una scrittura asincrona secondo quanto specificato con
2843   \param{aiocbp}.
2844   
2845   \bodydesc{Le funzioni restituiscono 0 in caso di successo, e -1 in caso di
2846     errore, nel qual caso \var{errno} assumerà uno dei valori:
2847   \begin{errlist}
2848   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato.
2849   \item[\errcode{ENOSYS}] la funzione non è implementata.
2850   \item[\errcode{EINVAL}] si è specificato un valore non valido per i campi
2851     \var{aio\_offset} o \var{aio\_reqprio} di \param{aiocbp}.
2852   \item[\errcode{EAGAIN}] la coda delle richieste è momentaneamente piena.
2853   \end{errlist}
2854 }
2855 \end{functions}
2856
2857 Entrambe le funzioni ritornano immediatamente dopo aver messo in coda la
2858 richiesta, o in caso di errore. Non è detto che gli errori \errcode{EBADF} ed
2859 \errcode{EINVAL} siano rilevati immediatamente al momento della chiamata,
2860 potrebbero anche emergere nelle fasi successive delle operazioni. Lettura e
2861 scrittura avvengono alla posizione indicata da \var{aio\_offset}, a meno che
2862 il file non sia stato aperto in \itindex{append~mode} \textit{append mode}
2863 (vedi sez.~\ref{sec:file_open}), nel qual caso le scritture vengono effettuate
2864 comunque alla fine de file, nell'ordine delle chiamate a \func{aio\_write}.
2865
2866 Si tenga inoltre presente che deallocare la memoria indirizzata da
2867 \param{aiocbp} o modificarne i valori prima della conclusione di una
2868 operazione può dar luogo a risultati impredicibili, perché l'accesso ai vari
2869 campi per eseguire l'operazione può avvenire in un momento qualsiasi dopo la
2870 richiesta.  Questo comporta che non si devono usare per \param{aiocbp}
2871 variabili automatiche e che non si deve riutilizzare la stessa struttura per
2872 un'altra operazione fintanto che la precedente non sia stata ultimata. In
2873 generale per ogni operazione si deve utilizzare una diversa struttura
2874 \struct{aiocb}.
2875
2876 Dato che si opera in modalità asincrona, il successo di \func{aio\_read} o
2877 \func{aio\_write} non implica che le operazioni siano state effettivamente
2878 eseguite in maniera corretta; per verificarne l'esito l'interfaccia prevede
2879 altre due funzioni, che permettono di controllare lo stato di esecuzione. La
2880 prima è \funcd{aio\_error}, che serve a determinare un eventuale stato di
2881 errore; il suo prototipo è:
2882 \begin{prototype}{aio.h}
2883   {int aio\_error(const struct aiocb *aiocbp)}  
2884
2885   Determina lo stato di errore delle operazioni di I/O associate a
2886   \param{aiocbp}.
2887   
2888   \bodydesc{La funzione restituisce 0 se le operazioni si sono concluse con
2889     successo, altrimenti restituisce il codice di errore relativo al loro
2890     fallimento.}
2891 \end{prototype}
2892
2893 Se l'operazione non si è ancora completata viene restituito l'errore di
2894 \errcode{EINPROGRESS}. La funzione ritorna zero quando l'operazione si è
2895 conclusa con successo, altrimenti restituisce il codice dell'errore
2896 verificatosi, ed esegue la corrispondente impostazione di \var{errno}. Il
2897 codice può essere sia \errcode{EINVAL} ed \errcode{EBADF}, dovuti ad un valore
2898 errato per \param{aiocbp}, che uno degli errori possibili durante l'esecuzione
2899 dell'operazione di I/O richiesta, nel qual caso saranno restituiti, a seconda
2900 del caso, i codici di errore delle system call \func{read}, \func{write} e
2901 \func{fsync}.
2902
2903 Una volta che si sia certi che le operazioni siano state concluse (cioè dopo
2904 che una chiamata ad \func{aio\_error} non ha restituito
2905 \errcode{EINPROGRESS}), si potrà usare la funzione \funcd{aio\_return}, che
2906 permette di verificare il completamento delle operazioni di I/O asincrono; il
2907 suo prototipo è:
2908 \begin{prototype}{aio.h}
2909 {ssize\_t aio\_return(const struct aiocb *aiocbp)} 
2910
2911 Recupera il valore dello stato di ritorno delle operazioni di I/O associate a
2912 \param{aiocbp}.
2913   
2914 \bodydesc{La funzione restituisce lo stato di uscita dell'operazione
2915   eseguita.}
2916 \end{prototype}
2917
2918 La funzione deve essere chiamata una sola volte per ciascuna operazione
2919 asincrona, essa infatti fa sì che il sistema rilasci le risorse ad essa
2920 associate. É per questo motivo che occorre chiamare la funzione solo dopo che
2921 l'operazione cui \param{aiocbp} fa riferimento si è completata. Una chiamata
2922 precedente il completamento delle operazioni darebbe risultati indeterminati.
2923
2924 La funzione restituisce il valore di ritorno relativo all'operazione eseguita,
2925 così come ricavato dalla sottostante system call (il numero di byte letti,
2926 scritti o il valore di ritorno di \func{fsync}).  É importante chiamare sempre
2927 questa funzione, altrimenti le risorse disponibili per le operazioni di I/O
2928 asincrono non verrebbero liberate, rischiando di arrivare ad un loro
2929 esaurimento.
2930
2931 Oltre alle operazioni di lettura e scrittura l'interfaccia POSIX.1b mette a
2932 disposizione un'altra operazione, quella di sincronizzazione dell'I/O,
2933 compiuta dalla funzione \funcd{aio\_fsync}, che ha lo stesso effetto della
2934 analoga \func{fsync}, ma viene eseguita in maniera asincrona; il suo prototipo
2935 è:
2936 \begin{prototype}{aio.h}
2937 {int aio\_fsync(int op, struct aiocb *aiocbp)} 
2938
2939 Richiede la sincronizzazione dei dati per il file indicato da \param{aiocbp}.
2940   
2941 \bodydesc{La funzione restituisce 0 in caso di successo e -1 in caso di
2942   errore, che può essere, con le stesse modalità di \func{aio\_read},
2943   \errval{EAGAIN}, \errval{EBADF} o \errval{EINVAL}.}
2944 \end{prototype}
2945
2946 La funzione richiede la sincronizzazione delle operazioni di I/O, ritornando
2947 immediatamente. L'esecuzione effettiva della sincronizzazione dovrà essere
2948 verificata con \func{aio\_error} e \func{aio\_return} come per le operazioni
2949 di lettura e scrittura. L'argomento \param{op} permette di indicare la
2950 modalità di esecuzione, se si specifica il valore \const{O\_DSYNC} le
2951 operazioni saranno completate con una chiamata a \func{fdatasync}, se si
2952 specifica \const{O\_SYNC} con una chiamata a \func{fsync} (per i dettagli vedi
2953 sez.~\ref{sec:file_sync}).
2954
2955 Il successo della chiamata assicura la sincronizzazione delle operazioni fino
2956 allora richieste, niente è garantito riguardo la sincronizzazione dei dati
2957 relativi ad eventuali operazioni richieste successivamente. Se si è
2958 specificato un meccanismo di notifica questo sarà innescato una volta che le
2959 operazioni di sincronizzazione dei dati saranno completate.
2960
2961 In alcuni casi può essere necessario interrompere le operazioni (in genere
2962 quando viene richiesta un'uscita immediata dal programma), per questo lo
2963 standard POSIX.1b prevede una funzione apposita, \funcd{aio\_cancel}, che
2964 permette di cancellare una operazione richiesta in precedenza; il suo
2965 prototipo è:
2966 \begin{prototype}{aio.h}
2967 {int aio\_cancel(int fildes, struct aiocb *aiocbp)} 
2968
2969 Richiede la cancellazione delle operazioni sul file \param{fildes} specificate
2970 da \param{aiocbp}.
2971   
2972 \bodydesc{La funzione restituisce il risultato dell'operazione con un codice
2973   di positivo, e -1 in caso di errore, che avviene qualora si sia specificato
2974   un valore non valido di \param{fildes}, imposta \var{errno} al valore
2975   \errval{EBADF}.}
2976 \end{prototype}
2977
2978 La funzione permette di cancellare una operazione specifica sul file
2979 \param{fildes}, o tutte le operazioni pendenti, specificando \val{NULL} come
2980 valore di \param{aiocbp}.  Quando una operazione viene cancellata una
2981 successiva chiamata ad \func{aio\_error} riporterà \errcode{ECANCELED} come
2982 codice di errore, ed il suo codice di ritorno sarà -1, inoltre il meccanismo
2983 di notifica non verrà invocato. Se si specifica una operazione relativa ad un
2984 altro file descriptor il risultato è indeterminato.  In caso di successo, i
2985 possibili valori di ritorno per \func{aio\_cancel} (anch'essi definiti in
2986 \file{aio.h}) sono tre:
2987 \begin{basedescript}{\desclabelwidth{3.0cm}}
2988 \item[\const{AIO\_ALLDONE}] indica che le operazioni di cui si è richiesta la
2989   cancellazione sono state già completate,
2990   
2991 \item[\const{AIO\_CANCELED}] indica che tutte le operazioni richieste sono
2992   state cancellate,  
2993   
2994 \item[\const{AIO\_NOTCANCELED}] indica che alcune delle operazioni erano in
2995   corso e non sono state cancellate.
2996 \end{basedescript}
2997
2998 Nel caso si abbia \const{AIO\_NOTCANCELED} occorrerà chiamare
2999 \func{aio\_error} per determinare quali sono le operazioni effettivamente
3000 cancellate. Le operazioni che non sono state cancellate proseguiranno il loro
3001 corso normale, compreso quanto richiesto riguardo al meccanismo di notifica
3002 del loro avvenuto completamento.
3003
3004 Benché l'I/O asincrono preveda un meccanismo di notifica, l'interfaccia
3005 fornisce anche una apposita funzione, \funcd{aio\_suspend}, che permette di
3006 sospendere l'esecuzione del processo chiamante fino al completamento di una
3007 specifica operazione; il suo prototipo è:
3008 \begin{prototype}{aio.h}
3009 {int aio\_suspend(const struct aiocb * const list[], int nent, const struct
3010     timespec *timeout)}
3011   
3012   Attende, per un massimo di \param{timeout}, il completamento di una delle
3013   operazioni specificate da \param{list}.
3014   
3015   \bodydesc{La funzione restituisce 0 se una (o più) operazioni sono state
3016     completate, e -1 in caso di errore nel qual caso \var{errno} assumerà uno
3017     dei valori:
3018     \begin{errlist}
3019     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
3020       \param{timeout}.
3021     \item[\errcode{ENOSYS}] la funzione non è implementata.
3022     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
3023     \end{errlist}
3024   }
3025 \end{prototype}
3026
3027 La funzione permette di bloccare il processo fintanto che almeno una delle
3028 \param{nent} operazioni specificate nella lista \param{list} è completata, per
3029 un tempo massimo specificato da \param{timout}, o fintanto che non arrivi un
3030 segnale.\footnote{si tenga conto che questo segnale può anche essere quello
3031   utilizzato come meccanismo di notifica.} La lista deve essere inizializzata
3032 con delle strutture \struct{aiocb} relative ad operazioni effettivamente
3033 richieste, ma può contenere puntatori nulli, che saranno ignorati. In caso si
3034 siano specificati valori non validi l'effetto è indefinito.  Un valore
3035 \val{NULL} per \param{timout} comporta l'assenza di timeout.
3036
3037 Lo standard POSIX.1b infine ha previsto pure una funzione, \funcd{lio\_listio},
3038 che permette di effettuare la richiesta di una intera lista di operazioni di
3039 lettura o scrittura; il suo prototipo è:
3040 \begin{prototype}{aio.h}
3041   {int lio\_listio(int mode, struct aiocb * const list[], int nent, struct
3042     sigevent *sig)}
3043   
3044   Richiede l'esecuzione delle operazioni di I/O elencata da \param{list},
3045   secondo la modalità \param{mode}.
3046   
3047   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3048     errore, nel qual caso \var{errno} assumerà uno dei valori:
3049     \begin{errlist}
3050     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
3051       \param{timeout}.
3052     \item[\errcode{EINVAL}] si è passato un valore di \param{mode} non valido
3053       o un numero di operazioni \param{nent} maggiore di
3054       \const{AIO\_LISTIO\_MAX}.
3055     \item[\errcode{ENOSYS}] la funzione non è implementata.
3056     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
3057     \end{errlist}
3058   }
3059 \end{prototype}
3060
3061 La funzione esegue la richiesta delle \param{nent} operazioni indicate nella
3062 lista \param{list} che deve contenere gli indirizzi di altrettanti
3063 \textit{control block} opportunamente inizializzati; in particolare dovrà
3064 essere specificato il tipo di operazione con il campo \var{aio\_lio\_opcode},
3065 che può prendere i valori:
3066 \begin{basedescript}{\desclabelwidth{2.0cm}}
3067 \item[\const{LIO\_READ}]  si richiede una operazione di lettura.
3068 \item[\const{LIO\_WRITE}] si richiede una operazione di scrittura.
3069 \item[\const{LIO\_NOP}] non si effettua nessuna operazione.
3070 \end{basedescript}
3071 dove \const{LIO\_NOP} viene usato quando si ha a che fare con un vettore di
3072 dimensione fissa, per poter specificare solo alcune operazioni, o quando si
3073 sono dovute cancellare delle operazioni e si deve ripetere la richiesta per
3074 quelle non completate.
3075
3076 L'argomento \param{mode} controlla il comportamento della funzione, se viene
3077 usato il valore \const{LIO\_WAIT} la funzione si blocca fino al completamento
3078 di tutte le operazioni richieste; se si usa \const{LIO\_NOWAIT} la funzione
3079 ritorna immediatamente dopo aver messo in coda tutte le richieste. In tal caso
3080 il chiamante può richiedere la notifica del completamento di tutte le
3081 richieste, impostando l'argomento \param{sig} in maniera analoga a come si fa
3082 per il campo \var{aio\_sigevent} di \struct{aiocb}.
3083
3084
3085 \section{Altre modalità di I/O avanzato}
3086 \label{sec:file_advanced_io}
3087
3088 Oltre alle precedenti modalità di \textit{I/O multiplexing} e \textsl{I/O
3089   asincrono}, esistono altre funzioni che implementano delle modalità di
3090 accesso ai file più evolute rispetto alle normali funzioni di lettura e
3091 scrittura che abbiamo esaminato in sez.~\ref{sec:file_base_func}. In questa
3092 sezione allora prenderemo in esame le interfacce per l'\textsl{I/O mappato in
3093   memoria}, per l'\textsl{I/O vettorizzato} e altre funzioni di I/O avanzato.
3094
3095
3096 \subsection{File mappati in memoria}
3097 \label{sec:file_memory_map}
3098
3099 \itindbeg{memory~mapping}
3100 Una modalità alternativa di I/O, che usa una interfaccia completamente diversa
3101 rispetto a quella classica vista in cap.~\ref{cha:file_unix_interface}, è il
3102 cosiddetto \textit{memory-mapped I/O}, che, attraverso il meccanismo della
3103 \textsl{paginazione} \index{paginazione} usato dalla memoria virtuale (vedi
3104 sez.~\ref{sec:proc_mem_gen}), permette di \textsl{mappare} il contenuto di un
3105 file in una sezione dello spazio di indirizzi del processo che lo ha allocato.
3106
3107 \begin{figure}[htb]
3108   \centering
3109   \includegraphics[width=12cm]{img/mmap_layout}
3110   \caption{Disposizione della memoria di un processo quando si esegue la
3111   mappatura in memoria di un file.}
3112   \label{fig:file_mmap_layout}
3113 \end{figure}
3114
3115 Il meccanismo è illustrato in fig.~\ref{fig:file_mmap_layout}, una sezione del
3116 file viene \textsl{mappata} direttamente nello spazio degli indirizzi del
3117 programma.  Tutte le operazioni di lettura e scrittura su variabili contenute
3118 in questa zona di memoria verranno eseguite leggendo e scrivendo dal contenuto
3119 del file attraverso il sistema della memoria virtuale \index{memoria~virtuale}
3120 che in maniera analoga a quanto avviene per le pagine che vengono salvate e
3121 rilette nella swap, si incaricherà di sincronizzare il contenuto di quel
3122 segmento di memoria con quello del file mappato su di esso.  Per questo motivo
3123 si può parlare tanto di \textsl{file mappato in memoria}, quanto di
3124 \textsl{memoria mappata su file}.
3125
3126 L'uso del \textit{memory-mapping} comporta una notevole semplificazione delle
3127 operazioni di I/O, in quanto non sarà più necessario utilizzare dei buffer
3128 intermedi su cui appoggiare i dati da traferire, poiché questi potranno essere
3129 acceduti direttamente nella sezione di memoria mappata; inoltre questa
3130 interfaccia è più efficiente delle usuali funzioni di I/O, in quanto permette
3131 di caricare in memoria solo le parti del file che sono effettivamente usate ad
3132 un dato istante.
3133
3134 Infatti, dato che l'accesso è fatto direttamente attraverso la
3135 \index{memoria~virtuale} memoria virtuale, la sezione di memoria mappata su
3136 cui si opera sarà a sua volta letta o scritta sul file una pagina alla volta e
3137 solo per le parti effettivamente usate, il tutto in maniera completamente
3138 trasparente al processo; l'accesso alle pagine non ancora caricate avverrà
3139 allo stesso modo con cui vengono caricate in memoria le pagine che sono state
3140 salvate sullo swap.
3141
3142 Infine in situazioni in cui la memoria è scarsa, le pagine che mappano un file
3143 vengono salvate automaticamente, così come le pagine dei programmi vengono
3144 scritte sulla swap; questo consente di accedere ai file su dimensioni il cui
3145 solo limite è quello dello spazio di indirizzi disponibile, e non della
3146 memoria su cui possono esserne lette delle porzioni.
3147
3148 L'interfaccia POSIX implementata da Linux prevede varie funzioni per la
3149 gestione del \textit{memory mapped I/O}, la prima di queste, che serve ad
3150 eseguire la mappatura in memoria di un file, è \funcd{mmap}; il suo prototipo
3151 è:
3152 \begin{functions}
3153   
3154   \headdecl{unistd.h}
3155   \headdecl{sys/mman.h} 
3156
3157   \funcdecl{void * mmap(void * start, size\_t length, int prot, int flags, int
3158     fd, off\_t offset)}
3159   
3160   Esegue la mappatura in memoria della sezione specificata del file \param{fd}.
3161   
3162   \bodydesc{La funzione restituisce il puntatore alla zona di memoria mappata
3163     in caso di successo, e \const{MAP\_FAILED} (-1) in caso di errore, nel
3164     qual caso \var{errno} assumerà uno dei valori:
3165     \begin{errlist}
3166     \item[\errcode{EBADF}] il file descriptor non è valido, e non si è usato
3167       \const{MAP\_ANONYMOUS}.
3168     \item[\errcode{EACCES}] o \param{fd} non si riferisce ad un file regolare,
3169       o si è usato \const{MAP\_PRIVATE} ma \param{fd} non è aperto in lettura,
3170       o si è usato \const{MAP\_SHARED} e impostato \const{PROT\_WRITE} ed
3171       \param{fd} non è aperto in lettura/scrittura, o si è impostato
3172       \const{PROT\_WRITE} ed \param{fd} è in \textit{append-only}.
3173     \item[\errcode{EINVAL}] i valori di \param{start}, \param{length} o
3174       \param{offset} non sono validi (o troppo grandi o non allineati sulla
3175       dimensione delle pagine).
3176     \item[\errcode{ETXTBSY}] si è impostato \const{MAP\_DENYWRITE} ma
3177       \param{fd} è aperto in scrittura.
3178     \item[\errcode{EAGAIN}] il file è bloccato, o si è bloccata troppa memoria
3179       rispetto a quanto consentito dai limiti di sistema (vedi
3180       sez.~\ref{sec:sys_resource_limit}).
3181     \item[\errcode{ENOMEM}] non c'è memoria o si è superato il limite sul
3182       numero di mappature possibili.
3183     \item[\errcode{ENODEV}] il filesystem di \param{fd} non supporta il memory
3184       mapping.
3185     \item[\errcode{EPERM}] l'argomento \param{prot} ha richiesto
3186       \const{PROT\_EXEC}, ma il filesystem di \param{fd} è montato con
3187       l'opzione \texttt{noexec}.
3188     \item[\errcode{ENFILE}] si è superato il limite del sistema sul numero di
3189       file aperti (vedi sez.~\ref{sec:sys_resource_limit}).
3190     \end{errlist}
3191   }
3192 \end{functions}
3193
3194 La funzione richiede di mappare in memoria la sezione del file \param{fd} a
3195 partire da \param{offset} per \param{lenght} byte, preferibilmente
3196 all'indirizzo \param{start}. Il valore di \param{offset} deve essere un
3197 multiplo della dimensione di una pagina di memoria. 
3198
3199 \begin{table}[htb]
3200   \centering
3201   \footnotesize
3202   \begin{tabular}[c]{|l|l|}
3203     \hline
3204     \textbf{Valore} & \textbf{Significato} \\
3205     \hline
3206     \hline
3207     \const{PROT\_EXEC}  & Le pagine possono essere eseguite.\\
3208     \const{PROT\_READ}  & Le pagine possono essere lette.\\
3209     \const{PROT\_WRITE} & Le pagine possono essere scritte.\\
3210     \const{PROT\_NONE}  & L'accesso alle pagine è vietato.\\
3211     \hline    
3212   \end{tabular}
3213   \caption{Valori dell'argomento \param{prot} di \func{mmap}, relativi alla
3214     protezione applicate alle pagine del file mappate in memoria.}
3215   \label{tab:file_mmap_prot}
3216 \end{table}
3217
3218 Il valore dell'argomento \param{prot} indica la protezione\footnote{come
3219   accennato in sez.~\ref{sec:proc_memory} in Linux la memoria reale è divisa
3220   in pagine: ogni processo vede la sua memoria attraverso uno o più segmenti
3221   lineari di memoria virtuale.  Per ciascuno di questi segmenti il kernel
3222   mantiene nella \itindex{page~table} \textit{page table} la mappatura sulle
3223   pagine di memoria reale, ed le modalità di accesso (lettura, esecuzione,
3224   scrittura); una loro violazione causa quella una \itindex{segment~violation}
3225   \textit{segment violation}, e la relativa emissione del segnale
3226   \const{SIGSEGV}.} da applicare al segmento di memoria e deve essere
3227 specificato come maschera binaria ottenuta dall'OR di uno o più dei valori
3228 riportati in tab.~\ref{tab:file_mmap_prot}; il valore specificato deve essere
3229 compatibile con la modalità di accesso con cui si è aperto il file.
3230
3231 L'argomento \param{flags} specifica infine qual è il tipo di oggetto mappato,
3232 le opzioni relative alle modalità con cui è effettuata la mappatura e alle
3233 modalità con cui le modifiche alla memoria mappata vengono condivise o
3234 mantenute private al processo che le ha effettuate. Deve essere specificato
3235 come maschera binaria ottenuta dall'OR di uno o più dei valori riportati in
3236 tab.~\ref{tab:file_mmap_flag}.
3237
3238 \begin{table}[htb]
3239   \centering
3240   \footnotesize
3241   \begin{tabular}[c]{|l|p{11cm}|}
3242     \hline
3243     \textbf{Valore} & \textbf{Significato} \\
3244     \hline
3245     \hline
3246     \const{MAP\_FIXED}     & Non permette di restituire un indirizzo diverso
3247                              da \param{start}, se questo non può essere usato
3248                              \func{mmap} fallisce. Se si imposta questo flag il
3249                              valore di \param{start} deve essere allineato
3250                              alle dimensioni di una pagina.\\
3251     \const{MAP\_SHARED}    & I cambiamenti sulla memoria mappata vengono
3252                              riportati sul file e saranno immediatamente
3253                              visibili agli altri processi che mappano lo stesso
3254                              file.\footnotemark Il file su disco però non sarà
3255                              aggiornato fino alla chiamata di \func{msync} o
3256                              \func{munmap}), e solo allora le modifiche saranno
3257                              visibili per l'I/O convenzionale. Incompatibile
3258                              con \const{MAP\_PRIVATE}.\\ 
3259     \const{MAP\_PRIVATE}   & I cambiamenti sulla memoria mappata non vengono
3260                              riportati sul file. Ne viene fatta una copia
3261                              privata cui solo il processo chiamante ha
3262                              accesso.  Le modifiche sono mantenute attraverso
3263                              il meccanismo del \textit{copy on
3264                                write} \itindex{copy~on~write} e 
3265                              salvate su swap in caso di necessità. Non è
3266                              specificato se i cambiamenti sul file originale
3267                              vengano riportati sulla regione
3268                              mappata. Incompatibile con \const{MAP\_SHARED}.\\
3269     \const{MAP\_DENYWRITE} & In Linux viene ignorato per evitare
3270                              \textit{DoS} \itindex{Denial~of~Service~(DoS)}
3271                              (veniva usato per segnalare che tentativi di
3272                              scrittura sul file dovevano fallire con
3273                              \errcode{ETXTBSY}).\\ 
3274     \const{MAP\_EXECUTABLE}& Ignorato.\\
3275     \const{MAP\_NORESERVE} & Si usa con \const{MAP\_PRIVATE}. Non riserva
3276                              delle pagine di swap ad uso del meccanismo del
3277                              \textit{copy on write} \itindex{copy~on~write}
3278                              per mantenere le
3279                              modifiche fatte alla regione mappata, in
3280                              questo caso dopo una scrittura, se non c'è più
3281                              memoria disponibile, si ha l'emissione di
3282                              un \const{SIGSEGV}.\\
3283     \const{MAP\_LOCKED}    & Se impostato impedisce lo swapping delle pagine
3284                              mappate.\\
3285     \const{MAP\_GROWSDOWN} & Usato per gli \itindex{stack} \textit{stack}. 
3286                              Indica che la mappatura deve essere effettuata 
3287                              con gli indirizzi crescenti verso il basso.\\
3288     \const{MAP\_ANONYMOUS} & La mappatura non è associata a nessun file. Gli
3289                              argomenti \param{fd} e \param{offset} sono
3290                              ignorati.\footnotemark\\
3291     \const{MAP\_ANON}      & Sinonimo di \const{MAP\_ANONYMOUS}, deprecato.\\
3292     \const{MAP\_FILE}      & Valore di compatibilità, ignorato.\\
3293     \const{MAP\_32BIT}     & Esegue la mappatura sui primi 2Gb dello spazio
3294                              degli indirizzi, viene supportato solo sulle
3295                              piattaforme \texttt{x86-64} per compatibilità con
3296                              le applicazioni a 32 bit. Viene ignorato se si è
3297                              richiesto \const{MAP\_FIXED}.\\
3298     \const{MAP\_POPULATE}  & Esegue il \itindex{prefaulting}
3299                              \textit{prefaulting} delle pagine di memoria
3300                              necessarie alla mappatura.\\
3301     \const{MAP\_NONBLOCK}  & Esegue un \textit{prefaulting} più limitato che
3302                              non causa I/O.\footnotemark\\
3303 %     \const{MAP\_DONTEXPAND}& Non consente una successiva espansione dell'area
3304 %                              mappata con \func{mremap}, proposto ma pare non
3305 %                              implementato.\\
3306     \hline
3307   \end{tabular}
3308   \caption{Valori possibili dell'argomento \param{flag} di \func{mmap}.}
3309   \label{tab:file_mmap_flag}
3310 \end{table}
3311
3312 \footnotetext[68]{dato che tutti faranno riferimento alle stesse pagine di
3313   memoria.}  
3314
3315 \footnotetext[69]{l'uso di questo flag con \const{MAP\_SHARED} è stato
3316   implementato in Linux a partire dai kernel della serie 2.4.x; esso consente
3317   di creare segmenti di memoria condivisa e torneremo sul suo utilizzo in
3318   sez.~\ref{sec:ipc_mmap_anonymous}.}
3319
3320 \footnotetext{questo flag ed il precedente \const{MAP\_POPULATE} sono stati
3321   introdotti nel kernel 2.5.46 insieme alla mappatura non lineare di cui
3322   parleremo più avanti.}
3323
3324 Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
3325 piuttosto complessi, essi si possono comprendere solo tenendo presente che
3326 tutto quanto è comunque basato sul meccanismo della \index{memoria~virtuale}
3327 memoria virtuale. Questo comporta allora una serie di conseguenze. La più
3328 ovvia è che se si cerca di scrivere su una zona mappata in sola lettura si
3329 avrà l'emissione di un segnale di violazione di accesso (\const{SIGSEGV}),
3330 dato che i permessi sul segmento di memoria relativo non consentono questo
3331 tipo di accesso.
3332
3333 È invece assai diversa la questione relativa agli accessi al di fuori della
3334 regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
3335 ritenere che anch'essi debbano generare un segnale di violazione di accesso;
3336 questo però non tiene conto del fatto che, essendo basata sul meccanismo della
3337 \index{paginazione} paginazione, la mappatura in memoria non può che essere
3338 eseguita su un segmento di dimensioni rigorosamente multiple di quelle di una
3339 pagina, ed in generale queste potranno non corrispondere alle dimensioni
3340 effettive del file o della sezione che si vuole mappare.
3341
3342 \begin{figure}[!htb] 
3343   \centering
3344   \includegraphics[height=6cm]{img/mmap_boundary}
3345   \caption{Schema della mappatura in memoria di una sezione di file di
3346     dimensioni non corrispondenti al bordo di una pagina.}
3347   \label{fig:file_mmap_boundary}
3348 \end{figure}
3349
3350 Il caso più comune è quello illustrato in fig.~\ref{fig:file_mmap_boundary},
3351 in cui la sezione di file non rientra nei confini di una pagina: in tal caso
3352 verrà il file sarà mappato su un segmento di memoria che si estende fino al
3353 bordo della pagina successiva.
3354
3355 In questo caso è possibile accedere a quella zona di memoria che eccede le
3356 dimensioni specificate da \param{lenght}, senza ottenere un \const{SIGSEGV}
3357 poiché essa è presente nello spazio di indirizzi del processo, anche se non è
3358 mappata sul file. Il comportamento del sistema è quello di restituire un
3359 valore nullo per quanto viene letto, e di non riportare su file quanto viene
3360 scritto.
3361
3362 Un caso più complesso è quello che si viene a creare quando le dimensioni del
3363 file mappato sono più corte delle dimensioni della mappatura, oppure quando il
3364 file è stato troncato, dopo che è stato mappato, ad una dimensione inferiore a
3365 quella della mappatura in memoria.
3366
3367 In questa situazione, per la sezione di pagina parzialmente coperta dal
3368 contenuto del file, vale esattamente quanto visto in precedenza; invece per la
3369 parte che eccede, fino alle dimensioni date da \param{length}, l'accesso non
3370 sarà più possibile, ma il segnale emesso non sarà \const{SIGSEGV}, ma
3371 \const{SIGBUS}, come illustrato in fig.~\ref{fig:file_mmap_exceed}.
3372
3373 Non tutti i file possono venire mappati in memoria, dato che, come illustrato
3374 in fig.~\ref{fig:file_mmap_layout}, la mappatura introduce una corrispondenza
3375 biunivoca fra una sezione di un file ed una sezione di memoria. Questo
3376 comporta che ad esempio non è possibile mappare in memoria file descriptor
3377 relativi a pipe, socket e fifo, per i quali non ha senso parlare di
3378 \textsl{sezione}. Lo stesso vale anche per alcuni file di dispositivo, che non
3379 dispongono della relativa operazione \func{mmap} (si ricordi quanto esposto in
3380 sez.~\ref{sec:file_vfs_work}). Si tenga presente però che esistono anche casi
3381 di dispositivi (un esempio è l'interfaccia al ponte PCI-VME del chip Universe)
3382 che sono utilizzabili solo con questa interfaccia.
3383
3384 \begin{figure}[htb]
3385   \centering
3386   \includegraphics[height=6cm]{img/mmap_exceed}
3387   \caption{Schema della mappatura in memoria di file di dimensioni inferiori
3388     alla lunghezza richiesta.}
3389   \label{fig:file_mmap_exceed}
3390 \end{figure}
3391
3392 Dato che passando attraverso una \func{fork} lo spazio di indirizzi viene
3393 copiato integralmente, i file mappati in memoria verranno ereditati in maniera
3394 trasparente dal processo figlio, mantenendo gli stessi attributi avuti nel
3395 padre; così se si è usato \const{MAP\_SHARED} padre e figlio accederanno allo
3396 stesso file in maniera condivisa, mentre se si è usato \const{MAP\_PRIVATE}
3397 ciascuno di essi manterrà una sua versione privata indipendente. Non c'è
3398 invece nessun passaggio attraverso una \func{exec}, dato che quest'ultima
3399 sostituisce tutto lo spazio degli indirizzi di un processo con quello di un
3400 nuovo programma.
3401
3402 Quando si effettua la mappatura di un file vengono pure modificati i tempi ad
3403 esso associati (di cui si è trattato in sez.~\ref{sec:file_file_times}). Il
3404 valore di \var{st\_atime} può venir cambiato in qualunque istante a partire
3405 dal momento in cui la mappatura è stata effettuata: il primo riferimento ad
3406 una pagina mappata su un file aggiorna questo tempo.  I valori di
3407 \var{st\_ctime} e \var{st\_mtime} possono venir cambiati solo quando si è
3408 consentita la scrittura sul file (cioè per un file mappato con
3409 \const{PROT\_WRITE} e \const{MAP\_SHARED}) e sono aggiornati dopo la scrittura
3410 o in corrispondenza di una eventuale \func{msync}.
3411
3412 Dato per i file mappati in memoria le operazioni di I/O sono gestite
3413 direttamente dalla \index{memoria~virtuale}memoria virtuale, occorre essere
3414 consapevoli delle interazioni che possono esserci con operazioni effettuate
3415 con l'interfaccia standard dei file di cap.~\ref{cha:file_unix_interface}. Il
3416 problema è che una volta che si è mappato un file, le operazioni di lettura e
3417 scrittura saranno eseguite sulla memoria, e riportate su disco in maniera
3418 autonoma dal sistema della memoria virtuale.
3419
3420 Pertanto se si modifica un file con l'interfaccia standard queste modifiche
3421 potranno essere visibili o meno a seconda del momento in cui la memoria
3422 virtuale trasporterà dal disco in memoria quella sezione del file, perciò è
3423 del tutto imprevedibile il risultato della modifica di un file nei confronti
3424 del contenuto della memoria su cui è mappato.
3425
3426 Per questo, è sempre sconsigliabile eseguire scritture su file attraverso
3427 l'interfaccia standard quando lo si è mappato in memoria, è invece possibile
3428 usare l'interfaccia standard per leggere un file mappato in memoria, purché si
3429 abbia una certa cura; infatti l'interfaccia dell'I/O mappato in memoria mette
3430 a disposizione la funzione \funcd{msync} per sincronizzare il contenuto della
3431 memoria mappata con il file su disco; il suo prototipo è:
3432 \begin{functions}  
3433   \headdecl{unistd.h}
3434   \headdecl{sys/mman.h} 
3435
3436   \funcdecl{int msync(const void *start, size\_t length, int flags)}
3437   
3438   Sincronizza i contenuti di una sezione di un file mappato in memoria.
3439   
3440   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3441     errore nel qual caso \var{errno} assumerà uno dei valori:
3442     \begin{errlist}
3443     \item[\errcode{EINVAL}] o \param{start} non è multiplo di
3444       \const{PAGE\_SIZE}, o si è specificato un valore non valido per
3445       \param{flags}.
3446     \item[\errcode{EFAULT}] l'intervallo specificato non ricade in una zona
3447       precedentemente mappata.
3448     \end{errlist}
3449   }
3450 \end{functions}
3451
3452 La funzione esegue la sincronizzazione di quanto scritto nella sezione di
3453 memoria indicata da \param{start} e \param{offset}, scrivendo le modifiche sul
3454 file (qualora questo non sia già stato fatto).  Provvede anche ad aggiornare i
3455 relativi tempi di modifica. In questo modo si è sicuri che dopo l'esecuzione
3456 di \func{msync} le funzioni dell'interfaccia standard troveranno un contenuto
3457 del file aggiornato.
3458
3459
3460 \begin{table}[htb]
3461   \centering
3462   \footnotesize
3463   \begin{tabular}[c]{|l|p{11cm}|}
3464     \hline
3465     \textbf{Valore} & \textbf{Significato} \\
3466     \hline
3467     \hline
3468     \const{MS\_SYNC}       & richiede una sincronizzazione e ritorna soltanto
3469                              quando questa è stata completata.\\
3470     \const{MS\_ASYNC}      & richiede una sincronizzazione, ma ritorna subito 
3471                              non attendendo che questa sia finita.\\
3472     \const{MS\_INVALIDATE} & invalida le pagine per tutte le mappature
3473                              in memoria così da rendere necessaria una
3474                              rilettura immediata delle stesse.\\
3475     \hline
3476   \end{tabular}
3477   \caption{Valori possibili dell'argomento \param{flag} di \func{msync}.}
3478   \label{tab:file_mmap_msync}
3479 \end{table}
3480
3481 L'argomento \param{flag} è specificato come maschera binaria composta da un OR
3482 dei valori riportati in tab.~\ref{tab:file_mmap_msync}, di questi però
3483 \const{MS\_ASYNC} e \const{MS\_SYNC} sono incompatibili; con il primo valore
3484 infatti la funzione si limita ad inoltrare la richiesta di sincronizzazione al
3485 meccanismo della memoria virtuale, ritornando subito, mentre con il secondo
3486 attende che la sincronizzazione sia stata effettivamente eseguita. Il terzo
3487 flag fa sì che vengano invalidate, per tutte le mappature dello stesso file,
3488 le pagine di cui si è richiesta la sincronizzazione, così che esse possano
3489 essere immediatamente aggiornate con i nuovi valori.
3490
3491 Una volta che si sono completate le operazioni di I/O si può eliminare la
3492 mappatura della memoria usando la funzione \funcd{munmap}, il suo prototipo è:
3493 \begin{functions}  
3494   \headdecl{unistd.h}
3495   \headdecl{sys/mman.h} 
3496
3497   \funcdecl{int munmap(void *start, size\_t length)}
3498   
3499   Rilascia la mappatura sulla sezione di memoria specificata.
3500
3501   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3502     errore nel qual caso \var{errno} assumerà uno dei valori:
3503     \begin{errlist}
3504     \item[\errcode{EINVAL}] l'intervallo specificato non ricade in una zona
3505       precedentemente mappata.
3506     \end{errlist}
3507   }
3508 \end{functions}
3509
3510 La funzione cancella la mappatura per l'intervallo specificato con
3511 \param{start} e \param{length}; ogni successivo accesso a tale regione causerà
3512 un errore di accesso in memoria. L'argomento \param{start} deve essere
3513 allineato alle dimensioni di una pagina, e la mappatura di tutte le pagine
3514 contenute anche parzialmente nell'intervallo indicato, verrà rimossa.
3515 Indicare un intervallo che non contiene mappature non è un errore.  Si tenga
3516 presente inoltre che alla conclusione di un processo ogni pagina mappata verrà
3517 automaticamente rilasciata, mentre la chiusura del file descriptor usato per
3518 il \textit{memory mapping} non ha alcun effetto su di esso.
3519
3520 Lo standard POSIX prevede anche una funzione che permetta di cambiare le
3521 protezioni delle pagine di memoria; lo standard prevede che essa si applichi
3522 solo ai \textit{memory mapping} creati con \func{mmap}, ma nel caso di Linux
3523 la funzione può essere usata con qualunque pagina valida nella memoria
3524 virtuale. Questa funzione è \funcd{mprotect} ed il suo prototipo è:
3525 \begin{functions}  
3526 %  \headdecl{unistd.h}
3527   \headdecl{sys/mman.h} 
3528
3529   \funcdecl{int mprotect(const void *addr, size\_t len, int prot)}
3530   
3531   Modifica le protezioni delle pagine di memoria comprese nell'intervallo
3532   specificato.
3533
3534   \bodydesc{La funzione restituisce 0 in caso di successo, e -1 in caso di
3535     errore nel qual caso \var{errno} assumerà uno dei valori:
3536     \begin{errlist}
3537     \item[\errcode{EINVAL}] il valore di \param{addr} non è valido o non è un
3538       multiplo di \const{PAGE\_SIZE}.
3539     \item[\errcode{EACCESS}] l'operazione non è consentita, ad esempio si è
3540       cercato di marcare con \const{PROT\_WRITE} un segmento di memoria cui si
3541       ha solo accesso in lettura.
3542 %     \item[\errcode{ENOMEM}] non è stato possibile allocare le risorse
3543 %       necessarie all'interno del kernel.
3544 %     \item[\errcode{EFAULT}] si è specificato un indirizzo di memoria non
3545 %       accessibile.
3546     \end{errlist}
3547     ed inoltre \errval{ENOMEM} ed \errval{EFAULT}.
3548   } 
3549 \end{functions}
3550
3551
3552 La funzione prende come argomenti un indirizzo di partenza in \param{addr},
3553 allineato alle dimensioni delle pagine di memoria, ed una dimensione
3554 \param{size}. La nuova protezione deve essere specificata in \param{prot} con
3555 una combinazione dei valori di tab.~\ref{tab:file_mmap_prot}.  La nuova
3556 protezione verrà applicata a tutte le pagine contenute, anche parzialmente,
3557 dall'intervallo fra \param{addr} e \param{addr}+\param{size}-1.
3558
3559 Infine Linux supporta alcune operazioni specifiche non disponibili su altri
3560 kernel unix-like. La prima di queste è la possibilità di modificare un
3561 precedente \textit{memory mapping}, ad esempio per espanderlo o restringerlo.
3562 Questo è realizzato dalla funzione \funcd{mremap}, il cui prototipo è:
3563 \begin{functions}  
3564   \headdecl{unistd.h}
3565   \headdecl{sys/mman.h} 
3566
3567   \funcdecl{void * mremap(void *old\_address, size\_t old\_size , size\_t
3568     new\_size, unsigned long flags)}
3569   
3570   Restringe o allarga una mappatura in memoria di un file.
3571
3572   \bodydesc{La funzione restituisce l'indirizzo alla nuova area di memoria in
3573     caso di successo od il valore \const{MAP\_FAILED} (pari a \texttt{(void *)
3574       -1}) in caso di errore, nel qual caso \var{errno} assumerà uno dei
3575     valori:
3576     \begin{errlist}
3577     \item[\errcode{EINVAL}] il valore di \param{old\_address} non è un
3578       puntatore valido.
3579     \item[\errcode{EFAULT}] ci sono indirizzi non validi nell'intervallo
3580       specificato da \param{old\_address} e \param{old\_size}, o ci sono altre
3581       mappature di tipo non corrispondente a quella richiesta.
3582     \item[\errcode{ENOMEM}] non c'è memoria sufficiente oppure l'area di
3583       memoria non può essere espansa all'indirizzo virtuale corrente, e non si
3584       è specificato \const{MREMAP\_MAYMOVE} nei flag.
3585     \item[\errcode{EAGAIN}] il segmento di memoria scelto è bloccato e non può
3586       essere rimappato.
3587     \end{errlist}
3588   }
3589 \end{functions}
3590
3591 La funzione richiede come argomenti \param{old\_address} (che deve essere
3592 allineato alle dimensioni di una pagina di memoria) che specifica il
3593 precedente indirizzo del \textit{memory mapping} e \param{old\_size}, che ne
3594 indica la dimensione. Con \param{new\_size} si specifica invece la nuova
3595 dimensione che si vuole ottenere. Infine l'argomento \param{flags} è una
3596 maschera binaria per i flag che controllano il comportamento della funzione.
3597 Il solo valore utilizzato è \const{MREMAP\_MAYMOVE}\footnote{per poter
3598   utilizzare questa costante occorre aver definito \macro{\_GNU\_SOURCE} prima
3599   di includere \file{sys/mman.h}.}  che consente di eseguire l'espansione
3600 anche quando non è possibile utilizzare il precedente indirizzo. Per questo
3601 motivo, se si è usato questo flag, la funzione può restituire un indirizzo
3602 della nuova zona di memoria che non è detto coincida con \param{old\_address}.
3603
3604 La funzione si appoggia al sistema della \index{memoria~virtuale} memoria
3605 virtuale per modificare l'associazione fra gli indirizzi virtuali del processo
3606 e le pagine di memoria, modificando i dati direttamente nella
3607 \itindex{page~table} \textit{page table} del processo. Come per
3608 \func{mprotect} la funzione può essere usata in generale, anche per pagine di
3609 memoria non corrispondenti ad un \textit{memory mapping}, e consente così di
3610 implementare la funzione \func{realloc} in maniera molto efficiente.
3611
3612 Una caratteristica comune a tutti i sistemi unix-like è che la mappatura in
3613 memoria di un file viene eseguita in maniera lineare, cioè parti successive di
3614 un file vengono mappate linearmente su indirizzi successivi in memoria.
3615 Esistono però delle applicazioni\footnote{in particolare la tecnica è usata
3616   dai database o dai programmi che realizzano macchine virtuali.} in cui è
3617 utile poter mappare sezioni diverse di un file su diverse zone di memoria.
3618
3619 Questo è ovviamente sempre possibile eseguendo ripetutamente la funzione
3620 \func{mmap} per ciascuna delle diverse aree del file che si vogliono mappare
3621 in sequenza non lineare,\footnote{ed in effetti è quello che veniva fatto
3622   anche con Linux prima che fossero introdotte queste estensioni.} ma questo
3623 approccio ha delle conseguenze molto pesanti in termini di prestazioni.
3624 Infatti per ciascuna mappatura in memoria deve essere definita nella
3625 \itindex{page~table} \textit{page table} del processo una nuova area di
3626 memoria virtuale\footnote{quella che nel gergo del kernel viene chiamata VMA
3627   (\textit{virtual memory area}).} che corrisponda alla mappatura, in modo che
3628 questa diventi visibile nello spazio degli indirizzi come illustrato in
3629 fig.~\ref{fig:file_mmap_layout}.
3630
3631 Quando un processo esegue un gran numero di mappature diverse\footnote{si può
3632   arrivare anche a centinaia di migliaia.} per realizzare a mano una mappatura
3633 non-lineare si avrà un accrescimento eccessivo della sua \itindex{page~table}
3634 \textit{page table}, e lo stesso accadrà per tutti gli altri processi che
3635 utilizzano questa tecnica. In situazioni in cui le applicazioni hanno queste
3636 esigenze si avranno delle prestazioni ridotte, dato che il kernel dovrà
3637 impiegare molte risorse\footnote{sia in termini di memoria interna per i dati
3638   delle \itindex{page~table} \textit{page table}, che di CPU per il loro
3639   aggiornamento.} solo per mantenere i dati di una gran quantità di
3640 \textit{memory mapping}.
3641
3642 Per questo motivo con il kernel 2.5.46 è stato introdotto, ad opera di Ingo
3643 Molnar, un meccanismo che consente la mappatura non-lineare. Anche questa è
3644 una caratteristica specifica di Linux, non presente in altri sistemi
3645 unix-like.  Diventa così possibile utilizzare una sola mappatura
3646 iniziale\footnote{e quindi una sola \textit{virtual memory area} nella
3647   \itindex{page~table} \textit{page table} del processo.} e poi rimappare a
3648 piacere all'interno di questa i dati del file. Ciò è possibile grazie ad una
3649 nuova system call, \funcd{remap\_file\_pages}, il cui prototipo è:
3650 \begin{functions}  
3651   \headdecl{sys/mman.h} 
3652
3653   \funcdecl{int remap\_file\_pages(void *start, size\_t size, int prot,
3654     ssize\_t pgoff, int flags)}
3655   
3656   Permette di rimappare non linearmente un precedente \textit{memory mapping}.
3657
3658   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3659     errore, nel qual caso \var{errno} assumerà uno dei valori:
3660     \begin{errlist}
3661     \item[\errcode{EINVAL}] si è usato un valore non valido per uno degli
3662       argomenti o \param{start} non fa riferimento ad un \textit{memory
3663         mapping} valido creato con \const{MAP\_SHARED}.
3664     \end{errlist}
3665   }
3666 \end{functions}
3667
3668 Per poter utilizzare questa funzione occorre anzitutto effettuare
3669 preliminarmente una chiamata a \func{mmap} con \const{MAP\_SHARED} per
3670 definire l'area di memoria che poi sarà rimappata non linearmente. Poi di
3671 chiamerà questa funzione per modificare le corrispondenze fra pagine di
3672 memoria e pagine del file; si tenga presente che \func{remap\_file\_pages}
3673 permette anche di mappare la stessa pagina di un file in più pagine della
3674 regione mappata.
3675
3676 La funzione richiede che si identifichi la sezione del file che si vuole
3677 riposizionare all'interno del \textit{memory mapping} con gli argomenti
3678 \param{pgoff} e \param{size}; l'argomento \param{start} invece deve indicare
3679 un indirizzo all'interno dell'area definita dall'\func{mmap} iniziale, a
3680 partire dal quale la sezione di file indicata verrà rimappata. L'argomento
3681 \param{prot} deve essere sempre nullo, mentre \param{flags} prende gli stessi
3682 valori di \func{mmap} (quelli di tab.~\ref{tab:file_mmap_prot}) ma di tutti i
3683 flag solo \const{MAP\_NONBLOCK} non viene ignorato.
3684
3685 Insieme alla funzione \func{remap\_file\_pages} nel kernel 2.5.46 con sono
3686 stati introdotti anche due nuovi flag per \func{mmap}: \const{MAP\_POPULATE} e
3687 \const{MAP\_NONBLOCK}.  Il primo dei due consente di abilitare il meccanismo
3688 del \itindex{prefaulting} \textit{prefaulting}. Questo viene di nuovo in aiuto
3689 per migliorare le prestazioni in certe condizioni di utilizzo del
3690 \textit{memory mapping}. 
3691
3692 Il problema si pone tutte le volte che si vuole mappare in memoria un file di
3693 grosse dimensioni. Il comportamento normale del sistema della
3694 \index{memoria~virtuale} memoria virtuale è quello per cui la regione mappata
3695 viene aggiunta alla \itindex{page~table} \textit{page table} del processo, ma
3696 i dati verranno effettivamente utilizzati (si avrà cioè un
3697 \itindex{page~fault} \textit{page fault} che li trasferisce dal disco alla
3698 memoria) soltanto in corrispondenza dell'accesso a ciascuna delle pagine
3699 interessate dal \textit{memory mapping}. 
3700
3701 Questo vuol dire che il passaggio dei dati dal disco alla memoria avverrà una
3702 pagina alla volta con un gran numero di \itindex{page~fault} \textit{page
3703   fault}, chiaramente se si sa in anticipo che il file verrà utilizzato
3704 immediatamente, è molto più efficiente eseguire un \itindex{prefaulting}
3705 \textit{prefaulting} in cui tutte le pagine di memoria interessate alla
3706 mappatura vengono ``\textsl{popolate}'' in una sola volta, questo
3707 comportamento viene abilitato quando si usa con \func{mmap} il flag
3708 \const{MAP\_POPULATE}.
3709
3710 Dato che l'uso di \const{MAP\_POPULATE} comporta dell'I/O su disco che può
3711 rallentare l'esecuzione di \func{mmap} è stato introdotto anche un secondo
3712 flag, \const{MAP\_NONBLOCK}, che esegue un \itindex{prefaulting}
3713 \textit{prefaulting} più limitato in cui vengono popolate solo le pagine della
3714 mappatura che già si trovano nella cache del kernel.\footnote{questo può
3715   essere utile per il linker dinamico, in particolare quando viene effettuato
3716   il \textit{prelink} delle applicazioni.}
3717
3718 Per i vantaggi illustrati all'inizio del paragrafo l'interfaccia del
3719 \textit{memory mapped I/O} viene usata da una grande varietà di programmi,
3720 spesso con esigenze molto diverse fra di loro riguardo le modalità con cui
3721 verranno eseguiti gli accessi ad un file; è ad esempio molto comune per i
3722 database effettuare accessi ai dati in maniera pressoché casuale, mentre un
3723 riproduttore audio o video eseguirà per lo più letture sequenziali.
3724
3725 Per migliorare le prestazioni a seconda di queste modalità di accesso è
3726 disponibile una apposita funzione, \funcd{madvise},\footnote{tratteremo in
3727   sez.~\ref{sec:file_fadvise} le funzioni che consentono di ottimizzare
3728   l'accesso ai file con l'interfaccia classica.} che consente di fornire al
3729 kernel delle indicazioni su dette modalità, così che possano essere adottate
3730 le opportune strategie di ottimizzazione. Il suo prototipo è:
3731 \begin{functions}  
3732   \headdecl{sys/mman.h} 
3733
3734   \funcdecl{int madvise(void *start, size\_t length, int advice)}
3735   
3736   Fornisce indicazioni sull'uso previsto di un \textit{memory mapping}.
3737
3738   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
3739     errore, nel qual caso \var{errno} assumerà uno dei valori:
3740     \begin{errlist}
3741     \item[\errcode{EBADF}] la mappatura esiste ma non corrisponde ad un file.
3742     \item[\errcode{EINVAL}] \param{start} non è allineato alla dimensione di
3743       una pagina, \param{length} ha un valore negativo, o \param{advice} non è
3744       un valore valido, o si è richiesto il rilascio (con
3745       \const{MADV\_DONTNEED}) di pagine bloccate o condivise.
3746     \item[\errcode{EIO}] la paginazione richiesta eccederebbe i limiti (vedi
3747       sez.~\ref{sec:sys_resource_limit}) sulle pagine residenti in memoria del
3748       processo (solo in caso di \const{MADV\_WILLNEED}).
3749     \item[\errcode{ENOMEM}] gli indirizzi specificati non sono mappati, o, in
3750       caso \const{MADV\_WILLNEED}, non c'è sufficiente memoria per soddisfare
3751       la richiesta.
3752     \end{errlist}
3753     ed inoltre \errval{EAGAIN} e \errval{ENOSYS}.
3754   }
3755 \end{functions}
3756
3757 La sezione di memoria sulla quale si intendono fornire le indicazioni deve
3758 essere indicata con l'indirizzo iniziale \param{start} e l'estensione
3759 \param{lenght}, il valore di \param{start} deve essere allineato,
3760 mentre \param{length} deve essere un numero positivo.\footnote{la versione di
3761   Linux consente anche un valore nullo per \param{lenght}, inoltre se una
3762   parte dell'intervallo non è mappato in memoria l'indicazione viene comunque
3763   applicata alle restanti parti, anche se la funzione ritorna un errore di
3764   \errval{ENOMEM}.} L'indicazione viene espressa dall'argomento \param{advice}
3765 che deve essere specificato con uno dei valori\footnote{si tenga presente che
3766   gli ultimi tre valori sono specifici di Linux (introdotti a partire dal
3767   kernel 2.6.16) e non previsti dallo standard POSIX.1b.} riportati in
3768 tab.~\ref{tab:madvise_advice_values}.
3769
3770 \begin{table}[htb]
3771   \centering
3772   \footnotesize
3773   \begin{tabular}[c]{|l|p{10 cm}|}
3774     \hline
3775     \textbf{Valore} & \textbf{Significato} \\
3776     \hline
3777     \hline
3778     \const{MADV\_NORMAL}  & nessuna indicazione specifica, questo è il valore
3779                             di default usato quando non si è chiamato
3780                             \func{madvise}.\\
3781     \const{MADV\_RANDOM}  & ci si aspetta un accesso casuale all'area
3782                             indicata, pertanto l'applicazione di una lettura
3783                             anticipata con il meccanismo del
3784                             \itindex{read-ahead} \textit{read-ahead} (vedi
3785                             sez.~\ref{sec:file_fadvise}) è di
3786                             scarsa utilità e verrà disabilitata.\\
3787     \const{MADV\_SEQUENTIAL}& ci si aspetta un accesso sequenziale al file,
3788                             quindi da una parte sarà opportuno eseguire una
3789                             lettura anticipata, e dall'altra si potranno
3790                             scartare immediatamente le pagine una volta che
3791                             queste siano state lette.\\
3792     \const{MADV\_WILLNEED}& ci si aspetta un accesso nell'immediato futuro,
3793                             pertanto l'applicazione del \textit{read-ahead}
3794                             deve essere incentivata.\\
3795     \const{MADV\_DONTNEED}& non ci si aspetta nessun accesso nell'immediato
3796                             futuro, pertanto le pagine possono essere
3797                             liberate dal kernel non appena necessario; l'area
3798                             di memoria resterà accessibile, ma un accesso
3799                             richiederà che i dati vengano ricaricati dal file
3800                             a cui la mappatura fa riferimento.\\
3801     \hline
3802     \const{MADV\_REMOVE}  & libera un intervallo di pagine di memoria ed il
3803                             relativo supporto sottostante; è supportato
3804                             soltanto sui filesystem in RAM \textit{tmpfs} e
3805                             \textit{shmfs}.\footnotemark\\ 
3806     \const{MADV\_DONTFORK}& impedisce che l'intervallo specificato venga
3807                             ereditato dal processo figlio dopo una
3808                             \func{fork}; questo consente di evitare che il
3809                             meccanismo del \itindex{copy~on~write}
3810                             \textit{copy on write} effettui la rilocazione
3811                             delle pagine quando il padre scrive sull'area
3812                             di memoria dopo la \func{fork}, cosa che può
3813                             causare problemi per l'hardware che esegue
3814                             operazioni in DMA su quelle pagine.\\
3815     \const{MADV\_DOFORK}  & rimuove l'effetto della precedente
3816                             \const{MADV\_DONTFORK}.\\ 
3817     \const{MADV\_MERGEABLE}& marca la pagina come accorpabile (indicazione
3818                             principalmente ad uso dei sistemi di
3819                             virtualizzazione).\footnotemark\\
3820     \hline
3821   \end{tabular}
3822   \caption{Valori dell'argomento \param{advice} di \func{madvise}.}
3823   \label{tab:madvise_advice_values}
3824 \end{table}
3825
3826 \footnotetext{se usato su altri tipi di filesystem causa un errore di
3827   \errcode{ENOSYS}.}
3828
3829 \footnotetext{a partire dal kernel 2.6.32 è stato introdotto un meccanismo che
3830   identifica pagine di memoria identiche e le accorpa in una unica pagina
3831   (soggetta al \textit{copy-on-write} per successive modifiche); per evitare
3832   di controllare tutte le pagine solo quelle marcate con questo flag vengono
3833   prese in considerazione per l'accorpamento; in questo modo si possono
3834   migliorare le prestazioni nella gestione delle macchine virtuali diminuendo
3835   la loro occupazione di memoria, ma il meccanismo può essere usato anche in
3836   altre applicazioni in cui sian presenti numerosi processi che usano gli
3837   stessi dati; per maggiori dettagli si veda
3838   \href{http://kernelnewbies.org/Linux_2_6_32\#head-d3f32e41df508090810388a57efce73f52660ccb}{\texttt{http://kernelnewbies.org/Linux\_2\_6\_32}}.}
3839
3840 La funzione non ha, tranne il caso di \const{MADV\_DONTFORK}, nessun effetto
3841 sul comportamento di un programma, ma può influenzarne le prestazioni fornendo
3842 al kernel indicazioni sulle esigenze dello stesso, così che sia possibile
3843 scegliere le opportune strategie per la gestione del \itindex{read-ahead}
3844 \textit{read-ahead} e del caching dei dati. A differenza da quanto specificato
3845 nello standard POSIX.1b, per il quale l'uso di \func{madvise} è a scopo
3846 puramente indicativo, Linux considera queste richieste come imperative, per
3847 cui ritorna un errore qualora non possa soddisfarle.\footnote{questo
3848   comportamento differisce da quanto specificato nello standard.}
3849
3850 \itindend{memory~mapping}
3851
3852
3853 \subsection{I/O vettorizzato: \func{readv} e \func{writev}}
3854 \label{sec:file_multiple_io}
3855
3856 Un caso abbastanza comune è quello in cui ci si trova a dover eseguire una
3857 serie multipla di operazioni di I/O, come una serie di letture o scritture di
3858 vari buffer. Un esempio tipico è quando i dati sono strutturati nei campi di
3859 una struttura ed essi devono essere caricati o salvati su un file.  Benché
3860 l'operazione sia facilmente eseguibile attraverso una serie multipla di
3861 chiamate a \func{read} e \func{write}, ci sono casi in cui si vuole poter
3862 contare sulla atomicità delle operazioni.
3863
3864 Per questo motivo fino da BSD 4.2 vennero introdotte delle nuove system call
3865 che permettessero di effettuare con una sola chiamata una serie di letture o
3866 scritture su una serie di buffer, con quello che viene normalmente chiamato
3867 \textsl{I/O vettorizzato}. Queste funzioni sono \funcd{readv} e
3868 \funcd{writev},\footnote{in Linux le due funzioni sono riprese da BSD4.4, esse
3869   sono previste anche dallo standard POSIX.1-2001.} ed i relativi prototipi
3870 sono:
3871 \begin{functions}
3872   \headdecl{sys/uio.h}
3873   
3874   \funcdecl{int readv(int fd, const struct iovec *vector, int count)} 
3875   \funcdecl{int writev(int fd, const struct iovec *vector, int count)} 
3876
3877   Eseguono rispettivamente una lettura o una scrittura vettorizzata.
3878   
3879   \bodydesc{Le funzioni restituiscono il numero di byte letti o scritti in
3880     caso di successo, e -1 in caso di errore, nel qual caso \var{errno}
3881     assumerà uno dei valori:
3882   \begin{errlist}
3883   \item[\errcode{EINVAL}] si è specificato un valore non valido per uno degli
3884     argomenti (ad esempio \param{count} è maggiore di \const{IOV\_MAX}).
3885   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima di
3886     di avere eseguito una qualunque lettura o scrittura.
3887   \item[\errcode{EAGAIN}] \param{fd} è stato aperto in modalità non bloccante e
3888     non ci sono dati in lettura.
3889   \item[\errcode{EOPNOTSUPP}] la coda delle richieste è momentaneamente piena.
3890   \end{errlist}
3891   ed anche \errval{EISDIR}, \errval{EBADF}, \errval{ENOMEM}, \errval{EFAULT}
3892   (se non sono stati allocati correttamente i buffer specificati nei campi
3893   \var{iov\_base}), più gli eventuali errori delle funzioni di lettura e
3894   scrittura eseguite su \param{fd}.}
3895 \end{functions}
3896
3897 Entrambe le funzioni usano una struttura \struct{iovec}, la cui definizione è
3898 riportata in fig.~\ref{fig:file_iovec}, che definisce dove i dati devono
3899 essere letti o scritti ed in che quantità. Il primo campo della struttura,
3900 \var{iov\_base}, contiene l'indirizzo del buffer ed il secondo,
3901 \var{iov\_len}, la dimensione dello stesso.
3902
3903 \begin{figure}[!htb]
3904   \footnotesize \centering
3905   \begin{minipage}[c]{15cm}
3906     \includestruct{listati/iovec.h}
3907   \end{minipage} 
3908   \normalsize 
3909   \caption{La struttura \structd{iovec}, usata dalle operazioni di I/O
3910     vettorizzato.} 
3911   \label{fig:file_iovec}
3912 \end{figure}
3913
3914 La lista dei buffer da utilizzare viene indicata attraverso l'argomento
3915 \param{vector} che è un vettore di strutture \struct{iovec}, la cui lunghezza
3916 è specificata dall'argomento \param{count}.\footnote{fino alle libc5, Linux
3917   usava \type{size\_t} come tipo dell'argomento \param{count}, una scelta
3918   logica, che però è stata dismessa per restare aderenti allo standard
3919   POSIX.1-2001.}  Ciascuna struttura dovrà essere inizializzata opportunamente
3920 per indicare i vari buffer da e verso i quali verrà eseguito il trasferimento
3921 dei dati. Essi verranno letti (o scritti) nell'ordine in cui li si sono
3922 specificati nel vettore \param{vector}.
3923
3924 La standardizzazione delle due funzioni all'interno della revisione
3925 POSIX.1-2001 prevede anche che sia possibile avere un limite al numero di
3926 elementi del vettore \param{vector}. Qualora questo sussista, esso deve essere
3927 indicato dal valore dalla costante \const{IOV\_MAX}, definita come le altre
3928 costanti analoghe (vedi sez.~\ref{sec:sys_limits}) in \file{limits.h}; lo
3929 stesso valore deve essere ottenibile in esecuzione tramite la funzione
3930 \func{sysconf} richiedendo l'argomento \const{\_SC\_IOV\_MAX} (vedi
3931 sez.~\ref{sec:sys_sysconf}).
3932
3933 Nel caso di Linux il limite di sistema è di 1024, però se si usano le
3934 \acr{glibc} queste forniscono un \textit{wrapper} per le system call che si
3935 accorge se una operazione supererà il precedente limite, in tal caso i dati
3936 verranno letti o scritti con le usuali \func{read} e \func{write} usando un
3937 buffer di dimensioni sufficienti appositamente allocato e sufficiente a
3938 contenere tutti i dati indicati da \param{vector}. L'operazione avrà successo
3939 ma si perderà l'atomicità del trasferimento da e verso la destinazione finale.
3940
3941 Si tenga presente infine che queste funzioni operano sui file con
3942 l'interfaccia dei file descriptor, e non è consigliabile mescolarle con
3943 l'interfaccia classica dei \textit{file stream} di
3944 cap.~\ref{cha:files_std_interface}; a causa delle bufferizzazioni interne di
3945 quest'ultima infatti si potrebbero avere risultati indefiniti e non
3946 corrispondenti a quanto aspettato.
3947
3948 Come per le normali operazioni di lettura e scrittura, anche per l'\textsl{I/O
3949   vettorizzato} si pone il problema di poter effettuare le operazioni in
3950 maniera atomica a partire da un certa posizione sul file. Per questo motivo a
3951 partire dal kernel 2.6.30 sono state introdotte anche per l'\textsl{I/O
3952   vettorizzato} le analoghe delle funzioni \func{pread} e \func{pwrite} (vedi
3953 sez.~\ref{sec:file_read} e \ref{sec:file_write}); le due funzioni sono
3954 \funcd{preadv} e \func{pwritev} ed i rispettivi prototipi sono:\footnote{le
3955   due funzioni sono analoghe alle omonime presenti in BSD; le \textit{system
3956     call} usate da Linux (introdotte a partire dalla versione 2.6.30)
3957   utilizzano degli argomenti diversi per problemi collegati al formato a 64
3958   bit dell'argomento \param{offset}, che varia a seconda delle architetture,
3959   ma queste differenze vengono gestite dalle funzioni di librerie di libreria
3960   che mantengono l'interfaccia delle analoghe tratte da BSD.}
3961 \begin{functions}
3962   \headdecl{sys/uio.h}
3963   
3964   \funcdecl{int preadv(int fd, const struct iovec *vector, int count, off\_t
3965     offset)}
3966   \funcdecl{int pwritev(int fd, const struct iovec *vector, int count, off\_t
3967     offset)}
3968
3969   Eseguono una lettura o una scrittura vettorizzata a partire da una data
3970   posizione sul file.
3971   
3972   \bodydesc{Le funzioni hanno gli stessi valori di ritorno delle
3973     corrispondenti \func{readv} e \func{writev}; anche gli eventuali errori
3974     sono gli stessi già visti in precedenza, ma ad essi si possono aggiungere
3975     per \var{errno} anche i valori:
3976   \begin{errlist}
3977   \item[\errcode{EOVERFLOW}] \param{offset} ha un valore che non può essere
3978     usato come \ctyp{off\_t}.
3979   \item[\errcode{ESPIPE}] \param{fd} è associato ad un socket o una pipe.
3980   \end{errlist}
3981 }
3982 \end{functions}
3983
3984 Le due funzioni eseguono rispettivamente una lettura o una scrittura
3985 vettorizzata a partire dalla posizione \param{offset} sul file indicato
3986 da \param{fd}, la posizione corrente sul file, come vista da eventuali altri
3987 processi che vi facciano riferimento, non viene alterata. A parte la presenza
3988 dell'ulteriore argomento il comportamento delle funzioni è identico alle
3989 precedenti \func{readv} e \func{writev}. 
3990
3991 Con l'uso di queste funzioni si possono evitare eventuali
3992 \itindex{race~condition} \textit{race condition} quando si deve eseguire la
3993 una operazione di lettura e scrittura vettorizzata a partire da una certa
3994 posizione su un file, mentre al contempo si possono avere in concorrenza
3995 processi che utilizzano lo stesso file descriptor (si ricordi quanto visto in
3996 sez.~\ref{sec:file_adv_func}) con delle chiamate a \func{lseek}.
3997
3998
3999
4000 \subsection{L'I/O diretto fra file descriptor: \func{sendfile} e
4001   \func{splice}} 
4002 \label{sec:file_sendfile_splice}
4003
4004 Uno dei problemi che si presentano nella gestione dell'I/O è quello in cui si
4005 devono trasferire grandi quantità di dati da un file descriptor ed un altro;
4006 questo usualmente comporta la lettura dei dati dal primo file descriptor in un
4007 buffer in memoria, da cui essi vengono poi scritti sul secondo.
4008
4009 Benché il kernel ottimizzi la gestione di questo processo quando si ha a che
4010 fare con file normali, in generale quando i dati da trasferire sono molti si
4011 pone il problema di effettuare trasferimenti di grandi quantità di dati da
4012 kernel space a user space e all'indietro, quando in realtà potrebbe essere più
4013 efficiente mantenere tutto in kernel space. Tratteremo in questa sezione
4014 alcune funzioni specialistiche che permettono di ottimizzare le prestazioni in
4015 questo tipo di situazioni.
4016
4017 La prima funzione che è stata ideata per ottimizzare il trasferimento dei dati
4018 fra due file descriptor è \func{sendfile};\footnote{la funzione è stata
4019   introdotta con i kernel della serie 2.2, e disponibile dalle \acr{glibc}
4020   2.1.} la funzione è presente in diverse versioni di Unix,\footnote{la si
4021   ritrova ad esempio in FreeBSD, HPUX ed altri Unix.} ma non è presente né in
4022 POSIX.1-2001 né in altri standard,\footnote{pertanto si eviti di utilizzarla
4023   se si devono scrivere programmi portabili.} per cui per essa vengono
4024 utilizzati prototipi e semantiche differenti; nel caso di Linux il prototipo
4025 di \funcd{sendfile} è:
4026 \begin{functions}  
4027   \headdecl{sys/sendfile.h} 
4028
4029   \funcdecl{ssize\_t sendfile(int out\_fd, int in\_fd, off\_t *offset, size\_t
4030     count)} 
4031   
4032   Copia dei dati da un file descriptor ad un altro.
4033
4034   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4035     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4036     dei valori:
4037     \begin{errlist}
4038     \item[\errcode{EAGAIN}] si è impostata la modalità non bloccante su
4039       \param{out\_fd} e la scrittura si bloccherebbe.
4040     \item[\errcode{EINVAL}] i file descriptor non sono validi, o sono bloccati
4041       (vedi sez.~\ref{sec:file_locking}), o \func{mmap} non è disponibile per
4042       \param{in\_fd}.
4043     \item[\errcode{EIO}] si è avuto un errore di lettura da \param{in\_fd}.
4044     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per la lettura da
4045       \param{in\_fd}.
4046     \end{errlist}
4047     ed inoltre \errcode{EBADF} e \errcode{EFAULT}.
4048   }
4049 \end{functions}
4050
4051 La funzione copia direttamente \param{count} byte dal file descriptor
4052 \param{in\_fd} al file descriptor \param{out\_fd}; in caso di successo
4053 funzione ritorna il numero di byte effettivamente copiati da \param{in\_fd} a
4054 \param{out\_fd} o $-1$ in caso di errore; come le ordinarie \func{read} e
4055 \func{write} questo valore può essere inferiore a quanto richiesto con
4056 \param{count}.
4057
4058 Se il puntatore \param{offset} è nullo la funzione legge i dati a partire
4059 dalla posizione corrente su \param{in\_fd}, altrimenti verrà usata la
4060 posizione indicata dal valore puntato da \param{offset}; in questo caso detto
4061 valore sarà aggiornato, come \textit{value result argument}, per indicare la
4062 posizione del byte successivo all'ultimo che è stato letto, mentre la
4063 posizione corrente sul file non sarà modificata. Se invece \param{offset} è
4064 nullo la posizione corrente sul file sarà aggiornata tenendo conto dei byte
4065 letti da \param{in\_fd}.
4066
4067 Fino ai kernel della serie 2.4 la funzione è utilizzabile su un qualunque file
4068 descriptor, e permette di sostituire la invocazione successiva di una
4069 \func{read} e una \func{write} (e l'allocazione del relativo buffer) con una
4070 sola chiamata a \funcd{sendfile}. In questo modo si può diminuire il numero di
4071 chiamate al sistema e risparmiare in trasferimenti di dati da kernel space a
4072 user space e viceversa.  La massima utilità della funzione si ha comunque per
4073 il trasferimento di dati da un file su disco ad un socket di
4074 rete,\footnote{questo è il caso classico del lavoro eseguito da un server web,
4075   ed infatti Apache ha una opzione per il supporto esplicito di questa
4076   funzione.} dato che in questo caso diventa possibile effettuare il
4077 trasferimento diretto via DMA dal controller del disco alla scheda di rete,
4078 senza neanche allocare un buffer nel kernel,\footnote{il meccanismo è detto
4079   \textit{zerocopy} in quanto i dati non vengono mai copiati dal kernel, che
4080   si limita a programmare solo le operazioni di lettura e scrittura via DMA.}
4081 ottenendo la massima efficienza possibile senza pesare neanche sul processore.
4082
4083 In seguito però ci si è accorti che, fatta eccezione per il trasferimento
4084 diretto da file a socket, non sempre \func{sendfile} comportava miglioramenti
4085 significativi delle prestazioni rispetto all'uso in sequenza di \func{read} e
4086 \func{write},\footnote{nel caso generico infatti il kernel deve comunque
4087   allocare un buffer ed effettuare la copia dei dati, e in tal caso spesso il
4088   guadagno ottenibile nel ridurre il numero di chiamate al sistema non
4089   compensa le ottimizzazioni che possono essere fatte da una applicazione in
4090   user space che ha una conoscenza diretta su come questi sono strutturati.} e
4091 che anzi in certi casi si potevano avere anche dei peggioramenti.  Questo ha
4092 portato, per i kernel della serie 2.6,\footnote{per alcune motivazioni di
4093   questa scelta si può fare riferimento a quanto illustrato da Linus Torvalds
4094   in \href{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}
4095   {\textsf{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}}.}
4096 alla decisione di consentire l'uso della funzione soltanto quando il file da
4097 cui si legge supporta le operazioni di \textit{memory mapping} (vale a dire
4098 non è un socket) e quello su cui si scrive è un socket; in tutti gli altri
4099 casi l'uso di \func{sendfile} darà luogo ad un errore di \errcode{EINVAL}.
4100
4101 Nonostante ci possano essere casi in cui \func{sendfile} non migliora le
4102 prestazioni, resta il dubbio se la scelta di disabilitarla sempre per il
4103 trasferimento fra file di dati sia davvero corretta. Se ci sono peggioramenti
4104 di prestazioni infatti si può sempre fare ricorso al metodo ordinario, ma
4105 lasciare a disposizione la funzione consentirebbe se non altro di semplificare
4106 la gestione della copia dei dati fra file, evitando di dover gestire
4107 l'allocazione di un buffer temporaneo per il loro trasferimento.
4108
4109 Questo dubbio si può comunque ritenere superato con l'introduzione, avvenuta a
4110 partire dal kernel 2.6.17, della nuova \textit{system call} \func{splice}. Lo
4111 scopo di questa funzione è quello di fornire un meccanismo generico per il
4112 trasferimento di dati da o verso un file utilizzando un buffer gestito
4113 internamente dal kernel. Descritta in questi termini \func{splice} sembra
4114 semplicemente un ``\textsl{dimezzamento}'' di \func{sendfile}.\footnote{nel
4115   senso che un trasferimento di dati fra due file con \func{sendfile} non
4116   sarebbe altro che la lettura degli stessi su un buffer seguita dalla
4117   relativa scrittura, cosa che in questo caso si dovrebbe eseguire con due
4118   chiamate a \func{splice}.} In realtà le due system call sono profondamente
4119 diverse nel loro meccanismo di funzionamento;\footnote{questo fino al kernel
4120   2.6.23, dove \func{sendfile} è stata reimplementata in termini di
4121   \func{splice}, pur mantenendo disponibile la stessa interfaccia verso l'user
4122   space.} \func{sendfile} infatti, come accennato, non necessita di avere a
4123 disposizione un buffer interno, perché esegue un trasferimento diretto di
4124 dati; questo la rende in generale più efficiente, ma anche limitata nelle sue
4125 applicazioni, dato che questo tipo di trasferimento è possibile solo in casi
4126 specifici.\footnote{e nel caso di Linux questi sono anche solo quelli in cui
4127   essa può essere effettivamente utilizzata.}
4128
4129 Il concetto che sta dietro a \func{splice} invece è diverso,\footnote{in
4130   realtà la proposta originale di Larry Mc Voy non differisce poi tanto negli
4131   scopi da \func{sendfile}, quello che rende \func{splice} davvero diversa è
4132   stata la reinterpretazione che ne è stata fatta nell'implementazione su
4133   Linux realizzata da Jens Anxboe, concetti che sono esposti sinteticamente
4134   dallo stesso Linus Torvalds in \href{http://kerneltrap.org/node/6505}
4135   {\textsf{http://kerneltrap.org/node/6505}}.} si tratta semplicemente di una
4136 funzione che consente di fare in maniera del tutto generica delle operazioni
4137 di trasferimento di dati fra un file e un buffer gestito interamente in kernel
4138 space. In questo caso il cuore della funzione (e delle affini \func{vmsplice}
4139 e \func{tee}, che tratteremo più avanti) è appunto l'uso di un buffer in
4140 kernel space, e questo è anche quello che ne ha semplificato l'adozione,
4141 perché l'infrastruttura per la gestione di un tale buffer è presente fin dagli
4142 albori di Unix per la realizzazione delle \textit{pipe} (vedi
4143 sez.~\ref{sec:ipc_unix}). Dal punto di vista concettuale allora \func{splice}
4144 non è altro che una diversa interfaccia (rispetto alle \textit{pipe}) con cui
4145 utilizzare in user space l'oggetto ``\textsl{buffer in kernel space}''.
4146
4147 Così se per una \textit{pipe} o una \textit{fifo} il buffer viene utilizzato
4148 come area di memoria (vedi fig.~\ref{fig:ipc_pipe_singular}) dove appoggiare i
4149 dati che vengono trasferiti da un capo all'altro della stessa per creare un
4150 meccanismo di comunicazione fra processi, nel caso di \func{splice} il buffer
4151 viene usato o come fonte dei dati che saranno scritti su un file, o come
4152 destinazione dei dati che vengono letti da un file. La funzione \funcd{splice}
4153 fornisce quindi una interfaccia generica che consente di trasferire dati da un
4154 buffer ad un file o viceversa; il suo prototipo, accessibile solo dopo aver
4155 definito la macro \macro{\_GNU\_SOURCE},\footnote{si ricordi che questa
4156   funzione non è contemplata da nessuno standard, è presente solo su Linux, e
4157   pertanto deve essere evitata se si vogliono scrivere programmi portabili.}
4158 è il seguente:
4159 \begin{functions}  
4160   \headdecl{fcntl.h} 
4161
4162   \funcdecl{long splice(int fd\_in, off\_t *off\_in, int fd\_out, off\_t
4163     *off\_out, size\_t len, unsigned int flags)}
4164   
4165   Trasferisce dati da un file verso una pipe o viceversa.
4166
4167   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4168     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4169     dei valori:
4170     \begin{errlist}
4171     \item[\errcode{EBADF}] uno o entrambi fra \param{fd\_in} e \param{fd\_out}
4172       non sono file descriptor validi o, rispettivamente, non sono stati
4173       aperti in lettura o scrittura.
4174     \item[\errcode{EINVAL}] il filesystem su cui si opera non supporta
4175       \func{splice}, oppure nessuno dei file descriptor è una pipe, oppure si
4176       è dato un valore a \param{off\_in} o \param{off\_out} ma il
4177       corrispondente file è un dispositivo che non supporta la funzione
4178       \func{seek}.
4179     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4180       richiesta.
4181     \item[\errcode{ESPIPE}] o \param{off\_in} o \param{off\_out} non sono
4182       \const{NULL} ma il corrispondente file descriptor è una \textit{pipe}.
4183     \end{errlist}
4184   }
4185 \end{functions}
4186
4187 La funzione esegue un trasferimento di \param{len} byte dal file descriptor
4188 \param{fd\_in} al file descriptor \param{fd\_out}, uno dei quali deve essere
4189 una \textit{pipe}; l'altro file descriptor può essere
4190 qualunque.\footnote{questo significa che può essere, oltre che un file di
4191   dati, anche un altra \textit{pipe}, o un socket.}  Come accennato una
4192 \textit{pipe} non è altro che un buffer in kernel space, per cui a seconda che
4193 essa sia usata per \param{fd\_in} o \param{fd\_out} si avrà rispettivamente la
4194 copia dei dati dal buffer al file o viceversa. 
4195
4196 In caso di successo la funzione ritorna il numero di byte trasferiti, che può
4197 essere, come per le normali funzioni di lettura e scrittura su file, inferiore
4198 a quelli richiesti; un valore negativo indicherà un errore mentre un valore
4199 nullo indicherà che non ci sono dati da trasferire (ad esempio si è giunti
4200 alla fine del file in lettura). Si tenga presente che, a seconda del verso del
4201 trasferimento dei dati, la funzione si comporta nei confronti del file
4202 descriptor che fa riferimento al file ordinario, come \func{read} o
4203 \func{write}, e pertanto potrà anche bloccarsi (a meno che non si sia aperto
4204 il suddetto file in modalità non bloccante).
4205
4206 I due argomenti \param{off\_in} e \param{off\_out} consentono di specificare,
4207 come per l'analogo \param{offset} di \func{sendfile}, la posizione all'interno
4208 del file da cui partire per il trasferimento dei dati. Come per
4209 \func{sendfile} un valore nullo indica di usare la posizione corrente sul
4210 file, ed essa sarà aggiornata automaticamente secondo il numero di byte
4211 trasferiti. Un valore non nullo invece deve essere un puntatore ad una
4212 variabile intera che indica la posizione da usare; questa verrà aggiornata, al
4213 ritorno della funzione, al byte successivo all'ultimo byte trasferito.
4214 Ovviamente soltanto uno di questi due argomenti, e più precisamente quello che
4215 fa riferimento al file descriptor non associato alla \textit{pipe}, può essere
4216 specificato come valore non nullo.
4217
4218 Infine l'argomento \param{flags} consente di controllare alcune
4219 caratteristiche del funzionamento della funzione; il contenuto è una maschera
4220 binaria e deve essere specificato come OR aritmetico dei valori riportati in
4221 tab.~\ref{tab:splice_flag}. Alcuni di questi valori vengono utilizzati anche
4222 dalle funzioni \func{vmsplice} e \func{tee} per cui la tabella riporta le
4223 descrizioni complete di tutti i valori possibili anche quando, come per
4224 \const{SPLICE\_F\_GIFT}, questi non hanno effetto su \func{splice}.
4225
4226 \begin{table}[htb]
4227   \centering
4228   \footnotesize
4229   \begin{tabular}[c]{|l|p{10cm}|}
4230     \hline
4231     \textbf{Valore} & \textbf{Significato} \\
4232     \hline
4233     \hline
4234     \const{SPLICE\_F\_MOVE}    & Suggerisce al kernel di spostare le pagine
4235                                  di memoria contenenti i dati invece di
4236                                  copiarle;\footnotemark viene usato soltanto
4237                                  da \func{splice}.\\ 
4238     \const{SPLICE\_F\_NONBLOCK}& Richiede di operare in modalità non
4239                                  bloccante; questo flag influisce solo sulle
4240                                  operazioni che riguardano l'I/O da e verso la
4241                                  \textit{pipe}. Nel caso di \func{splice}
4242                                  questo significa che la funzione potrà
4243                                  comunque bloccarsi nell'accesso agli altri
4244                                  file descriptor (a meno che anch'essi non
4245                                  siano stati aperti in modalità non
4246                                  bloccante).\\
4247     \const{SPLICE\_F\_MORE}    & Indica al kernel che ci sarà l'invio di
4248                                  ulteriori dati in una \func{splice}
4249                                  successiva, questo è un suggerimento utile
4250                                  che viene usato quando \param{fd\_out} è un
4251                                  socket.\footnotemark Attualmente viene usato
4252                                  solo da \func{splice}, potrà essere
4253                                  implementato in futuro anche per
4254                                  \func{vmsplice} e \func{tee}.\\
4255     \const{SPLICE\_F\_GIFT}    & Le pagine di memoria utente sono
4256                                  ``\textsl{donate}'' al kernel;\footnotemark
4257                                  se impostato una seguente \func{splice} che
4258                                  usa \const{SPLICE\_F\_MOVE} potrà spostare le 
4259                                  pagine con successo, altrimenti esse dovranno
4260                                  essere copiate; per usare questa opzione i
4261                                  dati dovranno essere opportunamente allineati
4262                                  in posizione ed in dimensione alle pagine di
4263                                  memoria. Viene usato soltanto da
4264                                  \func{vmsplice}.\\
4265     \hline
4266   \end{tabular}
4267   \caption{Le costanti che identificano i bit della maschera binaria
4268     dell'argomento \param{flags} di \func{splice}, \func{vmsplice} e
4269     \func{tee}.} 
4270   \label{tab:splice_flag}
4271 \end{table}
4272
4273 \footnotetext[120]{per una maggiore efficienza \func{splice} usa quando
4274   possibile i meccanismi della memoria virtuale per eseguire i trasferimenti
4275   di dati (in maniera analoga a \func{mmap}), qualora le pagine non possano
4276   essere spostate dalla pipe o il buffer non corrisponda a pagine intere esse
4277   saranno comunque copiate.}
4278
4279 \footnotetext[121]{questa opzione consente di utilizzare delle opzioni di
4280   gestione dei socket che permettono di ottimizzare le trasmissioni via rete,
4281   si veda la descrizione di \const{TCP\_CORK} in
4282   sez.~\ref{sec:sock_tcp_udp_options} e quella di \const{MSG\_MORE} in
4283   sez.~\ref{sec:net_sendmsg}.}
4284
4285 \footnotetext{questo significa che la cache delle pagine e i dati su disco
4286   potranno differire, e che l'applicazione non potrà modificare quest'area di
4287   memoria.}
4288
4289 Per capire meglio il funzionamento di \func{splice} vediamo un esempio con un
4290 semplice programma che usa questa funzione per effettuare la copia di un file
4291 su un altro senza utilizzare buffer in user space. Il programma si chiama
4292 \texttt{splicecp.c} ed il codice completo è disponibile coi sorgenti allegati
4293 alla guida, il corpo principale del programma, che non contiene la sezione di
4294 gestione delle opzioni e le funzioni di ausilio è riportato in
4295 fig.~\ref{fig:splice_example}.
4296
4297 Lo scopo del programma è quello di eseguire la copia dei con \func{splice},
4298 questo significa che si dovrà usare la funzione due volte, prima per leggere i
4299 dati e poi per scriverli, appoggiandosi ad un buffer in kernel space (vale a
4300 dire ad una \textit{pipe}); lo schema del flusso dei dati è illustrato in
4301 fig.~\ref{fig:splicecp_data_flux}. 
4302
4303 \begin{figure}[htb]
4304   \centering
4305   \includegraphics[height=6cm]{img/splice_copy}
4306   \caption{Struttura del flusso di dati usato dal programma \texttt{splicecp}.}
4307   \label{fig:splicecp_data_flux}
4308 \end{figure}
4309
4310 Una volta trattate le opzioni il programma verifica che restino
4311 (\texttt{\small 13--16}) i due argomenti che indicano il file sorgente ed il
4312 file destinazione. Il passo successivo è aprire il file sorgente
4313 (\texttt{\small 18--22}), quello di destinazione (\texttt{\small 23--27}) ed
4314 infine (\texttt{\small 28--31}) la \textit{pipe} che verrà usata come buffer.
4315
4316 \begin{figure}[!phtb]
4317   \footnotesize \centering
4318   \begin{minipage}[c]{15cm}
4319     \includecodesample{listati/splicecp.c}
4320   \end{minipage}
4321   \normalsize
4322   \caption{Esempio di codice che usa \func{splice} per effettuare la copia di
4323     un file.}
4324   \label{fig:splice_example}
4325 \end{figure}
4326
4327 Il ciclo principale (\texttt{\small 33--58}) inizia con la lettura dal file
4328 sorgente tramite la prima \func{splice} (\texttt{\small 34--35}), in questo
4329 caso si è usato come primo argomento il file descriptor del file sorgente e
4330 come terzo quello del capo in scrittura della \textit{pipe} (il funzionamento
4331 delle \textit{pipe} e l'uso della coppia di file descriptor ad esse associati
4332 è trattato in dettaglio in sez.~\ref{sec:ipc_unix}; non ne parleremo qui dato
4333 che nell'ottica dell'uso di \func{splice} questa operazione corrisponde
4334 semplicemente al trasferimento dei dati dal file al buffer).
4335
4336 La lettura viene eseguita in blocchi pari alla dimensione specificata
4337 dall'opzione \texttt{-s} (il default è 4096); essendo in questo caso
4338 \func{splice} equivalente ad una \func{read} sul file, se ne controlla il
4339 valore di uscita in \var{nread} che indica quanti byte sono stati letti, se
4340 detto valore è nullo (\texttt{\small 36}) questo significa che si è giunti
4341 alla fine del file sorgente e pertanto l'operazione di copia è conclusa e si
4342 può uscire dal ciclo arrivando alla conclusione del programma (\texttt{\small
4343   59}). In caso di valore negativo (\texttt{\small 37--44}) c'è stato un
4344 errore ed allora si ripete la lettura (\texttt{\small 36}) se questo è dovuto
4345 ad una interruzione, o altrimenti si esce con un messaggio di errore
4346 (\texttt{\small 41--43}).
4347
4348 Una volta completata con successo la lettura si avvia il ciclo di scrittura
4349 (\texttt{\small 45--57}); questo inizia (\texttt{\small 46--47}) con la
4350 seconda \func{splice} che cerca di scrivere gli \var{nread} byte letti, si
4351 noti come in questo caso il primo argomento faccia di nuovo riferimento alla
4352 \textit{pipe} (in questo caso si usa il capo in lettura, per i dettagli si
4353 veda al solito sez.~\ref{sec:ipc_unix}) mentre il terzo sia il file descriptor
4354 del file di destinazione.
4355
4356 Di nuovo si controlla il numero di byte effettivamente scritti restituito in
4357 \var{nwrite} e in caso di errore al solito si ripete la scrittura se questo è
4358 dovuto a una interruzione o si esce con un messaggio negli altri casi
4359 (\texttt{\small 48--55}). Infine si chiude il ciclo di scrittura sottraendo
4360 (\texttt{\small 57}) il numero di byte scritti a quelli di cui è richiesta la
4361 scrittura,\footnote{in questa parte del ciclo \var{nread}, il cui valore
4362   iniziale è dato dai byte letti dalla precedente chiamata a \func{splice},
4363   viene ad assumere il significato di byte da scrivere.} così che il ciclo di
4364 scrittura venga ripetuto fintanto che il valore risultante sia maggiore di
4365 zero, indice che la chiamata a \func{splice} non ha esaurito tutti i dati
4366 presenti sul buffer.
4367
4368 Si noti come il programma sia concettualmente identico a quello che si sarebbe
4369 scritto usando \func{read} al posto della prima \func{splice} e \func{write}
4370 al posto della seconda, utilizzando un buffer in user space per eseguire la
4371 copia dei dati, solo che in questo caso non è stato necessario allocare nessun
4372 buffer e non si è trasferito nessun dato in user space.
4373
4374 Si noti anche come si sia usata la combinazione \texttt{SPLICE\_F\_MOVE |
4375   SPLICE\_F\_MORE } per l'argomento \param{flags} di \func{splice}, infatti
4376 anche se un valore nullo avrebbe dato gli stessi risultati, l'uso di questi
4377 flag, che si ricordi servono solo a dare suggerimenti al kernel, permette in
4378 genere di migliorare le prestazioni.
4379
4380 Come accennato con l'introduzione di \func{splice} sono state realizzate anche
4381 altre due \textit{system call}, \func{vmsplice} e \func{tee}, che utilizzano
4382 la stessa infrastruttura e si basano sullo stesso concetto di manipolazione e
4383 trasferimento di dati attraverso un buffer in kernel space; benché queste non
4384 attengono strettamente ad operazioni di trasferimento dati fra file
4385 descriptor, le tratteremo qui, essendo strettamente correlate fra loro.
4386
4387 La prima funzione, \funcd{vmsplice}, è la più simile a \func{splice} e come
4388 indica il suo nome consente di trasferire i dati dalla memoria virtuale di un
4389 processo (ad esempio per un file mappato in memoria) verso una \textit{pipe};
4390 il suo prototipo è:
4391 \begin{functions}  
4392   \headdecl{fcntl.h} 
4393   \headdecl{sys/uio.h}
4394
4395   \funcdecl{long vmsplice(int fd, const struct iovec *iov, unsigned long
4396     nr\_segs, unsigned int flags)}
4397   
4398   Trasferisce dati dalla memoria di un processo verso una \textit{pipe}.
4399
4400   \bodydesc{La funzione restituisce il numero di byte trasferiti in caso di
4401     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4402     dei valori:
4403     \begin{errlist}
4404     \item[\errcode{EBADF}] o \param{fd} non è un file descriptor valido o non
4405       fa riferimento ad una \textit{pipe}.
4406     \item[\errcode{EINVAL}] si è usato un valore nullo per \param{nr\_segs}
4407       oppure si è usato \const{SPLICE\_F\_GIFT} ma la memoria non è allineata.
4408     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4409       richiesta.
4410     \end{errlist}
4411   }
4412 \end{functions}
4413
4414 La \textit{pipe} indicata da \param{fd} dovrà essere specificata tramite il
4415 file descriptor corrispondente al suo capo aperto in scrittura (di nuovo si
4416 faccia riferimento a sez.~\ref{sec:ipc_unix}), mentre per indicare quali
4417 segmenti della memoria del processo devono essere trasferiti verso di essa si
4418 dovrà utilizzare un vettore di strutture \struct{iovec} (vedi
4419 fig.~\ref{fig:file_iovec}), esattamente con gli stessi criteri con cui le si
4420 usano per l'I/O vettorizzato, indicando gli indirizzi e le dimensioni di
4421 ciascun segmento di memoria su cui si vuole operare; le dimensioni del
4422 suddetto vettore devono essere passate nell'argomento \param{nr\_segs} che
4423 indica il numero di segmenti di memoria da trasferire.  Sia per il vettore che
4424 per il valore massimo di \param{nr\_segs} valgono le stesse limitazioni
4425 illustrate in sez.~\ref{sec:file_multiple_io}.
4426
4427 In caso di successo la funzione ritorna il numero di byte trasferiti sulla
4428 \textit{pipe}. In generale, se i dati una volta creati non devono essere
4429 riutilizzati (se cioè l'applicazione che chiama \func{vmsplice} non
4430 modificherà più la memoria trasferita), è opportuno utilizzare
4431 per \param{flag} il valore \const{SPLICE\_F\_GIFT}; questo fa sì che il kernel
4432 possa rimuovere le relative pagine dalla cache della memoria virtuale, così
4433 che queste possono essere utilizzate immediatamente senza necessità di
4434 eseguire una copia dei dati che contengono.
4435
4436 La seconda funzione aggiunta insieme a \func{splice} è \func{tee}, che deve il
4437 suo nome all'omonimo comando in user space, perché in analogia con questo
4438 permette di duplicare i dati in ingresso su una \textit{pipe} su un'altra
4439 \textit{pipe}. In sostanza, sempre nell'ottica della manipolazione dei dati su
4440 dei buffer in kernel space, la funzione consente di eseguire una copia del
4441 contenuto del buffer stesso. Il prototipo di \funcd{tee} è il seguente:
4442 \begin{functions}  
4443   \headdecl{fcntl.h} 
4444
4445   \funcdecl{long tee(int fd\_in, int fd\_out, size\_t len, unsigned int
4446     flags)}
4447   
4448   Duplica \param{len} byte da una \textit{pipe} ad un'altra.
4449
4450   \bodydesc{La funzione restituisce il numero di byte copiati in caso di
4451     successo e $-1$ in caso di errore, nel qual caso \var{errno} assumerà uno
4452     dei valori:
4453     \begin{errlist}
4454     \item[\errcode{EINVAL}] o uno fra \param{fd\_in} e \param{fd\_out} non fa
4455       riferimento ad una \textit{pipe} o entrambi fanno riferimento alla
4456       stessa \textit{pipe}.
4457     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
4458       richiesta.
4459     \end{errlist}
4460   }
4461 \end{functions}
4462
4463 La funzione copia \param{len} byte del contenuto di una \textit{pipe} su di
4464 un'altra; \param{fd\_in} deve essere il capo in lettura della \textit{pipe}
4465 sorgente e \param{fd\_out} il capo in scrittura della \textit{pipe}
4466 destinazione; a differenza di quanto avviene con \func{read} i dati letti con
4467 \func{tee} da \func{fd\_in} non vengono \textsl{consumati} e restano
4468 disponibili sulla \textit{pipe} per una successiva lettura (di nuovo per il
4469 comportamento delle \textit{pipe} si veda sez.~\ref{sec:ipc_unix}). Al
4470 momento\footnote{quello della stesura di questo paragrafo, avvenuta il Gennaio
4471   2010, in futuro potrebbe essere implementato anche \const{SPLICE\_F\_MORE}.}
4472 il solo valore utilizzabile per \param{flag}, fra quelli elencati in
4473 tab.~\ref{tab:splice_flag}, è \const{SPLICE\_F\_NONBLOCK} che rende la
4474 funzione non bloccante.
4475
4476 La funzione restituisce il numero di byte copiati da una \textit{pipe}
4477 all'altra (o $-1$ in caso di errore), un valore nullo indica che non ci sono
4478 byte disponibili da copiare e che il capo in scrittura della pipe è stato
4479 chiuso.\footnote{si tenga presente però che questo non avviene se si è
4480   impostato il flag \const{SPLICE\_F\_NONBLOCK}, in tal caso infatti si
4481   avrebbe un errore di \errcode{EAGAIN}.} Un esempio di realizzazione del
4482 comando \texttt{tee} usando questa funzione, ripreso da quello fornito nella
4483 pagina di manuale e dall'esempio allegato al patch originale, è riportato in
4484 fig.~\ref{fig:tee_example}. Il programma consente di copiare il contenuto
4485 dello standard input sullo standard output e su un file specificato come
4486 argomento, il codice completo si trova nel file \texttt{tee.c} dei sorgenti
4487 allegati alla guida.
4488
4489 \begin{figure}[!htbp]
4490   \footnotesize \centering
4491   \begin{minipage}[c]{15cm}
4492     \includecodesample{listati/tee.c}
4493   \end{minipage}
4494   \normalsize
4495   \caption{Esempio di codice che usa \func{tee} per copiare i dati dello
4496     standard input sullo standard output e su un file.}
4497   \label{fig:tee_example}
4498 \end{figure}
4499
4500 La prima parte del programma (\texttt{\small 10--35}) si cura semplicemente di
4501 controllare (\texttt{\small 11--14}) che sia stato fornito almeno un argomento
4502 (il nome del file su cui scrivere), di aprirlo ({\small 15--19}) e che sia lo
4503 standard input (\texttt{\small 20--27}) che lo standard output (\texttt{\small
4504   28--35}) corrispondano ad una \textit{pipe}.
4505
4506 Il ciclo principale (\texttt{\small 37--58}) inizia con la chiamata a
4507 \func{tee} che duplica il contenuto dello standard input sullo standard output
4508 (\texttt{\small 39}), questa parte è del tutto analoga ad una lettura ed
4509 infatti come nell'esempio di fig.~\ref{fig:splice_example} si controlla il
4510 valore di ritorno della funzione in \var{len}; se questo è nullo significa che
4511 non ci sono più dati da leggere e si chiude il ciclo (\texttt{\small 40}), se
4512 è negativo c'è stato un errore, ed allora si ripete la chiamata se questo è
4513 dovuto ad una interruzione (\texttt{\small 42--44}) o si stampa un messaggio
4514 di errore e si esce negli altri casi (\texttt{\small 44--47}).
4515
4516 Una volta completata la copia dei dati sullo standard output si possono
4517 estrarre dalla standard input e scrivere sul file, di nuovo su usa un ciclo di
4518 scrittura (\texttt{\small 50--58}) in cui si ripete una chiamata a
4519 \func{splice} (\texttt{\small 51}) fintanto che non si sono scritti tutti i
4520 \var{len} byte copiati in precedenza con \func{tee} (il funzionamento è
4521 identico all'analogo ciclo di scrittura del precedente esempio di
4522 fig.~\ref{fig:splice_example}).
4523
4524 Infine una nota finale riguardo \func{splice}, \func{vmsplice} e \func{tee}:
4525 occorre sottolineare che benché finora si sia parlato di trasferimenti o copie
4526 di dati in realtà nella implementazione di queste system call non è affatto
4527 detto che i dati vengono effettivamente spostati o copiati, il kernel infatti
4528 realizza le \textit{pipe} come un insieme di puntatori\footnote{per essere
4529   precisi si tratta di un semplice buffer circolare, un buon articolo sul tema
4530   si trova su \href{http://lwn.net/Articles/118750/}
4531   {\textsf{http://lwn.net/Articles/118750/}}.}  alle pagine di memoria interna
4532 che contengono i dati, per questo una volta che i dati sono presenti nella
4533 memoria del kernel tutto quello che viene fatto è creare i suddetti puntatori
4534 ed aumentare il numero di referenze; questo significa che anche con \func{tee}
4535 non viene mai copiato nessun byte, vengono semplicemente copiati i puntatori.
4536
4537 % TODO?? dal 2.6.25 splice ha ottenuto il supporto per la ricezione su rete
4538
4539
4540 \subsection{Gestione avanzata dell'accesso ai dati dei file}
4541 \label{sec:file_fadvise}
4542
4543 Nell'uso generico dell'interfaccia per l'accesso al contenuto dei file le
4544 operazioni di lettura e scrittura non necessitano di nessun intervento di
4545 supervisione da parte dei programmi, si eseguirà una \func{read} o una
4546 \func{write}, i dati verranno passati al kernel che provvederà ad effettuare
4547 tutte le operazioni (e a gestire il \textit{caching} dei dati) per portarle a
4548 termine in quello che ritiene essere il modo più efficiente.
4549
4550 Il problema è che il concetto di migliore efficienza impiegato dal kernel è
4551 relativo all'uso generico, mentre esistono molti casi in cui ci sono esigenze
4552 specifiche dei singoli programmi, che avendo una conoscenza diretta di come
4553 verranno usati i file, possono necessitare di effettuare delle ottimizzazioni
4554 specifiche, relative alle proprie modalità di I/O sugli stessi. Tratteremo in
4555 questa sezione una serie funzioni che consentono ai programmi di ottimizzare
4556 il loro accesso ai dati dei file e controllare la gestione del relativo
4557 \textit{caching}.
4558
4559 \itindbeg{read-ahead}
4560
4561 Una prima funzione che può essere utilizzata per modificare la gestione
4562 ordinaria dell'I/O su un file è \funcd{readahead},\footnote{questa è una
4563   funzione specifica di Linux, introdotta con il kernel 2.4.13, e non deve
4564   essere usata se si vogliono scrivere programmi portabili.} che consente di
4565 richiedere una lettura anticipata del contenuto dello stesso in cache, così
4566 che le seguenti operazioni di lettura non debbano subire il ritardo dovuto
4567 all'accesso al disco; il suo prototipo è:
4568 \begin{functions}
4569   \headdecl{fcntl.h}
4570
4571   \funcdecl{ssize\_t readahead(int fd, off64\_t *offset, size\_t count)}
4572   
4573   Esegue una lettura preventiva del contenuto di un file in cache.
4574
4575   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4576     errore, nel qual caso \var{errno} assumerà uno dei valori:
4577     \begin{errlist}
4578     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
4579       valido o non è aperto in lettura.
4580     \item[\errcode{EINVAL}] l'argomento \param{fd} si riferisce ad un tipo di
4581       file che non supporta l'operazione (come una pipe o un socket).
4582     \end{errlist}
4583   }
4584 \end{functions}
4585
4586 La funzione richiede che venga letto in anticipo il contenuto del file
4587 \param{fd} a partire dalla posizione \param{offset} e per un ammontare di
4588 \param{count} byte, in modo da portarlo in cache.  La funzione usa la
4589 \index{memoria~virtuale} memoria virtuale ed il meccanismo della
4590 \index{paginazione} paginazione per cui la lettura viene eseguita in blocchi
4591 corrispondenti alle dimensioni delle pagine di memoria, ed i valori di
4592 \param{offset} e \param{count} vengono arrotondati di conseguenza.
4593
4594 La funzione estende quello che è un comportamento normale del kernel che
4595 quando si legge un file, aspettandosi che l'accesso prosegua, esegue sempre
4596 una lettura preventiva di una certa quantità di dati; questo meccanismo di
4597 lettura anticipata viene chiamato \textit{read-ahead}, da cui deriva il nome
4598 della funzione. La funzione \func{readahead}, per ottimizzare gli accessi a
4599 disco, effettua la lettura in cache della sezione richiesta e si blocca
4600 fintanto che questa non viene completata.  La posizione corrente sul file non
4601 viene modificata ed indipendentemente da quanto indicato con \param{count} la
4602 lettura dei dati si interrompe una volta raggiunta la fine del file.
4603
4604 Si può utilizzare questa funzione per velocizzare le operazioni di lettura
4605 all'interno di un programma tutte le volte che si conosce in anticipo quanti
4606 dati saranno necessari nelle elaborazioni successive. Si potrà così
4607 concentrare in un unico momento (ad esempio in fase di inizializzazione) la
4608 lettura dei dati da disco, così da ottenere una migliore velocità di risposta
4609 nelle operazioni successive.
4610
4611 \itindend{read-ahead}
4612
4613 Il concetto di \func{readahead} viene generalizzato nello standard
4614 POSIX.1-2001 dalla funzione \func{posix\_fadvise},\footnote{anche se
4615   l'argomento \param{len} è stato modificato da \ctyp{size\_t} a \ctyp{off\_t}
4616   nella revisione POSIX.1-2003 TC5.} che consente di ``\textsl{avvisare}'' il
4617 kernel sulle modalità con cui si intende accedere nel futuro ad una certa
4618 porzione di un file,\footnote{la funzione però è stata introdotta su Linux
4619   solo a partire dal kernel 2.5.60.} così che esso possa provvedere le
4620 opportune ottimizzazioni; il prototipo di \funcd{posix\_fadvise}, che è
4621 disponibile soltanto se è stata definita la macro \macro{\_XOPEN\_SOURCE} ad
4622 valore di almeno 600, è:
4623 \begin{functions}  
4624   \headdecl{fcntl.h} 
4625
4626   \funcdecl{int posix\_fadvise(int fd, off\_t offset, off\_t len, int advice)}
4627   
4628   Dichiara al kernel le future modalità di accesso ad un file.
4629
4630   \bodydesc{La funzione restituisce 0 in caso di successo e $-1$ in caso di
4631     errore, nel qual caso \var{errno} assumerà uno dei valori:
4632     \begin{errlist}
4633     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
4634       valido.
4635     \item[\errcode{EINVAL}] il valore di \param{advice} non è valido o
4636       \param{fd} si riferisce ad un tipo di file che non supporta l'operazione
4637       (come una pipe o un socket).
4638     \item[\errcode{ESPIPE}] previsto dallo standard se \param{fd} è una pipe o
4639       un socket (ma su Linux viene restituito \errcode{EINVAL}).
4640     \end{errlist}
4641   }
4642 \end{functions}
4643
4644 La funzione dichiara al kernel le modalità con cui intende accedere alla
4645 regione del file indicato da \param{fd} che inizia alla posizione
4646 \param{offset} e si estende per \param{len} byte. Se per \param{len} si usa un
4647 valore nullo la regione coperta sarà da \param{offset} alla fine del
4648 file.\footnote{questo è vero solo per le versioni più recenti, fino al kernel
4649   2.6.6 il valore nullo veniva interpretato letteralmente.} Le modalità sono
4650 indicate dall'argomento \param{advice} che è una maschera binaria dei valori
4651 illustrati in tab.~\ref{tab:posix_fadvise_flag}, che riprendono il significato
4652 degli analoghi già visti in sez.~\ref{sec:file_memory_map} per
4653 \func{madvise}.\footnote{dato che si tratta dello stesso tipo di funzionalità,
4654   in questo caso applicata direttamente al sistema ai contenuti di un file
4655   invece che alla sua mappatura in memoria.} Si tenga presente comunque che la
4656 funzione dà soltanto un avvertimento, non esiste nessun vincolo per il kernel,
4657 che utilizza semplicemente l'informazione.
4658
4659 \begin{table}[htb]
4660   \centering
4661   \footnotesize
4662   \begin{tabular}[c]{|l|p{10cm}|}
4663     \hline
4664     \textbf{Valore} & \textbf{Significato} \\
4665     \hline
4666     \hline
4667     \const{POSIX\_FADV\_NORMAL}  & Non ci sono avvisi specifici da fare
4668                                    riguardo le modalità di accesso, il
4669                                    comportamento sarà identico a quello che si
4670                                    avrebbe senza nessun avviso.\\ 
4671     \const{POSIX\_FADV\_SEQUENTIAL}& L'applicazione si aspetta di accedere di
4672                                    accedere ai dati specificati in maniera
4673                                    sequenziale, a partire dalle posizioni più
4674                                    basse.\\ 
4675     \const{POSIX\_FADV\_RANDOM}  & I dati saranno letti in maniera
4676                                    completamente causale.\\
4677     \const{POSIX\_FADV\_NOREUSE} & I dati saranno acceduti una sola volta.\\ 
4678     \const{POSIX\_FADV\_WILLNEED}& I dati saranno acceduti a breve.\\ 
4679     \const{POSIX\_FADV\_DONTNEED}& I dati non saranno acceduti a breve.\\ 
4680     \hline
4681   \end{tabular}
4682   \caption{Valori delle costanti usabili per l'argomento \param{advice} di
4683     \func{posix\_fadvise}, che indicano la modalità con cui si intende accedere
4684     ad un file.}
4685   \label{tab:posix_fadvise_flag}
4686 \end{table}
4687
4688 Come \func{madvise} anche \func{posix\_fadvise} si appoggia al sistema della
4689 memoria virtuale ed al meccanismo standard del \textit{read-ahead} utilizzato
4690 dal kernel; in particolare utilizzando il valore
4691 \const{POSIX\_FADV\_SEQUENTIAL} si raddoppia la dimensione dell'ammontare di
4692 dati letti preventivamente rispetto al default, aspettandosi appunto una
4693 lettura sequenziale che li utilizzerà, mentre con \const{POSIX\_FADV\_RANDOM}
4694 si disabilita del tutto il suddetto meccanismo, dato che con un accesso del
4695 tutto casuale è inutile mettersi a leggere i dati immediatamente successivi
4696 gli attuali; infine l'uso di \const{POSIX\_FADV\_NORMAL} consente di
4697 riportarsi al comportamento di default.
4698
4699 Le due modalità \const{POSIX\_FADV\_NOREUSE} e \const{POSIX\_FADV\_WILLNEED}
4700 fino al kernel 2.6.18 erano equivalenti, a partire da questo kernel la prima
4701 viene non ha più alcun effetto, mentre la seconda dà inizio ad una lettura in
4702 cache della regione del file indicata.  La quantità di dati che verranno letti
4703 è ovviamente limitata in base al carico che si viene a creare sul sistema
4704 della memoria virtuale, ma in genere una lettura di qualche megabyte viene
4705 sempre soddisfatta (ed un valore superiore è solo raramente di qualche
4706 utilità). In particolare l'uso di \const{POSIX\_FADV\_WILLNEED} si può
4707 considerare l'equivalente POSIX di \func{readahead}.
4708
4709 Infine con \const{POSIX\_FADV\_DONTNEED} si dice al kernel di liberare le
4710 pagine di cache occupate dai dati presenti nella regione di file indicata.
4711 Questa è una indicazione utile che permette di alleggerire il carico sulla
4712 cache, ed un programma può utilizzare periodicamente questa funzione per
4713 liberare pagine di memoria da dati che non sono più utilizzati per far posto a
4714 nuovi dati utili.\footnote{la pagina di manuale riporta l'esempio dello
4715   streaming di file di grosse dimensioni, dove le pagine occupate dai dati già
4716   inviati possono essere tranquillamente scartate.}
4717
4718 Sia \func{posix\_fadvise} che \func{readahead} attengono alla ottimizzazione
4719 dell'accesso in lettura; lo standard POSIX.1-2001 prevede anche una funzione
4720 specifica per le operazioni di scrittura,
4721 \funcd{posix\_fallocate},\footnote{la funzione è stata introdotta a partire
4722   dalle glibc 2.1.94.} che consente di preallocare dello spazio disco per
4723 assicurarsi che una seguente scrittura non fallisca, il suo prototipo,
4724 anch'esso disponibile solo se si definisce la macro \macro{\_XOPEN\_SOURCE} ad
4725 almeno 600, è:
4726 \begin{functions}  
4727   \headdecl{fcntl.h} 
4728
4729   \funcdecl{int posix\_fallocate(int fd, off\_t offset, off\_t len)}
4730   
4731   Richiede la allocazione di spazio disco per un file.
4732
4733   \bodydesc{La funzione restituisce 0 in caso di successo e direttamente un
4734     codice di errore, in caso di fallimento, in questo caso \var{errno} non
4735     viene impostata, ma sarà restituito direttamente uno dei valori:
4736     \begin{errlist}
4737     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
4738       valido o non è aperto in scrittura.
4739     \item[\errcode{EINVAL}] o \param{offset} o \param{len} sono minori di
4740       zero.
4741     \item[\errcode{EFBIG}] il valore di (\param{offset} + \param{len}) eccede
4742       la dimensione massima consentita per un file.
4743     \item[\errcode{ENODEV}] l'argomento \param{fd} non fa riferimento ad un
4744       file regolare.
4745     \item[\errcode{ENOSPC}] non c'è sufficiente spazio disco per eseguire
4746       l'operazione. 
4747     \item[\errcode{ESPIPE}] l'argomento \param{fd} è una pipe.
4748   \end{errlist}
4749   }
4750 \end{functions}
4751
4752 La funzione assicura che venga allocato sufficiente spazio disco perché sia
4753 possibile scrivere sul file indicato dall'argomento \param{fd} nella regione
4754 che inizia dalla posizione \param{offset} e si estende per \param{len} byte;
4755 se questa regione si estende oltre la fine del file le dimensioni di
4756 quest'ultimo saranno incrementate di conseguenza. Dopo aver eseguito con
4757 successo la funzione è garantito che una successiva scrittura nella regione
4758 indicata non fallirà per mancanza di spazio disco. La funzione non ha nessun
4759 effetto né sul contenuto, né sulla posizione corrente del file.
4760
4761 Ci si può chiedere a cosa possa servire una funzione come
4762 \func{posix\_fallocate} dato che è sempre possibile ottenere l'effetto voluto
4763 eseguendo esplicitamente sul file la scrittura\footnote{usando \funcd{pwrite}
4764   per evitare spostamenti della posizione corrente sul file.} di una serie di
4765 zeri per l'estensione di spazio necessaria qualora il \itindex{sparse~file}
4766 file debba essere esteso o abbia dei \index{file!\textit{hole}}
4767 buchi.\footnote{si ricordi che occorre scrivere per avere l'allocazione e che
4768   l'uso di \func{truncate} per estendere un file creerebbe soltanto uno
4769   \itindex{sparse~file} \textit{sparse file} (vedi sez.~\ref{sec:file_lseek})
4770   senza una effettiva allocazione dello spazio disco.}  In realtà questa è la
4771 modalità con cui la funzione veniva realizzata nella prima versione fornita
4772 dalle \acr{glibc}, per cui la funzione costituiva in sostanza soltanto una
4773 standardizzazione delle modalità di esecuzione di questo tipo di allocazioni.
4774
4775 Questo metodo, anche se funzionante, comporta però l'effettiva esecuzione una
4776 scrittura su tutto lo spazio disco necessario, da fare al momento della
4777 richiesta di allocazione, pagandone il conseguente prezzo in termini di
4778 prestazioni; il tutto quando in realtà servirebbe solo poter riservare lo
4779 spazio per poi andarci a scrivere, una sola volta, quando il contenuto finale
4780 diventa effettivamente disponibile.
4781
4782 Per poter fare tutto questo è però necessario il supporto da parte del kernel,
4783 e questo è divenuto disponibile solo a partire dal kernel 2.6.23 in cui è
4784 stata introdotta la nuova \textit{system call} \func{fallocate},\footnote{non
4785   è detto che la funzione sia disponibile per tutti i filesystem, ad esempio
4786   per XFS il supporto è stato introdotto solo a partire dal kernel 2.6.25.}
4787 che consente di realizzare direttamente all'interno del kernel l'allocazione
4788 dello spazio disco così da poter realizzare una versione di
4789 \func{posix\_fallocate} con prestazioni molto più elevate.\footnote{nelle
4790   \acr{glibc} la nuova \textit{system call} viene sfruttata per la
4791   realizzazione di \func{posix\_fallocate} a partire dalla versione 2.10.}
4792
4793 Trattandosi di una funzione di servizio, ed ovviamente disponibile
4794 esclusivamente su Linux, inizialmente \funcd{fallocate} non era stata definita
4795 come funzione di libreria,\footnote{pertanto poteva essere invocata soltanto
4796   in maniera indiretta con l'ausilio di \func{syscall}, vedi
4797   sez.~\ref{sec:intro_syscall}, come \code{long fallocate(int fd, int mode,
4798       loff\_t offset, loff\_t len)}.} ma a partire dalle \acr{glibc} 2.10 è
4799   stato fornito un supporto esplicito; il suo prototipo è:
4800 \begin{functions}
4801   \headdecl{linux/fcntl.h} 
4802
4803   \funcdecl{int fallocate(int fd, int mode, off\_t offset, off\_t len)}
4804
4805   Prealloca dello spazio disco per un file.
4806   
4807   \bodydesc{La funzione ritorna 0 in caso di successo e $-1$ in caso di errore,
4808     nel qual caso \var{errno} può assumere i valori:
4809     \begin{errlist}
4810     \item[\errcode{EBADF}] \param{fd} non fa riferimento ad un file descriptor
4811       valido aperto in scrittura.
4812     \item[\errcode{EFBIG}] la somma di \param{offset} e \param{len} eccede le
4813       dimensioni massime di un file. 
4814     \item[\errcode{EINVAL}] \param{offset} è minore di zero o \param{len} è
4815       minore o uguale a zero. 
4816     \item[\errcode{ENODEV}] \param{fd} non fa riferimento ad un file ordinario
4817       o a una directory. 
4818     \item[\errcode{ENOSPC}] non c'è spazio disco sufficiente per l'operazione. 
4819     \item[\errcode{ENOSYS}] il filesystem contenente il file associato
4820       a \param{fd} non supporta \func{fallocate}.
4821     \item[\errcode{EOPNOTSUPP}] il filesystem contenente il file associato
4822       a \param{fd} non supporta l'operazione \param{mode}.
4823   \end{errlist} 
4824   ed inoltre \errval{EINTR}, \errval{EIO}.
4825 }
4826 \end{functions}
4827
4828 La funzione prende gli stessi argomenti di \func{posix\_fallocate} con lo
4829 stesso significato, a cui si aggiunge l'argomento \param{mode} che indica le
4830 modalità di allocazione; al momento quest'ultimo può soltanto essere nullo o
4831 assumere il valore \const{FALLOC\_FL\_KEEP\_SIZE} che richiede che la
4832 dimensione del file\footnote{quella ottenuta nel campo \var{st\_size} di una
4833   struttura \struct{stat} dopo una chiamata a \texttt{fstat}.} non venga
4834 modificata anche quando la somma di \param{offset} e \param{len} eccede la
4835 dimensione corrente. 
4836
4837 Se \param{mode} è nullo invece la dimensione totale del file in caso di
4838 estensione dello stesso viene aggiornata, come richiesto per
4839 \func{posix\_fallocate}, ed invocata in questo modo si può considerare
4840 \func{fallocate} come l'implementazione ottimale di \func{posix\_fallocate} a
4841 livello di kernel.
4842
4843 % vedi http://lwn.net/Articles/226710/ e http://lwn.net/Articles/240571/
4844 % http://kernelnewbies.org/Linux_2_6_23
4845
4846
4847
4848
4849 %\subsection{L'utilizzo delle porte di I/O}
4850 %\label{sec:file_io_port}
4851 %
4852 % TODO l'I/O sulle porte di I/O 
4853 % consultare le manpage di ioperm, iopl e outb
4854
4855
4856
4857
4858
4859 % LocalWords:  dell'I locking multiplexing cap dell' sez system call socket BSD
4860 % LocalWords:  descriptor client deadlock NONBLOCK EAGAIN polling select kernel
4861 % LocalWords:  pselect like sys unistd int fd readfds writefds exceptfds struct
4862 % LocalWords:  timeval errno EBADF EINTR EINVAL ENOMEM sleep tab signal void of
4863 % LocalWords:  CLR ISSET SETSIZE POSIX read NULL nell'header l'header glibc fig
4864 % LocalWords:  libc header psignal sigmask SOURCE XOPEN timespec sigset race DN
4865 % LocalWords:  condition sigprocmask tut self trick oldmask poll XPG pollfd l'I
4866 % LocalWords:  ufds unsigned nfds RLIMIT NOFILE EFAULT ndfs events revents hung
4867 % LocalWords:  POLLIN POLLRDNORM POLLRDBAND POLLPRI POLLOUT POLLWRNORM POLLERR
4868 % LocalWords:  POLLWRBAND POLLHUP POLLNVAL POLLMSG SysV stream ASYNC SETOWN FAQ
4869 % LocalWords:  GETOWN fcntl SETFL SIGIO SETSIG Stevens driven siginfo sigaction
4870 % LocalWords:  all'I nell'I Frequently Unanswered Question SIGHUP lease holder
4871 % LocalWords:  breaker truncate write SETLEASE arg RDLCK WRLCK UNLCK GETLEASE
4872 % LocalWords:  uid capabilities capability EWOULDBLOCK notify dall'OR ACCESS st
4873 % LocalWords:  pread readv MODIFY pwrite writev ftruncate creat mknod mkdir buf
4874 % LocalWords:  symlink rename DELETE unlink rmdir ATTRIB chown chmod utime lio
4875 % LocalWords:  MULTISHOT thread linkando librt layer aiocb asyncronous control
4876 % LocalWords:  block ASYNCHRONOUS lseek fildes nbytes reqprio PRIORITIZED sigev
4877 % LocalWords:  PRIORITY SCHEDULING opcode listio sigevent signo value function
4878 % LocalWords:  aiocbp ENOSYS append error const EINPROGRESS fsync return ssize
4879 % LocalWords:  DSYNC fdatasync SYNC cancel ECANCELED ALLDONE CANCELED suspend
4880 % LocalWords:  NOTCANCELED list nent timout sig NOP WAIT NOWAIT size count iov
4881 % LocalWords:  iovec vector EOPNOTSUPP EISDIR len memory mapping mapped swap NB
4882 % LocalWords:  mmap length prot flags off MAP FAILED ANONYMOUS EACCES SHARED SH
4883 % LocalWords:  only ETXTBSY DENYWRITE ENODEV filesystem EPERM EXEC noexec table
4884 % LocalWords:  ENFILE lenght segment violation SIGSEGV FIXED msync munmap copy
4885 % LocalWords:  DoS Denial Service EXECUTABLE NORESERVE LOCKED swapping stack fs
4886 % LocalWords:  GROWSDOWN ANON POPULATE prefaulting SIGBUS fifo VME fork old
4887 % LocalWords:  exec atime ctime mtime mprotect addr EACCESS mremap address new
4888 % LocalWords:  long MAYMOVE realloc VMA virtual Ingo Molnar remap pages pgoff
4889 % LocalWords:  dall' fault cache linker prelink advisory discrectionary lock fl
4890 % LocalWords:  flock shared exclusive operation dup inode linked NFS cmd ENOLCK
4891 % LocalWords:  EDEADLK whence SEEK CUR type pid GETLK SETLK SETLKW all'inode HP
4892 % LocalWords:  switch bsd lockf mandatory SVr sgid group root mount mand TRUNC
4893 % LocalWords:  SVID UX Documentation sendfile dnotify inotify NdA ppoll fds add
4894 % LocalWords:  init EMFILE FIONREAD ioctl watch char pathname uint mask ENOSPC
4895 % LocalWords:  dell'inode CLOSE NOWRITE MOVE MOVED FROM TO rm wd event page ctl
4896 % LocalWords:  attribute Universe epoll Solaris kqueue level triggered Jonathan
4897 % LocalWords:  Lemon BSDCON edge Libenzi kevent backporting epfd EEXIST ENOENT
4898 % LocalWords:  MOD wait EPOLLIN EPOLLOUT EPOLLRDHUP SOCK EPOLLPRI EPOLLERR one
4899 % LocalWords:  EPOLLHUP EPOLLET EPOLLONESHOT shot maxevents ctlv ALL DONT HPUX
4900 % LocalWords:  FOLLOW ONESHOT ONLYDIR FreeBSD EIO caching sysctl instances name
4901 % LocalWords:  watches IGNORED ISDIR OVERFLOW overflow UNMOUNT queued cookie ls
4902 % LocalWords:  NUL sizeof casting printevent nread limits sysconf SC wrapper Di
4903 % LocalWords:  splice result argument DMA controller zerocopy Linus Larry Voy
4904 % LocalWords:  Jens Anxboe vmsplice seek ESPIPE GIFT TCP CORK MSG splicecp nr
4905 % LocalWords:  nwrite segs patch readahead posix fadvise TC advice FADV NORMAL
4906 % LocalWords:  SEQUENTIAL NOREUSE WILLNEED DONTNEED streaming fallocate EFBIG
4907 % LocalWords:  POLLRDHUP half close pwait Gb madvise MADV ahead REMOVE tmpfs
4908 % LocalWords:  DONTFORK DOFORK shmfs preadv pwritev syscall linux loff head XFS
4909 % LocalWords:  MERGEABLE EOVERFLOW prealloca hole FALLOC KEEP stat fstat
4910 % LocalWords:  conditions sigwait
4911
4912
4913 %%% Local Variables: 
4914 %%% mode: latex
4915 %%% TeX-master: "gapil"
4916 %%% End: