Aggiunta di nuovi valori per si_code
[gapil.git] / fileadv.tex
1 %% fileadv.tex
2 %%
3 %% Copyright (C) 2000-2019 Simone Piccardi.  Permission is granted to
4 %% copy, distribute and/or modify this document under the terms of the GNU Free
5 %% Documentation License, Version 1.1 or any later version published by the
6 %% Free Software Foundation; with the Invariant Sections being "Un preambolo",
7 %% with no Front-Cover Texts, and with no Back-Cover Texts.  A copy of the
8 %% license is included in the section entitled "GNU Free Documentation
9 %% License".
10 %%
11 \chapter{La gestione avanzata dei file}
12 \label{cha:file_advanced}
13
14 In questo capitolo affronteremo le tematiche relative alla gestione avanzata
15 dei file. Inizieremo con la trattazione delle problematiche del \textit{file
16   locking} e poi prenderemo in esame le varie funzionalità avanzate che
17 permettono una gestione più sofisticata dell'I/O su file, a partire da quelle
18 che consentono di gestire l'accesso contemporaneo a più file esaminando le
19 varie modalità alternative di gestire l'I/O per concludere con la gestione dei
20 file mappati in memoria e le altre funzioni avanzate che consentono un
21 controllo più dettagliato delle modalità di I/O.
22
23
24 \section{Il \textit{file locking}}
25 \label{sec:file_locking}
26
27 \itindbeg{file~locking}
28
29 In sez.~\ref{sec:file_shared_access} abbiamo preso in esame le modalità in cui
30 un sistema unix-like gestisce l'accesso concorrente ai file da parte di
31 processi diversi. In quell'occasione si è visto come, con l'eccezione dei file
32 aperti in \textit{append mode}, quando più processi scrivono
33 contemporaneamente sullo stesso file non è possibile determinare la sequenza
34 in cui essi opereranno.
35
36 Questo causa la possibilità di una \textit{race condition}; in generale le
37 situazioni più comuni sono due: l'interazione fra un processo che scrive e
38 altri che leggono, in cui questi ultimi possono leggere informazioni scritte
39 solo in maniera parziale o incompleta; o quella in cui diversi processi
40 scrivono, mescolando in maniera imprevedibile il loro output sul file.
41
42 In tutti questi casi il \textit{file locking} è la tecnica che permette di
43 evitare le \textit{race condition}, attraverso una serie di funzioni che
44 permettono di bloccare l'accesso al file da parte di altri processi, così da
45 evitare le sovrapposizioni, e garantire la atomicità delle operazioni di
46 lettura o scrittura.
47
48
49 \subsection{L'\textit{advisory locking}}
50 \label{sec:file_record_locking}
51
52 La prima modalità di \textit{file locking} che è stata implementata nei
53 sistemi unix-like è quella che viene usualmente chiamata \textit{advisory
54   locking},\footnote{Stevens in \cite{APUE} fa riferimento a questo argomento
55   come al \textit{record locking}, dizione utilizzata anche dal manuale della
56   \acr{glibc}; nelle pagine di manuale si parla di \textit{discrectionary file
57     lock} per \func{fcntl} e di \textit{advisory locking} per \func{flock},
58   mentre questo nome viene usato da Stevens per riferirsi al \textit{file
59     locking} POSIX. Dato che la dizione \textit{record locking} è quantomeno
60   ambigua, in quanto in un sistema Unix non esiste niente che possa fare
61   riferimento al concetto di \textit{record}, alla fine si è scelto di
62   mantenere il nome \textit{advisory locking}.} in quanto sono i singoli
63 processi, e non il sistema, che si incaricano di asserire e verificare se
64 esistono delle condizioni di blocco per l'accesso ai file. 
65
66 Questo significa che le funzioni \func{read} o \func{write} vengono eseguite
67 comunque e non risentono affatto della presenza di un eventuale \textit{lock};
68 pertanto è sempre compito dei vari processi che intendono usare il
69 \textit{file locking}, controllare esplicitamente lo stato dei file condivisi
70 prima di accedervi, utilizzando le relative funzioni.
71
72 In generale si distinguono due tipologie di \textit{file lock};\footnote{di
73   seguito ci riferiremo sempre ai blocchi di accesso ai file con la
74   nomenclatura inglese di \textit{file lock}, o più brevemente con
75   \textit{lock}, per evitare confusioni linguistiche con il blocco di un
76   processo (cioè la condizione in cui il processo viene posto in stato di
77   \textit{sleep}).} la prima è il cosiddetto \textit{shared lock}, detto anche
78 \textit{read lock} in quanto serve a bloccare l'accesso in scrittura su un
79 file affinché il suo contenuto non venga modificato mentre lo si legge. Si
80 parla appunto di \textsl{blocco condiviso} in quanto più processi possono
81 richiedere contemporaneamente uno \textit{shared lock} su un file per
82 proteggere il loro accesso in lettura.
83
84 La seconda tipologia è il cosiddetto \textit{exclusive lock}, detto anche
85 \textit{write lock} in quanto serve a bloccare l'accesso su un file (sia in
86 lettura che in scrittura) da parte di altri processi mentre lo si sta
87 scrivendo. Si parla di \textsl{blocco esclusivo} appunto perché un solo
88 processo alla volta può richiedere un \textit{exclusive lock} su un file per
89 proteggere il suo accesso in scrittura.
90
91 In Linux sono disponibili due interfacce per utilizzare l'\textit{advisory
92   locking}, la prima è quella derivata da BSD, che è basata sulla funzione
93 \func{flock}, la seconda è quella recepita dallo standard POSIX.1 (che è
94 derivata dall'interfaccia usata in System V), che è basata sulla funzione
95 \func{fcntl}.  I \textit{file lock} sono implementati in maniera completamente
96 indipendente nelle due interfacce (in realtà con Linux questo avviene solo
97 dalla serie 2.0 dei kernel) che pertanto possono coesistere senza
98 interferenze.
99
100 Entrambe le interfacce prevedono la stessa procedura di funzionamento: si
101 inizia sempre con il richiedere l'opportuno \textit{file lock} (un
102 \textit{exclusive lock} per una scrittura, uno \textit{shared lock} per una
103 lettura) prima di eseguire l'accesso ad un file.  Se il blocco viene acquisito
104 il processo prosegue l'esecuzione, altrimenti (a meno di non aver richiesto un
105 comportamento non bloccante) viene posto in stato di \textit{sleep}. Una volta
106 finite le operazioni sul file si deve provvedere a rimuovere il blocco.
107
108 La situazione delle varie possibilità che si possono verificare è riassunta in
109 tab.~\ref{tab:file_file_lock}, dove si sono riportati, a seconda delle varie
110 tipologie di blocco già presenti su un file, il risultato che si avrebbe in
111 corrispondenza di una ulteriore richiesta da parte di un processo di un blocco
112 nelle due tipologie di \textit{file lock} menzionate, con un successo o meno
113 della richiesta.
114
115 \begin{table}[htb]
116   \centering
117   \footnotesize
118    \begin{tabular}[c]{|l|c|c|c|}
119     \hline
120     \textbf{Richiesta} & \multicolumn{3}{|c|}{\textbf{Stato del file}}\\
121     \cline{2-4}
122                 &Nessun \textit{lock}&\textit{Read lock}&\textit{Write lock}\\
123     \hline
124     \hline
125     \textit{Read lock} & esecuzione & esecuzione & blocco \\
126     \textit{Write lock}& esecuzione & blocco & blocco \\
127     \hline    
128   \end{tabular}
129   \caption{Tipologie di \textit{file locking}.}
130   \label{tab:file_file_lock}
131 \end{table}
132
133 Si tenga presente infine che il controllo di accesso e la gestione dei
134 permessi viene effettuata quando si apre un file, l'unico controllo residuo
135 che si può avere riguardo il \textit{file locking} è che il tipo di blocco che
136 si vuole ottenere su un file deve essere compatibile con le modalità di
137 apertura dello stesso (in lettura per un \textit{read lock} e in scrittura per
138 un \textit{write lock}).
139
140 %%  Si ricordi che
141 %% la condizione per acquisire uno \textit{shared lock} è che il file non abbia
142 %% già un \textit{exclusive lock} attivo, mentre per acquisire un
143 %% \textit{exclusive lock} non deve essere presente nessun tipo di blocco.
144
145
146 \subsection{La funzione \func{flock}} 
147 \label{sec:file_flock}
148
149 La prima interfaccia per il \textit{file locking}, quella derivata da BSD,
150 permette di eseguire un blocco solo su un intero file; la funzione di sistema
151 usata per richiedere e rimuovere un \textit{file lock} è \funcd{flock}, ed il
152 suo prototipo è:
153
154 \begin{funcproto}{
155 \fhead{sys/file.h}
156 \fdecl{int flock(int fd, int operation)}
157 \fdesc{Applica o rimuove un \textit{file lock}.} 
158 }
159
160 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
161   caso \var{errno} assumerà uno dei valori: 
162   \begin{errlist}
163   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale
164     nell'attesa dell'acquisizione di un \textit{file lock}.
165   \item[\errcode{EINVAL}] si è specificato un valore non valido
166     per \param{operation}.
167   \item[\errcode{ENOLCK}] il kernel non ha memoria sufficiente per gestire il
168     \textit{file lock}.
169   \item[\errcode{EWOULDBLOCK}] il file ha già un blocco attivo, e si è
170     specificato \const{LOCK\_NB}.
171   \end{errlist}
172   ed inoltre \errval{EBADF} nel suo significato generico.
173 }
174 \end{funcproto}
175
176 La funzione può essere usata per acquisire o rilasciare un \textit{file lock}
177 a seconda di quanto specificato tramite il valore dell'argomento
178 \param{operation}; questo viene interpretato come maschera binaria, e deve
179 essere passato costruendo il valore con un OR aritmetico delle costanti
180 riportate in tab.~\ref{tab:file_flock_operation}.
181
182 \begin{table}[htb]
183   \centering
184   \footnotesize
185   \begin{tabular}[c]{|l|p{6cm}|}
186     \hline
187     \textbf{Valore} & \textbf{Significato} \\
188     \hline
189     \hline
190     \constd{LOCK\_SH} & Richiede uno \textit{shared lock} sul file.\\ 
191     \constd{LOCK\_EX} & Richiede un \textit{esclusive lock} sul file.\\
192     \constd{LOCK\_UN} & Rilascia il \textit{file lock}.\\
193     \constd{LOCK\_NB} & Impedisce che la funzione si blocchi nella
194                         richiesta di un \textit{file lock}.\\
195     \hline    
196   \end{tabular}
197   \caption{Valori dell'argomento \param{operation} di \func{flock}.}
198   \label{tab:file_flock_operation}
199 \end{table}
200
201 I primi due valori, \const{LOCK\_SH} e \const{LOCK\_EX} permettono di
202 richiedere un \textit{file lock} rispettivamente condiviso o esclusivo, ed
203 ovviamente non possono essere usati insieme. Se con essi si specifica anche
204 \const{LOCK\_NB} la funzione non si bloccherà qualora il \textit{file lock}
205 non possa essere acquisito, ma ritornerà subito con un errore di
206 \errcode{EWOULDBLOCK}. Per rilasciare un \textit{file lock} si dovrà invece
207 usare direttamente \const{LOCK\_UN}.
208
209 Si tenga presente che non esiste una modalità per eseguire atomicamente un
210 cambiamento del tipo di blocco (da \textit{shared lock} a \textit{esclusive
211   lock}), il blocco deve essere prima rilasciato e poi richiesto, ed è sempre
212 possibile che nel frattempo abbia successo un'altra richiesta pendente,
213 facendo fallire la riacquisizione.
214
215 Si tenga presente infine che \func{flock} non è supportata per i file
216 mantenuti su NFS, in questo caso, se si ha la necessità di utilizzare il
217 \textit{file locking}, occorre usare l'interfaccia del \textit{file locking}
218 POSIX basata su \func{fcntl} che è in grado di funzionare anche attraverso
219 NFS, a condizione ovviamente che sia il client che il server supportino questa
220 funzionalità.
221
222 La semantica del \textit{file locking} di BSD inoltre è diversa da quella del
223 \textit{file locking} POSIX, in particolare per quanto riguarda il
224 comportamento dei \textit{file lock} nei confronti delle due funzioni
225 \func{dup} e \func{fork}.  Per capire queste differenze occorre descrivere con
226 maggiore dettaglio come viene realizzato dal kernel il \textit{file locking}
227 per entrambe le interfacce.
228
229 In fig.~\ref{fig:file_flock_struct} si è riportato uno schema essenziale
230 dell'implementazione del \textit{file locking} in stile BSD su Linux. Il punto
231 fondamentale da capire è che un \textit{file lock}, qualunque sia
232 l'interfaccia che si usa, anche se richiesto attraverso un file descriptor,
233 agisce sempre su di un file; perciò le informazioni relative agli eventuali
234 \textit{file lock} sono mantenute dal kernel a livello di \textit{inode}, dato
235 che questo è l'unico riferimento in comune che possono avere due processi
236 diversi che aprono lo stesso file.
237
238 In particolare, come accennato in fig.~\ref{fig:file_flock_struct}, i
239 \textit{file lock} sono mantenuti in una \textit{linked list} di strutture
240 \kstructd{file\_lock}. La lista è referenziata dall'indirizzo di partenza
241 mantenuto dal campo \var{i\_flock} della struttura \kstruct{inode} (per le
242 definizioni esatte si faccia riferimento al file \file{include/linux/fs.h} nei
243 sorgenti del kernel).  Un bit del campo \var{fl\_flags} di specifica se si
244 tratta di un lock in semantica BSD (\constd{FL\_FLOCK}) o POSIX
245 (\constd{FL\_POSIX}) o un \textit{file lease} (\constd{FL\_LEASE}, vedi
246 sez.~\ref{sec:file_asyncronous_lease}).
247
248 \begin{figure}[!htb]
249   \centering
250   \includegraphics[width=12cm]{img/file_flock}
251   \caption{Schema dell'architettura del \textit{file locking}, nel caso
252     particolare del suo utilizzo da parte dalla funzione \func{flock}.}
253   \label{fig:file_flock_struct}
254 \end{figure}
255
256 La richiesta di un \textit{file lock} prevede una scansione della lista per
257 determinare se l'acquisizione è possibile, ed in caso positivo l'aggiunta di
258 un nuovo elemento (cioè l'aggiunta di una nuova struttura
259 \kstruct{file\_lock}).  Nel caso dei blocchi creati con \func{flock} la
260 semantica della funzione prevede che sia \func{dup} che \func{fork} non creino
261 ulteriori istanze di un \textit{file lock} quanto piuttosto degli ulteriori
262 riferimenti allo stesso. Questo viene realizzato dal kernel secondo lo schema
263 di fig.~\ref{fig:file_flock_struct}, associando ad ogni nuovo \textit{file
264   lock} un puntatore alla voce nella \textit{file table} da cui si è richiesto
265 il blocco, che così ne identifica il titolare. Il puntatore è mantenuto nel
266 campo \var{fl\_file} di \kstruct{file\_lock}, e viene utilizzato solo per i
267 \textit{file lock} creati con la semantica BSD.
268
269 Questa struttura prevede che, quando si richiede la rimozione di un
270 \textit{file lock}, il kernel acconsenta solo se la richiesta proviene da un
271 file descriptor che fa riferimento ad una voce nella \textit{file table}
272 corrispondente a quella registrata nel blocco.  Allora se ricordiamo quanto
273 visto in sez.~\ref{sec:file_dup} e sez.~\ref{sec:file_shared_access}, e cioè
274 che i file descriptor duplicati e quelli ereditati in un processo figlio
275 puntano sempre alla stessa voce nella \textit{file table}, si può capire
276 immediatamente quali sono le conseguenze nei confronti delle funzioni
277 \func{dup} e \func{fork}.
278
279 Sarà così possibile rimuovere un \textit{file lock} attraverso uno qualunque
280 dei file descriptor che fanno riferimento alla stessa voce nella \textit{file
281   table}, anche se questo è diverso da quello con cui lo si è
282 creato,\footnote{attenzione, questo non vale se il file descriptor fa
283   riferimento allo stesso file, ma attraverso una voce diversa della
284   \textit{file table}, come accade tutte le volte che si apre più volte lo
285   stesso file.} o se si esegue la rimozione in un processo figlio. Inoltre una
286 volta tolto un \textit{file lock} su un file, la rimozione avrà effetto su
287 tutti i file descriptor che condividono la stessa voce nella \textit{file
288   table}, e quindi, nel caso di file descriptor ereditati attraverso una
289 \func{fork}, anche per processi diversi.
290
291 Infine, per evitare che la terminazione imprevista di un processo lasci attivi
292 dei \textit{file lock}, quando un file viene chiuso il kernel provvede anche a
293 rimuovere tutti i blocchi ad esso associati. Anche in questo caso occorre
294 tenere presente cosa succede quando si hanno file descriptor duplicati; in tal
295 caso infatti il file non verrà effettivamente chiuso (ed il blocco rimosso)
296 fintanto che non viene rilasciata la relativa voce nella \textit{file table};
297 e questo avverrà solo quando tutti i file descriptor che fanno riferimento
298 alla stessa voce sono stati chiusi.  Quindi, nel caso ci siano duplicati o
299 processi figli che mantengono ancora aperto un file descriptor, il
300 \textit{file lock} non viene rilasciato.
301  
302
303 \subsection{Il \textit{file locking} POSIX}
304 \label{sec:file_posix_lock}
305
306 La seconda interfaccia per l'\textit{advisory locking} disponibile in Linux è
307 quella standardizzata da POSIX, basata sulla funzione di sistema
308 \func{fcntl}. Abbiamo già trattato questa funzione nelle sue molteplici
309 possibilità di utilizzo in sez.~\ref{sec:file_fcntl_ioctl}. Quando la si
310 impiega per il \textit{file locking} essa viene usata solo secondo il seguente
311 prototipo:
312
313 \begin{funcproto}{
314 \fhead{fcntl.h}
315 \fdecl{int fcntl(int fd, int cmd, struct flock *lock)}
316 \fdesc{Applica o rimuove un \textit{file lock}.} 
317 }
318
319 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
320   caso \var{errno} assumerà uno dei valori: 
321   \begin{errlist}
322     \item[\errcode{EACCES}] l'operazione è proibita per la presenza di
323       \textit{file lock} da parte di altri processi.
324     \item[\errcode{EDEADLK}] si è richiesto un \textit{lock} su una regione
325       bloccata da un altro processo che è a sua volta in attesa dello sblocco
326       di un \textit{lock} mantenuto dal processo corrente; si avrebbe pertanto
327       un \textit{deadlock}. Non è garantito che il sistema riconosca sempre
328       questa situazione.
329     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
330       di poter acquisire un \textit{file lock}.
331     \item[\errcode{ENOLCK}] il sistema non ha le risorse per il blocco: ci
332       sono troppi segmenti di \textit{lock} aperti, si è esaurita la tabella
333       dei \textit{file lock}, o il protocollo per il blocco remoto è fallito.
334   \end{errlist}
335   ed inoltre \errval{EBADF}, \errval{EFAULT} nel loro significato generico.}
336 \end{funcproto}
337
338 Al contrario di quanto avviene con l'interfaccia basata su \func{flock} con
339 \func{fcntl} è possibile bloccare anche delle singole sezioni di un file, fino
340 al singolo byte. Inoltre la funzione permette di ottenere alcune informazioni
341 relative agli eventuali blocchi preesistenti.  Per poter fare tutto questo la
342 funzione utilizza come terzo argomento una apposita struttura \struct{flock}
343 (la cui definizione è riportata in fig.~\ref{fig:struct_flock}) nella quale
344 inserire tutti i dati relativi ad un determinato blocco. Si tenga presente poi
345 che un \textit{file lock} fa sempre riferimento ad una regione, per cui si
346 potrà avere un conflitto anche se c'è soltanto una sovrapposizione parziale
347 con un'altra regione bloccata.
348
349 \begin{figure}[!htb]
350   \footnotesize \centering
351   \begin{minipage}[c]{0.90\textwidth}
352     \includestruct{listati/flock.h}
353   \end{minipage} 
354   \normalsize 
355   \caption{La struttura \structd{flock}, usata da \func{fcntl} per il
356     \textit{file locking}.}
357   \label{fig:struct_flock}
358 \end{figure}
359
360 I primi tre campi della struttura, \var{l\_whence}, \var{l\_start} e
361 \var{l\_len}, servono a specificare la sezione del file a cui fa riferimento
362 il blocco: \var{l\_start} specifica il byte di partenza, \var{l\_len} la
363 lunghezza della sezione e infine \var{l\_whence} imposta il riferimento da cui
364 contare \var{l\_start}. Il valore di \var{l\_whence} segue la stessa semantica
365 dell'omonimo argomento di \func{lseek}, coi tre possibili valori
366 \const{SEEK\_SET}, \const{SEEK\_CUR} e \const{SEEK\_END}, (si vedano le
367 relative descrizioni in tab.~\ref{tab:lseek_whence_values}).
368
369 Si tenga presente che un \textit{file lock} può essere richiesto anche per una
370 regione al di là della corrente fine del file, così che una eventuale
371 estensione dello stesso resti coperta dal blocco. Inoltre se si specifica un
372 valore nullo per \var{l\_len} il blocco si considera esteso fino alla
373 dimensione massima del file; in questo modo è possibile bloccare una qualunque
374 regione a partire da un certo punto fino alla fine del file, coprendo
375 automaticamente quanto eventualmente aggiunto in coda allo stesso.
376
377 Lo standard POSIX non richiede che \var{l\_len} sia positivo, ed a partire dal
378 kernel 2.4.21 è possibile anche indicare valori di \var{l\_len} negativi, in
379 tal caso l'intervallo coperto va da \var{l\_start}$+$\var{l\_len} a
380 \var{l\_start}$-1$, mentre per un valore positivo l'intervallo va da
381 \var{l\_start} a \var{l\_start}$+$\var{l\_len}$-1$. Si può però usare un
382 valore negativo soltanto se l'inizio della regione indicata non cade prima
383 dell'inizio del file, mentre come accennato con un valore positivo  si
384 può anche indicare una regione che eccede la dimensione corrente del file.
385
386 Il tipo di \textit{file lock} richiesto viene specificato dal campo
387 \var{l\_type}, esso può assumere i tre valori definiti dalle costanti
388 riportate in tab.~\ref{tab:file_flock_type}, che permettono di richiedere
389 rispettivamente uno \textit{shared lock}, un \textit{esclusive lock}, e la
390 rimozione di un blocco precedentemente acquisito. Infine il campo \var{l\_pid}
391 viene usato solo in caso di lettura, quando si chiama \func{fcntl} con
392 \const{F\_GETLK}, e riporta il \ids{PID} del processo che detiene il
393 \textit{file lock}.
394
395 \begin{table}[htb]
396   \centering
397   \footnotesize
398   \begin{tabular}[c]{|l|l|}
399     \hline
400     \textbf{Valore} & \textbf{Significato} \\
401     \hline
402     \hline
403     \constd{F\_RDLCK} & Richiede un blocco condiviso (\textit{read lock}).\\
404     \constd{F\_WRLCK} & Richiede un blocco esclusivo (\textit{write lock}).\\
405     \constd{F\_UNLCK} & Richiede l'eliminazione di un \textit{file lock}.\\
406     \hline    
407   \end{tabular}
408   \caption{Valori possibili per il campo \var{l\_type} di \struct{flock}.}
409   \label{tab:file_flock_type}
410 \end{table}
411
412 Oltre a quanto richiesto tramite i campi di \struct{flock}, l'operazione
413 effettivamente svolta dalla funzione è stabilita dal valore dall'argomento
414 \param{cmd} che, come già riportato in sez.~\ref{sec:file_fcntl_ioctl},
415 specifica l'azione da compiere; i valori utilizzabili relativi al \textit{file
416   locking} sono tre:
417 \begin{basedescript}{\desclabelwidth{2.0cm}}
418 \item[\constd{F\_GETLK}] verifica se il \textit{file lock} specificato dalla
419   struttura puntata da \param{lock} può essere acquisito: in caso negativo
420   sovrascrive la struttura \param{flock} con i valori relativi al blocco già
421   esistente che ne blocca l'acquisizione, altrimenti si limita a impostarne il
422   campo \var{l\_type} con il valore \const{F\_UNLCK}.
423 \item[\constd{F\_SETLK}] se il campo \var{l\_type} della struttura puntata da
424   \param{lock} è \const{F\_RDLCK} o \const{F\_WRLCK} richiede il
425   corrispondente \textit{file lock}, se è \const{F\_UNLCK} lo rilascia; nel
426   caso la richiesta non possa essere soddisfatta a causa di un blocco
427   preesistente la funzione ritorna immediatamente con un errore di
428   \errcode{EACCES} o di \errcode{EAGAIN}.
429 \item[\constd{F\_SETLKW}] è identica a \const{F\_SETLK}, ma se la richiesta di
430   non può essere soddisfatta per la presenza di un altro blocco, mette il
431   processo in stato di attesa fintanto che il blocco precedente non viene
432   rilasciato; se l'attesa viene interrotta da un segnale la funzione ritorna
433   con un errore di \errcode{EINTR}.
434 \end{basedescript}
435
436 Si noti che per quanto detto il comando \const{F\_GETLK} non serve a rilevare
437 una presenza generica di blocco su un file, perché se ne esistono altri
438 compatibili con quello richiesto, la funzione ritorna comunque impostando
439 \var{l\_type} a \const{F\_UNLCK}.  Inoltre a seconda del valore di
440 \var{l\_type} si potrà controllare o l'esistenza di un qualunque tipo di
441 blocco (se è \const{F\_WRLCK}) o di \textit{write lock} (se è
442 \const{F\_RDLCK}). Si consideri poi che può esserci più di un blocco che
443 impedisce l'acquisizione di quello richiesto (basta che le regioni si
444 sovrappongano), ma la funzione ne riporterà sempre soltanto uno, impostando
445 \var{l\_whence} a \const{SEEK\_SET} ed i valori \var{l\_start} e \var{l\_len}
446 per indicare quale è la regione bloccata.
447
448 Infine si tenga presente che effettuare un controllo con il comando
449 \const{F\_GETLK} e poi tentare l'acquisizione con \const{F\_SETLK} non è una
450 operazione atomica (un altro processo potrebbe acquisire un blocco fra le due
451 chiamate) per cui si deve sempre verificare il codice di ritorno di
452 \func{fcntl}\footnote{controllare il codice di ritorno delle funzioni invocate
453   è comunque una buona norma di programmazione, che permette di evitare un
454   sacco di errori difficili da tracciare proprio perché non vengono rilevati.}
455 quando la si invoca con \const{F\_SETLK}, per controllare che il blocco sia
456 stato effettivamente acquisito.
457
458 \begin{figure}[!htb]
459   \centering \includegraphics[width=9cm]{img/file_lock_dead}
460   \caption{Schema di una situazione di \textit{deadlock}.}
461   \label{fig:file_flock_dead}
462 \end{figure}
463
464 Non operando a livello di interi file, il \textit{file locking} POSIX
465 introduce un'ulteriore complicazione; consideriamo la situazione illustrata in
466 fig.~\ref{fig:file_flock_dead}, in cui il processo A blocca la regione 1 e il
467 processo B la regione 2. Supponiamo che successivamente il processo A richieda
468 un lock sulla regione 2 che non può essere acquisito per il preesistente lock
469 del processo 2; il processo 1 si bloccherà fintanto che il processo 2 non
470 rilasci il blocco. Ma cosa accade se il processo 2 nel frattempo tenta a sua
471 volta di ottenere un lock sulla regione A? Questa è una tipica situazione che
472 porta ad un \textit{deadlock}, dato che a quel punto anche il processo 2 si
473 bloccherebbe, e niente potrebbe sbloccare l'altro processo.  Per questo motivo
474 il kernel si incarica di rilevare situazioni di questo tipo, ed impedirle
475 restituendo un errore di \errcode{EDEADLK} alla funzione che cerca di
476 acquisire un blocco che porterebbe ad un \textit{deadlock}.
477
478 Per capire meglio il funzionamento del \textit{file locking} in semantica
479 POSIX (che differisce alquanto rispetto da quello di BSD, visto
480 sez.~\ref{sec:file_flock}) esaminiamo più in dettaglio come viene gestito dal
481 kernel. Lo schema delle strutture utilizzate è riportato in
482 fig.~\ref{fig:file_posix_lock}; come si vede esso è molto simile all'analogo
483 di fig.~\ref{fig:file_flock_struct}. In questo caso nella figura si sono
484 evidenziati solo i campi di \kstructd{file\_lock} significativi per la
485 semantica POSIX, in particolare adesso ciascuna struttura contiene, oltre al
486 \ids{PID} del processo in \var{fl\_pid}, la sezione di file che viene bloccata
487 grazie ai campi \var{fl\_start} e \var{fl\_end}.  La struttura è comunque la
488 stessa, solo che in questo caso nel campo \var{fl\_flags} è impostato il bit
489 \const{FL\_POSIX} ed il campo \var{fl\_file} non viene usato. Il blocco è
490 sempre associato all'\textit{inode}, solo che in questo caso la titolarità non
491 viene identificata con il riferimento ad una voce nella \textit{file table},
492 ma con il valore del \ids{PID} del processo.
493
494 \begin{figure}[!htb]
495   \centering \includegraphics[width=12cm]{img/file_posix_lock}
496   \caption{Schema dell'architettura del \textit{file locking}, nel caso
497     particolare del suo utilizzo secondo l'interfaccia standard POSIX.}
498   \label{fig:file_posix_lock}
499 \end{figure}
500
501 Quando si richiede un \textit{file lock} il kernel effettua una scansione di
502 tutti i blocchi presenti sul file\footnote{scandisce cioè la \textit{linked
503     list} delle strutture \kstruct{file\_lock}, scartando automaticamente
504   quelle per cui \var{fl\_flags} non è \const{FL\_POSIX}, così che le due
505   interfacce restano ben separate.}  per verificare se la regione richiesta
506 non si sovrappone ad una già bloccata, in caso affermativo decide in base al
507 tipo di blocco, in caso negativo il nuovo blocco viene comunque acquisito ed
508 aggiunto alla lista.
509
510 Nel caso di rimozione invece questa viene effettuata controllando che il
511 \ids{PID} del processo richiedente corrisponda a quello contenuto nel blocco.
512 Questa diversa modalità ha delle conseguenze precise riguardo il comportamento
513 dei \textit{file lock} POSIX. La prima conseguenza è che un \textit{file lock}
514 POSIX non viene mai ereditato attraverso una \func{fork}, dato che il processo
515 figlio avrà un \ids{PID} diverso, mentre passa indenne attraverso una
516 \func{exec} in quanto il \ids{PID} resta lo stesso.  Questo comporta che, al
517 contrario di quanto avveniva con la semantica BSD, quando un processo termina
518 tutti i \textit{file lock} da esso detenuti vengono immediatamente rilasciati.
519
520 La seconda conseguenza è che qualunque file descriptor che faccia riferimento
521 allo stesso file (che sia stato ottenuto con una \func{dup} o con una
522 \func{open} in questo caso non fa differenza) può essere usato per rimuovere
523 un blocco, dato che quello che conta è solo il \ids{PID} del processo. Da
524 questo deriva una ulteriore sottile differenza di comportamento: dato che alla
525 chiusura di un file i blocchi ad esso associati vengono rimossi, nella
526 semantica POSIX basterà chiudere un file descriptor qualunque per cancellare
527 tutti i blocchi relativi al file cui esso faceva riferimento, anche se questi
528 fossero stati creati usando altri file descriptor che restano aperti.
529
530 Dato che il controllo sull'accesso ai blocchi viene eseguito sulla base del
531 \ids{PID} del processo, possiamo anche prendere in considerazione un altro
532 degli aspetti meno chiari di questa interfaccia e cioè cosa succede quando si
533 richiedono dei blocchi su regioni che si sovrappongono fra loro all'interno
534 stesso processo. Siccome il controllo, come nel caso della rimozione, si basa
535 solo sul \ids{PID} del processo che chiama la funzione, queste richieste
536 avranno sempre successo.  Nel caso della semantica BSD, essendo i lock
537 relativi a tutto un file e non accumulandosi,\footnote{questa ultima
538   caratteristica è vera in generale, se cioè si richiede più volte lo stesso
539   \textit{file lock}, o più blocchi sulla stessa sezione di file, le richieste
540   non si cumulano e basta una sola richiesta di rilascio per cancellare il
541   blocco.}  la cosa non ha alcun effetto; la funzione ritorna con successo,
542 senza che il kernel debba modificare la lista dei \textit{file lock}.
543
544 Con i \textit{file lock} POSIX invece si possono avere una serie di situazioni
545 diverse: ad esempio è possibile rimuovere con una sola chiamata più
546 \textit{file lock} distinti (indicando in una regione che si sovrapponga
547 completamente a quelle di questi ultimi), o rimuovere solo una parte di un
548 blocco preesistente (indicando una regione contenuta in quella di un altro
549 blocco), creando un buco, o coprire con un nuovo blocco altri \textit{file
550   lock} già ottenuti, e così via, a secondo di come si sovrappongono le
551 regioni richieste e del tipo di operazione richiesta.
552
553 Il comportamento seguito in questo caso è che la funzione ha successo ed
554 esegue l'operazione richiesta sulla regione indicata; è compito del kernel
555 preoccuparsi di accorpare o dividere le voci nella lista dei \textit{file
556   lock} per far sì che le regioni bloccate da essa risultanti siano coerenti
557 con quanto necessario a soddisfare l'operazione richiesta.
558
559 \begin{figure}[!htbp]
560   \footnotesize \centering
561   \begin{minipage}[c]{\codesamplewidth}
562     \includecodesample{listati/Flock.c}
563   \end{minipage}
564   \normalsize 
565   \caption{Sezione principale del codice del programma \file{Flock.c}.}
566   \label{fig:file_flock_code}
567 \end{figure}
568
569 Per fare qualche esempio sul \textit{file locking} si è scritto un programma che
570 permette di bloccare una sezione di un file usando la semantica POSIX, o un
571 intero file usando la semantica BSD; in fig.~\ref{fig:file_flock_code} è
572 riportata il corpo principale del codice del programma, (il testo completo è
573 allegato nella directory dei sorgenti, nel file \texttt{Flock.c}).
574
575 La sezione relativa alla gestione delle opzioni al solito si è omessa, come la
576 funzione che stampa le istruzioni per l'uso del programma, essa si cura di
577 impostare le variabili \var{type}, \var{start} e \var{len}; queste ultime due
578 vengono inizializzate al valore numerico fornito rispettivamente tramite gli
579 switch \code{-s} e \cmd{-l}, mentre il valore della prima viene impostato con
580 le opzioni \cmd{-w} e \cmd{-r} si richiede rispettivamente o un \textit{write
581   lock} o \textit{read lock} (i due valori sono esclusivi, la variabile
582 assumerà quello che si è specificato per ultimo). Oltre a queste tre vengono
583 pure impostate la variabile \var{bsd}, che abilita la semantica omonima quando
584 si invoca l'opzione \cmd{-f} (il valore preimpostato è nullo, ad indicare la
585 semantica POSIX), e la variabile \var{cmd} che specifica la modalità di
586 richiesta del \textit{file lock} (bloccante o meno), a seconda dell'opzione
587 \cmd{-b}.
588
589 Il programma inizia col controllare (\texttt{\small 11-14}) che venga passato
590 un argomento (il file da bloccare), che sia stato scelto (\texttt{\small
591   15-18}) il tipo di blocco, dopo di che apre (\texttt{\small 19}) il file,
592 uscendo (\texttt{\small 20-23}) in caso di errore. A questo punto il
593 comportamento dipende dalla semantica scelta; nel caso sia BSD occorre
594 reimpostare il valore di \var{cmd} per l'uso con \func{flock}; infatti il
595 valore preimpostato fa riferimento alla semantica POSIX e vale rispettivamente
596 \const{F\_SETLKW} o \const{F\_SETLK} a seconda che si sia impostato o meno la
597 modalità bloccante.
598
599 Nel caso si sia scelta la semantica BSD (\texttt{\small 25-34}) prima si
600 controlla (\texttt{\small 27-31}) il valore di \var{cmd} per determinare se
601 si vuole effettuare una chiamata bloccante o meno, reimpostandone il valore
602 opportunamente, dopo di che a seconda del tipo di blocco al valore viene
603 aggiunta la relativa opzione, con un OR aritmetico, dato che \func{flock}
604 vuole un argomento \param{operation} in forma di maschera binaria.  Nel caso
605 invece che si sia scelta la semantica POSIX le operazioni sono molto più
606 immediate si prepara (\texttt{\small 36-40}) la struttura per il lock, e lo
607 si esegue (\texttt{\small 41}).
608
609 In entrambi i casi dopo aver richiesto il blocco viene controllato il
610 risultato uscendo (\texttt{\small 44-46}) in caso di errore, o stampando un
611 messaggio (\texttt{\small 47-49}) in caso di successo. Infine il programma si
612 pone in attesa (\texttt{\small 50}) finché un segnale (ad esempio un \cmd{C-c}
613 dato da tastiera) non lo interrompa; in questo caso il programma termina, e
614 tutti i blocchi vengono rilasciati.
615
616 Con il programma possiamo fare varie verifiche sul funzionamento del
617 \textit{file locking}; cominciamo con l'eseguire un \textit{read lock} su un
618 file, ad esempio usando all'interno di un terminale il seguente comando:
619
620 \begin{Console}
621 [piccardi@gont sources]$ \textbf{./flock -r Flock.c}
622 Lock acquired
623 \end{Console}
624 %$
625 il programma segnalerà di aver acquisito un blocco e si bloccherà; in questo
626 caso si è usato il \textit{file locking} POSIX e non avendo specificato niente
627 riguardo alla sezione che si vuole bloccare sono stati usati i valori
628 preimpostati che bloccano tutto il file. A questo punto se proviamo ad
629 eseguire lo stesso comando in un altro terminale, e avremo lo stesso
630 risultato. Se invece proviamo ad eseguire un \textit{write lock} avremo:
631
632 \begin{Console}
633 [piccardi@gont sources]$ \textbf{./flock -w Flock.c}
634 Failed lock: Resource temporarily unavailable
635 \end{Console}
636 %$
637 come ci aspettiamo il programma terminerà segnalando l'indisponibilità del
638 blocco, dato che il file è bloccato dal precedente \textit{read lock}. Si noti
639 che il risultato è lo stesso anche se si richiede il blocco su una sola parte
640 del file con il comando:
641
642 \begin{Console}
643 [piccardi@gont sources]$ \textbf{./flock -w -s0 -l10 Flock.c}
644 Failed lock: Resource temporarily unavailable
645 \end{Console}
646 %$
647 se invece blocchiamo una regione con: 
648
649 \begin{Console}
650 [piccardi@gont sources]$ \textbf{./flock -r -s0 -l10 Flock.c}
651 Lock acquired
652 \end{Console}
653 %$
654 una volta che riproviamo ad acquisire il \textit{write lock} i risultati
655 dipenderanno dalla regione richiesta; ad esempio nel caso in cui le due
656 regioni si sovrappongono avremo che:
657
658 \begin{Console}
659 [piccardi@gont sources]$ \textbf{./flock -w -s5 -l15  Flock.c}
660 Failed lock: Resource temporarily unavailable
661 \end{Console}
662 %$
663 ed il blocco viene rifiutato, ma se invece si richiede una regione distinta
664 avremo che:
665
666 \begin{Console}
667 [piccardi@gont sources]$ \textbf{./flock -w -s11 -l15  Flock.c}
668 Lock acquired
669 \end{Console}
670 %$
671 ed il blocco viene acquisito. Se a questo punto si prova ad eseguire un
672 \textit{read lock} che comprende la nuova regione bloccata in scrittura:
673
674 \begin{Console}
675 [piccardi@gont sources]$ \textbf{./flock -r -s10 -l20 Flock.c}
676 Failed lock: Resource temporarily unavailable
677 \end{Console}
678 %$
679 come ci aspettiamo questo non sarà consentito.
680
681 Il programma di norma esegue il tentativo di acquisire il lock in modalità non
682 bloccante, se però usiamo l'opzione \cmd{-b} possiamo impostare la modalità
683 bloccante, riproviamo allora a ripetere le prove precedenti con questa
684 opzione:
685
686 \begin{Console}
687 [piccardi@gont sources]$ \textbf{./flock -r -b -s0 -l10 Flock.c} Lock acquired
688 \end{Console}
689 %$
690 il primo comando acquisisce subito un \textit{read lock}, e quindi non cambia
691 nulla, ma se proviamo adesso a richiedere un \textit{write lock} che non potrà
692 essere acquisito otterremo:
693
694 \begin{Console}
695 [piccardi@gont sources]$ \textbf{./flock -w -s0 -l10 Flock.c}
696 \end{Console}
697 %$
698 il programma cioè si bloccherà nella chiamata a \func{fcntl}; se a questo
699 punto rilasciamo il precedente blocco (terminando il primo comando un
700 \texttt{C-c} sul terminale) potremo verificare che sull'altro terminale il
701 blocco viene acquisito, con la comparsa di una nuova riga:
702
703 \begin{Console}
704 [piccardi@gont sources]$ \textbf{./flock -w -s0 -l10 Flock.c}
705 Lock acquired
706 \end{Console}
707 %$
708
709 Un'altra cosa che si può controllare con il nostro programma è l'interazione
710 fra i due tipi di blocco; se ripartiamo dal primo comando con cui si è
711 ottenuto un blocco in lettura sull'intero file, possiamo verificare cosa
712 succede quando si cerca di ottenere un blocco in scrittura con la semantica
713 BSD:
714
715 \begin{Console}
716 [root@gont sources]# \textbf{./flock -f -w Flock.c}
717 Lock acquired
718 \end{Console}
719 %$
720 che ci mostra come i due tipi di blocco siano assolutamente indipendenti; per
721 questo motivo occorre sempre tenere presente quale, fra le due semantiche
722 disponibili, stanno usando i programmi con cui si interagisce, dato che i
723 blocchi applicati con l'altra non avrebbero nessun effetto.
724
725 % \subsection{La funzione \func{lockf}}
726 % \label{sec:file_lockf}
727
728 Abbiamo visto come l'interfaccia POSIX per il \textit{file locking} sia molto
729 più potente e flessibile di quella di BSD, questo comporta anche una maggiore
730 complessità per via delle varie opzioni da passare a \func{fcntl}. Per questo
731 motivo è disponibile anche una interfaccia semplificata che utilizza la
732 funzione \funcd{lockf},\footnote{la funzione è ripresa da System V e per
733   poterla utilizzare è richiesta che siano definite le opportune macro, una
734   fra \macro{\_BSD\_SOURCE} o \macro{\_SVID\_SOURCE}, oppure
735   \macro{\_XOPEN\_SOURCE} ad un valore di almeno 500, oppure
736   \macro{\_XOPEN\_SOURCE} e \macro{\_XOPEN\_SOURCE\_EXTENDED}.} il cui
737 prototipo è:
738
739 \begin{funcproto}{
740 \fhead{unistd.h}
741 \fdecl{int lockf(int fd, int cmd, off\_t len)}
742 \fdesc{Applica, controlla o rimuove un \textit{file lock}.} 
743 }
744
745 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
746   caso \var{errno} assumerà uno dei valori: 
747   \begin{errlist}
748   \item[\errcode{EAGAIN}] il file è bloccato, e si sono richiesti
749     \const{F\_TLOCK} o \const{F\_TEST} (in alcuni casi può dare anche
750     \errcode{EACCESS}.
751   \item[\errcode{EBADF}] \param{fd} non è un file descriptor aperto o si sono
752     richiesti \const{F\_LOCK} o \const{F\_TLOCK} ma il file non è scrivibile.
753   \item[\errcode{EINVAL}] si è usato un valore non valido per \param{cmd}.
754   \end{errlist}
755   ed inoltre \errcode{EDEADLK} e \errcode{ENOLCK} con lo stesso significato
756   che hanno con \func{fcntl}.
757 }
758 \end{funcproto}
759   
760 La funzione opera sul file indicato dal file descriptor \param{fd}, che deve
761 essere aperto in scrittura, perché utilizza soltanto \textit{lock}
762 esclusivi. La sezione di file bloccata viene controllata dal valore
763 di \param{len}, che indica la lunghezza della stessa, usando come riferimento
764 la posizione corrente sul file. La sezione effettiva varia a secondo del
765 segno, secondo lo schema illustrato in fig.~\ref{fig:file_lockf_boundary}, se
766 si specifica un valore nullo il file viene bloccato a partire dalla posizione
767 corrente fino alla sua fine presente o futura (nello schema corrisponderebbe
768 ad un valore infinito positivo).
769
770 \begin{figure}[!htb] 
771   \centering
772   \includegraphics[width=10cm]{img/lockf_boundary}
773   \caption{Schema della sezione di file bloccata con \func{lockf}.}
774   \label{fig:file_lockf_boundary}
775 \end{figure}
776
777 Il comportamento della funzione viene controllato dal valore
778 dell'argomento \param{cmd}, che specifica quale azione eseguire, i soli valori
779 consentiti sono i seguenti:
780
781 \begin{basedescript}{\desclabelwidth{2.0cm}}
782 \item[\constd{F\_LOCK}] Richiede un \textit{lock} esclusivo sul file, e blocca
783   il processo chiamante se, anche parzialmente, la sezione indicata si
784   sovrappone ad una che è già stata bloccata da un altro processo; in caso di
785   sovrapposizione con un altro blocco già ottenuto le sezioni vengono unite.
786 \item[\constd{F\_TLOCK}] Richiede un \textit{exclusive lock}, in maniera
787   identica a \const{F\_LOCK}, ma in caso di indisponibilità non blocca il
788   processo restituendo un errore di \errval{EAGAIN}.
789 \item[\constd{F\_ULOCK}] Rilascia il blocco sulla sezione indicata, questo può
790   anche causare la suddivisione di una sezione bloccata in precedenza nelle
791   due parti eccedenti nel caso si sia indicato un intervallo più limitato.
792 \item[\constd{F\_TEST}] Controlla la presenza di un blocco sulla sezione di
793   file indicata, \func{lockf} ritorna $0$ se la sezione è libera o bloccata
794   dal processo stesso, o $-1$ se è bloccata da un altro processo, nel qual
795   caso \var{errno} assume il valore \errval{EAGAIN} (ma su alcuni sistemi può
796   essere restituito anche \errval{EACCESS}).
797 \end{basedescript}
798
799 La funzione è semplicemente una diversa interfaccia al \textit{file locking}
800 POSIX ed è realizzata utilizzando \func{fcntl}; pertanto la semantica delle
801 operazioni è la stessa di quest'ultima e quindi la funzione presenta lo stesso
802 comportamento riguardo gli effetti della chiusura dei file, ed il
803 comportamento sui file duplicati e nel passaggio attraverso \func{fork} ed
804 \func{exec}. Per questo stesso motivo la funzione non è equivalente a
805 \func{flock} e può essere usata senza interferenze insieme a quest'ultima.
806
807
808 \subsection{Gli \textit{open file descriptor locks}}
809 \label{sec:open_file_descriptor_locks}
810
811 Come illustrato in dettaglio nella precedente sez.~\ref{sec:file_posix_lock},
812 la chiusura di un file su cui sono presenti dei \textit{file lock} comporta
813 l'immediato rilascio degli stessi, anche se questi sono stati acquisiti da un
814 processo diverso. 
815
816 da finire.
817
818 % TODO trattare i POSIX file-private lock introdotti con il 3.15, 
819 % vedi http://lwn.net/Articles/586904/ correlato:
820 % http://www.samba.org/samba/news/articles/low_point/tale_two_stds_os2.html 
821
822 \subsection{Il \textit{mandatory locking}}
823 \label{sec:file_mand_locking}
824
825 \itindbeg{mandatory~locking}
826
827 Il \textit{mandatory locking} è una opzione introdotta inizialmente in SVr4,
828 per introdurre un \textit{file locking} che, come dice il nome, fosse
829 effettivo indipendentemente dai controlli eseguiti da un processo. Con il
830 \textit{mandatory locking} infatti è possibile far eseguire il blocco del file
831 direttamente al sistema, così che, anche qualora non si predisponessero le
832 opportune verifiche nei processi, questo verrebbe comunque rispettato.
833
834 Per poter utilizzare il \textit{mandatory locking} è stato introdotto un
835 utilizzo particolare del bit \acr{sgid} dei permessi dei file. Se si ricorda
836 quanto esposto in sez.~\ref{sec:file_special_perm}), esso viene di norma
837 utilizzato per cambiare il \ids{GID} effettivo con cui viene eseguito un
838 programma, ed è pertanto sempre associato alla presenza del permesso di
839 esecuzione per il gruppo. Impostando questo bit su un file senza permesso di
840 esecuzione in un sistema che supporta il \textit{mandatory locking}, fa sì che
841 quest'ultimo venga attivato per il file in questione. In questo modo una
842 combinazione dei permessi originariamente non contemplata, in quanto senza
843 significato, diventa l'indicazione della presenza o meno del \textit{mandatory
844   locking}.\footnote{un lettore attento potrebbe ricordare quanto detto in
845   sez.~\ref{sec:file_perm_management} e cioè che il bit \acr{sgid} viene
846   cancellato (come misura di sicurezza) quando di scrive su un file, questo
847   non vale quando esso viene utilizzato per attivare il \textit{mandatory
848     locking}.}
849
850 L'uso del \textit{mandatory locking} presenta vari aspetti delicati, dato che
851 neanche l'amministratore può passare sopra ad un \textit{file lock}; pertanto
852 un processo che blocchi un file cruciale può renderlo completamente
853 inaccessibile, rendendo completamente inutilizzabile il sistema\footnote{il
854   problema si potrebbe risolvere rimuovendo il bit \acr{sgid}, ma non è detto
855   che sia così facile fare questa operazione con un sistema bloccato.}
856 inoltre con il \textit{mandatory locking} si può bloccare completamente un
857 server NFS richiedendo una lettura su un file su cui è attivo un blocco. Per
858 questo motivo l'abilitazione del \textit{mandatory locking} è di norma
859 disabilitata, e deve essere attivata filesystem per filesystem in fase di
860 montaggio, specificando l'apposita opzione di \func{mount} riportata in
861 sez.~\ref{sec:filesystem_mounting}, o con l'opzione \code{-o mand} per il
862 comando omonimo.
863
864 Si tenga presente inoltre che il \textit{mandatory locking} funziona solo
865 sull'interfaccia POSIX di \func{fcntl}. Questo ha due conseguenze: che non si
866 ha nessun effetto sui \textit{file lock} richiesti con l'interfaccia di
867 \func{flock}, e che la granularità del blocco è quella del singolo byte, come
868 per \func{fcntl}.
869
870 La sintassi di acquisizione dei blocchi è esattamente la stessa vista in
871 precedenza per \func{fcntl} e \func{lockf}, la differenza è che in caso di
872 \textit{mandatory lock} attivato non è più necessario controllare la
873 disponibilità di accesso al file, ma si potranno usare direttamente le
874 ordinarie funzioni di lettura e scrittura e sarà compito del kernel gestire
875 direttamente il \textit{file locking}.
876
877 Questo significa che in caso di \textit{read lock} la lettura dal file potrà
878 avvenire normalmente con \func{read}, mentre una \func{write} si bloccherà
879 fino al rilascio del blocco, a meno di non aver aperto il file con
880 \const{O\_NONBLOCK}, nel qual caso essa ritornerà immediatamente con un errore
881 di \errcode{EAGAIN}.
882
883 Se invece si è acquisito un \textit{write lock} tutti i tentativi di leggere o
884 scrivere sulla regione del file bloccata fermeranno il processo fino al
885 rilascio del blocco, a meno che il file non sia stato aperto con
886 \const{O\_NONBLOCK}, nel qual caso di nuovo si otterrà un ritorno immediato
887 con l'errore di \errcode{EAGAIN}.
888
889 Infine occorre ricordare che le funzioni di lettura e scrittura non sono le
890 sole ad operare sui contenuti di un file, e che sia \func{creat} che
891 \func{open} (quando chiamata con \const{O\_TRUNC}) effettuano dei cambiamenti,
892 così come \func{truncate}, riducendone le dimensioni (a zero nei primi due
893 casi, a quanto specificato nel secondo). Queste operazioni sono assimilate a
894 degli accessi in scrittura e pertanto non potranno essere eseguite (fallendo
895 con un errore di \errcode{EAGAIN}) su un file su cui sia presente un qualunque
896 blocco (le prime due sempre, la terza solo nel caso che la riduzione delle
897 dimensioni del file vada a sovrapporsi ad una regione bloccata).
898
899 L'ultimo aspetto della interazione del \textit{mandatory locking} con le
900 funzioni di accesso ai file è quello relativo ai file mappati in memoria (vedi
901 sez.~\ref{sec:file_memory_map}); anche in tal caso infatti, quando si esegue
902 la mappatura con l'opzione \const{MAP\_SHARED}, si ha un accesso al contenuto
903 del file. Lo standard SVID prevede che sia impossibile eseguire il
904 \textit{memory mapping} di un file su cui sono presenti dei
905 blocchi\footnote{alcuni sistemi, come HP-UX, sono ancora più restrittivi e lo
906   impediscono anche in caso di \textit{advisory locking}, anche se questo
907   comportamento non ha molto senso, dato che comunque qualunque accesso
908   diretto al file è consentito.} in Linux è stata però fatta la scelta
909 implementativa\footnote{per i dettagli si possono leggere le note relative
910   all'implementazione, mantenute insieme ai sorgenti del kernel nel file
911   \file{Documentation/mandatory.txt}.}  di seguire questo comportamento
912 soltanto quando si chiama \func{mmap} con l'opzione \const{MAP\_SHARED} (nel
913 qual caso la funzione fallisce con il solito \errcode{EAGAIN}) che comporta la
914 possibilità di modificare il file.
915
916 Si tenga conto infine che su Linux l'implementazione corrente del
917 \textit{mandatory locking} è difettosa e soffre di una \textit{race
918   condition}, per cui una scrittura con \func{write} che si sovrapponga alla
919 richiesta di un \textit{read lock} può modificare i dati anche dopo che questo
920 è stato ottenuto, ed una lettura con \func{read} può restituire dati scritti
921 dopo l'ottenimento di un \textit{write lock}. Lo stesso tipo di problema si
922 può presentare anche con l'uso di file mappati in memoria; pertanto allo stato
923 attuale delle cose è sconsigliabile fare affidamento sul \textit{mandatory
924   locking}.
925
926 % TODO il supporto è stato reso opzionale nel 4.5, verrà eliminato nel futuro
927 % (vedi http://lwn.net/Articles/667210/)
928
929 \itindend{file~locking}
930
931 \itindend{mandatory~locking}
932
933
934 \section{L'\textit{I/O multiplexing}}
935 \label{sec:file_multiplexing}
936
937
938 Uno dei problemi che si presentano quando si deve operare contemporaneamente
939 su molti file usando le funzioni illustrate in
940 sez.~\ref{sec:file_unix_interface} e sez.~\ref{sec:files_std_interface} è che
941 si può essere bloccati nelle operazioni su un file mentre un altro potrebbe
942 essere disponibile. L'\textit{I/O multiplexing} nasce risposta a questo
943 problema. In questa sezione forniremo una introduzione a questa problematica
944 ed analizzeremo le varie funzioni usate per implementare questa modalità di
945 I/O.
946
947
948 \subsection{La problematica dell'\textit{I/O multiplexing}}
949 \label{sec:file_noblocking}
950
951 Abbiamo visto in sez.~\ref{sec:sig_gen_beha}, affrontando la suddivisione fra
952 \textit{fast} e \textit{slow} \textit{system call}, che in certi casi le
953 funzioni di I/O eseguite su un file descriptor possono bloccarsi
954 indefinitamente. Questo non avviene mai per i file normali, per i quali le
955 funzioni di lettura e scrittura ritornano sempre subito, ma può avvenire per
956 alcuni file di dispositivo, come ad esempio una seriale o un terminale, o con
957 l'uso di file descriptor collegati a meccanismi di intercomunicazione come le
958 \textit{pipe} (vedi sez.~\ref{sec:ipc_unix}) ed i socket (vedi
959 sez.~\ref{sec:sock_socket_def}). In casi come questi ad esempio una operazione
960 di lettura potrebbe bloccarsi se non ci sono dati disponibili sul descrittore
961 su cui la si sta effettuando.
962
963 Questo comportamento è alla radice di una delle problematiche più comuni che
964 ci si trova ad affrontare nella gestione delle operazioni di I/O: la necessità
965 di operare su più file descriptor eseguendo funzioni che possono bloccarsi
966 indefinitamente senza che sia possibile prevedere quando questo può
967 avvenire. Un caso classico è quello di un server di rete (tratteremo la
968 problematica in dettaglio nella seconda parte della guida) in attesa di dati
969 in ingresso prevenienti da vari client.
970
971 In un caso di questo tipo, se si andasse ad operare sui vari file descriptor
972 aperti uno dopo l'altro, potrebbe accadere di restare bloccati nell'eseguire
973 una lettura su uno di quelli che non è ``\textsl{pronto}'', quando ce ne
974 potrebbe essere un altro con dati disponibili. Questo comporta nel migliore
975 dei casi una operazione ritardata inutilmente nell'attesa del completamento di
976 quella bloccata, mentre nel peggiore dei casi, quando la conclusione
977 dell'operazione bloccata dipende da quanto si otterrebbe dal file descriptor
978 ``\textsl{disponibile}'', si potrebbe addirittura arrivare ad un
979 \textit{deadlock}.
980
981 \itindbeg{polling}
982
983 Abbiamo già accennato in sez.~\ref{sec:file_open_close} che è possibile
984 prevenire questo tipo di comportamento delle funzioni di I/O aprendo un file
985 in \textsl{modalità non-bloccante}, attraverso l'uso del flag
986 \const{O\_NONBLOCK} nella chiamata di \func{open}. In questo caso le funzioni
987 di lettura o scrittura eseguite sul file che si sarebbero bloccate ritornano
988 immediatamente, restituendo l'errore \errcode{EAGAIN}.  L'utilizzo di questa
989 modalità di I/O permette di risolvere il problema controllando a turno i vari
990 file descriptor, in un ciclo in cui si ripete l'accesso fintanto che esso non
991 viene garantito. Ovviamente questa tecnica, detta \textit{polling}, è
992 estremamente inefficiente: si tiene costantemente impiegata la CPU solo per
993 eseguire in continuazione delle \textit{system call} che nella gran parte dei
994 casi falliranno.
995
996 \itindend{polling}
997
998 É appunto per superare questo problema è stato introdotto il concetto di
999 \textit{I/O multiplexing}, una nuova modalità per la gestione dell'I/O che
1000 consente di tenere sotto controllo più file descriptor in contemporanea,
1001 permettendo di bloccare un processo quando le operazioni di lettura o
1002 scrittura non sono immediatamente effettuabili, e di riprenderne l'esecuzione
1003 una volta che almeno una di quelle che erano state richieste diventi
1004 possibile, in modo da poterla eseguire con la sicurezza di non restare
1005 bloccati.
1006
1007 Dato che, come abbiamo già accennato, per i normali file su disco non si ha
1008 mai un accesso bloccante, l'uso più comune delle funzioni che esamineremo nei
1009 prossimi paragrafi è per i server di rete, in cui esse vengono utilizzate per
1010 tenere sotto controllo dei socket; pertanto ritorneremo su di esse con
1011 ulteriori dettagli e qualche esempio di utilizzo concreto in
1012 sez.~\ref{sec:TCP_sock_multiplexing}.
1013
1014
1015 \subsection{Le funzioni \func{select} e \func{pselect}}
1016 \label{sec:file_select}
1017
1018 Il primo kernel unix-like ad introdurre una interfaccia per l'\textit{I/O
1019   multiplexing} è stato BSD, con la funzione \funcd{select} che è apparsa in
1020 BSD4.2 ed è stata standardizzata in BSD4.4, in seguito è stata portata su
1021 tutti i sistemi che supportano i socket, compreso le varianti di System V ed
1022 inserita in POSIX.1-2001; il suo prototipo è:\footnote{l'header
1023   \texttt{sys/select.h} è stato introdotto con POSIX.1-2001, è ed presente con
1024   la \acr{glibc} a partire dalla versione 2.0, in precedenza, con le
1025   \acr{libc4} e \acr{libc5}, occorreva includere \texttt{sys/time.h},
1026   \texttt{sys/types.h} e \texttt{unistd.h}.}
1027
1028 \begin{funcproto}{
1029 \fhead{sys/select.h}
1030 \fdecl{int select(int ndfs, fd\_set *readfds, fd\_set *writefds, fd\_set
1031     *exceptfds, \\
1032 \phantom{int select(}struct timeval *timeout)}
1033 \fdesc{Attende che uno fra i file descriptor degli insiemi specificati diventi
1034   attivo.} 
1035 }
1036 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1037   caso \var{errno} assumerà uno dei valori: 
1038   \begin{errlist}
1039   \item[\errcode{EBADF}] si è specificato un file descriptor non valido
1040     (chiuso o con errori) in uno degli insiemi.
1041   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1042   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
1043     o un valore non valido per \param{timeout}.
1044   \end{errlist}
1045   ed inoltre \errval{ENOMEM} nel suo significato generico.}
1046 \end{funcproto}
1047
1048 La funzione mette il processo in stato di \textit{sleep} (vedi
1049 tab.~\ref{tab:proc_proc_states}) fintanto che almeno uno dei file descriptor
1050 degli insiemi specificati (\param{readfds}, \param{writefds} e
1051 \param{exceptfds}), non diventa attivo, per un tempo massimo specificato da
1052 \param{timeout}.
1053
1054 \itindbeg{file~descriptor~set} 
1055
1056 Per specificare quali file descriptor si intende selezionare la funzione usa
1057 un particolare oggetto, il \textit{file descriptor set}, identificato dal tipo
1058 \typed{fd\_set}, che serve ad identificare un insieme di file descriptor, in
1059 maniera analoga a come un \textit{signal set} (vedi sez.~\ref{sec:sig_sigset})
1060 identifica un insieme di segnali. Per la manipolazione di questi \textit{file
1061   descriptor set} si possono usare delle opportune macro di preprocessore:
1062
1063 {\centering
1064 \vspace{3pt}
1065 \begin{funcbox}{
1066 \fhead{sys/select.h}
1067 \fdecl{void \macrod{FD\_ZERO}(fd\_set *set)}
1068 \fdesc{Inizializza l'insieme (vuoto).} 
1069 \fdecl{void \macrod{FD\_SET}(int fd, fd\_set *set)}
1070 \fdesc{Inserisce il file descriptor \param{fd} nell'insieme.} 
1071 \fdecl{void \macrod{FD\_CLR}(int fd, fd\_set *set)}
1072 \fdesc{Rimuove il file descriptor \param{fd} dall'insieme.} 
1073 \fdecl{int \macrod{FD\_ISSET}(int fd, fd\_set *set)}
1074 \fdesc{Controlla se il file descriptor \param{fd} è nell'insieme.} 
1075 }
1076 \end{funcbox}}
1077
1078
1079 In genere un \textit{file descriptor set} può contenere fino ad un massimo di
1080 \macrod{FD\_SETSIZE} file descriptor.  Questo valore in origine corrispondeva
1081 al limite per il numero massimo di file aperti (ad esempio in Linux, fino alla
1082 serie 2.0.x, c'era un limite di 256 file per processo), ma da quando, nelle
1083 versioni più recenti del kernel, questo limite è stato rimosso, esso indica le
1084 dimensioni massime dei numeri usati nei \textit{file descriptor set}, ed il
1085 suo valore, secondo lo standard POSIX 1003.1-2001, è definito in
1086 \headfile{sys/select.h}, ed è pari a 1024.
1087
1088 Si tenga presente che i \textit{file descriptor set} devono sempre essere
1089 inizializzati con \macro{FD\_ZERO}; passare a \func{select} un valore non
1090 inizializzato può dar luogo a comportamenti non prevedibili. Allo stesso modo
1091 usare \macro{FD\_SET} o \macro{FD\_CLR} con un file descriptor il cui valore
1092 eccede \macro{FD\_SETSIZE} può dare luogo ad un comportamento indefinito.
1093
1094 La funzione richiede di specificare tre insiemi distinti di file descriptor;
1095 il primo, \param{readfds}, verrà osservato per rilevare la disponibilità di
1096 effettuare una lettura,\footnote{per essere precisi la funzione ritornerà in
1097   tutti i casi in cui la successiva esecuzione di \func{read} risulti non
1098   bloccante, quindi anche in caso di \textit{end-of-file}.} il secondo,
1099 \param{writefds}, per verificare la possibilità di effettuare una scrittura ed
1100 il terzo, \param{exceptfds}, per verificare l'esistenza di eccezioni come i
1101 dati urgenti su un socket, (vedi sez.~\ref{sec:TCP_urgent_data}).
1102
1103 Dato che in genere non si tengono mai sotto controllo fino a
1104 \macro{FD\_SETSIZE} file contemporaneamente, la funzione richiede di
1105 specificare qual è il valore più alto fra i file descriptor indicati nei tre
1106 insiemi precedenti. Questo viene fatto per efficienza, per evitare di passare
1107 e far controllare al kernel una quantità di memoria superiore a quella
1108 necessaria. Questo limite viene indicato tramite l'argomento \param{ndfs}, che
1109 deve corrispondere al valore massimo aumentato di uno. Si ricordi infatti che
1110 i file descriptor sono numerati progressivamente a partire da zero, ed il
1111 valore indica il numero più alto fra quelli da tenere sotto controllo,
1112 dimenticarsi di aumentare di uno il valore di \param{ndfs} è un errore comune.
1113
1114 Infine l'argomento \param{timeout}, espresso con il puntatore ad una struttura
1115 di tipo \struct{timeval} (vedi fig.~\ref{fig:sys_timeval_struct}) specifica un
1116 tempo massimo di attesa prima che la funzione ritorni; se impostato a
1117 \val{NULL} la funzione attende indefinitamente. Si può specificare anche un
1118 tempo nullo (cioè una struttura \struct{timeval} con i campi impostati a
1119 zero), qualora si voglia semplicemente controllare lo stato corrente dei file
1120 descriptor, e così può essere utilizzata eseguire il \textit{polling} su un
1121 gruppo di file descriptor. Usare questo argomento con tutti i \textit{file
1122   descriptor set} vuoti è un modo portabile, disponibile anche su sistemi in
1123 cui non sono disponibili le funzioni avanzate di sez.~\ref{sec:sig_timer_adv},
1124 per tenere un processo in stato di \textit{sleep} con precisioni inferiori al
1125 secondo.
1126
1127 In caso di successo la funzione restituisce il numero di file descriptor
1128 pronti, seguendo il comportamento previsto dallo standard
1129 POSIX.1-2001,\footnote{si tenga però presente che esistono alcune versioni di
1130   Unix che non si comportano in questo modo, restituendo un valore positivo
1131   generico.}  e ciascun insieme viene sovrascritto per indicare quali sono i
1132 file descriptor pronti per le operazioni ad esso relative, in modo da poterli
1133 controllare con \macro{FD\_ISSET}.  Se invece scade il tempo indicato
1134 da \param{timout} viene restituito un valore nullo e i \textit{file descriptor
1135   set} non vengono modificati. In caso di errore la funzione restituisce $-1$, i
1136 valori dei tre insiemi e di \param{timeout} sono indefiniti e non si può fare
1137 nessun affidamento sul loro contenuto; nelle versioni più recenti della
1138 funzione invece i \textit{file descriptor set} non vengono modificati anche in
1139 caso di errore.
1140
1141 Si tenga presente infine che su Linux, in caso di programmazione
1142 \textit{multi-thread} se un file descriptor viene chiuso in un altro
1143 \textit{thread} rispetto a quello in cui si sta usando \func{select}, questa
1144 non subisce nessun effetto. In altre varianti di sistemi unix-like invece
1145 \func{select} ritorna indicando che il file descriptor è pronto, con
1146 conseguente possibile errore nel caso lo si usi senza che sia stato
1147 riaperto. Lo standard non prevede niente al riguardo e non si deve dare per
1148 assunto nessuno dei due comportamenti se si vogliono scrivere programmi
1149 portabili.
1150
1151 \itindend{file~descriptor~set}
1152
1153 Una volta ritornata la funzione, si potrà controllare quali sono i file
1154 descriptor pronti, ed operare su di essi. Si tenga presente però che
1155 \func{select} fornisce solo di un suggerimento, esistono infatti condizioni in
1156 cui \func{select} può riportare in maniera spuria che un file descriptor è
1157 pronto, ma l'esecuzione di una operazione di I/O si bloccherebbe: ad esempio
1158 con Linux questo avviene quando su un socket arrivano dei dati che poi vengono
1159 scartati perché corrotti (ma sono possibili pure altri casi); in tal caso pur
1160 risultando il relativo file descriptor pronto in lettura una successiva
1161 esecuzione di una \func{read} si bloccherebbe. Per questo motivo quando si usa
1162 l'\textit{I/O multiplexing} è sempre raccomandato l'uso delle funzioni di
1163 lettura e scrittura in modalità non bloccante.
1164
1165 Su Linux quando la \textit{system call} \func{select} viene interrotta da un
1166 segnale modifica il valore nella struttura puntata da \param{timeout},
1167 impostandolo al tempo restante. In tal caso infatti si ha un errore di
1168 \errcode{EINTR} ed occorre rilanciare la funzione per proseguire l'attesa, ed
1169 in questo modo non è necessario ricalcolare tutte le volte il tempo
1170 rimanente. Questo può causare problemi di portabilità sia quando si usa codice
1171 scritto su Linux che legge questo valore, sia quando si usano programmi
1172 scritti per altri sistemi che non dispongono di questa caratteristica e
1173 ricalcolano \param{timeout} tutte le volte. In genere questa caratteristica è
1174 disponibile nei sistemi che derivano da System V e non è disponibile per
1175 quelli che derivano da BSD; lo standard POSIX.1-2001 non permette questo
1176 comportamento e per questo motivo la \acr{glibc} nasconde il comportamento
1177 passando alla \textit{system call} una copia dell'argomento \param{timeout}.
1178
1179 Uno dei problemi che si presentano con l'uso di \func{select} è che il suo
1180 comportamento dipende dal valore del file descriptor che si vuole tenere sotto
1181 controllo.  Infatti il kernel riceve con \param{ndfs} un limite massimo per
1182 tale valore, e per capire quali sono i file descriptor da tenere sotto
1183 controllo dovrà effettuare una scansione su tutto l'intervallo, che può anche
1184 essere molto ampio anche se i file descriptor sono solo poche unità; tutto ciò
1185 ha ovviamente delle conseguenze ampiamente negative per le prestazioni.
1186
1187 Inoltre c'è anche il problema che il numero massimo dei file che si possono
1188 tenere sotto controllo, la funzione è nata quando il kernel consentiva un
1189 numero massimo di 1024 file descriptor per processo, adesso che il numero può
1190 essere arbitrario si viene a creare una dipendenza del tutto artificiale dalle
1191 dimensioni della struttura \type{fd\_set}, che può necessitare di essere
1192 estesa, con ulteriori perdite di prestazioni. 
1193
1194 Lo standard POSIX è rimasto a lungo senza primitive per l'\textit{I/O
1195   multiplexing}, introdotto solo con le ultime revisioni dello standard (POSIX
1196 1003.1g-2000 e POSIX 1003.1-2001). La scelta è stata quella di seguire
1197 l'interfaccia creata da BSD, ma prevede che tutte le funzioni ad esso relative
1198 vengano dichiarate nell'header \headfiled{sys/select.h}, che sostituisce i
1199 precedenti, ed inoltre aggiunge a \func{select} una nuova funzione
1200 \funcd{pselect},\footnote{il supporto per lo standard POSIX 1003.1-2001, ed
1201   l'header \headfile{sys/select.h}, compaiono in Linux a partire dalla
1202   \acr{glibc} 2.1. Le \acr{libc4} e \acr{libc5} non contengono questo header,
1203   la \acr{glibc} 2.0 contiene una definizione sbagliata di \func{psignal},
1204   senza l'argomento \param{sigmask}, la definizione corretta è presente dalle
1205   \acr{glibc} 2.1-2.2.1 se si è definito \macro{\_GNU\_SOURCE} e nelle
1206   \acr{glibc} 2.2.2-2.2.4 se si è definito \macro{\_XOPEN\_SOURCE} con valore
1207   maggiore di 600.} il cui prototipo è:
1208
1209 \begin{funcproto}{
1210 \fhead{sys/select.h}
1211 \fdecl{int pselect(int n, fd\_set *readfds, fd\_set *writefds, 
1212   fd\_set *exceptfds, \\ 
1213 \phantom{int pselect(}struct timespec *timeout, sigset\_t *sigmask)}
1214 \fdesc{Attende che uno dei file descriptor degli insiemi specificati diventi
1215   attivo.} 
1216 }
1217 {La funzione ritorna il numero (anche nullo) di file descriptor che sono
1218   attivi in caso di successo e $-1$ per un errore, nel qual caso \var{errno}
1219   assumerà uno dei valori:
1220   \begin{errlist}
1221   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1222     degli insiemi.
1223   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1224   \item[\errcode{EINVAL}] si è specificato per \param{ndfs} un valore negativo
1225     o un valore non valido per \param{timeout}.
1226    \end{errlist}
1227    ed inoltre \errval{ENOMEM} nel suo significato generico.
1228 }
1229 \end{funcproto}
1230
1231 La funzione è sostanzialmente identica a \func{select}, solo che usa una
1232 struttura \struct{timespec} (vedi fig.~\ref{fig:sys_timespec_struct}) per
1233 indicare con maggiore precisione il timeout e non ne aggiorna il valore in
1234 caso di interruzione. In realtà anche in questo caso la \textit{system call}
1235 di Linux aggiorna il valore al tempo rimanente, ma la funzione fornita dalla
1236 \acr{glibc} modifica questo comportamento passando alla \textit{system call}
1237 una variabile locale, in modo da mantenere l'aderenza allo standard POSIX che
1238 richiede che il valore di \param{timeout} non sia modificato. 
1239
1240 Rispetto a \func{select} la nuova funzione prende un argomento
1241 aggiuntivo \param{sigmask}, un puntatore ad una maschera di segnali (si veda
1242 sez.~\ref{sec:sig_sigmask}).  Nell'esecuzione la maschera dei segnali corrente
1243 viene sostituita da quella così indicata immediatamente prima di eseguire
1244 l'attesa, e viene poi ripristinata al ritorno della funzione. L'uso
1245 di \param{sigmask} è stato introdotto allo scopo di prevenire possibili
1246 \textit{race condition} quando oltre alla presenza di dati sui file descriptor
1247 come nella \func{select} ordinaria, ci si deve porre in attesa anche
1248 dell'arrivo di un segnale.
1249
1250 Come abbiamo visto in sez.~\ref{sec:sig_example} la tecnica classica per
1251 rilevare l'arrivo di un segnale è quella di utilizzare il gestore per
1252 impostare una variabile globale e controllare questa nel corpo principale del
1253 programma; abbiamo visto in quell'occasione come questo lasci spazio a
1254 possibili \textit{race condition}, per cui diventa essenziale utilizzare
1255 \func{sigprocmask} per disabilitare la ricezione del segnale prima di eseguire
1256 il controllo e riabilitarlo dopo l'esecuzione delle relative operazioni, onde
1257 evitare l'arrivo di un segnale immediatamente dopo il controllo, che andrebbe
1258 perso.
1259
1260 Nel nostro caso il problema si pone quando, oltre al segnale, si devono tenere
1261 sotto controllo anche dei file descriptor con \func{select}, in questo caso si
1262 può fare conto sul fatto che all'arrivo di un segnale essa verrebbe interrotta
1263 e si potrebbero eseguire di conseguenza le operazioni relative al segnale e
1264 alla gestione dati con un ciclo del tipo:
1265 \includecodesnip{listati/select_race.c} 
1266 qui però emerge una \textit{race condition}, perché se il segnale arriva prima
1267 della chiamata a \func{select}, questa non verrà interrotta, e la ricezione
1268 del segnale non sarà rilevata.
1269
1270 Per questo è stata introdotta \func{pselect} che attraverso l'argomento
1271 \param{sigmask} permette di riabilitare la ricezione il segnale
1272 contestualmente all'esecuzione della funzione,\footnote{in Linux però, fino al
1273   kernel 2.6.16, non era presente la relativa \textit{system call}, e la
1274   funzione era implementata nella \acr{glibc} attraverso \func{select} (vedi
1275   \texttt{man select\_tut}) per cui la possibilità di \textit{race condition}
1276   permaneva; in tale situazione si può ricorrere ad una soluzione alternativa,
1277   chiamata \itindex{self-pipe~trick} \textit{self-pipe trick}, che consiste
1278   nell'aprire una \textit{pipe} (vedi sez.~\ref{sec:ipc_pipes}) ed usare
1279   \func{select} sul capo in lettura della stessa; si può indicare l'arrivo di
1280   un segnale scrivendo sul capo in scrittura all'interno del gestore dello
1281   stesso; in questo modo anche se il segnale va perso prima della chiamata di
1282   \func{select} questa lo riconoscerà comunque dalla presenza di dati sulla
1283   \textit{pipe}.} ribloccandolo non appena essa ritorna, così che il
1284 precedente codice potrebbe essere riscritto nel seguente modo:
1285 \includecodesnip{listati/pselect_norace.c} 
1286 in questo caso utilizzando \var{oldmask} durante l'esecuzione di
1287 \func{pselect} la ricezione del segnale sarà abilitata, ed in caso di
1288 interruzione si potranno eseguire le relative operazioni.
1289
1290
1291 \subsection{Le funzioni \func{poll} e \func{ppoll}}
1292 \label{sec:file_poll}
1293
1294 Nello sviluppo di System V, invece di utilizzare l'interfaccia di
1295 \func{select}, che è una estensione tipica di BSD, è stata introdotta una
1296 interfaccia completamente diversa, basata sulla funzione di sistema
1297 \funcd{poll},\footnote{la funzione è prevista dallo standard XPG4, ed è stata
1298   introdotta in Linux come \textit{system call} a partire dal kernel 2.1.23 ed
1299   inserita nelle \acr{libc} 5.4.28, originariamente l'argomento \param{nfds}
1300   era di tipo \ctyp{unsigned int}, la funzione è stata inserita nello standard
1301   POSIX.1-2001 in cui è stato introdotto il tipo nativo \typed{nfds\_t}.} il
1302 cui prototipo è:
1303
1304 \begin{funcproto}{
1305 \fhead{sys/poll.h}
1306 \fdecl{int poll(struct pollfd *ufds, nfds\_t nfds, int timeout)}
1307 \fdesc{Attende un cambiamento di stato su un insieme di file
1308   descriptor.} 
1309 }
1310
1311 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1312   caso \var{errno} assumerà uno dei valori: 
1313   \begin{errlist}
1314   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1315     degli insiemi.
1316   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1317   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1318     \const{RLIMIT\_NOFILE}.
1319   \end{errlist}
1320   ed inoltre \errval{EFAULT} e \errval{ENOMEM} nel loro significato generico.}
1321 \end{funcproto}
1322
1323 La funzione permette di tenere sotto controllo contemporaneamente \param{ndfs}
1324 file descriptor, specificati attraverso il puntatore \param{ufds} ad un
1325 vettore di strutture \struct{pollfd}.  Come con \func{select} si può
1326 interrompere l'attesa dopo un certo tempo, questo deve essere specificato con
1327 l'argomento \param{timeout} in numero di millisecondi: un valore negativo
1328 indica un'attesa indefinita, mentre un valore nullo comporta il ritorno
1329 immediato, e può essere utilizzato per impiegare \func{poll} in modalità
1330 \textsl{non-bloccante}.
1331
1332 \begin{figure}[!htb]
1333   \footnotesize \centering
1334   \begin{minipage}[c]{0.90\textwidth}
1335     \includestruct{listati/pollfd.h}
1336   \end{minipage} 
1337   \normalsize 
1338   \caption{La struttura \structd{pollfd}, utilizzata per specificare le
1339     modalità di controllo di un file descriptor alla funzione \func{poll}.}
1340   \label{fig:file_pollfd}
1341 \end{figure}
1342
1343 Per ciascun file da controllare deve essere inizializzata una struttura
1344 \struct{pollfd} nel vettore indicato dall'argomento \param{ufds}.  La
1345 struttura, la cui definizione è riportata in fig.~\ref{fig:file_pollfd},
1346 prevede tre campi: in \var{fd} deve essere indicato il numero del file
1347 descriptor da controllare, in \var{events} deve essere specificata una
1348 maschera binaria di flag che indichino il tipo di evento che si vuole
1349 controllare, mentre in \var{revents} il kernel restituirà il relativo
1350 risultato. 
1351
1352 Usando un valore negativo per \param{fd} la corrispondente struttura sarà
1353 ignorata da \func{poll} ed il campo \var{revents} verrà azzerato, questo
1354 consente di eliminare temporaneamente un file descriptor dalla lista senza
1355 dover modificare il vettore \param{ufds}. Dato che i dati in ingresso sono del
1356 tutto indipendenti da quelli in uscita (che vengono restituiti in
1357 \var{revents}) non è necessario reinizializzare tutte le volte il valore delle
1358 strutture \struct{pollfd} a meno di non voler cambiare qualche condizione.
1359
1360 Le costanti che definiscono i valori relativi ai bit usati nelle maschere
1361 binarie dei campi \var{events} e \var{revents} sono riportate in
1362 tab.~\ref{tab:file_pollfd_flags}, insieme al loro significato. Le si sono
1363 suddivise in tre gruppi principali, nel primo gruppo si sono indicati i bit
1364 utilizzati per controllare l'attività in ingresso, nel secondo quelli per
1365 l'attività in uscita, infine il terzo gruppo contiene dei valori che vengono
1366 utilizzati solo nel campo \var{revents} per notificare delle condizioni di
1367 errore.
1368
1369 \begin{table}[htb]
1370   \centering
1371   \footnotesize
1372   \begin{tabular}[c]{|l|l|}
1373     \hline
1374     \textbf{Flag}  & \textbf{Significato} \\
1375     \hline
1376     \hline
1377     \constd{POLLIN}    & È possibile la lettura.\\
1378     \constd{POLLRDNORM}& Sono disponibili in lettura dati normali.\\ 
1379     \constd{POLLRDBAND}& Sono disponibili in lettura dati prioritari.\\
1380     \constd{POLLPRI}   & È possibile la lettura di dati urgenti.\\ 
1381     \hline
1382     \constd{POLLOUT}   & È possibile la scrittura immediata.\\
1383     \constd{POLLWRNORM}& È possibile la scrittura di dati normali.\\ 
1384     \constd{POLLWRBAND}& È possibile la scrittura di dati prioritari.\\
1385     \hline
1386     \constd{POLLERR}   & C'è una condizione di errore.\\
1387     \constd{POLLHUP}   & Si è verificato un hung-up.\\
1388     \constd{POLLRDHUP} & Si è avuta una \textsl{half-close} su un
1389                         socket.\footnotemark\\ 
1390     \constd{POLLNVAL}  & Il file descriptor non è aperto.\\
1391     \hline
1392     \constd{POLLMSG}   & Definito per compatibilità con SysV.\\
1393     \hline    
1394   \end{tabular}
1395   \caption{Costanti per l'identificazione dei vari bit dei campi
1396     \var{events} e \var{revents} di \struct{pollfd}.}
1397   \label{tab:file_pollfd_flags}
1398 \end{table}
1399
1400 \footnotetext{si tratta di una estensione specifica di Linux, disponibile a
1401   partire dal kernel 2.6.17 definendo la marco \macro{\_GNU\_SOURCE}, che
1402   consente di riconoscere la chiusura in scrittura dell'altro capo di un
1403   socket, situazione che si viene chiamata appunto \textit{half-close}
1404   (\textsl{mezza chiusura}) su cui torneremo con maggiori dettagli in
1405   sez.~\ref{sec:TCP_shutdown}.}
1406
1407 Il valore \const{POLLMSG} non viene utilizzato ed è definito solo per
1408 compatibilità con l'implementazione di System V che usa i cosiddetti
1409 ``\textit{stream}''. Si tratta di una interfaccia specifica di SysV non
1410 presente in Linux, che non ha nulla a che fare con gli \textit{stream} delle
1411 librerie standard del C visti in sez.~\ref{sec:file_stream}. Da essa derivano
1412 i nomi di alcune costanti poiché per quegli \textit{stream} sono definite tre
1413 classi di dati: \textsl{normali}, \textit{prioritari} ed \textit{urgenti}.  In
1414 Linux la distinzione ha senso solo per i dati urgenti dei socket (vedi
1415 sez.~\ref{sec:TCP_urgent_data}), ma su questo e su come \func{poll} reagisce
1416 alle varie condizioni dei socket torneremo in sez.~\ref{sec:TCP_serv_poll},
1417 dove vedremo anche un esempio del suo utilizzo.
1418
1419 Le costanti relative ai diversi tipi di dati normali e prioritari che fanno
1420 riferimento alle implementazioni in stile System V sono \const{POLLRDNORM},
1421 \const{POLLWRNORM}, \const{POLLRDBAND} e \const{POLLWRBAND}. Le prime due sono
1422 equivalenti rispettivamente a \const{POLLIN} e \const{POLLOUT},
1423 \const{POLLRDBAND} non viene praticamente mai usata su Linux mentre
1424 \const{POLLWRBAND} ha senso solo sui socket. In ogni caso queste costanti sono
1425 utilizzabili soltanto qualora si sia definita la macro
1426 \macro{\_XOPEN\_SOURCE}.
1427
1428 In caso di successo \func{poll} ritorna restituendo il numero di file (un
1429 valore positivo) per i quali si è verificata una delle condizioni di attesa
1430 richieste o per i quali si è verificato un errore, avvalorando i relativi bit
1431 di \var{revents}. In caso di errori sui file vengono utilizzati i valori della
1432 terza sezione di tab.~\ref{tab:file_pollfd_flags} che hanno significato solo
1433 per \var{revents} (se specificati in \var{events} vengono ignorati). Un valore
1434 di ritorno nullo indica che si è raggiunto il timeout, mentre un valore
1435 negativo indica un errore nella chiamata, il cui codice viene riportato al
1436 solito tramite \var{errno}.
1437
1438 L'uso di \func{poll} consente di superare alcuni dei problemi illustrati in
1439 precedenza per \func{select}; anzitutto, dato che in questo caso si usa un
1440 vettore di strutture \struct{pollfd} di dimensione arbitraria, non esiste il
1441 limite introdotto dalle dimensioni massime di un \textit{file descriptor set}
1442 e la dimensione dei dati passati al kernel dipende solo dal numero dei file
1443 descriptor che si vogliono controllare, non dal loro valore. Infatti, anche se
1444 usando dei bit un \textit{file descriptor set} può essere più efficiente di un
1445 vettore di strutture \struct{pollfd}, qualora si debba osservare un solo file
1446 descriptor con un valore molto alto ci si troverà ad utilizzare inutilmente un
1447 maggiore quantitativo di memoria.
1448
1449 Inoltre con \func{select} lo stesso \textit{file descriptor set} è usato sia
1450 in ingresso che in uscita, e questo significa che tutte le volte che si vuole
1451 ripetere l'operazione occorre reinizializzarlo da capo. Questa operazione, che
1452 può essere molto onerosa se i file descriptor da tenere sotto osservazione
1453 sono molti, non è invece necessaria con \func{poll}.
1454
1455 Abbiamo visto in sez.~\ref{sec:file_select} come lo standard POSIX preveda una
1456 variante di \func{select} che consente di gestire correttamente la ricezione
1457 dei segnali nell'attesa su un file descriptor.  Con l'introduzione di una
1458 implementazione reale di \func{pselect} nel kernel 2.6.16, è stata aggiunta
1459 anche una analoga funzione che svolga lo stesso ruolo per \func{poll}.
1460
1461 In questo caso si tratta di una estensione che è specifica di Linux e non è
1462 prevista da nessuno standard; essa può essere utilizzata esclusivamente se si
1463 definisce la macro \macro{\_GNU\_SOURCE} ed ovviamente non deve essere usata
1464 se si ha a cuore la portabilità. La funzione è \funcd{ppoll}, ed il suo
1465 prototipo è:
1466
1467 \begin{funcproto}{
1468 \fhead{sys/poll.h}
1469 \fdecl{int ppoll(struct pollfd *fds, nfds\_t nfds, 
1470   const struct timespec *timeout, \\
1471 \phantom{int ppoll(}const sigset\_t *sigmask)} 
1472
1473 \fdesc{Attende un cambiamento di stato su un insieme di file descriptor.}
1474 }
1475
1476 {La funzione ritorna il numero di file descriptor con attività in caso di
1477   successo, $0$ se c'è stato un timeout e $-1$ per un errore, nel qual caso
1478   \var{errno} assumerà uno dei valori:
1479   \begin{errlist}
1480   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato in uno
1481     degli insiemi.
1482   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
1483   \item[\errcode{EINVAL}] il valore di \param{nfds} eccede il limite
1484     \const{RLIMIT\_NOFILE}.
1485   \end{errlist}
1486 ed inoltre \errval{EFAULT} e \errval{ENOMEM} nel loro significato generico.
1487 }  
1488 \end{funcproto}
1489
1490 La funzione ha lo stesso comportamento di \func{poll}, solo che si può
1491 specificare, con l'argomento \param{sigmask}, il puntatore ad una maschera di
1492 segnali; questa sarà la maschera utilizzata per tutto il tempo che la funzione
1493 resterà in attesa, all'uscita viene ripristinata la maschera originale.  L'uso
1494 di questa funzione è cioè equivalente, come illustrato nella pagina di
1495 manuale, all'esecuzione atomica del seguente codice:
1496 \includecodesnip{listati/ppoll_means.c} 
1497
1498 Eccetto per \param{timeout}, che come per \func{pselect} deve essere un
1499 puntatore ad una struttura \struct{timespec}, gli altri argomenti comuni con
1500 \func{poll} hanno lo stesso significato, e la funzione restituisce gli stessi
1501 risultati illustrati in precedenza. Come nel caso di \func{pselect} la
1502 \textit{system call} che implementa \func{ppoll} restituisce, se la funzione
1503 viene interrotta da un segnale, il tempo mancante in \param{timeout}, e come
1504 per \func{pselect} la funzione di libreria fornita dalla \acr{glibc} maschera
1505 questo comportamento non modificando mai il valore di \param{timeout} anche se
1506 in questo caso non esiste nessuno standard che richieda questo comportamento.
1507
1508 Infine anche per \func{poll} e \func{ppoll} valgono le considerazioni relative
1509 alla possibilità di avere delle notificazione spurie della disponibilità di
1510 accesso ai file descriptor illustrate per \func{select} in
1511 sez.~\ref{sec:file_select}, che non staremo a ripetere qui.
1512
1513 \subsection{L'interfaccia di \textit{epoll}}
1514 \label{sec:file_epoll}
1515
1516 \itindbeg{epoll}
1517
1518 Nonostante \func{poll} presenti alcuni vantaggi rispetto a \func{select},
1519 anche questa funzione non è molto efficiente quando deve essere utilizzata con
1520 un gran numero di file descriptor,\footnote{in casi del genere \func{select}
1521   viene scartata a priori, perché può avvenire che il numero di file
1522   descriptor ecceda le dimensioni massime di un \textit{file descriptor set}.}
1523 in particolare nel caso in cui solo pochi di questi diventano attivi. Il
1524 problema in questo caso è che il tempo impiegato da \func{poll} a trasferire i
1525 dati da e verso il kernel è proporzionale al numero di file descriptor
1526 osservati, non a quelli che presentano attività.
1527
1528 Quando ci sono decine di migliaia di file descriptor osservati e migliaia di
1529 eventi al secondo (il caso classico è quello di un server web di un sito con
1530 molti accessi) l'uso di \func{poll} comporta la necessità di trasferire avanti
1531 ed indietro da \textit{user space} a \textit{kernel space} una lunga lista di
1532 strutture \struct{pollfd} migliaia di volte al secondo. A questo poi si
1533 aggiunge il fatto che la maggior parte del tempo di esecuzione sarà impegnato
1534 ad eseguire una scansione su tutti i file descriptor tenuti sotto controllo
1535 per determinare quali di essi (in genere una piccola percentuale) sono
1536 diventati attivi. In una situazione come questa l'uso delle funzioni classiche
1537 dell'interfaccia dell'\textit{I/O multiplexing} viene a costituire un collo di
1538 bottiglia che degrada irrimediabilmente le prestazioni.
1539
1540 Per risolvere questo tipo di situazioni sono state ideate delle interfacce
1541 specialistiche (come \texttt{/dev/poll} in Solaris, o \texttt{kqueue} in BSD)
1542 il cui scopo fondamentale è quello di restituire solamente le informazioni
1543 relative ai file descriptor osservati che presentano una attività, evitando
1544 così le problematiche appena illustrate. In genere queste prevedono che si
1545 registrino una sola volta i file descriptor da tenere sotto osservazione, e
1546 forniscono un meccanismo che notifica quali di questi presentano attività.
1547
1548 Le modalità con cui avviene la notifica sono due, la prima è quella classica
1549 (quella usata da \func{poll} e \func{select}) che viene chiamata \textit{level
1550   triggered}.\footnote{la nomenclatura è stata introdotta da Jonathan Lemon in
1551   un articolo su \texttt{kqueue} al BSDCON 2000, e deriva da quella usata
1552   nell'elettronica digitale.} In questa modalità vengono notificati i file
1553 descriptor che sono \textsl{pronti} per l'operazione richiesta, e questo
1554 avviene indipendentemente dalle operazioni che possono essere state fatte su
1555 di essi a partire dalla precedente notifica.  Per chiarire meglio il concetto
1556 ricorriamo ad un esempio: se su un file descriptor sono diventati disponibili
1557 in lettura 2000 byte ma dopo la notifica ne sono letti solo 1000 (ed è quindi
1558 possibile eseguire una ulteriore lettura dei restanti 1000), in modalità
1559 \textit{level triggered} questo sarà nuovamente notificato come
1560 \textsl{pronto}.
1561
1562 La seconda modalità, è detta \textit{edge triggered}, e prevede che invece
1563 vengano notificati solo i file descriptor che hanno subito una transizione da
1564 \textsl{non pronti} a \textsl{pronti}. Questo significa che in modalità
1565 \textit{edge triggered} nel caso del precedente esempio il file descriptor
1566 diventato pronto da cui si sono letti solo 1000 byte non verrà nuovamente
1567 notificato come pronto, nonostante siano ancora disponibili in lettura 1000
1568 byte. Solo una volta che si saranno esauriti tutti i dati disponibili, e che
1569 il file descriptor sia tornato non essere pronto, si potrà ricevere una
1570 ulteriore notifica qualora ritornasse pronto.
1571
1572 Nel caso di Linux al momento la sola interfaccia che fornisce questo tipo di
1573 servizio è chiamata \textit{epoll},\footnote{l'interfaccia è stata creata da
1574   Davide Libenzi, ed è stata introdotta per la prima volta nel kernel 2.5.44,
1575   ma la sua forma definitiva è stata raggiunta nel kernel 2.5.66, il supporto
1576   è stato aggiunto nella \acr{glibc} a partire dalla versione 2.3.2.} anche se
1577 sono state in discussione altre interfacce con le quali effettuare lo stesso
1578 tipo di operazioni; \textit{epoll} è in grado di operare sia in modalità
1579 \textit{level triggered} che \textit{edge triggered}.
1580
1581 La prima versione di \textit{epoll} prevedeva l'uso di uno speciale file di
1582 dispositivo, \texttt{/dev/epoll}, per ottenere un file descriptor da
1583 utilizzare con le funzioni dell'interfaccia ma poi si è passati all'uso di
1584 apposite \textit{system call}.  Il primo passo per usare l'interfaccia di
1585 \textit{epoll} è pertanto quello ottenere detto file descriptor chiamando una
1586 delle due funzioni di sistema \funcd{epoll\_create} e \funcd{epoll\_create1},
1587 i cui prototipi sono:
1588
1589 \begin{funcproto}{
1590 \fhead{sys/epoll.h}
1591 \fdecl{int epoll\_create(int size)}
1592 \fdecl{int epoll\_create1(int flags)}
1593
1594 \fdesc{Apre un file descriptor per \textit{epoll}.}
1595 }
1596 {Le funzioni ritornano un file descriptor per \textit{epoll} in caso di
1597   successo e $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei
1598   valori:
1599   \begin{errlist}
1600   \item[\errcode{EINVAL}] si è specificato un valore di \param{size} non
1601     positivo o non valido per \param{flags}.
1602   \item[\errcode{EMFILE}] si è raggiunto il limite sul numero massimo di
1603     istanze di \textit{epoll} per utente stabilito da
1604     \sysctlfiled{fs/epoll/max\_user\_instances}.
1605   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
1606     nel sistema.
1607   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
1608     l'istanza.
1609   \end{errlist}
1610 }  
1611 \end{funcproto}
1612
1613 Entrambe le funzioni restituiscono un file descriptor, detto anche
1614 \textit{epoll descriptor}; si tratta di un file descriptor speciale (per cui
1615 \func{read} e \func{write} non sono supportate) che viene associato alla
1616 infrastruttura utilizzata dal kernel per gestire la notifica degli eventi, e
1617 che può a sua volta essere messo sotto osservazione con una chiamata a
1618 \func{select}, \func{poll} o \func{epoll\_ctl}; in tal caso risulterà pronto
1619 quando saranno disponibili eventi da notificare riguardo i file descriptor da
1620 lui osservati.\footnote{è anche possibile inviarlo ad un altro processo
1621   attraverso un socket locale (vedi sez.~\ref{sec:sock_fd_passing}) ma
1622   l'operazione non ha alcun senso dato che il nuovo processo non avrà a
1623   disposizione le copie dei file descriptor messe sotto osservazione tramite
1624   esso.} Una volta che se ne sia terminato l'uso si potranno rilasciare tutte
1625 le risorse allocate chiudendolo semplicemente con \func{close}.
1626
1627 Nel caso di \func{epoll\_create} l'argomento \param{size} serviva a dare
1628 l'indicazione del numero di file descriptor che si vorranno tenere sotto
1629 controllo, e costituiva solo un suggerimento per semplificare l'allocazione di
1630 risorse sufficienti, non un valore massimo, ma a partire dal kernel 2.6.8 esso
1631 viene totalmente ignorato e l'allocazione è sempre dinamica.
1632
1633 La seconda versione della funzione, \func{epoll\_create1} è stata introdotta
1634 come estensione della precedente (è disponibile solo a partire dal kernel
1635 2.6.27) per poter passare dei flag di controllo come maschera binaria in fase
1636 di creazione del file descriptor. Al momento l'unico valore legale per
1637 \param{flags} (a parte lo zero) è \constd{EPOLL\_CLOEXEC}, che consente di
1638 impostare in maniera atomica sul file descriptor il flag di
1639 \textit{close-on-exec} (vedi sez.~\ref{sec:proc_exec} e
1640 sez.~\ref{sec:file_shared_access}) senza che sia necessaria una successiva
1641 chiamata a \func{fcntl}.
1642
1643 Una volta ottenuto un file descriptor per \textit{epoll} il passo successivo è
1644 indicare quali file descriptor mettere sotto osservazione e quali operazioni
1645 controllare, per questo si deve usare la seconda funzione di sistema
1646 dell'interfaccia, \funcd{epoll\_ctl}, il cui prototipo è:
1647
1648 \begin{funcproto}{
1649 \fhead{sys/epoll.h}
1650 \fdecl{int epoll\_ctl(int epfd, int op, int fd, struct epoll\_event *event)}
1651
1652 \fdesc{Esegue le operazioni di controllo di \textit{epoll}.}
1653 }
1654
1655 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
1656   caso \var{errno} assumerà uno dei valori:
1657   \begin{errlist}
1658   \item[\errcode{EBADF}] i file descriptor \param{epfd} o \param{fd} non sono
1659     validi.
1660   \item[\errcode{EEXIST}] l'operazione richiesta è \const{EPOLL\_CTL\_ADD} ma
1661     \param{fd} è già stato inserito in \param{epfd}.
1662   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1663     con \func{epoll\_create}, o \param{fd} è lo stesso \param{epfd} o
1664     l'operazione richiesta con \param{op} non è supportata.
1665   \item[\errcode{ENOENT}] l'operazione richiesta è \const{EPOLL\_CTL\_MOD} o
1666     \const{EPOLL\_CTL\_DEL} ma \param{fd} non è inserito in \param{epfd}.
1667   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel gestire
1668     l'operazione richiesta.
1669   \item[\errcode{ENOSPC}] si è raggiunto il limite massimo di registrazioni
1670     per utente di file descriptor da osservare imposto da
1671     \sysctlfiled{fs/epoll/max\_user\_watches}.
1672   \item[\errcode{EPERM}] il file associato a \param{fd} non supporta l'uso di
1673     \textit{epoll}.
1674   \end{errlist}
1675   }  
1676 \end{funcproto}
1677
1678 La funzione prende sempre come primo argomento un file descriptor di
1679 \textit{epoll}, \param{epfd}, che indica quale istanza di \textit{epoll} usare
1680 e deve pertanto essere stato ottenuto in precedenza con una chiamata a
1681 \func{epoll\_create} o \func{epoll\_create1}. L'argomento \param{fd} indica
1682 invece il file descriptor che si vuole tenere sotto controllo, quest'ultimo
1683 può essere un qualunque file descriptor utilizzabile con \func{poll}, ed anche
1684 un altro file descriptor di \textit{epoll}, ma non lo stesso \param{epfd}.
1685
1686 Il comportamento della funzione viene controllato dal valore dall'argomento
1687 \param{op} che consente di specificare quale operazione deve essere eseguita.
1688 Le costanti che definiscono i valori utilizzabili per \param{op}
1689 sono riportate in tab.~\ref{tab:epoll_ctl_operation}, assieme al significato
1690 delle operazioni cui fanno riferimento.
1691
1692 \begin{table}[htb]
1693   \centering
1694   \footnotesize
1695   \begin{tabular}[c]{|l|p{8cm}|}
1696     \hline
1697     \textbf{Valore}  & \textbf{Significato} \\
1698     \hline
1699     \hline
1700     \constd{EPOLL\_CTL\_ADD}& Aggiunge un nuovo file descriptor da osservare
1701                               \param{fd} alla lista dei file descriptor
1702                               controllati tramite \param{epfd}, in
1703                               \param{event} devono essere specificate le
1704                               modalità di osservazione.\\
1705     \constd{EPOLL\_CTL\_MOD}& Modifica le modalità di osservazione del file
1706                               descriptor \param{fd} secondo il contenuto di
1707                               \param{event}.\\
1708     \constd{EPOLL\_CTL\_DEL}& Rimuove il file descriptor \param{fd} dalla lista
1709                               dei file controllati tramite \param{epfd}.\\
1710    \hline    
1711   \end{tabular}
1712   \caption{Valori dell'argomento \param{op} che consentono di scegliere quale
1713     operazione di controllo effettuare con la funzione \func{epoll\_ctl}.} 
1714   \label{tab:epoll_ctl_operation}
1715 \end{table}
1716
1717 % era stata aggiunta EPOLL_CTL_DISABLE in previsione del kernel 3.7, vedi
1718 % http://lwn.net/Articles/520012/ e http://lwn.net/Articles/520198/
1719 % ma non è mai stata inserita.
1720
1721 Le modalità di utilizzo di \textit{epoll} prevedono che si definisca qual'è
1722 l'insieme dei file descriptor da tenere sotto controllo utilizzando una serie
1723 di chiamate a \const{EPOLL\_CTL\_ADD}.\footnote{un difetto dell'interfaccia è
1724   che queste chiamate devono essere ripetute per ciascun file descriptor,
1725   incorrendo in una perdita di prestazioni qualora il numero di file
1726   descriptor sia molto grande; per questo è stato proposto di introdurre come
1727   estensione una funzione \code{epoll\_ctlv} che consenta di effettuare con
1728   una sola chiamata le impostazioni per un blocco di file descriptor.} L'uso
1729 di \const{EPOLL\_CTL\_MOD} consente in seguito di modificare le modalità di
1730 osservazione di un file descriptor che sia già stato aggiunto alla lista di
1731 osservazione. Qualora non si abbia più interesse nell'osservazione di un file
1732 descriptor lo si può rimuovere dalla lista associata a \param{epfd} con
1733 \const{EPOLL\_CTL\_DEL}.
1734
1735 Anche se è possibile tenere sotto controllo lo stesso file descriptor in due
1736 istanze distinte di \textit{epoll} in genere questo è sconsigliato in quanto
1737 entrambe riceveranno le notifiche, e gestire correttamente le notifiche
1738 multiple richiede molta attenzione. Se invece si cerca di inserire due volte
1739 lo stesso file descriptor nella stessa istanza di \textit{epoll} la funzione
1740 fallirà con un errore di \errval{EEXIST}.  Tuttavia è possibile inserire nella
1741 stessa istanza file descriptor duplicati (si ricordi quanto visto in
1742 sez.~\ref{sec:file_dup}), una tecnica che può essere usata per registrarli con
1743 un valore diverso per \param{events} e classificare così diversi tipi di
1744 eventi.
1745
1746 Si tenga presente che quando si chiude un file descriptor questo, se era stato
1747 posto sotto osservazione da una istanza di \textit{epoll}, viene rimosso
1748 automaticamente solo nel caso esso sia l'unico riferimento al file aperto
1749 sottostante (più precisamente alla struttura \kstruct{file}, si ricordi
1750 fig.~\ref{fig:file_dup}) e non è necessario usare
1751 \const{EPOLL\_CTL\_DEL}. Questo non avviene qualora esso sia stato duplicato
1752 (perché la suddetta struttura non viene disallocata) e si potranno ricevere
1753 eventi ad esso relativi anche dopo che lo si è chiuso; per evitare
1754 l'inconveniente è necessario rimuoverlo esplicitamente con
1755 \const{EPOLL\_CTL\_DEL}.
1756
1757 L'ultimo argomento, \param{event}, deve essere un puntatore ad una struttura
1758 di tipo \struct{epoll\_event}, ed ha significato solo con le operazioni
1759 \const{EPOLL\_CTL\_MOD} e \const{EPOLL\_CTL\_ADD}, per le quali serve ad
1760 indicare quale tipo di evento relativo ad \param{fd} si vuole che sia tenuto
1761 sotto controllo.  L'argomento viene ignorato con l'operazione
1762 \const{EPOLL\_CTL\_DEL}.\footnote{fino al kernel 2.6.9 era comunque richiesto
1763   che questo fosse un puntatore valido, anche se poi veniva ignorato; a
1764   partire dal 2.6.9 si può specificare anche un valore \val{NULL} ma se si
1765   vuole mantenere la compatibilità con le versioni precedenti occorre usare un
1766   puntatore valido.}
1767
1768 \begin{figure}[!htb]
1769   \footnotesize \centering
1770   \begin{minipage}[c]{0.90\textwidth}
1771     \includestruct{listati/epoll_event.h}
1772   \end{minipage} 
1773   \normalsize 
1774   \caption{La struttura \structd{epoll\_event}, che consente di specificare
1775     gli eventi associati ad un file descriptor controllato con
1776     \textit{epoll}.}
1777   \label{fig:epoll_event}
1778 \end{figure}
1779
1780 La struttura \struct{epoll\_event} è l'analoga di \struct{pollfd} e come
1781 quest'ultima serve sia in ingresso (quando usata con \func{epoll\_ctl}) ad
1782 impostare quali eventi osservare, che in uscita (nei risultati ottenuti con
1783 \func{epoll\_wait}) per ricevere le notifiche degli eventi avvenuti.  La sua
1784 definizione è riportata in fig.~\ref{fig:epoll_event}. 
1785
1786 Il primo campo, \var{events}, è una maschera binaria in cui ciascun bit
1787 corrisponde o ad un tipo di evento, o una modalità di notifica; detto campo
1788 deve essere specificato come OR aritmetico delle costanti riportate in
1789 tab.~\ref{tab:epoll_events}. Nella prima parte della tabella si sono indicate
1790 le costanti che permettono di indicare il tipo di evento, che sono le
1791 equivalenti delle analoghe di tab.~\ref{tab:file_pollfd_flags} per
1792 \func{poll}. Queste sono anche quelle riportate nella struttura
1793 \struct{epoll\_event} restituita da \func{epoll\_wait} per indicare il tipo di
1794 evento presentatosi, insieme a quelle della seconda parte della tabella, che
1795 vengono comunque riportate anche se non le si sono impostate con
1796 \func{epoll\_ctl}. La terza parte della tabella contiene le costanti che
1797 modificano le modalità di notifica.
1798
1799 \begin{table}[htb]
1800   \centering
1801   \footnotesize
1802   \begin{tabular}[c]{|l|p{10cm}|}
1803     \hline
1804     \textbf{Valore}  & \textbf{Significato} \\
1805     \hline
1806     \hline
1807     \constd{EPOLLIN}     & Il file è pronto per le operazioni di lettura
1808                           (analogo di \const{POLLIN}).\\
1809     \constd{EPOLLOUT}    & Il file è pronto per le operazioni di scrittura
1810                           (analogo di \const{POLLOUT}).\\
1811     \constd{EPOLLRDHUP}  & L'altro capo di un socket di tipo
1812                           \const{SOCK\_STREAM} (vedi sez.~\ref{sec:sock_type})
1813                           ha chiuso la connessione o il capo in scrittura
1814                           della stessa (vedi
1815                           sez.~\ref{sec:TCP_shutdown}).\footnotemark\\
1816     \constd{EPOLLPRI}    & Ci sono dati urgenti disponibili in lettura (analogo
1817                           di \const{POLLPRI}); questa condizione viene comunque
1818                           riportata in uscita, e non è necessaria impostarla
1819                           in ingresso.\\ 
1820     \hline
1821     \constd{EPOLLERR}    & Si è verificata una condizione di errore 
1822                           (analogo di \const{POLLERR}); questa condizione
1823                           viene comunque riportata in uscita, e non è
1824                           necessaria impostarla in ingresso.\\
1825     \constd{EPOLLHUP}    & Si è verificata una condizione di hung-up; questa
1826                           condizione viene comunque riportata in uscita, e non
1827                           è necessaria impostarla in ingresso.\\
1828     \hline
1829     \constd{EPOLLET}     & Imposta la notifica in modalità \textit{edge
1830                             triggered} per il file descriptor associato.\\ 
1831     \constd{EPOLLONESHOT}& Imposta la modalità \textit{one-shot} per il file
1832                           descriptor associato (questa modalità è disponibile
1833                           solo a partire dal kernel 2.6.2).\\
1834     \constd{EPOLLWAKEUP} & Attiva la prevenzione della sospensione del sistema
1835                           se il file descriptor che si è marcato con esso
1836                           diventa pronto (aggiunto a partire dal kernel 3.5),
1837                           può essere impostato solo dall'amministratore (o da
1838                           un processo con la capacità
1839                           \const{CAP\_BLOCK\_SUSPEND}).\\ 
1840     \hline
1841   \end{tabular}
1842   \caption{Costanti che identificano i bit del campo \param{events} di
1843     \struct{epoll\_event}.}
1844   \label{tab:epoll_events}
1845 \end{table}
1846
1847 \footnotetext{questa modalità è disponibile solo a partire dal kernel 2.6.17,
1848   ed è utile per riconoscere la chiusura di una connessione dall'altro capo di
1849   un socket quando si lavora in modalità \textit{edge triggered}.}
1850
1851 % TODO aggiunto con il kernel 4.5  EPOLLEXCLUSIVE, vedi
1852 % http://lwn.net/Articles/633422/#excl 
1853
1854 Il secondo campo, \var{data}, è una \dirct{union} che serve a identificare il
1855 file descriptor a cui si intende fare riferimento, ed in astratto può
1856 contenere un valore qualsiasi (specificabile in diverse forme) che ne permetta
1857 una indicazione univoca. Il modo più comune di usarlo però è quello in cui si
1858 specifica il terzo argomento di \func{epoll\_ctl} nella forma
1859 \var{event.data.fd}, assegnando come valore di questo campo lo stesso valore
1860 dell'argomento \param{fd}, cosa che permette una immediata identificazione del
1861 file descriptor.
1862
1863 % TODO verificare se prima o poi epoll_ctlv verrà introdotta
1864
1865 Le impostazioni di default prevedono che la notifica degli eventi richiesti
1866 sia effettuata in modalità \textit{level triggered}, a meno che sul file
1867 descriptor non si sia impostata la modalità \textit{edge triggered},
1868 registrandolo con \const{EPOLLET} attivo nel campo \var{events}.  
1869
1870 Infine una particolare modalità di notifica è quella impostata con
1871 \const{EPOLLONESHOT}: a causa dell'implementazione di \textit{epoll} infatti
1872 quando si è in modalità \textit{edge triggered} l'arrivo in rapida successione
1873 di dati in blocchi separati (questo è tipico con i socket di rete, in quanto i
1874 dati arrivano a pacchetti) può causare una generazione di eventi (ad esempio
1875 segnalazioni di dati in lettura disponibili) anche se la condizione è già
1876 stata rilevata (si avrebbe cioè una rottura della logica \textit{edge
1877   triggered}).
1878
1879 Anche se la situazione è facile da gestire, la si può evitare utilizzando
1880 \const{EPOLLONESHOT} per impostare la modalità \textit{one-shot}, in cui la
1881 notifica di un evento viene effettuata una sola volta, dopo di che il file
1882 descriptor osservato, pur restando nella lista di osservazione, viene
1883 automaticamente disattivato (la cosa avviene contestualmente al ritorno di
1884 \func{epoll\_wait} a causa dell'evento in questione) e per essere riutilizzato
1885 dovrà essere riabilitato esplicitamente con una successiva chiamata con
1886 \const{EPOLL\_CTL\_MOD}.
1887
1888 Una volta impostato l'insieme di file descriptor che si vogliono osservare con
1889 i relativi eventi, la funzione di sistema che consente di attendere
1890 l'occorrenza di uno di tali eventi è \funcd{epoll\_wait}, il cui prototipo è:
1891
1892 \begin{funcproto}{
1893 \fhead{sys/epoll.h}
1894 \fdecl{int epoll\_wait(int epfd, struct epoll\_event * events, int maxevents,
1895   int timeout)}
1896
1897 \fdesc{Attende che uno dei file descriptor osservati sia pronto.}
1898 }
1899
1900 {La funzione ritorna il numero di file descriptor pronti in caso di successo e
1901   $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei valori:
1902   \begin{errlist}
1903   \item[\errcode{EBADF}] il file descriptor \param{epfd} non è valido.
1904   \item[\errcode{EFAULT}] il puntatore \param{events} non è valido.
1905   \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale prima
1906     della scadenza di \param{timeout}.
1907   \item[\errcode{EINVAL}] il file descriptor \param{epfd} non è stato ottenuto
1908     con \func{epoll\_create}, o \param{maxevents} non è maggiore di zero.
1909   \end{errlist}
1910 }  
1911 \end{funcproto}
1912
1913 La funzione si blocca in attesa di un evento per i file descriptor registrati
1914 nella lista di osservazione di \param{epfd} fino ad un tempo massimo
1915 specificato in millisecondi tramite l'argomento \param{timeout}. Gli eventi
1916 registrati vengono riportati in un vettore di strutture \struct{epoll\_event}
1917 (che deve essere stato allocato in precedenza) all'indirizzo indicato
1918 dall'argomento \param{events}, fino ad un numero massimo di eventi impostato
1919 con l'argomento \param{maxevents}.
1920
1921 La funzione ritorna il numero di eventi rilevati, o un valore nullo qualora
1922 sia scaduto il tempo massimo impostato con \param{timeout}. Per quest'ultimo,
1923 oltre ad un numero di millisecondi, si può utilizzare il valore nullo, che
1924 indica di non attendere e ritornare immediatamente (anche in questo caso il
1925 valore di ritorno sarà nullo) o il valore $-1$, che indica un'attesa
1926 indefinita. L'argomento \param{maxevents} dovrà invece essere sempre un intero
1927 positivo.
1928
1929 Come accennato la funzione restituisce i suoi risultati nel vettore di
1930 strutture \struct{epoll\_event} puntato da \param{events}; in tal caso nel
1931 campo \param{events} di ciascuna di esse saranno attivi i flag relativi agli
1932 eventi accaduti, mentre nel campo \var{data} sarà restituito il valore che era
1933 stato impostato per il file descriptor per cui si è verificato l'evento quando
1934 questo era stato registrato con le operazioni \const{EPOLL\_CTL\_MOD} o
1935 \const{EPOLL\_CTL\_ADD}, in questo modo il campo \var{data} consente di
1936 identificare il file descriptor, ed è per questo che, come accennato, è
1937 consuetudine usare per \var{data} il valore del file descriptor stesso.
1938
1939 Si ricordi che le occasioni per cui \func{epoll\_wait} ritorna dipendono da
1940 come si è impostata la modalità di osservazione (se \textit{level triggered} o
1941 \textit{edge triggered}) del singolo file descriptor. L'interfaccia assicura
1942 che se arrivano più eventi fra due chiamate successive ad \func{epoll\_wait}
1943 questi vengano combinati. Inoltre qualora su un file descriptor fossero
1944 presenti eventi non ancora notificati, e si effettuasse una modifica
1945 dell'osservazione con \const{EPOLL\_CTL\_MOD}, questi verrebbero riletti alla
1946 luce delle modifiche.
1947
1948 Si tenga presente infine che con l'uso della modalità \textit{edge triggered}
1949 il ritorno di \func{epoll\_wait} avviene solo quando il file descriptor ha
1950 cambiato stato diventando pronto. Esso non sarà riportato nuovamente fino ad
1951 un altro cambiamento di stato, per cui occorre assicurarsi di aver
1952 completamente esaurito le operazioni su di esso.  Questa condizione viene
1953 generalmente rilevata dall'occorrere di un errore di \errcode{EAGAIN} al
1954 ritorno di una \func{read} o una \func{write}, (è opportuno ricordare ancora
1955 una volta che l'uso dell'\textit{I/O multiplexing} richiede di operare sui
1956 file in modalità non bloccante) ma questa non è la sola modalità possibile, ad
1957 esempio la condizione può essere riconosciuta anche per il fatto che sono
1958 stati restituiti meno dati di quelli richiesti.
1959
1960 Si tenga presente che in modalità \textit{edge triggered}, dovendo esaurire le
1961 attività di I/O dei file descriptor risultati pronti per poter essere
1962 rinotificati, la gestione elementare per cui li si trattano uno per uno in
1963 sequenza può portare ad un effetto denominato \textit{starvation}
1964 (``\textsl{carestia}'').  Si rischia cioè di concentrare le operazioni sul
1965 primo file descriptor che dispone di molti dati, prolungandole per tempi molto
1966 lunghi con un ritardo che può risultare eccessivo nei confronti di quelle da
1967 eseguire sugli altri che verrebbero dopo.  Per evitare questo tipo di
1968 problematiche viene consigliato di usare \func{epoll\_wait} per registrare un
1969 elenco dei file descriptor da gestire, e di trattarli a turno in maniera più
1970 equa.
1971
1972 Come già per \func{select} e \func{poll} anche per l'interfaccia di
1973 \textit{epoll} si pone il problema di gestire l'attesa di segnali e di dati
1974 contemporaneamente.  Valgono le osservazioni fatte in
1975 sez.~\ref{sec:file_select}, e per poterlo fare di nuovo è necessaria una
1976 variante della funzione di attesa che consenta di reimpostare all'uscita una
1977 maschera di segnali, analoga alle estensioni \func{pselect} e \func{ppoll} che
1978 abbiamo visto in precedenza per \func{select} e \func{poll}. In questo caso la
1979 funzione di sistema si chiama \funcd{epoll\_pwait}\footnote{la funzione è
1980   stata introdotta a partire dal kernel 2.6.19, ed è, come tutta l'interfaccia
1981   di \textit{epoll}, specifica di Linux.} ed il suo prototipo è:
1982
1983 \begin{funcproto}{
1984 \fhead{sys/epoll.h}
1985 \fdecl{int epoll\_pwait(int epfd, struct epoll\_event * events, int maxevents, 
1986     int timeout, \\
1987 \phantom{int epoll\_pwait(}const sigset\_t *sigmask)}
1988
1989 \fdesc{Attende che uno dei file descriptor osservati sia pronto, mascherando
1990     i segnali.}  }
1991
1992 {La funzione ritorna il numero di file descriptor pronti in caso di successo e
1993   $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei valori già
1994   visti con \func{epoll\_wait}.
1995
1996 }  
1997 \end{funcproto}
1998
1999 La funzione è del tutto analoga \func{epoll\_wait}, soltanto che alla sua
2000 uscita viene ripristinata la maschera di segnali originale, sostituita durante
2001 l'esecuzione da quella impostata con l'argomento \param{sigmask}; in sostanza
2002 la chiamata a questa funzione è equivalente al seguente codice, eseguito però
2003 in maniera atomica:
2004 \includecodesnip{listati/epoll_pwait_means.c} 
2005
2006 Si tenga presente che come le precedenti funzioni di \textit{I/O multiplexing}
2007 anche le funzioni dell'interfaccia di \textit{epoll} vengono utilizzate
2008 prevalentemente con i server di rete, quando si devono tenere sotto
2009 osservazione un gran numero di socket; per questo motivo rimandiamo anche in
2010 questo caso la trattazione di un esempio concreto a quando avremo esaminato in
2011 dettaglio le caratteristiche dei socket; in particolare si potrà trovare un
2012 programma che utilizza questa interfaccia in sez.~\ref{sec:TCP_serv_epoll}.
2013
2014 % TODO: trattare epoll_wait2, introdotta con il kernel 5.11 (vedi
2015 % https://lwn.net/Articles/837816/)
2016
2017 \itindend{epoll}
2018
2019
2020 \subsection{La notifica di eventi tramite file descriptor}
2021 \label{sec:sig_signalfd_eventfd}
2022
2023 Abbiamo visto in sez.~\ref{sec:file_select} come il meccanismo classico delle
2024 notifiche di eventi tramite i segnali, presente da sempre nei sistemi
2025 unix-like, porti a notevoli problemi nell'interazione con le funzioni per
2026 l'\textit{I/O multiplexing}, tanto che per evitare possibili \textit{race
2027   condition} sono state introdotte estensioni dello standard POSIX e funzioni
2028 apposite come \func{pselect}, \func{ppoll} e \func{epoll\_pwait}.
2029
2030 Benché i segnali siano il meccanismo più usato per effettuare notifiche ai
2031 processi, la loro interfaccia di programmazione, che comporta l'esecuzione di
2032 una funzione di gestione in maniera asincrona e totalmente scorrelata
2033 dall'ordinario flusso di esecuzione del processo, si è però dimostrata quasi
2034 subito assai problematica. Oltre ai limiti relativi ai limiti al cosa si può
2035 fare all'interno della funzione del gestore di segnali (quelli illustrati in
2036 sez.~\ref{sec:sig_signal_handler}), c'è il problema più generale consistente
2037 nel fatto che questa modalità di funzionamento cozza con altre interfacce di
2038 programmazione previste dal sistema in cui si opera in maniera
2039 \textsl{sincrona}, come quelle dell'\textit{I/O multiplexing} appena
2040 illustrate.
2041
2042 In questo tipo di interfacce infatti ci si aspetta che il processo gestisca
2043 gli eventi a cui deve reagire in maniera sincrona generando le opportune
2044 risposte, mentre con l'arrivo di un segnale si possono avere interruzioni
2045 asincrone in qualunque momento.  Questo comporta la necessità di dover
2046 gestire, quando si deve tener conto di entrambi i tipi di eventi, le
2047 interruzioni delle funzioni di attesa sincrone, ed evitare possibili
2048 \textit{race conditions}. In sostanza se non ci fossero i segnali non ci
2049 sarebbe da preoccuparsi, fintanto che si effettuano operazioni all'interno di
2050 un processo, della non atomicità delle \textit{system call} lente che vengono
2051 interrotte e devono essere riavviate.
2052
2053 Abbiamo visto però in sez.~\ref{sec:sig_real_time} che insieme ai segnali
2054 \textit{real-time} sono state introdotte anche delle interfacce di gestione
2055 sincrona dei segnali, con la funzione \func{sigwait} e le sue affini. Queste
2056 funzioni consentono di gestire i segnali bloccando un processo fino alla
2057 avvenuta ricezione e disabilitando l'esecuzione asincrona rispetto al resto
2058 del programma del gestore del segnale. Questo consente di risolvere i problemi
2059 di atomicità nella gestione degli eventi associati ai segnali, avendo tutto il
2060 controllo nel flusso principale del programma, ottenendo così una gestione
2061 simile a quella dell'\textit{I/O multiplexing}, ma non risolve i problemi
2062 delle interazioni con quest'ultimo, perché o si aspetta la ricezione di un
2063 segnale o si aspetta che un file descriptor sia accessibile e nessuna delle
2064 rispettive funzioni consente di fare contemporaneamente entrambe le cose.
2065
2066 Per risolvere questo problema nello sviluppo del kernel si è pensato di
2067 introdurre un meccanismo alternativo per la notifica dei segnali (esteso anche
2068 ad altri eventi generici) che, ispirandosi di nuovo alla filosofia di Unix per
2069 cui tutto è un file, consentisse di eseguire la notifica con l'uso di
2070 opportuni file descriptor. Ovviamente si tratta di una funzionalità specifica
2071 di Linux, non presente in altri sistemi unix-like, e non prevista da nessuno
2072 standard, per cui va evitata se si ha a cuore la portabilità.
2073
2074 In sostanza, come per \func{sigwait}, si può disabilitare l'esecuzione di un
2075 gestore in occasione dell'arrivo di un segnale, e rilevarne l'avvenuta
2076 ricezione leggendone la notifica tramite l'uso di uno speciale file
2077 descriptor. Trattandosi di un file descriptor questo potrà essere tenuto sotto
2078 osservazione con le ordinarie funzioni dell'\textit{I/O multiplexing} (vale a
2079 dire con le solite \func{select}, \func{poll} e \func{epoll\_wait}) allo
2080 stesso modo di quelli associati a file o socket, per cui alla fine si potrà
2081 attendere in contemporanea sia l'arrivo del segnale che la disponibilità di
2082 accesso ai dati relativi a questi ultimi.
2083
2084 La funzione di sistema che permette di abilitare la ricezione dei segnali
2085 tramite file descriptor è \funcd{signalfd},\footnote{in realtà quella
2086   riportata è l'interfaccia alla funzione fornita dalla \acr{glibc}, esistono
2087   infatti due versioni diverse della \textit{system call}; una prima versione,
2088   \func{signalfd}, introdotta nel kernel 2.6.22 e disponibile con la
2089   \acr{glibc} 2.8 che non supporta l'argomento \texttt{flags}, ed una seconda
2090   versione, \funcm{signalfd4}, introdotta con il kernel 2.6.27 e che è quella
2091   che viene sempre usata a partire dalla \acr{glibc} 2.9, che prende un
2092   argomento aggiuntivo \code{size\_t sizemask} che indica la dimensione della
2093   maschera dei segnali, il cui valore viene impostato automaticamente dalla
2094   \acr{glibc}.}  il cui prototipo è:
2095
2096 \begin{funcproto}{
2097 \fhead{sys/signalfd.h}
2098 \fdecl{int signalfd(int fd, const sigset\_t *mask, int flags)}
2099
2100 \fdesc{Crea o modifica un file descriptor per la ricezione dei segnali.}
2101 }
2102
2103 {La funzione ritorna un numero di file descriptor in caso di successo e $-1$
2104   per un errore, nel qual caso \var{errno} assumerà uno dei valori:
2105   \begin{errlist}
2106   \item[\errcode{EBADF}] il valore \param{fd} non indica un file descriptor.
2107   \item[\errcode{EINVAL}] il file descriptor \param{fd} non è stato ottenuto
2108     con \func{signalfd} o il valore di \param{flags} non è valido.
2109   \item[\errcode{ENODEV}] il kernel non può montare internamente il
2110     dispositivo per la gestione anonima degli \textit{inode}
2111     associati al file descriptor.
2112   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per creare un nuovo file
2113     descriptor di \func{signalfd}.
2114   \end{errlist}
2115   ed inoltre \errval{EMFILE} e \errval{ENFILE} nel loro significato generico.
2116   
2117 }  
2118 \end{funcproto}
2119
2120 La funzione consente di creare o modificare le caratteristiche di un file
2121 descriptor speciale su cui ricevere le notifiche della ricezione di
2122 segnali. Per creare ex-novo uno di questi file descriptor è necessario passare
2123 $-1$ come valore per l'argomento \param{fd}, ogni altro valore positivo verrà
2124 invece interpretato come il numero del file descriptor (che deve esser stato
2125 precedentemente creato sempre con \func{signalfd}) di cui si vogliono
2126 modificare le caratteristiche. Nel primo caso la funzione ritornerà il valore
2127 del nuovo file descriptor e nel secondo caso il valore indicato
2128 con \param{fd}, in caso di errore invece verrà restituito $-1$.
2129
2130 L'elenco dei segnali che si vogliono gestire con \func{signalfd} deve essere
2131 specificato tramite l'argomento \param{mask}. Questo deve essere passato come
2132 puntatore ad una maschera di segnali creata con l'uso delle apposite macro già
2133 illustrate in sez.~\ref{sec:sig_sigset}. La maschera deve indicare su quali
2134 segnali si intende operare con \func{signalfd}; l'elenco può essere modificato
2135 con una successiva chiamata a \func{signalfd}. Dato che \signal{SIGKILL} e
2136 \signal{SIGSTOP} non possono essere intercettati (e non prevedono neanche la
2137 possibilità di un gestore) un loro inserimento nella maschera verrà ignorato
2138 senza generare errori.
2139
2140 L'argomento \param{flags} consente di impostare direttamente in fase di
2141 creazione due flag per il file descriptor analoghi a quelli che si possono
2142 impostare con una creazione ordinaria con \func{open}, evitando una
2143 impostazione successiva con \func{fcntl} (si ricordi che questo è un argomento
2144 aggiuntivo, introdotto con la versione fornita a partire dal kernel 2.6.27,
2145 per kernel precedenti il valore deve essere nullo).  L'argomento deve essere
2146 specificato come maschera binaria dei valori riportati in
2147 tab.~\ref{tab:signalfd_flags}.
2148
2149 \begin{table}[htb]
2150   \centering
2151   \footnotesize
2152   \begin{tabular}[c]{|l|p{8cm}|}
2153     \hline
2154     \textbf{Valore}  & \textbf{Significato} \\
2155     \hline
2156     \hline
2157     \constd{SFD\_NONBLOCK}&imposta sul file descriptor il flag di
2158                            \const{O\_NONBLOCK} per renderlo non bloccante.\\ 
2159     \constd{SFD\_CLOEXEC}& imposta il flag di \const{O\_CLOEXEC} per la
2160                            chiusura automatica del file descriptor nella
2161                            esecuzione di \func{exec}.\\
2162     \hline    
2163   \end{tabular}
2164   \caption{Valori dell'argomento \param{flags} per la funzione \func{signalfd}
2165     che consentono di impostare i flag del file descriptor.} 
2166   \label{tab:signalfd_flags}
2167 \end{table}
2168
2169 Si tenga presente che la chiamata a \func{signalfd} non disabilita la gestione
2170 ordinaria dei segnali indicati da \param{mask}; questa, se si vuole effettuare
2171 la ricezione tramite il file descriptor, dovrà essere disabilitata
2172 esplicitamente bloccando gli stessi segnali con \func{sigprocmask}, altrimenti
2173 verranno comunque eseguite le azioni di default (o un eventuale gestore
2174 installato in precedenza). Il blocco non ha invece nessun effetto sul file
2175 descriptor restituito da \func{signalfd}, dal quale sarà possibile pertanto
2176 ricevere qualunque segnale, anche se questo risultasse bloccato.
2177
2178 Si tenga presente inoltre che la lettura di una struttura
2179 \struct{signalfd\_siginfo} relativa ad un segnale pendente è equivalente alla
2180 esecuzione di un gestore, vale a dire che una volta letta il segnale non sarà
2181 più pendente e non potrà essere ricevuto, qualora si ripristino le normali
2182 condizioni di gestione, né da un gestore, né dalla funzione \func{sigwaitinfo}.
2183
2184 Come anticipato, essendo questo lo scopo principale della nuova interfaccia,
2185 il file descriptor può essere tenuto sotto osservazione tramite le funzioni
2186 dell'\textit{I/O multiplexing} (vale a dire con le solite \func{select},
2187 \func{poll} e \func{epoll\_wait}), e risulterà accessibile in lettura quando
2188 uno o più dei segnali indicati tramite \param{mask} sarà pendente.
2189
2190 La funzione può essere chiamata più volte dallo stesso processo, consentendo
2191 così di tenere sotto osservazione segnali diversi tramite file descriptor
2192 diversi. Inoltre è anche possibile tenere sotto osservazione lo stesso segnale
2193 con più file descriptor, anche se la pratica è sconsigliata; in tal caso la
2194 ricezione del segnale potrà essere effettuata con una lettura da uno qualunque
2195 dei file descriptor a cui è associato, ma questa potrà essere eseguita
2196 soltanto una volta. Questo significa che tutti i file descriptor su cui è
2197 presente lo stesso segnale risulteranno pronti in lettura per le funzioni di
2198 \textit{I/O multiplexing}, ma una volta eseguita la lettura su uno di essi il
2199 segnale sarà considerato ricevuto ed i relativi dati non saranno più
2200 disponibili sugli altri file descriptor, che (a meno di una ulteriore
2201 occorrenza del segnale nel frattempo) di non saranno più pronti.
2202
2203 Quando il file descriptor per la ricezione dei segnali non serve più potrà
2204 essere chiuso con \func{close} liberando tutte le risorse da esso allocate. In
2205 tal caso qualora vi fossero segnali pendenti questi resteranno tali, e
2206 potranno essere ricevuti normalmente una volta che si rimuova il blocco
2207 imposto con \func{sigprocmask}.
2208
2209 Oltre a poter essere usato con le funzioni dell'\textit{I/O multiplexing}, il
2210 file descriptor restituito da \func{signalfd} cerca di seguire la semantica di
2211 un sistema unix-like anche con altre \textit{system call}; in particolare esso
2212 resta aperto (come ogni altro file descriptor) attraverso una chiamata ad
2213 \func{exec}, a meno che non lo si sia creato con il flag di
2214 \const{SFD\_CLOEXEC} o si sia successivamente impostato il 
2215 \textit{close-on-exec} con \func{fcntl}. Questo comportamento corrisponde
2216 anche alla ordinaria semantica relativa ai segnali bloccati, che restano
2217 pendenti attraverso una \func{exec}.
2218
2219 Analogamente il file descriptor resta sempre disponibile attraverso una
2220 \func{fork} per il processo figlio, che ne riceve una copia; in tal caso però
2221 il figlio potrà leggere dallo stesso soltanto i dati relativi ai segnali
2222 ricevuti da lui stesso. Nel caso di \textit{thread} viene nuovamente seguita
2223 la semantica ordinaria dei segnali, che prevede che un singolo \textit{thread}
2224 possa ricevere dal file descriptor solo le notifiche di segnali inviati
2225 direttamente a lui o al processo in generale, e non quelli relativi ad altri
2226 \textit{thread} appartenenti allo stesso processo.
2227
2228 L'interfaccia fornita da \func{signalfd} prevede che la ricezione dei segnali
2229 sia eseguita leggendo i dati relativi ai segnali pendenti dal file descriptor
2230 restituito dalla funzione con una normalissima \func{read}.  Qualora non vi
2231 siano segnali pendenti la \func{read} si bloccherà a meno di non aver
2232 impostato la modalità di I/O non bloccante sul file descriptor, o direttamente
2233 in fase di creazione con il flag \const{SFD\_NONBLOCK}, o in un momento
2234 successivo con \func{fcntl}.  
2235
2236 \begin{figure}[!htb]
2237   \footnotesize \centering
2238   \begin{minipage}[c]{0.95\textwidth}
2239     \includestruct{listati/signalfd_siginfo.h}
2240   \end{minipage} 
2241   \normalsize 
2242   \caption{La struttura \structd{signalfd\_siginfo}, restituita in lettura da
2243     un file descriptor creato con \func{signalfd}.}
2244   \label{fig:signalfd_siginfo}
2245 \end{figure}
2246
2247 I dati letti dal file descriptor vengono scritti sul buffer indicato come
2248 secondo argomento di \func{read} nella forma di una sequenza di una o più
2249 strutture \struct{signalfd\_siginfo} (la cui definizione si è riportata in
2250 fig.~\ref{fig:signalfd_siginfo}) a seconda sia della dimensione del buffer che
2251 del numero di segnali pendenti. Per questo motivo il buffer deve essere almeno
2252 di dimensione pari a quella di \struct{signalfd\_siginfo}, qualora sia di
2253 dimensione maggiore potranno essere letti in unica soluzione i dati relativi
2254 ad eventuali più segnali pendenti, fino al numero massimo di strutture
2255 \struct{signalfd\_siginfo} che possono rientrare nel buffer.
2256
2257 \begin{figure}[!htb]
2258   \footnotesize \centering
2259   \begin{minipage}[c]{\codesamplewidth}
2260     \includecodesample{listati/FifoReporter-init.c}
2261   \end{minipage} 
2262   \normalsize 
2263   \caption{Sezione di inizializzazione del codice del programma
2264     \file{FifoReporter.c}.}
2265   \label{fig:fiforeporter_code_init}
2266 \end{figure}
2267
2268 Il contenuto di \struct{signalfd\_siginfo} ricalca da vicino quella
2269 dell'analoga struttura \struct{siginfo\_t} (illustrata in
2270 fig.~\ref{fig:sig_siginfo_t}) usata dall'interfaccia ordinaria dei segnali, e
2271 restituisce dati simili. Come per \struct{siginfo\_t} i campi che vengono
2272 avvalorati dipendono dal tipo di segnale e ricalcano i valori che abbiamo già
2273 illustrato in sez.~\ref{sec:sig_sigaction}.\footnote{si tenga presente però
2274   che per un bug i kernel fino al 2.6.25 non avvalorano correttamente i campi
2275   \var{ssi\_ptr} e \var{ssi\_int} per segnali inviati con \func{sigqueue}.}
2276
2277 Come esempio di questa nuova interfaccia ed anche come esempio di applicazione
2278 della interfaccia di \textit{epoll}, si è scritto un programma elementare che
2279 stampi sullo \textit{standard output} sia quanto viene scritto da terzi su una
2280 \textit{named fifo}, che l'avvenuta ricezione di alcuni segnali.  Il codice
2281 completo si trova al solito nei sorgenti allegati alla guida (nel file
2282 \texttt{FifoReporter.c}).
2283
2284 In fig.~\ref{fig:fiforeporter_code_init} si è riportata la parte iniziale del
2285 programma in cui vengono effettuate le varie inizializzazioni necessarie per
2286 l'uso di \textit{epoll} e \func{signalfd}, a partire (\texttt{\small 12-16})
2287 dalla definizione delle varie variabili e strutture necessarie. Al solito si è
2288 tralasciata la parte dedicata alla decodifica delle opzioni che consentono ad
2289 esempio di cambiare il nome del file associato alla \textit{fifo}.
2290
2291 Il primo passo (\texttt{\small 19-20}) è la creazione di un file descriptor
2292 \texttt{epfd} di \textit{epoll} con \func{epoll\_create} che è quello che
2293 useremo per il controllo degli altri.  É poi necessario disabilitare la
2294 ricezione dei segnali (nel caso \signal{SIGINT}, \signal{SIGQUIT} e
2295 \signal{SIGTERM}) per i quali si vuole la notifica tramite file
2296 descriptor. Per questo prima li si inseriscono (\texttt{\small 22-25}) in una
2297 maschera di segnali \texttt{sigmask} che useremo con (\texttt{\small 26})
2298 \func{sigprocmask} per disabilitarli.  Con la stessa maschera si potrà per
2299 passare all'uso (\texttt{\small 28-29}) di \func{signalfd} per abilitare la
2300 notifica sul file descriptor \var{sigfd}. Questo poi (\texttt{\small 30-33})
2301 dovrà essere aggiunto con \func{epoll\_ctl} all'elenco di file descriptor
2302 controllati con \texttt{epfd}.
2303
2304 Occorrerà infine (\texttt{\small 35-38}) creare la \textit{named fifo} se
2305 questa non esiste ed aprirla per la lettura (\texttt{\small 39-40}); una volta
2306 fatto questo sarà necessario aggiungere il relativo file descriptor
2307 (\var{fifofd}) a quelli osservati da \textit{epoll} in maniera del tutto
2308 analoga a quanto fatto con quello relativo alla notifica dei segnali.
2309
2310 \begin{figure}[!htb]
2311   \footnotesize \centering
2312   \begin{minipage}[c]{\codesamplewidth}
2313     \includecodesample{listati/FifoReporter-main.c}
2314   \end{minipage} 
2315   \normalsize 
2316   \caption{Ciclo principale del codice del programma \file{FifoReporter.c}.}
2317   \label{fig:fiforeporter_code_body}
2318 \end{figure}
2319
2320 Una volta completata l'inizializzazione verrà eseguito indefinitamente il
2321 ciclo principale del programma (\texttt{\small 2-45}) che si è riportato in
2322 fig.~\ref{fig:fiforeporter_code_body}, fintanto che questo non riceva un
2323 segnale di \signal{SIGINT} (ad esempio con la pressione di \texttt{C-c}). Il
2324 ciclo prevede che si attenda (\texttt{\small 2-3}) la presenza di un file
2325 descriptor pronto in lettura con \func{epoll\_wait} (si ricordi che entrambi i
2326 file descriptor \var{fifofd} e \var{sigfd} sono stati posti in osservazioni
2327 per eventi di tipo \const{EPOLLIN}) che si bloccherà fintanto che non siano
2328 stati scritti dati sulla \textit{fifo} o che non sia arrivato un
2329 segnale.\footnote{per semplificare il codice non si è trattato il caso in cui
2330   \func{epoll\_wait} viene interrotta da un segnale, assumendo che tutti
2331   quelli che possano interessare siano stati predisposti per la notifica
2332   tramite file descriptor, per gli altri si otterrà semplicemente l'uscita dal
2333   programma.}
2334
2335 Anche se in questo caso i file descriptor pronti possono essere al più due, si
2336 è comunque adottato un approccio generico in cui questi verranno letti
2337 all'interno di un opportuno ciclo (\texttt{\small 5-44}) sul numero
2338 restituito da \func{epoll\_wait}, esaminando i risultati presenti nel vettore
2339 \var{events} all'interno di una catena di condizionali alternativi sul valore
2340 del file descriptor riconosciuto come pronto, controllando cioè a quale dei
2341 due file descriptor possibili corrisponde il campo relativo,
2342 \var{events[i].data.fd}.
2343
2344 Il primo condizionale (\texttt{\small 6-24}) è relativo al caso che si sia
2345 ricevuto un segnale e che il file descriptor pronto corrisponda
2346 (\texttt{\small 6}) a \var{sigfd}. Dato che in generale si possono ricevere
2347 anche notifiche relativi a più di un singolo segnale, si è scelto di leggere
2348 una struttura \struct{signalfd\_siginfo} alla volta, eseguendo la lettura
2349 all'interno di un ciclo (\texttt{\small 8-24}) che prosegue fintanto che vi
2350 siano dati da leggere.
2351
2352 Per questo ad ogni lettura si esamina (\texttt{\small 9-14}) se il valore di
2353 ritorno della funzione \func{read} è negativo, uscendo dal programma
2354 (\texttt{\small 11}) in caso di errore reale, o terminando il ciclo
2355 (\texttt{\small 13}) con un \texttt{break} qualora si ottenga un errore di
2356 \errcode{EAGAIN} per via dell'esaurimento dei dati. Si ricordi infatti come
2357 sia la \textit{fifo} che il file descriptor per i segnali siano stati aperti in
2358 modalità non-bloccante, come previsto per l’\textit{I/O multiplexing},
2359 pertanto ci si aspetta di ricevere un errore di \errcode{EAGAIN} quando non vi
2360 saranno più dati da leggere.
2361
2362 In presenza di dati invece il programma proseguirà l'esecuzione stampando
2363 (\texttt{\small 19-20}) il nome del segnale ottenuto all'interno della
2364 struttura \struct{signalfd\_siginfo} letta in \var{siginf} ed il \textit{pid}
2365 del processo da cui lo ha ricevuto;\footnote{per la stampa si è usato il
2366   vettore \var{sig\_names} a ciascun elemento del quale corrisponde il nome
2367   del segnale avente il numero corrispondente, la cui definizione si è omessa
2368   dal codice di fig.~\ref{fig:fiforeporter_code_init} per brevità.} inoltre
2369 (\texttt{\small 21-24}) si controllerà anche se il segnale ricevuto è
2370 \signal{SIGINT}, che si è preso come segnale da utilizzare per la terminazione
2371 del programma, che verrà eseguita dopo aver rimosso il file della \textit{name
2372   fifo}.
2373  
2374 Il secondo condizionale (\texttt{\small 26-39}) è invece relativo al caso in
2375 cui ci siano dati pronti in lettura sulla \textit{fifo} e che il file
2376 descriptor pronto corrisponda (\texttt{\small 26}) a \var{fifofd}. Di nuovo si
2377 effettueranno le letture in un ciclo (\texttt{\small 28-39}) ripetendole fin
2378 tanto che la funzione \func{read} non restituisce un errore di
2379 \errcode{EAGAIN} (\texttt{\small 29-35}). Il procedimento è lo stesso adottato
2380 per il file descriptor associato al segnale, in cui si esce dal programma in
2381 caso di errore reale, in questo caso però alla fine dei dati prima di uscire
2382 si stampa anche (\texttt{\small 32}) un messaggio di chiusura.
2383
2384 Se invece vi sono dati validi letti dalla \textit{fifo} si inserirà
2385 (\texttt{\small 36}) una terminazione di stringa sul buffer e si stamperà il
2386 tutto (\texttt{\small 37-38}) sullo \textit{standard output}. L'ultimo
2387 condizionale (\texttt{\small 40-44}) è semplicemente una condizione di cattura
2388 per una eventualità che comunque non dovrebbe mai verificarsi, e che porta
2389 alla uscita dal programma con una opportuna segnalazione di errore.
2390
2391 A questo punto si potrà eseguire il comando lanciandolo su un terminale, ed
2392 osservarne le reazioni agli eventi generati da un altro terminale; lanciando
2393 il programma otterremo qualcosa del tipo:
2394 \begin{Console}
2395 piccardi@hain:~/gapil/sources$ \textbf{./a.out} 
2396 FifoReporter starting, pid 4568
2397 \end{Console}
2398 %$
2399 e scrivendo qualcosa sull'altro terminale con:
2400 \begin{Console}
2401 root@hain:~# \textbf{echo prova > /tmp/reporter.fifo}  
2402 \end{Console}
2403 si otterrà:
2404 \begin{Console}
2405 Message from fifo:
2406 prova
2407 end message
2408 \end{Console}
2409 mentre inviando un segnale:
2410 \begin{Console}
2411 root@hain:~# \textbf{kill 4568}
2412 \end{Console}
2413 si avrà:
2414 \begin{Console}
2415 Signal received:
2416 Got SIGTERM       
2417 From pid 3361
2418 \end{Console}
2419 ed infine premendo \texttt{C-\bslash} sul terminale in cui è in esecuzione si
2420 vedrà:
2421 \begin{Console}
2422 ^\\Signal received:
2423 Got SIGQUIT       
2424 From pid 0
2425 \end{Console}
2426 e si potrà far uscire il programma con \texttt{C-c} ottenendo:
2427 \begin{Console}
2428 ^CSignal received:
2429 Got SIGINT        
2430 From pid 0
2431 SIGINT means exit
2432 \end{Console}
2433
2434 Lo stesso paradigma di notifica tramite file descriptor usato per i segnali è
2435 stato adottato anche per i timer. In questo caso, rispetto a quanto visto in
2436 sez.~\ref{sec:sig_timer_adv}, la scadenza di un timer potrà essere letta da un
2437 file descriptor senza dover ricorrere ad altri meccanismi di notifica come un
2438 segnale o un \textit{thread}. Di nuovo questo ha il vantaggio di poter
2439 utilizzare le funzioni dell'\textit{I/O multiplexing} per attendere allo
2440 stesso tempo la disponibilità di dati o la ricezione della scadenza di un
2441 timer. In realtà per questo sarebbe già sufficiente \func{signalfd} per
2442 ricevere i segnali associati ai timer, ma la nuova interfaccia semplifica
2443 notevolmente la gestione e consente di fare tutto con una sola \textit{system
2444   call}.
2445
2446 Le funzioni di questa nuova interfaccia ricalcano da vicino la struttura delle
2447 analoghe versioni ordinarie introdotte con lo standard POSIX.1-2001, che
2448 abbiamo già illustrato in sez.~\ref{sec:sig_timer_adv}.\footnote{questa
2449   interfaccia è stata introdotta in forma considerata difettosa con il kernel
2450   2.6.22, per cui è stata immediatamente tolta nel successivo 2.6.23 e
2451   reintrodotta in una forma considerata adeguata nel kernel 2.6.25, il
2452   supporto nella \acr{glibc} è stato introdotto a partire dalla versione
2453   2.8.6, la versione del kernel 2.6.22, presente solo su questo kernel, non è
2454   supportata e non deve essere usata.} La prima funzione di sistema prevista,
2455 quella che consente di creare un timer, è \funcd{timerfd\_create}, il cui
2456 prototipo è:
2457
2458 \begin{funcproto}{
2459 \fhead{sys/timerfd.h}
2460 \fdecl{int timerfd\_create(int clockid, int flags)}
2461
2462 \fdesc{Crea un timer associato ad un file descriptor di notifica.}
2463 }
2464
2465 {La funzione ritorna un numero di file descriptor in caso di successo e $-1$
2466   per un errore, nel qual caso \var{errno} assumerà uno dei valori:
2467   \begin{errlist}
2468   \item[\errcode{EINVAL}] l'argomento \param{clockid} non è
2469     \const{CLOCK\_MONOTONIC} o \const{CLOCK\_REALTIME}, o
2470     l'argomento \param{flag} non è valido, o è diverso da zero per kernel
2471     precedenti il 2.6.27.
2472   \item[\errcode{ENODEV}] il kernel non può montare internamente il
2473     dispositivo per la gestione anonima degli \textit{inode} associati al file
2474     descriptor.
2475   \item[\errcode{ENOMEM}] non c'è memoria sufficiente per creare un nuovo file
2476     descriptor di \func{signalfd}.
2477   \end{errlist}
2478   ed inoltre \errval{EMFILE} e \errval{ENFILE} nel loro significato generico.
2479 }  
2480 \end{funcproto}
2481
2482 La funzione prende come primo argomento un intero che indica il tipo di
2483 orologio a cui il timer deve fare riferimento, i valori sono gli stessi delle
2484 funzioni dello standard POSIX-1.2001 già illustrati in
2485 tab.~\ref{tab:sig_timer_clockid_types}, ma al momento i soli utilizzabili sono
2486 \const{CLOCK\_REALTIME} e \const{CLOCK\_MONOTONIC}. L'argomento \param{flags},
2487 come l'analogo di \func{signalfd}, consente di impostare i flag per l'I/O non
2488 bloccante ed il \textit{close-on-exec} sul file descriptor
2489 restituito,\footnote{il flag è stato introdotto a partire dal kernel 2.6.27,
2490   per le versioni precedenti deve essere passato un valore nullo.} e deve
2491 essere specificato come una maschera binaria delle costanti riportate in
2492 tab.~\ref{tab:timerfd_flags}.
2493
2494 \begin{table}[htb]
2495   \centering
2496   \footnotesize
2497   \begin{tabular}[c]{|l|p{8cm}|}
2498     \hline
2499     \textbf{Valore}  & \textbf{Significato} \\
2500     \hline
2501     \hline
2502     \constd{TFD\_NONBLOCK}& imposta sul file descriptor il flag di
2503                             \const{O\_NONBLOCK} per renderlo non bloccante.\\ 
2504     \constd{TFD\_CLOEXEC} & imposta il flag di \const{O\_CLOEXEC} per la
2505                             chiusura automatica del file descriptor nella
2506                             esecuzione di \func{exec}.\\
2507     \hline    
2508   \end{tabular}
2509   \caption{Valori dell'argomento \param{flags} per la funzione
2510     \func{timerfd\_create} che consentono di impostare i flag del file
2511     descriptor.}  
2512   \label{tab:timerfd_flags}
2513 \end{table}
2514
2515 In caso di successo la funzione restituisce un file descriptor sul quale
2516 verranno notificate le scadenze dei timer. Come per quelli restituiti da
2517 \func{signalfd} anche questo file descriptor segue la semantica dei sistemi
2518 unix-like, in particolare resta aperto attraverso una \func{exec} (a meno che
2519 non si sia impostato il flag di \textit{close-on exec} con
2520 \const{TFD\_CLOEXEC}) e viene duplicato attraverso una \func{fork}; questa
2521 ultima caratteristica comporta però che anche il figlio può utilizzare i dati
2522 di un timer creato nel padre, a differenza di quanto avviene invece con i
2523 timer impostati con le funzioni ordinarie. Si ricordi infatti che, come
2524 illustrato in sez.~\ref{sec:proc_fork}, allarmi, timer e segnali pendenti nel
2525 padre vengono cancellati per il figlio dopo una \func{fork}.
2526
2527 Una volta creato il timer con \func{timerfd\_create} per poterlo utilizzare
2528 occorre \textsl{armarlo} impostandone un tempo di scadenza ed una eventuale
2529 periodicità di ripetizione, per farlo si usa una funzione di sistema omologa
2530 di \func{timer\_settime} per la nuova interfaccia; questa è
2531 \funcd{timerfd\_settime} ed il suo prototipo è:
2532
2533 \begin{funcproto}{
2534 \fhead{sys/timerfd.h}
2535 \fdecl{int timerfd\_settime(int fd, int flags,
2536                            const struct itimerspec *new\_value,\\
2537 \phantom{int timerfd\_settime(}struct itimerspec *old\_value)}
2538
2539 \fdesc{Arma un timer associato ad un file descriptor di notifica.}
2540 }
2541
2542 {La funzione ritorna un numero di file descriptor in caso di successo e $-1$
2543   per un errore, nel qual caso \var{errno} assumerà uno dei valori:
2544   \begin{errlist}
2545   \item[\errcode{EBADF}] l'argomento \param{fd} non corrisponde ad un file
2546     descriptor. 
2547   \item[\errcode{EFAULT}] o \param{new\_value} o \param{old\_value} non sono
2548     puntatori validi.
2549   \item[\errcode{EINVAL}] il file descriptor \param{fd} non è stato ottenuto
2550     con \func{timerfd\_create}, o i valori di \param{flag} o dei campi
2551     \var{tv\_nsec} in \param{new\_value} non sono validi.
2552   \end{errlist}
2553 }  
2554 \end{funcproto}
2555
2556 In questo caso occorre indicare su quale timer si intende operare specificando
2557 come primo argomento il file descriptor ad esso associato, che deve essere
2558 stato ottenuto da una precedente chiamata a \func{timerfd\_create}. I restanti
2559 argomenti sono del tutto analoghi a quelli della omologa funzione
2560 \func{timer\_settime}, e prevedono l'uso di strutture \struct{itimerspec}
2561 (vedi fig.~\ref{fig:struct_itimerspec}) per le indicazioni di temporizzazione.
2562
2563 I valori ed il significato di questi argomenti sono gli stessi che sono già
2564 stati illustrati in dettaglio in sez.~\ref{sec:sig_timer_adv} e non staremo a
2565 ripetere quanto detto in quell'occasione; per brevità si ricordi che
2566 con \param{new\_value.it\_value} si indica la prima scadenza del timer e
2567 con \param{new\_value.it\_interval} la sua periodicità.  L'unica differenza
2568 riguarda l'argomento \param{flags} che serve sempre ad indicare se il tempo di
2569 scadenza del timer è da considerarsi relativo o assoluto rispetto al valore
2570 corrente dell'orologio associato al timer, ma che in questo caso ha come
2571 valori possibili rispettivamente soltanto $0$ e \constd{TFD\_TIMER\_ABSTIME}
2572 (l'analogo di \const{TIMER\_ABSTIME}).
2573
2574 L'ultima funzione di sistema prevista dalla nuova interfaccia è
2575 \funcd{timerfd\_gettime}, che è l'analoga di \func{timer\_gettime}, il suo
2576 prototipo è:
2577
2578 \begin{funcproto}{
2579 \fhead{sys/timerfd.h}
2580 \fdecl{int timerfd\_gettime(int fd, struct itimerspec *curr\_value)}
2581
2582 \fdesc{Legge l'impostazione di un timer associato ad un file descriptor di
2583   notifica.} 
2584 }
2585
2586 {La funzione ritorna un numero di file descriptor in caso di successo e $-1$
2587   per un errore, nel qual caso \var{errno} assumerà uno dei valori:
2588   \begin{errlist}
2589   \item[\errcode{EBADF}] l'argomento \param{fd} non corrisponde ad un file
2590     descriptor. 
2591   \item[\errcode{EINVAL}] il file descriptor \param{fd} non è stato ottenuto
2592     con \func{timerfd\_create}.
2593   \item[\errcode{EFAULT}] o \param{curr\_value} non è un puntatore valido.
2594   \end{errlist}
2595 }  
2596 \end{funcproto}
2597
2598 La funzione consente di rileggere le impostazioni del timer associato al file
2599 descriptor \param{fd} nella struttura \struct{itimerspec} puntata
2600 da \param{curr\_value}. Il campo \var{it\_value} riporta il tempo rimanente
2601 alla prossima scadenza del timer, che viene sempre espresso in forma relativa,
2602 anche se lo si è armato specificando \const{TFD\_TIMER\_ABSTIME}. Un valore
2603 nullo (di entrambi i campi di \var{it\_value}) indica invece che il timer non
2604 è stato ancora armato. Il campo \var{it\_interval} riporta la durata
2605 dell'intervallo di ripetizione del timer, ed un valore nullo (di entrambi i
2606 campi) indica che il timer è stato impostato per scadere una sola volta.
2607
2608 Il timer creato con \func{timerfd\_create} notificherà la sua scadenza
2609 rendendo pronto per la lettura il file descriptor ad esso associato, che
2610 pertanto potrà essere messo sotto controllo con una qualunque delle varie
2611 funzioni dell'I/O multiplexing viste in precedenza. Una volta che il file
2612 descriptor risulta pronto sarà possibile leggere il numero di volte che il
2613 timer è scaduto con una ordinaria \func{read}. 
2614
2615 La funzione legge il valore in un dato di tipo \typed{uint64\_t}, e necessita
2616 pertanto che le si passi un buffer di almeno 8 byte, fallendo con
2617 \errval{EINVAL} in caso contrario, in sostanza la lettura deve essere
2618 effettuata con una istruzione del tipo:
2619 \includecodesnip{listati/readtimerfd.c} 
2620
2621 Il valore viene restituito da \func{read} seguendo l'ordinamento dei bit
2622 (\textit{big-endian} o \textit{little-endian}) nativo della macchina in uso,
2623 ed indica il numero di volte che il timer è scaduto dall'ultima lettura
2624 eseguita con successo, o, se lo si legge per la prima volta, da quando lo si è
2625 impostato con \func{timerfd\_settime}. Se il timer non è scaduto la funzione
2626 si blocca fino alla prima scadenza, a meno di non aver creato il file
2627 descriptor in modalità non bloccante con \const{TFD\_NONBLOCK} o aver
2628 impostato la stessa con \func{fcntl}, nel qual caso fallisce con l'errore di
2629 \errval{EAGAIN}.
2630
2631
2632 % TODO trattare qui eventfd introdotto con il 2.6.22 
2633
2634
2635 \section{L'accesso \textsl{asincrono} ai file}
2636 \label{sec:file_asyncronous_operation}
2637
2638 Benché l'\textit{I/O multiplexing} sia stata la prima, e sia tutt'ora una fra
2639 le più diffuse modalità di gestire l'I/O in situazioni complesse in cui si
2640 debba operare su più file contemporaneamente, esistono altre modalità di
2641 gestione delle stesse problematiche. In particolare sono importanti in questo
2642 contesto le modalità di accesso ai file eseguibili in maniera
2643 \textsl{asincrona}, quelle cioè in cui un processo non deve bloccarsi in
2644 attesa della disponibilità dell'accesso al file, ma può proseguire
2645 nell'esecuzione utilizzando invece un meccanismo di notifica asincrono (di
2646 norma un segnale, ma esistono anche altre interfacce, come \textit{inotify}),
2647 per essere avvisato della possibilità di eseguire le operazioni di I/O volute.
2648
2649
2650 \subsection{Il \textit{Signal driven I/O}}
2651 \label{sec:signal_driven_io}
2652
2653 \itindbeg{signal~driven~I/O}
2654
2655 Abbiamo accennato in sez.~\ref{sec:file_open_close} che è definito un flag
2656 \const{O\_ASYNC}, che consentirebbe di aprire un file in modalità asincrona,
2657 anche se in realtà è opportuno attivare in un secondo tempo questa modalità
2658 impostando questo flag attraverso l'uso di \func{fcntl} con il comando
2659 \const{F\_SETFL} (vedi sez.~\ref{sec:file_fcntl_ioctl}).\footnote{l'uso del
2660   flag di \const{O\_ASYNC} e dei comandi \const{F\_SETOWN} e \const{F\_GETOWN}
2661   per \func{fcntl} è specifico di Linux e BSD.}  In realtà parlare di apertura
2662 in modalità asincrona non significa che le operazioni di lettura o scrittura
2663 del file vengono eseguite in modo asincrono (tratteremo questo, che è ciò che
2664 più propriamente viene chiamato \textsl{I/O asincrono}, in
2665 sez.~\ref{sec:file_asyncronous_io}), quanto dell'attivazione un meccanismo di
2666 notifica asincrona delle variazione dello stato del file descriptor aperto in
2667 questo modo.
2668
2669 Quello che succede è che per tutti i file posti in questa modalità il sistema
2670 genera un apposito segnale, \signal{SIGIO}, tutte le volte che diventa
2671 possibile leggere o scrivere dal file descriptor; si tenga presente però che
2672 essa non è utilizzabile con i file ordinari ma solo con socket, file di
2673 terminale o pseudo terminale, ed anche, a partire dal kernel 2.6, per
2674 \textit{fifo} e \textit{pipe}. Inoltre è possibile, come illustrato in
2675 sez.~\ref{sec:file_fcntl_ioctl}, selezionare con il comando \const{F\_SETOWN}
2676 di \func{fcntl} quale processo o quale gruppo di processi dovrà ricevere il
2677 segnale. In questo modo diventa possibile effettuare le operazioni di I/O in
2678 risposta alla ricezione del segnale, e non ci sarà più la necessità di restare
2679 bloccati in attesa della disponibilità di accesso ai file.
2680
2681 % TODO: per i thread l'uso di F_SETOWN ha un significato diverso
2682
2683 Per questo motivo Stevens, ed anche le pagine di manuale di Linux, chiamano
2684 questa modalità ``\textit{Signal driven I/O}''.  Si tratta di un'altra
2685 modalità di gestione dell'I/O, alternativa all'uso di
2686 \textit{epoll},\footnote{anche se le prestazioni ottenute con questa tecnica
2687   sono inferiori, il vantaggio è che questa modalità è utilizzabile anche con
2688   kernel che non supportano \textit{epoll}, come quelli della serie 2.4,
2689   ottenendo comunque prestazioni superiori a quelle che si hanno con
2690   \func{poll} e \func{select}.} che consente di evitare l'uso delle funzioni
2691 \func{poll} o \func{select} che, come illustrato in sez.~\ref{sec:file_epoll},
2692 quando vengono usate con un numero molto grande di file descriptor, non hanno
2693 buone prestazioni.
2694
2695 Tuttavia con l'implementazione classica dei segnali questa modalità di I/O
2696 presenta notevoli problemi, dato che non è possibile determinare, quando i
2697 file descriptor sono più di uno, qual è quello responsabile dell'emissione del
2698 segnale. Inoltre dato che i segnali normali non si accodano (si ricordi quanto
2699 illustrato in sez.~\ref{sec:sig_notification}), in presenza di più file
2700 descriptor attivi contemporaneamente, più segnali emessi nello stesso momento
2701 verrebbero notificati una volta sola.
2702
2703 Linux però supporta le estensioni POSIX.1b dei segnali \textit{real-time}, che
2704 vengono accodati e che permettono di riconoscere il file descriptor che li ha
2705 emessi.  In questo caso infatti si può fare ricorso alle informazioni
2706 aggiuntive restituite attraverso la struttura \struct{siginfo\_t}, utilizzando
2707 la forma estesa \var{sa\_sigaction} del gestore installata con il flag
2708 \const{SA\_SIGINFO} (si riveda quanto illustrato in
2709 sez.~\ref{sec:sig_sigaction}).
2710
2711 Per far questo però occorre utilizzare le funzionalità dei segnali
2712 \textit{real-time} (vedi sez.~\ref{sec:sig_real_time}) impostando
2713 esplicitamente con il comando \const{F\_SETSIG} di \func{fcntl} un segnale
2714 \textit{real-time} da inviare in caso di I/O asincrono (il segnale predefinito
2715 è \signal{SIGIO}). In questo caso il gestore, tutte le volte che riceverà
2716 \const{SI\_SIGIO} come valore del campo \var{si\_code} di \struct{siginfo\_t},
2717 troverà nel campo \var{si\_fd} il valore del file descriptor che ha generato
2718 il segnale. Si noti che il valore di\var{si\_code} resta \const{SI\_SIGIO}
2719 qualunque sia il segnale che si è associato all'I/O, in quanto indica che il
2720 segnale è stato generato a causa di attività di I/O.
2721
2722 Un secondo vantaggio dell'uso dei segnali \textit{real-time} è che essendo
2723 questi ultimi dotati di una coda di consegna ogni segnale sarà associato ad
2724 uno solo file descriptor; inoltre sarà possibile stabilire delle priorità
2725 nella risposta a seconda del segnale usato, dato che i segnali
2726 \textit{real-time} supportano anche questa funzionalità. In questo modo si può
2727 identificare immediatamente un file su cui l'accesso è diventato possibile
2728 evitando completamente l'uso di funzioni come \func{poll} e \func{select},
2729 almeno fintanto che non si satura la coda.
2730
2731 Se infatti si eccedono le dimensioni di quest'ultima, il kernel, non potendo
2732 più assicurare il comportamento corretto per un segnale \textit{real-time},
2733 invierà al suo posto un solo \signal{SIGIO}, su cui si saranno accumulati
2734 tutti i segnali in eccesso, e si dovrà allora determinare con un ciclo quali
2735 sono i file diventati attivi. L'unico modo per essere sicuri che questo non
2736 avvenga è di impostare la lunghezza della coda dei segnali \textit{real-time}
2737 ad una dimensione identica al valore massimo del numero di file descriptor
2738 utilizzabili, vale a dire impostare il contenuto di
2739 \sysctlfile{kernel/rtsig-max} allo stesso valore del contenuto di
2740 \sysctlfile{fs/file-max}.
2741
2742 % TODO fare esempio che usa O_ASYNC
2743
2744 \itindend{signal~driven~I/O}
2745
2746
2747
2748 \subsection{I meccanismi di notifica asincrona.}
2749 \label{sec:file_asyncronous_lease}
2750
2751 Una delle domande più frequenti nella programmazione in ambiente unix-like è
2752 quella di come fare a sapere quando un file viene modificato. La risposta, o
2753 meglio la non risposta, tanto che questa nelle Unix FAQ \cite{UnixFAQ} viene
2754 anche chiamata una \textit{Frequently Unanswered Question}, è che
2755 nell'architettura classica di Unix questo non è possibile. Al contrario di
2756 altri sistemi operativi infatti un kernel unix-like classico non prevedeva
2757 alcun meccanismo per cui un processo possa essere \textsl{notificato} di
2758 eventuali modifiche avvenute su un file. 
2759
2760 Questo è il motivo per cui i demoni devono essere \textsl{avvisati} in qualche
2761 modo se il loro file di configurazione è stato modificato, perché possano
2762 rileggerlo e riconoscere le modifiche; in genere questo vien fatto inviandogli
2763 un segnale di \signal{SIGHUP} che, per una convenzione adottata dalla gran
2764 parte di detti programmi, causa la rilettura della configurazione.
2765
2766 Questa scelta è stata fatta perché provvedere un simile meccanismo a livello
2767 generico per qualunque file comporterebbe un notevole aumento di complessità
2768 dell'architettura della gestione dei file, il tutto per fornire una
2769 funzionalità che serve soltanto in alcuni casi particolari. Dato che
2770 all'origine di Unix i soli programmi che potevano avere una tale esigenza
2771 erano i demoni, attenendosi a uno dei criteri base della progettazione, che
2772 era di far fare al kernel solo le operazioni strettamente necessarie e
2773 lasciare tutto il resto a processi in \textit{user space}, non era stata
2774 prevista nessuna funzionalità di notifica.
2775
2776 Visto però il crescente interesse nei confronti di una funzionalità di questo
2777 tipo, che è molto richiesta specialmente nello sviluppo dei programmi ad
2778 interfaccia grafica quando si deve presentare all'utente lo stato del
2779 filesystem, sono state successivamente introdotte delle estensioni che
2780 permettessero la creazione di meccanismi di notifica più efficienti dell'unica
2781 soluzione disponibile con l'interfaccia tradizionale, che è quella del
2782 \textit{polling}.
2783
2784 Queste nuove funzionalità sono delle estensioni specifiche, non
2785 standardizzate, che sono disponibili soltanto su Linux (anche se altri kernel
2786 supportano meccanismi simili). Alcune di esse sono realizzate, e solo a
2787 partire dalla versione 2.4 del kernel, attraverso l'uso di alcuni
2788 \textsl{comandi} aggiuntivi per la funzione \func{fcntl} (vedi
2789 sez.~\ref{sec:file_fcntl_ioctl}), che divengono disponibili soltanto se si è
2790 definita la macro \macro{\_GNU\_SOURCE} prima di includere \headfile{fcntl.h}.
2791
2792 \itindbeg{file~lease} 
2793
2794 % TODO: questa funzionalità potrebbe essere estesa vedi:
2795 % https://lwn.net/Articles/796000/ 
2796
2797 La prima di queste funzionalità è quella del cosiddetto \textit{file lease};
2798 questo è un meccanismo che consente ad un processo, detto \textit{lease
2799   holder}, di essere notificato quando un altro processo, chiamato a sua volta
2800 \textit{lease breaker}, cerca di eseguire una \func{open} o una
2801 \func{truncate} sul file del quale l'\textit{holder} detiene il
2802 \textit{lease}.  La notifica avviene in maniera analoga a come illustrato in
2803 precedenza per l'uso di \const{O\_ASYNC}: di default viene inviato al
2804 \textit{lease holder} il segnale \signal{SIGIO}, ma questo segnale può essere
2805 modificato usando il comando \const{F\_SETSIG} di \func{fcntl} (anche in
2806 questo caso si può rispecificare lo stesso \signal{SIGIO}).
2807
2808 Se si è fatto questo (ed in genere è opportuno farlo, come in precedenza, per
2809 utilizzare segnali \textit{real-time}) e se inoltre si è installato il gestore
2810 del segnale con \const{SA\_SIGINFO} si riceverà nel campo \var{si\_fd} della
2811 struttura \struct{siginfo\_t} il valore del file descriptor del file sul quale
2812 è stato compiuto l'accesso; in questo modo un processo può mantenere anche più
2813 di un \textit{file lease}.
2814
2815 Esistono due tipi di \textit{file lease}: di lettura (\textit{read lease}) e
2816 di scrittura (\textit{write lease}). Nel primo caso la notifica avviene quando
2817 un altro processo esegue l'apertura del file in scrittura o usa
2818 \func{truncate} per troncarlo. Nel secondo caso la notifica avviene anche se
2819 il file viene aperto in lettura; in quest'ultimo caso però il \textit{lease}
2820 può essere ottenuto solo se nessun altro processo ha aperto lo stesso file.
2821
2822 Come accennato in sez.~\ref{sec:file_fcntl_ioctl} il comando di \func{fcntl}
2823 che consente di acquisire un \textit{file lease} è \const{F\_SETLEASE}, che
2824 viene utilizzato anche per rilasciarlo. In tal caso il file
2825 descriptor \param{fd} passato a \func{fcntl} servirà come riferimento per il
2826 file su cui si vuole operare, mentre per indicare il tipo di operazione
2827 (acquisizione o rilascio) occorrerà specificare come valore
2828 dell'argomento \param{arg} di \func{fcntl} uno dei tre valori di
2829 tab.~\ref{tab:file_lease_fctnl}.
2830
2831 \begin{table}[htb]
2832   \centering
2833   \footnotesize
2834   \begin{tabular}[c]{|l|l|}
2835     \hline
2836     \textbf{Valore}  & \textbf{Significato} \\
2837     \hline
2838     \hline
2839     \constd{F\_RDLCK} & Richiede un \textit{read lease}.\\
2840     \constd{F\_WRLCK} & Richiede un \textit{write lease}.\\
2841     \constd{F\_UNLCK} & Rilascia un \textit{file lease}.\\
2842     \hline    
2843   \end{tabular}
2844   \caption{Costanti per i tre possibili valori dell'argomento \param{arg} di
2845     \func{fcntl} quando usata con i comandi \const{F\_SETLEASE} e
2846     \const{F\_GETLEASE}.} 
2847   \label{tab:file_lease_fctnl}
2848 \end{table}
2849
2850 Se invece si vuole conoscere lo stato di eventuali \textit{file lease}
2851 occorrerà chiamare \func{fcntl} sul relativo file descriptor \param{fd} con il
2852 comando \const{F\_GETLEASE}, e si otterrà indietro nell'argomento \param{arg}
2853 uno dei valori di tab.~\ref{tab:file_lease_fctnl}, che indicheranno la
2854 presenza del rispettivo tipo di \textit{lease}, o, nel caso di
2855 \const{F\_UNLCK}, l'assenza di qualunque \textit{file lease}.
2856
2857 Si tenga presente che un processo può mantenere solo un tipo di \textit{lease}
2858 su un file, e che un \textit{lease} può essere ottenuto solo su file di dati
2859 (\textit{pipe} e dispositivi sono quindi esclusi). Inoltre un processo non
2860 privilegiato può ottenere un \textit{lease} soltanto per un file appartenente
2861 ad un \ids{UID} corrispondente a quello del processo. Soltanto un processo con
2862 privilegi di amministratore (cioè con la capacità \const{CAP\_LEASE}, vedi
2863 sez.~\ref{sec:proc_capabilities}) può acquisire \textit{lease} su qualunque
2864 file.
2865
2866 Se su un file è presente un \textit{lease} quando il \textit{lease breaker}
2867 esegue una \func{truncate} o una \func{open} che confligge con
2868 esso,\footnote{in realtà \func{truncate} confligge sempre, mentre \func{open},
2869   se eseguita in sola lettura, non confligge se si tratta di un \textit{read
2870     lease}.} la funzione si blocca (a meno di non avere aperto il file con
2871 \const{O\_NONBLOCK}, nel qual caso \func{open} fallirebbe con un errore di
2872 \errcode{EWOULDBLOCK}) e viene eseguita la notifica al \textit{lease holder},
2873 così che questo possa completare le sue operazioni sul file e rilasciare il
2874 \textit{lease}.  In sostanza con un \textit{read lease} si rilevano i
2875 tentativi di accedere al file per modificarne i dati da parte di un altro
2876 processo, mentre con un \textit{write lease} si rilevano anche i tentativi di
2877 accesso in lettura.  Si noti comunque che le operazioni di notifica avvengono
2878 solo in fase di apertura del file e non sulle singole operazioni di lettura e
2879 scrittura.
2880
2881 L'utilizzo dei \textit{file lease} consente al \textit{lease holder} di
2882 assicurare la consistenza di un file, a seconda dei due casi, prima che un
2883 altro processo inizi con le sue operazioni di scrittura o di lettura su di
2884 esso. In genere un \textit{lease holder} che riceve una notifica deve
2885 provvedere a completare le necessarie operazioni (ad esempio scaricare
2886 eventuali buffer), per poi rilasciare il \textit{lease} così che il
2887 \textit{lease breaker} possa eseguire le sue operazioni. Questo si fa con il
2888 comando \const{F\_SETLEASE}, o rimuovendo il \textit{lease} con
2889 \const{F\_UNLCK}, o, nel caso di \textit{write lease} che confligge con una
2890 operazione di lettura, declassando il \textit{lease} a lettura con
2891 \const{F\_RDLCK}.
2892
2893 Se il \textit{lease holder} non provvede a rilasciare il \textit{lease} entro
2894 il numero di secondi specificato dal parametro di sistema mantenuto in
2895 \sysctlfiled{fs/lease-break-time} sarà il kernel stesso a rimuoverlo o
2896 declassarlo automaticamente (questa è una misura di sicurezza per evitare che
2897 un processo blocchi indefinitamente l'accesso ad un file acquisendo un
2898 \textit{lease}). Una volta che un \textit{lease} è stato rilasciato o
2899 declassato (che questo sia fatto dal \textit{lease holder} o dal kernel è lo
2900 stesso) le chiamate a \func{open} o \func{truncate} eseguite dal \textit{lease
2901   breaker} rimaste bloccate proseguono automaticamente.
2902
2903 Benché possa risultare utile per sincronizzare l'accesso ad uno stesso file da
2904 parte di più processi, l'uso dei \textit{file lease} non consente comunque di
2905 risolvere il problema di rilevare automaticamente quando un file o una
2906 directory vengono modificati,\footnote{questa funzionalità venne aggiunta
2907   principalmente ad uso di Samba per poter facilitare l'emulazione del
2908   comportamento di Windows sui file, ma ad oggi viene considerata una
2909   interfaccia mal progettata ed il suo uso è fortemente sconsigliato a favore
2910   di \textit{inotify}.} che è quanto necessario ad esempio ai programma di
2911 gestione dei file dei vari desktop grafici.
2912
2913 \itindbeg{dnotify}
2914
2915 Per risolvere questo problema a partire dal kernel 2.4 è stata allora creata
2916 un'altra interfaccia,\footnote{si ricordi che anche questa è una interfaccia
2917   specifica di Linux che deve essere evitata se si vogliono scrivere programmi
2918   portabili, e che le funzionalità illustrate sono disponibili soltanto se è
2919   stata definita la macro \macro{\_GNU\_SOURCE}.} chiamata \textit{dnotify},
2920 che consente di richiedere una notifica quando una directory, o uno qualunque
2921 dei file in essa contenuti, viene modificato.  Come per i \textit{file lease}
2922 la notifica avviene di default attraverso il segnale \signal{SIGIO}, ma se ne
2923 può utilizzare un altro, e di nuovo, per le ragioni già esposte in precedenza,
2924 è opportuno che si utilizzino dei segnali \textit{real-time}.  Inoltre, come
2925 in precedenza, si potrà ottenere nel gestore del segnale il file descriptor
2926 che è stato modificato tramite il contenuto della struttura
2927 \struct{siginfo\_t}.
2928
2929 \itindend{file~lease}
2930
2931 \begin{table}[htb]
2932   \centering
2933   \footnotesize
2934   \begin{tabular}[c]{|l|p{8cm}|}
2935     \hline
2936     \textbf{Valore}  & \textbf{Significato} \\
2937     \hline
2938     \hline
2939     \constd{DN\_ACCESS} & Un file è stato acceduto, con l'esecuzione di una fra
2940                           \func{read}, \func{pread}, \func{readv}.\\ 
2941     \constd{DN\_MODIFY} & Un file è stato modificato, con l'esecuzione di una
2942                           fra \func{write}, \func{pwrite}, \func{writev}, 
2943                           \func{truncate}, \func{ftruncate}.\\ 
2944     \constd{DN\_CREATE} & È stato creato un file nella directory, con
2945                           l'esecuzione di una fra \func{open}, \func{creat},
2946                           \func{mknod}, \func{mkdir}, \func{link},
2947                           \func{symlink}, \func{rename} (da un'altra
2948                           directory).\\
2949     \constd{DN\_DELETE} & È stato cancellato un file dalla directory con
2950                           l'esecuzione di una fra \func{unlink}, \func{rename}
2951                           (su un'altra directory), \func{rmdir}.\\
2952     \constd{DN\_RENAME} & È stato rinominato un file all'interno della
2953                           directory (con \func{rename}).\\
2954     \constd{DN\_ATTRIB} & È stato modificato un attributo di un file con
2955                           l'esecuzione di una fra \func{chown}, \func{chmod},
2956                           \func{utime}.\\ 
2957     \constd{DN\_MULTISHOT}& Richiede una notifica permanente di tutti gli
2958                             eventi.\\ 
2959     \hline    
2960   \end{tabular}
2961   \caption{Le costanti che identificano le varie classi di eventi per i quali
2962     si richiede la notifica con il comando \const{F\_NOTIFY} di \func{fcntl}.} 
2963   \label{tab:file_notify}
2964 \end{table}
2965
2966 Ci si può registrare per le notifiche dei cambiamenti al contenuto di una
2967 certa directory eseguendo la funzione \func{fcntl} su un file descriptor
2968 associato alla stessa con il comando \const{F\_NOTIFY}. In questo caso
2969 l'argomento \param{arg} di \func{fcntl} serve ad indicare per quali classi
2970 eventi si vuole ricevere la notifica, e prende come valore una maschera
2971 binaria composta dall'OR aritmetico di una o più delle costanti riportate in
2972 tab.~\ref{tab:file_notify}.
2973
2974 A meno di non impostare in maniera esplicita una notifica permanente usando il
2975 valore \const{DN\_MULTISHOT}, la notifica è singola: viene cioè inviata una
2976 sola volta quando si verifica uno qualunque fra gli eventi per i quali la si è
2977 richiesta. Questo significa che un programma deve registrarsi un'altra volta
2978 se desidera essere notificato di ulteriori cambiamenti. Se si eseguono diverse
2979 chiamate con \const{F\_NOTIFY} e con valori diversi per \param{arg} questi
2980 ultimi si \textsl{accumulano}; cioè eventuali nuovi classi di eventi
2981 specificate in chiamate successive vengono aggiunte a quelle già impostate
2982 nelle precedenti.  Se si vuole rimuovere la notifica si deve invece
2983 specificare un valore nullo.
2984
2985 \itindbeg{inotify}
2986
2987 Il maggiore problema di \textit{dnotify} è quello della scalabilità: si deve
2988 usare un file descriptor per ciascuna directory che si vuole tenere sotto
2989 controllo, il che porta facilmente ad avere un eccesso di file aperti. Inoltre
2990 quando la directory che si controlla è all'interno di un dispositivo
2991 rimovibile, mantenere il relativo file descriptor aperto comporta
2992 l'impossibilità di smontare il dispositivo e di rimuoverlo, il che in genere
2993 complica notevolmente la gestione dell'uso di questi dispositivi.
2994
2995 Un altro problema è che l'interfaccia di \textit{dnotify} consente solo di
2996 tenere sotto controllo il contenuto di una directory; la modifica di un file
2997 viene segnalata, ma poi è necessario verificare di quale file si tratta
2998 (operazione che può essere molto onerosa quando una directory contiene un gran
2999 numero di file).  Infine l'uso dei segnali come interfaccia di notifica
3000 comporta tutti i problemi di gestione visti in sez.~\ref{sec:sig_management} e
3001 sez.~\ref{sec:sig_adv_control}.  Per tutta questa serie di motivi in generale
3002 quella di \textit{dnotify} viene considerata una interfaccia di usabilità
3003 problematica ed il suo uso oggi è fortemente sconsigliato.
3004
3005 \itindend{dnotify}
3006
3007 Per risolvere i problemi appena illustrati è stata introdotta una nuova
3008 interfaccia per l'osservazione delle modifiche a file o directory, chiamata
3009 \textit{inotify}.\footnote{l'interfaccia è disponibile a partire dal kernel
3010   2.6.13, le relative funzioni sono state introdotte nelle glibc 2.4.}  Anche
3011 questa è una interfaccia specifica di Linux (pertanto non deve essere usata se
3012 si devono scrivere programmi portabili), ed è basata sull'uso di una coda di
3013 notifica degli eventi associata ad un singolo file descriptor, il che permette
3014 di risolvere il principale problema di \textit{dnotify}.  La coda viene creata
3015 attraverso la funzione di sistema \funcd{inotify\_init}, il cui prototipo è:
3016
3017 \begin{funcproto}{
3018 \fhead{sys/inotify.h}
3019 \fdecl{int inotify\_init(void)}
3020 \fdesc{Inizializza una istanza di \textit{inotify}.}
3021 }
3022
3023 {La funzione ritornaun file descriptor in caso di successo, o $-1$ in caso di
3024   errore, nel qual caso \var{errno} assumerà uno dei valori:
3025   \begin{errlist}
3026   \item[\errcode{EMFILE}] si è raggiunto il numero massimo di istanze di
3027     \textit{inotify} consentite all'utente.
3028   \item[\errcode{ENFILE}] si è raggiunto il massimo di file descriptor aperti
3029     nel sistema.
3030   \item[\errcode{ENOMEM}] non c'è sufficiente memoria nel kernel per creare
3031     l'istanza.
3032   \end{errlist}
3033 }
3034 \end{funcproto}
3035
3036 La funzione non prende alcun argomento; inizializza una istanza di
3037 \textit{inotify} e restituisce un file descriptor attraverso il quale verranno
3038 effettuate le operazioni di notifica; si tratta di un file descriptor speciale
3039 che non è associato a nessun file su disco, e che viene utilizzato solo per
3040 notificare gli eventi che sono stati posti in osservazione. Per evitare abusi
3041 delle risorse di sistema è previsto che un utente possa utilizzare un numero
3042 limitato di istanze di \textit{inotify}; il valore di default del limite è di
3043 128, ma questo valore può essere cambiato con \func{sysctl} o usando il file
3044 \sysctlfiled{fs/inotify/max\_user\_instances}.
3045
3046 Dato che questo file descriptor non è associato a nessun file o directory
3047 reale, l'inconveniente di non poter smontare un filesystem i cui file sono
3048 tenuti sotto osservazione viene completamente eliminato; anzi, una delle
3049 capacità dell'interfaccia di \textit{inotify} è proprio quella di notificare
3050 il fatto che il filesystem su cui si trova il file o la directory osservata è
3051 stato smontato.
3052
3053 Inoltre trattandosi di un file descriptor a tutti gli effetti, esso potrà
3054 essere utilizzato come argomento per le funzioni \func{select} e \func{poll} e
3055 con l'interfaccia di \textit{epoll}, ed a partire dal kernel 2.6.25 è stato
3056 introdotto anche il supporto per il \texttt{signal-driven I/O}.  Siccome gli
3057 eventi vengono notificati come dati disponibili in lettura, dette funzioni
3058 ritorneranno tutte le volte che si avrà un evento di notifica.
3059
3060 Così, invece di dover utilizzare i segnali, considerati una pessima scelta dal
3061 punto di vista dell'interfaccia utente, si potrà gestire l'osservazione degli
3062 eventi con una qualunque delle modalità di \textit{I/O multiplexing}
3063 illustrate in sez.~\ref{sec:file_multiplexing}. Qualora si voglia cessare
3064 l'osservazione, sarà sufficiente chiudere il file descriptor e tutte le
3065 risorse allocate saranno automaticamente rilasciate. Infine l'interfaccia di
3066 \textit{inotify} consente di mettere sotto osservazione, oltre che una
3067 directory, anche singoli file.
3068
3069 Una volta creata la coda di notifica si devono definire gli eventi da tenere
3070 sotto osservazione; questo viene fatto attraverso una \textsl{lista di
3071   osservazione} (o \textit{watch list}) che è associata alla coda. Per gestire
3072 la lista di osservazione l'interfaccia fornisce due funzioni di sistema, la
3073 prima di queste è \funcd{inotify\_add\_watch}, il cui prototipo è:
3074
3075 \begin{funcproto}{
3076 \fhead{sys/inotify.h}
3077 \fdecl{int inotify\_add\_watch(int fd, const char *pathname, uint32\_t mask)}
3078 \fdesc{Aggiunge un evento di osservazione a una lista di osservazione.} 
3079 }
3080
3081 {La funzione ritorna un valore positivo in caso di successo, o $-1$ per un
3082   errore, nel qual caso \var{errno} assumerà uno dei valori:
3083   \begin{errlist}
3084   \item[\errcode{EACCES}] non si ha accesso in lettura al file indicato.
3085   \item[\errcode{EINVAL}] \param{mask} non contiene eventi legali o \param{fd}
3086     non è un file descriptor di \textit{inotify}.
3087   \item[\errcode{ENOSPC}] si è raggiunto il numero massimo di voci di
3088     osservazione o il kernel non ha potuto allocare una risorsa necessaria.
3089   \end{errlist}
3090   ed inoltre \errval{EFAULT}, \errval{ENOMEM} e \errval{EBADF} nel loro
3091   significato generico.}
3092 \end{funcproto}
3093
3094 La funzione consente di creare un ``\textsl{osservatore}'' (il cosiddetto
3095 ``\textit{watch}'') nella lista di osservazione di una coda di notifica, che
3096 deve essere indicata specificando il file descriptor ad essa associato
3097 nell'argomento \param{fd}, che ovviamente dovrà essere un file descriptor
3098 creato con \func{inotify\_init}.  Il file o la directory da porre sotto
3099 osservazione vengono invece indicati per nome, da passare
3100 nell'argomento \param{pathname}.  Infine il terzo argomento, \param{mask},
3101 indica che tipo di eventi devono essere tenuti sotto osservazione e le
3102 modalità della stessa.  L'operazione può essere ripetuta per tutti i file e le
3103 directory che si vogliono tenere sotto osservazione,\footnote{anche in questo
3104   caso c'è un limite massimo che di default è pari a 8192, ed anche questo
3105   valore può essere cambiato con \func{sysctl} o usando il file
3106   \sysctlfiled{fs/inotify/max\_user\_watches}.} e si utilizzerà sempre un solo
3107 file descriptor.
3108
3109 Il tipo di evento che si vuole osservare deve essere specificato
3110 nell'argomento \param{mask} come maschera binaria, combinando i valori delle
3111 costanti riportate in tab.~\ref{tab:inotify_event_watch} che identificano i
3112 singoli bit della maschera ed il relativo significato. In essa si sono marcati
3113 con un ``$\bullet$'' gli eventi che, quando specificati per una directory,
3114 vengono osservati anche su tutti i file che essa contiene.  Nella seconda
3115 parte della tabella si sono poi indicate alcune combinazioni predefinite dei
3116 flag della prima parte.
3117
3118 \begin{table}[htb]
3119   \centering
3120   \footnotesize
3121   \begin{tabular}[c]{|l|c|p{8cm}|}
3122     \hline
3123     \textbf{Valore}  & & \textbf{Significato} \\
3124     \hline
3125     \hline
3126     \constd{IN\_ACCESS}        &$\bullet$& C'è stato accesso al file in
3127                                            lettura.\\  
3128     \constd{IN\_ATTRIB}        &$\bullet$& Ci sono stati cambiamenti sui dati
3129                                            dell'\textit{inode}
3130                                            (o sugli attributi estesi, vedi
3131                                            sez.~\ref{sec:file_xattr}).\\ 
3132     \constd{IN\_CLOSE\_WRITE}  &$\bullet$& È stato chiuso un file aperto in
3133                                            scrittura.\\  
3134     \constd{IN\_CLOSE\_NOWRITE}&$\bullet$& È stato chiuso un file aperto in
3135                                            sola lettura.\\
3136     \constd{IN\_CREATE}        &$\bullet$& È stato creato un file o una
3137                                            directory in una directory sotto
3138                                            osservazione.\\  
3139     \constd{IN\_DELETE}        &$\bullet$& È stato cancellato un file o una
3140                                            directory in una directory sotto
3141                                            osservazione.\\ 
3142     \constd{IN\_DELETE\_SELF}  & --      & È stato cancellato il file (o la
3143                                           directory) sotto osservazione.\\ 
3144     \constd{IN\_MODIFY}        &$\bullet$& È stato modificato il file.\\ 
3145     \constd{IN\_MOVE\_SELF}    &         & È stato rinominato il file (o la
3146                                            directory) sotto osservazione.\\ 
3147     \constd{IN\_MOVED\_FROM}   &$\bullet$& Un file è stato spostato fuori dalla
3148                                            directory sotto osservazione.\\ 
3149     \constd{IN\_MOVED\_TO}     &$\bullet$& Un file è stato spostato nella
3150                                            directory sotto osservazione.\\ 
3151     \constd{IN\_OPEN}          &$\bullet$& Un file è stato aperto.\\ 
3152     \hline    
3153     \constd{IN\_CLOSE}         &         & Combinazione di
3154                                            \const{IN\_CLOSE\_WRITE} e
3155                                            \const{IN\_CLOSE\_NOWRITE}.\\  
3156     \constd{IN\_MOVE}          &         & Combinazione di
3157                                            \const{IN\_MOVED\_FROM} e
3158                                            \const{IN\_MOVED\_TO}.\\
3159     \constd{IN\_ALL\_EVENTS}   &         & Combinazione di tutti i flag
3160                                            possibili.\\
3161     \hline    
3162   \end{tabular}
3163   \caption{Le costanti che identificano i bit della maschera binaria
3164     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano il
3165     tipo di evento da tenere sotto osservazione.} 
3166   \label{tab:inotify_event_watch}
3167 \end{table}
3168
3169 Oltre ai flag di tab.~\ref{tab:inotify_event_watch}, che indicano il tipo di
3170 evento da osservare e che vengono utilizzati anche in uscita per indicare il
3171 tipo di evento avvenuto, \func{inotify\_add\_watch} supporta ulteriori
3172 flag,\footnote{i flag \const{IN\_DONT\_FOLLOW}, \const{IN\_MASK\_ADD} e
3173   \const{IN\_ONLYDIR} sono stati introdotti a partire dalle glibc 2.5, se si
3174   usa la versione 2.4 è necessario definirli a mano.}  riportati in
3175 tab.~\ref{tab:inotify_add_watch_flag}, che indicano le modalità di
3176 osservazione (da passare sempre nell'argomento \param{mask}) e che al
3177 contrario dei precedenti non vengono mai impostati nei risultati in uscita.
3178
3179 \begin{table}[htb]
3180   \centering
3181   \footnotesize
3182   \begin{tabular}[c]{|l|p{8cm}|}
3183     \hline
3184     \textbf{Valore}  & \textbf{Significato} \\
3185     \hline
3186     \hline
3187     \constd{IN\_DONT\_FOLLOW}& Non dereferenzia \param{pathname} se questo è un
3188                                link simbolico.\\
3189     \constd{IN\_MASK\_ADD}   & Aggiunge a quelli già impostati i flag indicati
3190                                nell'argomento \param{mask}, invece di
3191                                sovrascriverli.\\
3192     \constd{IN\_ONESHOT}     & Esegue l'osservazione su \param{pathname} per
3193                                una sola volta, rimuovendolo poi dalla
3194                                \textit{watch list}.\\ 
3195     \constd{IN\_ONLYDIR}     & Se \param{pathname} è una directory riporta
3196                                soltanto gli eventi ad essa relativi e non
3197                                quelli per i file che contiene.\\ 
3198     \hline    
3199   \end{tabular}
3200   \caption{Le costanti che identificano i bit della maschera binaria
3201     dell'argomento \param{mask} di \func{inotify\_add\_watch} che indicano le
3202     modalità di osservazione.} 
3203   \label{tab:inotify_add_watch_flag}
3204 \end{table}
3205
3206 Se non esiste nessun \textit{watch} per il file o la directory specificata
3207 questo verrà creato per gli eventi specificati dall'argomento \param{mask},
3208 altrimenti la funzione sovrascriverà le impostazioni precedenti, a meno che
3209 non si sia usato il flag \const{IN\_MASK\_ADD}, nel qual caso gli eventi
3210 specificati saranno aggiunti a quelli già presenti.
3211
3212 Come accennato quando si tiene sotto osservazione una directory vengono
3213 restituite le informazioni sia riguardo alla directory stessa che ai file che
3214 essa contiene; questo comportamento può essere disabilitato utilizzando il
3215 flag \const{IN\_ONLYDIR}, che richiede di riportare soltanto gli eventi
3216 relativi alla directory stessa. Si tenga presente inoltre che quando si
3217 osserva una directory vengono riportati solo gli eventi sui file che essa
3218 contiene direttamente, non quelli relativi a file contenuti in eventuali
3219 sottodirectory; se si vogliono osservare anche questi sarà necessario creare
3220 ulteriori \textit{watch} per ciascuna sottodirectory.
3221
3222 Infine usando il flag \const{IN\_ONESHOT} è possibile richiedere una notifica
3223 singola;\footnote{questa funzionalità però è disponibile soltanto a partire dal
3224   kernel 2.6.16.} una volta verificatosi uno qualunque fra gli eventi
3225 richiesti con \func{inotify\_add\_watch} l'\textsl{osservatore} verrà
3226 automaticamente rimosso dalla lista di osservazione e nessun ulteriore evento
3227 sarà più notificato.
3228
3229 In caso di successo \func{inotify\_add\_watch} ritorna un intero positivo,
3230 detto \textit{watch descriptor}, che identifica univocamente un
3231 \textsl{osservatore} su una coda di notifica; esso viene usato per farvi
3232 riferimento sia riguardo i risultati restituiti da \textit{inotify}, che per
3233 la eventuale rimozione dello stesso. 
3234
3235 La seconda funzione di sistema per la gestione delle code di notifica, che
3236 permette di rimuovere un \textsl{osservatore}, è \funcd{inotify\_rm\_watch},
3237 ed il suo prototipo è:
3238
3239 \begin{funcproto}{
3240 \fhead{sys/inotify.h}
3241 \fdecl{int inotify\_rm\_watch(int fd, uint32\_t wd)}
3242 \fdesc{Rimuove un \textsl{osservatore} da una coda di notifica.} 
3243 }
3244
3245 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3246   caso \var{errno} assumerà uno dei valori: 
3247   \begin{errlist}
3248   \item[\errcode{EBADF}] non si è specificato in \param{fd} un file descriptor
3249     valido.
3250   \item[\errcode{EINVAL}] il valore di \param{wd} non è corretto, o \param{fd}
3251     non è associato ad una coda di notifica.
3252   \end{errlist}
3253 }
3254 \end{funcproto}
3255
3256 La funzione rimuove dalla coda di notifica identificata dall'argomento
3257 \param{fd} l'osservatore identificato dal \textit{watch descriptor}
3258 \param{wd}; ovviamente deve essere usato per questo argomento un valore
3259 ritornato da \func{inotify\_add\_watch}, altrimenti si avrà un errore di
3260 \errval{EINVAL}. In caso di successo della rimozione, contemporaneamente alla
3261 cancellazione dell'osservatore, sulla coda di notifica verrà generato un
3262 evento di tipo \const{IN\_IGNORED} (vedi
3263 tab.~\ref{tab:inotify_read_event_flag}). Si tenga presente che se un file
3264 viene cancellato o un filesystem viene smontato i relativi osservatori vengono
3265 rimossi automaticamente e non è necessario utilizzare
3266 \func{inotify\_rm\_watch}.
3267
3268 Come accennato l'interfaccia di \textit{inotify} prevede che gli eventi siano
3269 notificati come dati presenti in lettura sul file descriptor associato alla
3270 coda di notifica. Una applicazione pertanto dovrà leggere i dati da detto file
3271 con una \func{read}, che ritornerà sul buffer i dati presenti nella forma di
3272 una o più strutture di tipo \struct{inotify\_event} (la cui definizione è
3273 riportata in fig.~\ref{fig:inotify_event}). Qualora non siano presenti dati la
3274 \func{read} si bloccherà (a meno di non aver impostato il file descriptor in
3275 modalità non bloccante) fino all'arrivo di almeno un evento.
3276
3277 \begin{figure}[!htb]
3278   \footnotesize \centering
3279   \begin{minipage}[c]{0.90\textwidth}
3280     \includestruct{listati/inotify_event.h}
3281   \end{minipage} 
3282   \normalsize 
3283   \caption{La struttura \structd{inotify\_event} usata dall'interfaccia di
3284     \textit{inotify} per riportare gli eventi.}
3285   \label{fig:inotify_event}
3286 \end{figure}
3287
3288 Una ulteriore caratteristica dell'interfaccia di \textit{inotify} è che essa
3289 permette di ottenere con \func{ioctl}, come per i file descriptor associati ai
3290 socket (si veda sez.~\ref{sec:sock_ioctl_IP}), il numero di byte disponibili
3291 in lettura sul file descriptor, utilizzando su di esso l'operazione
3292 \const{FIONREAD}.\footnote{questa è una delle operazioni speciali per i file
3293   (vedi sez.~\ref{sec:file_fcntl_ioctl}), che è disponibile solo per i socket
3294   e per i file descriptor creati con \func{inotify\_init}.} Si può così
3295 utilizzare questa operazione, oltre che per predisporre una operazione di
3296 lettura con un buffer di dimensioni adeguate, anche per ottenere rapidamente
3297 il numero di file che sono cambiati.
3298
3299 Una volta effettuata la lettura con \func{read} a ciascun evento sarà
3300 associata una struttura \struct{inotify\_event} contenente i rispettivi dati.
3301 Per identificare a quale file o directory l'evento corrisponde viene
3302 restituito nel campo \var{wd} il \textit{watch descriptor} con cui il relativo
3303 osservatore è stato registrato. Il campo \var{mask} contiene invece una
3304 maschera di bit che identifica il tipo di evento verificatosi; in essa
3305 compariranno sia i bit elencati nella prima parte di
3306 tab.~\ref{tab:inotify_event_watch}, che gli eventuali valori aggiuntivi di
3307 tab.~\ref{tab:inotify_read_event_flag} (questi compaiono solo nel campo
3308 \var{mask} di \struct{inotify\_event}, e non sono utilizzabili in fase di
3309 registrazione dell'osservatore).
3310
3311 \begin{table}[htb]
3312   \centering
3313   \footnotesize
3314   \begin{tabular}[c]{|l|p{10cm}|}
3315     \hline
3316     \textbf{Valore}  & \textbf{Significato} \\
3317     \hline
3318     \hline
3319     \constd{IN\_IGNORED}    & L'osservatore è stato rimosso, sia in maniera 
3320                               esplicita con l'uso di \func{inotify\_rm\_watch}, 
3321                               che in maniera implicita per la rimozione 
3322                               dell'oggetto osservato o per lo smontaggio del
3323                               filesystem su cui questo si trova.\\
3324     \constd{IN\_ISDIR}      & L'evento avvenuto fa riferimento ad una directory
3325                               (consente così di distinguere, quando si pone
3326                               sotto osservazione una directory, fra gli eventi
3327                               relativi ad essa e quelli relativi ai file che
3328                               essa contiene).\\
3329     \constd{IN\_Q\_OVERFLOW}& Si sono eccedute le dimensioni della coda degli
3330                               eventi (\textit{overflow} della coda); in questo
3331                               caso il valore di \var{wd} è $-1$.\footnotemark\\
3332     \constd{IN\_UNMOUNT}    & Il filesystem contenente l'oggetto posto sotto
3333                               osservazione è stato smontato.\\
3334     \hline    
3335   \end{tabular}
3336   \caption{Le costanti che identificano i bit aggiuntivi usati nella maschera
3337     binaria del campo \var{mask} di \struct{inotify\_event}.} 
3338   \label{tab:inotify_read_event_flag}
3339 \end{table}
3340
3341 \footnotetext{la coda di notifica ha una dimensione massima che viene
3342   controllata dal parametro di sistema
3343   \sysctlfiled{fs/inotify/max\_queued\_events}, che indica il numero massimo di
3344   eventi che possono essere mantenuti sulla stessa; quando detto valore viene
3345   ecceduto gli ulteriori eventi vengono scartati, ma viene comunque generato
3346   un evento di tipo \const{IN\_Q\_OVERFLOW}.}
3347
3348 Il campo \var{cookie} contiene invece un intero univoco che permette di
3349 identificare eventi correlati (per i quali avrà lo stesso valore), al momento
3350 viene utilizzato soltanto per rilevare lo spostamento di un file, consentendo
3351 così all'applicazione di collegare la corrispondente coppia di eventi
3352 \const{IN\_MOVED\_TO} e \const{IN\_MOVED\_FROM}.
3353
3354 Infine due campi \var{name} e \var{len} sono utilizzati soltanto quando
3355 l'evento è relativo ad un file presente in una directory posta sotto
3356 osservazione, in tal caso essi contengono rispettivamente il nome del file
3357 (come \textit{pathname} relativo alla directory osservata) e la relativa
3358 dimensione in byte. Il campo \var{name} viene sempre restituito come stringa
3359 terminata da NUL, con uno o più zeri di terminazione, a seconda di eventuali
3360 necessità di allineamento del risultato, ed il valore di \var{len} corrisponde
3361 al totale della dimensione di \var{name}, zeri aggiuntivi compresi. La stringa
3362 con il nome del file viene restituita nella lettura subito dopo la struttura
3363 \struct{inotify\_event}; questo significa che le dimensioni di ciascun evento
3364 di \textit{inotify} saranno pari a \code{sizeof(\struct{inotify\_event}) +
3365   len}.
3366
3367 Vediamo allora un esempio dell'uso dell'interfaccia di \textit{inotify} con un
3368 semplice programma che permette di mettere sotto osservazione uno o più file e
3369 directory. Il programma si chiama \texttt{inotify\_monitor.c} ed il codice
3370 completo è disponibile coi sorgenti allegati alla guida, il corpo principale
3371 del programma, che non contiene la sezione di gestione delle opzioni e le
3372 funzioni di ausilio è riportato in fig.~\ref{fig:inotify_monitor_example}.
3373
3374 \begin{figure}[!htbp]
3375   \footnotesize \centering
3376   \begin{minipage}[c]{\codesamplewidth}
3377     \includecodesample{listati/inotify_monitor.c}
3378   \end{minipage}
3379   \normalsize
3380   \caption{Esempio di codice che usa l'interfaccia di \textit{inotify}.}
3381   \label{fig:inotify_monitor_example}
3382 \end{figure}
3383
3384 Una volta completata la scansione delle opzioni il corpo del programma inizia
3385 controllando (\texttt{\small 11-15}) che sia rimasto almeno un argomento che
3386 indichi quale file o directory mettere sotto osservazione (e qualora questo
3387 non avvenga esce stampando la pagina di aiuto); dopo di che passa
3388 (\texttt{\small 16-20}) all'inizializzazione di \textit{inotify} ottenendo con
3389 \func{inotify\_init} il relativo file descriptor (o si esce in caso di
3390 errore).
3391
3392 Il passo successivo è aggiungere (\texttt{\small 21-30}) alla coda di
3393 notifica gli opportuni osservatori per ciascuno dei file o directory indicati
3394 all'invocazione del comando; questo viene fatto eseguendo un ciclo
3395 (\texttt{\small 22-29}) fintanto che la variabile \var{i}, inizializzata a
3396 zero (\texttt{\small 21}) all'inizio del ciclo, è minore del numero totale di
3397 argomenti rimasti. All'interno del ciclo si invoca (\texttt{\small 23})
3398 \func{inotify\_add\_watch} per ciascuno degli argomenti, usando la maschera
3399 degli eventi data dalla variabile \var{mask} (il cui valore viene impostato
3400 nella scansione delle opzioni), in caso di errore si esce dal programma
3401 altrimenti si incrementa l'indice (\texttt{\small 29}).
3402
3403 Completa l'inizializzazione di \textit{inotify} inizia il ciclo principale
3404 (\texttt{\small 32-56}) del programma, nel quale si resta in attesa degli
3405 eventi che si intendono osservare. Questo viene fatto eseguendo all'inizio del
3406 ciclo (\texttt{\small 33}) una \func{read} che si bloccherà fintanto che non
3407 si saranno verificati eventi.
3408
3409 Dato che l'interfaccia di \textit{inotify} può riportare anche più eventi in
3410 una sola lettura, si è avuto cura di passare alla \func{read} un buffer di
3411 dimensioni adeguate, inizializzato in (\texttt{\small 7}) ad un valore di
3412 approssimativamente 512 eventi (si ricordi che la quantità di dati restituita
3413 da \textit{inotify} è variabile a causa della diversa lunghezza del nome del
3414 file restituito insieme a \struct{inotify\_event}). In caso di errore di
3415 lettura (\texttt{\small 35-40}) il programma esce con un messaggio di errore
3416 (\texttt{\small 37-39}), a meno che non si tratti di una interruzione della
3417 \textit{system call}, nel qual caso (\texttt{\small 36}) si ripete la lettura.
3418
3419 Se la lettura è andata a buon fine invece si esegue un ciclo (\texttt{\small
3420   43-52}) per leggere tutti gli eventi restituiti, al solito si inizializza
3421 l'indice \var{i} a zero (\texttt{\small 42}) e si ripetono le operazioni
3422 (\texttt{\small 43}) fintanto che esso non supera il numero di byte restituiti
3423 in lettura. Per ciascun evento all'interno del ciclo si assegna alla variabile
3424 \var{event} (si noti come si sia eseguito un opportuno \textit{casting} del
3425 puntatore) l'indirizzo nel buffer della corrispondente struttura
3426 \struct{inotify\_event} (\texttt{\small 44}), e poi si stampano il numero di
3427 \textit{watch descriptor} (\texttt{\small 45}) ed il file a cui questo fa
3428 riferimento (\texttt{\small 46}), ricavato dagli argomenti passati a riga di
3429 comando sfruttando il fatto che i \textit{watch descriptor} vengono assegnati
3430 in ordine progressivo crescente a partire da 1.
3431
3432 Qualora sia presente il riferimento ad un nome di file associato all'evento lo
3433 si stampa (\texttt{\small 47-49}); si noti come in questo caso si sia
3434 controllato il valore del campo \var{event->len} e non il fatto che
3435 \var{event->name} riporti o meno un puntatore nullo. L'interfaccia infatti,
3436 qualora il nome non sia presente, non tocca il campo \var{event->name}, che
3437 si troverà pertanto a contenere quello che era precedentemente presente nella
3438 rispettiva locazione di memoria, nel caso più comune il puntatore al nome di
3439 un file osservato in precedenza.
3440
3441 Si utilizza poi (\texttt{\small 50}) la funzione \code{printevent}, che
3442 interpreta il valore del campo \var{event->mask}, per stampare il tipo di
3443 eventi accaduti.\footnote{per il relativo codice, che non riportiamo in quanto
3444   non essenziale alla comprensione dell'esempio, si possono utilizzare
3445   direttamente i sorgenti allegati alla guida.} Infine (\texttt{\small 51}) si
3446 provvede ad aggiornare l'indice \var{i} per farlo puntare all'evento
3447 successivo.
3448
3449 Se adesso usiamo il programma per mettere sotto osservazione una directory, e
3450 da un altro terminale eseguiamo il comando \texttt{ls} otterremo qualcosa del
3451 tipo di:
3452 \begin{Console}
3453 piccardi@gethen:~/gapil/sources$ \textbf{./inotify_monitor -a /home/piccardi/gapil/}
3454 Watch descriptor 1
3455 Observed event on /home/piccardi/gapil/
3456 IN_OPEN, 
3457 Watch descriptor 1
3458 Observed event on /home/piccardi/gapil/
3459 IN_CLOSE_NOWRITE, 
3460 \end{Console}
3461 %$
3462
3463 I lettori più accorti si saranno resi conto che nel ciclo di lettura degli
3464 eventi appena illustrato non viene trattato il caso particolare in cui la
3465 funzione \func{read} restituisce in \var{nread} un valore nullo. Lo si è fatto
3466 perché con \textit{inotify} il ritorno di una \func{read} con un valore nullo
3467 avviene soltanto, come forma di avviso, quando si sia eseguita la funzione
3468 specificando un buffer di dimensione insufficiente a contenere anche un solo
3469 evento. Nel nostro caso le dimensioni erano senz'altro sufficienti, per cui
3470 tale evenienza non si verificherà mai.
3471
3472 Ci si potrà però chiedere cosa succede se il buffer è sufficiente per un
3473 evento, ma non per tutti gli eventi verificatisi. Come si potrà notare nel
3474 codice illustrato in precedenza non si è presa nessuna precauzione per
3475 verificare che non ci fossero stati troncamenti dei dati. Anche in questo caso
3476 il comportamento scelto è corretto, perché l'interfaccia di \textit{inotify}
3477 garantisce automaticamente, anche quando ne sono presenti in numero maggiore,
3478 di restituire soltanto il numero di eventi che possono rientrare completamente
3479 nelle dimensioni del buffer specificato.\footnote{si avrà cioè, facendo
3480   riferimento sempre al codice di fig.~\ref{fig:inotify_monitor_example}, che
3481   \var{read} sarà in genere minore delle dimensioni di \var{buffer} ed uguale
3482   soltanto qualora gli eventi corrispondano esattamente alle dimensioni di
3483   quest'ultimo.} Se gli eventi sono di più saranno restituiti solo quelli che
3484 entrano interamente nel buffer e gli altri saranno restituiti alla successiva
3485 chiamata di \func{read}.
3486
3487 Infine un'ultima caratteristica dell'interfaccia di \textit{inotify} è che gli
3488 eventi restituiti nella lettura formano una sequenza ordinata, è cioè
3489 garantito che se si esegue uno spostamento di un file gli eventi vengano
3490 generati nella sequenza corretta. L'interfaccia garantisce anche che se si
3491 verificano più eventi consecutivi identici (vale a dire con gli stessi valori
3492 dei campi \var{wd}, \var{mask}, \var{cookie}, e \var{name}) questi vengono
3493 raggruppati in un solo evento.
3494
3495 \itindend{inotify}
3496
3497 % TODO trattare fanotify, vedi http://lwn.net/Articles/339399/ e 
3498 % http://lwn.net/Articles/343346/ (incluso nel 2.6.36)
3499 % fanotify_mark() ha FAN_MARK_FILESYSTEM dal 4.20
3500 % fanotify() ha FAN_OPEN_EXEC dal 4.21/5.0
3501
3502
3503 \subsection{L'interfaccia POSIX per l'I/O asincrono}
3504 \label{sec:file_asyncronous_io}
3505
3506 Una modalità alternativa all'uso dell'\textit{I/O multiplexing} per gestione
3507 dell'I/O simultaneo su molti file è costituita dal cosiddetto \textsl{I/O
3508   asincrono} o ``AIO''. Il concetto base dell'\textsl{I/O asincrono} è che le
3509 funzioni di I/O non attendono il completamento delle operazioni prima di
3510 ritornare, così che il processo non viene bloccato.  In questo modo diventa ad
3511 esempio possibile effettuare una richiesta preventiva di dati, in modo da
3512 poter effettuare in contemporanea le operazioni di calcolo e quelle di I/O.
3513
3514 Benché la modalità di apertura asincrona di un file vista in
3515 sez.~\ref{sec:signal_driven_io} possa risultare utile in varie occasioni (in
3516 particolar modo con i socket e gli altri file per i quali le funzioni di I/O
3517 sono \textit{system call} lente), essa è comunque limitata alla notifica della
3518 disponibilità del file descriptor per le operazioni di I/O, e non ad uno
3519 svolgimento asincrono delle medesime.  Lo standard POSIX.1b definisce una
3520 interfaccia apposita per l'I/O asincrono vero e proprio,\footnote{questa è
3521   stata ulteriormente perfezionata nelle successive versioni POSIX.1-2001 e
3522   POSIX.1-2008.} che prevede un insieme di funzioni dedicate per la lettura e
3523 la scrittura dei file, completamente separate rispetto a quelle usate
3524 normalmente.
3525
3526 In generale questa interfaccia è completamente astratta e può essere
3527 implementata sia direttamente nel kernel che in \textit{user space} attraverso
3528 l'uso di \textit{thread}. Per le versioni del kernel meno recenti esiste una
3529 implementazione di questa interfaccia fornita completamente dalla \acr{glibc}
3530 a partire dalla versione 2.1, che è realizzata completamente in \textit{user
3531   space}, ed è accessibile linkando i programmi con la libreria
3532 \file{librt}. A partire dalla versione 2.5.32 è stato introdotto nel kernel
3533 una nuova infrastruttura per l'I/O asincrono, ma ancora il supporto è parziale
3534 ed insufficiente ad implementare tutto l'AIO POSIX.
3535
3536 Lo standard POSIX prevede che tutte le operazioni di I/O asincrono siano
3537 controllate attraverso l'uso di una apposita struttura \struct{aiocb} (il cui
3538 nome sta per \textit{asyncronous I/O control block}), che viene passata come
3539 argomento a tutte le funzioni dell'interfaccia. La sua definizione, come
3540 effettuata in \headfiled{aio.h}, è riportata in
3541 fig.~\ref{fig:file_aiocb}. Nello steso file è definita la macro
3542 \macrod{\_POSIX\_ASYNCHRONOUS\_IO}, che dichiara la disponibilità
3543 dell'interfaccia per l'I/O asincrono.
3544
3545 \begin{figure}[!htb]
3546   \footnotesize \centering
3547   \begin{minipage}[c]{0.90\textwidth}
3548     \includestruct{listati/aiocb.h}
3549   \end{minipage}
3550   \normalsize 
3551   \caption{La struttura \structd{aiocb}, usata per il controllo dell'I/O
3552     asincrono.}
3553   \label{fig:file_aiocb}
3554 \end{figure}
3555
3556 Le operazioni di I/O asincrono possono essere effettuate solo su un file già
3557 aperto; il file deve inoltre supportare la funzione \func{lseek}, pertanto
3558 terminali e \textit{pipe} sono esclusi. Non c'è limite al numero di operazioni
3559 contemporanee effettuabili su un singolo file.  Ogni operazione deve
3560 inizializzare opportunamente un \textit{control block}.  Il file descriptor su
3561 cui operare deve essere specificato tramite il campo \var{aio\_fildes}; dato
3562 che più operazioni possono essere eseguita in maniera asincrona, il concetto
3563 di posizione corrente sul file viene a mancare; pertanto si deve sempre
3564 specificare nel campo \var{aio\_offset} la posizione sul file da cui i dati
3565 saranno letti o scritti.  Nel campo \var{aio\_buf} deve essere specificato
3566 l'indirizzo del buffer usato per l'I/O, ed in \var{aio\_nbytes} la lunghezza
3567 del blocco di dati da trasferire.
3568
3569 Il campo \var{aio\_reqprio} permette di impostare la priorità delle operazioni
3570 di I/O, in generale perché ciò sia possibile occorre che la piattaforma
3571 supporti questa caratteristica, questo viene indicato dal fatto che le macro
3572 \macrod{\_POSIX\_PRIORITIZED\_IO}, e \macrod{\_POSIX\_PRIORITY\_SCHEDULING}
3573 sono definite. La priorità viene impostata a partire da quella del processo
3574 chiamante (vedi sez.~\ref{sec:proc_priority}), cui viene sottratto il valore
3575 di questo campo.  Il campo \var{aio\_lio\_opcode} è usato solo dalla funzione
3576 \func{lio\_listio}, che, come vedremo, permette di eseguire con una sola
3577 chiamata una serie di operazioni, usando un vettore di \textit{control
3578   block}. Tramite questo campo si specifica quale è la natura di ciascuna di
3579 esse.
3580
3581 Infine il campo \var{aio\_sigevent} è una struttura di tipo \struct{sigevent}
3582 (illustrata in fig.~\ref{fig:struct_sigevent}) che serve a specificare il modo
3583 in cui si vuole che venga effettuata la notifica del completamento delle
3584 operazioni richieste; per la trattazione delle modalità di utilizzo della
3585 stessa si veda quanto già visto in proposito in sez.~\ref{sec:sig_timer_adv}.
3586
3587 Le due funzioni base dell'interfaccia per l'I/O asincrono sono
3588 \funcd{aio\_read} ed \funcd{aio\_write}.  Esse permettono di richiedere una
3589 lettura od una scrittura asincrona di dati usando la struttura \struct{aiocb}
3590 appena descritta; i rispettivi prototipi sono:
3591
3592 \begin{funcproto}{
3593 \fhead{aio.h}
3594 \fdecl{int aio\_read(struct aiocb *aiocbp)}
3595 \fdesc{Richiede una lettura asincrona.} 
3596 \fdecl{int aio\_write(struct aiocb *aiocbp)}
3597 \fdesc{Richiede una scrittura asincrona.} 
3598 }
3599
3600 {Le funzioni ritornano $0$ in caso di successo e $-1$ per un errore, nel qual
3601   caso \var{errno} assumerà uno dei valori: 
3602   \begin{errlist}
3603   \item[\errcode{EAGAIN}] la coda delle richieste è momentaneamente piena.
3604   \item[\errcode{EBADF}] si è specificato un file descriptor sbagliato.
3605   \item[\errcode{EINVAL}] si è specificato un valore non valido per i campi
3606     \var{aio\_offset} o \var{aio\_reqprio} di \param{aiocbp}.
3607   \item[\errcode{ENOSYS}] la funzione non è implementata.
3608   \end{errlist}
3609 }
3610 \end{funcproto}
3611
3612
3613 Entrambe le funzioni ritornano immediatamente dopo aver messo in coda la
3614 richiesta, o in caso di errore. Non è detto che gli errori \errcode{EBADF} ed
3615 \errcode{EINVAL} siano rilevati immediatamente al momento della chiamata,
3616 potrebbero anche emergere nelle fasi successive delle operazioni. Lettura e
3617 scrittura avvengono alla posizione indicata da \var{aio\_offset}, a meno che
3618 il file non sia stato aperto in \textit{append mode} (vedi
3619 sez.~\ref{sec:file_open_close}), nel qual caso le scritture vengono effettuate
3620 comunque alla fine del file, nell'ordine delle chiamate a \func{aio\_write}.
3621
3622 Si tenga inoltre presente che deallocare la memoria indirizzata da
3623 \param{aiocbp} o modificarne i valori prima della conclusione di una
3624 operazione può dar luogo a risultati impredicibili, perché l'accesso ai vari
3625 campi per eseguire l'operazione può avvenire in un momento qualsiasi dopo la
3626 richiesta. Questo comporta che non si devono usare per \param{aiocbp}
3627 variabili automatiche e che non si deve riutilizzare la stessa struttura per
3628 un'altra operazione fintanto che la precedente non sia stata ultimata. In
3629 generale per ogni operazione si deve utilizzare una diversa struttura
3630 \struct{aiocb}.
3631
3632 Dato che si opera in modalità asincrona, il successo di \func{aio\_read} o
3633 \func{aio\_write} non implica che le operazioni siano state effettivamente
3634 eseguite in maniera corretta; per verificarne l'esito l'interfaccia prevede
3635 altre due funzioni, che permettono di controllare lo stato di esecuzione. La
3636 prima è \funcd{aio\_error}, che serve a determinare un eventuale stato di
3637 errore; il suo prototipo è:
3638
3639 \begin{funcproto}{
3640 \fhead{aio.h}
3641 \fdecl{int aio\_error(const struct aiocb *aiocbp)} 
3642 \fdesc{Determina lo stato di errore di una operazione di I/O asincrono.} 
3643 }
3644
3645 {La funzione ritorna $0$ se le operazioni si sono concluse con successo,
3646   altrimenti restituisce \errval{EINPROGRESS} se non sono concluse,
3647   \errcode{ECANCELED} se sono state cancellate o il relativo codice di errore
3648   se sono fallite.}
3649 \end{funcproto}
3650
3651 Se l'operazione non si è ancora completata viene sempre restituito l'errore di
3652 \errcode{EINPROGRESS}, mentre se è stata cancellata ritorna
3653 \errcode{ECANCELED}. La funzione ritorna zero quando l'operazione si è
3654 conclusa con successo, altrimenti restituisce il codice dell'errore
3655 verificatosi, ed esegue la corrispondente impostazione di \var{errno}. Il
3656 codice può essere sia \errcode{EINVAL} ed \errcode{EBADF}, dovuti ad un valore
3657 errato per \param{aiocbp}, che uno degli errori possibili durante l'esecuzione
3658 dell'operazione di I/O richiesta, nel qual caso saranno restituiti, a seconda
3659 del caso, i codici di errore delle \textit{system call} \func{read},
3660 \func{write}, \func{fsync} e \func{fdatasync}.
3661
3662 Una volta che si sia certi che le operazioni siano state concluse (cioè dopo
3663 che una chiamata ad \func{aio\_error} non ha restituito
3664 \errcode{EINPROGRESS}), si potrà usare la funzione \funcd{aio\_return}, che
3665 permette di verificare il completamento delle operazioni di I/O asincrono; il
3666 suo prototipo è:
3667
3668 \begin{funcproto}{
3669 \fhead{aio.h}
3670 \fdecl{ssize\_t aio\_return(const struct aiocb *aiocbp)}
3671 \fdesc{Ottiene lo stato dei risultati di una operazione di I/O asincrono.} 
3672 }
3673
3674 {La funzione ritorna lo stato di uscita dell'operazione eseguita (il valore
3675   che avrebbero restituito le equivalenti funzioni eseguite in maniera
3676   sincrona).}
3677 \end{funcproto}
3678
3679 La funzione recupera il valore dello stato di ritorno delle operazioni di I/O
3680 associate a \param{aiocbp} e deve essere chiamata una sola volta per ciascuna
3681 operazione asincrona, essa infatti fa sì che il sistema rilasci le risorse ad
3682 essa associate. É per questo motivo che occorre chiamare la funzione solo dopo
3683 che l'operazione cui \param{aiocbp} fa riferimento si è completata
3684 verificandolo con \func{aio\_error}, ed usarla una sola volta. Una chiamata
3685 precedente il completamento delle operazioni darebbe risultati indeterminati,
3686 così come chiamarla più di una volta.
3687
3688 La funzione restituisce il valore di ritorno relativo all'operazione eseguita,
3689 così come ricavato dalla sottostante \textit{system call} (il numero di byte
3690 letti, scritti o il valore di ritorno di \func{fsync} o \func{fdatasync}).  É
3691 importante chiamare sempre questa funzione, altrimenti le risorse disponibili
3692 per le operazioni di I/O asincrono non verrebbero liberate, rischiando di
3693 arrivare ad un loro esaurimento.
3694
3695 Oltre alle operazioni di lettura e scrittura l'interfaccia POSIX.1b mette a
3696 disposizione un'altra operazione, quella di sincronizzazione dell'I/O,
3697 compiuta dalla funzione \funcd{aio\_fsync}, che ha lo stesso effetto della
3698 analoga \func{fsync}, ma viene eseguita in maniera asincrona; il suo prototipo
3699 è:
3700
3701 \begin{funcproto}{
3702 \fhead{aio.h}
3703 \fdecl{int aio\_fsync(int op, struct aiocb *aiocbp)} 
3704 \fdesc{Richiede la sincronizzazione dei dati su disco.} 
3705 }
3706
3707 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3708   caso \var{errno} assumerà gli stessi valori visti \func{aio\_read} con lo
3709   stesso significato.
3710 }
3711 \end{funcproto}
3712
3713 La funzione richiede la sincronizzazione dei dati delle operazioni di I/O
3714 relative al file descriptor indicato in \texttt{aiocbp->aio\_fildes},
3715 ritornando immediatamente. Si tenga presente che la funzione mette
3716 semplicemente in coda la richiesta, l'esecuzione effettiva della
3717 sincronizzazione dovrà essere verificata con \func{aio\_error} e
3718 \func{aio\_return} come per le operazioni di lettura e
3719 scrittura. L'argomento \param{op} permette di indicare la modalità di
3720 esecuzione, se si specifica il valore \const{O\_DSYNC} le operazioni saranno
3721 completate con una chiamata a \func{fdatasync}, se si specifica
3722 \const{O\_SYNC} con una chiamata a \func{fsync} (per i dettagli vedi
3723 sez.~\ref{sec:file_sync}).
3724
3725 Il successo della chiamata assicura la richiesta di sincronizzazione dei dati
3726 relativi operazioni di I/O asincrono richieste fino a quel momento, niente è
3727 garantito riguardo la sincronizzazione dei dati relativi ad eventuali
3728 operazioni richieste successivamente. Se si è specificato un meccanismo di
3729 notifica questo sarà innescato una volta che le operazioni di sincronizzazione
3730 dei dati saranno completate (\texttt{aio\_sigevent} è l'unico altro campo
3731 di \param{aiocbp} che viene usato.
3732
3733 In alcuni casi può essere necessario interrompere le operazioni di I/O (in
3734 genere quando viene richiesta un'uscita immediata dal programma), per questo
3735 lo standard POSIX.1b prevede una funzione apposita, \funcd{aio\_cancel}, che
3736 permette di cancellare una operazione richiesta in precedenza; il suo
3737 prototipo è:
3738
3739 \begin{funcproto}{
3740 \fhead{aio.h}
3741 \fdecl{int aio\_cancel(int fd, struct aiocb *aiocbp)}
3742 \fdesc{Richiede la cancellazione delle operazioni di I/O asincrono.} 
3743 }
3744
3745 {La funzione ritorna un intero positivo che indica il risultato
3746   dell'operazione in caso di successo e $-1$ per un errore, nel qual caso
3747   \var{errno} assumerà uno dei valori:
3748   \begin{errlist}
3749   \item[\errcode{EBADF}] \param{fd} non è un file descriptor valido.
3750   \item[\errcode{ENOSYS}] la funzione non è implementata.
3751   \end{errlist}
3752 }
3753 \end{funcproto}
3754
3755 La funzione permette di cancellare una operazione specifica sul file
3756 \param{fd}, idicata con \param{aiocbp}, o tutte le operazioni pendenti,
3757 specificando \val{NULL} come valore di \param{aiocbp}. Quando una operazione
3758 viene cancellata una successiva chiamata ad \func{aio\_error} riporterà
3759 \errcode{ECANCELED} come codice di errore, ed mentre il valore di ritorno per
3760 \func{aio\_return} sarà $-1$, inoltre il meccanismo di notifica non verrà
3761 invocato. Se con \param{aiocbp} si specifica una operazione relativa ad un
3762 file descriptor diverso da \param{fd} il risultato è indeterminato.  In caso
3763 di successo, i possibili valori di ritorno per \func{aio\_cancel} (anch'essi
3764 definiti in \headfile{aio.h}) sono tre:
3765 \begin{basedescript}{\desclabelwidth{3.0cm}}
3766 \item[\constd{AIO\_ALLDONE}] indica che le operazioni di cui si è richiesta la
3767   cancellazione sono state già completate,
3768   
3769 \item[\constd{AIO\_CANCELED}] indica che tutte le operazioni richieste sono
3770   state cancellate,  
3771   
3772 \item[\constd{AIO\_NOTCANCELED}] indica che alcune delle operazioni erano in
3773   corso e non sono state cancellate.
3774 \end{basedescript}
3775
3776 Nel caso si abbia \const{AIO\_NOTCANCELED} occorrerà chiamare
3777 \func{aio\_error} per determinare quali sono le operazioni effettivamente
3778 cancellate. Le operazioni che non sono state cancellate proseguiranno il loro
3779 corso normale, compreso quanto richiesto riguardo al meccanismo di notifica
3780 del loro avvenuto completamento.
3781
3782 Benché l'I/O asincrono preveda un meccanismo di notifica, l'interfaccia
3783 fornisce anche una apposita funzione, \funcd{aio\_suspend}, che permette di
3784 sospendere l'esecuzione del processo chiamante fino al completamento di una
3785 specifica operazione; il suo prototipo è:
3786
3787 \begin{funcproto}{
3788 \fhead{aio.h}
3789 \fdecl{int aio\_suspend(const struct aiocb * const list[], int nent, \\
3790 \phantom{int aio\_suspend(}const struct timespec *timeout)}
3791 \fdesc{Attende il completamento di una operazione di I/O asincrono.} 
3792 }
3793
3794 {La funzione ritorna $0$ se una (o più) operazioni sono state completate e
3795   $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei valori:
3796   \begin{errlist}
3797     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
3798       \param{timeout}.
3799     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
3800     \item[\errcode{ENOSYS}] la funzione non è implementata.
3801   \end{errlist}
3802 }
3803 \end{funcproto}
3804   
3805 La funzione permette di bloccare il processo fintanto che almeno una delle
3806 \param{nent} operazioni specificate nella lista \param{list} è completata, per
3807 un tempo massimo specificato dalla struttura \struct{timespec} puntata
3808 da \param{timout}, o fintanto che non arrivi un segnale (si tenga conto che
3809 questo segnale potrebbe essere anche quello utilizzato come meccanismo di
3810 notifica). La lista deve essere inizializzata con delle strutture
3811 \struct{aiocb} relative ad operazioni effettivamente richieste, ma può
3812 contenere puntatori nulli, che saranno ignorati. In caso si siano specificati
3813 valori non validi l'effetto è indefinito.  
3814 Un valore \val{NULL} per \param{timout} comporta l'assenza di timeout, mentre
3815 se si vuole effettuare un \textit{polling} sulle operazioni occorrerà
3816 specificare un puntatore valido ad una struttura \texttt{timespec} (vedi
3817 fig.~\ref{fig:sys_timespec_struct}) contenente valori nulli, e verificare poi
3818 con \func{aio\_error} quale delle operazioni della lista \param{list} è stata
3819 completata.
3820
3821 Lo standard POSIX.1b infine ha previsto pure una funzione, \funcd{lio\_listio},
3822 che permette di effettuare la richiesta di una intera lista di operazioni di
3823 lettura o scrittura; il suo prototipo è:
3824
3825
3826 \begin{funcproto}{
3827 \fhead{aio.h}
3828 \fdecl{int lio\_listio(int mode, struct aiocb * const list[], int nent, struct
3829     sigevent *sig)}
3830
3831 \fdesc{Richiede l'esecuzione di una serie di operazioni di I/O.} 
3832 }
3833
3834 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
3835   caso \var{errno} assumerà uno dei valori: 
3836   \begin{errlist}
3837     \item[\errcode{EAGAIN}] nessuna operazione è stata completata entro
3838       \param{timeout}.
3839     \item[\errcode{EINTR}] la funzione è stata interrotta da un segnale.
3840     \item[\errcode{EINVAL}] si è passato un valore di \param{mode} non valido
3841       o un numero di operazioni \param{nent} maggiore di
3842       \const{AIO\_LISTIO\_MAX}.
3843     \item[\errcode{ENOSYS}] la funzione non è implementata.
3844   \end{errlist}
3845 }
3846 \end{funcproto}
3847
3848 La funzione esegue la richiesta delle \param{nent} operazioni indicate nella
3849 lista \param{list} un vettore di puntatori a strutture \struct{aiocb}
3850 indicanti le operazioni da compiere (che verranno eseguite senza un ordine
3851 particolare). La lista può contenere anche puntatori nulli, che saranno
3852 ignorati (si possono così eliminare facilmente componenti della lista senza
3853 doverla rigenerare).
3854
3855 Ciascuna struttura \struct{aiocb} della lista deve contenere un
3856 \textit{control block} opportunamente inizializzato; in particolare per
3857 ognuna di esse dovrà essere specificato il tipo di operazione con il campo
3858 \var{aio\_lio\_opcode}, che può prendere i valori:
3859 \begin{basedescript}{\desclabelwidth{2.0cm}}
3860 \item[\constd{LIO\_READ}]  si richiede una operazione di lettura.
3861 \item[\constd{LIO\_WRITE}] si richiede una operazione di scrittura.
3862 \item[\constd{LIO\_NOP}] non si effettua nessuna operazione.
3863 \end{basedescript}
3864 dove \const{LIO\_NOP} viene usato quando si ha a che fare con un vettore di
3865 dimensione fissa, per poter specificare solo alcune operazioni, o quando si
3866 sono dovute cancellare delle operazioni e si deve ripetere la richiesta per
3867 quelle non completate. 
3868
3869 L'argomento \param{mode} controlla il comportamento della funzione, se viene
3870 usato il valore \constd{LIO\_WAIT} la funzione si blocca fino al completamento
3871 di tutte le operazioni richieste; se si usa \constd{LIO\_NOWAIT} la funzione
3872 ritorna immediatamente dopo aver messo in coda tutte le richieste. In tal caso
3873 il chiamante può richiedere la notifica del completamento di tutte le
3874 richieste, impostando l'argomento \param{sig} in maniera analoga a come si fa
3875 per il campo \var{aio\_sigevent} di \struct{aiocb}.
3876
3877 % TODO: trattare libaio e le system call del kernel per l'I/O asincrono, vedi
3878 % http://lse.sourceforge.net/io/aio.html,
3879 % http://webfiveoh.com/content/guides/2012/aug/mon-13th/linux-asynchronous-io-and-libaio.html, 
3880 % https://code.google.com/p/kernel/wiki/AIOUserGuide,
3881 % http://bert-hubert.blogspot.de/2012/05/on-linux-asynchronous-file-io.html 
3882 % https://www.fsl.cs.sunysb.edu/~vass/linux-aio.txt
3883
3884 % TODO trattare la poll API basata sull'I/O asicrono, introdotta con il kernel
3885 % 4.18, vedi  https://lwn.net/Articles/743714/,
3886 % https://lwn.net/Articles/742978/, https://lwn.net/Articles/758324/
3887 % http://git.infradead.org/users/hch/vfs.git/commit/d2d9e26c7cb6d95d521153897910080cf56c7fad
3888 % Reverted
3889
3890 % TODO trattare la nuova API per l'I/O asincrono (io_uring), introdotta con il
3891 % kernel 5.1, vedi https://lwn.net/Articles/776703/,
3892 % https://lwn.net/ml/linux-fsdevel/20190112213011.1439-1-axboe@kernel.dk/
3893 % altre feature correlate:
3894 % dal 5.11: support for the shutdown(), renameat2(), and unlinkat()
3895
3896 \section{Altre modalità di I/O avanzato}
3897 \label{sec:file_advanced_io}
3898
3899 Oltre alle precedenti modalità di \textit{I/O multiplexing} e \textsl{I/O
3900   asincrono}, esistono altre funzioni che implementano delle modalità di
3901 accesso ai file più evolute rispetto alle normali funzioni di lettura e
3902 scrittura che abbiamo esaminato in sez.~\ref{sec:file_unix_interface}. In
3903 questa sezione allora prenderemo in esame le interfacce per l'\textsl{I/O
3904   mappato in memoria}, per l'\textsl{I/O vettorizzato} e altre funzioni di I/O
3905 avanzato.
3906
3907
3908 \subsection{File mappati in memoria}
3909 \label{sec:file_memory_map}
3910
3911 \itindbeg{memory~mapping}
3912
3913 Una modalità alternativa di I/O, che usa una interfaccia completamente diversa
3914 rispetto a quella classica vista in sez.~\ref{sec:file_unix_interface}, è il
3915 cosiddetto \textit{memory-mapped I/O}, che attraverso il meccanismo della
3916 \textsl{paginazione}  usato dalla memoria virtuale (vedi
3917 sez.~\ref{sec:proc_mem_gen}) permette di \textsl{mappare} il contenuto di un
3918 file in una sezione dello spazio di indirizzi del processo che lo ha allocato.
3919
3920 \begin{figure}[htb]
3921   \centering
3922   \includegraphics[width=12cm]{img/mmap_layout}
3923   \caption{Disposizione della memoria di un processo quando si esegue la
3924   mappatura in memoria di un file.}
3925   \label{fig:file_mmap_layout}
3926 \end{figure}
3927
3928 Il meccanismo è illustrato in fig.~\ref{fig:file_mmap_layout}, una sezione del
3929 file viene \textsl{mappata} direttamente nello spazio degli indirizzi del
3930 programma.  Tutte le operazioni di lettura e scrittura su variabili contenute
3931 in questa zona di memoria verranno eseguite leggendo e scrivendo dal contenuto
3932 del file attraverso il sistema della memoria virtuale illustrato in
3933 sez.~\ref{sec:proc_mem_gen} che in maniera analoga a quanto avviene per le
3934 pagine che vengono salvate e rilette nella \textit{swap}, si incaricherà di
3935 sincronizzare il contenuto di quel segmento di memoria con quello del file
3936 mappato su di esso.  Per questo motivo si può parlare tanto di \textsl{file
3937   mappato in memoria}, quanto di \textsl{memoria mappata su file}.
3938
3939 L'uso del \textit{memory-mapping} comporta una notevole semplificazione delle
3940 operazioni di I/O, in quanto non sarà più necessario utilizzare dei buffer
3941 intermedi su cui appoggiare i dati da traferire, poiché questi potranno essere
3942 acceduti direttamente nella sezione di memoria mappata; inoltre questa
3943 interfaccia è più efficiente delle usuali funzioni di I/O, in quanto permette
3944 di caricare in memoria solo le parti del file che sono effettivamente usate ad
3945 un dato istante.
3946
3947 Infatti, dato che l'accesso è fatto direttamente attraverso la memoria
3948 virtuale, la sezione di memoria mappata su cui si opera sarà a sua volta letta
3949 o scritta sul file una pagina alla volta e solo per le parti effettivamente
3950 usate, il tutto in maniera completamente trasparente al processo; l'accesso
3951 alle pagine non ancora caricate avverrà allo stesso modo con cui vengono
3952 caricate in memoria le pagine che sono state salvate sullo \textit{swap}.
3953
3954 Infine in situazioni in cui la memoria è scarsa, le pagine che mappano un file
3955 vengono salvate automaticamente, così come le pagine dei programmi vengono
3956 scritte sulla \textit{swap}; questo consente di accedere ai file su dimensioni
3957 il cui solo limite è quello dello spazio di indirizzi disponibile, e non della
3958 memoria su cui possono esserne lette delle porzioni.
3959
3960 L'interfaccia POSIX implementata da Linux prevede varie funzioni di sistema
3961 per la gestione del \textit{memory mapped I/O}, la prima di queste, che serve
3962 ad eseguire la mappatura in memoria di un file, è \funcd{mmap}; il suo
3963 prototipo è:
3964
3965 \begin{funcproto}{
3966 %\fhead{unistd.h}
3967 \fhead{sys/mman.h} 
3968 \fdecl{void * mmap(void * start, size\_t length, int prot, int flags, int
3969     fd, off\_t offset)}
3970 \fdesc{Esegue la mappatura in memoria di una sezione di un file.} 
3971 }
3972
3973 {La funzione ritorna il puntatore alla zona di memoria mappata in caso di
3974   successo, e \const{MAP\_FAILED} (\texttt{(void *) -1}) per un errore, nel
3975   qual caso \var{errno} assumerà uno dei valori:
3976   \begin{errlist}
3977     \item[\errcode{EACCES}] o \param{fd} non si riferisce ad un file regolare,
3978       o si è usato \const{MAP\_PRIVATE} ma \param{fd} non è aperto in lettura,
3979       o si è usato \const{MAP\_SHARED} e impostato \const{PROT\_WRITE} ed
3980       \param{fd} non è aperto in lettura/scrittura, o si è impostato
3981       \const{PROT\_WRITE} ed \param{fd} è in \textit{append-only}.
3982     \item[\errcode{EAGAIN}] il file è bloccato, o si è bloccata troppa memoria
3983       rispetto a quanto consentito dai limiti di sistema (vedi
3984       sez.~\ref{sec:sys_resource_limit}).
3985     \item[\errcode{EBADF}] il file descriptor non è valido, e non si è usato
3986       \const{MAP\_ANONYMOUS}.
3987     \item[\errcode{EINVAL}] i valori di \param{start}, \param{length} o
3988       \param{offset} non sono validi (o troppo grandi o non allineati sulla
3989       dimensione delle pagine), o \param{lengh} è zero (solo dal 2.6.12)
3990       o \param{flags} contiene sia \const{MAP\_PRIVATE} che
3991       \const{MAP\_SHARED} o nessuno dei due.
3992     \item[\errcode{ENFILE}] si è superato il limite del sistema sul numero di
3993       file aperti (vedi sez.~\ref{sec:sys_resource_limit}).
3994     \item[\errcode{ENODEV}] il filesystem di \param{fd} non supporta il memory
3995       mapping.
3996     \item[\errcode{ENOMEM}] non c'è memoria o si è superato il limite sul
3997       numero di mappature possibili.
3998     \item[\errcode{EOVERFLOW}] su architettura a 32 bit con il supporto per i
3999       \textit{large file} (che hanno una dimensione a 64 bit) il numero di
4000       pagine usato per \param{lenght} aggiunto a quello usato
4001       per \param{offset} eccede i 32 bit (\texttt{unsigned long}).
4002     \item[\errcode{EPERM}] l'argomento \param{prot} ha richiesto
4003       \const{PROT\_EXEC}, ma il filesystem di \param{fd} è montato con
4004       l'opzione \texttt{noexec}.
4005     \item[\errcode{ETXTBSY}] si è impostato \const{MAP\_DENYWRITE} ma
4006       \param{fd} è aperto in scrittura.
4007   \end{errlist}
4008 }
4009 \end{funcproto}
4010
4011 La funzione richiede di mappare in memoria la sezione del file \param{fd} a
4012 partire da \param{offset} per \param{length} byte, preferibilmente
4013 all'indirizzo \param{start}. Il valore \param{start} viene normalmente
4014 considerato come un suggerimento, ma l'uso di un qualunque valore diverso da
4015 \val{NULL}, in cui si rimette completamente al kernel la scelta
4016 dell'indirizzo, viene sconsigliato per ragioni di portabilità. Il valore
4017 di \param{offset} deve essere un multiplo della dimensione di una pagina di
4018 memoria.
4019
4020 \begin{table}[htb]
4021   \centering
4022   \footnotesize
4023   \begin{tabular}[c]{|l|l|}
4024     \hline
4025     \textbf{Valore} & \textbf{Significato} \\
4026     \hline
4027     \hline
4028     \constd{PROT\_EXEC}  & Le pagine possono essere eseguite.\\
4029     \constd{PROT\_READ}  & Le pagine possono essere lette.\\
4030     \constd{PROT\_WRITE} & Le pagine possono essere scritte.\\
4031     \constd{PROT\_NONE}  & L'accesso alle pagine è vietato.\\
4032     \hline    
4033   \end{tabular}
4034   \caption{Valori dell'argomento \param{prot} di \func{mmap}, relativi alla
4035     protezione applicate alle pagine del file mappate in memoria.}
4036   \label{tab:file_mmap_prot}
4037 \end{table}
4038
4039 Il valore dell'argomento \param{prot} indica la protezione\footnote{come
4040   accennato in sez.~\ref{sec:proc_memory} in Linux la memoria reale è divisa
4041   in pagine, ogni processo vede la sua memoria attraverso uno o più segmenti
4042   lineari di memoria virtuale; per ciascuno di questi segmenti il kernel
4043   mantiene nella \textit{page table} la mappatura sulle pagine di memoria
4044   reale, ed le modalità di accesso (lettura, esecuzione, scrittura); una loro
4045   violazione causa quella una \textit{segment violation}, e la relativa
4046   emissione del segnale \signal{SIGSEGV}.} da applicare al segmento di memoria
4047 e deve essere specificato come maschera binaria ottenuta dall'OR di uno o più
4048 dei valori riportati in tab.~\ref{tab:file_mmap_prot}; il valore specificato
4049 deve essere compatibile con la modalità di accesso con cui si è aperto il
4050 file.
4051
4052 \begin{table}[!htb]
4053   \centering
4054   \footnotesize
4055   \begin{tabular}[c]{|l|p{11cm}|}
4056     \hline
4057     \textbf{Valore} & \textbf{Significato} \\
4058     \hline
4059     \hline
4060     \constd{MAP\_32BIT}    & Esegue la mappatura sui primi 2Gb dello spazio
4061                              degli indirizzi, viene supportato solo sulle
4062                              piattaforme \texttt{x86-64} per compatibilità con
4063                              le applicazioni a 32 bit. Viene ignorato se si è
4064                              richiesto \const{MAP\_FIXED} (dal kernel 2.4.20).\\
4065     \constd{MAP\_ANON}     & Sinonimo di \const{MAP\_ANONYMOUS}, deprecato.\\
4066     \constd{MAP\_ANONYMOUS}& La mappatura non è associata a nessun file. Gli
4067                              argomenti \param{fd} e \param{offset} sono
4068                              ignorati. L'uso di questo flag con
4069                              \const{MAP\_SHARED} è stato implementato in Linux
4070                              a partire dai kernel della serie 2.4.x.\\
4071     \constd{MAP\_DENYWRITE}& In Linux viene ignorato per evitare
4072                              \textit{DoS}
4073                              (veniva usato per segnalare che tentativi di
4074                              scrittura sul file dovevano fallire con
4075                              \errcode{ETXTBSY}).\\ 
4076     \constd{MAP\_EXECUTABLE}& Ignorato.\\
4077     \constd{MAP\_FILE}     & Valore di compatibilità, ignorato.\\
4078     \constd{MAP\_FIXED}    & Non permette di restituire un indirizzo diverso
4079                              da \param{start}, se questo non può essere usato
4080                              \func{mmap} fallisce. Se si imposta questo flag il
4081                              valore di \param{start} deve essere allineato
4082                              alle dimensioni di una pagina.\\
4083     \constd{MAP\_GROWSDOWN}& Usato per gli \textit{stack}. 
4084                              Indica che la mappatura deve essere effettuata 
4085                              con gli indirizzi crescenti verso il basso.\\
4086     \constd{MAP\_HUGETLB}  & Esegue la mappatura usando le cosiddette
4087                              ``\textit{huge pages}'' (dal kernel 2.6.32).\\
4088     \constd{MAP\_LOCKED}   & Se impostato impedisce lo \textit{swapping} delle
4089                              pagine mappate (dal kernel 2.5.37).\\
4090     \constd{MAP\_NONBLOCK} & Esegue un \textit{prefaulting} più limitato che
4091                              non causa I/O (dal kernel 2.5.46).\\
4092     \constd{MAP\_NORESERVE}& Si usa con \const{MAP\_PRIVATE}. Non riserva
4093                              delle pagine di \textit{swap} ad uso del meccanismo
4094                              del \textit{copy on write} 
4095                              per mantenere le modifiche fatte alla regione
4096                              mappata, in questo caso dopo una scrittura, se
4097                              non c'è più memoria disponibile, si ha
4098                              l'emissione di un \signal{SIGSEGV}.\\
4099     \constd{MAP\_POPULATE} & Esegue il \textit{prefaulting} delle pagine di
4100                              memoria necessarie alla mappatura (dal kernel
4101                              2.5.46).\\ 
4102     \constd{MAP\_PRIVATE}  & I cambiamenti sulla memoria mappata non vengono
4103                              riportati sul file. Ne viene fatta una copia
4104                              privata cui solo il processo chiamante ha
4105                              accesso.  Incompatibile con \const{MAP\_SHARED}.\\
4106     \constd{MAP\_SHARED}   & I cambiamenti sulla memoria mappata vengono
4107                              riportati sul file e saranno immediatamente
4108                              visibili agli altri processi che mappano lo stesso
4109                              file. Incompatibile
4110                              con \const{MAP\_PRIVATE}.\\ 
4111     \const{MAP\_STACK}     & Al momento è ignorato, è stato fornito (dal kernel
4112                              2.6.27) a supporto della implementazione dei
4113                              \textit{thread} nella \acr{glibc}, per allocare
4114                              memoria in uno spazio utilizzabile come
4115                              \textit{stack} per le architetture hardware che
4116                              richiedono un trattamento speciale di
4117                              quest'ultimo.\\ 
4118     \constd{MAP\_UNINITIALIZED}& Specifico per i sistemi embedded ed
4119                              utilizzabile dal kernel 2.6.33 solo se è stata
4120                              abilitata in fase di compilazione dello stesso
4121                              l'opzione
4122                              \texttt{CONFIG\_MMAP\_ALLOW\_UNINITIALIZED}. Se
4123                              usato le pagine di memoria usate nella mappatura
4124                              anonima non vengono cancellate; questo migliora
4125                              le prestazioni sui sistemi con risorse minime, ma
4126                              comporta la possibilità di rileggere i dati di
4127                              altri processi che han chiuso una mappatura, per
4128                              cui viene usato solo quando (come si suppone sia
4129                              per i sistemi embedded) si ha il completo
4130                              controllo dell'uso della memoria da parte degli
4131                              utenti.\\ 
4132 %    \constd{MAP\_DONTEXPAND}& Non consente una successiva espansione dell'area
4133 %                              mappata con \func{mremap}, proposto ma pare non
4134 %                              implementato.\\
4135     \hline
4136   \end{tabular}
4137   \caption{Valori possibili dell'argomento \param{flag} di \func{mmap}.}
4138   \label{tab:file_mmap_flag}
4139 \end{table}
4140
4141 % TODO trattare MAP_HUGETLB introdotto con il kernel 2.6.32, e modifiche
4142 % introdotte con il 3.8 per le dimensioni variabili delle huge pages
4143
4144 % TODO trattare  MAP_FIXED_NOREPLACE vedi https://lwn.net/Articles/751651/ e
4145 % https://lwn.net/Articles/741369/ 
4146
4147 % TODO: verificare MAP_SYNC e MAP_SHARED_VALIDATE, vedi
4148 % https://lwn.net/Articles/731706/, https://lwn.net/Articles/758594/ incluse
4149 % con il 4.15
4150
4151
4152 L'argomento \param{flags} specifica infine qual è il tipo di oggetto mappato,
4153 le opzioni relative alle modalità con cui è effettuata la mappatura e alle
4154 modalità con cui le modifiche alla memoria mappata vengono condivise o
4155 mantenute private al processo che le ha effettuate. Deve essere specificato
4156 come maschera binaria ottenuta dall'OR di uno o più dei valori riportati in
4157 tab.~\ref{tab:file_mmap_flag}. Fra questi comunque deve sempre essere
4158 specificato o \const{MAP\_PRIVATE} o \const{MAP\_SHARED} per indicare la
4159 modalità con cui viene effettuata la mappatura.
4160
4161 Esistono infatti due modalità alternative di eseguire la mappatura di un file;
4162 la più comune è \const{MAP\_SHARED} in cui la memoria è condivisa e le
4163 modifiche effettuate su di essa sono visibili a tutti i processi che hanno
4164 mappato lo stesso file. In questo caso le modifiche vengono anche riportate su
4165 disco, anche se questo può non essere immediato a causa della bufferizzazione:
4166 si potrà essere sicuri dell'aggiornamento solo in seguito alla chiamata di
4167 \func{msync} o \func{munmap}, e solo allora le modifiche saranno visibili sul
4168 file con l'I/O convenzionale.
4169
4170 Con \const{MAP\_PRIVATE} invece viene creata una copia privata del file,
4171 questo non viene mai modificato e solo il processo chiamante ha accesso alla
4172 mappatura. Le modifiche eseguite dal processo sulla mappatura vengono
4173 effettuate utilizzando il meccanismo del \textit{copy on write}, mentenute in
4174 memoria e salvate su \textit{swap} in caso di necessità.  Non è specificato se
4175 i cambiamenti sul file originale vengano riportati sulla regione mappata.
4176
4177 Gli altri valori di \func{flag} modificano le caratteristiche della
4178 mappatura. Fra questi il più rilevante è probabilmente \const{MAP\_ANONYMOUS}
4179 che consente di creare segmenti di memoria condivisa fra processi diversi
4180 senza appoggiarsi a nessun file (torneremo sul suo utilizzo in
4181 sez.~\ref{sec:ipc_mmap_anonymous}). In tal caso gli argomenti \param{fd}
4182 e \param{offset} vangono ignorati, anche se alcune implementazioni richiedono
4183 che invece \param{fd} sia $-1$, convenzione che è opportuno seguire se si ha a
4184 cuore la portabilità dei programmi.
4185
4186 Gli effetti dell'accesso ad una zona di memoria mappata su file possono essere
4187 piuttosto complessi, essi si possono comprendere solo tenendo presente che
4188 tutto quanto è comunque basato sul meccanismo della memoria virtuale. Questo
4189 comporta allora una serie di conseguenze. La più ovvia è che se si cerca di
4190 scrivere su una zona mappata in sola lettura si avrà l'emissione di un segnale
4191 di violazione di accesso (\signal{SIGSEGV}), dato che i permessi sul segmento
4192 di memoria relativo non consentono questo tipo di accesso.
4193
4194 È invece assai diversa la questione relativa agli accessi al di fuori della
4195 regione di cui si è richiesta la mappatura. A prima vista infatti si potrebbe
4196 ritenere che anch'essi debbano generare un segnale di violazione di accesso;
4197 questo però non tiene conto del fatto che, essendo basata sul meccanismo della
4198 paginazione, la mappatura in memoria non può che essere eseguita su un
4199 segmento di dimensioni rigorosamente multiple di quelle di una pagina, ed in
4200 generale queste potranno non corrispondere alle dimensioni effettive del file
4201 o della sezione che si vuole mappare.
4202
4203 \begin{figure}[!htb] 
4204   \centering
4205   \includegraphics[height=6cm]{img/mmap_boundary}
4206   \caption{Schema della mappatura in memoria di una sezione di file di
4207     dimensioni non corrispondenti al bordo di una pagina.}
4208   \label{fig:file_mmap_boundary}
4209 \end{figure}
4210
4211 Il caso più comune è quello illustrato in fig.~\ref{fig:file_mmap_boundary},
4212 in cui la sezione di file non rientra nei confini di una pagina: in tal caso
4213 il file sarà mappato su un segmento di memoria che si estende fino al
4214 bordo della pagina successiva.  In questo caso è possibile accedere a quella
4215 zona di memoria che eccede le dimensioni specificate da \param{length}, senza
4216 ottenere un \signal{SIGSEGV} poiché essa è presente nello spazio di indirizzi
4217 del processo, anche se non è mappata sul file. Il comportamento del sistema è
4218 quello di restituire un valore nullo per quanto viene letto, e di non
4219 riportare su file quanto viene scritto.
4220
4221 Un caso più complesso è quello che si viene a creare quando le dimensioni del
4222 file mappato sono più corte delle dimensioni della mappatura, oppure quando il
4223 file è stato troncato, dopo che è stato mappato, ad una dimensione inferiore a
4224 quella della mappatura in memoria.  In questa situazione, per la sezione di
4225 pagina parzialmente coperta dal contenuto del file, vale esattamente quanto
4226 visto in precedenza; invece per la parte che eccede, fino alle dimensioni date
4227 da \param{length}, l'accesso non sarà più possibile, ma il segnale emesso non
4228 sarà \signal{SIGSEGV}, ma \signal{SIGBUS}, come illustrato in
4229 fig.~\ref{fig:file_mmap_exceed}.
4230
4231 Non tutti i file possono venire mappati in memoria, dato che, come illustrato
4232 in fig.~\ref{fig:file_mmap_layout}, la mappatura introduce una corrispondenza
4233 biunivoca fra una sezione di un file ed una sezione di memoria. Questo
4234 comporta che ad esempio non è possibile mappare in memoria file descriptor
4235 relativi a \textit{pipe}, socket e \textit{fifo}, per i quali non ha senso
4236 parlare di \textsl{sezione}. Lo stesso vale anche per alcuni file di
4237 dispositivo, che non dispongono della relativa operazione \func{mmap} (si
4238 ricordi quanto esposto in sez.~\ref{sec:file_vfs_work}). Si tenga presente
4239 però che esistono anche casi di dispositivi (un esempio è l'interfaccia al
4240 ponte PCI-VME del chip Universe) che sono utilizzabili solo con questa
4241 interfaccia.
4242
4243 \begin{figure}[htb]
4244   \centering
4245   \includegraphics[height=6cm]{img/mmap_exceed}
4246   \caption{Schema della mappatura in memoria di file di dimensioni inferiori
4247     alla lunghezza richiesta.}
4248   \label{fig:file_mmap_exceed}
4249 \end{figure}
4250
4251 Dato che passando attraverso una \func{fork} lo spazio di indirizzi viene
4252 copiato integralmente, i file mappati in memoria verranno ereditati in maniera
4253 trasparente dal processo figlio, mantenendo gli stessi attributi avuti nel
4254 padre; così se si è usato \const{MAP\_SHARED} padre e figlio accederanno allo
4255 stesso file in maniera condivisa, mentre se si è usato \const{MAP\_PRIVATE}
4256 ciascuno di essi manterrà una sua versione privata indipendente. Non c'è
4257 invece nessun passaggio attraverso una \func{exec}, dato che quest'ultima
4258 sostituisce tutto lo spazio degli indirizzi di un processo con quello di un
4259 nuovo programma.
4260
4261 Quando si effettua la mappatura di un file vengono pure modificati i tempi ad
4262 esso associati (di cui si è trattato in sez.~\ref{sec:file_file_times}). Il
4263 valore di \var{st\_atime} può venir cambiato in qualunque istante a partire
4264 dal momento in cui la mappatura è stata effettuata: il primo riferimento ad
4265 una pagina mappata su un file aggiorna questo tempo.  I valori di
4266 \var{st\_ctime} e \var{st\_mtime} possono venir cambiati solo quando si è
4267 consentita la scrittura sul file (cioè per un file mappato con
4268 \const{PROT\_WRITE} e \const{MAP\_SHARED}) e sono aggiornati dopo la scrittura
4269 o in corrispondenza di una eventuale \func{msync}.
4270
4271 Dato per i file mappati in memoria le operazioni di I/O sono gestite
4272 direttamente dalla memoria virtuale, occorre essere consapevoli delle
4273 interazioni che possono esserci con operazioni effettuate con l'interfaccia
4274 dei file ordinaria illustrata in sez.~\ref{sec:file_unix_interface}. Il
4275 problema è che una volta che si è mappato un file, le operazioni di lettura e
4276 scrittura saranno eseguite sulla memoria, e riportate su disco in maniera
4277 autonoma dal sistema della memoria virtuale.
4278
4279 Pertanto se si modifica un file con l'interfaccia ordinaria queste modifiche
4280 potranno essere visibili o meno a seconda del momento in cui la memoria
4281 virtuale trasporterà dal disco in memoria quella sezione del file, perciò è
4282 del tutto imprevedibile il risultato della modifica di un file nei confronti
4283 del contenuto della memoria su cui è mappato.
4284
4285 Per questo è sempre sconsigliabile eseguire scritture su un file attraverso
4286 l'interfaccia ordinaria quando lo si è mappato in memoria, è invece possibile
4287 usare l'interfaccia ordinaria per leggere un file mappato in memoria, purché
4288 si abbia una certa cura; infatti l'interfaccia dell'I/O mappato in memoria
4289 mette a disposizione la funzione \funcd{msync} per sincronizzare il contenuto
4290 della memoria mappata con il file su disco; il suo prototipo è:
4291
4292 \begin{funcproto}{
4293 %\fhead{unistd.h}
4294 \fhead{sys/mman.h}
4295 \fdecl{int msync(const void *start, size\_t length, int flags)}
4296 \fdesc{Sincronizza i contenuti di una sezione di un file mappato in memoria.} 
4297 }
4298
4299 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
4300   caso \var{errno} assumerà uno dei valori: 
4301   \begin{errlist}
4302     \item[\errcode{EBUSY}] si è indicato \const{MS\_INVALIDATE} ma
4303       nell'intervallo di memoria specificato è presente un \textit{memory lock}.
4304     \item[\errcode{EFAULT}] l'intervallo indicato, o parte di esso, non
4305       risulta mappato (prima del kernel 2.4.19).
4306     \item[\errcode{EINVAL}] o \param{start} non è multiplo di
4307       \const{PAGE\_SIZE}, o si è specificato un valore non valido per
4308       \param{flags}.
4309     \item[\errcode{ENOMEM}] l'intervallo indicato, o parte di esso, non
4310       risulta mappato (dal kernel 2.4.19).
4311   \end{errlist}
4312 }
4313 \end{funcproto}
4314
4315 La funzione esegue la sincronizzazione di quanto scritto nella sezione di
4316 memoria indicata da \param{start} e \param{offset}, scrivendo le modifiche sul
4317 file (qualora questo non sia già stato fatto).  Provvede anche ad aggiornare i
4318 relativi tempi di modifica. In questo modo si è sicuri che dopo l'esecuzione
4319 di \func{msync} le funzioni dell'interfaccia ordinaria troveranno un contenuto
4320 del file aggiornato.
4321
4322 \begin{table}[htb]
4323   \centering
4324   \footnotesize
4325   \begin{tabular}[c]{|l|p{11cm}|}
4326     \hline
4327     \textbf{Valore} & \textbf{Significato} \\
4328     \hline
4329     \hline
4330     \constd{MS\_SYNC}      & richiede una sincronizzazione e ritorna soltanto
4331                              quando questa è stata completata.\\
4332     \constd{MS\_ASYNC}     & richiede una sincronizzazione, ma ritorna subito 
4333                              non attendendo che questa sia finita.\\
4334     \constd{MS\_INVALIDATE}& invalida le pagine per tutte le mappature
4335                              in memoria così da rendere necessaria una
4336                              rilettura immediata delle stesse.\\
4337     \hline
4338   \end{tabular}
4339   \caption{Valori possibili dell'argomento \param{flag} di \func{msync}.}
4340   \label{tab:file_mmap_msync}
4341 \end{table}
4342
4343 L'argomento \param{flag} è specificato come maschera binaria composta da un OR
4344 dei valori riportati in tab.~\ref{tab:file_mmap_msync}, di questi però
4345 \const{MS\_ASYNC} e \const{MS\_SYNC} sono incompatibili; con il primo valore
4346 infatti la funzione si limita ad inoltrare la richiesta di sincronizzazione al
4347 meccanismo della memoria virtuale, ritornando subito, mentre con il secondo
4348 attende che la sincronizzazione sia stata effettivamente eseguita. Il terzo
4349 valore fa sì che vengano invalidate, per tutte le mappature dello stesso file,
4350 le pagine di cui si è richiesta la sincronizzazione, così che esse possano
4351 essere immediatamente aggiornate con i nuovi valori.
4352
4353 Una volta che si sono completate le operazioni di I/O si può eliminare la
4354 mappatura della memoria usando la funzione \funcd{munmap}, il suo prototipo è:
4355
4356 \begin{funcproto}{
4357 %\fhead{unistd.h}
4358 \fhead{sys/mman.h}
4359 \fdecl{int munmap(void *start, size\_t length)}
4360 \fdesc{Rilascia la mappatura sulla sezione di memoria specificata.} 
4361 }
4362
4363 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
4364   caso \var{errno} assumerà uno dei valori: 
4365   \begin{errlist}
4366     \item[\errcode{EINVAL}] l'intervallo specificato non ricade in una zona
4367       precedentemente mappata.
4368   \end{errlist}
4369 }
4370 \end{funcproto}
4371
4372 La funzione cancella la mappatura per l'intervallo specificato con
4373 \param{start} e \param{length}; ogni successivo accesso a tale regione causerà
4374 un errore di accesso in memoria. L'argomento \param{start} deve essere
4375 allineato alle dimensioni di una pagina, e la mappatura di tutte le pagine
4376 contenute anche parzialmente nell'intervallo indicato, verrà rimossa.
4377 Indicare un intervallo che non contiene mappature non è un errore.  Si tenga
4378 presente inoltre che alla conclusione di un processo ogni pagina mappata verrà
4379 automaticamente rilasciata, mentre la chiusura del file descriptor usato per
4380 il \textit{memory mapping} non ha alcun effetto su di esso.
4381
4382 Lo standard POSIX prevede anche una funzione che permetta di cambiare le
4383 protezioni delle pagine di memoria; lo standard prevede che essa si applichi
4384 solo ai \textit{memory mapping} creati con \func{mmap}, ma nel caso di Linux
4385 la funzione può essere usata con qualunque pagina valida nella memoria
4386 virtuale. Questa funzione di sistema è \funcd{mprotect} ed il suo prototipo è:
4387
4388 \begin{funcproto}{
4389 \fhead{sys/mman.h} 
4390 \fdecl{int mprotect(const void *addr, size\_t len, int prot)}
4391 \fdesc{Modifica le protezioni delle pagine di memoria.} 
4392 }
4393
4394 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
4395   caso \var{errno} assumerà uno dei valori: 
4396   \begin{errlist}
4397     \item[\errcode{EINVAL}] il valore di \param{addr} non è valido o non è un
4398       multiplo di \const{PAGE\_SIZE}.
4399     \item[\errcode{EACCES}] l'operazione non è consentita, ad esempio si è
4400       cercato di marcare con \const{PROT\_WRITE} un segmento di memoria cui si
4401       ha solo accesso in lettura.
4402     \item[\errcode{ENOMEM}] non è stato possibile allocare le risorse
4403       necessarie all'interno del kernel o si è specificato un indirizzo di
4404       memoria non valido del processo o non corrispondente a pagine mappate
4405       (negli ultimi due casi prima del kernel 2.4.19 veniva prodotto,
4406       erroneamente, \errcode{EFAULT}).
4407   \end{errlist}
4408 }
4409 \end{funcproto}
4410
4411 La funzione prende come argomenti un indirizzo di partenza in \param{addr},
4412 allineato alle dimensioni delle pagine di memoria, ed una dimensione
4413 \param{size}. La nuova protezione deve essere specificata in \param{prot} con
4414 una combinazione dei valori di tab.~\ref{tab:file_mmap_prot}.  La nuova
4415 protezione verrà applicata a tutte le pagine contenute, anche parzialmente,
4416 dall'intervallo fra \param{addr} e \param{addr}+\param{size}-1.
4417
4418 Infine Linux supporta alcune operazioni specifiche non disponibili su altri
4419 kernel unix-like per poter usare le quali occorre però dichiarare
4420 \macro{\_GNU\_SOURCE} prima dell'inclusione di \texttt{sys/mman.h}. La prima
4421 di queste è la possibilità di modificare un precedente \textit{memory
4422   mapping}, ad esempio per espanderlo o restringerlo.  Questo è realizzato
4423 dalla funzione di sistema \funcd{mremap}, il cui prototipo è:
4424
4425 \begin{funcproto}{
4426 \fhead{sys/mman.h} 
4427 \fdecl{void * mremap(void *old\_address, size\_t old\_size , size\_t
4428     new\_size, unsigned long flags)}
4429 \fdesc{Restringe o allarga una mappatura in memoria.} 
4430 }
4431
4432 {La funzione ritorna l'indirizzo alla nuova area di memoria in caso di
4433   successo o il valore \const{MAP\_FAILED} (pari a \texttt{(void *) -1}), nel
4434   qual caso \var{errno} assumerà uno dei valori:
4435   \begin{errlist}
4436     \item[\errcode{EINVAL}] il valore di \param{old\_address} non è un
4437       puntatore valido.
4438     \item[\errcode{EFAULT}] ci sono indirizzi non validi nell'intervallo
4439       specificato da \param{old\_address} e \param{old\_size}, o ci sono altre
4440       mappature di tipo non corrispondente a quella richiesta.
4441     \item[\errcode{ENOMEM}] non c'è memoria sufficiente oppure l'area di
4442       memoria non può essere espansa all'indirizzo virtuale corrente, e non si
4443       è specificato \const{MREMAP\_MAYMOVE} nei flag.
4444     \item[\errcode{EAGAIN}] il segmento di memoria scelto è bloccato e non può
4445       essere rimappato.
4446   \end{errlist}
4447 }
4448 \end{funcproto}
4449
4450 La funzione richiede come argomenti \param{old\_address} (che deve essere
4451 allineato alle dimensioni di una pagina di memoria) che specifica il
4452 precedente indirizzo del \textit{memory mapping} e \param{old\_size}, che ne
4453 indica la dimensione. Con \param{new\_size} si specifica invece la nuova
4454 dimensione che si vuole ottenere. Infine l'argomento \param{flags} è una
4455 maschera binaria per i flag che controllano il comportamento della funzione.
4456 Il solo valore utilizzato è \constd{MREMAP\_MAYMOVE} che consente di eseguire
4457 l'espansione anche quando non è possibile utilizzare il precedente
4458 indirizzo. Per questo motivo, se si è usato questo flag, la funzione può
4459 restituire un indirizzo della nuova zona di memoria che non è detto coincida
4460 con \param{old\_address}.
4461
4462 La funzione si appoggia al sistema della memoria virtuale per modificare
4463 l'associazione fra gli indirizzi virtuali del processo e le pagine di memoria,
4464 modificando i dati direttamente nella \textit{page table} del processo. Come
4465 per \func{mprotect} la funzione può essere usata in generale, anche per pagine
4466 di memoria non corrispondenti ad un \textit{memory mapping}, e consente così
4467 di implementare la funzione \func{realloc} in maniera molto efficiente.
4468
4469 Una caratteristica comune a tutti i sistemi unix-like è che la mappatura in
4470 memoria di un file viene eseguita in maniera lineare, cioè parti successive di
4471 un file vengono mappate linearmente su indirizzi successivi in memoria.
4472 Esistono però delle applicazioni (in particolare la tecnica è usata dai
4473 database o dai programmi che realizzano macchine virtuali) in cui è utile
4474 poter mappare sezioni diverse di un file su diverse zone di memoria.
4475
4476 Questo è ovviamente sempre possibile eseguendo ripetutamente la funzione
4477 \func{mmap} per ciascuna delle diverse aree del file che si vogliono mappare
4478 in sequenza non lineare (ed in effetti è quello che veniva fatto anche con
4479 Linux prima che fossero introdotte queste estensioni) ma questo approccio ha
4480 delle conseguenze molto pesanti in termini di prestazioni.  Infatti per
4481 ciascuna mappatura in memoria deve essere definita nella \textit{page table}
4482 del processo una nuova area di memoria virtuale, quella che nel gergo del
4483 kernel viene chiamata VMA (\textit{virtual memory area}, che corrisponda alla
4484 mappatura, in modo che questa diventi visibile nello spazio degli indirizzi
4485 come illustrato in fig.~\ref{fig:file_mmap_layout}.
4486
4487 Quando un processo esegue un gran numero di mappature diverse (si può arrivare
4488 anche a centinaia di migliaia) per realizzare a mano una mappatura non-lineare
4489 esso vedrà un accrescimento eccessivo della sua \textit{page table}, e lo
4490 stesso accadrà per tutti gli altri processi che utilizzano questa tecnica. In
4491 situazioni in cui le applicazioni hanno queste esigenze si avranno delle
4492 prestazioni ridotte, dato che il kernel dovrà impiegare molte risorse per
4493 mantenere i dati relativi al \textit{memory mapping}, sia in termini di
4494 memoria interna per i dati delle \textit{page table}, che di CPU per il loro
4495 aggiornamento.
4496
4497 Per questo motivo con il kernel 2.5.46 è stato introdotto, ad opera di Ingo
4498 Molnar, un meccanismo che consente la mappatura non-lineare. Anche questa è
4499 una caratteristica specifica di Linux, non presente in altri sistemi
4500 unix-like.  Diventa così possibile utilizzare una sola mappatura iniziale, e
4501 quindi una sola \textit{virtual memory area} nella \textit{page table} del
4502 processo, e poi rimappare a piacere all'interno di questa i dati del file. Ciò
4503 è possibile grazie ad una nuova \textit{system call},
4504 \funcd{remap\_file\_pages}, il cui prototipo è:
4505
4506 \begin{funcproto}{
4507 \fhead{sys/mman.h} 
4508 \fdecl{int remap\_file\_pages(void *start, size\_t size, int prot,
4509     ssize\_t pgoff, int flags)}
4510 \fdesc{Rimappa non linearmente un \textit{memory mapping}.} 
4511 }
4512
4513 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
4514   caso \var{errno} assumerà uno dei valori: 
4515   \begin{errlist}
4516     \item[\errcode{EINVAL}] si è usato un valore non valido per uno degli
4517       argomenti o \param{start} non fa riferimento ad un \textit{memory
4518         mapping} valido creato con \const{MAP\_SHARED}.
4519   \end{errlist}
4520   ed inoltre 
4521  nel loro significato generico.}
4522 \end{funcproto}
4523
4524 Per poter utilizzare questa funzione occorre anzitutto effettuare
4525 preliminarmente una chiamata a \func{mmap} con \const{MAP\_SHARED} per
4526 definire l'area di memoria che poi sarà rimappata non linearmente. Poi si
4527 chiamerà questa funzione per modificare le corrispondenze fra pagine di
4528 memoria e pagine del file; si tenga presente che \func{remap\_file\_pages}
4529 permette anche di mappare la stessa pagina di un file in più pagine della
4530 regione mappata.
4531
4532 La funzione richiede che si identifichi la sezione del file che si vuole
4533 riposizionare all'interno del \textit{memory mapping} con gli argomenti
4534 \param{pgoff} e \param{size}; l'argomento \param{start} invece deve indicare
4535 un indirizzo all'interno dell'area definita dall'\func{mmap} iniziale, a
4536 partire dal quale la sezione di file indicata verrà rimappata. L'argomento
4537 \param{prot} deve essere sempre nullo, mentre \param{flags} prende gli stessi
4538 valori di \func{mmap} (quelli di tab.~\ref{tab:file_mmap_prot}) ma di tutti i
4539 flag solo \const{MAP\_NONBLOCK} non viene ignorato.
4540
4541 \itindbeg{prefaulting} 
4542
4543 Insieme alla funzione \func{remap\_file\_pages} nel kernel 2.5.46 con sono
4544 stati introdotti anche due nuovi flag per \func{mmap}: \const{MAP\_POPULATE} e
4545 \const{MAP\_NONBLOCK}.  Il primo dei due consente di abilitare il meccanismo
4546 del \textit{prefaulting}. Questo viene di nuovo in aiuto per migliorare le
4547 prestazioni in certe condizioni di utilizzo del \textit{memory mapping}.
4548
4549 Il problema si pone tutte le volte che si vuole mappare in memoria un file di
4550 grosse dimensioni. Il comportamento normale del sistema della memoria virtuale
4551 è quello per cui la regione mappata viene aggiunta alla \textit{page table}
4552 del processo, ma i dati verranno effettivamente utilizzati (si avrà cioè un
4553 \textit{page fault} che li trasferisce dal disco alla memoria) soltanto in
4554 corrispondenza dell'accesso a ciascuna delle pagine interessate dal
4555 \textit{memory mapping}.
4556
4557 Questo vuol dire che il passaggio dei dati dal disco alla memoria avverrà una
4558 pagina alla volta con un gran numero di \textit{page fault}, chiaramente se si
4559 sa in anticipo che il file verrà utilizzato immediatamente, è molto più
4560 efficiente eseguire un \textit{prefaulting} in cui tutte le pagine di memoria
4561 interessate alla mappatura vengono ``\textsl{popolate}'' in una sola volta,
4562 questo comportamento viene abilitato quando si usa con \func{mmap} il flag
4563 \const{MAP\_POPULATE}.
4564
4565 Dato che l'uso di \const{MAP\_POPULATE} comporta dell'I/O su disco che può
4566 rallentare l'esecuzione di \func{mmap} è stato introdotto anche un secondo
4567 flag, \const{MAP\_NONBLOCK}, che esegue un \textit{prefaulting} più limitato
4568 in cui vengono popolate solo le pagine della mappatura che già si trovano
4569 nella cache del kernel.\footnote{questo può essere utile per il linker
4570   dinamico, in particolare quando viene effettuato il \textit{prelink} delle
4571   applicazioni.}
4572
4573 \itindend{prefaulting}
4574
4575 Per i vantaggi illustrati all'inizio del paragrafo l'interfaccia del
4576 \textit{memory mapped I/O} viene usata da una grande varietà di programmi,
4577 spesso con esigenze molto diverse fra di loro riguardo le modalità con cui
4578 verranno eseguiti gli accessi ad un file; è ad esempio molto comune per i
4579 database effettuare accessi ai dati in maniera pressoché casuale, mentre un
4580 riproduttore audio o video eseguirà per lo più letture sequenziali.
4581
4582 \itindend{memory~mapping}
4583
4584 Per migliorare le prestazioni a seconda di queste modalità di accesso è
4585 disponibile una apposita funzione, \funcd{madvise},\footnote{tratteremo in
4586   sez.~\ref{sec:file_fadvise} le funzioni che consentono di ottimizzare
4587   l'accesso ai file con l'interfaccia classica.} che consente di fornire al
4588 kernel delle indicazioni su come un processo intende accedere ad un segmento
4589 di memoria, anche al di là delle mappature dei file, così che possano essere
4590 adottate le opportune strategie di ottimizzazione. Il suo prototipo è:
4591
4592 \begin{funcproto}{
4593 \fhead{sys/mman.h}
4594 \fdecl{int madvise(void *start, size\_t length, int advice)}
4595 \fdesc{Fornisce indicazioni sull'uso previsto di un segmento di memoria.} 
4596 }
4597
4598 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
4599   caso \var{errno} assumerà uno dei valori: 
4600   \begin{errlist}
4601     \item[\errcode{EBADF}] la mappatura esiste ma non corrisponde ad un file.
4602     \item[\errcode{EINVAL}] \param{start} non è allineato alla dimensione di
4603       una pagina, \param{length} ha un valore negativo, o \param{advice} non è
4604       un valore valido, o si è richiesto il rilascio (con
4605       \const{MADV\_DONTNEED}) di pagine bloccate o condivise o si è usato
4606       \const{MADV\_MERGEABLE} o \const{MADV\_UNMERGEABLE} ma il kernel non è
4607       stato compilato per il relativo supporto.
4608     \item[\errcode{EIO}] la paginazione richiesta eccederebbe i limiti (vedi
4609       sez.~\ref{sec:sys_resource_limit}) sulle pagine residenti in memoria del
4610       processo (solo in caso di \const{MADV\_WILLNEED}).
4611     \item[\errcode{ENOMEM}] gli indirizzi specificati non sono mappati, o, in
4612       caso \const{MADV\_WILLNEED}, non c'è sufficiente memoria per soddisfare
4613       la richiesta.
4614   \end{errlist}
4615   ed inoltre \errval{EAGAIN} e \errval{ENOSYS} nel loro significato generico.}
4616 \end{funcproto}
4617
4618 La sezione di memoria sulla quale si intendono fornire le indicazioni deve
4619 essere indicata con l'indirizzo iniziale \param{start} e l'estensione
4620 \param{length}, il valore di \param{start} deve essere allineato,
4621 mentre \param{length} deve essere un numero positivo; la versione di Linux
4622 consente anche un valore nullo per \param{length}, inoltre se una parte
4623 dell'intervallo non è mappato in memoria l'indicazione viene comunque
4624 applicata alle restanti parti, anche se la funzione ritorna un errore di
4625 \errval{ENOMEM}.
4626
4627 L'indicazione viene espressa dall'argomento \param{advice} che deve essere
4628 specificato con uno dei valori riportati in
4629 tab.~\ref{tab:madvise_advice_values}; si tenga presente che i valori indicati
4630 nella seconda parte della tabella sono specifici di Linux e non sono previsti
4631 dallo standard POSIX.1b.  La funzione non ha, tranne il caso di
4632 \const{MADV\_DONTFORK}, nessun effetto sul comportamento di un programma, ma
4633 può influenzarne le prestazioni fornendo al kernel indicazioni sulle esigenze
4634 dello stesso, così che sia possibile scegliere le opportune strategie per la
4635 gestione del \textit{read-ahead} (vedi sez.~\ref{sec:file_fadvise}) e del
4636 caching dei dati.
4637
4638 \begin{table}[!htb]
4639   \centering
4640   \footnotesize
4641   \begin{tabular}[c]{|l|p{10 cm}|}
4642     \hline
4643     \textbf{Valore} & \textbf{Significato} \\
4644     \hline
4645     \hline
4646     \constd{MADV\_DONTNEED}& non ci si aspetta nessun accesso nell'immediato
4647                              futuro, pertanto le pagine possono essere
4648                              liberate dal kernel non appena necessario; l'area
4649                              di memoria resterà accessibile, ma un accesso
4650                              richiederà che i dati vengano ricaricati dal file
4651                              a cui la mappatura fa riferimento.\\
4652     \constd{MADV\_NORMAL}  & nessuna indicazione specifica, questo è il valore
4653                              di default usato quando non si è chiamato
4654                              \func{madvise}.\\
4655     \constd{MADV\_RANDOM}  & ci si aspetta un accesso casuale all'area
4656                              indicata, pertanto l'applicazione di una lettura
4657                              anticipata con il meccanismo del
4658                              \textit{read-ahead} (vedi 
4659                              sez.~\ref{sec:file_fadvise}) è di
4660                              scarsa utilità e verrà disabilitata.\\
4661     \constd{MADV\_SEQUENTIAL}& ci si aspetta un accesso sequenziale al file,
4662                                quindi da una parte sarà opportuno eseguire una
4663                                lettura anticipata, e dall'altra si potranno
4664                                scartare immediatamente le pagine una volta che
4665                                queste siano state lette.\\
4666     \const{MADV\_WILLNEED}& ci si aspetta un accesso nell'immediato futuro,
4667                             pertanto l'applicazione del \textit{read-ahead}
4668                             deve essere incentivata.\\
4669     \hline
4670     \constd{MADV\_DONTDUMP}& esclude da un \textit{core dump} (vedi
4671                              sez.~\ref{sec:sig_standard}) le pagine 
4672                              specificate, viene usato per evitare di scrivere
4673                              su disco dati relativi a zone di memoria che si sa
4674                              non essere utili in un \textit{core dump}.\\
4675     \constd{MADV\_DODUMP}  & rimuove l'effetto della precedente
4676                              \const{MADV\_DONTDUMP} (dal kernel 3.4).\\ 
4677     \constd{MADV\_DONTFORK}& impedisce che l'intervallo specificato venga
4678                              ereditato dal processo figlio dopo una
4679                              \func{fork}; questo consente di evitare che il
4680                              meccanismo del \textit{copy on write} effettui la
4681                              rilocazione delle pagine quando il padre scrive
4682                              sull'area di memoria dopo la \func{fork}, cosa che
4683                              può causare problemi per l'hardware che esegue
4684                              operazioni in DMA su quelle pagine (dal kernel
4685                              2.6.16).\\
4686     \constd{MADV\_DOFORK}  & rimuove l'effetto della precedente
4687                              \const{MADV\_DONTFORK} (dal kernel 2.6.16).\\ 
4688     \constd{MADV\_HUGEPAGE}& abilita il meccanismo delle \textit{Transparent
4689                              Huge Page} (vedi sez.~\ref{sec:huge_pages})
4690                              sulla regione indicata; se questa è allineata
4691                              alle relative dimensioni il kernel alloca
4692                              direttamente delle \textit{huge page}; è
4693                              utilizzabile solo con mappature anomime private
4694                              (dal kernel 2.6.38).\\
4695     \constd{MADV\_NOHUGEPAGE}& impedisce che la regione indicata venga
4696                                collassata in eventuali \textit{huge page} (dal
4697                                kernel 2.6.38).\\
4698     \constd{MADV\_HWPOISON} &opzione ad uso di debug per verificare codice
4699                               che debba gestire errori nella gestione della
4700                               memoria; richiede una apposita opzione di
4701                               compilazione del kernel, privilegi amministrativi
4702                               (la capacità \const{CAP\_SYS\_ADMIN}) e provoca
4703                               l'emissione di un segnale di \const{SIGBUS} dal
4704                               programma chiamante e rimozione della mappatura
4705                               (dal kernel 2.6.32).\\
4706     \constd{MADV\_SOFT\_OFFLINE}&opzione utilizzata per il debug del
4707                               codice di verifica degli errori di gestione
4708                               memoria, richiede una apposita opzione di
4709                               compilazione (dal kernel 2.6.33).\\
4710     \constd{MADV\_MERGEABLE}& marca la pagina come accorpabile, indicazione
4711                               principalmente ad uso dei sistemi di
4712                               virtualizzazione\footnotemark (dal kernel
4713                               2.6.32).\\ 
4714     \constd{MADV\_REMOVE}  & libera un intervallo di pagine di memoria ed il
4715                              relativo supporto sottostante; è supportato
4716                              soltanto sui filesystem in RAM \textit{tmpfs} e
4717                              \textit{shmfs} se usato su altri tipi di
4718                              filesystem causa un errore di \errcode{ENOSYS}
4719                              (dal kernel 2.6.16).\\
4720     \constd{MADV\_UNMERGEABLE}& rimuove l'effetto della precedente
4721                                 \const{MADV\_MERGEABLE} (dal kernel 2.6.32). \\
4722     \hline
4723   \end{tabular}
4724   \caption{Valori dell'argomento \param{advice} di \func{madvise}.}
4725   \label{tab:madvise_advice_values}
4726 \end{table}
4727
4728 % TODO aggiunta MADV_FREE dal kernel 4.5 (vedi http://lwn.net/Articles/590991/)
4729 % TODO aggiunta MADV_WIPEONFORK dal kernel 4.14 that causes the affected memory
4730 % region to appear to be full of zeros in the child process after a fork. It
4731 % differs from the existing MADV_DONTFORK in that the address range will
4732 % remain valid in the child (dalla notizia in
4733 % https://lwn.net/Articles/733256/).
4734 % TODO aggiunte MADV_COLD e MADV_PAGEOUT dal kernel 5.4, vedi
4735 % https://git.kernel.org/linus/9c276cc65a58 e
4736 % https://git.kernel.org/linus/1a4e58cce84e 
4737
4738 \footnotetext{a partire dal kernel 2.6.32 è stato introdotto un meccanismo che
4739   identifica pagine di memoria identiche e le accorpa in una unica pagina
4740   (soggetta al \textit{copy-on-write} per successive modifiche); per evitare
4741   di controllare tutte le pagine solo quelle marcate con questo flag vengono
4742   prese in considerazione per l'accorpamento; in questo modo si possono
4743   migliorare le prestazioni nella gestione delle macchine virtuali diminuendo
4744   la loro occupazione di memoria, ma il meccanismo può essere usato anche in
4745   altre applicazioni in cui sian presenti numerosi processi che usano gli
4746   stessi dati; per maggiori dettagli si veda
4747   \href{http://kernelnewbies.org/Linux_2_6_32\#head-d3f32e41df508090810388a57efce73f52660ccb}{\texttt{http://kernelnewbies.org/Linux\_2\_6\_32}}
4748   e la documentazione nei sorgenti del kernel
4749   (\texttt{Documentation/vm/ksm.txt}).} 
4750
4751
4752 A differenza da quanto specificato nello standard POSIX.1b, per il quale l'uso
4753 di \func{madvise} è a scopo puramente indicativo, Linux considera queste
4754 richieste come imperative, per cui ritorna un errore qualora non possa
4755 soddisfarle; questo comportamento differisce da quanto specificato nello
4756 standard.
4757
4758 Nello standard POSIX.1-2001 è prevista una ulteriore funzione
4759 \funcd{posix\_madvise} che su Linux viene reimplementata utilizzando
4760 \func{madvise}; il suo prototipo è:
4761
4762 \begin{funcproto}{
4763 \fhead{sys/mman.h}
4764 \fdecl{int posix\_madvise(void *start, size\_t lenght, int advice)}
4765 \fdesc{Fornisce indicazioni sull'uso previsto di un segmento di memoria.} 
4766 }
4767
4768 {La funzione ritorna $0$ in caso di successo ed un valore positivo per un
4769   errore, nel qual caso \var{errno} assumerà uno dei valori:
4770   \begin{errlist}
4771     \item[\errcode{EINVAL}] \param{start} non è allineato alla dimensione di
4772       una pagina, \param{length} ha un valore negativo, o \param{advice} non è
4773       un valore valido.
4774     \item[\errcode{ENOMEM}] gli indirizzi specificati non sono nello spazio di
4775       indirizzi del processo.
4776   \end{errlist}
4777 }
4778 \end{funcproto}
4779
4780 Gli argomenti \param{start} e \param{lenght} hanno lo stesso identico
4781 significato degli analoghi di \func{madvise}, a cui si rimanda per la loro
4782 descrizione ma a differenza di quanto indicato dallo standard per questa
4783 funzione, su Linux un valore nullo di \param{len} è consentito.
4784
4785 \begin{table}[!htb]
4786   \centering
4787   \footnotesize
4788   \begin{tabular}[c]{|l|l|}
4789     \hline
4790     \textbf{Valore} & \textbf{Significato} \\
4791     \hline
4792     \hline
4793     \constd{POSIX\_MADV\_DONTNEED}& analogo a \const{MADV\_DONTNEED}.\\
4794     \constd{POSIX\_MADV\_NORMAL}  & identico a \const{MADV\_NORMAL}.\\
4795     \constd{POSIX\_MADV\_RANDOM}  & identico a \const{MADV\_RANDOM}.\\
4796     \constd{POSIX\_MADV\_SEQUENTIAL}& identico a \const{MADV\_SEQUENTIAL}.\\
4797     \constd{POSIX\_MADV\_WILLNEED}& identico a \const{MADV\_WILLNEED}.\\
4798      \hline
4799   \end{tabular}
4800   \caption{Valori dell'argomento \param{advice} di \func{posix\_madvise}.}
4801   \label{tab:posix_madvise_advice_values}
4802 \end{table}
4803
4804
4805 L'argomento \param{advice} invece può assumere solo i valori indicati in
4806 tab.~\ref{tab:posix_madvise_advice_values}, che riflettono gli analoghi di
4807 \func{madvise}, con lo stesso effetto per tutti tranne
4808 \const{POSIX\_MADV\_DONTNEED}.  Infatti a partire dalla \acr{glibc} 2.6
4809 \const{POSIX\_MADV\_DONTNEED} viene ignorato, in quanto l'uso del
4810 corrispondente \const{MADV\_DONTNEED} di \func{madvise} ha, per la semantica
4811 imperativa, l'effetto immediato di far liberare le pagine da parte del kernel,
4812 che viene considerato distruttivo.
4813
4814
4815
4816 \subsection{I/O vettorizzato: \func{readv} e \func{writev}}
4817 \label{sec:file_multiple_io}
4818
4819 Una seconda modalità di I/O diversa da quella ordinaria è il cosiddetto
4820 \textsl{I/O vettorizzato}, che nasce per rispondere al caso abbastanza comune
4821 in cui ci si trova nell'esigenza di dover eseguire una serie multipla di
4822 operazioni di I/O, come una serie di letture o scritture di vari buffer. Un
4823 esempio tipico è quando i dati sono strutturati nei campi di una struttura ed
4824 essi devono essere caricati o salvati su un file.  Benché l'operazione sia
4825 facilmente eseguibile attraverso una serie multipla di chiamate a \func{read}
4826 e \func{write}, ci sono casi in cui si vuole poter contare sulla atomicità
4827 delle operazioni di lettura e scrittura rispetto all'esecuzione del programma.
4828
4829 Per questo motivo fino da BSD 4.2 vennero introdotte delle nuove
4830 \textit{system call} che permettessero di effettuare con una sola chiamata una
4831 serie di letture da, o scritture su, una serie di buffer, quello che poi venne
4832 chiamato \textsl{I/O vettorizzato}. Queste funzioni di sistema sono
4833 \funcd{readv} e \funcd{writev},\footnote{in Linux le due funzioni sono riprese
4834   da BSD4.4, esse sono previste anche dallo standard POSIX.1-2001.} ed i
4835 relativi prototipi sono:
4836
4837
4838 \begin{funcproto}{
4839 \fhead{sys/uio.h}
4840 \fdecl{int readv(int fd, const struct iovec *vector, int count)}
4841 \fdecl{int writev(int fd, const struct iovec *vector, int count)}
4842 \fdesc{Eseguono rispettivamente una lettura o una scrittura vettorizzata.} 
4843 }
4844
4845 {Le funzioni ritornano il numero di byte letti o scritti in caso di successo e
4846   $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei valori:
4847   \begin{errlist}
4848     \item[\errcode{EINVAL}] si è specificato un valore non valido per uno degli
4849     argomenti (ad esempio \param{count} è maggiore di \const{IOV\_MAX}).
4850   \end{errlist}
4851   più tutti i valori, con lo stesso significato, che possono risultare
4852   dalle condizioni di errore di \func{read} e \func{write}.
4853  }
4854 \end{funcproto}
4855
4856
4857 Entrambe le funzioni usano una struttura \struct{iovec}, la cui definizione è
4858 riportata in fig.~\ref{fig:file_iovec}, che definisce dove i dati devono
4859 essere letti o scritti ed in che quantità. Il primo campo della struttura,
4860 \var{iov\_base}, contiene l'indirizzo del buffer ed il secondo,
4861 \var{iov\_len}, la dimensione dello stesso.
4862
4863 \begin{figure}[!htb]
4864   \footnotesize \centering
4865   \begin{minipage}[c]{\textwidth}
4866     \includestruct{listati/iovec.h}
4867   \end{minipage} 
4868   \normalsize 
4869   \caption{La struttura \structd{iovec}, usata dalle operazioni di I/O
4870     vettorizzato.} 
4871   \label{fig:file_iovec}
4872 \end{figure}
4873
4874 La lista dei buffer da utilizzare viene indicata attraverso l'argomento
4875 \param{vector} che è un vettore di strutture \struct{iovec}, la cui lunghezza
4876 è specificata dall'argomento \param{count}.\footnote{fino alle libc5, Linux
4877   usava \type{size\_t} come tipo dell'argomento \param{count}, una scelta
4878   logica, che però è stata dismessa per restare aderenti allo standard
4879   POSIX.1-2001.}  Ciascuna struttura dovrà essere inizializzata opportunamente
4880 per indicare i vari buffer da e verso i quali verrà eseguito il trasferimento
4881 dei dati. Essi verranno letti (o scritti) nell'ordine in cui li si sono
4882 specificati nel vettore \param{vector}.
4883
4884 La standardizzazione delle due funzioni all'interno della revisione
4885 POSIX.1-2001 prevede anche che sia possibile avere un limite al numero di
4886 elementi del vettore \param{vector}. Qualora questo sussista, esso deve essere
4887 indicato dal valore dalla costante \const{IOV\_MAX}, definita come le altre
4888 costanti analoghe (vedi sez.~\ref{sec:sys_limits}) in \headfile{limits.h}; lo
4889 stesso valore deve essere ottenibile in esecuzione tramite la funzione
4890 \func{sysconf} richiedendo l'argomento \const{\_SC\_IOV\_MAX} (vedi
4891 sez.~\ref{sec:sys_limits}).
4892
4893 Nel caso di Linux il limite di sistema è di 1024, però se si usa la
4894 \acr{glibc} essa fornisce un \textit{wrapper} per le \textit{system call}
4895 che si accorge se una operazione supererà il precedente limite, in tal caso i
4896 dati verranno letti o scritti con le usuali \func{read} e \func{write} usando
4897 un buffer di dimensioni sufficienti appositamente allocato in grado di
4898 contenere tutti i dati indicati da \param{vector}. L'operazione avrà successo
4899 ma si perderà l'atomicità del trasferimento da e verso la destinazione finale.
4900
4901 Si tenga presente infine che queste funzioni operano sui file con
4902 l'interfaccia dei file descriptor, e non è consigliabile mescolarle con
4903 l'interfaccia classica dei \textit{file stream} di
4904 sez.~\ref{sec:files_std_interface}; a causa delle bufferizzazioni interne di
4905 quest'ultima infatti si potrebbero avere risultati indefiniti e non
4906 corrispondenti a quanto aspettato.
4907
4908 Come per le normali operazioni di lettura e scrittura, anche per l'\textsl{I/O
4909   vettorizzato} si pone il problema di poter effettuare le operazioni in
4910 maniera atomica a partire da un certa posizione sul file. Per questo motivo a
4911 partire dal kernel 2.6.30 sono state introdotte anche per l'\textsl{I/O
4912   vettorizzato} le analoghe delle funzioni \func{pread} e \func{pwrite} (vedi
4913 sez.~\ref{sec:file_read} e \ref{sec:file_write}); le due funzioni sono
4914 \funcd{preadv} e \funcd{pwritev} ed i rispettivi prototipi sono:\footnote{le
4915   due funzioni sono analoghe alle omonime presenti in BSD; le \textit{system
4916     call} usate da Linux (introdotte a partire dalla versione 2.6.30)
4917   utilizzano degli argomenti diversi per problemi collegati al formato a 64
4918   bit dell'argomento \param{offset}, che varia a seconda delle architetture,
4919   ma queste differenze vengono gestite dalle funzioni di librerie di libreria
4920   che mantengono l'interfaccia delle analoghe tratte da BSD.}
4921
4922
4923 \begin{funcproto}{
4924 \fhead{sys/uio.h}
4925 \fdecl{int preadv(int fd, const struct iovec *vector, int count, off\_t
4926     offset)}
4927 \fdecl{int pwritev(int fd, const struct iovec *vector, int count, off\_t
4928     offset)}
4929 \fdesc{Eseguono una lettura o una scrittura vettorizzata a partire da una data
4930   posizione sul file.} 
4931 }
4932
4933 { Le funzioni hanno gli stessi valori di ritorno delle corrispondenti
4934   \func{readv} e \func{writev} ed anche gli eventuali errori sono gli stessi,
4935   con in più quelli che si possono ottenere dalle possibili condizioni di
4936   errore di \func{lseek}.
4937 }
4938 \end{funcproto}
4939
4940 Le due funzioni eseguono rispettivamente una lettura o una scrittura
4941 vettorizzata a partire dalla posizione \param{offset} sul file indicato
4942 da \param{fd}, la posizione corrente sul file, come vista da eventuali altri
4943 processi che vi facciano riferimento, non viene alterata. A parte la presenza
4944 dell'ulteriore argomento il comportamento delle funzioni è identico alle
4945 precedenti \func{readv} e \func{writev}. 
4946
4947 Con l'uso di queste funzioni si possono evitare eventuali \textit{race
4948   condition} quando si deve eseguire la una operazione di lettura e scrittura
4949 vettorizzata a partire da una certa posizione su un file, mentre al contempo
4950 si possono avere in concorrenza processi che utilizzano lo stesso file
4951 descriptor (si ricordi quanto visto in sez.~\ref{sec:file_adv_func}) con delle
4952 chiamate a \func{lseek}.
4953
4954 % TODO trattare preadv2() e pwritev2(), introdotte con il kernel 4.6, vedi
4955 % http://lwn.net/Articles/670231/ ed il flag RWF_HIPRI, anche l'aggiunta del
4956 % flag RWF_APPEND a pwritev2 con il kernel 4.16, vedi
4957 % https://lwn.net/Articles/746129/ 
4958
4959
4960 \subsection{L'I/O diretto fra file descriptor: \func{sendfile} e
4961   \func{splice}} 
4962 \label{sec:file_sendfile_splice}
4963
4964 Uno dei problemi che si presentano nella gestione dell'I/O è quello in cui si
4965 devono trasferire grandi quantità di dati da un file descriptor ed un altro;
4966 questo usualmente comporta la lettura dei dati dal primo file descriptor in un
4967 buffer in memoria, da cui essi vengono poi scritti sul secondo.
4968
4969 Benché il kernel ottimizzi la gestione di questo processo quando si ha a che
4970 fare con file normali, in generale quando i dati da trasferire sono molti si
4971 pone il problema di effettuare trasferimenti di grandi quantità di dati da
4972 \textit{kernel space} a \textit{user space} e all'indietro, quando in realtà
4973 potrebbe essere più efficiente mantenere tutto in \textit{kernel
4974   space}. Tratteremo in questa sezione alcune funzioni specialistiche che
4975 permettono di ottimizzare le prestazioni in questo tipo di situazioni.
4976
4977 La prima funzione che è stata ideata per ottimizzare il trasferimento dei dati
4978 fra due file descriptor è \func{sendfile}.\footnote{la funzione è stata
4979   introdotta con i kernel della serie 2.2, e disponibile dalla \acr{glibc}
4980   2.1.} La funzione è presente in diverse versioni di Unix (la si ritrova ad
4981 esempio in FreeBSD, HPUX ed altri Unix) ma non è presente né in POSIX.1-2001
4982 né in altri standard (pertanto si eviti di utilizzarla se si devono scrivere
4983 programmi portabili) per cui per essa vengono utilizzati prototipi e
4984 semantiche differenti. Nel caso di Linux il prototipo di \funcd{sendfile} è:
4985
4986
4987 \begin{funcproto}{
4988 \fhead{sys/sendfile.h}
4989 \fdecl{ssize\_t sendfile(int out\_fd, int in\_fd, off\_t *offset, size\_t
4990     count)}
4991 \fdesc{Copia dei dati da un file descriptor ad un altro.} 
4992 }
4993
4994 {La funzione ritorna il numero di byte trasferiti in caso di successo e $-1$
4995   per un errore, nel qual caso \var{errno} assumerà uno dei valori:
4996   \begin{errlist}
4997     \item[\errcode{EAGAIN}] si è impostata la modalità non bloccante su
4998       \param{out\_fd} e la scrittura si bloccherebbe.
4999     \item[\errcode{EINVAL}] i file descriptor non sono validi, o sono bloccati
5000       (vedi sez.~\ref{sec:file_locking}), o \func{mmap} non è disponibile per
5001       \param{in\_fd}.
5002     \item[\errcode{EIO}] si è avuto un errore di lettura da \param{in\_fd}.
5003     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per la lettura da
5004       \param{in\_fd}.
5005   \end{errlist}
5006   ed inoltre \errcode{EBADF} e \errcode{EFAULT} nel loro significato
5007   generico.}
5008 \end{funcproto}
5009
5010 La funzione copia direttamente \param{count} byte dal file descriptor
5011 \param{in\_fd} al file descriptor \param{out\_fd}. In caso di successo la
5012 funzione ritorna il numero di byte effettivamente copiati da \param{in\_fd} a
5013 \param{out\_fd} e come per le ordinarie \func{read} e \func{write} questo
5014 valore può essere inferiore a quanto richiesto con \param{count}.
5015
5016 Se il puntatore \param{offset} è nullo la funzione legge i dati a partire
5017 dalla posizione corrente su \param{in\_fd}, altrimenti verrà usata la
5018 posizione indicata dal valore puntato da \param{offset}; in questo caso detto
5019 valore sarà aggiornato, come \textit{value result argument}, per indicare la
5020 posizione del byte successivo all'ultimo che è stato letto, mentre la
5021 posizione corrente sul file non sarà modificata. Se invece \param{offset} è
5022 nullo la posizione corrente sul file sarà aggiornata tenendo conto dei byte
5023 letti da \param{in\_fd}.
5024
5025 Fino ai kernel della serie 2.4 la funzione era utilizzabile su un qualunque
5026 file descriptor, e permetteva di sostituire la invocazione successiva di una
5027 \func{read} e una \func{write} (e l'allocazione del relativo buffer) con una
5028 sola chiamata a \funcd{sendfile}. In questo modo si poteva diminuire il numero
5029 di chiamate al sistema e risparmiare in trasferimenti di dati da
5030 \textit{kernel space} a \textit{user space} e viceversa.  La massima utilità
5031 della funzione si ottiene comunque per il trasferimento di dati da un file su
5032 disco ad un socket di rete,\footnote{questo è il caso classico del lavoro
5033   eseguito da un server web, ed infatti Apache ha una opzione per il supporto
5034   esplicito di questa funzione.} dato che in questo caso diventa possibile
5035 effettuare il trasferimento diretto via DMA dal controller del disco alla
5036 scheda di rete, senza neanche allocare un buffer nel kernel (il meccanismo è
5037 detto \textit{zerocopy} in quanto i dati non vengono mai copiati dal kernel,
5038 che si limita a programmare solo le operazioni di lettura e scrittura via DMA)
5039 ottenendo la massima efficienza possibile senza pesare neanche sul processore.
5040
5041 In seguito però ci si accorse che, fatta eccezione per il trasferimento
5042 diretto da file a socket, non sempre \func{sendfile} comportava miglioramenti
5043 significativi delle prestazioni rispetto all'uso in sequenza di \func{read} e
5044 \func{write}. Nel caso generico infatti il kernel deve comunque allocare un
5045 buffer ed effettuare la copia dei dati, e in tal caso spesso il guadagno
5046 ottenibile nel ridurre il numero di chiamate al sistema non compensa le
5047 ottimizzazioni che possono essere fatte da una applicazione in \textit{user
5048   space} che ha una conoscenza diretta su come questi sono strutturati, per
5049 cui in certi casi si potevano avere anche dei peggioramenti.  Questo ha
5050 portato, per i kernel della serie 2.6,\footnote{per alcune motivazioni di
5051   questa scelta si può fare riferimento a quanto illustrato da Linus Torvalds
5052   in \url{http://www.cs.helsinki.fi/linux/linux-kernel/2001-03/0200.html}.}
5053 alla decisione di consentire l'uso della funzione soltanto quando il file da
5054 cui si legge supporta le operazioni di \textit{memory mapping} (vale a dire
5055 non è un socket) e quello su cui si scrive è un socket; in tutti gli altri
5056 casi l'uso di \func{sendfile} da luogo ad un errore di \errcode{EINVAL}.
5057
5058 Nonostante ci possano essere casi in cui \func{sendfile} non migliora le
5059 prestazioni, resta il dubbio se la scelta di disabilitarla sempre per il
5060 trasferimento fra file di dati sia davvero corretta. Se ci sono peggioramenti
5061 di prestazioni infatti si può sempre fare ricorso al metodo ordinario, ma
5062 lasciare a disposizione la funzione consentirebbe se non altro di semplificare
5063 la gestione della copia dei dati fra file, evitando di dover gestire
5064 l'allocazione di un buffer temporaneo per il loro trasferimento. Comunque a
5065 partire dal kernel 2.6.33 la restrizione su \param{out\_fd} è stata rimossa e
5066 questo può essere un file qualunque, rimane però quella di non poter usare un
5067 socket per \param{in\_fd}.
5068
5069 A partire dal kernel 2.6.17 come alternativa a \func{sendfile} è disponibile
5070 la nuova \textit{system call} \func{splice}. Lo scopo di questa funzione è
5071 quello di fornire un meccanismo generico per il trasferimento di dati da o
5072 verso un file, utilizzando un buffer gestito internamente dal
5073 kernel. Descritta in questi termini \func{splice} sembra semplicemente un
5074 ``\textsl{dimezzamento}'' di \func{sendfile}, nel senso che un trasferimento
5075 di dati fra due file con \func{sendfile} non sarebbe altro che la lettura
5076 degli stessi su un buffer seguita dalla relativa scrittura, cosa che in questo
5077 caso si dovrebbe eseguire con due chiamate a \func{splice}.
5078
5079 In realtà le due \textit{system call} sono profondamente diverse nel loro
5080 meccanismo di funzionamento;\footnote{questo fino al kernel 2.6.23, dove
5081   \func{sendfile} è stata reimplementata in termini di \func{splice}, pur
5082   mantenendo disponibile la stessa interfaccia verso l'\textit{user space}.}
5083 \func{sendfile} infatti, come accennato, non necessita di avere a disposizione
5084 un buffer interno, perché esegue un trasferimento diretto di dati; questo la
5085 rende in generale più efficiente, ma anche limitata nelle sue applicazioni,
5086 dato che questo tipo di trasferimento è possibile solo in casi specifici che
5087 nel caso di Linux questi sono anche solo quelli in cui essa può essere
5088 effettivamente utilizzata.
5089
5090 Il concetto che sta dietro a \func{splice} invece è diverso,\footnote{in
5091   realtà la proposta originale di Larry Mc Voy non differisce poi tanto negli
5092   scopi da \func{sendfile}, quello che rende \func{splice} davvero diversa è
5093   stata la reinterpretazione che ne è stata fatta nell'implementazione su
5094   Linux realizzata da Jens Anxboe, concetti che sono esposti sinteticamente
5095   dallo stesso Linus Torvalds in \url{http://kerneltrap.org/node/6505}.} si
5096 tratta semplicemente di una funzione che consente di fare in maniera del tutto
5097 generica delle operazioni di trasferimento di dati fra un file e un buffer
5098 gestito interamente in \textit{kernel space}. In questo caso il cuore della
5099 funzione (e delle affini \func{vmsplice} e \func{tee}, che tratteremo più
5100 avanti) è appunto l'uso di un buffer in \textit{kernel space}, e questo è
5101 anche quello che ne ha semplificato l'adozione, perché l'infrastruttura per la
5102 gestione di un tale buffer è presente fin dagli albori di Unix per la
5103 realizzazione delle \textit{pipe} (vedi sez.~\ref{sec:ipc_unix}). Dal punto di
5104 vista concettuale allora \func{splice} non è altro che una diversa interfaccia
5105 (rispetto alle \textit{pipe}) con cui utilizzare in \textit{user space}
5106 l'oggetto ``\textsl{buffer in kernel space}''.
5107
5108 Così se per una \textit{pipe} o una \textit{fifo} il buffer viene utilizzato
5109 come area di memoria (vedi fig.~\ref{fig:ipc_pipe_singular}) dove appoggiare i
5110 dati che vengono trasferiti da un capo all'altro della stessa per creare un
5111 meccanismo di comunicazione fra processi, nel caso di \func{splice} il buffer
5112 viene usato o come fonte dei dati che saranno scritti su un file, o come
5113 destinazione dei dati che vengono letti da un file. La funzione fornisce
5114 quindi una interfaccia generica che consente di trasferire dati da un buffer
5115 ad un file o viceversa; il prototipo di \funcd{splice}, accessibile solo dopo
5116 aver definito la macro \macro{\_GNU\_SOURCE},\footnote{si ricordi che questa
5117   funzione non è contemplata da nessuno standard, è presente solo su Linux, e
5118   pertanto deve essere evitata se si vogliono scrivere programmi portabili.}
5119 è il seguente:
5120
5121 \begin{funcproto}{
5122 \fhead{fcntl.h} 
5123 \fdecl{long splice(int fd\_in, off\_t *off\_in, int fd\_out, off\_t
5124     *off\_out, size\_t len, \\
5125 \phantom{long splice(}unsigned int flags)}
5126 \fdesc{Trasferisce dati da un file verso una \textit{pipe} o viceversa.} 
5127 }
5128
5129 {La funzione ritorna il numero di byte trasferiti in caso di successo e $-1$
5130   per un errore, nel qual caso \var{errno} assumerà uno dei valori:
5131   \begin{errlist}
5132     \item[\errcode{EBADF}] uno o entrambi fra \param{fd\_in} e \param{fd\_out}
5133       non sono file descriptor validi o, rispettivamente, non sono stati
5134       aperti in lettura o scrittura.
5135     \item[\errcode{EINVAL}] il filesystem su cui si opera non supporta
5136       \func{splice}, oppure nessuno dei file descriptor è una \textit{pipe},
5137       oppure si 
5138       è dato un valore a \param{off\_in} o \param{off\_out} ma il
5139       corrispondente file è un dispositivo che non supporta la funzione
5140       \func{lseek}.
5141     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
5142       richiesta.
5143     \item[\errcode{ESPIPE}] o \param{off\_in} o \param{off\_out} non sono
5144       \val{NULL} ma il corrispondente file descriptor è una \textit{pipe}.
5145   \end{errlist}
5146 }
5147 \end{funcproto}
5148
5149
5150 La funzione esegue un trasferimento di \param{len} byte dal file descriptor
5151 \param{fd\_in} al file descriptor \param{fd\_out}, uno dei quali deve essere
5152 una \textit{pipe}; l'altro file descriptor può essere qualunque, questo
5153 significa che può essere, oltre che un file di dati, anche un altra
5154 \textit{pipe}, o un socket.  Come accennato una \textit{pipe} non è altro che
5155 un buffer in \textit{kernel space}, per cui a seconda che essa sia usata
5156 per \param{fd\_in} o \param{fd\_out} si avrà rispettivamente la copia dei dati
5157 dal buffer al file o viceversa.
5158
5159 In caso di successo la funzione ritorna il numero di byte trasferiti, che può
5160 essere, come per le normali funzioni di lettura e scrittura su file, inferiore
5161 a quelli richiesti; un valore negativo indicherà un errore mentre un valore
5162 nullo indicherà che non ci sono dati da trasferire (ad esempio si è giunti
5163 alla fine del file in lettura). Si tenga presente che, a seconda del verso del
5164 trasferimento dei dati, la funzione si comporta nei confronti del file
5165 descriptor che fa riferimento al file ordinario, come \func{read} o
5166 \func{write}, e pertanto potrà anche bloccarsi (a meno che non si sia aperto
5167 il suddetto file in modalità non bloccante).
5168
5169 I due argomenti \param{off\_in} e \param{off\_out} consentono di specificare,
5170 come per l'analogo \param{offset} di \func{sendfile}, la posizione all'interno
5171 del file da cui partire per il trasferimento dei dati. Come per
5172 \func{sendfile} un valore nullo indica di usare la posizione corrente sul
5173 file, ed essa sarà aggiornata automaticamente secondo il numero di byte
5174 trasferiti. Un valore non nullo invece deve essere un puntatore ad una
5175 variabile intera che indica la posizione da usare; questa verrà aggiornata, al
5176 ritorno della funzione, al byte successivo all'ultimo byte trasferito.
5177 Ovviamente soltanto uno di questi due argomenti, e più precisamente quello che
5178 fa riferimento al file descriptor non associato alla \textit{pipe}, può essere
5179 specificato come valore non nullo.
5180
5181 Infine l'argomento \param{flags} consente di controllare alcune
5182 caratteristiche del funzionamento della funzione; il contenuto è una maschera
5183 binaria e deve essere specificato come OR aritmetico dei valori riportati in
5184 tab.~\ref{tab:splice_flag}. Alcuni di questi valori vengono utilizzati anche
5185 dalle funzioni \func{vmsplice} e \func{tee} per cui la tabella riporta le
5186 descrizioni complete di tutti i valori possibili anche quando, come per
5187 \const{SPLICE\_F\_GIFT}, questi non hanno effetto su \func{splice}.
5188
5189 \begin{table}[htb]
5190   \centering
5191   \footnotesize
5192   \begin{tabular}[c]{|l|p{10cm}|}
5193     \hline
5194     \textbf{Valore} & \textbf{Significato} \\
5195     \hline
5196     \hline
5197     \constd{SPLICE\_F\_MOVE} & Suggerisce al kernel di spostare le pagine
5198                                di memoria contenenti i dati invece di
5199                                copiarle: per una maggiore efficienza
5200                                \func{splice} usa quando possibile i
5201                                meccanismi della memoria virtuale per
5202                                eseguire i trasferimenti di dati. In maniera
5203                                analoga a \func{mmap}), qualora le pagine non
5204                                possano essere spostate dalla \textit{pipe} o
5205                                il buffer non corrisponda a pagine intere
5206                                esse saranno comunque copiate. Viene usato
5207                                soltanto da \func{splice}.\\ 
5208     \constd{SPLICE\_F\_NONBLOCK}& Richiede di operare in modalità non
5209                                   bloccante; questo flag influisce solo sulle
5210                                   operazioni che riguardano l'I/O da e verso la
5211                                   \textit{pipe}. Nel caso di \func{splice}
5212                                   questo significa che la funzione potrà
5213                                   comunque bloccarsi nell'accesso agli altri
5214                                   file descriptor (a meno che anch'essi non
5215                                   siano stati aperti in modalità non
5216                                   bloccante).\\
5217     \constd{SPLICE\_F\_MORE} & Indica al kernel che ci sarà l'invio di
5218                                ulteriori dati in una \func{splice}
5219                                successiva, questo è un suggerimento utile
5220                                che viene usato quando \param{fd\_out} è un
5221                                socket. Questa opzione consente di utilizzare
5222                                delle opzioni di gestione dei socket che
5223                                permettono di ottimizzare le trasmissioni via
5224                                rete (si veda la descrizione di
5225                                \const{TCP\_CORK} in
5226                                sez.~\ref{sec:sock_tcp_udp_options} e quella
5227                                di \const{MSG\_MORE} in
5228                                sez.~\ref{sec:net_sendmsg}).  Attualmente
5229                                viene usato solo da \func{splice}, potrà essere
5230                                implementato in futuro anche per
5231                                \func{vmsplice} e \func{tee}.\\
5232     \constd{SPLICE\_F\_GIFT} & Le pagine di memoria utente sono
5233                                ``\textsl{donate}'' al kernel; questo
5234                                significa che la cache delle pagine e i dati
5235                                su disco potranno differire, e che
5236                                l'applicazione non potrà modificare
5237                                quest'area di memoria. 
5238                                Se impostato una seguente \func{splice} che
5239                                usa \const{SPLICE\_F\_MOVE} potrà spostare le 
5240                                pagine con successo, altrimenti esse dovranno
5241                                essere copiate; per usare questa opzione i
5242                                dati dovranno essere opportunamente allineati
5243                                in posizione ed in dimensione alle pagine di
5244                                memoria. Viene usato soltanto da
5245                                \func{vmsplice}.\\
5246     \hline
5247   \end{tabular}
5248   \caption{Le costanti che identificano i bit della maschera binaria
5249     dell'argomento \param{flags} di \func{splice}, \func{vmsplice} e
5250     \func{tee}.} 
5251   \label{tab:splice_flag}
5252 \end{table}
5253
5254
5255 Per capire meglio il funzionamento di \func{splice} vediamo un esempio con un
5256 semplice programma che usa questa funzione per effettuare la copia di un file
5257 su un altro senza utilizzare buffer in \textit{user space}. Lo scopo del
5258 programma è quello di eseguire la copia dei dati con \func{splice}, questo
5259 significa che si dovrà usare la funzione due volte, prima per leggere i dati
5260 dal file di ingresso e poi per scriverli su quello di uscita, appoggiandosi ad
5261 una \textit{pipe}: lo schema del flusso dei dati è illustrato in
5262 fig.~\ref{fig:splicecp_data_flux}.
5263
5264 \begin{figure}[htb]
5265   \centering
5266   \includegraphics[height=3.5cm]{img/splice_copy}
5267   \caption{Struttura del flusso di dati usato dal programma \texttt{splicecp}.}
5268   \label{fig:splicecp_data_flux}
5269 \end{figure}
5270
5271 Il programma si chiama \texttt{splicecp.c} ed il codice completo è disponibile
5272 coi sorgenti allegati alla guida, il corpo principale del programma, che non
5273 contiene la sezione di gestione delle opzioni, le funzioni di ausilio, le
5274 aperture dei file di ingresso e di uscita passati come argomenti e quella
5275 della \textit{pipe} intermedia, è riportato in fig.~\ref{fig:splice_example}.
5276
5277 \begin{figure}[!htb]
5278   \footnotesize \centering
5279   \begin{minipage}[c]{\codesamplewidth}
5280     \includecodesample{listati/splicecp.c}
5281   \end{minipage}
5282   \normalsize
5283   \caption{Esempio di codice che usa \func{splice} per effettuare la copia di
5284     un file.}
5285   \label{fig:splice_example}
5286 \end{figure}
5287
5288 Il ciclo principale (\texttt{\small 13-38}) inizia con la lettura dal file
5289 sorgente tramite la prima \func{splice} (\texttt{\small 14-15}), in questo
5290 caso si è usato come primo argomento il file descriptor del file sorgente e
5291 come terzo quello del capo in scrittura della \textit{pipe}. Il funzionamento
5292 delle \textit{pipe} e l'uso della coppia di file descriptor ad esse associati
5293 è trattato in dettaglio in sez.~\ref{sec:ipc_unix}; non ne parleremo qui dato
5294 che nell'ottica dell'uso di \func{splice} questa operazione corrisponde
5295 semplicemente al trasferimento dei dati dal file al buffer in \textit{kernel
5296   space}.
5297
5298 La lettura viene eseguita in blocchi pari alla dimensione specificata
5299 dall'opzione \texttt{-s} (il default è 4096); essendo in questo caso
5300 \func{splice} equivalente ad una \func{read} sul file, se ne controlla il
5301 valore di uscita in \var{nread} che indica quanti byte sono stati letti, se
5302 detto valore è nullo (\texttt{\small 16}) questo significa che si è giunti
5303 alla fine del file sorgente e pertanto l'operazione di copia è conclusa e si
5304 può uscire dal ciclo arrivando alla conclusione del programma (\texttt{\small
5305   59}). In caso di valore negativo (\texttt{\small 17-24}) c'è stato un
5306 errore ed allora si ripete la lettura (\texttt{\small 16}) se questo è dovuto
5307 ad una interruzione, o altrimenti si esce con un messaggio di errore
5308 (\texttt{\small 21-23}).
5309
5310 Una volta completata con successo la lettura si avvia il ciclo di scrittura
5311 (\texttt{\small 25-37}); questo inizia (\texttt{\small 26-27}) con la
5312 seconda \func{splice} che cerca di scrivere gli \var{nread} byte letti, si
5313 noti come in questo caso il primo argomento faccia di nuovo riferimento alla
5314 \textit{pipe} (in questo caso si usa il capo in lettura, per i dettagli si
5315 veda al solito sez.~\ref{sec:ipc_unix}) mentre il terzo sia il file descriptor
5316 del file di destinazione.
5317
5318 Di nuovo si controlla il numero di byte effettivamente scritti restituito in
5319 \var{nwrite} e in caso di errore al solito si ripete la scrittura se questo è
5320 dovuto a una interruzione o si esce con un messaggio negli altri casi
5321 (\texttt{\small 28-35}). Infine si chiude il ciclo di scrittura sottraendo
5322 (\texttt{\small 37}) il numero di byte scritti a quelli di cui è richiesta la
5323 scrittura,\footnote{in questa parte del ciclo \var{nread}, il cui valore
5324   iniziale è dato dai byte letti dalla precedente chiamata a \func{splice},
5325   viene ad assumere il significato di byte da scrivere.} così che il ciclo di
5326 scrittura venga ripetuto fintanto che il valore risultante sia maggiore di
5327 zero, indice che la chiamata a \func{splice} non ha esaurito tutti i dati
5328 presenti sul buffer.
5329
5330 Si noti come il programma sia concettualmente identico a quello che si sarebbe
5331 scritto usando \func{read} al posto della prima \func{splice} e \func{write}
5332 al posto della seconda, utilizzando un buffer in \textit{user space} per
5333 eseguire la copia dei dati, solo che in questo caso non è stato necessario
5334 allocare nessun buffer e non si è trasferito nessun dato in \textit{user
5335   space}.  Si noti anche come si sia usata la combinazione
5336 \texttt{SPLICE\_F\_MOVE | SPLICE\_F\_MORE } per l'argomento \param{flags} di
5337 \func{splice}, infatti anche se un valore nullo avrebbe dato gli stessi
5338 risultati, l'uso di questi flag, che si ricordi servono solo a dare
5339 suggerimenti al kernel, permette in genere di migliorare le prestazioni.
5340
5341 Come accennato con l'introduzione di \func{splice} sono state realizzate anche
5342 altre due \textit{system call}, \func{vmsplice} e \func{tee}, che utilizzano
5343 la stessa infrastruttura e si basano sullo stesso concetto di manipolazione e
5344 trasferimento di dati attraverso un buffer in \textit{kernel space}; benché
5345 queste non attengono strettamente ad operazioni di trasferimento dati fra file
5346 descriptor, le tratteremo qui, essendo strettamente correlate fra loro.
5347
5348 La prima funzione, \funcd{vmsplice}, è la più simile a \func{splice} e come
5349 indica il suo nome consente di trasferire i dati dalla memoria virtuale di un
5350 processo (ad esempio per un file mappato in memoria) verso una \textit{pipe};
5351 il suo prototipo è:
5352
5353 \begin{funcproto}{
5354 \fhead{fcntl.h} 
5355 \fhead{sys/uio.h}
5356 \fdecl{long vmsplice(int fd, const struct iovec *iov, unsigned long nr\_segs,\\
5357 \phantom{long vmsplice(}unsigned int flags)}
5358 \fdesc{Trasferisce dati dalla memoria di un processo verso una \textit{pipe}.} 
5359 }
5360
5361 {La funzione ritorna il numero di byte trasferiti in caso di successo e $-1$
5362   per un errore, nel qual caso \var{errno} assumerà uno dei valori:
5363   \begin{errlist}
5364     \item[\errcode{EBADF}] o \param{fd} non è un file descriptor valido o non
5365       fa riferimento ad una \textit{pipe}.
5366     \item[\errcode{EINVAL}] si è usato un valore nullo per \param{nr\_segs}
5367       oppure si è usato \const{SPLICE\_F\_GIFT} ma la memoria non è allineata.
5368     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
5369       richiesta.
5370   \end{errlist}
5371 }
5372 \end{funcproto}
5373
5374 La \textit{pipe} indicata da \param{fd} dovrà essere specificata tramite il
5375 file descriptor corrispondente al suo capo aperto in scrittura (di nuovo si
5376 faccia riferimento a sez.~\ref{sec:ipc_unix}), mentre per indicare quali
5377 segmenti della memoria del processo devono essere trasferiti verso di essa si
5378 dovrà utilizzare un vettore di strutture \struct{iovec} (vedi
5379 fig.~\ref{fig:file_iovec}), esattamente con gli stessi criteri con cui le si
5380 usano per l'I/O vettorizzato, indicando gli indirizzi e le dimensioni di
5381 ciascun segmento di memoria su cui si vuole operare; le dimensioni del
5382 suddetto vettore devono essere passate nell'argomento \param{nr\_segs} che
5383 indica il numero di segmenti di memoria da trasferire.  Sia per il vettore che
5384 per il valore massimo di \param{nr\_segs} valgono le stesse limitazioni
5385 illustrate in sez.~\ref{sec:file_multiple_io}.
5386
5387 In caso di successo la funzione ritorna il numero di byte trasferiti sulla
5388 \textit{pipe}. In generale, se i dati una volta creati non devono essere
5389 riutilizzati (se cioè l'applicazione che chiama \func{vmsplice} non
5390 modificherà più la memoria trasferita), è opportuno utilizzare
5391 per \param{flag} il valore \const{SPLICE\_F\_GIFT}; questo fa sì che il kernel
5392 possa rimuovere le relative pagine dalla cache della memoria virtuale, così
5393 che queste possono essere utilizzate immediatamente senza necessità di
5394 eseguire una copia dei dati che contengono.
5395
5396 La seconda funzione aggiunta insieme a \func{splice} è \func{tee}, che deve il
5397 suo nome all'omonimo comando in \textit{user space}, perché in analogia con
5398 questo permette di duplicare i dati in ingresso su una \textit{pipe} su
5399 un'altra \textit{pipe}. In sostanza, sempre nell'ottica della manipolazione
5400 dei dati su dei buffer in \textit{kernel space}, la funzione consente di
5401 eseguire una copia del contenuto del buffer stesso. Il prototipo di
5402 \funcd{tee} è il seguente:
5403
5404 \begin{funcproto}{
5405 \fhead{fcntl.h}
5406 \fdecl{long tee(int fd\_in, int fd\_out, size\_t len, unsigned int
5407     flags)}
5408 \fdesc{Duplica i dati da una \textit{pipe} ad un'altra.} 
5409 }
5410
5411 {La funzione ritorna restituisce il numero di byte copiati in caso di successo
5412   e $-1$ per un errore, nel qual caso \var{errno} assumerà uno dei valori:
5413   \begin{errlist}
5414     \item[\errcode{EINVAL}] o uno fra \param{fd\_in} e \param{fd\_out} non fa
5415       riferimento ad una \textit{pipe} o entrambi fanno riferimento alla
5416       stessa \textit{pipe}.
5417     \item[\errcode{ENOMEM}] non c'è memoria sufficiente per l'operazione
5418       richiesta.
5419   \end{errlist}
5420 }
5421 \end{funcproto}
5422
5423 La funzione copia \param{len} byte del contenuto di una \textit{pipe} su di
5424 un'altra; \param{fd\_in} deve essere il capo in lettura della \textit{pipe}
5425 sorgente e \param{fd\_out} il capo in scrittura della \textit{pipe}
5426 destinazione; a differenza di quanto avviene con \func{read} i dati letti con
5427 \func{tee} da \param{fd\_in} non vengono \textsl{consumati} e restano
5428 disponibili sulla \textit{pipe} per una successiva lettura (di nuovo per il
5429 comportamento delle \textit{pipe} si veda sez.~\ref{sec:ipc_unix}). Al
5430 momento\footnote{quello della stesura di questo paragrafo, avvenuta il Gennaio
5431   2010, in futuro potrebbe essere implementato anche \const{SPLICE\_F\_MORE}.}
5432 il solo valore utilizzabile per \param{flag}, fra quelli elencati in
5433 tab.~\ref{tab:splice_flag}, è \const{SPLICE\_F\_NONBLOCK} che rende la
5434 funzione non bloccante.
5435
5436 La funzione restituisce il numero di byte copiati da una \textit{pipe}
5437 all'altra (o $-1$ in caso di errore), un valore nullo indica che non ci sono
5438 byte disponibili da copiare e che il capo in scrittura della \textit{pipe} è
5439 stato chiuso; si tenga presente però che questo non avviene se si è impostato
5440 il flag \const{SPLICE\_F\_NONBLOCK}, in tal caso infatti si avrebbe un errore
5441 di \errcode{EAGAIN}. Un esempio di realizzazione del comando \texttt{tee}
5442 usando questa funzione, ripreso da quello fornito nella pagina di manuale e
5443 dall'esempio allegato al patch originale, è riportato in
5444 fig.~\ref{fig:tee_example}. Il programma consente di copiare il contenuto
5445 dello \textit{standard input} sullo \textit{standard output} e su un file
5446 specificato come argomento, il codice completo si trova nel file
5447 \texttt{tee.c} dei sorgenti allegati alla guida.
5448
5449 \begin{figure}[!htb]
5450   \footnotesize \centering
5451   \begin{minipage}[c]{\codesamplewidth}
5452     \includecodesample{listati/tee.c}
5453   \end{minipage}
5454   \normalsize
5455   \caption{Esempio di codice che usa \func{tee} per copiare i dati dello
5456     standard input sullo standard output e su un file.}
5457   \label{fig:tee_example}
5458 \end{figure}
5459
5460 La prima parte del programma, che si è omessa per brevità, si cura
5461 semplicemente di controllare che sia stato fornito almeno un argomento (il
5462 nome del file su cui scrivere), di aprirlo e che sia lo standard input che lo
5463 standard output corrispondano ad una \textit{pipe}.
5464
5465 Il ciclo principale (\texttt{\small 11-32}) inizia con la chiamata a
5466 \func{tee} che duplica il contenuto dello standard input sullo standard output
5467 (\texttt{\small 13}), questa parte è del tutto analoga ad una lettura ed
5468 infatti come nell'esempio di fig.~\ref{fig:splice_example} si controlla il
5469 valore di ritorno della funzione in \var{len}; se questo è nullo significa che
5470 non ci sono più dati da leggere e si chiude il ciclo (\texttt{\small 14}), se
5471 è negativo c'è stato un errore, ed allora si ripete la chiamata se questo è
5472 dovuto ad una interruzione (\texttt{\small 15-48}) o si stampa un messaggio
5473 di errore e si esce negli altri casi (\texttt{\small 18-21}).
5474
5475 Una volta completata la copia dei dati sullo \textit{standard output} si
5476 possono estrarre dallo \textit{standard input} e scrivere sul file, di nuovo
5477 su usa un ciclo di scrittura (\texttt{\small 24-31}) in cui si ripete una
5478 chiamata a \func{splice} (\texttt{\small 25}) fintanto che non si sono scritti
5479 tutti i \var{len} byte copiati in precedenza con \func{tee} (il funzionamento
5480 è identico all'analogo ciclo di scrittura del precedente esempio di
5481 fig.~\ref{fig:splice_example}).
5482
5483 Infine una nota finale riguardo \func{splice}, \func{vmsplice} e \func{tee}:
5484 occorre sottolineare che benché finora si sia parlato di trasferimenti o copie
5485 di dati in realtà nella implementazione di queste \textit{system call} non è
5486 affatto detto che i dati vengono effettivamente spostati o copiati, il kernel
5487 infatti realizza le \textit{pipe} come un insieme di puntatori\footnote{per
5488   essere precisi si tratta di un semplice buffer circolare, un buon articolo
5489   sul tema si trova su \url{http://lwn.net/Articles/118750/}.}  alle pagine di
5490 memoria interna che contengono i dati, per questo una volta che i dati sono
5491 presenti nella memoria del kernel tutto quello che viene fatto è creare i
5492 suddetti puntatori ed aumentare il numero di referenze; questo significa che
5493 anche con \func{tee} non viene mai copiato nessun byte, vengono semplicemente
5494 copiati i puntatori.
5495
5496 % TODO?? dal 2.6.25 splice ha ottenuto il supporto per la ricezione su rete
5497
5498
5499 % TODO trattare qui copy_file_range (vedi http://lwn.net/Articles/659523/),
5500 % introdotta nel kernel 4.5
5501
5502 \subsection{Gestione avanzata dell'accesso ai dati dei file}
5503 \label{sec:file_fadvise}
5504
5505 Nell'uso generico dell'interfaccia per l'accesso al contenuto dei file le
5506 operazioni di lettura e scrittura non necessitano di nessun intervento di
5507 supervisione da parte dei programmi, si eseguirà una \func{read} o una
5508 \func{write}, i dati verranno passati al kernel che provvederà ad effettuare
5509 tutte le operazioni (e a gestire il \textit{caching} dei dati) per portarle a
5510 termine in quello che ritiene essere il modo più efficiente.
5511
5512 Il problema è che il concetto di migliore efficienza impiegato dal kernel è
5513 relativo all'uso generico, mentre esistono molti casi in cui ci sono esigenze
5514 specifiche dei singoli programmi, che avendo una conoscenza diretta di come
5515 verranno usati i file, possono necessitare di effettuare delle ottimizzazioni
5516 specifiche, relative alle proprie modalità di I/O sugli stessi. Tratteremo in
5517 questa sezione una serie funzioni che consentono ai programmi di ottimizzare
5518 il loro accesso ai dati dei file e controllare la gestione del relativo
5519 \textit{caching}.
5520
5521 \itindbeg{read-ahead}
5522
5523 Una prima funzione che può essere utilizzata per modificare la gestione
5524 ordinaria dell'I/O su un file è \funcd{readahead} (questa è una funzione
5525 specifica di Linux, introdotta con il kernel 2.4.13, e non deve essere usata
5526 se si vogliono scrivere programmi portabili), che consente di richiedere una
5527 lettura anticipata del contenuto dello stesso in cache, così che le seguenti
5528 operazioni di lettura non debbano subire il ritardo dovuto all'accesso al
5529 disco; il suo prototipo è:
5530
5531 \begin{funcproto}{
5532 \fhead{fcntl.h}
5533 \fdecl{ssize\_t readahead(int fd, off64\_t *offset, size\_t count)}
5534 \fdesc{Esegue una lettura preventiva del contenuto di un file in cache.} 
5535 }
5536
5537 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
5538   caso \var{errno} assumerà uno dei valori: 
5539   \begin{errlist}
5540     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
5541       valido o non è aperto in lettura.
5542     \item[\errcode{EINVAL}] l'argomento \param{fd} si riferisce ad un tipo di
5543       file che non supporta l'operazione (come una \textit{pipe} o un socket).
5544   \end{errlist}
5545 }
5546 \end{funcproto}
5547
5548 La funzione richiede che venga letto in anticipo il contenuto del file
5549 \param{fd} a partire dalla posizione \param{offset} e per un ammontare di
5550 \param{count} byte, in modo da portarlo in cache.  La funzione usa la memoria
5551 virtuale ed il meccanismo della paginazione per cui la lettura viene eseguita
5552 in blocchi corrispondenti alle dimensioni delle pagine di memoria, ed i valori
5553 di \param{offset} e \param{count} vengono arrotondati di conseguenza.
5554
5555 La funzione estende quello che è un comportamento normale del kernel che,
5556 quando si legge un file, aspettandosi che l'accesso prosegua, esegue sempre
5557 una lettura preventiva di una certa quantità di dati; questo meccanismo di
5558 lettura anticipata viene chiamato \textit{read-ahead}, da cui deriva il nome
5559 della funzione. La funzione \func{readahead}, per ottimizzare gli accessi a
5560 disco, effettua la lettura in cache della sezione richiesta e si blocca
5561 fintanto che questa non viene completata.  La posizione corrente sul file non
5562 viene modificata ed indipendentemente da quanto indicato con \param{count} la
5563 lettura dei dati si interrompe una volta raggiunta la fine del file.
5564
5565 Si può utilizzare questa funzione per velocizzare le operazioni di lettura
5566 all'interno di un programma tutte le volte che si conosce in anticipo quanti
5567 dati saranno necessari nelle elaborazioni successive. Si potrà così
5568 concentrare in un unico momento (ad esempio in fase di inizializzazione) la
5569 lettura dei dati da disco, così da ottenere una migliore velocità di risposta
5570 nelle operazioni successive.
5571
5572 \itindend{read-ahead}
5573
5574 Il concetto di \func{readahead} viene generalizzato nello standard
5575 POSIX.1-2001 dalla funzione \func{posix\_fadvise} (anche se
5576 l'argomento \param{len} è stato modificato da \type{size\_t} a \type{off\_t}
5577 nella revisione POSIX.1-2003 TC1) che consente di ``\textsl{avvisare}'' il
5578 kernel sulle modalità con cui si intende accedere nel futuro ad una certa
5579 porzione di un file, così che esso possa provvedere le opportune
5580 ottimizzazioni; il prototipo di \funcd{posix\_fadvise}\footnote{la funzione è
5581   stata introdotta su Linux solo a partire dal kernel 2.5.60, ed è disponibile
5582   soltanto se è stata definita la macro \macro{\_XOPEN\_SOURCE} ad valore di
5583   almeno \texttt{600} o la macro \macro{\_POSIX\_C\_SOURCE} ad valore di
5584   almeno \texttt{200112L}.} è:
5585
5586
5587 \begin{funcproto}{
5588 \fhead{fcntl.h}
5589 \fdecl{int posix\_fadvise(int fd, off\_t offset, off\_t len, int advice)}
5590 \fdesc{Dichiara al kernel le future modalità di accesso ad un file.}
5591 }
5592
5593 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
5594   caso \var{errno} assumerà uno dei valori: 
5595   \begin{errlist}
5596     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
5597       valido.
5598     \item[\errcode{EINVAL}] il valore di \param{advice} non è valido o
5599       \param{fd} si riferisce ad un tipo di file che non supporta l'operazione
5600       (come una \textit{pipe} o un socket).
5601     \item[\errcode{ESPIPE}] previsto dallo standard se \param{fd} è una
5602       \textit{pipe} o un socket (ma su Linux viene restituito
5603       \errcode{EINVAL}).
5604   \end{errlist}
5605 }
5606 \end{funcproto}
5607
5608 La funzione dichiara al kernel le modalità con cui intende accedere alla
5609 regione del file indicato da \param{fd} che inizia alla posizione
5610 \param{offset} e si estende per \param{len} byte. Se per \param{len} si usa un
5611 valore nullo la regione coperta sarà da \param{offset} alla fine del file, ma
5612 questo è vero solo per le versioni più recenti, fino al kernel 2.6.6 il valore
5613 nullo veniva interpretato letteralmente. Le modalità sono indicate
5614 dall'argomento \param{advice} che è una maschera binaria dei valori illustrati
5615 in tab.~\ref{tab:posix_fadvise_flag}, che riprendono il significato degli
5616 analoghi già visti in sez.~\ref{sec:file_memory_map} per
5617 \func{madvise}.\footnote{dato che si tratta dello stesso tipo di funzionalità,
5618   in questo caso applicata direttamente al sistema ai contenuti di un file
5619   invece che alla sua mappatura in memoria.} Si tenga presente comunque che la
5620 funzione dà soltanto un avvertimento, non esiste nessun vincolo per il kernel,
5621 che utilizza semplicemente l'informazione.
5622
5623 \begin{table}[htb]
5624   \centering
5625   \footnotesize
5626   \begin{tabular}[c]{|l|p{10cm}|}
5627     \hline
5628     \textbf{Valore} & \textbf{Significato} \\
5629     \hline
5630     \hline
5631     \constd{POSIX\_FADV\_NORMAL}  & Non ci sono avvisi specifici da fare
5632                                    riguardo le modalità di accesso, il
5633                                    comportamento sarà identico a quello che si
5634                                    avrebbe senza nessun avviso.\\ 
5635     \constd{POSIX\_FADV\_SEQUENTIAL}& L'applicazione si aspetta di accedere di
5636                                    accedere ai dati specificati in maniera
5637                                    sequenziale, a partire dalle posizioni più
5638                                    basse.\\ 
5639     \constd{POSIX\_FADV\_RANDOM}  & I dati saranno letti in maniera
5640                                    completamente causale.\\
5641     \constd{POSIX\_FADV\_NOREUSE} & I dati saranno acceduti una sola volta.\\ 
5642     \constd{POSIX\_FADV\_WILLNEED}& I dati saranno acceduti a breve.\\ 
5643     \constd{POSIX\_FADV\_DONTNEED}& I dati non saranno acceduti a breve.\\ 
5644     \hline
5645   \end{tabular}
5646   \caption{Valori delle costanti usabili per l'argomento \param{advice} di
5647     \func{posix\_fadvise}, che indicano la modalità con cui si intende accedere
5648     ad un file.}
5649   \label{tab:posix_fadvise_flag}
5650 \end{table}
5651
5652 Come \func{madvise} anche \func{posix\_fadvise} si appoggia al sistema della
5653 memoria virtuale ed al meccanismo standard del \textit{read-ahead} utilizzato
5654 dal kernel; in particolare utilizzando il valore
5655 \const{POSIX\_FADV\_SEQUENTIAL} si raddoppia la dimensione dell'ammontare di
5656 dati letti preventivamente rispetto al default, aspettandosi appunto una
5657 lettura sequenziale che li utilizzerà, mentre con \const{POSIX\_FADV\_RANDOM}
5658 si disabilita del tutto il suddetto meccanismo, dato che con un accesso del
5659 tutto casuale è inutile mettersi a leggere i dati immediatamente successivi
5660 gli attuali; infine l'uso di \const{POSIX\_FADV\_NORMAL} consente di
5661 riportarsi al comportamento di default.
5662
5663 Le due modalità \const{POSIX\_FADV\_NOREUSE} e \const{POSIX\_FADV\_WILLNEED}
5664 fino al kernel 2.6.18 erano equivalenti, a partire da questo kernel la prima
5665 viene non ha più alcun effetto, mentre la seconda dà inizio ad una lettura in
5666 cache della regione del file indicata.  La quantità di dati che verranno letti
5667 è ovviamente limitata in base al carico che si viene a creare sul sistema
5668 della memoria virtuale, ma in genere una lettura di qualche megabyte viene
5669 sempre soddisfatta (ed un valore superiore è solo raramente di qualche
5670 utilità). In particolare l'uso di \const{POSIX\_FADV\_WILLNEED} si può
5671 considerare l'equivalente POSIX di \func{readahead}.
5672
5673 Infine con \const{POSIX\_FADV\_DONTNEED} si dice al kernel di liberare le
5674 pagine di cache occupate dai dati presenti nella regione di file indicata.
5675 Questa è una indicazione utile che permette di alleggerire il carico sulla
5676 cache, ed un programma può utilizzare periodicamente questa funzione per
5677 liberare pagine di memoria da dati che non sono più utilizzati per far posto a
5678 nuovi dati utili; la pagina di manuale riporta l'esempio dello streaming di
5679 file di grosse dimensioni, dove le pagine occupate dai dati già inviati
5680 possono essere tranquillamente scartate.
5681
5682 Sia \func{posix\_fadvise} che \func{readahead} attengono alla ottimizzazione
5683 dell'accesso in lettura; lo standard POSIX.1-2001 prevede anche una funzione
5684 specifica per le operazioni di scrittura, \funcd{posix\_fallocate} (la
5685 funzione è stata introdotta a partire dalle glibc 2.1.94), che consente di
5686 preallocare dello spazio disco per assicurarsi che una seguente scrittura non
5687 fallisca, il suo prototipo, anch'esso disponibile solo se si definisce la
5688 macro \macro{\_XOPEN\_SOURCE} ad almeno 600, è:
5689
5690 \begin{funcproto}{
5691 \fhead{fcntl.h}
5692 \fdecl{int posix\_fallocate(int fd, off\_t offset, off\_t len)}
5693 \fdesc{Richiede la allocazione di spazio disco per un file.} 
5694 }
5695
5696 {La funzione ritorna $0$ in caso di successo e direttamente un codice di
5697   errore altrimenti, in tal caso \var{errno} non viene impostato, e si otterrà
5698   direttamente uno dei valori:
5699   \begin{errlist}
5700     \item[\errcode{EBADF}] l'argomento \param{fd} non è un file descriptor
5701       valido o non è aperto in scrittura.
5702     \item[\errcode{EINVAL}] o \param{offset} o \param{len} sono minori di
5703       zero.
5704     \item[\errcode{EFBIG}] il valore di (\param{offset} + \param{len}) eccede
5705       la dimensione massima consentita per un file.
5706     \item[\errcode{ENODEV}] l'argomento \param{fd} non fa riferimento ad un
5707       file regolare.
5708     \item[\errcode{ENOSPC}] non c'è sufficiente spazio disco per eseguire
5709       l'operazione. 
5710     \item[\errcode{ESPIPE}] l'argomento \param{fd} è una \textit{pipe}.
5711   \end{errlist}
5712 }
5713 \end{funcproto}
5714
5715 La funzione assicura che venga allocato sufficiente spazio disco perché sia
5716 possibile scrivere sul file indicato dall'argomento \param{fd} nella regione
5717 che inizia dalla posizione \param{offset} e si estende per \param{len} byte;
5718 se questa regione si estende oltre la fine del file le dimensioni di
5719 quest'ultimo saranno incrementate di conseguenza. Dopo aver eseguito con
5720 successo la funzione è garantito che una successiva scrittura nella regione
5721 indicata non fallirà per mancanza di spazio disco. La funzione non ha nessun
5722 effetto né sul contenuto, né sulla posizione corrente del file.
5723
5724 Ci si può chiedere a cosa possa servire una funzione come
5725 \func{posix\_fallocate} dato che è sempre possibile ottenere l'effetto voluto
5726 eseguendo esplicitamente sul file la scrittura di una serie di zeri (usando
5727 \funcd{pwrite} per evitare spostamenti della posizione corrente sul file) per
5728 l'estensione di spazio necessaria qualora il file debba essere esteso o abbia
5729 dei buchi.\footnote{si ricordi che occorre scrivere per avere l'allocazione e
5730   che l'uso di \func{truncate} per estendere un file creerebbe soltanto uno
5731   \textit{sparse file} (vedi sez.~\ref{sec:file_lseek}) senza una effettiva
5732   allocazione dello spazio disco.}  In realtà questa è la modalità con cui la
5733 funzione veniva realizzata nella prima versione fornita dalla \acr{glibc}, per
5734 cui la funzione costituiva in sostanza soltanto una standardizzazione delle
5735 modalità di esecuzione di questo tipo di allocazioni.
5736
5737 Questo metodo, anche se funzionante, comporta però l'effettiva esecuzione una
5738 scrittura su tutto lo spazio disco necessario, da fare al momento della
5739 richiesta di allocazione, pagandone il conseguente prezzo in termini di
5740 prestazioni; il tutto quando in realtà servirebbe solo poter riservare lo
5741 spazio per poi andarci a scrivere, una sola volta, quando il contenuto finale
5742 diventa effettivamente disponibile.  Per poter fare tutto questo è però
5743 necessario il supporto da parte del kernel, e questo è divenuto disponibile
5744 solo a partire dal kernel 2.6.23 in cui è stata introdotta la nuova
5745 \textit{system call} \func{fallocate},\footnote{non è detto che la funzione
5746   sia disponibile per tutti i filesystem, ad esempio per XFS il supporto è
5747   stato introdotto solo a partire dal kernel 2.6.25.}  che consente di
5748 realizzare direttamente all'interno del kernel l'allocazione dello spazio
5749 disco così da poter realizzare una versione di \func{posix\_fallocate} con
5750 prestazioni molto più elevate; nella \acr{glibc} la nuova \textit{system call}
5751 viene sfruttata per la realizzazione di \func{posix\_fallocate} a partire
5752 dalla versione 2.10.
5753
5754 Trattandosi di una funzione di servizio, ed ovviamente disponibile
5755 esclusivamente su Linux, inizialmente \funcd{fallocate} non era stata definita
5756 come funzione di libreria,\footnote{pertanto poteva essere invocata soltanto
5757   in maniera indiretta con l'ausilio di \func{syscall}, vedi
5758   sez.~\ref{sec:proc_syscall}, come \code{long fallocate(int fd, int mode,
5759       loff\_t offset, loff\_t len)}.} ma a partire dalla \acr{glibc} 2.10 è
5760   stato fornito un supporto esplicito; il suo prototipo è:
5761
5762 \begin{funcproto}{
5763 \fhead{fcntl.h} 
5764 \fdecl{int fallocate(int fd, int mode, off\_t offset, off\_t len)}
5765 \fdesc{Prealloca dello spazio disco per un file.} 
5766 }
5767
5768 {La funzione ritorna $0$ in caso di successo e $-1$ per un errore, nel qual
5769   caso \var{errno} assumerà uno dei valori: 
5770   \begin{errlist}
5771     \item[\errcode{EBADF}] \param{fd} non fa riferimento ad un file descriptor
5772       valido aperto in scrittura.
5773     \item[\errcode{EFBIG}] la somma di \param{offset} e \param{len} eccede le
5774       dimensioni massime di un file. 
5775     \item[\errcode{EINVAL}] \param{offset} è minore di zero o \param{len} è
5776       minore o uguale a zero. 
5777     \item[\errcode{ENODEV}] \param{fd} non fa riferimento ad un file ordinario
5778       o a una directory. 
5779     \item[\errcode{EPERM}] il file è immutabile o \textit{append-only} (vedi
5780       sez.~\ref{sec:file_perm_overview}).
5781     \item[\errcode{ENOSYS}] il filesystem contenente il file associato
5782       a \param{fd} non supporta \func{fallocate}.
5783     \item[\errcode{EOPNOTSUPP}] il filesystem contenente il file associato
5784       a \param{fd} non supporta l'operazione \param{mode}.
5785   \end{errlist}
5786   ed inoltre \errval{EINTR}, \errval{EIO} e \errval{ENOSPC} nel loro significato
5787   generico.}
5788 \end{funcproto}
5789
5790 La funzione prende gli stessi argomenti di \func{posix\_fallocate} con lo
5791 stesso significato, a cui si aggiunge l'argomento \param{mode} che indica le
5792 modalità di allocazione; se questo è nullo il comportamento è identico a
5793 quello di \func{posix\_fallocate} e si può considerare \func{fallocate} come
5794 l'implementazione ottimale della stessa a livello di kernel.
5795
5796 Inizialmente l'unico altro valore possibile per \param{mode} era
5797 \const{FALLOC\_FL\_KEEP\_SIZE} che richiede che la dimensione del file
5798 (quella ottenuta nel campo \var{st\_size} di una struttura \struct{stat} dopo
5799 una chiamata a \texttt{fstat}) non venga modificata anche quando la somma
5800 di \param{offset} e \param{len} eccede la dimensione corrente, che serve
5801 quando si deve comunque preallocare dello spazio per scritture in append. In
5802 seguito sono stati introdotti altri valori, riassunti in
5803 tab.\ref{tab:fallocate_mode}, per compiere altre operazioni relative alla
5804 allocazione dello spazio disco dei file.
5805
5806 \begin{table}[htb]
5807   \centering
5808   \footnotesize
5809   \begin{tabular}[c]{|l|p{10cm}|}
5810     \hline
5811     \textbf{Valore} & \textbf{Significato} \\
5812     \hline
5813     \hline
5814     \constd{FALLOC\_FL\_INSERT}     & .\\
5815     \constd{FALLOC\_FL\_COLLAPSE\_RANGE}& .\\ 
5816     \constd{FALLOC\_FL\_KEEP\_SIZE} & Mantiene invariata la dimensione del
5817                                      file, pur allocando lo spazio disco anche
5818                                      oltre la dimensione corrente del file.\\
5819     \constd{FALLOC\_FL\_PUNCH\_HOLE}& Crea un \textsl{buco} nel file (vedi
5820                                      sez.~\ref{sec:file_lseek}) rendendolo una
5821                                      \textit{sparse file} (dal kernel
5822                                      2.6.38).\\  
5823     \constd{FALLOC\_FL\_ZERO\_RANGE}& .\\ 
5824     \hline
5825   \end{tabular}
5826   \caption{Valori delle costanti usabili per l'argomento \param{mode} di
5827     \func{fallocate}.}
5828   \label{tab:fallocate_mode}
5829 \end{table}
5830
5831 In particolare con \const{FALLOC\_FL\_PUNCH\_HOLE} è possibile scartare il
5832 contenuto della sezione di file indicata da \param{offser} e \param{len},
5833 creando un \textsl{buco} (si ricordi quanto detto in
5834 sez.~\ref{sec:file_lseek}); i blocchi del file interamente contenuti
5835 nell'intervallo verranno disallocati, la parte di intervallo contenuta
5836 parzialmente in altri blocchi verrà riempita con zeri e la lettura dal file
5837 restituirà degli zeri per tutto l'intervallo indicato. In sostanza si rende il
5838 file uno \textit{sparse file} a posteriori.
5839
5840 % vedi http://lwn.net/Articles/226710/ e http://lwn.net/Articles/240571/
5841 % http://kernelnewbies.org/Linux_2_6_23
5842
5843
5844 % TODO aggiungere FALLOC_FL_ZERO_RANGE e FALLOC_FL_COLLAPSE_RANGE, inseriti
5845 % nel kernel 3.15 (sul secondo vedi http://lwn.net/Articles/589260/), vedi
5846 % anche http://lwn.net/Articles/629965/
5847
5848 % TODO aggiungere FALLOC_FL_INSERT vedi  http://lwn.net/Articles/629965/
5849
5850 % TODO aggiungere i file hints di fcntl (F_GET_RW_HINT e compagnia)
5851 % con RWH_WRITE_LIFE_EXTREME e RWH_WRITE_LIFE_SHORT aggiunte con
5852 % il kernel 4.13 (vedi https://lwn.net/Articles/727385/)
5853
5854 \subsection{Altre funzionalità avanzate}
5855 \label{sec:file_seal_et_al}
5856
5857 da fare
5858
5859 % TODO non so dove trattarli, ma dal 2.6.39 ci sono i file handle, vedi
5860 % http://lwn.net/Articles/432757/ (probabilmente da associare alle
5861 % at-functions) 
5862
5863 % TODO: trattare i file seal, vedi fcntl / F_ADD_SEAL e memfd_create
5864
5865 % TODO trattare qui ioctl_ficlonerange ?
5866
5867 % TODO trattare qui close_range, vedi https://lwn.net/Articles/789023/
5868 % dal 5.11 aggiunto CLOSE_RANGE_CLOEXEC, https://lwn.net/Articles/837816/ 
5869
5870
5871
5872 % LocalWords:  dell'I locking multiplexing cap sez system call socket BSD GID
5873 % LocalWords:  descriptor client deadlock NONBLOCK EAGAIN polling select kernel
5874 % LocalWords:  pselect like sys unistd int fd readfds writefds exceptfds struct
5875 % LocalWords:  timeval errno EBADF EINTR EINVAL ENOMEM sleep tab signal void of
5876 % LocalWords:  CLR ISSET SETSIZE POSIX read NULL nell'header l'header glibc fig
5877 % LocalWords:  libc header psignal sigmask SOURCE XOPEN timespec sigset race DN
5878 % LocalWords:  condition sigprocmask tut self trick oldmask poll XPG pollfd l'I
5879 % LocalWords:  ufds unsigned nfds RLIMIT NOFILE EFAULT ndfs events revents hung
5880 % LocalWords:  POLLIN POLLRDNORM POLLRDBAND POLLPRI POLLOUT POLLWRNORM POLLERR
5881 % LocalWords:  POLLWRBAND POLLHUP POLLNVAL POLLMSG SysV stream ASYNC SETOWN FAQ
5882 % LocalWords:  GETOWN fcntl SETFL SIGIO SETSIG Stevens driven siginfo sigaction
5883 % LocalWords:  all'I nell'I Frequently Unanswered Question SIGHUP lease holder
5884 % LocalWords:  breaker truncate write SETLEASE arg RDLCK WRLCK UNLCK GETLEASE
5885 % LocalWords:  uid capabilities capability EWOULDBLOCK notify dall'OR ACCESS st
5886 % LocalWords:  pread readv MODIFY pwrite writev ftruncate creat mknod mkdir buf
5887 % LocalWords:  symlink rename DELETE unlink rmdir ATTRIB chown chmod utime lio
5888 % LocalWords:  MULTISHOT thread linkando librt layer aiocb asyncronous control
5889 % LocalWords:  block ASYNCHRONOUS lseek fildes nbytes reqprio PRIORITIZED sigev
5890 % LocalWords:  PRIORITY SCHEDULING opcode listio sigevent signo value function
5891 % LocalWords:  aiocbp ENOSYS append error const EINPROGRESS fsync return ssize
5892 % LocalWords:  DSYNC fdatasync SYNC cancel ECANCELED ALLDONE CANCELED suspend
5893 % LocalWords:  NOTCANCELED list nent timout sig NOP WAIT NOWAIT size count iov
5894 % LocalWords:  iovec vector EOPNOTSUPP EISDIR len memory mapping mapped swap NB
5895 % LocalWords:  mmap length prot flags off MAP FAILED ANONYMOUS EACCES SHARED SH
5896 % LocalWords:  only ETXTBSY DENYWRITE ENODEV filesystem EPERM EXEC noexec table
5897 % LocalWords:  ENFILE lenght segment violation SIGSEGV FIXED msync munmap copy
5898 % LocalWords:  DoS Denial Service EXECUTABLE NORESERVE LOCKED swapping stack fs
5899 % LocalWords:  GROWSDOWN ANON POPULATE prefaulting SIGBUS fifo VME fork old SFD
5900 % LocalWords:  exec atime ctime mtime mprotect addr mremap address new Failed
5901 % LocalWords:  long MAYMOVE realloc VMA virtual Ingo Molnar remap pages pgoff
5902 % LocalWords:  dall' fault cache linker prelink advisory discrectionary lock fl
5903 % LocalWords:  flock shared exclusive operation dup inode linked NFS cmd ENOLCK
5904 % LocalWords:  EDEADLK whence SEEK CUR type pid GETLK SETLK SETLKW HP EACCESS
5905 % LocalWords:  switch bsd lockf mandatory SVr sgid group root mount mand TRUNC
5906 % LocalWords:  SVID UX Documentation sendfile dnotify inotify NdA ppoll fds add
5907 % LocalWords:  init EMFILE FIONREAD ioctl watch char pathname uint mask ENOSPC
5908 % LocalWords:  CLOSE NOWRITE MOVE MOVED FROM TO rm wd event page ctl acquired
5909 % LocalWords:  attribute Universe epoll Solaris kqueue level triggered Jonathan
5910 % LocalWords:  Lemon BSDCON edge Libenzi kevent backporting epfd EEXIST ENOENT
5911 % LocalWords:  MOD wait EPOLLIN EPOLLOUT EPOLLRDHUP SOCK EPOLLPRI EPOLLERR one
5912 % LocalWords:  EPOLLHUP EPOLLET EPOLLONESHOT shot maxevents ctlv ALL DONT HPUX
5913 % LocalWords:  FOLLOW ONESHOT ONLYDIR FreeBSD EIO caching sysctl instances name
5914 % LocalWords:  watches IGNORED ISDIR OVERFLOW overflow UNMOUNT queued cookie ls
5915 % LocalWords:  NUL sizeof casting printevent nread limits sysconf SC wrapper Di
5916 % LocalWords:  splice result argument DMA controller zerocopy Linus Larry Voy
5917 % LocalWords:  Jens Anxboe vmsplice seek ESPIPE GIFT TCP CORK MSG splicecp nr
5918 % LocalWords:  nwrite segs patch readahead posix fadvise TC advice FADV NORMAL
5919 % LocalWords:  SEQUENTIAL NOREUSE WILLNEED DONTNEED streaming fallocate EFBIG
5920 % LocalWords:  POLLRDHUP half close pwait Gb madvise MADV ahead REMOVE tmpfs it
5921 % LocalWords:  DONTFORK DOFORK shmfs preadv pwritev syscall linux loff head XFS
5922 % LocalWords:  MERGEABLE EOVERFLOW prealloca hole FALLOC KEEP stat fstat union
5923 % LocalWords:  conditions sigwait CLOEXEC signalfd sizemask SIGKILL SIGSTOP ssi
5924 % LocalWords:  sigwaitinfo FifoReporter Windows ptr sigqueue named timerfd TFD
5925 % LocalWords:  clockid CLOCK MONOTONIC REALTIME itimerspec interval Resource
5926 % LocalWords:  ABSTIME gettime temporarily unavailable SIGINT SIGQUIT SIGTERM
5927 % LocalWords:  sigfd fifofd break siginf names starting echo Message from Got
5928 % LocalWords:  message kill received means exit TLOCK ULOCK EPOLLWAKEUP
5929
5930
5931 %%% Local Variables: 
5932 %%% mode: latex
5933 %%% TeX-master: "gapil"
5934 %%% End: 
5935