X-Git-Url: https://gapil.gnulinux.it/gitweb/?a=blobdiff_plain;f=prochand.tex;h=2283fe4dc05586edbb3cb136d20277bcca06f8f2;hb=fffa3e611bff16a0d896c73bbb2d50b2fce6a3fa;hp=69bdb16e4224a89cfe216fca14896f760804029b;hpb=c6bb1ae340cad082718e43163b9595608ed123e1;p=gapil.git diff --git a/prochand.tex b/prochand.tex index 69bdb16..2283fe4 100644 --- a/prochand.tex +++ b/prochand.tex @@ -78,9 +78,10 @@ affrontate in dettaglio in \secref{sec:proc_fork}). Se si vuole che il processo padre si fermi fino alla conclusione del processo figlio questo deve essere specificato subito dopo la \func{fork} chiamando la -funzione \func{wait} o la funzione \func{waitpid}; queste funzioni -restituiscono anche una informazione abbastanza limitata (il codice di uscita) -sulle cause della terminazione del processo. +funzione \func{wait} o la funzione \func{waitpid} (si veda +\secref{sec:proc_wait}); queste funzioni restituiscono anche una informazione +abbastanza limitata (lo stato di terminazione) sulle cause della terminazione +del processo. Quando un processo ha concluso il suo compito o ha incontrato un errore non risolvibile esso può essere terminato con la funzione \func{exit} (si veda @@ -146,9 +147,10 @@ usando le funzioni: \funcdecl{pid\_t getpid(void)} restituisce il pid del processo corrente. \funcdecl{pid\_t getppid(void)} restituisce il pid del padre del processo corrente. - Entrambe le funzioni non riportano condizioni di errore. \end{functions} +esempi dell'uso di queste funzioni sono riportati in +\figref{fig:proc_fork_code}, nel programma di esempio \file{ForkTest.c}. Il fatto che il \acr{pid} sia un numero univoco per il sistema lo rende il candidato ideale per generare ulteriori indicatori associati al processo di @@ -168,10 +170,11 @@ identificativi associati ad un processo relativi al controllo di sessione. \subsection{La funzione \func{fork}} \label{sec:proc_fork} -La funzione \func{fork} è la funzione fondamentale della gestione dei processi -in unix; come si è detto l'unico modo di creare un nuovo processo è attraverso -l'uso di questa funzione, che è quindi la base per il multitasking. Il prototipo -della funzione è: +La funzione \func{fork} è la funzione fondamentale della gestione dei +processi: come si è detto l'unico modo di creare un nuovo processo è +attraverso l'uso di questa funzione, essa quindi riveste un ruolo centrale +tutte le volte che si devono scrivere programmi che usano il multitasking. Il +prototipo della funzione è: \begin{functions} \headdecl{sys/types.h} @@ -189,17 +192,17 @@ della funzione \end{errlist} \end{functions} -Dopo l'esecuzione di una \func{fork} sia il processo padre che il processo -figlio continuano ad essere eseguiti normalmente alla istruzione seguente la -\func{fork}; il processo figlio è però una copia del padre, e riceve una copia -dei segmenti di testo, stack e dati (vedi \secref{sec:proc_mem_layout}), ed -esegue esattamente lo stesso codice del padre, ma la memoria è copiata, non -condivisa\footnote{In generale il segmento di testo, che è identico, è - condiviso e tenuto in read-only, Linux poi utilizza la tecnica del - \textit{copy-on-write}, per cui la memoria degli altri segmenti viene - copiata dal kernel per il nuovo processo solo in caso di scrittura, rendendo - molto più efficiente il meccanismo} pertanto padre e figlio vedono variabili -diverse. +Dopo il successo dell'esecuzione di una \func{fork} sia il processo padre che +il processo figlio continuano ad essere eseguiti normalmente alla istruzione +seguente la \func{fork}; il processo figlio è però una copia del padre, e +riceve una copia dei segmenti di testo, stack e dati (vedi +\secref{sec:proc_mem_layout}), ed esegue esattamente lo stesso codice del +padre, ma la memoria è copiata, non condivisa\footnote{In generale il segmento + di testo, che è identico, è condiviso e tenuto in read-only, Linux poi + utilizza la tecnica del \textit{copy-on-write}, per cui la memoria degli + altri segmenti viene copiata dal kernel per il nuovo processo solo in caso + di scrittura, rendendo molto più efficiente il meccanismo} pertanto padre e +figlio vedono variabili diverse. La differenza che si ha nei due processi è che nel processo padre il valore di ritorno della funzione fork è il \acr{pid} del processo figlio, mentre nel @@ -214,8 +217,8 @@ viene eseguito dal padre o dal figlio. La scelta di questi valori non è casuale, un processo infatti può avere più figli, ed il valore di ritorno di \func{fork} è l'unico modo che permette di identificare quello appena creato; al contrario un figlio ha sempre un solo -padre (il cui \acr{pid} può sempre essere ottenuto con \func{getppid}, vista -in \secref{sec:proc_pid}) e si usa il valore nullo, che non può essere il +padre (il cui \acr{pid} può sempre essere ottenuto con \func{getppid}, vedi +\secref{sec:proc_pid}) e si usa il valore nullo, che non può essere il \acr{pid} di nessun processo. \begin{figure}[!htb] @@ -237,26 +240,23 @@ int main(int argc, char *argv[]) */ int nchild, i; pid_t pid; - int wait_child=0; - int wait_parent=0; - + int wait_child = 0; + int wait_parent = 0; + int wait_end = 0; ... /* handling options */ - - /* There must be remaing parameters */ - if (optind == argc) { - usage(); - } nchild = atoi(argv[optind]); printf("Test for forking %d child\n", nchild); /* loop to fork children */ for (i=0; i] + 570 pts/0 Z 0:00 [forktest ] + 571 pts/0 Z 0:00 [forktest ] + 572 pts/0 R 0:00 ps T +\end{verbatim} %$ +e come si vede, dato che non si è fatto nulla per riceverne lo stato di +terminazione, i tre processi figli sono ancora presenti pur essendosi +conclusi, con lo stato di zombie e l'indicazione che sono stati terminati. + +La possibilità di avere degli zombie deve essere tenuta sempre presente quando +si scrive un programma che deve essere mantenuto in esecuzione a lungo e +creare molti figli. In questo caso si deve sempre avere cura di far leggere +l'eventuale stato di uscita di tutti i figli (in genere questo si fa +attraverso un apposito \textit{signal handler}, che chiama la funzione +\func{wait}, vedi \secref{sec:sig_xxx} e \secref{sec:proc_wait}). Questa +operazione è necessaria perché anche se gli \textit{zombie} non consumano +risorse di memoria o processore, occupano comunque una voce nella tabella dei +processi, che a lungo andare potrebbe esaurirsi. + +Si noti che quando un processo adottato da \cmd{init} termina, esso non +diviene uno \textit{zombie}; questo perché una delle funzioni di \cmd{init} è +appunto quella di chiamare la funzione \func{wait} per i processi cui fa da +padre, completandone la terminazione. Questo è quanto avviene anche quando, +come nel caso del precedente esempio con \cmd{forktest}, il padre termina con +dei figli in stato di zombie: alla sua terminazione infatti tutti i suoi figli +vengono ereditati (compresi gli zombie) verranno adottati da \cmd{init}, il +quale provvederà a completarne la terminazione. + +Si tenga presente infine che siccome gli zombie sono processi già terminati, +non c'è modo di eliminarli con il comando \cmd{kill}; l'unica possibilità è +quella di terminare il processo che li ha generati, in modo che \cmd{init} +possa adottarli e provvedere a concludere la terminazione. \subsection{Le funzioni \texttt{wait} e \texttt{waitpid}} \label{sec:proc_wait} +Come accennato la funzioni che permettono di leggere lo stato di uscita di un +processo, e di completarne il processo di terminazione sono \func{wait} e +\func{waitpid}, il loro prototipo è: +\begin{functions} +\headdecl{sys/types.h} +\headdecl{sys/wait.h} +\funcdecl{pid\_t wait(int * status)} +\funcdecl{pid\_t waitpid(pid\_t pid, int *status, int options)} +\end{functions} + + +Come abbiamo appena visto una delle azioni prese dal kernel alla terminazione +di un processo è quella di salvarne lo stato e mandare un segnale di +\macro{SIGCHLD} al padre (torneremo su questa parte in \secref{sec:sig_xxx}). \subsection{Le funzioni \texttt{exec}}