La febbre rompe le scatole, ma almeno uno sa come "perdere tempo"
authorSimone Piccardi <piccardi@gnulinux.it>
Tue, 17 Jul 2001 17:49:26 +0000 (17:49 +0000)
committerSimone Piccardi <piccardi@gnulinux.it>
Tue, 17 Jul 2001 17:49:26 +0000 (17:49 +0000)
filedir.tex
fileintro.tex
gapil.tex
img/link_loop.dia [new file with mode: 0644]
img/vfs.dia [new file with mode: 0644]
intro.tex

index 4c2f8d147272f58edbbe6f455b4408bfb2cebb30..0d6dbdba57a2fb2fe0e10d76745a240af656a4ee 100644 (file)
@@ -13,7 +13,7 @@ dei file 
 
 Le prime funzioni che considereremo sono quelle relative alla gestione di file
 e directory, secondo le caratteristiche standard che essi presentano in un
-filesystem unix, già esaminate in precedenza (vedi
+filesystem unix, la cui struttura abbiamo esaminato in precedenza (vedi
 \secref{sec:fileintr_filesystem}).
 
 \subsection{Le funzioni \texttt{link} e \texttt{unlink}}
@@ -89,14 +89,14 @@ filesystem; inoltre il filesystem deve supportare i collegamenti diretti (non 
 il caso ad esempio del filesystem \texttt{vfat} di windows).
 
 La funzione opera sui file ordinari, come sugli altri oggetti del filesystem,
-ma solo l'amministratore è in grado di creare un collegamento diretto ad
-un'altra directory, questo lo si fa perché in questo caso è possibile creare
-dei circoli nel filesystem (vedi \secref{sec:fileintr_symlink}) che molti
-programmi non sono in grado di gestire e la cui rimozione diventa estremamente
-complicata (in genere occorre far girare il programma \texttt{fsck} per
-riparare il filesystem); data la sua pericolosità in Linux questa
-caratteristica è stata disabilitata, e la funzione restituisce l'errore
-\texttt{EPERM}.
+in alcuni filesystem solo l'amministratore è in grado di creare un
+collegamento diretto ad un'altra directory, questo lo si fa perché in questo
+caso è possibile creare dei circoli nel filesystem (vedi
+\secref{sec:fileintr_symlink}) che molti programmi non sono in grado di
+gestire e la cui rimozione diventa estremamente complicata (in genere occorre
+far girare il programma \texttt{fsck} per riparare il filesystem); data la sua
+pericolosità in generale nei filesystem usati in Linux questa caratteristica è
+stata disabilitata, e la funzione restituisce l'errore \texttt{EPERM}.
 
 La rimozione di un file (o più precisamente della voce che lo referenzia) si
 effettua con la funzione \texttt{unlink}; il suo prototipo è il seguente:
@@ -255,10 +255,10 @@ al kernel (analogamente a quanto avviene per le directory) per cui la chiamata
 ad una \texttt{open} o una \texttt{stat} su un link simbolico comporta la
 lettura del contenuto del medesimo e l'applicazione della funzione al file
 specificato da quest'ultimo. Invece altre funzioni come quelle per cancellare
-o rinominare i file operano direttamente sul link simbolico. Inoltre esistono
-funzioni apposite, come la \texttt{readlink} e la \texttt{lstat} per accedere
-alle informazioni del link invece che a quelle del file a cui esso fa
-riferimento.
+o rinominare i file operano direttamente sul link simbolico (per l'elenco vedi
+\ntab). Inoltre esistono funzioni apposite, come la \texttt{readlink} e la
+\texttt{lstat} per accedere alle informazioni del link invece che a quelle del
+file a cui esso fa riferimento.
 
 Le funzioni per operare sui link simbolici sono le seguenti, esse sono tutte
 dichiarate nell'header file \texttt{unistd.h}.
@@ -310,6 +310,87 @@ questa funzione 
   \end{errlist}
 \end{prototype}
 
+In \ntab\ si è riportato un elenco dei comportamenti delle varie funzioni che
+operano sui file rispetto ai link simbolici; specificando quali seguono il
+link simbolico e quali possono operare direttamente sul suo contenuto.
+\begin{table}[htb]
+  \centering
+  \footnotesize
+  \begin{tabular}[c]{|l|c|c|}
+    \hline
+    Funzione & Segue il link & Non segue il link \\
+    \hline 
+    \hline 
+    \func{access}   & $\bullet$ &           \\
+    \func{chdir}    & $\bullet$ &           \\
+    \func{chmod}    & $\bullet$ &           \\
+    \func{chown}    &           & $\bullet$ \\
+    \func{creat}    & $\bullet$ &           \\
+    \func{exec}     & $\bullet$ &           \\
+    \func{lchown}   & $\bullet$ & $\bullet$ \\
+    \func{link}     &           &           \\
+    \func{lstat}    &           & $\bullet$ \\
+    \func{mkdir}    & $\bullet$ &           \\
+    \func{mkfifo}   & $\bullet$ &           \\
+    \func{mknod}    & $\bullet$ &           \\
+    \func{open}     & $\bullet$ &           \\
+    \func{opendir}  & $\bullet$ &           \\
+    \func{pathconf} & $\bullet$ &           \\
+    \func{readlink} &           & $\bullet$ \\
+    \func{remove}   &           & $\bullet$ \\
+    \func{rename}   &           & $\bullet$ \\
+    \func{stat}     & $\bullet$ &           \\
+    \func{truncate} & $\bullet$ &           \\
+    \func{unlink}   &           & $\bullet$ \\
+    \hline 
+  \end{tabular}
+  \caption{Uso dei link simbolici da parte di alcune funzioni.}
+  \label{tab:filedir_symb_effect}
+\end{table}
+si noti che non si è specificato il comportamento delle funzioni che operano
+con i file descriptor, in quanto la gestione del link simbolico viene in
+genere effttuata dalla funzione che restituisce il file descriptor
+(normalmente la \func{open}).
+
+\begin{figure}[htb]
+  \centering
+  \includegraphics[width=5cm]{img/link_loop.eps}
+  \caption{Esempio di loop nel filesystem creato con un link simbolico.}
+  \label{fig:filedir_link_loop}
+\end{figure}
+
+Un caso comune che si può avere con i link simbolici è la creazione dei
+cosiddetti \textit{loop}. La situazione è illustrata in \curfig, che riporta
+la struttura della directory \file{/boot}. Come si vede si è creato al suo
+interno un link simbolico che punta di nuovo a \file{/boot}\footnote{Questo
+  tipo di loop è stato effettuato per poter permettere a \cmd{grub} (un
+  bootloader estremamente avanzato in grado di accedere direttamente
+  attraverso vari filesystem al file da lanciare come sistema operativo) di
+  vedere i file in questa directory, che è montata su una partizione separata
+  (e che grub vedrebbe come radice), con lo stesso path con cui verrebbero
+  visti dal sistema operativo.}. 
+
+Questo può causare problemi per tutti quei programmi che effettuassero uno
+scan di una directory senza tener conto dei link simbolici, in quel caso
+infatti il loop nella directory 
+
+Un secondo punto da tenere presente è che un link simbolico può essere fatto
+anche ad un file che non esiste; ad esempio possiamo creare un file temporaneo
+nella nostra directory con un link del tipo:
+\begin{verbatim}
+$ln -s /tmp/tmp_file temporaneo
+\end{verbatim}%$
+ma anche se \file{/tmp/tmp_file} non esiste. Aprendo in scrittura
+\file{temporaneo} questo verrà scritto; ma se cercassimo di accederlo in sola
+lettura (ad esempio con \cmd{cat}) otterremmo:
+\begin{verbatim}
+$ cat prova 
+cat: prova: No such file or directory
+\end{verbatim}%$
+con un errore che sembra sbagliato, dato \cmd{ls} ci mostrerebbe l'esistenza
+di \file{temporaneo}.
+
+
 \subsection{Le funzioni \texttt{mkdir} e \texttt{rmdir}} 
 \label{sec:filedir_dir_creat_rem}
 
@@ -608,20 +689,27 @@ per questo sempre in \texttt{sys/stat.h} sono definiti i flag riportati in
 
 Il primo valore definisce la maschera dei bit usati nei quali viene
 memorizzato il tipo di files, mentre gli altri possono essere usati per
-effettuare delle selezioni sul tipo di file voluto.
+effettuare delle selezioni sul tipo di file voluto, combinando opportunamente
+i vari flag; ad esempio se si volesse controllare se un file è una directory o
+un file ordinario si potrebbe definire la condizione:
+\begin{lstlisting}
+#define IS_FILE_DIR(x) ( ((x) & S_IFMT) & (S_IFDIR | S_IFREG) )
+\end{lstlisting}
+in cui prima si estraggono da \var{st\_mode} i bit relativi al tipo di file e
+poi si effettua il confronto con la combinazione di tipi scelta.
 
 \subsection{La dimensione dei file}
 \label{sec:filedir_file_size}
 
 Il membro \var{st\_size} contiene la dimensione del file in bytes (se il file
 è un file normale, nel caso di un link simbolico al dimensione è quella del
-pathname che contiene, per le directory è in genere un multiplo di 512). 
+pathname che contiene). 
 
 Il campo \var{st\_blocks} definisce la lunghezza del file in blocchi di 512
 bytes. Il campo \var{st\_blksize} infine definisce la dimensione preferita per
 i trasferimenti sui file (che è la dimensione usata anche dalle librerie del C
-per l'interfaccia deglli stream); scrivere in blocchi di dimensione inferiore
-sarebbe inefficiente.
+per l'interfaccia degli stream); scrivere sul file a blocchi di dati di
+dimensione inferiore sarebbe inefficiente.
 
 Si tenga conto che lunghezza del file riportata in \var{st\_size} non è detto
 che corrisponda all'occupazione dello spazio su disco per via della possibile
@@ -637,7 +725,6 @@ legge dal file (ad esempio usando \cmd{wc -c}), dato che in tal caso per le
 parti non scritte vengono restituiti degli zeri, si avrà lo stesso risultato
 di \cmd{ls}.
 
-
 Se è sempre possibile allargare un file scrivendoci sopra od usando la
 funzione \func{seek} per spostarsi oltre la sua fine. Esistono però anche casi
 in cui si può avere bisogno di effettuare un troncamento scartando i dati al
@@ -647,11 +734,11 @@ Un file pu
 questo è un caso particolare; per qualunque altra dimensione si possono usare
 le due funzioni:
 \begin{functions}
-  \headdecl{unistd.h} \funcdecl{int truncate(const char *file\_name, off_t
+  \headdecl{unistd.h} \funcdecl{int truncate(const char *file\_name, off\_t
     length)} Fa si che la dimensione del file \var{file\_name} sia troncata ad
     un valore massimo specificato da \var{lenght}. 
   
-  \funcdecl{int ftruncate(int fd, off_t length))} Identica a \func{truncate}
+  \funcdecl{int ftruncate(int fd, off\_t length))} Identica a \func{truncate}
   eccetto che si usa con un file aperto, specificato tramite il suo file
   descriptor \var{fd}, 
   
@@ -672,28 +759,46 @@ le due funzioni:
 
 Se il file è più lungo della lunghezza specificata i dati in eccesso saranno
 perduti; il comportamento in caso di lunghezza inferiore non è specificato e
-dipende dall'implementazione, il file può essere lasciato invariato o esteso
+dipende dall'implementazione: il file può essere lasciato invariato o esteso
 fino alla lunghezza scelta; in quest'ultimo caso lo spazio viene riempito con
 zeri (e in genere si ha la creazione di un hole nel file).
 
 \subsection{I tempi dei file}
 \label{sec:filedir_file_times}
 
-Il sistema mantiene tre tempi per ciascun file, corrispondenti a tre campi
-della struttura \func{stat}, come riassunto in \ntab:
+Il sistema mantiene per ciascun file tre tempi. Questi sono registrati
+nell'inode insieme agli altri attibuti del file e possono essere letti tramite
+la funzione \func{stat}, che li restituisce attraverso tre campi della
+struttura in \figref{fig:filedir_stat_struct} il cui signifato è riportato
+nello schema in \ntab:
 
 \begin{table}[htb]
   \centering
   \begin{tabular}[c]{|c|l|l|c|}
-    \var{st\_atime} & & &   \\ 
-    \var{st\_mtime} & & &   \\ 
-    \var{st\_ctime} & & &   \\ 
+    \var{st\_atime}& ultimo accesso ai dati del file &\func{read}& \cmd{-u}\\ 
+    \var{st\_mtime}& ultima modifica ai dati del file &\func{write}& default\\ 
+    \var{st\_ctime}& ultima modifica ai dati dell'inode&\func{chmod}, 
+    \func{utime} & \cmd{-c} \\ 
   \end{tabular}
   \caption{I tre tempi associati a ciascun file}
   \label{tab:filedir_file_times}
 \end{table}
 
 
+La differenza principale di cui tenere presente è quella fra tempo di modifica
+\var{st\_mtime} e tempo di cambiamento di stato \var{st\_ctime}. Il primo
+infatti fa riferimento ad una modifica del contenuto di un file, mentre il
+secondo ad una modifica dell'inode; siccome esistono molte operazioni (come la
+funzione \func{link} e molte altre che vedremo in seguito) che modificano solo
+le informazioni contenute nell'inode senza toccare il file, dato che queste
+ultime sono separate dal contenuto del file diventa necessario l'utilizzo di
+un altro tempo. Si noti inoltre come \var{st\_ctime} non abbia nulla a che
+fare con il tempo di creazione usato da molti altri sistemi operativi, che in
+unix non esiste.
+
+
+
+
 \subsection{La funzione \texttt{utime}}
 \label{sec:filedir_utime}
 
index d1c8e13af85fa8a5fd7fb289ae57c6220f419dea..d0ca221bb8e86bdf066738b9f6c178bd0eb7280a 100644 (file)
@@ -339,7 +339,7 @@ di I/O sul dispositivo fisico, secondo lo schema riportato in \nfig.
 
 \begin{figure}[htb]
   \centering
-  
+  \includegraphics[width=5cm]{img/vfs.eps}
   \caption{Schema delle operazioni del VFS}
   \label{fig:fileintro_VFS_scheme}
 \end{figure}
index 2564ee76184f7194fefe20bc38a2c93ff1b87029..5e1fc777261e15500044f06ddc704f3c9c7ce928 100644 (file)
--- a/gapil.tex
+++ b/gapil.tex
@@ -1,4 +1,4 @@
-%%
+%% 
 %% GaPiL : Guida alla Programmazione in Linux
 %%
 %% S. Piccardi Feb. 2001
@@ -62,7 +62,6 @@
 \end{quote}
 \clearemptydoublepage
 
-
 \tableofcontents
 \clearemptydoublepage
 
diff --git a/img/link_loop.dia b/img/link_loop.dia
new file mode 100644 (file)
index 0000000..179491c
Binary files /dev/null and b/img/link_loop.dia differ
diff --git a/img/vfs.dia b/img/vfs.dia
new file mode 100644 (file)
index 0000000..14c1f1b
Binary files /dev/null and b/img/vfs.dia differ
index 6fc0fecac814ceb9b4196b500c9dcb81408232a4..cc6dcfa95d96de8bfe176074d29337561cc73807 100644 (file)
--- a/intro.tex
+++ b/intro.tex
@@ -229,18 +229,75 @@ descritti in precedenza sono disattivati.
 \section{Gli standard di unix e GNU/Linux}
 \label{sec:intro_standard}
 
-
+In questa sezione prenderemo in esame alcune caratteristiche generali del
+sistema e gli standard adottati per le funzioni, i prototipi, gli errori, i
+tipi di dati.
+
+\subsection{Prototipi e puntatori}
+\label{sec:intro_function}
+
+\subsection{La misura del tempo in unix}
+\label{sec:intro_unix_time}
+
+Storicamente i sistemi unix-like hanno sempre mantenuto due distinti valori
+per i tempi all'interno del sistema, chiamati rispettivamente \textit{calendar
+  time} e \textit{process time}, secondo le definizioni:
+\begin{itemize}
+\item \textit{calendar time}: è il numero di secondi dalla mezzanotte del
+  primo gennaio 1970, in tempo universale coordinato (o UTC, data che viene
+  usualmente indicata con 00:00:00 Jan, 1 1970 (UTC) e chiamata \textit{the
+    Epoch}). Viene chiamato anche GMT (Greenwich Mean Time) dato che l'UTC
+  corrisponde all'ora locale di Greenwich.  E' il tempo su cui viene mantenuto
+  l'orologio del calcolatore, e viene usato ad esempio per indicare le date di
+  modifica dei file o quelle di avvio dei processi. Per memorizzare questo
+  tempo è stato riservato il tipo primitivo \func{time\_t}.
+\item \textit{process time}: talvolta anche detto tempo di CPU. Viene misurato
+  in \textit{clock tick}, corripondenti al numero di interruzioni effettuate
+  dal timer di sistema, e che per Linux sono ogni centesimo di secondo
+  (eccetto per la piattaforma alpha). Il dato primitivo usato per questo tempo
+  è \func{clock\_t}, inoltre la costante \macro{HZ} restituisce la frequenza
+  di operazione del timer, e corrisponde dunque al numero di tick al secondo
+  (Posix definisce allo stesso modo la costante \macro{CLK_TCK}); questo
+  valore può comunque essere ottenuto con \func{sysconf} (vedi
+  \secref{sec:intro_limits}).
+\end{itemize}
+
+In genere si usa il \textit{calendar time} per tenere le date dei file e le
+informazioni analoghe che riguardano i tempi di ``orologio'' (usati ad esempio
+per i demoni che compiono lavori amministrativi ad ore definite, come
+\cmd{cron}). Di solito questo vene convertito automaticamente dal valore in
+UTC al tempo locale, utilizzando le opportune informazioni di localizzazione
+(specificate in \file{/etc/timezone}). E da tenere presente che questo tempo è
+mantenuto dal sistema e non corrisponde all'orologio hardware del calcolatore.
+
+Il \textit{process time} di solito si esprime in secondi e viene usato appunto
+per tenere conto dei tempi di esecuzione dei processi. Per ciascun processo il
+kernel tiene tre di questi tempi: 
+\begin{itemize}
+\item \textit{clock time}
+\item \textit{user time}
+\item \textit{system time}
+\end{itemize}
+il primo è il tempo ``reale'' (viene anche chiamato \textit{wall clock time})
+dall'avvio del processo, e misura il tempo trascorso fino alla sua
+conclusione; chiaramente un tale tempo dipede anche dal carico del sistema e
+da quanti altri processi stavano girando nello stesso periodo. Il secondo
+tempo è quello che la CPU ha speso nell'esecuzione delle istruzioni del
+processo in user space. Il terzo è il tempo impiegato dal kernel per eseguire
+delle system call per conto del processo medesimo (tipo quello usato per
+eseguire una \func{write} su un file). In genere la somma di user e system
+time viene chiamato \textit{CPU time}. 
 
 \subsection{Lo standard ANSI C}
 \label{sec:intro_ansiC}
 
-
-
 \subsection{Lo standard POSIX}
 \label{sec:intro_posix}
 
+\subsection{Valori e limiti del sistema}
+\label{sec:intro_limits}
 
 
-
-
+\subsection{Tipi di dati primitivi}
+\label{sec:intro_data_types}